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Abstract. Symmetries play an interesting role in cosmology. They are useful in characteriz-
ing the cosmological perturbations generated during inflation and lead to consistency relations
involving the soft limit of the statistical correlators of large-scale structure dark matter and
galaxies overdensities. On the other hand, in observational cosmology the carriers of the
information about these large-scale statistical distributions are light rays traveling on null
geodesics. Motivated by this simple consideration, we study the structure of null infinity
and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-
Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS
transformations which leaves the asymptotic metric invariant to leading order. Contrary to
the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes
corresponding to scalar, vector and tensor degrees of freedom which may exist at null infin-
ity and perturb the asymptotic data. Therefore, BMS transformations generate physically
inequivalent vacua as they populate the universe at null infinity with these physical degrees
of freedom. We also discuss the gravitational memory effect when cosmological expansion is
taken into account. In this case, there are extra contribution to the gravitational memory due
to the tail of the retarded Green functions which are supported not only on the light-cone,
but also in its interior. The gravitational memory effect can be understood also from an
asymptotic point of view as a transition among cosmological BMS-related vacua.
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1 Introduction

Spacetimes with asymptotic boundaries may possess diffeomorphisms that act non-trivial on
boundary data. These “large” diffeomorphisms are a subgroup of the full group of diffeo-
morphisms and they are referred to as the asymptotic symmetry group. The latter generates
asymptotic symmetries which are those diffeomorphisms of spacetime that transform asymp-
totically flat metrics again to asymptotically flat metrics. Strictly speaking, they are not
symmetries of spacetime, that is transformations that leave the metric form invariant. In-
deed, the metric is not invariant under such transformations, but the asymptotic symmetries
are nevertheless the closest to a symmetry in the asymptotic sense.

The study of these symmetries started with the work by Arnowitt, Deser and Misner [1],
who showed that energy, momentum and angular-momentum are associated with asymptotic
symmetries at spatial infinity of an asymptotically Minskowski spacetime. Similarly, Bondi,
Meissner and Sachs (BMS) [2, 3] considered the asymptotic symmetries at future null infinity.

The structure of null infinity is more subtle than that of spatial infinity since radiation
reaches null infinity and distorts the asymptotics. BMS found that these symmetries form
in fact a much larger, infinite dimensional group now known as the BMS group [2–8]. The
latter acts on null infinity and accounts for a large degeneracy of the asymptotic vacuum.
The existence of such a group is counterintuitive as one expects that asymptotically, where
spacetime is flat, the Poincaré group should be recovered. However, this is true for spacelike
infinity, but not for null infinity (provided that spacetime possesses one).
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The symmetry group for null infinity contains the Poincaré group as a subgroup, but
it also contains an infinite dimensional abelian subgroup parametrizing the so-called super-
translations. The semidirect product of the supertranslations with the Lorentz group form
an infinite dimensional group, the BMS group. The (orthochronous) Lorentz group is in fact
isomorphic to the SL(2,C)/Z2 which generates global conformal (projective) transformations
on the Riemann sphere. Relaxing global restrictions, the most general BMS transforma-
tion is a semidirect product of supertranslations and local conformal transformations on the
sphere [9–12].

Interestingly, being characterized by large diffeomorphisms, the BMS group transforms
asymptotically flat solutions to new, physically inequivalent solutions. As we mentioned,
physically this is understandable since the BMS transformation creates a graviton out of the
vacuum and this graviton can reach null infinity and distort the asymptotics.

The infinite-dimensional subgroup of supertranslations generates arbitrary translations
of retarded time depending on the coordinates of the sphere at null infinity. Asymptotically
flat spacetimes possess two BSM symmetries acting on the future and past null infinity. One
question connected with these symmetries is if they can be symmetries of the S-matrix in
a scattering process. As proven in a series of interesting papers [13–18], the diagonal BMS
subgroup of the two BMS groups acting in past and future null infinity is indeed a symmetry of
the S-matrix. Therefore, there exists a corresponding Ward identity which is nothing else that
Weinberg’s graviton soft theorem. The soft graviton is just the Goldstone boson associated
to the breaking of supertranslations as the latter does not leave the vacuum invariant.

BMS transformations are also connected to gravitational memory [19–22]. It is known
that the passage of a gravitational wave burst through a pair of nearby inertial detectors
produces oscillations in their relative positions. In other words, a permanent distortion is
left behind a gravity wave train passing through a region of spacetime. This has the effect
that, after the wave has passed, the detectors do not return to their initial position, but they
acquire an extra displacement, known as gravitational memory. This effect can be understood
also from an asymptotic point of view as a transition among BMS-related vacua [15, 17]: a
supertranslation generates a shift in the spacetime metric, giving rise to a displacement of
nearby points. The BMS transformations may play a significant role also in the black hole
information paradox [23–25].

Symmetries play also crucial role in cosmological settings. For instance, they are partic-
ularly useful in characterizing the cosmological perturbations generated during inflation [26]
when the de Sitter isometry group acts as conformal group on R3 for the fluctuations on
super-Hubble scales. There the SO(1,4) isometry of the de Sitter background is realized as
conformal symmetry of the flat R3 sections and correlators are constrained by conformal
invariance [27–30]. This applies in the case in which the cosmological perturbations are gen-
erated by light scalar fields other than the inflaton (the field that drives inflation). In the
opposite case of single-field inflation, conformal consistency relations among the inflationary
correlators have also been investigated [31–34]. The fluctuations in single-field inflation are
Goldstone bosons of a spontaneously broken dilation symmetry. Being non-linearly realized,
the broken symmetry is still respected in Ward identities and leads to a relation between the
variation of the n-point function of the comoving curvature perturbation ζ under dilation and
the squeezed limit of the (n+ 1)-point function [35, 36]. These identities may be extremely
useful in discriminating among the various mechanisms for the generation of the cosmological
perturbations. For instance, the detection of a sizable primordial three-point correlator in
the squeezed limit would rule out all single-field models where inflation is driven by a single
scalar field with canonical kinetic energy and an initial Bunch-Davies vacuum.

– 2 –
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When perturbations re-enter the horizon, they provide the seeds for the large-scale
structure of the universe. The symmetries enjoyed by the Newtonian equations of motion of
the non-relativistic dark matter fluid coupled to gravity lead to consistency relations involving
the soft limit of the (n+ 1)-correlator functions of dark matter and galaxy overdensities [37,
38]. They can be extended to the relativistic case and in single-field models of inflation
since in such a case the soft mode perturbations can be seen as diffeomorphisms [39–41]. As
for the inflationary consistency relations, the ones for the large-scale structure are a form
of soft-pion theorem which relates an n-point function to an (n + 1)-point function where
the additional leg represents the emission (or absorption) of the Goldstone boson associated
with a non-linearly realized symmetry. In particular, for large-scale structure the role of the
Goldstone boson is played by the peculiar velocity which is shifted in a non-linear way under
some symmetry transformation, while the same transformation shifts the density contrast
only linearly. The corresponding consistency relations have the virtue of being true for the
galaxy overdensities, independently of the bias between galaxy and dark matter.

On the other hand, when dealing with observational cosmology, one should remember
that information about the statistical distributions of the large-scale structure is obtained by
collecting light rays emitted from the various objects, e.g. galaxies. Cosmologists (or better,
their detectors) look at regions collecting light rays coming out from null, not spacelike,
infinity. So, it is really at null infinity that one should investigate symmetries.

Based on these considerations, in this paper we discuss the BMS transformations in a
cosmological setting. In particular, we study the structure of asymptotic past and future
infinity in cosmological Friedmann-Robertson-Walker (FRW) spacetimes. For decelerating
FRW backgrounds where future null infinity exists, we find the corresponding BMS transfor-
mations. These are transformations that act at future null infinity and leave the asymptotic
metric invariant to leading order. We also discuss the gravitational memory when cosmo-
logical expansion is taken into account. In this case, there are extra contribution to the
gravitational memory due to the tail of the retarded Green functions which are supported
not only on the light-cone, but also in its interior.

Similar to what we have mentioned above, the BMS transformations in cosmology gen-
erate Goldstone modes. Differently from the flat case though, they correspond to not only
tensor modes, but also to scalar and vector degrees of freedom. They may exist at infinity
and perturb the asymptotic data. In this regard, BMS transformations generate physically
inequivalent vacua as they populate the universe at null infinity with physical degrees of
freedom. Furthermore, cosmological gravitational memory is connected to soft theorems. It
would be interesting to investigate if these considerations lead to new interesting consistency
relations (soft theorems) for cosmological observables [42].

The paper is organized as follows. In section 2 we present the structure of the asymptotic
infinity for general FRW spacetimes. In section 3, we discuss the structure of null infinity for
those FRW spacetimes that possess one and their corresponding symmetries. In section 4,
we present the BMS transformations in such cosmological backgrounds. In section 5 we
discuss the gravitational memory in the presence of a cosmological expansion, and finally
we conclude in section 6. Appendix A presents the Einstein equations near null infinity.
Appendix B presents the retarded Green function in FRW space times necessary to discuss
the gravitational memory effect. Appendix C introduces null tetrads to make use of the
Newman-Penrose (NP) formalism needed to discuss the gravitational memory.

– 3 –
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2 Structure of infinity

We will review below the structure of asymptotic infinity of cosmological backgrounds by
using conformal diagrams. We will see that inflating universes do not possess a null infinity
and therefore radiation cannot be detected, as expected, at infinity. On the contrary, space-
times representing decelerated expanding universes do have null infinity as radiation can
reach infinity. In order to set up the notation, we start with the simplest static Minkowski
space-time. The expert reader can skip this part.

2.1 Minkowski spacetime

Let us consider four-dimensional Minkowski spacetime with metric in polar coordinates

ds2 = −dt2 + dr2 + r2 dΩ2
2, (2.1)

where dΩ2
2 = dθ2 + sin θ2 dφ2 is the metric on S2 and

−∞ < t <∞, 0 ≤ r <∞. (2.2)

We can also write the flat metric eq. (2.1) in Bondi coordinates (u = t − r, r, θ, φ) and
(v = t+ r, r, θ, φ) as

ds2 = −du2 − 2dudr + r2 dΩ2
2 = −dv2 + 2dvdr + r2 dΩ2

2. (2.3)

By defining new coordinates

U = arctan(t− r) = arctan(u) = arctan(v − 2r),

V = arctan(t+ r) = arctan(v) = arctan(u+ 2r), (2.4)

with

−π/2 < U < π/2, − π/2 < V < π/2, U ≤ V, (2.5)

we can bring infinity at a finite distance. Indeed, we may express the flat Minkowski metric as

ds2 =
1

4 cos2 V cos2 U

(
−dT 2 + dR2 + sin2R dΩ2

2

)
, (2.6)

where

T = U + V, R = V − U (2.7)

and

0 ≤ R < π, |T |+R < π. (2.8)

Therefore, the original Minkowski metric is conformally related to the metric ds̃2 of the
Einstein static universe as

ds2 = Ω2ds̃2, (2.9)

with Ω−1 = 2 cosV cosU and

ds̃2 = −dT 2 + dR2 + sin2R dΩ2. (2.10)

– 4 –
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Figure 1. Conformal diagrams for Minkowski (left) and decelerating FRW (right) spacetimes.

The sections T = constant are three-dimensional spheres S3 so that the topology is R× S3.
The conformal diagram of Minkowski spacetime is drawn in figure 1, where we have indicated:

i+ = future timelike infinity (T = π, R = 0), (u =∞, v =∞, r = 0)

i− = past timelike infinity (T = −π, R = 0), (u = −∞, v = −∞, r = 0)

i0 = spatial infinity (T = 0, R = π), (u =∞, v =∞, r =∞)

I + = future null infinity (T = π −R, 0 < R < π), (−∞ < u <∞, r =∞)

I − = past null infinity (T = −π +R, 0 < R < π), (−∞ < v <∞, r =∞).
(2.11)

Note that since R = 0 and R = π are just the north and south poles of the S3, i+, i−, i0 are
actually points. On the other hand, I +,I − are null surfaces corresponding to future and
past null infinity. All null geodesics start at I − and end at I +, all timelike geodesics start
at i− and end at i+, whereas, spacelike ones start at i0 and end at i0.

2.2 FRW spacetime

Let us now consider the spatially flat FRW universe dominated by a fluid with equation of
state w. The corresponding geometry has the line element

ds2 = −dt2 + a2(t)

(
dr2 + r2 dΩ2

2

)
, a(t) =

(
t

t0

) 2
3(w+1)

. (2.12)

In conformal time dτ = dt/a(t), we may write (2.12) as

ds2 =

(
τ

τ0

)2q (
− dτ2 + dr2 + r2dΩ2

2

)
=

(
u+ r

L

)2q (
− du2 − 2dudr + r2 dΩ2

2

)
,(2.13)

where the Bondi coordinates are now (u = τ − r, r, θ, φ) and q = 2/(3w + 1). Now, there
exists two distinct cases:1

1As known, our universe has gone through various phases with different equation of states. Here we
deal with the case of constant q for simplicity, but one will have to cope with the fact that the universe

– 5 –
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Figure 2. Conformal diagram for accelerating FRW cosmology.

Deceleration. In this case, we have

−1

3
< w ≤ 1, q > 0. (2.14)

The range of τ is τ ∈ (0,∞). At τ = 0 we have a spacelike singularity and future infinity is
at τ =∞. We may express (τ, r) in terms of new coordinates (T,R) as

τ =
sinT

cosR+ cosT
, r =

sinR

cosR+ cosT
, (2.15)

where

0 < T < π, 0 < R < π − T. (2.16)

In these coordinates we may write (2.17) as

ds2 =
sin2q |T |

4
(
cos R+T

2 cos R−T2
)2+2q

(
− dT 2 + dR2 + sin2RdΩ2

2

)
, (2.17)

which is conformal to metric in eq. (2.10). There exists a Big-Bang singularity at past
(spacelike) infinity I −, a future timelike infinity at (T = π,R = 0) and a future null infinity
I + at T +R = π (−∞ < u <∞, r =∞) as dictated on the right of figure 1.

Acceleration. In this case, we have

−1 < w < −1

3
, q < 0, (2.18)

and the range of τ is now τ ∈ (−∞, 0). At τ = −∞ we have a spacelike singularity and
future infinity is at τ = 0. Similarly, the range of the coordinates (T,R) defined above is now

−π < T < 0, 0 < R < π + T. (2.19)

The past infinity I − is null and singular, whereas the future infinity I + is spacelike. The
Penrose diagram is drawn in figure 2.

has experienced a transition from a decelerating to an accelerating phase at a redshift of order unity when
investigating the possible role of BMS transformations.

– 6 –
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Figure 3. Conformal diagrams for FRW geometry with w = −1/3 (left) and (the causal half part of
the) de Sitter spacetime (right).

Limiting cases. There are two limiting cases described by w = −1/3 and w = −1, the
latter being de Sitter spacetime. The corresponding diagrams are given in figure 3. Only
half of de Sitter has been indicated, the causal part of an observer at the left hand side (the
north pole). Note that the future infinity I + is spacelike for de Sitter, whereas I − is the
particle horizon and it is null. Finally, the Penrose diagram for the w = −1/3 case is similar
to the Minkowski one in figure 1, where the past null infinity I − is singular now.

3 Null infinity

In this section, and for the benefit of the reader, we summarize the main features of asymp-
totic space times at null infinity.

Let (M, gµν) be a four-dimensional spacetime. The manifold M̃ with boundary I

and metric g̃µν is asymptotic to M if M is diffeomorphic to M̃ −I and the following two

conditions are satisfied: there exists a smooth function Ω on M̃ such that

i) g̃µν = Ω2gµν on M̃, (3.1)

ii) Ω = 0, ∇µΩ 6= 0 and g̃µν∇µΩ∇νΩ = 0 on I . (3.2)

Let ξµ now be a vector field in M, which is not a Killing vector, i.e. Lξgµν 6= 0. Then, ξµ

will generate asymptotic symmetries if

Ω2Lξgµν = 0, (3.3)

which is the closest to a symmetry at infinity. Using well know identities, we may ex-
press (3.3) as

0 = Ω2Lξgµν = Lξ g̃µν − 2Ω−1ξµ∇µΩg̃µν . (3.4)

– 7 –
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Therefore, we find that

Lξ g̃µν = ψg̃µν , ψ = 2Ω−1ξµ∇µΩ. (3.5)

If the vector field ξµ does not vanish at I , it would generate conformal diffeomorphisms
at I and it would be a conformal Killing vector. In other words, asymptotic symmetric at
I are generated by conformal Killing vectors. We can easily also find the condition for the
non-vanishing of ξµ. From (3.5), we see that we should demand that ψ is a smooth function
and therefore we must have

2ξµ∇µΩ = Ωψ. (3.6)

We will consider now spacetimes with null future infinity I + such as Minkowski or FRW
backgrounds with −1/3 < w ≤ 1. The metric for Minkowski space-time can be written in
terms of Bondi coordinates (u = t− r, r, θ, φ) as

ds2 = −du2 − 2dudr + r2 dΩ2
2. (3.7)

The vector n = nµ∂/∂xµ = ∂/∂r is normal to the surface u = constant and it is null
(gµνn

ana = 0) so that the surfaces u = constant are null. Null infinity is therefore at
r = ∞ which cannot be captured by the metric (3.7). Therefore, we may consider the
unphysical metric

ds̃2 =
1

r2
ds2 = −du2 + 2du dr

r2
+ dΩ2

2, (3.8)

in which the r = constant sections will have the induced three-dimensional metric

ds̃23 = −
(

du2

r2

)
+ dΩ2

2. (3.9)

In particular, at r =∞ we will have

ds̃23 = dθ2 + sin2 θ dφ2 + 0 · du2. (3.10)

We would like now to find all transformations that preserve the conformal metric on I +.
These should include the conformal maps of the S2 to itself and, in particular, the transfor-
mations

θ → θ, (3.11)

φ→ φ, (3.12)

u→ F (u, θ, φ). (3.13)

Indeed, after covering S2 by a complex coordinate z defined as

z = cot
θ

2
eiφ, (3.14)

the metric (3.10) is written as

ds̃23 = 4
dz dz

(1 + zz)2
+ 0 · du2. (3.15)

– 8 –
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As a consequence, the transformations that preserve the conformal form of the metric (3.10)
is the Newman-Unti transformation [7]

z → az + b

cd+ d
. (3.16)

u→ F (u, z, z). (3.17)

Note that we have assumed that the transformation does not change the orientation of u,
(which will interchange I + with I −) so that ∂F/∂u > 0. Allowing for spatial reflections
on S2, which is also a conformal mapping, the transformation z → z should be included.

The Newman-Unti transformations are the most general transformations allowed. We
may restrict it by imposing appropriate conditions. One condition is the following. Let
us recall that conformal transformations preserve the angle between vectors. One may also
define a “null angle” as the ratio du/dΩ2 [5]. We may then search for transformations of I +

that also preserve the null angle. In other words, we look for transformations for which the
rescalings of dΩ2 are compensated by corresponding rescalings of u. These transformations
should be of the form (3.17), but with the function F such that the ratio du/dΩ2 is left
invariant. Since under conformal transformations we have for dΩ2

dΩ2 → KdΩ2, (3.18)

where K = K(z, z) > 0, we should also demand

du→ Ku, (3.19)

which can be integrated to give

u→ K
(
u+ α(z, z)

)
. (3.20)

Therefore, the symmetries of the null infinity I + comprises

z → az + b

cd+ d
(3.21)

u→ K
(
u+ α(z, z)

)
. (3.22)

The transformations (3.21) and (3.22) form the so-called BMS group G . The transforma-
tion (3.21) forms the conformal group in two-dimensions, which is isomoprhic to the ortho-
chonous Lorentz group O(1,3). In other words, the Lorentz group acts on the two-dimensional
sphere by a conformal transformation like (3.21). In particular, the transformation

z → z, (3.23)

u→
(
u+ α(z, z)

)
, (3.24)

that does not involve a Lorentz rotation, is called supertranslation. We may expand a(z, z)
in spherical harmonics as

α =
∑
m,`

α`mY`m(θ, φ). (3.25)

– 9 –
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Transformations that involve only the lowest ` = 0, 1 components are written as

α = α0 + α1 sin θ cosφ+ α2 sin θ sinφ+ α3 cos θ, (3.26)

which, in terms of z, z is written as

α =
b0 + b1z + b1z + b2zz

1 + zz
. (3.27)

This is a four-parameter transformation, a translation, and it is actually the transformation
induced on I + by standard translations of the Minkowski spacetime. Supertranslation form
a normal subgroup S of the the BMS group G and the quotient group G /S is the conformal
group on the two-sphere S2 as can be seen from eqs. (3.21) and (3.22).

Note that the above discussion is valid for both I + and I −. The topology of I ± is of
the form S2×R where R is formed by the null generators of I ± . As a result, S2 sections of
I + or I − are related by a conformal transformation of the S2. Without loss of generality,
we may assume that the conformal factor Ω has been chosen such that the unphysical metric
ds̃2 is the standard metric on the unit round S2. This is possible since for any Ω we can
define a new Ω′ = ω ·Ω where ω > 0 is a smooth function on I ±. The new Ω′ will have the
required properties and will allow to rescale the metric on I ± at will. Thus, without loss of
generality we may assume that the unsphysical metric has the form (3.10).

3.1 Null infinity for FRW cosmologies

Let us now consider a FRW geometry for a fluid with −1/3 < w ≤ 1. In this case the metric,
as we already wrote, is expressed in (u, r, θ, φ) coordinates as (q > 0)

ds2 =

(
u+ r

L

)2q (
− du2 − 2dudr + r2 dΩ2

2

)
. (3.28)

Note that the usual cosmological parameters are expressed now through these coordinates.
For example, the Hubble parameter H and the redshift z will be

H =
∂τa

a
=
∂ua

a
=

q

u+ r
, 1 + z =

(u+ r)q|O
(u+ r)q|E

, (3.29)

where O and E indicate the observer and the emitter location, respectively. The sections
u = constant are null and the future null infinity I + is reached at r =∞. Using the above
arguments, we may take the unphysical metric to be

ds̃2 = Ω2ds2 , Ω2 = ((u+ r)/τ0)
−2q r−2, (3.30)

so that the metric on I + is written as

ds̃23 = 4
dzdz

(1 + zz)2
+ 0 · du2. (3.31)

The symmetries of null infinity are then also given by the Newman-Unti group (3.17) and
the BMS transformations (3.21) and (4.19) for the null-angle preserving ones.

Note that for FRW background with −1 ≤ w < −1/3, (q < 0), the metric is written as

ds2 =

(
− L

u+ r

)2|q|(
− du2 − 2 dudr + r2 dΩ2

2

)
. (3.32)

Again, the sections u = constant are null and future infinity I + is at r + u = 0, which
is spacelike.
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4 BMS transformations in FRW spacetimes

We will now proceed to find the asymptotic symmetries of FRW backgrounds. In particu-
lar, we are interested in extending the asymptotic symmetries from I + to the interior of
spacetime. For this, let us first write the FRW metric (3.28) in Bondi coordinates (u, r, z, z)
as (q > 0)

ds2 = a2(u, r)

(
− du2 − 2 dudr + 2 r2γzzdzdz

)
, (4.1)

where

γzz =
2

(1 + zz)2
(4.2)

is the metric on the unit sphere and

a(u, r) =

(
r + u

L

)q
(4.3)

is the scale factor written in Bondi coordinates. From now on we will deal with the case
q > 0, which corresponds to a decelerating expansion, since in this case there is null infinity.
In the opposite case (q < 0), conformal infinity is spacelike and there is no radiation to be
detected. Perturbations around the FRW metric (4.1) in Bondi coordinates will be of the
general form

ds2 = a2
(
gµν + δgµνdxµBdxνB

)
= a2

(
− du2 − 2dudr + 2r2γzzdz dz + δgµνdxµBdxνB

)
, (4.4)

where δgµν = δgµν(u, r, z, z). Under a diffeomorphism generated by ξµ = (ξu, ξr, ξz, ξz), the
metric perturbations δgµν transforms as

δgµν → δg̃µν = δgµν + ∂ρgµνξ
ρ + gµρ∂νξ

ρ + gρν∂µξ
ρ, (4.5)

where gµν is the background FRW metric. In particular, for the perturbations (4.4) we find

δg̃uu = δguu −
2q

r
ξr − 2ξr,u−2ξu,r , (4.6)

δg̃ur = δgur −
2q

r
ξr − 2ξr,r −2ξu,r −2ξu,u (4.7)

δg̃uz = δguz − ξr,z −ξu,z +r2ξz,u , (4.8)

δg̃rr = δgrr + 2ξr,r , (4.9)

δg̃rz = δgrz − ξu + r2ξz,r , (4.10)

δg̃zz = δgzz + 2Dzξz, (4.11)

δg̃zz = δgzz + r

[
2(1 + q)ξrγzz + r(Dzξz +Dzξz)

]
, (4.12)
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where ξz = γzzξ
z. Then by selecting the vector ξµ as

ξu = δgrz − r2ξz,r , (4.13)

ξr =
r

2q
(δgur − δgrr − 2ξu,r −ξu,u ) ,

ξr,r =
1

2
δgrr, (4.14)

we may choose a gauge similar to the Bondi gauge

δgrr = δgrz = δgrz = 0. (4.15)

In the vicinity of null infinity I + at r → ∞, we assume that the metric perturbations can
be expanded as

δgµν(u, r, z, z) = δg(0)µν (u, z, z) +
δg

(1)
µν (u, z, z)

r
+O(r−2). (4.16)

Then, in the gauge (4.15), the perturbed metric can be expressed as2

ds2 =

(
r + u

L

)2q (
− du2 − 2 dudr + 2 r2γzzdzdz +N du2 +

2m

r
du2 + 2 r2γzzCdzdz

+ 2E dudr +
2F

r
dudr + r Czzdz

2 + r Czzdz
2 + 2r γzzCzz dzdz

− 2Uzdudz − 2Uz dudz + · · ·
)
, (4.17)

where N,m,C,Czz, Czz, Czz, E, F are functions of (u, z, z) only. Notice that all of them are
scalars apart from Czz and Czz, which parametrize the tensor mode and Bi = (E+F/r)xi/r
which is a vector mode. We will also use the notation

Nzz = ∂uCzz (4.18)

for the Bondi news. Note that, dealing with an expanding universe and differently from the
static case, we had included the zero mode perturbations N(u, z, z) and C(u, z, z) since there
can be scalar perturbations that do no die off at null infinity.

The transformations of the metric (4.17) that preserve its asymptotic form are given by
the infinitesimal BMS transformations (supertranslations) [2, 3]

u→ u− f, r → r −DzDzf,

z → z +
1

r
Dzf, z → z +

1

r
Dzf, (4.19)

where

f = f(z, z), (4.20)

provided that

C(u, z, z) = 0. (4.21)

2The corresponding Einstein equations are found in appendix A.

– 12 –



J
C
A
P
0
5
(
2
0
1
6
)
0
5
9

This choice is dictated by the fact that the transformation (4.19) generates an order one
δgrz term

δgrz = −CDzf. (4.22)

In order to preserve the gauge (4.15), this term has to vanish and this leads to C = 0. The
transformation in eq. (4.19) is generated by the vector field

ξ = −f∂u −DzDzf∂r +
1

r
Dzf∂z +

1

r
Dzf∂z, (4.23)

and leaves the asymptotic form of the metric invariant by inducing a corresponding change
in the asymptotic data as

δN = −f∂uN, (4.24)

δm = −f∂um+
1

2

(
DzfDzN +DzfDzN

)
− qND2f − 2qfN + qD2f, (4.25)

δE = −f∂uE, (4.26)

δF = −f∂uF +DzEDzf +DzEDzf + 2q(1− E)
(
D2f + f

)
, (4.27)

δCzz = −f∂uCzz + 2D2
zf, (4.28)

δCzz = −f∂uCzz − qD2f − 2qf, (4.29)

δUz = −f∂uUz +NDzf −Dzf −DzD
2f. (4.30)

From the equations above we can now read off the Goldstone modes of the BMS trans-
formations in the cosmological setting. The quantity Czz transforms non-linearly and it
represents the usual Goldstone boson associated to the graviton mode; the quantities m and
Czz also transform non-linearly and represent the scalar Goldstone modes. Their non-linear
terms appear only for q 6= 0. Therefore, m and Czz can be considered as Goldstone bosons
only when a cosmological setting is considered. The same consideration applies to the vector
degree of freedom generated by F

Czz = tensor Goldstone mode
m andCzz = scalar Goldstone modes only for q 6= 0

F ⇒ vector Goldstone mode only for q 6= 0.

Of course, one has to check if these Goldstone modes are physical (usually dubbed in cosmol-
ogy adiabatic modes), that is if the corresponding function f which generates them satisfies
Einstein’s equations.

For instance, if we take the radiation-dominated case, q = 1, and a constant f , one can
easily show from eqs. (4.24)–(4.30) one generates from the vacuum the two scalars mode and
the vector mode

Czz = −m = −F = −2 f, (4.31)
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and the corresponding metric

ds2 = a2(u, r)

[
− du2 +

4

r
f du2 − 2 dudr +

4

r
f dudr + 2 r2γzz

(
1− f

r

)
dzdz

]
. (4.32)

One can easily check from appendix A that this metric satisfies all Einstein’s equations.

5 Cosmological gravitational memory

The passage of a finite pulse of radiation or other forms of energy through a region of
spacetime produces a gravitational field which moves nearby detectors. This effect is known as
gravitational memory and its direct measurement may be possible in the coming decades [43].
The final positions of a pair of nearby detectors are generically displaced relative to the initial
ones according to a simple and universal formula [19–22]. Recently, it has been showed that
in this expression the relative positions and clock times of the detectors before and after the
radiation transit differ by a BMS supertranslation [15, 17]; indeed, the displacement memory
formula is shown to be equivalent to Weinberg’s formula for soft graviton production.

In this section we study the phenomenon of gravitational memory in an expanding uni-
verse and show that, as in the flat Minkowski background, it can still be connected to a BMS
transformation. Gravitational memory, which provides an alternative way of proving soft the-
orems in flat spacetime, might also be useful in finding consistent relations for cosmological
correlators [42], and this is the main motivation for studying this phenomenon here.

Free falling objects follow spacetime geodesics and the spatial separation between two
nearby geodesics will change with time in general as a result of the spacetime curvature.
Let us consider then two objects sitting in two nearby points in a small region perturbed
by a gravitational wave burst. The curvature tensor for the gravitational wave is oscillating
and it is expected that the separation of the two nearby points oscillates as well. Indeed,
the separation vector Xi between two points will be wiggling as the wave train is passing
by. As we are interested in the gravitational memory which is a property of the asymptotic
gravitational field at null infinity, it is enough to consider the deviation caused to nearby
geodesics due to the Weyl tensor. The reason for this is that we we will use a perturbative
approach to the problem and in first order perturbation, the Weyl tensor provides a gauge
invariant way to do this. Therefore, for free falling objects at nearly points with spatial
separation Xi, we will have

d2Xi

dτ2
= −Ci0j0Xj

(
dX0

dτ

)2

, (5.1)

where Cµνρσ is the Weyl tensor [44–47]. Then, eq. (5.1) is explicitly written as

d2Xi

dτ2
=

1

2
∂2ττh

iTT
j Xj , (5.2)

where hTT
ij stands for the transverse traceless part of the metric perturbation. By integrating

eq. (5.2), we get that the induced shift in the displacement of two nearby points

∆Xi =
1

2
Xj∆hi

TT
j , (5.3)

where we have denoted by ∆Xi and ∆hTT
ij the shift in Xi and hTT

ij due to the gravitation
wave train.
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P

O
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α
k

Figure 4. Geometry of light cone.

5.1 The gravitational memory: standard approach

We present first the standard way of computing the change ∆hTT
ij . Let us assume that the

four-momentum of a mass m moving along a trajectory sµ(λ) in the rest frame of a distant
observer at O is pα = muα and kα is the past-directed null four-vector from observer to
the source as in figure 4. Then the motion of the source is described by the action

S = −m
∫

dλ
√
−gµν(s(λ))uµ(λ)uν(λ) (5.4)

and the resulting energy-momentum tensor will be given by

Tµν =
m√
−gµν(x)

∫
dλ
uµ(λ)uν(λ)δ(4) (x− s(λ))√
−gµν(s(λ))uµ(λ)uν(λ)

. (5.5)

Since δT iTT
j = 0 for perfect fluids, the only source for graviton perturbation will be the

moving particle and so we will have

hTT
ij
′′

+ 2HhTT
ij
′ −∇2hTT

ij = 16πGa2TTT
ij . (5.6)

The solution of eq. (5.6) can be expressed as

hTT
ij = −

√
4πG

[∫
d4x′a4(τ ′)GRijρσ(x, x′)T ρσ(x′)

]TT

. (5.7)

For example, the energy momentum tensor of n freely moving point particles with velocities
uµ which collide at τ = 0 and then move apart with velocities u′µ is

Tµν =
1√

−gµν(x)

∫
dλ δ(4) (x− s(λ))

 n∑
A=1

mA
uµA(λ)uνA(λ)√
−gµνuµAuνA

θ(−τ)

+mA
u′µA(λ)u′νA(λ)√
−gµνu′µAu′

ν
A

θ(τ)

 . (5.8)

In this case, eq. (5.7) implies

hTT
ij = −m

√
4πG

[∫
dλGR

ijρσ

(
x, s(λ)

) n∑
A=1

mAu
ρ
A

(
s(λ)

)
uσA
(
s(λ)

)
εA

]TT

. (5.9)
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where εA = ± for incoming and outgoing particles, respectively. The kernel GR
µνρσ above is

just the retarded Green function. It is derived in appendix C and for a matter dominated
FRW universe is explicitly written as

GR
µνρσ(x, x′) = G

R
µνρσ(x, x′) + ĜR

µνρσ(x, x′)

=
θ(∆τ)

2πa(τ)a(τ ′)
δ
(

(x− x′)2
)(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
− θ(∆τ)

4πa(τ)a(τ ′)

1

ττ ′
θ(|∆τ | −∆x)

(
P (1)
µνρσ +

3

5
P (3)
µνρσ

)
+

3θ(∆τ)

8πa(τ)a(τ ′)

1

τ2τ ′2

[
3

2
(x− x′)2 − 3

4
ττ ′
]
θ(|∆τ | −∆x)P (2)

µνρσ

− θ(|∆τ | −∆x)

20πa(τ)a(τ ′)

θ(∆τ)

τ3τ ′3

[
15

4
(x−x′)4−5(x−x′)2ττ ′+12τ2τ ′2

]
P (3)
µνρσ, (5.10)

where G
R

is the part of the retarded Green function supported on the light cone (proportional
to the δ-function) and ĜR is the rest. We observe that the retarded Green function is not zero
inside the light cone. Indeed, the first line in eq. (5.10) is the usual form of the retarded Green
function in Minkowski spacetime (up to the scale factors). It represents signals traveling
strictly on the light cone at a speed of light and determines the field at some point xµ

specified by the source at some retarded time ∆τ = ∆~x. However, we see that there are
additional terms in the Green function which are all proportional to θ(|∆τ | − ∆~x). This
means that there are also signals traveling in the interior of the light cone. All these signals
represent what is known as “tail”. This is a violation of Huygens principle similarly to what
happens to wave propagation in odd spacetime dimensions. In even spacetime dimensions,
a light pulse passing through a point lasts for a short time and then fades out immediately.
The light wavefront has both a sharp front and a sharp rear. In odd spacetime dimensions,
the light pulse reaches the point at some time, but it does not die out immediately, on the
contrary it does have a tail. Waves in odd spacetime dimensions have a sharp front, but
diffused rear. This difference between the two cases is mathematically explained by recalling
that, on the complex plane, the wave moves on ∆~x2 + (it − z)2 = 0. This has singularities
at z = it ± ∆~x. In even spacetime dimensions, this singularity is a pole, whereas in odd
spacetime dimensions it is a branch cut.

This behavior is present also in a FRW background. The existence of a tail for waves
in curved spacetimes is known and it has been noted in ref. [51]. In particular, even the
dynamics of a single charge depends on its past history and, in addition to the force present
in Minkowski spacetime, there is another force which is exerted on the charge upon itself.
This force is due to the waves which are emitted away from the charge and then scatter back
by the geometry and interact with the charge at some later time. This is the reason why in
general waves that travel in curved backgrounds are not on the light-cone, but have a tail
that fills the interior of the light cone as well.

Since the retarded propagator can be split into two parts, one representing propagation
on the light cone and one propagation in its interior, the tensor mode will also be characterized
by two pieces, the standard pulse and the tail contribution. For example in the case of n-
colliding free moving point particles we considered above, each particle will follow a geodesic
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with four-velocity uµ given in conformal coordinates by

uµ =

(
dτ

dλ
= γ,

dxi
dλ

=
vi
a2

)
, γ(λ) =

√
a2 − v2i
a2

(5.11)

and integral curve sa(λ) =
(
τ(λ), xi(λ)

)
,

τ(λ) =

∫ λ

γ(λ′)dλ′, xi(λ) =
viτ(λ)

qa
+ xi0. (5.12)

Then, we may split the tensor mode as

hTT
ij = h

TT
ij + ĥTT

ij , (5.13)

where h
TT
ij is the part originating from the propagation on the light-cone

h
TT
ij = −

√
4πG

[∫
d4x′a4(τ ′)G

R
ijρσ(x, x′)T ρσ(x′)

]TT

, (5.14)

and ĥTT
ij is the part originating from the tail

ĥTT
ij = −

√
4πG

[∫
d4x′a4(τ ′) ĜR

ijρσ(x, x′)T ρσ(x′)

]TT

. (5.15)

Using the energy-momentum given in eq. (5.8) and eqs. (5.11) and (5.12), we find that

h
TT
ij = −

(
G

4π

)1/2 1

a(τ)

n∑
A=1

(
pAi p

A
j |λ0(

xa − sa(λ0)
)
pAα
εA

)TT

, (5.16)

where pAi = mAu
A
i is the momentum of the particles and λ0 is the solution of the equation(

x− s(λ0)
)2

= 0. (5.17)

On the other hand, for ĥTT
ij we find that

ĥTT
ij =

(
G

4π

)1/2 1

a(τ)τ

(
n∑

A=1

mAv
A
i v

A
j

)TT(∫ τ0

τm

dτ ′
γ(τ ′)

τ ′a5(τ ′)
+ · · ·

)
(5.18)

where τm is the time when matter domination of the universe started, τ0 is the solution of
the equation

τ − τ0 − |xi − si(τ0)| = 0, (5.19)

and the dots stands for the rest of the contributions. Clearly, for radial motion, τ0 should solve

τ − r − τ0 + |si(τ0)| = 0, (5.20)
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and therefore τ0 = τ0(u) is a function of the retarded coordinate u = τ − r. Then eq. (5.18)
is written as

ĥTT
ij =

(
G

4π

)1/2 1

a(τ)τ

(
n∑

A=1

mAv
A
i v

A
j

)TT(
I(u) + · · ·

)
, (5.21)

where

I(u) =

∫ τ0(u)

τm

dτ ′
γ(τ ′)

τ ′a5(τ ′)
. (5.22)

We observe that at null infinity the part of the tensor perturbations due to the tail of
the retarded Green function gets an extra O(1/r) suppression compared to the light-cone
propagation and hence to leading order we will have

hTT
ij = −

(
G

4π

)1/2 n∑
A=1

(
pAi p

A
j(

xa − ra(λ0)
)
pAα
εA

)TT

, (5.23)

where xa − sa(λ0) = a(τ)
(
xa − sa(λ0)

)
is the physical distance from the source. Therefore,

the gravitational memory in a cosmological background is the same as in flat spacetime at
null infinity (to leading order) up to the redshift factors. We will confirm this in the next
subsection by a direct calculation of the memory using the BMS symmetry.

5.2 The gravitational memory from BMS

Let us now discuss the gravitational memory phenomenon in terms of Bondi coordinates for
observers at null infinity. We start from the length of a vector Xµ connecting two geodesics
changes. We know that the geodesic deviation is written as

D2Xµ

dλ2
= −RµνρσXρuνuσ, (5.24)

where uµ is the tangent to the geodesic and as usual

D

dλ
= uµ∇µ. (5.25)

Then for the length X2 = XµXµ we will have

D2X2

dλ2
= 2gµνX

µD
2Xν

dλ2
+ 2gµν

DXµ

dλ

DXν

dλ
= 2X

d2X

dλ2
+ 2

(
dX

dλ

)2

, (5.26)

from which we find that

X
d2X

dλ2
= −RµρνσXµXνuρuσ + Ξ, (5.27)

where

Ξ = gµν
DXµ

dλ

DXν

dλ
−
(

dX

dλ

)2

= gµν
DXµ

dλ

DXν

dλ
− 1

X2
XµXν

DXµ

dλ

DXν

dλ
. (5.28)
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Let us consider now BMS detectors traveling at fixed radius r0 and fixed angle (z = z0, z = z0)
along the trajectory

Xµ
BMS(u) = (u, r0, z0, z0) . (5.29)

It is easy then to check that the vector

V µ
BMS =

dXµ
BMS

dλ
=

(
du

dλ
, 0, 0, 0

)
(5.30)

satisfies the following relation

V µ
BMS∇µV

ν
BMS = a−10

(
q

r0
, 0, 0, 0

)
, V µ

BMS gµνV
ν
BMS = −1 (5.31)

for

du

dλ
=

1

a0
, a0 = (r0/L)q. (5.32)

Thus, to leading order in 1/r0, X
µ
BMS is an inertial trajectory. Let us now find the change

in the length of a shift vector ξµ for two nearby BMS detectors sitting at the same r = r0
and at z1 = 0, z2 = δz. We may assume that the detectors are along a meridian so that
Xµ = (0, 0, δz, δz) with δz = δz. Notice that if they are not aligned along a meridian, we
may rotate δz and δz according to δz → δze−iφ where e2iφ = δz/δz, and correspondingly
Czz is rotated as

Czz → Czze
−2iφ = Czz

δz

δz
. (5.33)

It is easy to see that in this case we have Ξ = 0 and eq. (5.27) reduces to

d2X

dλ2
= −ωX, (5.34)

where

ω = RµρνσX̂
µX̂νuρuσ (5.35)

and X̂µ = Xµ/X is the unit displacement vector. By using

uµ = V µ
BMS, X̂z = 1/

√
gzz (5.36)

and the relevant non-zero component of the Riemann tensor in leading order in r0

Ruzuz = −1

2
a20r0∂

2
uCzz, (5.37)

we find

ω = −(1 + zz)2

8r0a20

(
∂2uCzz + c.c.

)
. (5.38)

Eq. (5.34) is then explicitly written as

d2X

du2
=

(1 + zz)2

8r0

(
∂2uCzz + c.c

)
X. (5.39)
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It is solved by

X(λ) = X(0)

[
1 +

(1 + zz)2

8r0
(Czz + Czz)

]
, (5.40)

where X(0) is the initial length of the displacement vector. Therefore, the gravitational
wave has pulled apart the BMS detectors by an amount ∆X = X(λ2)−X(λ1) which turns
out to be

∆X = (1 + zz)2
X(0)

8r0

(
∆Czz

δz

δz
+ ∆Czz

δz

δz

)
. (5.41)

after using eq. (5.33) for arbitrary δz and δz. This equation corresponds to eq. (5.3) where
Czz represents the traceless and transverse part of the metric.

Eq. (5.41) for the memory can alternatively be calculated by performing a BMS trans-
formation [16, 17] which produces the following shift

(z, z)→ (z + δz, z + δz) =

(
z +

Dzf

r
, z +

Dzf

r

)
. (5.42)

If Czz = 0, this shift produces a ∆Czz = 2D2
zf as discussed in Appendic C. Correspondingly,

the length X2 = gzzδzδz gets shifted as

∆X = ξµ∂µX =
1

2X
ξµ∂µX

2. (5.43)

A straightforward calculation of eq. (5.43) reproduces eq. (5.41), as expected. In order to
explicitly find the memory ∆X, one needs to solve for ∆Czz. For instance, if one takes
N = Czz = 0, ∆Czz is calculated along the lines of ref. [16]. By using eqs. (C.11) and (A.5)
in appendix A, we explicitly find

∆Czz(z, z) =
4

π

∫
d2ζγζζ

z − ζ
z − ζ

,
(1 + ζz)2

(1 + ζz)(1 + zz)3
A(ζ, ζ̄), (5.44)

where

A(ζ, ζ) = 2(1 + q)(1 + 2q)∆m+ (1 + 2q)8πG

∫ uf

ui

du δT (2)
uu . (5.45)

This equation reduces to the flat case when q = 0.

6 Conclusions

Symmetries provide a powerful guiding principle in cosmology. The de Sitter isometry group
has been employed to characterize the properties of the cosmological perturbations gener-
ated by an inflationary stage. For instance, the Goldstone boson of a spontaneously broken
dilation symmetry is associated to the scalar fluctuation in single-field inflation. Symmetry
arguments allow also to write consistency relations among the large-scale structure correlator
functions. They appear under the form of soft-pion theorems relating an n-point function to
an (n+ 1)-point function where the additional leg represents the emission (or absorption) of
the Goldstone boson associated with a non-linearly realized symmetry.
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In observational cosmology light rays emitted by distant objects are the carriers of the
information about the statistical distributions of the large-scale structure. This means that
photons from cosmological sources reach observers at null infinity. One might wonder if the
BMS symmetry play any role in cosmology by reproducing these signals through a BMS
transformation, leading to a corresponding soft theorem or Ward identity.

Motivated by such arguments, in this paper we have discussed the BMS transforma-
tions in a cosmological setting. In particular, we have studied the structure of asymptotic
past and future infinity in cosmological FRW spacetimes. Our investigation is limited to
decelerating FRW backgrounds where future null infinity exists. We have identified the BMS
transformations acting at future null infinity and leaving the asymptotic metric invariant to
leading order. We have found that the corresponding cosmological Gosldstone modes and
identified them in scalar, vector and tensor degrees of freedom as those degrees of freedom
which may exist at null infinity and perturb the asymptotic data. Hence cosmological BMS
transformations generate physically inequivalent vacua as the null infinity is populated with
physical degrees of freedom.

As gravitational memory and BMS symmetry are intimately connected [16, 17], we
have also discussed the phenomenon of gravitational memory when cosmological expansion
is taken into account. We have found that there are extra contributions to the gravitational
memory due to the tail of the retarded Green functions of the FRW background. Indeed the
retarded Green functions are supported not only on the light-cone, but also in its interior.
We will discuss the implications of our findings in a forthcoming publication.
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A Einstein equations

Einstein equations can be written near null infinity perturbatively in the 1/r expansion. We
assume that the form of the energy-momentum tensor is

Tµν = Tµν + δTµν , (A.1)

where Tµν is the matter energy-momentum tensor supporting the FRW background and δTµν
is the perturbation (including gravity self-sourcing). It is straightforward to find that the
non-zero components of Tµν for the FRW metric in eq. (4.1) are

T uu = T ur =
1

8πG

3q2

(r + u)2
,

T rr =
1

8πG

2q(1 + q)

(r + u)2
,

T zz =
1

8πG

2− q
(r + u)2

r2γzz. (A.2)
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At null infinity, these components turns out to be

T uu = T ur =
1

8πG

3q2

r2
,

T rr =
1

8πG

2q(1 + q)

r2
,

T zz =
1

8πG
(2− q)γzz

(
1− 2u

r
+

3u2

r2

)
. (A.3)

We will adopt an expansion of δTµν of the form

δTµν = δT (0)
µν +

δT
(1)
µν

r
+
δT

(2)
µν

r2
+ · · · . (A.4)

Then, for the metric eq. (4.17), we find that Einstein equations are written as

− (1 + q)∂uN − ∂2uCzz + 2∂uE = 8πGδT (1)
uu ,

− 2(1 + q)∂um− ∂u
(
DzUz +DzUz

)
− (1 + 4q)N −D2N + (1 + 2q)∂uCzz

+ 2∂uF + 2D2E − 2(1 + 2q)E = 8πGδT (2)
uu ,

− (1 + q)DzE = 8πGδT (1)
rz ,

(1 + 4q)N + (1 + 2q)∂uCzz +D2E − 2E − q(2 + q)E = 8πGδT (2)
ur ,

− q∂uN + ∂uUz +
1

2
∂uD

zCz −
1

2
∂uDzCzz = 8πGδT (1)

uz ,

1

2
DzCzz − (1 + 2q)Uz −

1

2
DzCzz −

1

2
(3 + 2q)DzF + quE = 8πGδT (2)

rz ,

qNzz = 8πGδT (0)
zz ,

q(q − 2)Czz + 2qDzUz − qu∂uCzz +D2
zF = 8πGδT (1)

zz ,(
−q2N − q∂uCzz

)
/γzz = 8πGδT

(0)
zz ,

γzz

(
q(2−q)Czz + 2q(2− q)m

)
−q(DzUz+DzUz)−DzDzF−γzz(F+2quE) = 8πGδT

(1)
zz .

(A.5)

Let us note that under the BMS transformation (4.19), the energy-momentum transform as
Tµν → Tµν + δT̃µν , where

δT̃µν = LξTµν . (A.6)

Therefore, by using eqs. (A.1)–(A.4) and expanding δT̃µν in powers of 1/r as in eq. (A.4), we
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get for example

δT̃ (1)
uu = −f∂uδT (1)

uu +DzδT
(0)
uu D

zf +DzδT
(0)
uu D

zf,

δT̃ (2)
uu = δT (1)

uu D
zDzf +DzδT

(1)
uu D

zf +DzδT
(1)
uu D

zf,

δT̃ (2)
ur = δT (1)

ur D
zDzf +DzδT

(1)
ur D

zf +DzδT
(1)
uu D

zf − δT (0)
uz D

zf − δT (0)
uz D

zf,

δT̃ (1)
uz = −f∂uδT (1)

uz − δT (1)
uu Dzf + δT (0)

uz DzD
zff − δT (0)

uz DzD
zf

−δT (1)
ur D

zDzf +DzδT
(0)
uz D

zf +DzδT
(0)
uz D

zf,

δT̃ (2)
rz = 2δT (1)

rz DzD
zf − δT (0)

zz D
zf − δT (0)

zz D
zf + δT

(1)
rz D

zDzf

+DzδT
(1)
rz D

zf +DzδT
(1)
rz D

zf − 2q
(1 + q)

8πG

(
DzD2

zf +Dzf

)
,

δT̃ (0)
zz = −δT (0)

uz Dzf − δT (0)
rz DzD

zDzf − f∂uδT (0)
zz ,

δT̃ (1)
zz = −f∂uδT (1)

zz + 2δT (0)
zz DzD

zf + 2δT
(0)
zz D

zDzf − 2δT (1)
uz Dzf

+DzδT
(0)
zz D

zf +DzδT
(0)
zz D

zf − 2DzδT
(1)
rz DzD

zDzf + 2
(2− q)q

8πG
D2
zf. (A.7)

B Retarded Green functions

We may calculate the graviton propagator from the gravitational action after gauge fixing.
For this, we consider the action

S =

∫
d4x
√
−g
(

1

16πG
R+ Lmatter

)
, (B.1)

where Lmatter is the matter energy-momentum tensor of a perfect fluid. We may expand
around the FRW background as

gµν = a2(τ)
(
ηµν +

√
16πGhµν

)
(B.2)

and by adding the gauge fixing term

LGF = −a
2(τ)

2

(
∂µh

µ
ν −

1

2
∂µh

ν
ν − 2

a′

a
h0µ

)2

(B.3)

we find that the quadratic part for the metric fluctuations is written as

L2 =
1

2
hµνDµν

ρσhρσ. (B.4)

We define then the graviton propagator as [48–50]

i∆q
µνρσ(x, x′) =

〈
0
∣∣∣T(hµν(x)hρσ(x′)

)∣∣∣ 0〉. (B.5)
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The propagator is written in terms of the tensors

P (1)
µνρσ = 2

(
Pµ(ρPσ)ν − PµνPρσ

)
, (B.6)

P (2)
µνρσ = −4n(µPν)(ρnσ), (B.7)

P (3)
µνρσ = (Pµν + nµnν) (Pρσ + nρnσ) , (B.8)

where

Pµν = ηµν + nµnν , nµnνηµν = −1. (B.9)

Explicitly we have

i∆q
µνρσ(x, x′) = i∆q

1(x, x
′)

(
P (1)
µνρσ +

1 + q

1 + 2q
P (3)
µνρσ

)
+ i∆q

2(x, x
′)P (2)

µνρσ + i∆q
3(x, x

′)qP (3)
µνρσ,

(B.10)

with i∆q
i given by

i∆q
i (x, x

′) =

∫
d3k

(2π)3
ei
~k·(~x−~x′)

[
θ(τ − τ ′)Ψ(i)

k (τ)Ψ
(i)
k (τ ′) + θ(τ ′ − τ)Ψ

(i)
k (τ)Ψ

(i)
k (τ)

]
=

1

2π2∆x

∫ ∞
0

dk k sin(k∆x)
[
θ(∆τ)Ψ

(i)
k (τ)Ψ

(i)
k (τ ′) + θ(−∆τ)Ψ

(i)
k (τ)Ψ

(i)
k (τ)

]
,

(B.11)

with ∆τ = τ − τ ′, ∆x = |~x− ~x′| and Ψ
(i)
k (τ) satisfy the following equations.(

∂2τ +
2q

τ
∂τ + k2

)
Ψ

(1)
k (τ) = 0, (B.12)(

∂2τ +
2q

τ
∂τ −

2q

τ2
+ k2

)
Ψ

(2)
k (τ) = 0, (B.13)(

∂2τ +
2q

τ
∂τ −

1 + 2q

τ2
+ k2

)
Ψ

(3)
k (τ) = 0. (B.14)

The retarded Green function GR
µνρσ(x, x′) are given by

GR
µνρσ(x, x′) = 2θ(∆τ)Im

[
i∆q

µνρσ(x, x′)

]
(B.15)

and therefore we will have

GR
µνρσ(x, x′) = Gq1(x, x

′)

(
P (1)
µνρσ +

1 + q

1 + 2q
P (3)
µνρσ

)
+Gq2(x, x

′)P (2)
µνρσ +Gq3(x, x

′)
q

1 + 2q
P (3)
µνρσ, (B.16)

where

Gqi (x, x
′) = 2θ(∆τ)Im

[
i∆q

i (x, x
′)

]
. (B.17)
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The explicit form of the retarded Green function depends on the background. For example,
for matter dominance where q = 2 we will have

Im

[
i∆

(2)
1 (x, x′)

]
=

1

4πa(τ)a(τ ′)
δ
(

(x− x′)2
)
− 1

8πa(τ)a(τ ′)

1

ττ ′
θ(|∆τ | −∆x), (B.18)

Im

[
i∆

(2)
2 (x, x′)

]
=

1

4πa(τ)a(τ ′)
δ
(

(x− x′)2
)

+
3

16πa(τ)a(τ ′)

1

τ2τ ′2

{
3

2
(x− x′)2 − 3

4
ττ ′
}
θ(|∆τ | −∆x), (B.19)

Im

[
i∆

(2)
3 (x, x′)

]
=

1

4πa(τ)a(τ ′)
δ
(

(x− x′)2
)

− θ(|∆τ | −∆x)

16πa(τ)a(τ ′)

1

τ3τ ′3

{
15

4
(x− x′)4 − 5(x− x′)2ττ ′ + 12τ2τ ′2

}
.

(B.20)

The retarded Green function is written as [50]

GR
µνρσ(x, x′) = 2θ(∆τ)

(
P (1)
µνρσ +

3

5
P (3)
µνρσ

){
1

4πa(τ)a(τ ′)
δ
(

(x− x′)2
)

− 1

8πa(τ)a(τ ′)

1

ττ ′
θ(|∆τ | −∆x)

}
+ 2θ(∆τ)P (2)

µνρσ

×
{

3

16πa(τ)a(τ ′)

1

τ2τ ′2

[
3

2
(x− x′)2 − 3

4
ττ ′
]
θ(|∆τ | −∆x)

+
1

4πa(τ)a(τ ′)
δ
(

(x− x′)2
)}

+
4

5
θ(∆τ)P (3)

µνρσ

×
{
− 1

16πa(τ)a(τ ′)

1

τ3τ ′3

[
15

4
(x− x′)4 − 5(x− x′)2ττ ′

+ 12τ2τ ′2
]
θ(|∆τ | −∆x) +

1

4πa(τ)a(τ ′)
δ
(

(x− x′)2
)}

. (B.21)

Using the identity

P (1)
µνρσ + P (2)

µνρσ + P (3)
µνρσ = ηµρηνσ + ηµσηνρ − ηµνηρσ, (B.22)

the retarded Green function in eq. (B.21) is written as in eq. (5.10).

C The Newman-Penrose formalism

We will present here the NP construction which is particularly appropriate for the discussion
of gravitational radiation. In the NP formalism we may define null tetrads `µ, nµ,mµ,mµ at
leading order as

`µ =

(
r + u

L

)−2q (
0, 1, 0, 0

)
, (C.1)

nµ =

(
1,−1

2
+
N

2
+
m

r
,
U z

r
,
U z

r

)
,

mµ =

(
r + u

L

)−q 1 + zz√
2 r

(
0, 0, 1− Czz

r
,−C

z
z

r

)
.
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It is straightforward to verify that these null tetrads satisfy the relations

`µ`
µ = nµn

µ = mµm
µ = 0, `µm

µ = `µm
µ = nµm

µ = nµm
µ = 0,

`µn
µ = −1, mµm

µ = 1, gµν = −`µnν − `νnµ +mµmµ +mνmµ. (C.2)

By employing the null tetrads, we can define the Weyl-NP scalars

Ψ0 = Cµνρσ`
µmν`ρmσ,

Ψ1 = Cµνρσ`
µnν`ρmσ,

Ψ2 = Cµνρσ`
µmνmρnσ,

Ψ3 = Cµνρσ`
µnνmρnσ,

Ψ4 = Cµνρσn
µmνnρmσ. (C.3)

In particular, we find that to leading order in r

Ψ4 = −1

2

∂uNz
z

r
+O(r−2), (C.4)

Ψ2 =
1

a2
Ψ

(2)
2

r2
+

1

a2
Ψ

(3)
2

r3
+O(r−4), (C.5)

where

Ψ
(2)
2 = −1

6
(N + ∂uCzz) ,

Ψ
(3)
2 = −m+

1

4
CzzNzz −

2

3
DzUz +

1

3
DzUz −

1

12
DzDzCzz −

1

12
DzDzCzz

+
1

6
DzDzCzz +

qu

3
(N + ∂uCzz) . (C.6)

We may impose appropriate conditions at I +
± which read

Nzz|I +
±

= 0. (C.7)

In particular, we will have for the imaginary part of Ψ2

ImΨ2|I +
+ |I +

±
= ImΨ

(3)
2 |I +

±
=
(
DzUz −DzUz

)
|I +
±

= 0, (C.8)

which is written as (
D2
zCzz −D2

zCzz
)
|I +
±

= 0. (C.9)

Therefore, in the vacuum, where Czz is u-independent we will have that [13, 15]

D2
zCzz −D2

zCzz = 0, (C.10)

which is solved for

Czz = −2D2
zC(z, z). (C.11)
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