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ABSTRACT

We discuss some aspects to the BRST cohomology groups in topo-
logical siring theory. We discuss the refined structure of the space
of the topological Landau-Ginzburg models and find that the spuce
is locally flat with some local singularitics. The fustor rules in Eg
cohomology rings are explicitly expressed. Afier the medels cou-
ple to topolagical gravity, @ differenticl cquation to the partition
Junction, which is equivalent to the recursion relations associated
with the Virasoro comstraints, is set up. Making use of the differ-
ential equation, the relations of the corrclation functions for the
g = 1 models and ¢ > 1 models for (p,q) minimal models are
easily provided.
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Low dimensional string theory can be explained in three different ap-
proaches in the past few years. The concepts of continuous two dimensional in-
duced gravity was elaborated by Polyakov(!l and has been developed in refs.[2].
The matrix models?® may present some nonperturbative approaches to the dis-
crete gravity[‘ﬂ, e.g. the nonperturbative partition function of two dimensional
gravity is then given by the squire of the r-function , satisfying the string
equation, of the KdV hierarchy 5.6], The third approach is based on the co-
homological field theory!. In two dimension, the topological matter coupled
to topological gravity is taken into account®?1%11) Tt has been shown that
the topological theories are equivalent to the critical matrix models in the
sense that both of them obey the string equation and the KdV hierarchy. For
K = 1 one matrix models, the corresponding topological theory is pure topo-
logical gravity and the equivalence of them has explicitly verified 189 1t is also
provided some evidences of the equivalence between multi-matrix models and
topological matter coupled to topological gravity O ¢ g, the ADE series of
topological minimal models or topological sigma models coupled to topological
gravity.

There is a problem remaining to be solved in the above equivalence. As
pointed out by the authors of ref.[5], in the matrix models, the string equation
may be translated into the version of a loop equation which has a very clear
geometrical interpretation!?. However, the macroscopic loops 3] in the matrix
models have not a well-defined correspondent in. topological string, theugh the
microscopic loops correspond to the physical operators in topological string.

—According to the formal definition of the macroscopic loops!'Y, the loops should
belong to the BRST cohomology groups restricted to the boundary of the
relevant Riemann surface. The groups relates to the observables in topological
gravity as same as the Floer groups to the Donaldson’s invariants®. In this
proposal, we will scarch for the properties of the the BRST cohomology groups
in topological siring.

Before topological matter couples to gravity, it is useful to understand them
in the absence of gravity. We focus on the topological Landau-Ginzburg(L-
G) models herel!"'%, which may be obtained by twisting the relevant N=2
superconformal field theory('®l. The chiral rings in the N =2 superconformal
field theory!” is identical to the BRST cohomology rings. For a given L-D
potential, the Witten’s index may be calculated and is equal to the ‘Casson
invariants’ on the boundary, which is just the dimensions of the cohomology
rings.

A two dimensional field theory may be regarded as a perturbation of the
corresponding conformal field theory. Similarly, a two dimensional topological
field theory may arise from a topological perturbation of a topological con-
formal field theory. All perturbed coupling constants form a phase space of
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topological fleld theories. As shown in ref.[11], the space of topological field
theories are locally flat. By an analysis of the catastrophe theory, we will sce
that there are local singularities in the space of topological L-G models. Fur-
thermore, there is a perturbed cohomology ring which has the same dimeusion
as that in the unperturbed model and is overdetermined by unperturbed ring!]
. In this paper, we will present the structure of the perturbed cohomology ring
in Eg raodel explicitly.

After topological matter couples to the topological gravity, the structure of
the BRST cohomology groups is vastly more complicated than the models in
the absence of gravity. The factorization laws of the correlation functicns with-
out gravity are replaced by the recursion relations when the models coupled
to gravity. The recursicn relations associated with the Virasore constraints
in topological string theory have been deduced in ref=.[8,9,10]. In the pure
gravity case, the relations agree with those in the K = 1 critical one matrix
models. And when the gravity is put into the theory, the reiations agree with
those in the (p,1) minimal models described by multi-matrix models. In order
to obtain the results corresponding to the Ktk multicritical onc matrix models
and to the (z, ¢) minimal models in multi-matrix models, the topological string
theory should be perturbed by topological sources. By setting up a diiferential
equation with respect to the partition function in perturbed theory,' which is
cquivalent to the recussion relations in unperturbed models, it can be shown
that the correlation functions in the Kth multicritica] point for pure gravity
and linking with the (p, ¢) minirnal models may be represented by those in the
K =1 models and with the (p, 1) models, respectively. The recursion relaiions
of the correlation functions in topological theory coincide with those in matrix
models.

Let ¥ be a compact Riemann surface without boundary and Sy dencte the
action of a topological string theory,i.e. topological matter coupled to topolog-
ical gravity. This is a cchomological field theory and then , by construction,
there is a local BRST symumetry with associated charge @ . Although the
local BRST cohomology is trivial, this trivality needs not to be worry since
there is an obstruction to make a left-right decomposition of the fields globally
on a general Riemann surface with genus g such that it is not considered in
common. Instead of the BRST cohomology, the non-trivial equivariant coho-
mology may be taken into account!’®. The BRST operator may be divided
into two parts in general: the first part denotes Q, which generates a global
supersymmetry in both of the matter and the gravity sectors and the second
part generates the ordinary Faddeev-Popov ghost. The nilpotent operator Q.
is the coboundary operator of the equivariant cohomology. Let g, ; be the op-
erators in this topoldgical quantum field theory, then a perturbed topological
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string theory may be formulated by the following action
S= SO - Zta,iLaa,i (1)

where the t,; are known as coupling constants. The partition function, thus, in
genus ¢, reads
F,(t) = [ DXeap{-S) 2)
where X denotes all fields in Sp. The total partition function is given by the
sum of F over topology of the Riemann swrfaces
) (<]
Fty= S Fy(t) (3)
§=0
The correlation functions in the periurbed model are defined as

9 )

LL Oy iy Cdp iy > = T-;;**F(” (4)
Olain Pay i,
The unperturbed correlation functions are naturally
< Ody iy - Odniy > =<K Oy iy T >> Nt,=03 (5)

Now, if the Riemann surface has a non-empty boundary B which is home-
omorphic to S1U...U S, then the Hamiltonian formalism may be studied near
the boundary. The neighborehood around the boundary B looks like a product
manifold B x R!. Hence, as done by Witten cn four manifolds®!, we can find
that another operator Q, linking with charge @, and the Hamiltonian H by

{@.Q)=28 (6)

The stress-tensor T, of the topological string may be cbtained by the func-
tional derivative of the action Sy with respect to the metric of the Riemann
surface and the stress-tensor has just the version of @, coboundary

Taﬁ = {Qsa Ga,&} (7)

where G is a certain functional to the fields in the theory and with the ghost
number -i. Near the boundary, the Hamiltonian is defined as

H= /B dxToo | (8)
_ Thus, we can construct an operator @, obeying (6) simply by
Q.=2 f dzGo (9)
B
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By the construction of the action Sy, there exists a time reversal symmetry
T in the theory. And, under T,

Qs i QS_
QS - _Qs

Therefore, the fact Q? = 0 implics Z)‘i =0 also. Thus, the cohomology groups
have a description of an analogue of the Hodge theory. The clenents in the
cohomology groups are defined by the relation

Qlp >=0, [¥>=[p>+QA> (11)

and the ‘Hodge conditions™®

(10)

Q.l¢ >=Hlp >=0 (12)

It is well known that the cohomelogy groups describe the ground states of
the Hilbert space H in topological string theory. For any state |® > in #, it
can be decomposed, in terms of Hodge decomposition theorcm, as

[® >= |tho > +Qs|th1 > +G,|thr > (13)

where [ty > is the ‘harmonic form’ corresponding to H. If |¢ > is Q, closed,
then

% >= [tho > +Qslth > (14)

The connection of the BRST cohomology grouns and the observables in
topological string theory has the following interpretution. Let @ be a product
of local operators o,,;, |¥(X3z) > be a state in Hilbert space # on the boundary
B, where Xp represents the restriction of the whole collection of fields in
topological string to B. The path integral with boundary condition |¥(Xg) >
is just

2(0,0) = / (DX) ezp(—So)- O - ¥(Xp) - (15)

The condition that (15) is topologically invariant implies that |¥ > represents
a (; cohomology class. Thus, in (15) we obtain an observable with value in
the Q, cchomology groups of B.

The equation (15) may be rewritten as a more interesting version which
perhaps relates closely to the loop equations. Let B consists of incoming string
B, and outgoing string B,. Giving a state |¥(Xp,) > of the boundary values
of the ficlds on the B,. Then a state |U'(X’) > of the values of the fields on
the B; may be detcrmined as -

WX >= [ (DX)exp(=5,)-0-|¥(Xa)>  (16)

3We have assume the positivity of the scalar product in the cohomology group.
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It is cbvious that |¥ >— [¥’' > a morphism of the tensor product of the
@) cohomology groups of the B; to that of the B;. This morphism tells us
the following two facts. First, because (18) describes a topological change of
the string, it should link closely with the loop equations. For example, for
pure gravity, let H*(B;),t = 1,2, be the BRST cohomology groups of B; ~ S*
computed with the particular metrices, the length of B;, I;, the loops |w(l;) >=
Ym=o0 Fgl—;%lam > belong to H*(B;, ;) = @0 H™(B:,1;). In principle, the
loop eguations with respect to w(l) may arise from (16). Unfortunaiely, we
ure not able to obtain an exact connection between (16) and the loop cquation
ir the present proposal. Seccond, it may be shown that the morphisms from
H*(B,9M) to H*(B,g™)computed with the metrices g*), are isomcrphism.
This implies that the BRST groups of B are topolegically invariant up to the
isomorphisms.

In the above discussions, we know that there exists the Hodge aualogue
in the theory only ncar the boundary of the Riemann surface or the surface
with a version of product manifold B x R. But, if we consider a topological
conformal field theory on a Riemann surface, the Hodge analogue of the BRST
cohomology groups always exists. The stress tensor Toz in the topological
conformal field theory is traceless even the Selds in the theory take arbitrary
values.

In a topological conformal field theory, the BRST operator ¢, may be
divided inte left- and right-moving operators

Q. =QL+Cr (17)

where
Q=4 Q) (18)

with a holomorphic current Q(z) and Qg is defined by an analogue of (18)
with z — 7. Here, z = ¢t + iz and Z = ¢ — iz. Thus, the propcrties of
the BRST cohcmnology groups discussed above hold on the whole Riemann
surface. Moreover, Ty, Gop, @ and @ may be written as the sum of left- and
right-moving operators and then the BRST cohomology are identified with the

Dolbeault cohomology in a suitable complex manifold.

In the absence of gravity, paying the attention to left-mover, T(z),G(z),
Q(z) and an addition bosonic U(1) current J{z) (ghost number current) form
a twisted N = 2 superconformal algebral®®17-11l, There is a unique consistent
commutator algebra in the Laurent expansion modes of those fields. So, besides
the analogue properties mentioned from (11) to (14), the Hilbert space H is
graded by the U(1) charge ¢

Tol® >=q|® > (19)
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The cemmutators of the U(1) current modes show the presence of the back-
ground charge d. Thus, the conditions (11) and (12) defining the cohomology
groups imply that the cohomology class may be represented by the ‘harmonic
forms’ corresponding to Ly = {Qo,Go} = H. Those harmonic forms are
one-to-one corresponding to the so-called ‘chiral primary fields’ in the N = 2
- superconformal fleld theory. For those ficlds, their U(1) charges ¢ have rational
values in the interval

0<g<d (20)

Tlie set of chiral primary fields forms a ring called chiral ring. There arc certain
well known properties of the chiral rings

a) As we Liave mentioned, each primary chiral field ¢; is one-to-one corre-
sponding to a harmonic form {¢; >. Especially, 2 unique vacuum state |0 >
with ¢ = 0 corresponds to the identity operator. All harmonic states form the
physical Hilbert space H,y, on which the metric ¥ is defined by the inverse
of the matrix of two-point functions on the Riemann sphere

< @id; >o= 1 (21)
where the states [¢; > and < ¢;| are defined by

|§; >= 6(0)[0 >

. (22)
< &] =< oo|¢i(o0) '
and the state < oof carrying U(1) charge ¢ = d is dual to {0 >
&) The correlation functions
< dypon@i, >3 (23)
may be factorized by msertxon of the sum
pm/s = v !asl > 77‘.j < ¢JI (24)
B
¢) The set of the primary chiral fields ¢; forms a ring implies that
X O] ZC¥J¢k (25)
where cf; = pfley = oM < $i9;61 >0. The metric n;; = ¢y 1s special coeffi-
cient.
d) Moveover, the four point function may be factorized as
< didibrdi >0=Y clemn (26)
m




and the commnutative and associative laws in the ring are equivalent to the
condition

Z i CmK = E CiCmil (€1)]
m m

Now, let us consider the perturbation of the topological conformal field
theory. Similar to (1), the perturbed topological ficld theory has the action

S = So— Xt [ n (29)

where Sy is the action of a topological conforinal field theory and the ¢, are
coupling constants. The perturbed correlation functions relate to the unper-
- turbed functions by

<< Biyonni, >>u=< iy, s exp(D tn /Ezp'n) >y (29)

Tt is easy to see that the perturbed correlation functions still obey 2il properties
of that of unperturbed theory. Therefore, the perturbed three point functions
in genus zero

cijie(t) =<< 0idjdr >>0 (30)
can be used to define a commutative and associative ring. The fusion coefii-
cients (30) have the following properties:1

(3) The two point functions are independent of the coupling constants
Coij = Tij (31)
(1) The coefficients satisfy
Omei;k(t) = Oicijn(t) (32)
In ref.[11], the authors have pointed out that, for d < 1 topological ininimal

models, the perturbed ring may be overdetermined by (31} and (32) as well as

(iii) The ¢;;x(t) is a polynomial of finite order p in the t,’s, where p equals
to the minimum of 4,7 and k.

(i) at t, = 0 the ring respects the U(1) charge conservation of the twisted
N = 2 models.

By use of the information about correlation functions, the topological ADE
minimal models have been studied in ref.[11]. Here, we present some com-
ments on the results in ref.[11]. The data of the topological ADE models
was translated into that in the topological L-G models. We know right away
the Witten’s index in topological L-G models associates with the index of the
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BRST operator @,. When the Riemann surface has a non-empty boundary
the index defines a ‘Casson invariant’ on the boundary. The indices of ADE
series are just equal to the dimensions of the rings, 7.e. for Agyq, Dy, Eg, E;
and Es, Ind Qs are k + 1,n,6,7 and 8, respectively.

The information of the perturbed chiral ring of the topological ADE models
1s also translated into the perturbed version of the topological L-D models. For
example, the perturbed ring of Axy1 models may be derived from the perturbed
potential

. zk+2 \—k‘ ( 1

Wist) =5 - 2 a(t)z (33)
The functions g;(t) are given functions of the coupling constants ¢;. For in-
stance, in A3 model, go(t) = to — 11, ¢1() = t1 and g(t) = ¢, and in A4,
model, go(t) = to —tatz, g1(t) = t1 — 13, g2(t) = 5 and gs(t) = t5. The property
(i) implies that :—tln;j = 0, i.e. the phase spacc of the topological ficld theories
is locally flat. We can also see that there are some local singularities in the
space. Taking the Agy; models as exanples, the catastrophe manifold M}, of
the -4ty models, which includes inR x RF, is defined by

13

W'(z,1) = 2" — 3 i) =0 (34)

i=1

The catastrophe set is the subset Cy of My »
Cr={(si(t)sz) ERX RE{W' =W" = .. =WH =90} (35)

The phase graph of the theory is described by the bifurcation set By, the
projection of the Cy onto R¥. In bifurcation B, there are some local singu-
larities,e.g. for As, M;,Cs and B, are exhibited iu figure 1. The point (0,0) in
B3 is the second multicritical point and the set By — {{0,0)} gives the set of
the first critical points. For 44, the bifurcation B, set in ﬁg;ure 2 describes the
phase graph in the model. The third,second and first multicritical points are
expressed as the sharp points, curves and planes, respectively, in Bs.

By use of the properties (i) — (iv) and the commutative and associative
laws, we have explicitly calculated the fusion rules in the ring of the Eg model,
which list in the tables 1-6 (with ¢;jx = cﬁf"‘). Those fusion rules are consistent
with the L-G superpotential given in ref.[11]. For E; and Eg models, the
corresponding fusion coefiicients may be derived in a similar way.

Now, turn our attention to topological string theory. We discuss the topo-
logical conformal matter coupled to topological gravity. Because this type of
topological string theories has conformal symmetry, the BRST charge @, may
be divided into the sum of left- and right-moving charges. Therefore, we have
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still a Hodge analogue in the topological string theory. Although the structure
of the BRST cohairology groups become complicated since the factorization
of the correlation functions is no longer valid, we can obtain sowe data about
the cohomology,e.g. the index of the charge @, and the recursion relations of
the correlation function.

In order to obtain the index of Q,, we look first at pure gravity. Topological
gravity in two dimension can start from the moduli space M of flat gauge
fields A on a compact Riemann surface £. In terms of the topology,i.e. the
geaus, of the surface, the gauge group choices SO{3), ISO(2) or SL(2, R)
with respect to g = 0,1 or g > 1. Pure gravity action is conformally invariant
and Q, invariant. As known for us, the Hilbert space of the theory may be
decomposed into H = Ht ®H~ according to the eigenvalues of (—1) V¥ where F
is the fermion number cperator. The physical subspace My, corresponds to
the Q, cohomology groups. Assume now the Riemann surface has a boundary
B. The moduli space of the flat connecticns restricted to 5 may parametrized
by

Mip = {PTr eapli § AV flat AY/G (36)

Thereby, the dimension of the moduli space M|g is zero. Hence, the Q,
cohomology group restricted to B is one dimensicn. This implics that the Hat
conmection is isolated on B and there being no bosonic and fermionic zcro
modes. The quantization will give rise to a unique quantum ground state for
each isolated fat connection. The value of U(1) charge for this state must be
determined by computing the fermion nermal ordering constant. The index of
Q, is expressed as

Ind Q= Z —1)% &7

with g; are the U(1) charges of the ground states.

The generaiization of (37) to the string theory with topological matter is
straightforward '

Ind Q, = dimR -3 (~1)* (38)

where dimR is the dimension of the corresponding chiral ring R.

The recursion relations, associated with the Virasoro constraints, of the
correlation functions in ADE series of topological strings have been derived
in ref.[10}, based on the way to solved topological gravity in ref.[]. For pure



gravity, the recursion relations read!®

< O'n+1 H Jdu >g

a=1
s s
= Z(Qda + 1) < Ody+4n H Od, >_q
a;:l b#a (39)
+ Z{< Ok-10n—k H Od, >g-1
i:l a=1
+3 > < 0per || Oan >0 < Onek [ 04, >00}
S=XUY,g=g1+g2 acX beY ’

which c1onc1de with those in the K = 1 critical one matrix modelsi®l. As the
puncture equation may be translated into the string equationl®, the recur-
sion relations (39) are equivalent to the following differential equation for the
perturbed partition function

65—f(t) - Z(z a+ 1)t aF(t)
n+1 a=0 a+n
O*F(t)
+ T{atk Otk (40)
.\ Tor(t) oF(2)
2 Otg—1 Otn_i

It becomes easy to relate the J{ = 1 critical models to the K > 1 multicritical
models. To show this point, we carry the t4,,...,t;, derivatives on the both
hand sides of (40) and take t; = },ix = — ;47 and other ¢, vanish, then we
have ‘

s s s
< Onyi 1] Ota >h =2 (2ds +1) < 04pn [] oy >

a=1 a=1 b#a
+ Y‘{< Op10n—k H Oa, > (41)
a=1
1 . .
+; Z < Op_1 H o4, >£\1< On_k H o4, >$‘2}
= S=XUY.g=g1+92 a€X beY

which are just the recursion relations in the Kth multicritical matrix models
. Therefore, we know that ‘

- 1
< 0404, >E=< 0404, ercp{—/ oy — oK} >, (42)

77T h
2K +1

This relation has been obtamed by Distler for ¢ = 0 and Dijkgraaf and Witten
for g = 181,

The results (41) and (42) for pure gravity may be generalized to topological
string with minimal matter. In the topological string theory, the recursion
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relations associated with the Virasoro constraints read

< Ons1a ] 0ai >9= 3 (ap +1) < Gagns I o>

. (ar) (asi) (b,7)#(a,i)
+ Zzﬂjk{< 05-1,j0n—sk H Oai >g-1 (43)
i=1 5.k (a,7)
+; Z < Os-1,5 H Oai > < On—s,k H Oai >g2}
~ S=XUY,g=g1+g2 (a,i)EX (ej)eyY

The operatorso, ; = 0,(¢;) are the product of the basic operators o, in pure
gravity and the chiral primary fields ¢; in topological minimal models. Those
relations are same as that in multi-matrix models associated with the (p, q)
minimal models at the ¢ = 1 critical point. Translate (43) into a differential
equation for the perturbed partition function , the equation reads

OF(t (1)
(%J = Y,:ap+ i)tu-iaati,t,;
n+1,1 !
noo o BF(i)
Jky 7 SN
* ; 7 {6t3—l.j8tn—s,k (44)

1OF(t) OF(t)
2 0ts—-l,j atn—s,k

+

For a set of (a,%), carrying the ¢,; derivatives on the both hand sides of (44)
and taking t;; = ,ﬁ,tl,q = —,ﬁq and other 1, ; vanish, we obtain the recursion
relations at general g critical

< U1L+l,q H Cayi >g= Z(ap + Z) < Ju+n,i H 0'5,]‘ >;

. (a.f) (a,) (hg)#(2)
+20 2 < Oom1,j0n—o I oi >3- (45)
s=1 jk (@)
1
+5 > <051y [ 0ai >4 <0nooi I 0ai>L}
S=XUY.g=g;+02 (ad)EX (@i)eY

Of course, the equation (42) generalizes to

. 1 1 .
< Odyiy-0d, iy >5=< 04y iy--0d, i, 6$P{;II/201J — m/l?al’q} >, (46)

In conclusion, we have investigated the BRST cohomology in topological
string theory. In the absence of gravity, the phase structures of topological L-G
models corresponding to the ADFE series have been depicted. We also portray
the fusion rules in Eg cohomology ring. For the models with gravity, we exhibit
the connections of the recursion relations of correlation function among the
different critical points. We are not involved in other L-G models besides the
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ADE series. For example, we may be interested in the models corresponding
to Pg, Xg and Jyg, which have the dimension d = 1 of the target manifold. Once
gravity coupled to matter, the W constraints should be considered. Here, we
do not touch upon that. We will discuss those issues in the next stage.

The authors would like to thank the staff of CCAST for the warm hospi-
tality.
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FIGURE CAPTIONS

Figure 1:(a) the catastrophe manifold Mj3; (b) the catastrophe set Cy; (c) the
bifurcation B,.

Figure 2: the bifurcation Bj.
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table 1. The cofficients co;;.

Here the symmetry of 4,7,k

in ¢;jx has been considered.

i\j 41 6 7 10
3 1]t 0 M +is
4 0| 0] i tiotr
6 tr | 23+ 16 t3 + 3tiotr
7 t10t7 2thte + tiots + 142
10 ‘ t1ots + trta + t1ol7te
table 2. The cofficients cg;;.
i\j| 4] o 7 10
4 1t O t7 il + s
6 3 t10t7 2ot + 312
7 Ltlo + tote 23t7 + tiots
+14 +iqtg
10 2435ta + 33017
+trt3 + tatio

table 3. The cofficients c4;;.
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€i01010 =

i\j 6 7 10
6 | 2twts | thotrdts | EtSy + t25te + tiotd + i
7 i + thte Stiotr + 2tiots + 2tiotsts
+tots + 12 +irts
10 3thote + 263012 + tiotsts
+2tyotety + t3ts
table 4. The cofficients cg;;.
i\j 7 10
T | t3ot7 - trots + 2iste astio + iytiote + St3ute + 22,82
+t10td + trts + tets
10 oty + $otrts +totets + tiotets
+t1ot3 + 1712 + tats
7 5 42 5 2 42 12 42 5 2 322 2 2 1 4 n 2.
EtmtT + gtwte + 52 + §tmt7t6 + trotaty + tiots + Zt, + trtgts + iy

table 5. The cofficients c7; and ¢o1010.
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