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We reconsider the two-loop electron self-energy in quantum electrodynamics. We present a modern
calculation, where all relevant two-loop integrals are expressed in terms of iterated integrals of modular

forms. As boundary points of the iterated integrals, we consider the four cases p?> = 0, p> = m?, p> = 9m?
and p? = oco. The iterated integrals have g-expansions, which can be used for the numerical evaluation.

We show that a truncation of the g-series to order O(g*) gives numerically, for the finite part of the self-
energy, a relative precision better than 10729 for all real values p2/m?>.
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I. INTRODUCTION

The two-loop contribution to the electron self-energy in
quantum electrodynamics (QED) was computed for the
first time by A. Sabry [1] in 1962. Already at that time it
was understood that the calculation involves certain elliptic
integrals. For lack of better techniques at that time, the
integrands have been approximated by series expansions,
and the analysis has been restricted to the region above
the threshold. We are now in a better position: Feynman
integrals associated with elliptic curves are now a current
topic of research interest, and our techniques to compute
these integrals have evolved [2-35]. It is, therefore, natural
to revisit the two-loop electron self-energy in QED and to
present the result in modern language. The two-loop
electron self-energy is, of course, the central piece for
the determination of the @’ term of the electron mass
renormalization constant Z,, and the electron field renorm-
alization constant Z,. Let us note that in the MS-scheme
only the pole terms are relevant whereas in the on-shell
scheme all loop integrals are evaluated on-shell at p> = m?.
In both cases, we do not encounter elliptic integrals for
the determination of the renormalization constants. In this
paper, we are interested in the finite part of the two-loop
electron self-energy for generic values p?/m? where
elliptic integrals do occur. We view the electron self-energy
as a (off-shell and gauge-dependent) building block
entering two-loop scattering amplitudes in QED. We are
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interested in an analytic expression for the two-loop self-
energy and in efficient methods for the numerical evalu-
ation of the occurring transcendental functions. As a new
result our final answer allows a numerical evaluation with
arbitrary precision for all real values of p?/m?. Other
methods for the numerical evaluation of some of the
relevant Feynman integrals have been discussed in [36—40].

The electron self-energy is a gauge-dependent object.
We perform the calculation in a covariant gauge with gauge
parameter &.

The renormalized electron self-energy is a renormaliza-
tion-scheme-dependent quantity. For this reason we present
the bare electron self-energy independently of the contri-
butions from the counterterms. In QED, the on-shell
scheme is the conventional choice. We give the contribu-
tions from the counterterms in the on-shell scheme.
Renormalization removes ultraviolet divergences, infrared
divergences remain or are introduced through infrared
poles in the renormalization constants. The latter case
already occurs at one-loop in the on-shell scheme in QED.

The bare electron self-energy is not a pure function.
We may associate a weight to the iterated integrals and the
transcendental constants appearing in our calculation.
A function is pure if each term in the e-expansion has
uniform weight, where ¢ denotes the dimensional regulari-
zation parameter. Although we may choose our master
integrals as pure functions, the bare electron self-energy is
not pure (and is not expected to be pure).

We follow the standard approach for loop calculations:
The two-loop electron self-energy is expressed as a linear
combination of master integrals. The coefficients of the
master integrals are given in Appendix E (for Feynman
gauge £ = 1) and in a Supplemental Material [41] (for a
general covariant gauge & # 1). The master integrals are
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computed from their differential equations [17,42-52]. For
the case at hand, they can be expressed as iterated integrals
of modular forms [18]. In order to give the reader some
orientation on the level of complexity of the calculation, let
us classify loop integrals along two criteria: (i) the number
of the involved dimensionless variables and (ii) whether
the loop integrals may be expressed in terms of multiple
polylogarithms or not. The simplest case is given by loop
integrals depending on a single dimensionless variable and
expressible in terms of (multiple) polylogarithms. Loop
integrals associated to two-loop 2 — 2-scattering ampli-
tudes in massless theories are a typical example [53-60],
and the class of functions reduces to the sub-class of
harmonic polylogarithms. The next difficult case is given
by loop integrals depending on several dimensionless
variables and expressible in terms of multiple polylogar-
ithms. Loop integrals associated to the two-loop scattering
amplitudes for the process ete™ — ggg in massless QCD
are an example [61-63]. In both cases, the standard
approach is to transform the system of differential equa-
tions to an e-form [48] through an algebraic change of the
kinematic variables and an algebraic change of the basis of
the master integrals. If we leave the class of multiple
polylogarithms, we first have the case of Feynman integrals
beyond the class of multiple polylogarithms, but depending
on a single dimensionless variable. This is the case
discussed in this paper. Of course, there is also the case
of Feynman integrals beyond the class of multiple
polylogarithms and depending on several dimensionless
variables. An example for the latter would be given by the
two-loop integrals associated to the process gg — tf
[17,28,29,64,65]. Let us emphasize that, for the case of
interest of this article, we are nevertheless able to trans-
form the system of differential equations to an e-form
[27], albeit through a nonalgebraic change of the basis of
the master integrals.

For the numerical evaluation of the master integrals we
switch from the variable x = p?/m? to a variable ¢, related
to the nome squared of an elliptic curve. We may choose g
such that ¢ vanishes at one of the cusps x € {0,1,9, c0}.
Let us call this point j and the set of the remaining points
S; =1{0.1,9,00}\{j}. The master integrals have a series
expansion in g, which converges for all values x € R\S,
i.e., everywhere on the real line except for three points.
The g-expansion is a highly efficient method to evaluate
numerically the master integrals for g close to zero. We
give g-expansion for the master integrals for all possible
choices j € {0, 1,9, oo}, thus covering the full kinematic
range x € R with efficient numerical evaluation routines
and thereby generalizing the results of [19].

Efficient numerical evaluations are often based on fast
convergent series expansions. The difference between our
result and the original work of Sabry lies in the variables
used to expand in. With our choice the series show a
significant faster convergence (and are well motivated from

the underlying mathematics). Quite recently, a purely
numerical approach of solving the system of differential
equations has been advocated in [66,67], based on
expansions around the singular points of the differential
equations. The differences and the similarities with our
approach are as follows: Within our approach we first
obtain an analytic result in terms of iterated integrals of
modular forms (with a notion of weight for these iterated
integrals, such that the &/ term of each master integrals
has uniform weight j), and only in a second step we use
efficient numerical methods for the numerical evaluation
of these iterated integrals. The approach of [66,67] is
numerical from the beginning. We use a variable ¢ as
expansion parameter, whereas the method of [66,67] uses
p*/m? or a rational function of this variable. Common
to both methods is the expansion around all singular
points of the differential equations, and—on a technical
level—the determination of the boundary constants for
the expansion around the second, third and any further
singular point from the boundary constants for the
expansion around the first (or any other already known)
singular point with the help of high-precision numerics
and the PSLQ-algorithm [68].

This paper is organized as follows: Sec. II briefly
reviews the Lagrange density of quantum electrodynamics
and the (known) renormalization constants to two-loop
order. In Sec. IIl, we introduce the master integrals for
the two-loop electron self-energy. Section 1V is a brief
introduction to iterated integrals. In Sec. V, we express the
bare two-loop electron self-energy in terms of master
integrals. In addition, we give the counterterms from
renormalization. In Sec. VI, we evaluate the master
integrals in terms of iterated integrals of modular forms.
The iterated integrals start at a boundary point j and we do
this for the four choices j € {0,1,9,00}. The iterated
integrals have a g-series expansion, which may be used for
the numerical evaluation. In Sec. VII, we present numeri-
cal results. Our conclusions are given in Sec. VIII. The
Appendix contains useful information on the QED
Feynman rules (Appendix A), the numerical computation
of the complete elliptic integral with the help of the
arithmetic-geometric mean (Appendix B), the Eisenstein
series of modular weight 1 appearing in the calculation
(Appendix C), the one-loop electron self-energy
(Appendix D), the coefficients appearing in the expression
of the two-loop electron self-energy in terms of the master
integrals (Appendix E), the boundary constants for the
four cases j € {0, 1,9, o} (Appendix F) and a description
of the content of the Supplemental Material [41].

II. LAGRANGE DENSITY AND
RENORMALIZATION

The bare gauge-fixed Lagrangian for QED reads in a
covariant gauge
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. 1
Laep = Woli@ — mo)yo — 1 (0,A,0 — 0,4,0)*
1

2% (0"A,0)* = eoWor* A, owo. (1)

We use dimensional regularization and set D =4 — 2¢.
Under renormalization, one redefines the fields

1 1
Ao =Z34A,, wo = 23y, (2)

and the parameters

-1 I
ey =Z uSe’e=2"uS’e, moy=2Z,m, &Ey=Z:L=273¢.

(3)

The arbitrary scale p is introduced to keep the renormalized
coupling e dimensionless. The factor S, = (4x)¢exp(—eyg)
absorbs artifacts of dimensional regularization (logarithms
of 4z and Euler’s constant yg). For convenience, we set

a=—, D) = yS, 2. (4)

Substituting the above relations into the Lagrange density,
we obtain

EQED = Erenorm + ‘Ccounterterms’ (5 )

where L epom 18 given by Logp where all bare quantities are
replaced by renormalized ones (the bare coupling e is
replaced by e(P)). The counterterms are given by

= (ZZ - l)l/_/l@l// - (ZZZm - l)ml/_/l//
+ % (Zs — 1A, (g0 — ")A,

—(Zy = D)ePyyrAy. (6)

‘Ccountenerms

The renormalization constants are known to very high loop
order [69-80]. Here, we only need them to order O(a?). We
write

2
Zy=1 +%Z§l) - (%) 79 + 0@,
2
z, =1 +%z§i) + <£Z> Z8 + 0(a) (7)

In the on-shell scheme, we have [72]

. 4 2
) =2~ S0e+O@),
3 3
Z;1>:_—4—(§2+8)s+0(62),
e 2
3 3
2= 2a- (erea)eroe)
P 2
Z9-_2 15:0
@ 9 55
22 —2—£2+4_8+96§21n2_24§3
211 7685
— O 9
5+ =5+ 0()
@ 5 155 87
Zy) = 4 —— 4480, In2 — 12¢3 — —
202 g T 4862 SRR
1169
+?—|—O(€). (8)

For the two-loop contribution to the electron self-energy,

we need Z; to order a and Z, and Z,, to order a’.

III. DEFINITIONS AND NOTATION FOR
THE MASTER INTEGRALS

There are three Feynman diagrams contributing to the
two-loop electron self-energy in QED. These diagrams
are shown in Fig. 1. We label these diagrams “rainbow
diagram,” “kite diagram” and “fermion insertion diagram,”
respectively. The second diagram (the kite diagram) can be
drawn equivalently as shown in Fig. 2, motivating the name
“kite diagram.” The master integrals for the rainbow
diagram and the fermion insertion diagram will be a subset
of the master integrals for the kite diagram. To see this,
let us first introduce the kite integral. We set

IU]V2D3U4I/5 (D’ P2, m2”u2) = (—1 )y12345 62758 (/,tz)V12345_D
x/del dPk, 1
in? in? DDy DY DDy’
©)
with the propagators
D, =k} —m?, D, = I3, Dy = (ky — ky)? — m?,
Dy = (ky = p)?, Ds = (p—ky)* —m? (10)

and vy345 =V + Uy +v3+1vs+1s. The internal momenta
are denoted by k; and k,, the internal mass by m, the
external momentum by p and the dimension of spacetime
by D =4 — 2¢. The arbitrary scale p renders the integral
dimensionless. In the following, we set 4 = m. We further
define
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2
5 3 5 1 3 5

FIG. 1.

x==. (11)

The five propagators D;—Dj5 are indicated by the numbers
1-5 in Fig. 2. We note that all propagators of the rainbow
diagram and the fermion loop insertion diagram are a
subset of these. In order to show this, we labeled all
propagators in Fig. 1 with the appropriate numbers.
Therefore it is sufficient to consider only the master
integrals of the kite integral. In order to present these
master integrals, let us first denote by w; and y, two
independent solutions of the second-order differential
equation [2,36]

2

d d
x(x—1)(x—9)ﬁ+(3x2—20x+9)a+x—3 w =0.

(12)

Of course, this does not fully specify y; nor y,, but for the
moment this is all what we would like to assume about yr,
and y,. The exact definitions of y; and y, will be given in
Sec. VI. We denote the Wronskian by

d

d
W=y, — dx

. 13
dx 7481 ( )

Yo =W
We will normalize y; and y, such that

6ri
Ve o

We will see later that Eq. (12) is the Picard-Fuchs equation
for the periods of an elliptic curve and v, and y, will be
taken as periods of an elliptic curve. We denote the ratio of
the two periods and the nome squared by

FIG. 2. The kite graph. This graph is equivalent to the second
graph in Fig. 1.

a0

Ly

The Feynman graphs contributing to the two-loop electron self-energy.

= ﬂ, q = e, (15)
81
We further set
G==, gy = e, (16)
n

Let us now return to the master integrals. There are eight
master integrals, which we take as [13,27]

4€2X102210(4 - 28 x),
=4e?[2l45010(4 — 2€,x) + (1 — x)Igp120(4 — 2¢,x)],

£,X

Ig(e.x) =& —1I10101(2 — 2¢,x),
2 2 2
wi d wi (3x*—10x-9)
I;(e,x) =— — I,
(&) = W an ' T 2 W = 1) (x=9) 6
Ig(e,x) = =8> (1 —2&)xI 1, (4 — 2¢,x). (17)

In the master integral /4, the sunrise integral in D = 2 — 2¢
spacetime dimensions appears. Using dimensional-shift
relations, we may express this integral in terms of integrals
in D =4 — 2¢ spacetime dimensions. We have

3
EENEEOL
+2(1 —2¢)(2 —3¢e) 119101 (4 — 2¢, x)
+2(1 = 2€)(x + 3) 150101 (4 — 2¢, x)].
(18)

The master integral /; involves the derivative of 1. We
have

Lioi01(2 —2¢,x) = 3 — x) 50000 (4 — 2¢, x)

d 382 p s
—Is = —I50101(2 = 2¢, %)
Vi

dx
142 1 [d
_ [<+€>+ <wl>}gzﬂ Lot (2 26.%).
X dx 78]

(19)
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and

1

120101 (2 - 28, .X') = W {[ ( )(X - 9) - 8(2)(3 - 34)(2 + 54x — 54)]120200(4 - 26', X)
x —
+2(1 —2€)(2-3¢)[(x = 1)(x —9) — 2e(x — 3)(x + 3)]1 10101 (4 — 2¢,x)
+2(1=2¢)[3(x = 1)(x = 9) + &(x® — 36x? + 45x + 54)] 19101 (4 — 2¢,x)}, (20)
which allows us to express all integrals in D = 4 — 2¢ dimensions.
Let us set | = (I, 15,13, 14,15, I, 17, Ig)T. The differential equation for T with respect to 7, reads
1 d-
21
27 dz, (21)
where the 8 x 8-matrix A is independent of ¢ and given by
0 0 0 0 0 0 0 o
—92,] 9 0 0 0 0 0 0
0 0 (%) g2,l 0 0 0 0
A 0 0 —492’0 + 4921 —292,1 0 0 0 0 (22)
0 =205.1 0 0 20, 0 0 O
0 0 0 0 0 —f> 1 0
i3 0 0 0 0 fa -f» 0
9.1 0 =205 =921 200 —12g30+ %93,1 0 9
|
The entries of the matrix A are as follows: We first define oo = 4b% — 4 biby + 1 B2,
3 12
1yt 1 yiyi 382y — 2 2y L
. Wk = —12b7 + 8b1by, ——bb b,
BO= 5w PBOZ 5 W 30 : TR 2+ 1272
Lyt (v, (x +3)* f ——b“
4
Jo= 2mW< 48x(x = 1)(x = 9) 576 S |
_ vl Lviyn x 92 =3b%—1b1b2+12b%7
P S Wx—1" Bl Z W a1 27 1
1 l[/% 1 23 g3.1 :—9b?+—b%b2——blb%+ﬁb%,
99 = 5 Wr=09" (23) 1
g2,9 = b b bz + b2 (26)
12 12
and set then
1 1 Let us stress that all formulas in this section are valid for
fa= 5920 +0i1t9e 9=00-201. [3 =75%0-  any choice of y, and y,, as long as these are two
4 independent solutions of Eq. (12) and normalized such
(24) that Eq. (14) holds. We will use this freedom to define four
_ sets of master integrals, which we denote by /; ; (with 1 <
All entries may be expressed as polynomials in i <8and je{0,1,9,00}), corresponding to the different
g-expansions around the four cusps x € {0, 1,9, co}.
Vi _w Where it is not relevant, we will drop the additional
by =—, b 3 25 . X ’ .
' - o 3 (25) index j. The first five master integrals and the last one

We have

are identical in all four sets and differ only in the variables
they depend on. However, in the definition of the sixth and
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the seventh master integral the period y; appears explicitly
and these integrals are not identical in the four sets. Of
course, the dependence on our choice of v is also reflected
in the coefficients expressing the two-loop self-energy as a
linear combination of the master integrals, such that the
final result is independent of the choice of y and y,. To
cut the story short: This setup allows us to use in any region
a choice of variables with the best numerical convergence.

IV. ITERATED INTEGRALS

We may easily solve the differential equation in Eq. (21)
order-by-order in e. The solution is expressed in terms of
iterated integrals. Let us briefly review iterated integrals
[81]. For differential 1-forms @y, ..., ®; on a manifold M
and a path y: [a, b] — M let us write for the pull-back of w;
to the interval [a, b]

fi(A)dr =y ;. (27)

The iterated integral is defined by

L@y oo g b) = /bcmlfl (M)/M dinfa(l)...

a a

< M dagitan) (28)

Harmonic polylogarithms are a special case of iterated
integrals [82]. We consider two integration kernels

fol2) = f1(2) = (29)

1 1
A’ -1

and define the harmonic polylogarithms by

Hop s (6) = / X f () Hy () (30)

and

1

Hy o(x) = —1In*(x). (31)
—~

H(x) =1, 2

k

The last equation defines harmonic polylogarithms for
trailing zeros.

A second special case are iterated integrals of modular
forms. Let f(z), f2(7), ..., fx(z) be modular forms of a
congruence subgroup. and assume that f;(z) vanishes at
the cusp 7 = ico. We define the k-fold iterated integral by

F(fyofoe.. fri) = (2ni)" / “dnfi(n) / " dafo(r)...

ico ico
Tk*ld __ 2r;it
x| T fi(t), g=e".
ico

(32)

The case where f;(7) does not vanishes at the cusp 7 = ico
is discussed in [18,83] and is similar to trailing zeros in the
case of harmonic polylogarithms. If we change the inte-
gration variables from 7 to ¢ we obtain

dq, ~ 1 dqgy ~
F(fi.fa s fi3q) :/Oq%fl(%)/oq %fz(‘]z)m

qr-1 % -~
X/o 2 Fielqw) (33)

with

fila) = £;(@). (34)

Given the g-expansion of the modular forms f, ..., f;, we
may easily obtain the g-expansion of the iterated integral
F(f1,f2,---» fx; q) by integrating term-by-term and multi-
plication of the power series.

V. THE TWO-LOOP SELF-ENERGY
A. The bare two-loop self-energy

We first compute the bare two-loop electron self-
energy in QED. We write with @ = ¢?/(4z) for the bare
self-energy

2
cinfn = i) (Bt min). (9

separating the part proportional to p and the part propor-

tional to m. The quantities Zgie_v and Ztﬁie. ¢ are expressed

as linear combinations of the master integrals /; — Ig:

8 8
2 2
ZE)aie,V = Z C}/IJ" Eéa}e,S = Z c}sl.f‘ (36)
Jj=1 J=1

We work in a general covariant gauge with gauge parameter
&. The coefficients c}/ and CJS. are rational functions in x, ¢, &,
yw/mand 1/x - dy,/dx. For £ = 1 (Feynman gauge) they
are listed in Appendix E. For a general covariant gauge
(¢ # 1) they are given in Supplemental Material [41]. The
master integrals /; — Ig satisfy a differential equation in
e-form, therefore the e-expansion of Zl(jl)re,v and Zt()i)re,S is
easily obtained from Eq. (36) by expanding in ¢ to the
desired order. The pole terms are rather simple. Let us
write

(2 = 2.k
Zba)re,S = Z 8k2l()are),5‘ (37)
k==2

@ _ N~ a0
z:’bare,V - Z gkzbare.V’
k=2

We have
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-2 _ 1 52 B. The counterterms from renormalization

bare: V We write for the counterterms from renormalization at

2-2) 1 5
Shes =5 (L + 85 +9). order O(a?)

_ 7 12 2 12
s T 16 o & (e 12 e,
. 4 X X X X <) [ a\? 2 )

2-1 23 12¢8 £ —iZcr = . (Ecry# + Zcrgm). (39)

St =4+ 10 +2£ - (5+6§+§2—;—7_;>
xIn (1 —x). (38)

The relevant diagrams are shown in Fig. 3. Z(CzT)_V and Z(CZ% s

The finite parts Z&@.V and Zéi}(;). ¢ will be given in Sec. VI. are given by
|

Gy =-2% - [Z(‘) G _28)) <%+ 1 _£> Lz 2 )) }E |

2 2(1-2¢ € (1-2
_0=e) [mB=2e) ([ 1\  ,om(l 1_1 £
(1-2¢) 7% 2¢ x? "\ x ex? o
1
s =20+ 2 22 5 s [6-207) - 3-260 + e- 202 - (34 620020y

T 21 1—25))( (3-2e)3+¢-20)(1 =02 = 3=26)(1 = )2\ + (34 E=26)(3 - x = 4e)Z0) | /. (40)

Jy and J, are the two master integrals of the one-loop calculation. They are given in Appendix D. The renormalization
constants in the on-shell scheme are given in Eq. (8). In the on-shell scheme, we have

2y =30 180 5+ | r 15+ 23 (3- Dm0 ;- B vave+ E 4 Bl e o+ 240

4 72
—96¢,1n(2) (15 E—3—1>§ln(1 —x)+3<3—l>§[L12( )+ n2(1 — x)] + Ofe),
=0 =—(16+ 125)§+ [—22 — 34+ 2<16 + 68 —é—%> In(1 —x)} é+%— 928 — 1728, — 1280, — 36(4
+ 1444, In(2 )+2<1%9+17g—%—%&> xIn (1 —x)
- 2<16+6§—%—%) Liy(x) + n2(1 = x)] + O(e). (41)

X
O(e?) gM Mvz %
- X > o > PS N X ®
A S

FIG. 3. The Feynman graphs corresponding to the counterterms. In the first graph, we take the O(a?) term.
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VI. EVALUATION OF THE MASTER INTEGRALS

A. Transcendental constants

There are a few transcendental constants appearing in the
boundary constants. The transcendental constants relevant
to our calculation are

weight1: z, 1In(2), In(3),

1 2r
ight2: Li,(=), CL(—],
weig 1 (3) 2 ( 3 )
. (1 . 1
Welght3: €3, L13 5 s L12,l g s 1 s (42)

and products of those. Our convention for the notation of
the multiple polylogarithms is

i1 T R .
) J1 Jk=1 x.il xéz x;f
Llnlﬂ2 .... nk(xl,xz,...,xk): E E E Ty g et gt

P R
(43)

8
Iy =4+ 4067 — 55353 +O(eh),

The Clausen function is defined by

Ch(#) = 5:[Lin(e) ~Lis(e™)],  (44)
thus
() =5 Ll - i 69

where r3 = exp(2zi/3) denotes the third root of unity. We
list the relevant boundary constants for the boundary points
x €{0,1,9, 0} in Appendix F.

B. Integrals expressible in terms
of harmonic polylogarithms

The master integrals /; — I5 may be expressed (to all
orders in ¢) in terms of harmonic polylogarithms [13,14].
The first few orders of the e-expansion of the integrals
I, — Is may be expressed in terms of classical polylogar-
ithms. We have

I, = 4H,(x)e + [4H (x) + 8H i (x)]e* + [4H o1 (x) + 8Hoy1 (x) + 8H 191 (x) + 16H 111 (x)+45H, (x)]e? + O(e*)
= —41n (1 — x)e + [4Liy(x) + 4In?(1 — x)]e? + [4Li5(x) + 8Liz(1 — x)

+ 4In(x)ln2(1 — x) - §In3(1 —x) = 125, 1n (1 = X)]& + O(e*),

Iy = —4H | (x)e — [4H, (x) + 16H, (x)]e* — [4H oo (x) + 16H ;1 (x) 4 24H 10y (x) + 64H 11 (x) + 120,H, (x)]e? + O(&*)
=41In (1 — x)e — [4Liy(x) + 8In?(1 — x)]&* — [4Li5(x) + 32Li3(1 — x)

+81n (1 — x)Liy(x) + 16 In(x)In?(1 — x) —%ln3(l —x) =444 In (1 = x)]ed + O(e),

Iy =4+ 8H(x)e + [16H; (x) + 32H; (x) + 1285]e* + [16H g (x) + 64H oy (x)

32
+ 48H101 (x) + 128H111(X) + 2462[‘11 (X) - ?C:;]&s + 0<E4>

=4—8In(1 — x)e + [16Li,(x) + 16In*(1 — x) + 12¢,]e* + [16Li5(x) + 32Liz(1 — x)

—161n (1 — x)Liy(x) + 16In(x)In?(1 — x) —63—41113(1 —x) =564, In(1 —x) —3;—25;3]83 + O(&*)

Is = 8H,,(x)e* + [16Hoy (x) + 8H 01 (x) + 48H 1, (x)]e” + O(e*)

= 4In?(1 — x)e? — [81n (1 — x)Liy(x) + 8In*(1 — x)]e* + O(e*).

The analytic continuation and the numerical evaluation
of these master integrals are well understood. The
analytic continuation is dictated by Feynman’s id-
prescription: x — x +i6. There are packages, which
allow the numerical evaluation of harmonic polylogar-
ithms H,, , (x) in double precision and arbitrary
precision [84-87].

(46)

Let us also note the following alternative: The harmonic
polylogarithms with the letters f) and f| can be written as
iterated integrals of modular forms. Since the latter are
required anyhow for the problem at hand, we may as well
treat the analytic continuation and the numerical evaluation
within the context of iterated integrals of modular forms.
We will follow this approach in this paper.
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C. The elliptic master integrals

The master integrals /4-I3 depend on elliptic topologies
and may be expressed as iterated integrals of modular
forms. We remark that also the master integrals /,-/5 may
be written as iterated integrals of modular forms. This
follows from the relations

d
X opigyode, -2 = 2gmigy,dr.  (47)
X ’ x—1 ’
From the maximal cut of the sunrise integral we obtain the
elliptic curve

E:w?—z(z4+4)[Z+2(1+x)z+ (1 -x)2]=0. (43)

We denote the roots of the quartic polynomial in
Eq. (48) by

71 =4, 2 =—(14+Vx)%,
73 =—(1 —vx)%, 74 =0. (49)

There is an isomorphism between the elliptic curve and
C/A, where A is a lattice generated by the periods of the
elliptic curve:

A = {nyy o+ nyoglng.ny € Z3, (50)

where v o and y, o are two periods of the elliptic curve
generating the lattice A. It can be shown that v o and 5
are two independent solutions of the homogeneous second-
order differential equation given in Eq. (12). Any other pair
w1 ; and y, ; of periods related to the first one by

; b b
)= (D) (0 a)ese
Vi, c d Y10 c d

(51)
generates the same lattice. y; ; and y, ; are again two
independent solutions of the differential equation given
in Eq. (12). If v ¢ and y, are normalized according to
Eq. (14), then so are y; ; and y, ;. We see that we have
some freedom in choosing a pair of periods y/; j and v ; as
independent solutions of Eq. (12). We will label different
choices by the subscript j. The definition of the master
integrals Is and /7 involves the period y, ; and hence
depends on our choice of y ; and y ;. Let us now discuss
the dependence on our choice of vy ; and y, ; in more
detail: As already mentioned, the master integrals /,-/5 and
I3 do not depend at all on our choice of y, ; and y, ;:

I

I ie€{1,2,3,4,58). (52)

i = lijs

The dependence of I4 on our choice is rather simple:

Vi,

= 1
Wiy

Ig

J (53)

6,j°

The dependence of /7 on our choice is more tricky, due to
the appearance of the derivative of dy/dx. One finds

x(x=1)(x=9) d d
b == e (P Y g Jles
Vi
AN, (54
Y 7 )

This relation is most easily derived by relating both the
basis /; y and the basis /; ; to a basis independent of our
choice of periods. This intermediate basis does not need to
be an e-basis. A possible intermediate basis is

{115, 15, 1y 15, o101 (2 = 2¢€), Ingi01 (2 = 2¢). I}, (55)

Equations (52)—(54) allow us to match the master integrals
with different choices of periods in regions where both
choices lead to convergent series expansions. This can be
used to determine the boundary conditions for one choice
from the known boundary conditions of the other choice. In
practice, we proceed as follows: Suppose we already know
the boundary constants for the choice j and we would like
to obtain the boundary constants for the choice j'. Suppose
further that there is a region where both choices lead to
convergent series expansions. Evaluating both expressions
to high precision gives us numerical values to high
precision for the boundary constants of the choice j'.
We may then use the PSLQ-algorithm [68] to match these
values to a Q-linear combination of the transcendental
constants from Sec. VI. A.

In the following, we will discuss four choices for the pair
of periods. We label them

Wi v2,).  J€{0.1,9,00}. (56)
For each choice we set
Toj = i&, ng = &>, n;eN. (57)
¥
The values of n; will be
ny=1, n =6, ng =2, ne =3.  (58)

Each of the four choices has the property that
qn,j=0 forx=j j€{0,1,9, 0}, (59)
ie., n,j vanishes at the cusp x = j. We write b; ; if y; ; is

substituted for y; in the generic definition of b; in Eq. (25).
For the e-expansion of the master integrals we write
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1<i<8, je€{0,1,9,00}. (60)

Ly =>"érl),
k=0

We will need for the two-loop self-energy up to the finite

part the integral /¢ ; to order €2, the integral I7 j to order &

and the integral I3 ; to order 3. The integral I4 j starts at

order ¢, the integral I, j starts at order &, while the integral

Ig ; starts at order &°. Therefore we need in all three cases
the first nonvanishing order.

1. The cusp p*=0

We start with the cusp x = 0. We introduce the modulus
k and the complementary modulus k' through

(22— 21)(z4 — 23)
(23— 21)(24 —Zz)'
(61)

_ (23— 2)(z4 — 21) n_
kz_(Z3—Zl)(Z4—Zz)’ K=

Explicitly we have

16y o (L= VDG+VH)
(VG- V) (T VA (- V)
(62)

K=

where Feynman’s id-prescription (x — x + i) is under-
stood. Our choice of periods for this case (which agrees
with the choice made in ref. [27]) is given by

<ZZZ) B \/;);(3 - \/;)ﬂ(i;(f)) ) (63)

where K (k) denotes the complete elliptic integral of the
first kind. The complete elliptic integral is efficiently
computed with the help of the arithmetic-geometric mean,
reviewed in Appendix B. The 2 x 2-matrix y is given by

()
=10 1)
(2 1)

The matrix y ensures that the periods vy o and y, vary
smoothly as x varies smoothly in xR +id [19].
The complete elliptic integral K(k) can be viewed as a
function of k%: We set K(k?) = K(k). The function K (k?)
has a branch cut at [1, o[ in the complex k*-plane. The
matrix y compensates for the discontinuity when we
cross this branch cut. It is relatively easy to see that k?
as a function of x crosses this branch cut at the point

—00 < x < 3—2/3,
3-2v3<x<1, (64)

1 <x< oo.

TABLE 1.  The values of the variables 7, , 74 |, 759 and 73 4, at
the cusps x € {0, 1,9, o0 }.

X 0 1 9 00
710 ico 0 % %
T6.1 0 1o —% —%
729 % % ioco 0
73,00 —% —% 0 ico

x =3 —2v/3~ —0.46, the corresponding value in the k>-
plane is k> = 2. The point x = 1 is a little bit more subtle.
Let us parametrize a small path around x = 1 by

x(gp) =1+ 89 pe|0,x], (65)

then

1 .
=1+ 3—25%31(”—4’) +0(8%), (66)

and the path in k*-space winds around the point k> = 1 by
an angle 37 as the path in x-space winds around the point
x =1 by the angle 7.
Note that Eq. (63) defines the periods y; o and y,  for all
values x € R + i6. The periods take values in C U {c0}.
One easily verifies that vy, and y,, are normalized
according to Eq. (14). We set

T = @, qio = e, (67)
Y10

The values of 7, at the points x € {0,1,9,00} are
tabulated in Table I. In Fig. 4, we plot the values of the

x €] —00,0] ——
100 - 1 x€[0:1] —
x€|[1:9] —
X € (9,00
10-'F 1
1001 1

Im(q1,0)

100 L |

L
—1 —-0.5 0 0.5
Re(q10)

—

FIG. 4. The path in g, o-space as x ranges over R. We always
have g, 9| < 1 and |g,o| = 1 only at x € {1,9, c0}.
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variable g, o as x ranges over R. We see that all values of
q1 o are inside the unit disc with the exception of the three
points x € {1,9, co}, where the corresponding ¢, (-values
are on the boundary of the unit disc.
In order to simplify the notation, we write in the
remaining part of this section
T=1710, 9 = q10- (68)
We also use the notation b, for b,y and b, for b,.
Equation (67) defines z as a function of x. In the
neighborhood of x = 0, we may invert Eq. (67). This gives

g @ (60"
1oy n(20)

where 7 denotes Dedekind’s eta-function. The integration
kernels appearing in Eq. (23) are modular forms of the
congruence subgroup I';(6). In order to present the g-
expansion of the integration kernels, we introduce a basis
{e, e, } for the modular forms of modular weight 1 for the
Eisenstein subspace &;(I";(6)):

(69)

ey =E; (27;107)(1)7 (70)
|

er = E (73201

2 2 1
Iég =3Cl, <—> - =F(1,930:9)

3) 2
:3Cl2<23ﬂ> _3\/§{q_iq2+q3 —%q4+%q5
Ig()):—%F(ga,o;q)
= —3\/§[q—§q2+3q3 _%C]4+25—4q5 —gf

16
- ?F(gm, 1.930:q) — 802F(92159) +3ClL, <—

where y, and y; denote primitive Dirichlet characters
with conductors 1 and 3, respectively. The Eisenstein
series Ei(7,x0,x1) and E;(27,x0,x1) are defined in
Appendix C. All occurring integration kernels may be
expressed as polynomials in e; and e,. We first express b,
and b, [defined in Eq. (25)] in terms of e; and e,:

by =2V3(e; + e,), by, =12V3e,.  (71)

This shows that {b;, b, } is also a basis of £;(I";(6)). With
the help of Eq. (26) we may now express the integration
kernels as polynomials in e; and e,:

920 = —12(ef — 4e3),
gr1 = —18(e? + e1e5 —2¢3),
Gro = 6(e? —3e e, + 2¢3),
G0 = —T2V3(e} — eley —4e i€ + 4€d),
931 = —108v/3(e3 = 3e e} + 2¢3),
Fu = 324e. (72)

We obtain for the first nonvanishing order of the integrals
Iso, 170 and Iz

56 507 538 9 10
19 99 —gd T +0(q"),

53
+—J——f+%ﬂ+0W%

8

Ié,o = 8F(921,920+92.159) = 16F (920, 92.1- 92,15 q) + 6F (930, 1. 93.0: q)

27\ (32
3)<§4ﬁ%4w)—lﬂﬁgmqa
33372 ., 45074961

25 19600

2025
::324q24—864q34—4757q4—%891q54—351q6%—

8208243
2450

432 576
¢+ [7261 +364% + 72¢° + 184¢* + ?qS +364° + ?q7 +9¢% + 72q9}

2 576 1200
——9V§(HZ<:;>[24q—%36q24—72q3%—78q44—qu—%108q6+—,7q74—153q84—216qﬂ +0(g"%). (73)

In the Supplemental Material [41], we give the g-expansion
for the master integrals I;, up to ¢°° for the first four
orders in &.

Let us note that all master integrals I,-Ig in any
order in ¢ may be expressed as iterated integrals of
modular forms. This includes in particular the master

|

integrals /-5, which may be expressed in the simpler
class of harmonic polylogarithms. Let us further note
that

lgl <1 forxe (RU{oo})\{1,9,0}; (74)
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therefore, the g-series converge for all values x € (R U {o0})\{1,9, 00}, i.e., for all values in R U {oo} except for

three points {1,9,00}. With

d

2riW  d

=2V3 , ——q—VY10s 75
wio = 2V3z(e; + €5) o= " qdqllfl,o (75)
and Eq. (69), we may express Zg’gy and Zt()i}(l),s as a g-series. We obtain in Feynman gauge
2.0) %_'_511 . 61859 , 1139579 , 22506803 , 2418064473 .
bare.V g 16 50 200 4900
153385103807 13938069377 ., 146831758723 . 112258408704193
78400 1960 6125 1482250
1 11 23 43 12 1867 29 49 12382
12 4_2% 5 _ 6 _=2 7,77 8 12294 9
* gz[ SR A A T At T B K A S At U M T
335 2547 26057 406422 12968727
—36v3Cl 1+11 == 3 4 3 6
f2<3>[+ 1T O 5 T g 935 T gy ¢
842799 ., 2841168 138212638 10
t—= 5 t——— ¢ | +0("),
(2.0) 12069 , 290385 , 35860023 , 15981543 .
h) =72 -864q — - - -
bare§ ) 8 200 20 7
31369233123 918608937507 , 63428578551 , 3075431500611 ,
9800 78400 1600 24500
+27¢ + + +3 AP Y B +ﬂ7+ﬂg+@9
R R L T A Tt TU A v A VI AR T
2r 19 159 2075 55111 125349 3538201
54V3CL( =) |1 +—=q+—¢* 3 4 3 6
+f2(3>[+2‘”2q+4 0 9T T 4
51827761 , 175368003 . 277651999
0(q"). 76
TTos0 T g0 4T a0 4Ol (76)
I
In the Supplemental Material [41], we give the g-expansion
for Z](Jare)v and Zé aIe>S in an arbitrary covariant gauge up
to q .
X €] —00,0] ——
100+ x€0:1] ——
2. The cusp p*=m’? ffe\lgf,
We now turn to the expansion around the cusp x = 1. 1011
We set
768 0 -1 7610 s oy
G- o
Wi L0/ \yip
1071
where y and y,( have been defined for all values of
x€R U {oo} in Eq. (63). This choice agrees up to a 100k
constant phase e~7/2 with the choice made in ref. [29] in ‘ ‘ ‘ ‘ ‘
the sunrise sector. We set - 05 0 05 !
Re(ge,1)
Te1 = Tvas , Ge.1 = e¥ml, (78)  FIG. 5. The path in g ;-space as x ranges over R. We always
6wy have || < 1 and |gg | = 1 only at x € {0,9, o0}.
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The values of 74, at the points x € {0,1,9, 00} are by = i(e; + 2e»), b, = 12ie,. (81)
tabulated in Table I. In Fig. 5, we plot the values of the

variable g¢; as x ranges over R. In order to simplify  pur the integration kernels we have

the notation, we write in the remaining part of this
section

go0 = —4(e] = €3),
T =761, q = de.1> (79) 921 = =3(ef — e1e; = 2¢3),
Gro = —e3 + 3ejey — 2e3,
and e; = E (76,1500, 21)s €2 = E1(276,13x0.1). We also ' .
use the notation b; for by; and b, for b,;. The G30 = 12i(e] —2e2e, — €13 +2¢3),
Hauptmodul is given by g3 = 9i(e% —3e2e, —|—4e§),
3p(67)° fa = 3663 82
x—1=-— 7’7(7)3’7( 1)9. (80) ! ’ (82)
n(27)°n(37)
We obtain for the first nonvanishing order of the
The g-expansions of b; and b, are given by integrals Igy, I7; and Ig
2) ; .
lg1 ==3i, —18F(1,950:9)
1 24 1 50 1
= -3i 12ilg —a* + - 4_ ST 5 6 .77 7 8 9 O(q9),
il + l[q CHGe T4 50 59 T 94 —4 tgq | TO@”)

1
1) = =3F(g30:q)
1 24 2 50 1
—2i 24+ —P 4t - =0+ g7 — 8% + = ° O 10’
l{q ¢ H3a A - -39 T4~ 8 +9q]+ ()
% = 1728F(92,1,92,0,92,1;Q) - 3456F(92.0192,1792.1;Q) + 1296F(93,07 1, 9305 Q) - 1152F(93A,1, 1, 930 61)
+ 864 ln(z)F(ngagZ,O; q)— 1728 ln(2)F(gz’0,gz‘1; q) - 96§2F(92,1; q) - 4321112(2)F(92,0;Q)
+216i8,F (9305 q) — 192i8,F (93,15 q) + 12{3 — 484, 1n(2)
2848 , 1088 4_14464 s 81632 . 4028176 7_222512
9 977379 7375 T T 5 9 T gs75 1T 735

IS

s

= 1285 — 484, 1n(2) 4 192¢ 4 9647 + 8

35743076 1 6 1 8 1
9 64[1 31n(2 2 2 -3 4 =5 6 ) 8 -9
“59535 4 T+ [In(q) + 31In(2)] {q+q AR AR AT ' +9q]
67 133 751

10 4 23 22919
~192[1 In(2 34 54 o T 10709 T 2107 T 3409
92[In(g) + 3 In( )]{qw T T34 T507 Tog 9 T g70? Ta109 +11340q}
4, 8

5 5 6 19
48 _2_-.3 4 - 5_".6 Y
+ Cz{q 9" —34 +2q +5q 34 +7q 1

23
g - gtf + 0(q"). (83)

In the Supplemental Material [41], we give the g-expansion for the master integrals /; ; up to ¢*° for the first four orders in &.
The g-series for the master integrals /;; converge for all values x € (R U {o0})\{0,9, o0}. With

d 1 27ziW d
=i 2e,). —y =gy 84
vy = in(e; + 2e;) LV T g ‘/’%,1 (]dqllfl,l (84)
2.0
IC.

and Eq. (80), we may express X ?V and Ztﬁ’r?s as g-series. We obtain in Feynman gauge
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363 1096 2542012 10420294 170189618 7359947117
Sy = = o = —=—q — 2386¢* ’ - - ’ - °

R 25 ¢ 25 ¢ 875 ¢ 7875
1894448095382 . 13120710706391 .,  14203813439078278
_ 7_ 8 _ q° + 12[In(g) +31n(2)]?

385875 ¢ 514500 ¢ 114604875
11012 , 47468 , 220528 . 179068 , 63977248 , 187312276
g T 9t 5 Tt 5 T35 4T 105
104654 , 1077191 , 10338842 .
945 5 7T 3 9t 75 4
8907519 177237254 , 76489857877 , 1366150534909
Tt 1 1225 4 7" @m0 ¢ T 33075

q8

68
x [1 +?q+204q2 +

9553315508
~ oz ¢

] —4[In(q) +31In(2)]|1 + 86q + 981¢> +

q’| +96[¢5 — 48, In(2)]

1
X [ﬁ +q+9¢% +59¢° + 313¢* + 1422¢° + 5731¢° + 209844q" + 71001¢% + 2248254°

o 4302456 174855707
+

3049, 32717 , 124466 ;| 1508603 .
1 1 225 1 175 ¢ 2100

8
45 90 ¢ 75

19
- 1042
+360C2{720+q+ 0q> +

1246555889 o
175 q]+0(q ),

1612 7334 , 53956 , 145420 , 686425828 . 1196280364
g 1779 T ys T s Tt gy 7
8277353161391 ,  2785865671205906

1157625 4 T 114604875
129712 ;708808 ;4207040 , 77207944 770133128

45 45 63 315 945
o [1 436 406 , 4468 . 4477 , 2331472 5 4624926 . 602336248 . 22819804141 .

¢ 445266609908
q° +
2625 231525

40 152 776 2200
@ = 24in(q) + 3P |14 G + 5+ T -2

7

2,0
S =50 —

bare

4

39773 9979

619} +20[In(g) + 31In(2)]

T 9t 3T s T T s T Ay T s 4 3675 ¢ 36750
350717144888 1
- qu} -+ 24[2:3 -4, ln(2)} l:Z +q+ 56]2 + 196]3 + 61q4 + 174q5 + 455(]6

3 52 241 1631 11852
+1112¢7 4+ 2573¢® +5689q9} —40¢, {—Z+q+?q2 +Tq3 +Tq4 5%

31133 106306 , 4911471 , 8143138 o
Ty TR Ot gy 4 T s 4| O (85)

5

In the Supplemental Material [41], we give the g-expansion ~ The values of 7,9 at the points x € {0,1,9,00} are

for Zg}?v and Eﬁ;ﬂ?s in an arbitrary covariant gauge tabulated in Table I In order to simplify the notation,

up to ¢*. we write in the remaining part of this section
T="79, q9 =429, (88)
3. The cusp p*=9m’
For the expansion around the cusp x = 9 we set and ey = E (72040, 41), €2 = E1(2729: %0, 1) We also
use the notation b, for b, g and b, for b, g. The Hauptmodul
<l//29> <2 -1 Wao is given by
T = . (86)
Yio 3 —1> <W1.o> 20n(67)°
x—9= 72%_ (89)
n(37)n(z)

We further set
The g-expansions of b; and b, are given by

__r29 — plint,,
Ty = e e (87) by =\3(e; —2¢), by =—1213e;.  (90)
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For the integration kernels we have
920 = 12(ef = &3), 921 =9(e] + e1ey — 2¢3), 929 = 3(ef +3ejes + 2¢3),
30 = —36V3(e} +2e2ey — e1¢3 —263), g1 = —27V3(e} + 3eles —4e3), f4=1324¢5. (91)

The integral / gg) is finite at x = 9. We denote its value at x =9 by

1 1 1
C{) = 51685 — 576Lis (g) +576Li,, (5, 1) —1201n(2)&, +961n(3)¢> — 961n%(3) + 721n(2)In2(3) + 1441n(2)Li, (§>
1 2 1
—5761n(3)Li, (3) —722Cl, <3”> —72in, + T2inIn?(3) — 48ix1n(2) In(3) + 144inLi, (3) . (92)

We obtain for the first nonvanishing order of the integrals /49, /79 and Igg

2
[6?3 = 15Cl, <g> —12i{, +2xF(1;9) = 2F(1, 9303 q)

2 24 50
= 15Cl, (;) —12i¢, + 2xIn(q) + 12x/§[q + P+ P+ ¢+ ch +q% + E‘ﬂ +q48+ qﬂ +0(¢'"),

.3 =7 —F(g30:9)
2 3 4 24 5 6 50 7 8 9 10
=7+6V3|q+2¢*+3¢> +4q +5 a7 +64°+ 2" +8¢° +9¢°| + 0(¢"),

3 128
Ié.g = 64F(92,1,92,o,92.1; 61) - 128F(92.0,92,1,92.1;(]) + 48F(93.0, L, 9305 CI) - TF(93,1, 1,93.();‘])
+96 ln(z)F(Qz,l,gz.oﬂ]) - 192 ln(z)F(gz,o,gz,l; Q) - 32i”F(92,1,92,o;(]) + 64i7TF(92,0792,1; ‘I) - 4875F(93.07 12@)
128

+ 57 (931 1:9) + 96L3F (9203 4) = 8002F (92.15.9) = 1441n%(2)F (920 q) +48I0*(3) F (9213 q)

(1 27 2r . .
+ 96Li, <§) F(g2.1:q) — 360Cl, <?> F(g30: q) + 320Cl, <?> F(g31:q) + 288i{,F(g30:q) — 256i0,F (93,13 q)

+96irIn(2)F(g20: q) — 32ix In(3)F (9215 ) + Cy
9504 . 8208 . 424656 , 15444 , 2791188
s ¢ 775 975 1 7735 9 T 005

5 49 56 313 2059 1217
—288|:311’1(2)—iﬂ]|:q2+2q3+_q4+_q5+_q6+ 7 8 9}

— CP) + 8644 — 864¢* +

67 T157 157 T1059 T 409 T210 4

3 13 15 (2 3 13
—72\/3x {qz + Zq“ + 4%+ qu] +144V/3 {7 Cl, ({) + zln(q) — 652} {qz - Eq“ +3¢° + qu]

1 3 1 1 6 1 8 1
1443L' _ _123_'1 3 — 2 3 4 =5 — 6 i — .8 9
+ [ 12(3>+2n() iz In( )Hq+2q +q +4q +5q +2q +7q +8q +q}

1 6 1 8 1
—192[3In%(2) = 2iz In(2)] [q +q¢* + §q3 +q*+ §q5 + §q6 + ?cﬂ +¢% + §q9]

17, 29, 49 , 6, 13, 8 . 113 . 119 , o
+24Cz{q+2q AR AL Al AT B sl Mol +0(q"). (93)

In the Supplemental Material [41], we give the g-expansion for the master integrals /; o up to ¢*° for the first four orders in e.
The g-series for the master integrals /; o converge for all values x € (R U {o0})\{0, 1, 00 }. With

d 1 2miW d

— — , 94
dx Y19 q—5Vi9 ( )

Wio = V3r(e, —2e,), .=z
2 l//%,9 dq
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and Eq. (89), we may express Zf)are)v and Zt(>are>S as g-series. We obtain in Feynman gauge

g0 _ 3533 7984 56998 , 112964 . 15482 , 127198 . 2036869 . 17742626 ,
bareV = 77080~ 135 47 135 4 T q35 47 45 4 T35 4 135 ¢ 175 ¢
120855851 , 63922451764 , 8 3

20 ¢ T o054 g %o

1
—1—6+q 79* +27¢° — 55¢* + 14¢° + 243¢° — 6484’

15 2 29
+425¢% + 1593q9} +24v/3 [2 Cl, (;) + 7ln(q) - 6@’21'] [qz + 7q;4 —40¢° + 219¢° — 39247

4735 44 1 7|2 185 575 2133 2453
+T(] —1580q:| {2L12< )+ |:11'1(3)—E:| }|:_—+q+ qz_—q3+—q4

27 3 3 44 2 11 4
44914 . 96957 . 2216484 . 27707387 , 37395 ,] 304 in]2[577 389
Tss P70 T T 3ss T T h080 1T }—7{111(2)—?] [228“’_3
337 . 5397 , 15666 . 107309 , 2329416 . 1762561 , 507569 ,
37797 T o5 T s T T e 1 T ees 1T sy ‘1]
340 [ 211 997 ;999 ;69509 131102 o 164511 ;5470092 ; 6934161
ﬁgz[_ﬁw 1707 717 T340 T 7 a5 T 77850 1T 2975 T 23800
29349 9} 60584 [m o) _z_n} [_ 29 | 28063 , 20717 1344627 , 207297
85 405 3] | 15146 151467 77573 1 T 30202 7573
1281937 29379321 . 111424515 , 396722701 ,] 592 97 416 , 918
15146 4 T 53011 ¢ T 424088 ¢ T 318066 ] 135 3”{‘@“”7" “ 371
6§g§7 e 5;4;6 s 121346833 e 6()3()721 S 14421§2205 ;e 14?41‘;93 qg} + 0",
se0 _ % 8§0 + 4664° + 15204 +9O385 q4_81276q5+3515332q6_28710755748 r

| 62966527 (925309578
175 4 1225

21
+24q7 —75¢% + 57q } —72f[ c12( 3 ) + z1n(q) — 6@1'] [q2 —44° +7q4 -30¢°

2 5
q° —§C§9) {—14— q-3¢>+3¢° +5¢* —18¢° + 15¢°

2311 1 72 15
+85¢° ~ 234¢7 + =~ 4" - 1315q9} —36{2Li2 <§> + [m(s) —%] Hl ta-5q

65 231 , 2577 , 49341 , 1203 832 in?
+3¢7 + 4" = 45¢° + 5540 + 7 8+ q9}+—{ln(2)—l—ﬂ]

10 35 477280 9T 14 3
67 61 , 35 . 127 , 346 , 541 , 28344 . 54059 . 905 ,
104 BT TRT T3 T3 Tgs 4 T 455 4T 455 4 T34
17 87 425 879 . 16473 . 276069 . 4443
4 _ - 2 — 261 5 76 7 _ 8
+¢2[ +q =5 ¢ 3¢+ 4" = 261¢° + 774 + —5mq ZSOQ+14]

1540 [m(z) ZH 1244 82, 2148, T489 122904

9 3 385 155 Ut 4 385q_1925q

273198 353328 | 9629211 . 8197908 f + MR
1925 4 " 13475 1 T 26950 ¢ " 13475 ¢ 37 9+ 40
69 , 3317 , 1989 . 2361 , 11199 . 413043 , 224367 ,
_® _ _ _ O(q'). 95
1T 6 T T e Tt g T 1T 56 4 64q+(q> (95)

In the Supplemental Material [41], we give the g-expansion for El(me)v and Zlgm)s in an arbitrary covariant gauge up to ¢°°.
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4. The cusp p*=co

For the expansion around the cusp x = oo we set

© 3 -1
Go)=(5 )G oo
V1o =2 1/ \yip
We further set
T30 = llllz.oo , — e2im3.m' (97)
3 l//l.oo

The values of 73, at the points x € {0,1,9,00} are
tabulated in Table I. In order to simplify the notation,
we write in the remaining part of this section

(98)

T = 73,00,

q= CIB,oo'

1 “n(6r)®
x - n(37)*n(27)
The g-expansions of b; and b, are given by
b1 = 2i(€1 - 62), b2 12161 (100)
For the integration kernels we have
Go0 = 4(e] —4e3),
G211 = 6(3% —e1e — 23%)
929 = —2(ef + 3eje3 +2¢3),
g3 = 24i(e3 + eley — dejel —4e3),
g3.1 = 36i(e3 —3ee3 — 2e3),
f4 = 36ef. (101)

and e; = E| (73,0 %0-X1)» €2 = E1(273. 01 0. x1). We also
use the notation b; for by, and b, for b,,. The  We obtain for the first nonvanishing order of the integrals
Hauptmodul is given by I o, 17 and Ig
@ _ o . 9 .
Ig o = —9il, = 3nF(1:q) —EF(LQ.%,(),CI)
3 5 1 11 24 5 50 53
= —9i¢, - 3x1 Ziln?(q) - 3 —— g - =g o
i, ”H(Q)+2ln() l[q+4q +9q 16" 2561 +36q + 499 +64 tqq |t (4",
3
1) = -z _EF(!J&O;C])
5 1 11 24 50 53 1
— _ 1 o 2 -3 _ -~ 44_="5 _6 - O 10’
7 +iln(q) l[q+2q+3q AR A s 7q+8q+9q +0(¢")
3
I(Sgo = 216F(92,1792,0,92,1§ Q) - 432F(92,0,92.1,92,12 C]) + 162F(93,0, 1,93,0;(]) - 144F(93,1, 1,93,0;61)
—72inF (921, 92,05 q) + 144inF (920, 9215 q) — 125, F (92,15 q) + 1448, F (92,03 q) + 1087F (g3, 15 q)
—967F (g3,1. 15 q) + 324i{,F (9305 q) — 288i(,F (9315 q) + 485
124 35 47731 100861 371366 79243781 40995539
=480, +48¢ — 30 + — 3 + = g* — 5 6 7_ 8 _ 9
&3 +48¢=30" + 574" + 4"~ 35570 T 55 1715 4 " 117600 7 T 1190700 ¢
5 1 25 77 157 5213 7243 37319
— 48]l : 22,13 s_ 227 6 _ 7 8 9
lIn(q) + ix] [q 27T g0 T 507 ~ 1507 " 14707+ 6720 113404
7 123 17 205 17
16[1 j 28 — P 4 10g = — g+ T 11g = ——° 10y, 102
+ 16[In(q) + ix]? {q q 6q+0q 04 Tt q 9q}+0(q ) (102)

In the Supplemental Material [41], we give the g-expansion for the master integrals /; ., up to g>° for the first four orders
in €. The g-series for the master integrals /; ., converge for all values x € (R U {o0})\{0, 1,9}. With

d
dx

Yo = 2i7f(el - 32),

l//lﬁoo -

1 27ziW d

S, 103
3 vie dq (103)

l//l.oo’

and Eq. (99), we may express Zéi’r?v and Ztﬁﬁ?s as g-series. We obtain in Feynman gauge
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o) 17 7375 , 5489 , 267081 , 731467 230925589 , 40999299 . 9609117331
X, =—=36q+ q - + q - -
bare,V g 36 9 200 225 25200 1750 189000
113455961056 25 5620 . 20675 111072 ., 930868
__ v -1 2 1__2 926 3—4604 5 _ 6 7 _ 8
57625 4 — [n(g) + i) { 54" +96q ¢+ 5 54 54
5408664 3 64 1045 , 1256 , 64133 , 69844
ol 4+ 21 1x [1-— - 3 A S +138164°
+t—3s 4 +2[H(Q)+”1]X{ 39T AT 5 q
58252108 , 284713253 , 6779006338
- - 2485162 — 843 +364* — 1204° + 3384° — 864¢7 + 20684°
1575 3150 33075 9| T246leT 8 436 7 +35¢ g+ 2005

1
—46884°] + 542 [1—264%+2084° —9364* +3120¢° — 8788¢° + 224644q" — 537684° + 1218884°] + O(¢'°),

=42 1360 4 = T e T s a0
TS - B0 B 240
] oty BB e T S
- 157(;54007061 ! 6;13(6)2;31 q° - 13313388678083087 qg] +1243[1 + g — 4¢* + 10g° — 20g* + 39¢° — 7645 + 1404’

—2444% +415¢°] — 64,[1 — 6q +24¢> — 60g° + 120g* — 2344 + 4564° — 840q + 14644® —24904°] + O(q'?).

In the Supplemental Material [41], we give the g-expansion

for Z](Ji’r? v

to ¢*°.

and Zt(éx?s in an arbitrary covariant gauge up

VII. NUMERICAL RESULTS

With the four expansions around the cusps j &
{0,1,9, 0} at hand, we now address the question, which
expansion to use for a given x. The four expansion
parameters are

q10. 961> 929, 9300 (105)
For the absolute values of these we always have
|q”j,j| < 17 (106)

where the value 1 is only attained for ‘Qn‘,, ;| at the three
points S; = {0,1,9, c0}\{j}. For a fast convergence we
would like to choose j such that |q,,j, ;| has a small absolute
value. In Fig. 6, we plot the absolute values of ¢, ; for the
four choices j € {0,1,9,00}. An appropriate choice is

given by
q10: —3 <x350.5147
ge1: 05147 Sx <3
Gro: 3 < x 5174853

tx<-3 or 17.48533%x.

T30 (107)

(104)

We denote the chosen variable simply by g. In this way, we
can ensure that for all x € R

lg] 5 0.163. (108)

The value |g| ~ 0.163 is indicated by a dashed line in Fig. 6.
Let us now discuss the precision, which can be reached
by truncating the g-series to a certain order O(g"). For a

1

q1.0

q6,1
42,9
) Q
0.6F
=
0.4F
0.2 S~ e
0 /
-5 10 15 20

FIG. 6. The absolute values of the variables ¢, ; for j €
{0,1,9, 00} as a function of x. There is always a choice such
that |g, ;| £0.163. This value is indicated by the dashed
black line.
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q1.0
q6.1
q29
43,00

=

FIG. 7. The relative precision 6 for El(ai}?v

I - - -
\ —
1075 ' \
10-10 } dct ]
q29
1015 B
w0 10—20
10—25
10730
1073
]0740 L L
-5 5 10 15 20

(left) and 2&}?5 (right) obtained by truncating the g-series of the iterated integrals at order

O(q*") for the various choices g € {q; ¢, 6.1+ 92.9- 93.0 } - There is always a choice such that the relative precision is below 1.5 x 10721,

This value is indicated by the dashed black line.

quantity O and an approximation O o to this quantity we
define the relative precision 6 of the approximation by

Oupprox — O
5:%'_ (109)

We consider the £° terms of the bare two-loop self-energy

in Feynman gauge, i.e., the terms 2&?\/ and Z&?s. We
may express these two quantities as linear combinations of
iterated integrals of modular forms with coefficients, which
are rational functions in x, y, /x and 1/7z - dy /dx. There
are now two possibilities to compute numerically the values
of 529, and £-7 . Within the first possibility (method A)
we compute the coefficients from the known values of x
yw/7m and 1/7z-dy,/dx, whereas we approximate the
iterated integrals by their g-series, truncated to order
O(g"). Within the second possibility (method B) we
compute Zl(),zd’r?v and Zg’i
to order O(g"), i.e., we use the analogue of Egs. (76), (85),
(95) or (104) to the appropriate order O(g").

Let us consider a truncation of the g-series to order

O(¢*®). In Fig. 7, we show for method A the relative
precision for Z&?V and 2&2
integrals to order O(¢*°) for the various choices ¢ €
{410:96.1+929. 43.0} as a function of x. We see that for

all values x € R the O(¢*°)-approximation of the iterated

(2.0) (2.0)
bare,V and z:bareA,S

>s from their g-series, truncated

?s by truncating the iterated

integrals gives us a relative precision on X
better than 1.5 x 107!,

Figure 8 shows the corresponding plot for method B.
We observe, that in some regions of x the relative precision
is only below 1.3 x 107!, The bad regions are the ones
where we switch from one choice of ¢ to another, i.e., the
regions where the optimal expansion parameter g is close to

its maximum |g|~ 0.163. These regions are regions
away from the singular points x € {0,1,9,00} of the
differential equation.

The g-series for Zg’gv and Zg’r? ¢ have their virtues close
to the singular points x € {0, 1,9, oo }. An inspection of the
formulas from Appendix E shows that the coefficients of
the iterated integrals have poles like

. L

1
x39 ;’ x7 mv

1
. 110
These poles don’t show up in the final result for Zg’r?v and

Zg}?s- The self-energy is smooth at x = 0 and has only

logarithmic singularities at x = 1. Therefore these poles
have to cancel. Within method A this cancellation occurs
numerically and might lead close to the singular points to
numerical instabilities, if floating point arithmetic with a

fixed mantissa is used. On the other hand, in the g-series

expansions of Z&?V and 2&?5 these spurious poles are

absent and the g-series expansions of Z,(Ji’rg)v and Z&Z)S are

stable as we approach the singular points.

We have investigated the reduced precision of method B
compared to the precision of method A in more detail.
The reduced precision is due to the slow convergence of the
g-series of the coefficients of the master integrals. Let us
discuss the convergence of the g-series of the coefficients
in more detail. Empirically, we found that the worst case is
given by the term

1
=—. 111
= (1)
Let us assume that we want to calculate f(x) for x = —10

from the g-series by expanding around the cusp j = 1.
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10° —_—————
103 p
q1.0
q6.1
10O e 929 T ]
q3,00
10—15 ]
w 1072 g
10—25 .
10—30 ]
1073 ]
10—40 L
-5 10 15 20

X

FIG. 8. The relative precision § for Zl(;i}g),v (left) and 21(32.0

art

100
103
q1.0
q6.1
LR SN 1 et N A S 929 T
q3,00
10—15 [
N
w 10720 g
107 <
10730
10—35
10—40 L
-5 10 15 20

X

e?S (right) obtained by truncating the g-series for the self-energies at order

O(¢*") for the various choices g € {410 96.1- 929, 43.0 }- In contrast to Fig. 7, this method gives in some regions only a relative
precision of 1.3 x 107!, This value is indicated by the dashed black line.

10]5

10101

10°

10°F

107°F

10—]0 L

10t

10—20

0 50 100 150 200 250
N

FIG. 9. The relative precision of the order (g ;)" -truncation of
the e 1-series of the function f(x) = 1/x* at the point x = —10
as a function of N. The dashed line indicates a relative precision
of 10%.

200+

150+

100 F

bare,V/

R€Z<2 0)
W
[=] =3

—50}

—100}

X

FIG. 10. The real part (left) and the imaginary part (right) of the £° term of the bare quantity %

This is just for illustration. Within method A, one computes
f(x) for x =—10 directly, giving f = —1073. Within
method B one would use for x = —10 an expansion around
the cusp j = oo. But f(x) can be expanded around the cusp
j =1, and we find

_ 71(276.1)1277(376.1)24
’7(676,1)1277(76.1)24
=1+ 24q6, + 31247, +2888q7 | + - -

f(x)
(112)

For the expansion around the cusp j =1, we have
ge1(x =0) =1 but

|g6.1(x = —10)| ~ 0.485; (113)
therefore, the point x = —10 is in the g4 -space inside

the unit disc (see Fig. 5). Since the expansion of f(x)
in the variable g¢; comes from an eta-quotient, the series

200 |

100 |

50

‘mathrmbare,V

2.0)

I
o

—50 }

—100

X

(2)

pare.v 1N Feynman gauge.
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200 +

150 |

100 |

w
(=]
T

‘mathrmbare.S

(2.0)

ReX

20
FIG. 11.

converges for all g4 ; inside the unit disc. Let us now study
how fast or well this series converges. In Fig. 9, we plot the
relative precision at the point x = —10 if we truncate in
Eq. (112) the g ;-expansion at order N as a function of N.
We see that this series converges rather slowly. Only after
including roughly 150 terms in the g-expansion we reach a
precision of 10%. With a truncation after 250 terms we
reach a relative precision of 1072°. Let us note that a
truncation below 150 terms gives unreliable results. If one
only considers truncations up to N = 30 one might be led
to the false conclusion that the series is divergent. As
already mentioned, this is a constructed worst case sce-
nario. The actual relative precisions for the finite part of the
two-loop self-energy for method A and method B have

been given in Figs. 7 and 8, respectively.

In Fig. 10, we plot the final result for Z&Q?V in Feynman

gauge. We show separately the real part and the imaginary
part of Zgﬁ?v. The self-energy 2&?‘, is real for x < 1.
In Fig. 11, we show the corresponding plot for Z,(f'?s. The

self-energy Z&?S is real for x < 1.

VIII. CONCLUSIONS

In this paper, we reconsidered the two-loop electron self-
energy in quantum electrodynamics. This is the simplest
“physical” building block, where elliptic integrals make
their appearance in perturbative quantum field theory. We
expressed all relevant master integrals as iterated integrals
of modular forms. These iterated integrals have a g-series
expansion, which converges for all real values of x except
for three points out of the set {0, 1,9, oo }. We obtained the
master integrals by integrating a system of differential
equations from a chosen boundary point. By choosing
different boundary points, we obtain for all values x € R
convergent g-series. We considered explicitly the cases for
the boundary points j € {0, 1,9, co}. In particular, we have
shown that for all x € R there is always a convergent

200 +

150 +

100 +

‘mathrmbare,S

20)

ImX

—100 |

The real part (left) and the imaginary part (right) of the £° term of the bare quantity Ege, ¢ in Feynman gauge.

g-series with |g| $0.163. This allows for an efficient
numerical evaluation. In particular, we find that a truncation
of the g-series to order O(g*°) gives numerically for the
finite part of the self-energy a relative precision better than
1072 for all real values x. We expect the methods discussed
here to be useful also in other precision calculations
involving elliptic integrals.
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APPENDIX A: FEYNMAN RULES

In this Appendix, we list the Feynman rules for QED.
The Feynman rules for the propagators are

e L ptm
L L
VaVaVaVaVa - _uv+(1_§)1’”l’v
2 2 )

where the photon propagator is in a covariant gauge. The
vertex is given by

Y- (A2)

The coupling e(?) is defined in Eq. (4). The Feynman rules

for the counterterms are
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X = [z ) p— (ZaZm— )]

UV
DN = iz 1) (—gw%),

oo = —ie® (Z— 1)y~

(A3)

APPENDIX B: THE ARITHMETIC-GEOMETRIC
MEAN

In this Appendix, we review the numerical evaluation of
the complete elliptic integral of the first kind with the help
of the arithmetic-geometric mean. Let a, and b, be two
complex numbers. For n € N one sets

1
ap 1 = E(an + b”), bn+1 =+ anbn. (Bl)
The sign of the square root is chosen such that [88]
|1 = bpyi| < lapsr + bupal. (B2)

and in the case of equality, one demands in addition

Im (%> > 0.
Apt1

The sequences (a,,) and (b,,) converge to a common limit,

(B3)

lima, = lim b, = agm(ay, by),

n—o0

(B4)

known as the arithmetic-geometric mean. The complete
elliptic integral of the first kind is given by

Kk)=—— K =V1-k.

- 2agm(k’, 1)’ (B5)

APPENDIX C: EISENSTEIN SERIES

In this Appendix, we give the explicit expressions for the
Eisenstein series E| (7, yo,x1) and E; (27, ¥, x1). o and y;
denote primitive Dirichlet characters with conductors 1
and 3, respectively. In terms of Kronecker symbols, they

are given by
1 -3
w=(2) «=(3) @
n n

More explicitly, we have

xoln)=1, V neZzZ,
0, »n =0mod 3,
x1(n) = 1, n=1mod 3, (C2)
—1, n=2mod 3,
E\(t.x0.x1) is given with g = > by
1 [s¢]
Biwon) =g+ > (Sn@)an. (€
m=1 Nd|m
In terms of the ELi-functions, defined by
. o 0 L yk '
ELiy (xy5q) = Y Y =omg,  (C4)

we have

11 . .
E\(t:x0.21) :8"'1.\—@[15140,0(73’ 1;9)—ELigo(r5'.1:q)].

(Cs)

where r3 = exp(2xi/3) denotes the third root of unity. The
first few terms of E|(z,yq, ;) read

1
E\(tgon)=c+q+a0 +4"'+24 +¢" +

. (o)

The Eisenstein series E;(27,yq,x;) is obtained from
Ei(z,x0,x1) by the substitution 7 — 2z or equivalently

q- q*

APPENDIX D: THE ONE-LOOP SELF-ENERGY

In this Appendix, we consider the one-loop electron
self-energy. The relevant family of (one-loop) Feynman
integrals is given by

2 2,2 Vis pYEE (12 \V1a—2 del 1
oy, (Do p?om? ) = (1) eeree (i)™ | =,
ez By
(D1)
where the propagators D; and D, have been defined in

Eq. (10). As before, we set 4 = m. As a basis of master
integrals, we use

Ji(&,x) = 2eJ50(4 — 2¢, x),

Jo(&,x) = 2exJy (4 = 2¢, x). (D2)

The differential equation for J = (J,.J,)7 reads
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d - 0 0 - (1) ¢ 1 ¢
afze<_x+l %—%)J’ 03)  Bhy=--g(5-1)In(1 -0~ -4 0f)
1 34¢ 1
and the boundary conditions are Zé)aie,S == T B+9) (} - 1> In(1—x)+4+2¢
Ji(,0) = 2e=T'(1 + &), J,(e,0) = 0. (D4) + O(e). (D8)
We have The counterterms from renormalization are given by
Ji(e.x) =2+ 56 + O(e), ity = =i 2P+ (2 + 23 ym). (D9)
Jo(e,x) = =2¢In (1 — x) + 2[Liy(x) + In?(1 — x)]&?
+0( 83)‘ (D5) The renormalization constants Zgl) and ZEJ) in the on-shell
scheme are given in Eq. (8). In the on-shell scheme, we
For the bare one-loop electron self-energy, we write have

1) X () (1) (1 ca (3 6
_lzbare - _IE (Zbare,vpf+ ZbaIC,Sm)’ (D6) —lZéT):—lE |:<8+4>ﬁ_ <€+8> m:| +O(8) (D]O)

with
2}(31) y=- 3 <1 _|_1_ 1>J1 APPENDIX E: THE COEFFICIENTS OF THE
A MASTER INTEGRALS
+M (lz _ 1> I, In this Appendix, we give the coefficients ¢} and ¢}
2¢(1=2¢) \x (j=1,...,8), defined by Eq. (36) in Feynman gauge
s _ 3+&-2¢ B 3+&6-2e /1 1)y (D7) (6 =1). These coefficients occur when we express the
bare,§ 2¢e(1 — 2¢) ! 2¢(1 —2¢) x > two-loop self-energy in terms of the master integrals
I, ...,13. The coefficients in a general covariant gauge
Expanded in &, we obtain (§ # 1) are given in a Supplemental Material [41].

y 75 —322¢ 4 50962 — 372¢% 4 114¢* 16

T 60e(1—)(1 - 2¢)2(1 = 3¢)(2 = 3¢)  5(1—2¢)(1 +2e)(x = 1)
30 — 345¢ + 143962 — 296563 + 3279¢* — 19805 + 540£°
3062(1 — ) (1 —2¢)*(1 — 3¢e)(2 — 3¢)x

, 15+2xe—2le  19-10e 165 —167¢ 4 60¢>
2 T T602(1—2¢) 1061 = 26)x | 6062 (1 —26)2

v (I=¢)(1+2¢) 4 — 14e + 9€* + & + 4¢* 4 —21e + 18> + 13€3 — 10&*
ST 42(1—2e)7  282(1-267(1 - 3e)(2—3e)x  4e2(1 — 2¢)°(1 — 3¢)(2 — 3e)x%
(1—¢)(1 —4de + 14¢* — 16€°) 2 —8e+ &+ 126% — 4

’

’

== 462(1 —2¢)2(1 = 3e)(2 = 3¢)  26%(1 —2¢)2(1 — 3¢)(2 — 3e)x
v 1-e (I-e)(14+e) (Q1-¢)d+e) l1—¢
= 2e(1-2¢)>  2(1-2¢)%x  282(1-2e)2%  &X(1—2¢)%%3"
y 712 — 1943¢ + 13072 — 1083 (238 — 525¢ + 1832 + 15063)x (2 + &)x> 64(1 + 2¢)
o = [_ 3062(1 — 2¢)(1 — 3¢)(2 — 3¢) 001 —26)(1-3¢)(2—=3¢)  90&2(1—2¢) ' 1562(1 —2¢)(x — 1)
L 3(74-18le 1512 ~162%)  9(17-38e+11e) 256 v
10e%(1 —2¢)(1 —3¢)(2 = 3e)x  10e(1 —2¢)(1 —3€e)(2 —3e)x*>  15e(1 = 2¢&)(x = 1)?]| =
851 — 1761¢ + 564¢> (507 — 1151 + 640&%)x (155 — 393¢ + 264£2)x? X
[1582(1 —2¢)(1-3e)(2=3¢) 1562(1 — 2¢)(1 — 3¢)(2 — 3¢) +45€2(1 —26)(1=3¢)(2—3e) 456%(1 — 2¢)
256 9(17 — 38¢ + 11¢2) 1 dy,

T (1 =20)(x=1)  58(1 = 26)(1 = 36)2 = 3¢)x) 7 dx |
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w4 409-187e+2300) 128
T 15e(1=2¢) Se(1—2¢)(1-3¢)(2—3e)x  Se(l—2¢)(x—1)
12(17 = 38e + 11&%) 128 m
5e(1-2¢6)(1-3¢)(2=3¢)x> 5e(1—2¢)(x— 12|y,
v l—¢ (1+e)(2—¢)
CS:_482(1—28)x 4e3(1 = 2¢)x*’
s 2— 144206 — 96’ 16
(1= 2e2(1=3¢) 3(1=20)1 +2)x 1)’
S_3+88—482 21 —49¢ + 44¢2 — 1263
27312027 32(1-26)%x
P (1—¢)? 2—4e+ €
T T2 207 T 2(1=20)2(1=3e)x’
s l+e-Te2+48
T 21— 26 (1-3¢)
oS 3-3e+¢? B 3-3e+¢? N 3-3e+¢?
S 282(1-2¢)% £2(1=2¢)%x  2e*(1—2¢)%x*’
o [2(157—167e+336%) (34 +8e—156%)x 92 +¢) 64 256 W
‘= { 962(1 —2¢)(1=3¢) 9e2(1—2¢)(1-3¢) e(1-2¢)(1-3e)x 9£2(1 —28)(x—1)+98(1—28)()6—1)2} ra
2(290 — 303¢) 4(134 - 87¢)x 2(26 — 15¢)x2 256 1dy,
{_982(1—28)(1—35) 982(1—28)(1—36‘)_982(1—26‘)(1—38)_96‘2(1—28)(x—1):|;E’
. 24(2+¢) 64 128 P
= |:_€(1—28)(1—38))6_36(1—28)(x—1>+38<1—28)(x—1)2 v
cg: l+e—¢€ 1 —e+¢ (E1)

4e3(1-2¢)  4&3(1 =2¢e)x’

APPENDIX F: BOUNDARY CONSTANTS

In this Appendix, we list the relevant boundary constants when we integrate the differential equation (21) from one of
the points x € {0, 1,9, oo}. For the finite part of the two-loop electron self-energy we need the master integrals /,-I¢ to
order &2, the master integral I, to order &' and the master integral I to order £3. We denote by Cf_ ; the boundary constant for
the £*th term of the master integral /; at boundary point ;.

For the boundary point x = 0, we have

Clo=4.  Clg=0. (=40,
oo ch-o oo
Cio=0.  Cig=0. CH=0.
Cio=4  Ciy=0.  CiH=120,
oo chon ci-o
2
c® =0, V=0 = c?=3q, (;)
ch-o oo
Go=0.  Gig=0. Cp=0. Cy=0 (F1)

For the boundary point x = 1, we have
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©

Cl.% =4, Cﬂ =0, C(lzf = 405,

=0, ) =-12n(2),  CP¥ =4, +36n2(2),

=0, ) =12m@), ¥ =-4z,-72m2(2),

=4, Cl=-24m(2),  CF =285+ 144n%(2),

cl=o0, cll=0 ¥ =36m%2),

Cor=0.  Coi=0.  Cqi=-3%i,

Cpi=0. =0

cl=0,  cll=0, c¥l=0, Y =125-48¢,n(2) (F2)

For the boundary point x =9, we have
ch=4. ¢
Cy=0. G

) =4xi—12In(2),  CY= =8 +36In%(2) — 12In%(3) — 24Li, %) —24z1n(2)i + 8z1n(3)i,

I\)
—

= —4ni +12In(2),  C3) =326, — 72In%(2) + 121n%(3) + 24Li, > + 487 1n(2)i — 87 1n(3)i,

1
Cly=4, C)=8ri-24In(2),  C)=-20¢, + 144In2(2) — 48In%(3) — 96Li, §> — 967 In(2)i + 3271n(3)i,

O —
|
L
9!
ad
o
|

—24¢5 4 36In3(2) — 247 In(2)i,

2w .
) =0, cg?; — 15C, () —128,i,

3
=0, cf=r
Cy=0,  Cly=0, C=0. (F3)

The boundary constant ng is rather long and has already been given in Eq. (92):

1 1 1
C{y = 51643 — 576Lis <§> +576Liy, (5, 1) —1201n(2)&, +961n(3)Z, — 96In3(3) + 721n(2)In?(3) + 1441n(2)Li, (§>
1 2 1
—576In(3)Li, (3) —722Cl, <?”> —72inl, 4 72ixIn?(3) — 48ixIn(2) In(3) + 144inLi, <§> . (F4)

For the boundary point x = co, we have

=4 cll=0 =40,

=0, Yl =4, T =-160,

V=0, ) =-4zi, CP, =400,

=4 =8z Q) =-50,

=0 =0 ¥ =-240,

Col =0,  Col=0, L =-9%i

=0l =-n

Cel =0,  Cul=0,  CZL=0  CJL =48 (F5)
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