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We give a proof of the equivalence of the electric-magnetic duality on one side and helicity conservation
of the tree-level amplitudes on the other side within general models of nonlinear electrodynamics.
Using modified Feynman rules derived from a generalized normal ordered Lagrangian, we discuss the
interrelation of the above two properties of the theory also at higher loops. As an illustration we present two
explicit examples; namely we find the generalized normal ordered Lagrangian for the Born-Infeld theory
and derive a semiclosed expression for the Lagrangian of the Bossard-Nicolai model (in terms of the weak

field expansion with explicitly known coefficients) from its normal ordered form.
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I. INTRODUCTION

The electric-magnetic duality is a remarkable on shell
symmetry of the equation of motion of the Maxwell theory.
It also holds for some of its nonlinear generalization the
most famous of which is the one constructed by Born and
Infeld in the 1930s [1]. The general aspects of this type of
duality and of its extensions were studied in detail by
Gaillard and Zumino in a seminal paper [2], where also the
famous Noether-Gaillard-Zumino (NGZ) identity express-
ing the necessary and sufficient condition for the
Lagrangian of the duality invariant theory was obtained.
An iterative solution of the NGZ condition in terms of one
arbitrary function was found in [3] proving at the same time
that Maxwell and Born-Infeld (BI) theories are not only
self-dual cases but also that there is an infinite class of such
theories. Also various further generalizations were sug-
gested. The supersymmetric extensions of self-dual theo-
ries were constructed by Kuzenko and Theisen in [4,5]. In
[5] also self-dual higher derivative theories were discussed
for the first time. The analysis of the case of noncommu-
tative Maxwell type theories was performed by Banerjee
in [6,7].

The general solution of the NGZ condition was found by
Gaillard and Zumino in [8]. Their implicit construction of
the solution is again parametrized by means of one arbitrary
function of one external variable. This variable is implicitly
determined as a solution of certain (in a general case
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transcendental) equation. Another alternative solution of
the NGZ condition of this type was constructed by Hatsuda,
Kamimura, and Sekiya in [9], where also nontrivial explicit
examples of the self-dual Lagrangians were given in a
closed form. A different approach to construction of the
Lagrangian of self-dual theories, which is based on
covariant perturbative deformations of U(1) duality invari-
ant theories, was considered by Kuzenko and Theisen in [5]
and further elaborated by Bossard and Nicolai in [10] and
by Carrasco, Kallosh, and Roiban in [11]. In the latter
reference, the solutions of the corresponding nonlinear
twisted self-duality constraints for the Maxwell case, Born-
Infeld, and the Bossard-Nicolai (BN) model were discussed
in detail. An interesting insight into the construction of self-
dual theories was provided by Ivanov and Zupnik [12,13]
using the bispinor auxiliary fields. The authors also proved
that this approach appears to be fully equivalent to the one
based on the nonlinear twisted self-duality constraint. Both
the latter two approaches parametrize the general solution
of the NGZ condition in terms of one arbitrary functional
which has manifest U(1) rotational symmetry. However,
the physical meaning of this functional is not completely
clear. Note also that, in spite of the progress in under-
standing the self-duality, only a few Lagrangians leading to
self-dual theories beyond the BI one are known in a closed
form. For instance, for the Lagrangian of the BN model
only the first eight terms of the weak field expansion have
been calculated explicitly [11] and its closed form is not
known yet.

The BI theory is a prominent member of the class of self-
dual theories and since its birth it has been subject of
countless studies. The renewed interest in this theory was
inspired by strings and D-branes: as was shown by Fradkin
and Tseytlin in [14], the BI Lagrangian can be interpreted
as a low energy effective theory describing the vector field
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coupled to the string ending on a D-brane (see also [15,16]).
It also naturally appears as a bosonic sector of the effective
theory which corresponds to the spontaneous breaking of the
N =2t N = 1SUSY (see [17,18,16]). Also the tree-level
amplitudes in BI theory are special. First, they conserve
helicity; i.e. the amplitudes with nonequal number of helicity
plus and helicity minus photons (when all particles are
assumed to be outgoing) vanish identically. This was proved
in [19], where this property was interpreted as a consequence
of the self-duality of the theory, and independently in [20]
using Feynman diagrams. This results allow one to conclude,
that the helicity violating one-loop amplitudes in the BI
theory have vanishing imaginary parts and should be rational
functions which hopefully vanish too. However, the general
proof of the possible helicity conservation of the higher loop
amplitudes in BI theory still seems to be an open problem.
The second interesting property of tree-level amplitudes in
BI theory has been established quite recently in [21].
Namely, the tree-level amplitudes have a unique soft
behavior (they vanish) in the multichiral soft limit when
all the particles with the same helicity' become simulta-
neously soft. This soft behavior constrains the amplitude
strongly enough to fix uniquely the BI theory (up to the
choice of the units?). Note also that the BI theory belongs to
the class of theories for which the Cachazo—He—Yuan
representation of the tree-level amplitudes exists [22].

It is a natural question which of the above properties of
the BI theory are connected intimately with the self-duality
only and can be thus proved for any self-dual theory. In this
study we concentrate mainly on the connection of the
helicity conservation and self-duality at the tree and loop
level in the general nonlinear QED. As a byproduct we find
a physical interpretation of the U(1) rotational invariant
generating functional which appears in the auxiliary field
method of Ivanov and Zupnik (or equivalently in the
method of the nonlinear twisted self-duality constraint of
Carrasco, Kallosh, and Roiban) in terms of a certain
generalization of normal ordering, which simplifies the
Feynman rules for perturbative calculation of the S-matrix.
As an explicit example we find a normal ordered version of
the BI Lagrangian in a closed form (and rederive at the
same time the hypergeometric form of the BI Lagrangian
found originally in [23,24]) and calculate a semiclosed
form of the BN Lagrangian (in terms of infinite series
corresponding to the weak field expansion with explicit
coefficients). We also briefly discuss a general form
of the self-dual Lagrangian in terms of its normal ordered
form.

The article is organized as follows. In Sec. II we shortly
remind the reader of the basics of the nonlinear QED and

'Here we again assume all the particles to be outgoing.

For example, up to one dimensionful parameter which
corresponds at the classical level to the maximal intensity of
the electric field.

duality transformation and also fix our notation. In Sec. III
we briefly discuss various representations of the general
solutions of the NGZ identity (including a new one) and
give some examples of the self-dual Lagrangians beyond
the Maxwell and BI case. In Sec. IV we discuss the
quantization of nonlinear QED with stress on various
versions of the Feynman rules within different representa-
tions of the Lagrangian. Section V is devoted to the proof of
the tree-level helicity conservation in a general self-dual
QED. In Sec. VI we introduce the normal ordering and
modified Feynman rules and discuss the helicity conser-
vation at the loop level. We also find the normal ordered
form of the BI Lagrangian and the semiclosed form of
the BN Lagrangian and give a general prescription for the
transformation of the normal ordered Lagrangian into the
usual form. In Sec. VII we summarize the results.

II. NONLINEAR ELECTRODYNAMICS
AND DUALITY

In what follows we will consider models of the
nonlinear electrodynamic in four dimensions, the
Lagrangian of which is a functions of the field strength
tensor F,, = d,A, —0,A, only. The most general such
Lagrangian can be written in the form

1
L= _ZF;wFW + ‘Cint(F/u/)7 (21)

where L;y(F,,) = O(F*). From the phenomenological
point of view, such models can appear as the leading order
in the derivative expansion of the nonlocal effective action
obtained by means of integrating out the massive charged
degrees of freedom. Let us mention in this context the
famous Euler-Heisenberg Lagrangian [25] (see also [26]
for a comprehensive review) which describes effective
interactions of the low-energy photons at energy scale p <
m, where m, is the electron mass,

a? 7 -
LRI FR) = oo [ (PR, 4+ (P#F, Y
a\3
oll— . 2.2
o)) e
Here
v — lgﬂl’aﬂF ; (2_3)
2 ap

is the dual field strengths and we have written explicitly
only the leading term in the fine structure constant a.
Another example is the Born-Infeld modification of the
Maxwell electrodynamics [1] designed originally in order
to solve the problem of the infinite electromagnetic self-
energy of the point charge
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F
LB = —A* \/ — det <nﬂy + A—”;) + A

2 1
— A4 2 A4

(2.4)

Here the two independent invariants F and G (in four
dimensions any other invariant is a function of these two)
are defined as

1

1 Iouv
F=-F G = FuF".

4 wE™s

(2.5)

The dimensionful scale A sets a limit on the maximal
possible intensity of the electric field, E,,, = A>. The
Lagrangian £B! also appears as an effective action describ-
ing fluctuations of the massless degrees of freedom of
an open string ending on a D-brane corresponding to the
string excitations longitudinal to the brane. In this context
A2 =2zd’ = T~! where T is the string tension and o' is
the Regge slope.

For further consideration it will be useful to reformulate
the Lagrangian in terms of the symmetric spinor fields ¢4
and ¢ 4 p defined as

F,o6" . 6",
MY AA” BB

(2.6)

= Qape,j + &, z€an

where as usual o = (1,6) and " = (1,—0). Let us
note that

F”U(_TZA(_)'ZB = i¢AB€AB —iq_sABE'AB. (27)

As a consequence of the Cayley-Hamilton theorem for
two-by-two traceless matrices ® = ¢*5 = 2“5 and

Ci)E(ZAB = eAC(}-CB we get
1 1
(I)z :—det¢:—§¢AD¢ADE—§¢2 (28)

and thus

_l)n

= Trd?+1 = 0

Trq)2n — Tr(_%¢2>n — ( (4)2)11’

(2.9)

and similarly for ®. Therefore the most general invariant
built from F,, only can be expressed as a function of two

independent invariants ¢> and ¢?. For instance for the
above two invariants F and G we get

F=l@+d). G=L@-d). (10

o0 | =—
0| =

and the most general Lagrangian (2.1) can be expressed as a
function of two variables L;, (¢, ¢?) in the form

L=+ )+ L3 211

where

Lin = Z Cnm(¢2)n(q-52)m (212)

n+m>1

and where Hermiticity requires c},,, = C-

The classical equations of motion without sources
expressed in terms of F,, consist of the Bianchi identity
and the Euler-Lagrange equation

o,Fv =0,  9,G"=0 (2.13)
where
oL
G, =-2 SF (2.14)

is the Lorentz covariant constitutive equation. The above
equations (2.13) are invariant with respect to the famous
duality transformation written in the infinitesimal form as

~ 1

oF, =G, = ESﬂU{XﬁG B, (2.15)
7 1 aff

5le =1y = Egﬂl’aﬁF , (216)

provided the Lagrangian satisfies the Noether-Gaillard-
Zumino relation [2]. The NGZ relation expresses consis-
tency of the transformation (2.15) and (2.16) with
definition of G, (2.14). Here we write it in the form
which appeared for the first time in [3] (see also [8,27]):

ap OL 0L 1

o gpad = g warT FY + C.

(2.17)

where C is an arbitrary constant. Provided we require the
weak field expansion of the constitutive relation of the form

G,, =F,, + O(F?),

i.e. the theory can be approximated in this limit by Maxwell
electromagnetism, we get for the constant C = 0. In what
follows we restrict ourselves to this case and refer to the
theories satisfying (2.17) with C = 0 as self-dual theories.’

3Let us also note that, as proved in [4], the theories satisfying
(2.17) for C=0 have a unique N =1 supersymmetric
extension.
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Note, however, that the duality transformation (2.15),
(2.16) is not an off-shell symmetry of the Lagrangian, but
an on-shell symmetry of the equations of motion.

In terms of the spinors ¢,z and ¢ 41 and analogous
spinors I'yz and T, ; where

6-74A5-ZBGW/ :FABGAB +FAB€AB (218)
oL
IﬂAB = _8@¢A37 (219)
_ oL -
we can rewrite the duality transformation as
5¢AB = _iFABs 54_5AB = iFAB’ (2.21)

The NGZ relation (2.17) in these variables reads (note that
the Lagrangian is a function of the invariants ¢ and ¢?)

0L\ -,/0L\%? 1 _
¢2<8752> _¢2(@> —6—4(4?2—472):0;

see also [5], where it first appeared in this form. It is
straightforward to verify that the Born-Infeld Lagrangian,
which in the variables ¢, and ¢ 4 reads

1
Lpy = —A4\/1 -
Bl T aAs

(2.23)

(¢2 _ g;52)2 —|—A4,

(2.24)

(¢* +¢*) +

64A8

satisfy the NGZ relation (2.23) and the theory is therefore
self-dual.

The NGZ relation (2.23) can be further simplified using
formally the variables

_ 1 2 72
xi_§<,/¢ i\/(/)) (2.25)
to the form
oL oL 1
X, X axX- (226)
or
oL oL 1
—_— = 2.27
X2 X2 16 (2.27)

This is the most suitable form for further consideration. In
the next section we will discuss the solution of this equation

in more detail and give some explicit examples of self-dual
Lagrangians beyond the BI theory.

III. GENERAL SOLUTIONS OF THE
NGZ IDENTITY

The NGZ identity written in the form (2.27) is a partial
differential equation of the first order and as such it can be
solved using standard methods. Of course not all of its
solutions are physically acceptable. We typically require
analyticity of the resulting Lagrangian in the variables ¢’
and ¢? at the origin and we also expect that the weak field
limit should reproduce the Maxwell electrodynamics. In
this section we give a general prescription and also
formulate the necessary condition for the above analyticity
requirement.

According to the general methods for a solution of the first
order partial differential equations by means of character-
istics, the general solution £(X_,, X_) of the equation (2.27)
can be expressed implicitly in terms of four functions p (u)
and x. (u) which play the role of the one parametric set of
the initial values of the characteristics, namely

HAL(X . X) = p_(u)[X2 = x_(u)] + p+ (u)[X3 - x (u)]

+ [ dulp (w2 )+ p- () w).
(3.1)

Here the prime denotes a derivative with respect to the
parameter u. These functions are subject of the constraints

pi(u)p_(u) =1 (3.2)

P (WX - x, ()] = p_(WX2 —x_(w)]. (33)
The first constraint reduces the number of independent
functions to three while the second one allows one to
determine the parameter u# in terms of the variables X .
For instance, the Maxwell theory can be reproduced by the
choice

M)y =0, pMu)=-1. (3.4)
Because the functions p_ () and x. () appear in the above
expressions in very special combinations, the above formula
can be further simplified in such a way that there is only one
arbitrary function left. Using integration by parts we get

L4L(X . X) = p_()X2 + p, (w)X2

- / duply () (1) + P () ().
(3.5)
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Writing the explicit solution of the first constraint (3.2) in
the form

p-(u) = p(u).  pi(u) =W (3.6)
we have
X 4Ly NACFS
+H4L(X ., X)) = p( )X_+p(u)X++/d o) F(u),
(3.7)

where u is the solution of the second constraint (3.3), which
can be written in the form

ﬁxi — p(u)X2 = F(u) (33)
and the function F(u) is defined as
_ ! xy(u) = p(u)x_(u
F(M)=p(u) +(u) = p(u)x_(u). (3.9)

Introducing a new variable z = p(u) and denoting f(z) =
F(u(z)) we can rewrite the second constraint (3.3) as
Ly, 2
ZXJr —zX2 = f(2) (3.10)

and finally we get the Lagrangian represented implicitly in
terms of one arbitrary function f(z)

1 d
HAL(X, X ) = X2 4 X 4 ?Zf(z), (3.11)

where z is the solution of (3.10).

In what follows we will mainly restrict ourselves to the
case when £(X, X_) is analytic in ¢> and ¢*. Because the
resulting Lagrangian (3.11) depends on X, only through4
X zi, assuming analyticity in Xi the necessary condition for
such an analyticity can be expressed as a symmetry
condition

LX,. X)) = L(X_.X,). (3.12)

This can be achieved by the choice of function f(z) which

satisfies
70 =-1(2).
z

Indeed, in such a case the solution of (3.10) with X, and
X_ interchanged is just 1/z where z is the original solution

(3.13)

“Note also that X2 = 2(F & /F? + G?).

of (3.10) and the sum of the first two terms on the right-
hand side of (3.11) is therefore invariant. For the second
term we get immediately, provided we fix the lower limit of
the integration appropriately,5

1/zdu zdw 1 zdw
= - | = — =/ — . 3.14
[ == szf<w) ). (a4)
Let us now give some simple examples. Taking
BI 4 1
fPiz) =2A Z_E (3.15)

and arranging the integration constant we reproduce the BI
Lagrangian

1 1
LBl = —A4\/1 +W(X2+ +X2) +mxix% + A%

(3.16)

The apparently simplest one parametric deformation of the
BI Lagrangian can be obtained in this representation using

MBIz a) = fBl(z) — 4an®*.

The resulting Lagrangian reads

2 v2
MBI _ _ a4 [r(Xz X2) - aln(a + r()i+7)2(—)> _ c}
[+ X2

(3.17)

where

1 1
r(X3,X%) = \/1 +a? +W(xi +X2) +Wxix%,

(3.18)

c:\/1+a2—aln(a+ 1+a2). (3.19)

Note, however, that because fMBI(z, a) does not satisfy
(3.13) the Lagrangian £LMB! is not analytic for ¢> = ¢ = 0.
Indeed, the weak field expansion reads now

V1 +a? - a [ -
2

a _ - a
S AR RN TrYeN
x [p* + ¢* +2(3 = 2a72)p* ] + ...

(3.20)

’Here we tacitly assume that either f(1) = 0 or f(z) has at
most integrable singularity for z = 1.
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Note also the noncanonical normalization of the kinetic
term.

Let us now relate the above construction of the self-dual
Lagrangian to those known from the literature. The
representation (3.11), (3.10) can be compared with the
general solution found in [8] defining a new variable
w = —f(z)/z. Expressing z in terms of w we get

) = 2Z(W)X2 4 —— X2 — wz(w)

+H4L(X ,X_
( + Z(W>

—I-/dwz(w) (3.21)
and w is a solution of
LI eI (3.22)
Toz(w T

Finally, using this equation in (3.21) we get

+4L(X,, X_) = X2++/dwz(w) (3.23)

2
z(w)
which is nothing else but the Gaillard-Zumino representa-
tion which expresses the solution in terms of arbitrary
function z(w). The latter representation has the advantage
that it allows one to find the function z(w) once the
Lagrangian £(X,,X_) is known: for X, =0 we get
w = X2 and thus

2(w) = i%4£(0, ). (3.24)

For instance, for the BI theory we get immediately
1
(14 ﬁw

Let us now define in (3.10) and (3.11) the following
variable

(3.25)

-1

= 3.26
2+1 (3:26)

and define in terms of this variable the following new
function

1zf(z)
2724+ 1°

G(u) = (3.27)

It is then an easy exercise to rewrite (3.10) into the form
(X3 -X2)

L Xu=G)  (328)

Bl —

and (3.11)
+L(X X):1X2 \/1_u2_”(17_”)
T V1-u?
1 u(l +u
+X%(\/1—u2+)
4 V1—u?

G(u)
Using now (3.28) we get
1 uG(u)
TLX LX) ==(X2+ X))V —u? -
( + ) 4( + ) m
G(u)
and finally
/
LL(X, X ) = Z (X2 +X2)V1 - u? —/du ulG
V1-u?
(3.31)

The latter formula together with the algebraic equa-
tion (3.28) corresponds to Hatsuda-Kamimura-Sekiya rep-
resentation of the self-dual Lagrangian developed in [9]
in terms of arbitrary function G(u). Note that under the
transformation z — 1/z the variable u transforms as
u — —u. Thus we get for the function G(u)

12f@)
2722 +1

G(—u) = (3.32)

and the necessary condition for analyticity of the
Lagrangian reads now

(3.33)
The BI Lagrangian is then reconstructed using
GB'(u) = A*u

and in [9] four more explicit examples were given, Note
however, that only one of them [namely the example 4 with
G(u) = u(1 + au®/3)/b] satisfied the condition (3.33) and
lead to the analytic Lagrangian.

IV. QUANTIZATION OF THE NONLINEAR QED

The usual formulation of the perturbation theory for the
nonlinear electrodynamics at the quantum level requires a
gauge fixing. This procedure sets the form of the propa-
gator which then corresponds to the internal lines of the
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Feynman graphs. In the Feynman gauge, which is mani-
festly Lorentz covariant, we get a simple propagator of
the form

4

QA a0 =i [ G hse

The Feynman rules for the vertices are read off from the
interaction Lagrangian L, (F,,) treated as a functional of
the field A, (x) and the polarization vectors &), (p) and their
complex conjugates are attached to the incoming and
outgoing external on-shell lines respectively. However,
for practical purposes of amplitude calculation, the direct
manipulation with the field A#(x) is rather clumsy because
for the simple form of the propagator we have to pay with
relatively complicated (usually infinitely many) interaction
vertices which depend on the derivatives of A#(x). For the
general interaction Lagrangian of the form L, (F,,) it is
therefore much more convenient to work directly with the
field F**(x). The covariant propagator of the field F**(x)
can be derived from (4.1) by means of taking appropriate
derivatives with the result

n

—ip-(x=y) L
p>+i0

(4.1)

Pb(p)
p>+i0 "’
(4.2)

—ip:(x=y)

QTP P ()0 =i [ Sz

where P#(p) is given by the expression

Pl (p) = =ppont? + ptpPite + p? p? — p* pPye.
(4.3)
Note, however, that the propagator of the field F**(x)

cannot be derived from any local kinetic term for the field
F,,(x). Indeed, the tensor P***/(p) can be rewritten as

1
Pﬂyaﬂ(p) = p2 E (’Yyarluﬂ - ’7/4/3’11/0:) - H/{yaﬂ P
where
1 puP
T _ T pT T pT T _ ukv
e = E(Pﬂ‘lpvﬂ - Pﬂﬂpva)’ Py =My — o

(4.4)

Therefore H,{mﬁ is the transverse projector in the space

of the antisymmetric tensors and P***( p) is proportional to
the longitudinal projector which has no inversion.

Working directly with the fields F,, (x) the interaction
vertices are considerably simpler—they correspond to
nonderivative couplings of the field F**(x), now for the
price of a slightly more complicated propagator. Also the
external legs are now equipped with more complicated
polarization tensors

&y (p) = —ip'ey(p) +ip*e,(p). (4.5)
Nevertheless the resulting Feynman rules for the S-matrix
are completely equivalent to those based on the propagator
(4.1) and we get manifest gauge invariance term by term for
each Feynman diagram separately.

An even more efficient treatment, which shares the latter
property, is to decompose the propagator of the field F#*(x)
into the spinor basis ¢,z(x) and gﬂc 5 (x) [cf. (2.6)]. The
free operators ¢,5(x) and qZC p(x) are directly connected
with helicity: ¢45(x) annihilates helicity plus and creates
helicity minus states while ¢ - p(x) annihilates helicity
minus and creates helicity plus states.® Another advantage
of this decomposition is that the most general interaction
Lagrangian L;,(F,,) can be rewritten in the form (2.12)
and therefore can be treated as a function of ¢> and ¢°.
The contraction of the spinor indices is thus considerably
simpler than the contraction of the original Lorentz indices
and the structure of the interaction vertices is then much
more transparent within this formalism.

The decomposition of the propagator (4.2) in the spinor
basis reads (see also [20])

(O[T hpas(x) B¢ (3)|0)
i / (‘2111;4 e-ip (=) [pACpl;Dz i %DPBC} (4.6)

(OIT¢ap(x)pcn(¥)0)
— i [ S escen +eavenc] (4

0T, y(x)dep()]0)
B _i/ (gjr];“ e e; eyt s pEpel- (48)

Here as usual

Pas =0, (4.9)

and p,, = papy on shell.

Note that only the “mixed” propagator (T¢¢) possesses
one particle pole with residue

[PacPsD + PapPpclonshen = 2PaPePiPg-  (4.10)

%In fact, the fields ¢sp and 97{6 p correspond to the self-dual
combinations F,,, =31(F,, £iF,,). The relation of the latter

fields to the helicity states and coherent states has been studied in
detail in [28].
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The corresponding Feynman rules associate therefore the
combination v/2p, pp to each outgoing helicity minus and
ingoing helicity plus external leg and v/2p iPj to each
outgoing helicity plus and ingoing helicity minus external
leg. The remaining two propagators (4.7) and (4.8) are pure
contact terms proportional to the delta function of its space-
time arguments.” Their presence is a direct consequence of
the simple form of the original covariant propagators (4.1)
and (4.2) we have started with.

V. HELICITY CONSERVATION IN NONLINEAR
QED AT TREE LEVEL

Let us now assume the S-matrix of the general nonlinear
QED. For our purposes it is convenient to treat it as a
functional S[¢, ¢] of the classical off-shell fields ¢ z(x)
and ¢ ; (x). The functional S[¢, ¢] is sometimes called the
normal symbol of the S-matrix: once we know S[¢, ¢], the
operator S-matrix S can be obtained by means of replacing
the functional arguments with free fields operators ¢ ,5(x),
and $CD<x) ; in the interaction picture and then applying
the usual normal ordering

= :Slgr. o] (5.1)

The analogous normal symbol 7 [¢, ¢] of the connected

S-matrix is related to S[¢g, ¢] via the relation

Sl | = exp (iT[¢. p]). (5.2)

The scattering amplitudes can be obtained directly form

T|¢.¢] applying appropriate differential operators (for
pedagogical treatment of this formalism see e.g. [29]).

In what follows we will concentrate on theories the
scattering amplitudes of which conserve helicity. This
means that, when we treat all the external particles as
outgoing, the amplitudes vanish provided the total number
of helicity plus particles does not match the total number of
helicity minus particles:

A1t 2%, .. nt

,(n+1)",(n+2)7,

for n # m.

Because the fields ¢45(x) and . (x) are associated with
helicity minus and helicity plus outgoing particles respec-
tively, the requirement of helicity conservation necessitates
the functional 7 [¢, ¢] to be invariant with respect to the
global U(1) transformation

"In fact these helicity violating propagators are unnecessary
and can be discarded by means of the procedure of normal
ordering which we describe in the next section.

Php = " Pas. @;B =e ", 4 (5.4)
Infinitesimally this means
4 5T[¢’ &] A 5T[¢7 éﬂ _
[aslouor i - g b -0 63

Let us now prove that duality invariance is a necessary and
sufficient condition for helicity conservation of tree-level
amplitudes, i.e. that the leading order term of the functional
T [¢. ] in the quasiclassical expansion
T(p.d] = T"[p. 4] + O(n) (5.6)
satisfies (5.5) if and only if the theory is self-dual.
Let us first note that the perturbative construction of
S[¢, @] is encoded in the representation

exp (ISmt {¢ ¢]) (57)

Slg. ¢]_CXP0[5¢ 5¢]

where the differential operator in the functional derivatives
6 6

O|l—=.—=
op o

with

YL RL N ANT AN
6p o6¢ op o ¢ 5

(5.8)

d*p

Cip(vy) PacPBD T PapPpel
AABCD(X’)’):/<27[)46 py)

p? +i0

(5.9)
implements the Wick theorem with propagators (4.6), (4.7)

and (4.8). Here and in what follows we use condensed
notation, e.g.

o 4 0

5 5
%'A:/dA‘Xd“.ymAABCD(y’x)’ (511)
5 0 5 5
—A-—= | d*xd -,
i 8 5= [ Sty ) 5tp )
(5.12)
5 & 5 5
50 56~ ) ot A g 1)
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etc.® We also tacitly assume some implicit UV regulariza-
tion,’ typically the dimensional regularization.10 The details
of this regularization are not essential when we restrict
ourselves to the tree level. We get then using (5.2)

5T (¢, <7ﬂ 171940 2 0Sin[, 4] ¢) iSiml9.9]
5¢AB 5¢AB
— e_iT[{/)’J)]e[0</'+0)(+0ﬂ/’] M eisinlh’J_{] |Z:¢ )_{:4—5
Oap |

(5.14)

where we have doubled the number of fields in order to

=

separate the action of the operator e OG54 on both factors

and introduced commuting operators

o O o o
O,=0|—,— = — 5.15
’ [5¢’6¢}’ 4 Lx’é‘] (5-13)
0X¢:—2ii-£— ii.i_
op oy op oy
5 5 .6 5 (5.16)

A i A
+15¢ —1-5){ 5%

Acting now with the diagonal operators e and e on
8Sinilh. P)/Spa and eSmlt] respectively we get

M —17[(/) (p mt[¢ ¢}

Tzl .~ - (5.17
OPag Oap |X_¢'X_¢ ( )

Note that within dimensional regularization

5Sint[¢v &5]

0]
P Spas

=0 (5.18)

because 5Siy[¢. @]/6¢pap is local and therefore O, gen-
erates massless tadpoles. Equivalently we can set the
left-hand side of (5.18) effectively to zero when we are
interested in tree-level graphs only. The action of the
operator €% on 8Si[p, P|/dpap shifts its functional
arguments according to

The helicity consrevation condition (5.5) reads within this
notation

5Ttree _ 5']—“'66

5¢b 5¢
*We also assume that S;ne contains all the necessary counter-
terms. Note, however, that these are of the order O (%) and higher
and can be effectively set to zero in what follows when we restrict
ourselves to the tree level.
In this case, in order to preserve the four-dimensional spinor
algebra, we assume a dimensional reduction scheme.

=0.

¢ .

5 5 _
- P—21—+iA-—, i
oy oy o oy

(5.19)
and commuting the functional e/Z %7 (treated as an oper-

ator) with functional derivatives 6/8y and §/8y shifts these
derivatives

(8 8Ty
e Tl — oiTleil [ . 5.20
5 e e ( o7 +1 5y ( )

As aresult of this operation, we get 67 /5¢ 45 in the form of
an action of the differential operation on trivial functional

Flr.al =1

6T OSint
= T TNy 7ei 5.21
Opag 5¢AB[ 1 l){ pr=0 ( )
and similarly
78 OSint
-— = (T TN ey 7= (5.22)
5¢AB 5¢AB peid

where J and J are differential operators in functional
derivatives given by

8T [y, | 8T [y, ¥l ) )
—h+2 —A- A— +ihA - —
T=0+ Sy o7 ey TR
(5.23)
S Tly.7l 6T
T2l ST 8 0 p
oy oy oy oy

(5.24)

In these formulas we restored the dependence on the Planck
constant. At tree level therefore, writing

Sl B = / ELn( P2 DD, (5.25)

and taking the leading terms in the expansion in 7 on both
sides of (5.21), (5.22) we get

5T S . = 0L (J2,J?)
= e 5.26
Shag  6Jap . J) oJ* (5.26)
T 68, - 0L (J2, J?
ol int [ } 2JAB 1nt( - ) ) (5.27)
5(/5 B 5J aJ
Here we denoted (using our condensed notation)
5Ttree 6/]’tree
J = bt = 2 -A—= 5.28
T o yepzeg = &+ 50 5 (5.28)
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Ttree 5Ttree
J —
\7|h—>0;( =pg=¢ — ¢ + 5¢ 5¢

A, (5.29)

Note that the right-hand sides of (5.26) and (5.27) are local
when expressed in terms of the variables J and J. From
(5.26) and (5.27) it follows

5T tree _
o¢p

57" tree
¢-

‘S~

a'Cint
aJ?

a'Cmt
0J?

(5.30)

|:2¢ABJAB 2¢A BJAB

Using (5.28) and (5.29) and with help of (5.26) and (5.27)
we can express ¢4z as a functional of J,5 and J iB

6']"[1‘68 5']"[1‘68
=J-2 A ——
’ 0 5o
= J—4J8;Ji;‘t +2A - Jaaﬁjlgt (5.31)
and similarly
b= J—4J%£Jl§‘ +2%£Ji;tJ-A (5.32)
and with the help of (5.30)
Ttree _ Ttree
¢- 59 —-¢-
8£ 0L OLin\ 2
2]2 int _ 2]2 _1nt _ 8]2 nt
[ aJ? oJ? ( J? >
+ 8J? (%?;‘) ] (5.33)

Note that the right-hand side is local again when expressed
in terms of J and J: the nonlocal terms containing the
mixed propagator A, , ., completely canceled each other.
Inserting now [cf. (2.11)]

oLy, 1 0L oLy 1 0L
or “star ar stor O
into (5.33) we get finally
6’]’&68 _ 5Ttree
a2
oL 1 1-
hdad 72 lp_lp
[ |8 (aﬂ) 57 (5) gy
(5.35)

But the on the right-hand side of this equation we recognize
the NGZ constraint (2.23) vanishing of which is the

necessary and sufficient condition for self-dual theories.
Therefore at tree level the helicity is conserved if and only if
the theory is self-dual.

VI. NORMAL ORDERING AND MODIFIED
FEYNMAN RULES

Writing in the formula (5.7) for the normal symbol of
the S-matrix'!

we can rearrange the calculation of S[¢g, @] as

0

- o -

Sl =exp (108 2 ) exp (007 (62)
Here the normal ordered'” interaction action SNO[, @] is
defined as

.66 0 5
NO T
x exp (iSiu[p. ). (6.3)
Because the operator
o 0 o 0
W=l === 6.4
Olocal 15¢ 5¢ 154) 5¢ ( )

is local and does not generate space-time derivatives of ¢,
¢, the functional SNO[¢, @] is also local, i.e.

nt

SN[, ] = / &L, ), (6.5)

and Li, [¢, @] is a function of the invariants ¢> and ¢ only.
Provided the normal ordered interaction action S\°[¢, ¢] is
known, we can calculate the S-matrix equivalently using
formula (6.2), i.e. using only the mixed propagator (T¢¢)
for the internal lines. This approach is much more effective
and also more physical because only the mixed propagator
has the one-particle pole. The contributions of the contact
propagator terms are naturally accumulated in the normal
ordered interaction vertices derived from £XO[¢, ¢].

Note that Eq. (6.3) has the same structure as for-
mula (5.7). Therefore, SNO[#, ] is represented with

int

"Note that the individual terms in (5.8) are all commuting
operators.
The term “normal ordered” here should not be confused with
the usual operator normal ordering with respect to the creation
and annihilation operators.
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connected graphs generated by the Wick contractions
encoded in the operator exp O, Moreover, because
the operator Oy, generates local contractions, the loop
graphs are proportional to 5 (0), which vanish in dimen-
sional regularization. So that within dimensional regulari-
zation, which we will implicitly assume in what follows,
only the tree graphs contribute. We can therefore start with
(6.3) and repeat all the manipulations which lead us from
(5.7) to Egs. (5.26) and (5.27). The results is

SN, @) _ OLN[bP] _ ) ap OLiw (I T?)
=2 ——= (6.6
O ap OPap oJ? (6.6)
Sl d) _ OLR(h. @] _ 745 0Lim( S, T)
=2J4r———= (6.7
5¢AB 8¢AB o (67)
in this case with
_ oLl ¢l 5 o OL[#. ¢
J=¢p+2——"— o , J=¢+2 9 . (6.8)

Expressing now ¢ and ¢ in terms of J and J we get
therefore an analog of (5.33) and finally an analog of
(5.35), again with the NGZ constraint on the right-hand
side:

X Y
8¢AB AB 8¢AB

oL oL 1 1-

— _Q72 72 _nR__72

= -8J <8J2> +87 (aﬁ) +g g7

We can thus conclude that the theory is self-dual if and
only if the corresponding normal ordered interaction
Lagrangian £)O[¢, ¢] is U(1) invariant, i.e. provided its
dependence on ¢ and ¢ is through the combination ¢>¢>

only: LiP[¢. §] = L(4°¢?).

A. Helicity conservation at higher loops

The latter statement allows us to enlarge the validity of
the conclusion of the previous section concerning tree-level
helicity conservation to all higher loop graphs with vertices
derived from self-dual Lagrangian of the type (2.11)
satisfying the NGZ condition. Indeed, note that in the
formula (6.2) the operator exp (i - A - %) preserves hel-

icity. Therefore provided the theory is self-dual, the
corresponding normal ordered interaction Lagrangian
LNOp, $] is U(1) invariant, and therefore so must be
the S-matrix S[¢, ¢]. This implies the helicity conservation.
Of course, here we assume that the implicit regularization
does not violate the U(1) symmetry and therefore only
U(1) symmetric counterterms are needed.

Remarkably, this can be formally understood also on
the Lagrangian level. Note that the mixed propagator

(Tp) = iA satisfies

[ 428 el DO ()

=26 (x = y)learepr + earese) (6.9)
/d4ZAABCD(x — )AL (2 =)
Therefore, introducing formal functional Gaussian
integration
. .0 0
X —
Pl % 5
= / DDy ex A-p+ l + 0
= pL@ eXp 4 (P p+o- 5 7 ¢
(6.11)

we can represent the right-hand side of the formula (6.2) as

_ i o) ) _
Slp. p] = /D(pD(peXp G A-p+to —¢+(p ¢> exp (iSHP[#, #])
= / D@D exp Gco A-p)exp(iSiPle + ¢, & + 7))

= [ pupjesp (z (0-9) A (- &)) exp (18X lp. 7).

(6.12)

The latter formula formally corresponds to the functional integral representation of the S-matrix in theory with “classical

normal ordered action” SNO|

@, @] of the form

SNO[g, ] =

1
10 A @+ SiPle. @),

(6.13)
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which is formulated solely in terms of gauge invariant fields
@ and @ without necessity to relate it to the potential A,,.
This is in contrast to the original action S[g, @]

1

1_ _
Slp. @) = —<@* — < * + Si|@. @),

V=3 (6.14)

for which the path integral quantization needs ¢ and ¢ to be
expressed in terms of A, and a gauge fixing term has to be
added.

For self-dual theories the action SN°[¢, @] shows mani-
fest U(1) symmetry and implies therefore also manifestly
the helicity conservation. Note, however, that the kinetic
term of this action is nonlocal; nevertheless, it generates
formally the right propagator (T¢¢) = iA. This is the price
we pay for working directly with the variables ¢ and .

B. Calculation of the normal ordered Lagrangian

According to the definition (6.3), the normal ordered
interaction Lagrangian £X°[¢, ¢] can be obtained as a sum
of connected graphs with vertices from S;,[¢.¢] and
internal lines corresponding only to the contact propagators
(Tpgp) and (T¢h @) [see (4.7) and (4.8)]. Because of the
locality, the loops are proportional to 5(*)(0) which van-
ishes in the dimensional regularization and thus only the
tree-level graphs are relevant. These can be summed up as
follows. Let us rewrite (6.3) in the form

exp (iS5 (. ])

>

/ D(ng‘oe —P VPO D) S [h.P)
= / DgoD(pe ~400=590) giSim[p+0.+7)

/ DD pe=10=0)(9=¢)=4(0=0) ~¢)+iSilo7]) (6.15)

The result of the tree-level calculation of the functional
integral then corresponds to

$006.9] = Sl 71~y (0= 9) - (0~ 9)

~1@-9)- G-, (6.16)

where ¢, ¢ satisfy the classical equation of motion

1 OLiy
—§(¢—¢)AB+8—A§:Q
| OLiy
—5( ~¢),, +——=0. (6.17)
a(pAB

Therefore

aEint aEim _ a‘C'in'[ a‘Cint
OB O ap a(pAB o, ;

ﬁﬁll? [¢’ (z)] = Eint[(p’ @] -

(6.18)

and ¢, @ are solutions of (6.17). Note that both L; [, @]
and LNO[p, ¢ are functions of the invariants ¢* and &,

therefore,

8ﬁint
a (ﬂAB

a‘cint
=2 —_—. 6.1
PAB 0? (6.19)

Finally we rewrite (6.18) as

. 2 =2\\ 2
590 = £l ) -4 (P

_ 4¢2 (a‘cint((p2v (;_02)) :

957 (6.20)

and the equations (6.17) can be written in the form
ILin(0*, 9°)\?
2 _ 2 1 _ 4 nt ’ ,
=9 ( o

- _ oL, (¢2, (7)2) 2
E2 2 1 4 nt .

(6.21)

The summation of the tree graphs with the contact
propagators (T¢¢) and (T¢ ¢) is therefore equivalent to
the solution of the algebraic equations (6.21) with respect to
¢* and »* and inserting then the solution into (6.20).

Let us note that the relation (6.3) connecting the original
Lagrangian with the normal ordered one is invertible,
namely

7 1) 6 O
exp (iSiu [, @) :exp<% 2 i 5¢>

x exp (S0 [ §]). (6.22)

Repeating the above formal manipulation we can write the
result of the inversion as

Lo ) = L2 57) +4<o2(
NO 2 2
s a <6£m (¢ >) |

p*

where now ¢? and %? are solutions of algebraic equations

LY (9. p ))
8 2

(6.23)
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(?ENO((/JZ ¢2) 2

2 __ 2 int ’

= (1-\—47&02 > ,

_ 8[,-NO 2’—2 2

¢2=¢2<1 +4%> . (6.24)

Let us note that the starting point for derivation of
Egs. (6.23) and (6.24) is the analog of (6.16) and (6.17),
namely

Suld. B = X009 + 5 (0= 9) (0= 9)

1

+70-9)@-9). (6.25)

where ¢, ¢ satisfy the classical equation of motion

! 0L L, aLho
§(¢—¢)AB+6¢AB*07 E(fﬂ—fﬁ)AB-f-%—O.
(6.26)

This can be directly compared with the auxiliary field
construction of the self-dual actions of Ivanov and Zupnik
[12,13]. Up to a different normalization of the fields, the
normal ordered action can be identified with the U(1)
invariant off-shell action from their construction where ¢, @
play the role of the auxiliary fields.

In the next two subsections we will illustrate the
application of the correspondence Ly <> £YO in two

special cases for which we can obtain the solution of both
problems in a closed form.

C. Normal ordered form of the Born-Infeld Lagrangian

As the first illustration, let us find the normal ordered
form of the BI Lagrangian. In the case of BI theory it is
convenient to use the following change of variables (first
introduced in [30]):

1 1+7 I _ 1+4n

=— —_— P ==y — 6.27
PAB \/EWABl_nF] (pAB \/iwABl_r]ﬁ ( )
where
2 -2
"4 _ "4
= , = , 6.28
T= Ton® T~ Ton® (6.28)

and therefore

14+7\2
¢2:8A411<1 +77> ,

1 2
LY @ =8A% <ﬂ> . (6.29)
—nii

1 —nip

In [31] it was found that, when expressed in terms of these
new fields, the BI Lagrangian simplifies to a rational
function of # and 7

_ st 20

Lg; = =~
1 —nn

, (6.30)

and the interaction part looks like

(I+n) +17)

1 _ _
Lpiin = Lp1 + 5 (97 + §*) = —A*nij 5
(1 =mnip)

8
(6.31)

Inserting now the new parametrization into (6.20) we get

1 +nip

(1 = nig)?

and the algebraic equations (6.21) are transformed to

L0 (6, 8) = 270%i; (6.32)

n y n
P =8N —— | P* =8N ——. (633
(1= nip)? TR
From the latter equation we get
y n
PP = 64A3 =) (6.34)
or
4w(l—z2)*-z=0, (6.35)
where
] PP
z = i, w = (16AT? (6.36)

Therefore, the normal ordered BI Lagrangian reads
¢
(16A%)?
= 8A*w(1 +2)(1 —z)%,

L0 (%, %) = 8A (1 + ni) (1 — ni)?

(6.37)

where z is a solution of (6.35). This quartic equation has
four solutions; however, only one of them is analytic for
w = 0. The proper solution can be inserted into right-hand
side of (6.37) using the general formula (see also [24]
where this approach has been used in similar context)

7o) = 55; [ £ F )

where f(z) is an analytic function at z, while z is a simple
zero of F(z), i.e.

(6.38)

F(z9) =0.  F'(z) #0

and there is no other zero of F(z) inside the closed curve C.
Choosing f = L§D(z) and F(z) = z — 4w(1 — z)* we get
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B 1 (1+2)(1-2)?
Lhiim (47, 97) = 8A*w m}@f-m
X (14 16w(1 = 2)%). (6.39)

The contour in the last formula picks up the solution of
(6.35) which vanishes for ¢, c}ﬁ — 0 provided ¢ is small
enough. The integrand can be expanded in powers of w and
we get

‘Cg?int (¢2’ &2)
| d

= 8% — S+

T JJe|=e 2

X E 4n —n 4n w

2)(1 = 2)(1 + 16w(1 — 2)?)

(6.40)

and after some straightforward algebra
‘Cglo,int (¢2’ &2)
1

= 8A? grypntl 1+4 3 6.41
;w M]l{z Z(+42+32) (641)

4n+1 4 _|_1
% Z( n )(_l)kz—n-&-k'

Calculating the residue at z = 0 we get in the end

(6.42)

1 dz 4n+1<4n+ 1>
P 1+4z+32 —1)kgntk
2ri |z|=¢ Z ( ); k ( )
4n+1 4n+1 4n+1
_(_1)n[< n+ >_4( n+ >+3< n+ )]
n n—1 n—2
(4n+1)!
=(-1)"2
=D (Bn+2)!(n+1)!
and thus
= 4n—|—
NO (42 52) 4 .
£Bl,int(¢ ’45 = 16A WZ 3n +2 )' (_4W)
(6.43)
where
P’
- (16/\4)2‘ (6.44)

The power series (6.43) can be summed up and

L3P (#*. ¢*) is given in a closed form as

- 3 I 11 12
NO 2 12\ __ _ T A4 - _ - = - =
£B1,in[(¢ ’¢ ) - 2A {3F2 |:< 2 ’ 4 ’4) ’ <3 ) 3>,

22¢2¢2
33 A8 ] - 1}'

(6.45)

Remarkably the same function appears in the expression
for the hypergeometric form of the BI Lagrangian found in
[23,24]. Of course this is not an accidental coincidence, as
we have discussed above.

Explicitly we get for the weak field expansion

PP
32A%

[p*¢*)
13107205
(6.46)

[*¢*)

L3t (. 47) = 2048A 2

The simple form of (6.46) should be compared with the
expansion of the original Lagrangian (2.24)

PE _¢PW + )
32N 256A8
PP 3020 +
2048A12
CPPE+ PP+ 56 +

EBI,inl(¢25 ¢7)2)
(#°)°]

(4]

16384 A1
272
% [(@*)* + 10(?)> >
+20(22)? + 10¢2(§)} + ()] +

+

for which the helicity conservation is a result of subtle
cancellations of direct and induced contact terms (i.e. those
stemming from gluing together the original vertices with
local parts of the propagators).

D. The simplest helicity conserving theory
and the Bossard-Nicolai model

Let us now illustrate the inverse problem: suppose that
the normal ordered Lagrangian is known and try to identify
the original one. Our example will be the apparently
simplest helicity conserving theory which corresponds to
normal ordered Lagrangian with only one quartic vertex
[such a theory was assumed in [32] as the simplest
interaction (SI) model]

LNO(¢2.¢%) = ¢2¢2 (6.47)

In this case we get the formula for the original Lagrangian
(6.23) in the form
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A 2 \2 A \2
2y _ ) ot 2
Lin($*. ¢*) = 44) P* +4¢* <4 ) +4¢ (4rp>
A ) _
= erzrpz[(l + 27 (1 + Ap*) — P2 p?]
(6.48)

while the algebraic equations determining ¢?, > as a
functions of ¢? and ¢? (6.24) simplifies to

where we again choose the double contour in order to pick
up the right solution. In the above formula [see (6.48)]

fed) =200+ -2 (65

and [see (6.49)]

h(z,z) = z(1 + 12)% — ¢?, h(z,z) = z(1 + 12)* - ¢*.
P12 = > =0, @*(14+19*)*—¢?=0.  (6.49) (6.52)
Let us denote for short z = ¢* and Z = @*. The generali-  For the Jacobian we have then

zation of (6.38) to the case of two variables reads in our B

case o(h, h
det a((z Z)) — (14 22)(1 +42)[(1 + 22)(1 + 4z) — 42223).

. 1 dzdz ’

L8 = s S 6.53
o ) (271)? J iz jz)=e Rz, Z) R (2, Z) (6.53)
« det 9(h, fl) £(z2.2), (6.50)  Expanding Lin(¢?*. $*) given by (6.50) in powers of ¢* and

J(z.2) ¢* we get

|
dzdz
2,37
mt(¢ ¢ 2”1 242 ﬁLZlSZ ( +/12)2n+1 ( +/1Z)2m+1

x [(1422)(1 4+ Az) — 42%2Z)[(1 + 22)(1 + Az2) — 2%z7] (6.54)

and after some algebra the double integral can be rewritten a form of the linear combination of factorized single variable

integrals
‘Cim((bz’ g_bz)
1 2 - _ _ _ ~
- A2 A zdz n,2m—1 Z m.2n—1 Z)— n—1.2m\< m—12n < n—1.2m\< m—1,2n <
(2xi7 4 (@) (@*)" e dzdz| (@) fm2n-1(2) =58 1 2 (2) frnm1 20(2) + 44 ot 2 (2) frnm1.20 (2)]
nm z|,|z|=¢
(6.55)
where Li(9?.0%) = > con@)" (@)™ (6.58)
n,m>1
1 . . . . .
fra(x) = EESh (6.56)  where the coefficients are explicitly given as

The resulting single variable integrals can be evaluated
using residue theorem

1 1 :

o \z\:gdek‘l(Z):(k—l)!( )N+ 1) (I +k=2)
—en (N e

As a result

cnm:(—l)”””/lﬁm_l {<n+2m—3><m+2n—3>
4 n—1 m—1
n+2m-3 m+2n—3
_5< n—72 >< m—2 )
4<n+2m—3>(m+2n—3)]
n—3 m—73
After a simple rearrangement of the binomial coefficients

we get finally the original Lagrangian corresponding to the
normal ordered one (6.47) in the form

(6.59)
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Lo m _‘_1‘ 3 (—1’);:1—1 (n+2m—2) <m+2n—2>(¢2>n($2)m'

n—1

n,m>1

(6.60)

m—1

For identification of this theory let us express back the variables ¢> and ¢? in terms of the invariants F and G

[see (2.10)]
¢* = 4(F - i9),

Fixing now 1 = ¢*>/8 we get from (6.60)

P = 4(F +i0). (6.61)

Lin = 3PP+ §) =3 F(F + @)+ 3 (P + PIBF +G) — g F(F + G (11F +7¢7)

4

1 1
+ 3—2910(}'2 + G?)(91F* + 86.F2G* + 11G*) — 3

1
+2 g (F? + G)(969F° + 1517F*G + 623 F2G* + 43G°) + ...

which can be identified with the first seven terms of the
expansion of the interaction Lagrangian of the Bossard-
Nicolai model; these terms were calculated explicitly in
[11] using a different method. We can therefore conclude
that the Lagrangian (6.60) corresponds to the BN model.

E. From normal ordering to original Lagrangian:
The general case of self-dual theory

According to the previous subsections, in the general
case, the self-dual theory is obtained form the manifestly
U(1) invariant interaction Lagrangian as

< OLNO(2. ?)\ 2
Lin(¢?.9%) = LD (07, 9%) + 40° <M>

0¢p?
(PR

552 (6.63)

where @2, p> are solutions of

LW (@, 9°)
0¢? '

9L, 7))
o0p* '

¢2=(/)2<1+4

=9 <1 +4 (6.64)
Note that duality invariance and Lorentz invariance requires
that L;(¢?, @*) is a function of the invariant combination

0@

L@, 9*) = L(¢*9%) (6.65)
and thus we can write
Ling = L + 49*(p°L)* + 49%¢* (¢*L')?
=L +4¢*9*(¢” + ¢*)L"” (6.66)

gRF(F*+ @) (51F + 64F2G* + 17G%)

(6.62)

|
where the prime means a derivative of L with respect to
¢*®”. The algebraic equations defining > and @ in terms
of ¢* and ¢? are then

¢ =@*(1+40°L')2. ¢* =@*(1+4¢°L"). (6.67)

or taking the square root

\/; = \/;(1 +4¢°L"), \/ﬁ = \/;(1 +4¢°L").

(6.68)

Let us introduce new variables

L d(FF) i)

(6.69)

in terms of which we get
VP =x2 =22, @+ ? =202 +x2),  (6.70)
Xy =x:(1+4/0°\/@°L'(¢*7%).  (6.71)

Let us further abbreviate z = \/@*/*. The interaction
Lagrangian is then expressed in a compact form

Line = L(2%) +822L'(2%)*(x2 + x2) (6.72)
where x, are solutions of
X =x,(1+£4zL'(2%)). (6.73)
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Note that we do not need to know x_. individually but only
in the combinations x3 + x> and z. The latter equations
imply for these

R S ¢ X (6.74)
T (Al (@) (=4l ()
X2 X2
= - . 6.75
Cuvar@ea-ar@ye O
For the interaction Lagrangian we get therefore
Lin = L(2%) +82°L'(z%)?
X2 X2
, (6.76
{(1 +4zL'(2%))? - (1 —4zL’(z2))2] (6.76)

where z is solution of single equation (6.75). Using this
equation we can finally simplify £;, to the form

Line = L(2%) +2zL'(2?)

X2 X2
— -z 6.77
% <1 +4zL'(z%) 1—4zL(2?) Z) (6.77)

Remarkably, we can immediately make sure that the
complete Lagrangian £ = — %Xﬁ - %X% + L;, represents
the solution of the NGZ condition. Indeed, it is an easy
exercise to show that this Lagrangian can be reconstructed
according to the general representation (3.7), (3.8) with the
identification

1 + 4ul'(u?)

p(u) = m, F(u) = u[l —16u>L'(u?)?],

(6.78)

from which all the other representations discussed in
Sec. III can be in principle den'ved For instance, the BN
model, for which we have L(z) =4z, can be constructed
according to (3.10) and (3.11) using the function"?

z z—1

N (z) = lm

(6.79)

Let us now return to the general case. In order to insert
the right solution of (6.75) into (6.77) we use the same trick
as in the previous subsections and write

1 dz ,
Lu=ggf GO (650)

PSee Sec. III for passing form p(u) and F(u) to f(z).

where now

X2 ~ X2
I44zL'(22)) (1 -4zL(2%))?

h(z) =z - [( ] (6.81)

and L;,(z) is the right-hand side of (6.77). Expanding the
integrand in powers of X, we get

i T3
int
271 |z|=¢ Z — 0

— | 6.82
(1 _4ZL (Zz))2:| ( ) mt(z) ( )
and finally using the residue theorem
B i": 1 d X1
N on‘dz (1 +4zL'(z))?
XZ
-——— | W(2)L; . 6.83
<1 _4ZL/(Z2))2:| (Z) mt(z) ( )

The latter formula allows us to calculate £;,; to any desired
order in X2 = 2(F £/ F? + @) or ¢* and ¢*. Writing

42 LS
Al ST

(6.84)
where A is dimensionful scale, we get explicitly

‘Cmt A4 ¢2¢2 4 8 ¢2¢2 (¢2 + ¢2)
P PR + 4525 + ()
P} -8 PP + )

x {8c3[(4*)* + 99 P* + (§*)?] + csp*P*}
+ ... (6.85)

As expected, the couplings at individual terms are related.
Notice e.g. the relation between the four-point and six-point
interaction. This relation implies that any two (analytic)
self-dual theories which have the same four-point inter-
action (once the coupling constants of the four-point terms
are adjusted appropriately) have also the same six-point
vertex. This explains e.g. the equivalence of the Bl and BN
models up to O(F?,), which might seem to be an accidental
coincidence. It also prevents any one-loop effective Euler-
Heisenberg Lagrangian to be self-dual beyond the four-
point interaction term due to the mismatch of the powers of

085015-17



JIRI NOVOTNY

PHYS. REV. D 98, 085015 (2018)

the fine structure constants at the four-point and six-point
vertexes. '

F. Normal ordered form of implicitly
defined self-dual Lagrangians

In the previous subsection we mentioned that, once the
normal ordered interaction Lagrangian LNO(¢?,$?) =
L(¢*¢?) for the self-dual theory is known, we can at least
in principle construct the original Lagrangian using the
formula for the general solution of the NGZ condition (3.7),
(3.8) with the identification

1+ 4ul (u?)

plu) = TL’(HZ)’ F(u) = ull —16u>L' (u*)?].

(6.86)

Quite remarkably, this relation works also in the reversed
direction. Suppose e.g. that the solution of the NGZ identity
is given by Egs. (3.10) and (3.11) with the known function
f(z) and let us derive the normal ordered Lagrangian
directly from this function. Let us rewrite the first equation
of (6.86) as

dul’ (u?) = —, (6.87)

and suppose it can be solved in order to express u as a
function of p. Using now the identification F(u) =
f(p(u)) [see (3.8) and (3.9)], the second relation of
(6.86) can be rewritten in terms of the variable p

o) =) 1- (25)')

The above solution u(p) has to be therefore given by

(6.88)

(p+1)°

u(p) = f(p) P

(6.89)

Inserting this back into (6.87) and multiplying by u'(p)
given explicitly by (6.89) we get

1 p—1

20 (p)u(p)L' (u(p)?) = 5u'(p) ——

6.90
2 p+1 (690)

A similar observation was made already in [33], where the
matching of the BI and various Euler Heisenberg Lagrangians
was discussed. Note also that in the case of supersymmetric QED,
it was shown in [34] that the corresponding Euler-Heisenberg
Lagrangian conserves helicity for the four-point amplitude
and, moreover, not only the Euler-Heisenberg Lagrangian itself
but also the complete one-loop effective action vanishes for the
self-dual configurations F,, = +iF,, as a consequence of
supersymmetry.

where the right-hand side is now known. Finally, up to an
inessential constant, we get

L) = [P L)

(p+1)2]
p+1dp

4p

p=p(#*¢?)
(6.91)

where p(¢*¢?) is a solution of (6.89) written in the form

N f(p)%,

with respect to p. Of course, to get the normal ordered
interaction Lagrangian in a closed form we have to be able
to solve the latter equation explicitly.

Let us give a simple example of the application of this
general prescription. Take a solution of the NGZ condition
in the form (3.10) and (3.11) with

(6.92)

flo) = 4NV

o (6.93)

which satisfies the analyticity condition (3.13). Note,
however, that the closed form of this solution is not
accessible since Eq. (3.10) is the eight order polynomial
equation for z. Inserting this function into (6.91) we get

4

L(p*¢*) = —% <\/17 + %) +C. (6.94)

where C is an integration constant and p is a solution of

- 1
2 = A —-— 6.95
R G G
or explicitly
_ 272 272 272\ 2
pw) =18 PF (50
272 272 2728 2] !
R T

Finally we get for the normal ordered interaction
Lagrangian LEP (42, ¢%) = L(¢*¢?)
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B B A4 ¢24_52 ¢2$2 ¢2&§2 2
L (@) *A4_7 YN +\/ As T <2A8)

A4 ¢2q_52 ¢2$2 4)2(272 2
3\ A _\/ A3 +<2A8>

(6.97)

where we adjusted the integration constant to get L(0) = 0.
Therefore, although the original Lagrangian is not known in a
closed form, we have enough information on the model e.g.
for calculation of the scattering amplitudes using the known
normal ordered Lagrangian and the modified Feynman rules.

VII. SUMMARY AND CONCLUSION

In this paper, we presented a general proof of the
equivalence of two apparently disconnected aspects of
the models of nonlinear quantum electrodynamics, namely
the classical duality invariance of the field equations, which
is expressed on the Lagrangian level by the NGZ condition,
and the helicity conservation of the tree-level amplitudes.
We have shown that the tree-level S-matrix is invariant with
respect to the U(1) rotational symmetry, which expresses
the helicity conservation, if and only if the Lagrangian of
the theory satisfies the NGZ conditions. On the level of the
traditional Feynman rules, the helicity conservation is a
result of subtle cancellations between contributions of
different Feynman graphs and as such is far from being
manifest. Using a reorganization of the perturbative cal-
culation by means of generalized normal ordering of the
Lagrangian and introducing a corresponding modification
of the Feynman rules, we have shown that for the self-dual
models the helicity conservation can be made manifest on
the level of individual Feynman graphs. The general
arguments follow two steps: first we have proved that
the normal ordered Lagrangian is invariant with respect to
the U(1) rotational symmetry if and only if the NGZ
identity for the original Lagrangian is satisfied and then we
have shown that the modified Feynman rules manifestly

respect this symmetry. This allows us to enlarge the above
statement on helicity conservation also to higher loops.

The transformation leading from the original Lagrangian to
the normal ordered one and vice versa can be reformulated as
acalculation of the tree-level functional integral over auxiliary
fields, i.e. as a substitution of solutions of the classical
equation of motions, which become algebraic (generally
transcendental), into a generating Lagrangian. This enables
us to identify the normal ordered Lagrangian with the off-shell
U(1) invariant interaction part of the auxiliary field
Lagrangian developed by Ivanov and Zupnik [12,13] (and
with its equivalent within the approach of Carrasco, Kallosh,
and Roiban in [11]). This gives the latter constructions of the
self-dual Lagrangians a clear physical interpretation.

We have also discussed several aspects of the generalized
normal ordering. Namely we gave a general formula for the
coefficients of the weak field expansion of the original
Lagrangian of the self-dual theory provided the normal
ordered Lagrangian is known and we also find the general
prescription for the normal ordered Lagrangian derived
form the implicit representation of the general solution of
the NGZ condition.

As an illustration of the above concepts we have calcu-
lated two explicit examples. Namely, as the first one we have
found the normal ordered form of the BI Lagrangian and
recovered in this way the hypergeometric form of this theory
presented in [23,24]. As the second example we gave two
new representations of the BN model. The first one
corresponds to the implicit construction of the general
solution of the GNZ condition for which we found the
generating function f2V(z). As the second one we calculated
explicitly the Lagrangian of the BN model in a form of weak
field expansion with explicitly known coefficients.
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