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Abstract: We list all possible operators up to dimension 8 which induce the triple neutral gauge

boson couplings ZZγ, Zγγ, and ZZZ within the electroweak linear (decoupling) effective Lagrangian

approach. Attention is given to those that contribute to the ZZ and Zγ production form factors.

1. Introduction

The present agreement between experiment and

the standard model (SM) suggests that the en-

ergy scale associated with any new physics should

be large compared to the electroweak scale v =

246GeV. In order to infer the existence of new

particles through virtual effects, effective Lagrangian

techniques have been used to study quantities

that are forbidden or unobservably small within

the SM [1, 2, 3]. In particular, it has been pointed

out that the self-couplings of the electroweak gauge

bosons constitute a sensitive probe of nonstan-

dard interactions [4]. While experimental lim-

its on possible anomalousW+W−Z(γ) couplings
have reached an accuracy of the few percent level

in both hadronic [5] and leptonic [6] colliders

the situation is not that good for possible trilin-

ear neutral gauge boson (TNGB) couplings [7],

which are absent in the SM at the tree level.

Our aim is to study TNGB couplings in the

framework of the linearly realized SU(2)× U(1)
effective Lagrangian approach. We will maintain

both generality and gauge invariance and item-

ize all non-equivalent gauge-invariant operators

of dimension 8.

Previous studies of TNGB couplings have pointed
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out the these interactions are not generated by

dimension six operators, but they have used a

parametrization that is only U(1)EM gauge-invariant

[8].

There is one motivation for studying TNGB

interactions with as much generality as we can.

Since persuasive theoretical arguments indicate

that these couplings unlikely to be larger than

one percent [9, 10], and the Large Hadron Col-

lider (LHC) and the planned Next Linear Col-

lider (NLC) are expected to achieve limits of or-

der 10−3-10−5 on these couplings [4, 8], a first
concern will be to understand in a systematical

and model independent way how TNGB inter-

actions are generated. These anomalous cou-

plings arise at one loop in the SM as well as

in the MSSM , and typical sizes are of order

10−4[11, 12]. We would like to compare with the
expected values from dim 8 operators.

2. Characterization of operators

We will find out all dimension 8 C-odd operators

that generate one or more of the vertices ZZZ,

ZZγ or Zγγ. As it turns out, no dimension 6

operator gives rise to TNGB couplings.

Any SU(2)×U(1) gauge invariant operator is
constructed out of the appropriate combinations

of the following building blocks:
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Number Operator

T.1 W i
µν

T.2 Bµν
T.3 Φ†Φ
T.4 Φ†σiΦ
T.5 Φ†DµΦ
T.6 Φ†σiDµΦ
T.7 Φ†(DµDν +DνDµ)Φ
T.8 Φ†σi(DµDν +DνDµ)Φ

Besides the well known SM interactions, op-

erators of dimension 6, 8 and higher can be built

by Lorentz contraction of any number of the terms

above. At the dimension 6 level there are a total

of 12 independent purely bosonic operators, half

of them generating trilinear W+W−Z(γ) cou-
plings but none of them generating any TNGB

coupling [2]. Therefore, to generate this vertex

one has to look into the dimension 8 level.

Because of Bose symmetry and the antisym-

metry of Vµν = −Vνµ, any lorentz contraction of
the W i

µν and/or the Bµν tensor fields with or-

dinary derivatives will not generate any TNGB

coupling. It is thus necessary to include the Higgs

doublet in our search. Moreover, we can already

see that the terms T.3 and T.4 will not be use-

ful; the reason is the following: suppose there

was a dimension 8 operator that contained T.3,

since this is a scalar we could just remove it with-

out destroying the Lorentz nor the SU(2)×U(1)
invariance. Then we would end up with a di-

mension 6 operator; but we know there are no

dimension 6 operators that generate TNGB cou-

plings.

We are now constrained to use the T.5 and

T.6 terms along with the tensor fields T.1 and

T.2 plus one ordinary derivative to get enough

Lorentz indices to contract.

We thus find the following list of 10 opera-

tors, 5 CP odd and 5 CP even:

OBB1 = i∂λ(T 5)µBλνB
µν + h.c.

OBB2 = i(T 5)µBλν∂
λBµν + h.c.

OWW = i∂λ(T 5)
µW i

µνW
iλν + h.c.

OWB1 = i(T 6)iλW
i
µν∂

λBµν + h.c.

OWB2 = i(T 6)λW
i
µν∂

µBλν + h.c.

O
BB̃1

= i∂λ(T 5)µBλνB̃
µν + h.c. (2.1)

O
BB̃2

= i(T 5)µBλν∂
λB̃µν + h.c.

O
W̃W

= i∂λ(T 5)
µW̃ i

µνW
iλν + h.c.

O
W̃B1

= i(T 6)λW̃
i
µν∂

λBµν + h.c.

O
WB̃2

= i(T 6)λW
i
µν∂

µB̃λν + h.c.

There is one more operator that generates a

ZZZ coupling:

Φ†(DµDν +DνDµ)Φ∂µΦ†DνΦ+ h.c. . (2.2)

Another similar operator, with T.6 and T.8, could

be written which turns out to be equivalent to

this one. However, these operators only gener-

ate scalar couplings which cannot be measured

in production processes.

The previous list of operators Eq. (2.1) is

complete in the sense that any other dimension 8

operator that generates TNGB couplings will be

related to them via partial integration or equa-

tions of motion. We have avoided operators with

terms like ∂νBµν that can be related to other di-

mension 8 operators with fermions using the eqs.

of motion. We have also avoided operators with

divergences like ∂µZµ because these are known

to be redundant as well [13]. Hence, in this

work we are considering all nonredundant purely

bosonic operators that can generate TNGB cou-

plings at the lowest dimension possible in the lin-

ear SU(2)× U(1)Y effective Lagrangian.
In conclusion, we have provided a list of 10

independent dimension 8 SU(2)×U(1) invariant
operators that generate TNGB couplings. This

itemization can now be used to perform a sys-

tematic study, in the context of a linearly realized

effective Lagrangian, that includes effects on the

low energy observables and LEP/SLC measure-

ments as is done for the charged boson couplings[2,

15].

Five of the 10 operators: OBB2, OWB1, OWB2,

O
W̃W

and O
BB̃1

generate scalar couplings and

cannot be measured at the colliders. Their ef-

fects could only be probed, if at all, through vir-

tual effects. The other five: OWW , OBB1, OBB̃2,

O
W̃B1

and O
WB̃2

generate non-scalar couplings.

We will now focus our attention on these. The ef-

fective dimension 8 Lagrangian to be considered

is:

2



Third Latin American Symposium on High Energy Physics F. Larios

L(8) = a1

Λ4
O
W̃B1

+
a2

Λ4
O
WB̃2

+
a3

Λ4
O
BB̃2
+

a+

Λ4
O(+) + a−

Λ4
O(−) . (2.3)

Where we have defined

O(±) ≡ OWW ±OBB1 (2.4)

for convenience: it turns out that O(+) generates

γγZ and ZZZ couplings, whereasO(−) generates
ZZγ only. This Lagrangian provides the size of

the h and f coeficients for new physics TNGB

effects that come from purely bosonic operators:

hγ1 =
−v2m2Za+
swcwΛ4

hZ1 =
−v2m2Za−
Λ4

hγ3 =
v2m2Z
Λ4

(
a2 − cw

sw
a3

)

hZ3 =
v2m2Z
4swcwΛ4

(
(1 + c2w)a1+

(c2w − s2w)a2 + 2swcwa3
)

(2.5)

fγ4 =
v2m2Za

−

Λ4

fZ4 =
v2m2Za

+

swcwΛ4

fγ5 =
v2m2Z
4swcwΛ4

(
(1 + c2w)a1+

(s2w − c2w)a2 − 2swcwa3
)

fZ5 =
v2m2Z
2Λ4

(
a2 +

cw

sw
a3

)
.

It should be noted that there are two form

factors hV2 and h
V
4 that do not appear at this

(dim 8) level, but at the next higher (dim 10)

level [4, 8].

3. Constraints from precision mea-

surements.

As mentioned before, precision observable ef-

fects of trilinear couplings of the charged W±

bosons, WWγ and WWZ have been studied in

the effective Lagrangian approach for both the

decoupling as well as the nondecoupling case[2,

4]. In particular, the anomalous magnetic mo-

ment δaµ of the muon has been used to probe the

effects of trilinear couplings[15]. For WWγ(Z)

couplings, dimension 6 operators in the linear

case and dimension 4 operators in the nonlin-

ear chiral Lagrangian appear. In the linear case,

assuming a cut-off scale Λ of order 1 TeV the

contributions of the dimension 6 operators turn

out to be of the order of (0.5−1.0)×10−9α with
α being the dimensionless coefficient of the op-

erator. Since the goal for experimental sensitiv-

ity is of the order of δaµ ' 5 × 10−10 [16] we
conclude that α would have to be of the order

of 1 to have any chance of being probed. Such

value is highly unexpected because these dim 6

bosonic operators must come from at least one-

loop-level effects in the underlying theory, and

this means α ' g/16π2. ( A dim 8 operator can

arise at tree level, and its effects could then be

similar or even higher[4]. ) Moreover, even in

the case of a higher than expected value for α,

the contribution of a bosonic operator to δaµ is

through loop diagrams, and it has to compete

with the direct contribution of a fermionic oper-

ator like ψσµνψBµν . Seeing the remarkable diffi-

culties to probe decoupling physics effects in tri-

linear WWγ(Z) vertices, we can already expect

a no less pessimistic conclusion for TNGB cou-

plings: that their detection is very hard if physics

beyond the SM is of a decoupled nature.

Concerning bounds from electroweak preci-

sion observables (oblique corrections), it has been

shown that the limits on the κ and λ form fac-

tors for WWγ(Z) couplings are around 0.05 and

0.1 respectively [2]. These bounds are two orders

of magnitude above possible effects from dim 6

operators (see Table (1) ). The situation is prob-

ably the same for the neutral boson couplings.

The prospects of direct measurement of the

TNGB form factors ( Eq. (2.5) ) have been stud-

ied in the literature[8]. The best resolution pos-

sible is achieved by the 14TeV LHC collider, for

which coefficients like h3 and f4 can be probed

down to 10−3. These figures are still higher than
the SM (and MSSM with light enough superpart-

ners) values [12], which could be similar to the

expected effects from dim 8 operators. These re-

sults are summarized in Table (1).

In conlusion, if new physics comes from a
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decoupled theory whose effects below a cut-off

scale Λ can be parameterized by higher dimen-

sion SU(2) × U(1) operators, it will hardly be

seen through trilinear gauge boson couplings.

SM Eff. Lag. obl. corrs.

fZ4 - 10−4 -

fZ5 1× 10−4 10−4 -

fγ4 - 10−4 -

fγ5 1× 10−4 10−4 -

hZ1 - 10−4 -

hZ3 1× 10−4 10−4 -

hγ1 - 10−4 -

hγ3 1× 10−4 10−4 -

∆κZ - 10−4 0.06

∆κγ 0.008 10−4 0.05

λZ - 10−4 0.1

λγ 0.002 10−4 0.1

Table 1: SM value and New Physics estimate (Λ =

1TeV) for trilinear gauge boson couplings.
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E. Massó, Nucl. Phys. B384, (1992) 3;

[10] C. Arzt, M.B. Einhorn and J. Wudka, Nucl.

Phys. B433, (1995) 41;

[11] C.P. Burgess, M. Frank and C. Hamzaoui, Z.

Phys. C70 (1996) 145.

[12] G.J. Gounaris, J. Layssac and F.M. Renard,

hep-ph/0003111.

[13] M.B. Einhorm and J. Wudka, Phys. Rev. D55,

3219 (1997).

[14] K. Hagiwara, R.D. Peccei, D. Zeppenfeld and

K. Hikasa, Nucl. Phys. B282 (1987) 253.

[15] C. Arzt, M.B. Einhorn and J. Wudka, Phys.

Rev. D49, (1994) 1370.

[16] B. Lee Roberts, Status of the Muon (g-2) exper-

iment, hep-ex/0002005.

4


