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Introduction. Recently new Nuclear-Magnetic-Resonance (NMR) methods have been devel-
oped to measure physical parameters that are directly correlated with properties of biological
tissues, such as the Diffusional Kurtosis Imaging (DKI) [1] and the Stretched Exponential Model
Imaging (STREMI) [2]. Such methods are based on non-Gaussian diffusion measurements.
These techniques are particularly interesting because they allow to increase the sensitivity and
specificity of the NMR imaging for healthy and pathological cerebral conditions [3, 4, 5, 6].
The DKI is essentially based on the assumption that DW-NMR signal can be described by the
following relation [1]:
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where η is the background noise, Aapp = 1
6D

2
appKapp, with Dapp and Kapp respectively the

apparent diffusion coefficient and the apparent diffusional kurtosis, estimated in the direction
parallel to the orientation of diffusion sensitizing gradients, and b = (Γδg)2∆eff with Γ the
nuclear spin gyromagnetic ratio, g the diffusion sensitizing gradient strength, δ the diffusion
sensitizing gradient duration and ∆eff the effective diffusion time, depending on the particular
diffusion sensitized sequence used.
On the contrary, the STREMI assumes the following relation to describe the signal decay [2, 7]:

S(b)

S(0)
= exp [−(b)γA] (2)

where A is the generalized diffusion coefficient and γ is the stretching exponent, being between
0 and 1.
Currently, the post-processing of NMR images based on these new techniques requires a too
long time ( 2 hours on a multi-core Intel Xeon E5430 CPU) for any use in realtime diagnostics.
In this contribution we focused on the application of graphics processing units (GPUs) acceler-
ated computing to improve the speed in reconstruction of diffusion weighted nuclear magnetic
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resonance (DW-NMR) images by using non-Gaussian diffusion models. The aim of this work
is to use model-related numerical simulations of DW-NMR signal in realistic conditions, to
estimate the possible speed-up factor achievable by using GPU computing for non-Gaussian
diffusion mapping.

Methods. Synthetic DW-NMR data generation. Brain regions characterized by highly co-
herent axonal bundles, with different geometrical organization were considered to simulate
DW-NMR signal from water molecules diffusing within a realistic medium. In human brain
such a region can be identified by the Corpus Callosum (CC) that, according to the estimated
axonal diameter distributions within it, can be mainly subdivided into two regions: the first,
characterized by denser and smaller axons, includes the genu and splenium (GS-CC); the other,
characterized by less dense and bigger axons, includes the body (B-CC).
To simulate DW-signal, a Monte-Carlo (MC) simulation was implemented in C++. A total of
104 point like spins were randomly placed in a 2D plane of 0.5x0.5 mm2, resembling a voxel of
the DW-NMR image dataset. A random walk at a rate ∆t ∼ 2.5x10−5 s per step, with bulk
diffusivity (D0) set to 1.4x10−3 mm2/s and particle step size ∆x = (4D0∆t)1/2 was performed
between randomly packed axons. Axonal diameter distribution and density were numerically
reproduced within each voxel of the synthetic image. Specifically, the chosen mean axon diam-
eter ±SD and axon density percentage were: 2± 0.5 µm, ∼ 0.50, for G-CC and S-CC; 6± 1.5
µm, ∼ 0.35 for B-CC. Assuming axons as infinitely long coaxial cylinders, the DW-NMR signal
decay for each voxel of the synthetic image due to a Pulsed Field Gradient Stimulated Echo
sequence (PGSTE) was simulated through spin phase accumulation. The DW-NMR signal
for the whole image was obtained by averaging the signal from each voxel. The parameters
of the sequence were chosen to be similar to those of experiments we performed and report
elsewhere [5]. We simulated different synthetic images, at different resolutions: 32x32, 64x64,
128x128, 256x256, 512x512, 1024x1024 and 2048x2048, to test the performance of CPU and
GPU in analyzing images at different resolutions using a voxel-by-voxel fitting approach.
Synthetic DW-NMR data analysis. DKI and STREMI metrics were estimated by fitting on a
voxel-by-voxel basis Eqs.(1) and (2) to the synthetic DW image signal intensities, respectively.
This procedure was performed for all the image resolution investigated.
Here we used an efficient and robust fitting algorithm, named GPU-LMFit, based on a highly
parallelized Levenberg-Marquardt (LM) method on GPU, introduced and described in details
elsewhere [8]. GPU-LMFit uses a scalable parallel LM algorithm optimized for using the Nvidia
CUDA platform. The code kernel calls GPU-LMFit to perform the LM algorithm on each
CUDA block, which is mapped to a single voxel. Because the processing of different voxels is
totally independent, the CUDA blocks do not need to synchronize, and the kernel launches as
many blocks as voxels contained in a particular slice to speed up performance. The code was
optimized to be fully integrated within Matlab (The Mathworks, Natick, MA, USA) scripts. A
multi-core central processing unit (CPU) Intel Xeon E5430 processor at 2.66GHz with 8 thread,
an Nvidia GPU GeForce GT650m and an Nvidia GPU Titan were used for the analysis and
the cross-comparison of CPU and GPU performance. In particular, lsqcurvefit function with
Parallel Computing Toolbox was used to test multi-core CPU performance.

Results and Discussion. An example of two simulated voxels with realistic geometry and
local magnetic field inhomogeneities; the resulting DW-NMR signal and the fitted curves is
reported in Figure 1-a), b) and c). The results of the performance test, obtained for each
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synthetic image resolution, is instead reported in Figure 1-d).
Numerical results reported in Figure 1-d) suggest that for typical clinical images, whose

resolution ranges from 64x64 to 256x256, an expected speed-up factor of ∼ 100x (for the Nvidia
GeForce GT650m) and ∼ 1000x (for the Nvidia Titan) with respect to CPU performance is
achievable by using massive parallel GPU computing to perform non-linear fitting of non-
Gaussian diffusion models to DW-NMR dataset. Despite the results presented here are based
on a simplistic simulation, where several effects including noise are neglected, they are in good
agreement with experimental results. In real experiments, noise effects is not negligible, specially
at high b-values, and can decrease the performance of both the CPU and GPU algorithms used.
Indeed, high noise fluctuations in experimental data may introduce many spurious local minima
in the likelihood function to be minimized in fitting routine. This implies that conventional
fitting pipeline, based on LM algorithm, often fail in finding the global minimum, becoming
strongly dependent on the fitting parameters initialization. Further investigations are therefore
in progress in order to optimize the LM based fitting algorithms to make them less sensitive to
noise fluctuations.

Conclusion. In this contribution we focused on the application of GPUs in the reconstruction
of DW-NMR images based on non-Gaussian diffusion models. By using model-related numerical
simulations, the performances of LM based fitting algorithm on CPU and GPU were tested for
synthetic images at different resolutions and on two different GPUs: a low and a high-level
Nvidia GPU. Our numerical results suggest that the implementation of LM algorithm on GPU
makes it excellent for extensive GPU-based applications such as massive MRI processing, further
improving the efficiency of the conventional LM model fittings on CPU. Specifically, an expected
speed-up factor of ∼ 100x (for the Nvidia GeForce GT650m) and ∼ 1000x (for the Nvidia Titan)
with respect to CPU (Intel Xeon E5430) performance is achievable by using massive parallel
GPU computing. These results strongly suggest the GPU computing as a powerful tool for
enabling automated parametric non-Gaussian DW-NMR analysis in realtime.
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Figure 1: a-b) Local axonal geometry and magnetic field inhomogeneities strength spatial
distribution computed with ∆χH2O−TISSUE = −0.010 ppm (in IS) and static magnetic field of
3.0 T, for a representative voxel selected within GS-CC and B-CC, respectively, depicted in the
WM maps reported in insets. c) S(b)/S(0), as a function of b, for the two representative voxels
in GS-CC (circles) and B-CC (squares). Straight lines represent Eq.(1) (red) and (2) (blue),
fitted to the simulated data. As comparison, dotted black lines represent the curves of equation
−bDapp, with Dapp values estimated by the fitting procedures to the data until b ≤ 2000
s/mm2. d) Performance test of the low-level, high-level Nvidia GPUs and high performance
CPU described in the main text, for different values of image resolutions (matrix dimension).
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