
 

Large gauge symmetries of an asymptotically de Sitter horizon:
An extended first law of thermodynamics

Fatemeh Mahdieh* and Hossein Shojaie†

Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran

(Received 28 December 2018; published 26 March 2019)

In this paper, we show that a universe with a dynamical cosmological constant approaching pure de
Sitter at timelike infinity enjoys an infinite-dimensional symmetry group at its horizon. This group is larger
than the usual SOð4; 1Þ of pure de Sitter. The charges associated with the asymptotic symmetry generators
are nonintegrable, and we demonstrate that they promote an extended version of the first law of
thermodynamics. This contains four pairs of conjugate variables. The pair ðΘ;ΛÞ corresponds to the change
in the cosmological constant and its conjugate volume Θ. The contribution of the surface tension of the
horizon and its conjugate parameter surface area make a pair ðσ; AÞ. The usual conjugate variables ðT; SÞ,
ðΩ; JÞ and a term ∂vδS corresponding to entropy production, are included. In addition, this extended first
law describes the nonconservative behaviour of the asymptotic charges in nonequilibrium.
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I. INTRODUCTION

The extra symmetries of asymptotically flat spacetimes
were first discussed by Bondi, van der Burg, Metzner and
Sachs in the early 60’s [1–3]. In fact they were discovered
in a “fortunate” failure of trying to obtain the Poincaré
group as the exact symmetry group of asymptotically flat
spacetimes.
The mathematical machinery for asymptotic symmetries

has been studied further and developed extensively
by different research groups [4–14] and references therein.
But the physical concept of what these extra symmetries
describe has received additional attention after Strominger
et.al. [13–23] related three notions from completely differ-
ent areas together. They introduced a triangle with asymp-
totic symmetries being one of the corners, and the other two
are soft theorems and the memory effect. This area of
research has thereafter developed in work done by various
groups at null infinity, spatial infinity [24] and the black
hole horizon [25–27]. The asymptotic limit is usually a
boundary in spacetime, and these symmetries are generated
by vector fields that are asymptotically Killing on the
boundary. In asymptotically flat spacetimes, null infinity or
spacelike infinity is taken to be the boundary, and asymp-
totically Killing vector fields on this boundary are derived.

These generators can be written as an expansion of a
parameter that approaches zero in the asymptotic region.
Accordingly, Lξg is also of order of this parameter, and not
exactly zero, but asymptotically vanishes.
This is the case in asymptotically flat spacetimes at

their boundaries with the parameter being 1
r. This gives

Lξgμν ¼ Oð1=rÞ. Likewise, if the horizon of a black hole is
taken to be the boundary, the same expansion can be written
in terms of a radial parameter ρ, that describes the horizon
through the equation ρ ¼ 0.
In asymptotically flat spacetimes, the BMS group is

the semi-direct product of the Poincaré group and super
translations, i.e., BMS ¼ Poincaré × ST. This group is
manifest when studying the symmetries of an asymptoti-
cally flat spacetime at null infinity. Here, the supertrans-
lations have been derived by Bondi, Metzner and Sachs
[1,2]. This group can additionally be extended to give
Virasoro-like generators referred to as superrotations [13].
In the case of spacelike infinity in an asymptotically flat
spacetime, it has been shown that in the canonical formal-
ism, by considering suitable matching conditions, super-
translations can be recovered at spacelike infinity of a
dynamical asymptotically flat spacetime [24]. In this
context, electromagnetism has also been included [28].
The study of asymptotic symmetries at spatial infinity was
worked out covariantly in [29], where the relation between
the symmetries at past and future null infinity was
discussed and again electromagnetism was included [30].
The physical concept of these symmetries can be under-

stood as the transition between different asymptotically
flat states of an evaporating black hole. In other words,
these symmetries characterize the vacuum transitions in the
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evaporation of a black hole. A boosted radiating black
hole [25] and as shown recently, a rotating black hole [31],
are other examples of spacetimes possessing these extra
symmetries.
One should mention that, due to the lack of a timelike

Killing vector field in the geometry of a dynamical
spacetime, there are difficulties in defining the entropy
and surface gravity, which result in issues with assigning a
temperature to the black hole horizon. There are conserved
charges associated with the asymptotic symmetries of
dynamical spacetimes, that are given by Noether’s theorem.
Using the conserved charges, an analogue of the first law of
thermodynamics can be obtained [8,32].
To highlight our choice of setup for a dynamical system,

we note that maximally symmetric spacetimes are of
interest to theoretical physicists as well as cosmologists.
Regarding the n-dimensional pseudo-Reimannian mani-
folds, these are Minkowski, de Sitter, and anti–de Sitter
spacetimes, with zero, positive and negative curvatures
respectively. These spacetimes can be seen as the “ground
states” of general relativity [33]. On the other hand,
observations provide that the fate of our Universe is similar
to de Sitter spacetime. According to the current values of
the density of matter and cosmological constant, it seems
that the locally gravitationally bound group of galaxies, i.e.,
cluster of galaxies, are the typical structures that will
remain bound as the Universe expands. Therefore, one
can take the Universe to be undergoing a process that
eventually tends to pure de Sitter.
In this work we aim to find the extra symmteries of a

dynamical de Sitter–like spacetime at its horizon in order to
study thermodynamic aspects of this dynamical system 1. It
is worth noting that extra symmetries on a black hole horizon
have been studied in [26,27]. Here we consider a different
geometry and constraints in order to retrieve pure de Sitter at
timelike infinity. Furthermore, we do not dismiss the time
dependency of the metric components to ensure we have a
dynamical system settling in pure de Sitter.
In a dynamical spacetime such as Friedmann-Lemaître-

Robertson-Walker, there is no timelike Killing vector field
in general and the surface gravity cannot be defined in the
usual manner. However, there are several ways to look at
the surface gravity, in which not all methods reproduce the
expected temperature in the static limit [35–40]. Therefore,
there is not yet a conclusion to a preferred or correct
approach to defining the surface gravity in the dynamical
case, and therefore we lack a description for the thermo-
dynamics of such a spacetime.
The static patch of pure de Sitter has a temperature of

2π=κ [41], which is the analogue of the black hole

temperature. Since all dynamical black holes ultimately
settle in a stationary state, in the language of equilibrium
and nonequilibrium thermodynamics, a stationary black
hole with temperature T can be considered as the analogue
of an equilibrium state. Similarly, the static patch of pure de
Sitter spacetime with temperature T is also the analogue of
an equilibrium state in an inflating universe. To present an
analogue of an extended first law of thermodynamics in a
de Sitter–like dynamical spacetime, we turn to nonequili-
brium thermodynamics. Here, by a de Sitter–like space-
time, we mean a geometry that tends to pure de Sitter at
timelike infinity.
We show that the near-horizon geometry of a de Sitter–

like spacetime admits asymptotic symmetries at its horizon.
In other words, this spacetime possesses a larger symmetry
group than SOð4; 1Þ of pure de Sitter. The conserved
charges related to these symmetries can be obtained by
means of Noether’s theorem and constructing the sym-
plectic form [7,42]. In a similar manner, for a nonstationary
perturbation to the near-horizon geometry of a de Sitter–
like spacetime generated by its asymptotic symmetries, the
variation of the conserved charges can be calculated. This
variation can be interpreted as an extended first law of
thermodynamics that provides an insight into the non-
conservation and apparent time-reversal symmetry break-
ing of this dynamical system.
This manuscript is organized as follows. In Sec. II, we

give a brief description of the general definition of
asymptotic symmetries, then proceed by portraying how
this definition manifests in general relativity. The remainder
of this section is dedicated to specify the near-horizon
geometry that we wish to study, and then to derive the
generators of the asymptotic symmetries of this geometry.
In Sec. III, the equations of motion for this geometry are

given where the timelike boundary conditions have been
taken into account in the solutions. Section IV consists of the
derivation of the variation in surface charge. This calculation
is presented as an analogue of an extended first law of
thermodynamics in Sec. V. A conclusion and some remarks
for possible future work are provided in Sec. VI.

II. ASYMPTOTIC SYMMETRIES

Considering a gauge theory on a principal fiber bundle
ðP;M; πÞ, a gauge transformation is defined as an auto-
morphism ϕ∶P → P such that the following diagram
commutes

A gauge is, therefore, fixed by choosing a section S∶M → P
of this fiber bundle, and a gauge transformation maps
sections to sections.

1The asymptotic symmetries of de Sitter spacetime have been
studied in [34] and references therein. However, in this paper we
consider the de Sitter horizon as the asymptotic boundary,
whereas the previous work mentioned have mainly studied the
asymptotic symmetries at null infinity.
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One can define a large gauge transformation as a gauge
transformation that is not homotopic to the identity map. In
terms of physical systems that we deal with, a trivial gauge
transformations does not change the physical state of a
system, whereas a large gauge transformations in fact maps
a physical state to a different one. In other words, while a
trivial gauge transformation can not affect the physical
parameters of the system, a large gauge transformation can
influence the physical state.
The gauge transformations in general relativity are diffeo-

morphisms, and the physical quantities are defined through
geometry. A trivial gauge transformation on a manifold
ðM; gÞ can be constructed by small diffeomorphisms,
generated by exact Killing vector fields of the geometry.
On the other hand, large gauge transformations in a diffeo-
morphism invariant theory such as general relativity, are
defined by the quotient space of all possible gauge trans-
formations modulo the trivial gauge transformations of the
theory. If the group of trivial gauge transformations is a
normal subgroup of all possible transformations, then its
quotient space is the group of large gauge transformations.
To proceed in finding large gauge transformations in a

spacetime with geometry gμν, we first fix a coordinate
system to discard the gauge freedom related to trivial gauge
transformations in GR. Thereafter, to find the quotient
space, we need to find all remaining diffeomorphisms that
leave the fixed gauge untouched.

A. Gauge fixing

In the case of the de Sitter horizon defined by the
hypersurface ρ ¼ 0, we can construct a near-horizon
geometry that takes into account nonstationary perturba-
tions of order ρ in the metric field. To define the
perturbation parameter, it should be noted that the geometry
will not change at the horizon by adding terms of order ρ
and higher.
Hence we fix the gauge by defining a near-horizon

geometry using the definition in [43] defined for any null
hypersurface. For the sake of maintaining some level of
self-consistency, in the following, we give a brief descrip-
tion of the construction of this coordinate system.2

1. The near-horizon geometry as the gauge

Let ðM; gÞ be a four-dimensional pseudo-Riemannian
manifold. By constructing a suitable coordinate system
near the horizon, we wish to make the asymptotic sym-
metries on the horizon manifest.
According to the theorem stated in [43], the geometry

near a smooth null hypersurface Hð⊂ MÞ can always be
described by the metric g as follows

g ¼ ρϕðv; ρ; xÞdv2 þ 2dvdρþ 2ρhAðv; ρ; xÞdvdxA
þ gABðv; ρ; xÞdxAdxB ð1Þ

where v is the time coordinate, ρ is the radial coordinate,
x ¼ xA (A ¼ θ;ϕ) are the angular coordinates on the two-
sphere and H is given by the equation ρ ¼ 0.
Specifically, according to the theorem, this geometry is

formed by considering a coordinate system xA on a two
sphere Sð⊂ HÞ. Then a coordinate v can be constructed by
extending the coordinates xA to a neighbourhood H0ð⊂ HÞ
of S, by demanding ∇χχ ¼ 0 for some vector field χ ¼
χμ∂μ with initial value χjS , and taking χðxAÞ¼ χμ∂μxA¼0.
Thus, χjH0 ≡ ∂v is a null generator on H0ð⊂ HÞ, which
means gðχ; χÞjH0 ¼ gvvjH0 ¼ 0. Henceforth, it takes the
form gvv ≡ ρϕðv; ρ; xÞ, where ϕ is a function of coordi-
nates and must be finite on the horizon. So far, this gives a
coordinate system ðv; xÞ on the horizon. Furthermore, one
can deduce gðχ; ∂AÞjH0 ¼ gvAjH0 ¼ 0 from the fact that χjH0

is null and thus normal to H0ð⊂ HÞ. On this account,
gvA ≡ ρhAðv; ρ; xÞ, where hA is also finite at the horizon.
To extend this coordinate system, we can consider a

neighborhood Uð⊂ MÞ of H0 and demand ∇ϒϒ ¼ 0 with
initial value ϒjH0 . Hence, the coordinate system ðv; xÞ
on H0 is extended to ðv; ρ; xÞ on U, by solving
ϒðvÞ ¼ ϒðxAÞ ¼ 0, and defining ρ to be the solution of
the equation ϒðρÞ ¼ 1 with initial value ρ ¼ 0 on H0,
which is the equation defining the null surface H. As a
result of this construction, we have ϒ ¼ ∂ρ, and the vρ
component of the metric is fixed to gvρ ¼ 1.
For our purpose we work with the following form of the

near-horizon geometry to describe the geometry near the de
Sitter horizon to first order in ρ,

ds2 ¼ 2ρκðv; xÞdv2 þ 2dvdρþ 2ρhAðv; xÞdvdxA
þ gABðv; ρ; xÞdxAdxB; ð2Þ

where

gABðv; ρ; xÞ ¼ ðρþ lðvÞÞ2qABðxÞ; ð3Þ

and qABðxÞ is the metric on the unit two-sphere. We later
constrain the variable fields κ, hA and l through the
equations of motion, to recover pure de Sitter in the limit
v → ∞.
This construction provides four equations that fix the

diffeomorphism gauge freedom appropriate for finding the
form of the asymptotic symmetry generators.

B. Asymptotic symmetry generators

According to this geometry, the gauge equations are by
definition

δgρρ ¼ 0; δgρA ¼ 0; δgρv ¼ 0 ð4Þ
2See [43] for a rigorous description of this construction and

further examples.
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with boundary conditions

δgvv¼Oðρ2Þ; δgvA¼Oðρ2Þ; δgAB¼Oðρ3Þ: ð5Þ

Solving these equations, one can find the form of the
generators of the transformations that leave the gauge fixed.
They are consequently the generators of the asymptotic
symmetry group. This yields

0 ¼ δgρρ ¼ Lξgρρ

⇒ ξv ¼ fðv; xÞ
0 ¼ δgρA ¼ LξgρA

⇒ ξA ¼ YAðv; xÞ − ∂Bfðv; xÞ
Z

ρ

0

gABdρ0

0 ¼ δgρv ¼ Lξgρv

⇒ ξρ ¼ Fðv; xÞ − ρ∂vf þ ∂Bf
Z

ρ

0

gABgvAdρ0; ð6Þ

where f, YA and F are arbitrary functions of the coor-
dinates ðv; xÞ.

C. Dynamics of generators

The variation of the metric field now gives the nonsta-
tionary perturbations in the geometry. For the nonzero
components of the metric, we thus have

δgvv ¼ 2ρδκ

δgvA ¼ ρδhA

δgAB ¼ 2ðρþ lÞδlqAB: ð7Þ
Using the boundary conditions and the field variations
through δgμν ¼ Lξgμν, leads to

Oðρ0Þδgvv ¼ 2∂vF þ 2κF ¼ 0: ð8Þ
Noting that the asymptotic symmetry generators are taken
to be fixed to first order, they do not depend on the
dynamical fields.3 On this account, we take F ¼ 0, and as a
result,

Oðρ0ÞδgvA ¼ FhA þ ∂AF þ l2qAB∂vYB ¼ 0 ð9Þ

gives ∂vYA ¼ 0. To next order, one has

OðρÞδgvv ¼ 2ρ½∂vðfκÞ þ hA∂vYA − ∂2
vf�

⇒ δκ ¼ ∂vðfκÞ − ∂2
vf: ð10Þ

From this equation and the boundary conditions we can
write

fðv; xÞ ¼ TðxÞ þ Zðv; xÞ; ð11Þ

where TðxÞ is an arbitrary function on the two-sphere
at the horizon. This generates a supertranslation like
transformation along the horizon, that causes the transition
between different states of the dynamical process. Also,

OðρÞδgvA ¼ ρ½f∂vhA þ YB∂BhA þ hB∂AYB − ∂A∂vf�
¼ ρδhA

⇒ δhA ¼ f∂vhA þ YB∂BhA þ hB∂AYB − ∂A∂vf:

ð12Þ

The last components yield,

Oðρ0ÞδgAB ¼ 2fl∂vlqAB þ l2ðDAYB þDBYAÞ ¼ 2lδlqAB

⇒ δl ¼ f∂vlþ
1

2
lψ ; ð13Þ

where ψ ≡DAYA.

III. EQUATIONS OF MOTION

In a universe dominated by a cosmological constant, we
consider a mass locally centered within its cosmological
horizon. The equation of state near the horizon, can be
approximated by

w ¼ ptot=ϵtot ¼
�
−1þ 1

3

ϵrad
ϵΛ

��
1þ ϵrad

ϵΛ

�
−1

≈ −1þ 4

3

ϵrad
ϵΛ

> −1; ð14Þ

where ϵ and p are the energy and pressure densities
respectively. In Eq. (14) and by the indices “Λ” and
“rad”, we label the cosmological constant and the radiation
emitted out from the mass inside the bulk. Here, the
radiation density is not comparable in value with the
vacuum energy density, i.e., ϵrad=ϵΛ ≪ 1. Since this ratio
is also decreasing as the constituents of the mass in the bulk
gradually settle down in their ground states, one can
approximate Tμν at the horizon defined by ρ ¼ 0 in (2), as

Tμνjρ¼0 ≈ −ϵΛ
�
1 −

1

3

ϵrad
ϵΛ

�
gμν: ð15Þ

As a consequence, by introducing the function λðv; xÞ
such that

lim
v→∞

λðv; xÞ ¼ Λ0 ¼ const; ð16Þ

the Einstein equations on the horizon can be written as

Gμν þ λðv; xÞgμν ≈ 0: ð17Þ
3In [26], they mention this assumption as the state independ-

ence of the boundary conditions.
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The function λðv; xÞ accounts for the effects caused by
legitimately small amounts of matter passing through
the horizon, radiation, or any other type of perturbation.
The constraint on λðv; xÞ is to ensure that pure de Sitter is
recovered in timelike infinity.4

Continuing with the Einstein equations, the vv compo-
nent of these equations at the horizon is

Gvvjρ¼0 ¼ −2κ
∂vl
l

− 2
∂2
vl
l

¼ −λðv; xÞgvvjρ¼0 ¼ 0: ð18Þ

Since we have taken l to be only a function of v, this
component of the equations results in ∂Aκ ¼ 0. For the ρv
component we solve Gρv ¼ −λðv; xÞgρv at the horizon to
find

Gρvjρ¼0 ¼ −
1

l2

�
1 − 2∂vlþ 2lκ −

1

4
hAhA þ 1

2
qAB∂AhB

þ 1

4
qABhC∂CqAB

�
¼ −λðv; xÞ: ð19Þ

As mentioned above, in order to retrieve pure de Sitter as
v → ∞, we wish limv→∞λðv; xÞ ¼ 3=l20, and limv→∞lðvÞ ¼
l0, where l0 is the cosmological horizon in pure de Sitter.
This gives limv→∞κ ¼ 1=l0. We also have,

lim
v→∞

½−hAhA þ 2qAB∂AhB þ qABhC∂CqAB� ¼ 0: ð20Þ

The vA components of the EOM at the horizon reduce to

GvA ¼ ∂Aκ −
∂vl
l
hA −

1

2
∂vhA ¼ −λðv; xÞgvAjρ¼0 ¼ 0:

ð21Þ

Since ∂Aκ ¼ 0 and l ¼ lðvÞ, this equation gives the v
functionality of hAðv; xÞ,

∂vl
l
hA ¼ −

1

2
∂vhA

⇒ hAðv; xÞ ¼ aAðxÞbðvÞ ¼
aAðxÞ
lðvÞ2 ; ð22Þ

where separation of variables is applied to hAðv; xÞ ¼
aAðxÞbðvÞ. In turn, the AB components at the horizon are

GABjρ¼0 ¼ −
1

2
hAhB þ 3

4
qCDhChDqAB

þ 1

2
ð∂AhB þ ∂BhAÞ − qCD∂ChDqAB

− 2lκqAB −
1

2
qCDhB∂AqCD

¼ −λðv; xÞgABjρ¼0

¼ −λðv; xÞl2qAB: ð23Þ

From relation (23) we have,

− hAhA þ 1

2
qABð∂AhB þ ∂BhA þ qCDhB∂AqCDÞ þ 4lκ

¼ 2λðv; xÞl2: ð24Þ

As a side note, the reason that the coefficient of lκ in (24)
does not match to give limv→∞κ ¼ 1=l0, is that we have
not considered the higher order in the gvv. If we take
gvv ¼ 2ρκ1 þ ρ2κ2, the GAB equations will give

GAB ¼ −
1

2
hAhB þ 3

4
qCDhChDqAB þ 1

2
ð∂AhB þ ∂BhAÞ

− qCD∂ChDqAB − 2lκ1qAB − l2κ2qAB

−
1

2
qCDhB∂AqCD; ð25Þ

which results in limv→∞κ1 ¼ 1=l0 limv→∞κ2 ¼ 1=l20 and
we retrieve pure de Sitter as desired.

IV. SURFACE CHARGES

Having found the generators of the asymptotic sym-
metries, we can calculate the surface charge using [5]

=δQξ½h; g� ¼ −
1

16π

Z
S
ðd2xÞμν

ffiffiffiffiffiffi
−g

p ½DνðξμhÞ þDσðhμσξνÞ

þDμðhνσξσÞ þ
3

2
hDμξν

þ 3

2
hσμDνξσ þ

3

2
hνσDσξ

μ − ðμ ↔ νÞ�; ð26Þ

where hμν ≡ δgμν, Dμ is the covariant derivative of the
metric, and

ðd2xÞμν ¼
1

4
ϵμνσδdxσ ∧ dxδ; ϵvρθϕ ¼ 1: ð27Þ

Note that =δ indicates that the integrability of δQ is not
determined.
In our case, the symmetry generators are given by (6),

and the corresponding change in the asymptotic charges is
given accordingly by

4Although we have considered the fate of the Universe to settle
in pure de Sitter at timelike infinity, other scenarios also seem to
be possible if one loosens the timelike boundary conditions.
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=δQξ½h; g� ¼ þ 1

8π
∂v

Z
H
dΩ2 ffiffiffi

q
p

fδl2 þ 1

8π

Z
H
dΩ2 ffiffiffi

q
p

f∂vlδl

þ 1

16π

Z
H
dΩ2 ffiffiffi

q
p

YAδðl2hAÞ

−
1

4π

Z
H
dΩ2 ffiffiffi

q
p

δl2∂vfþ
1

8π

Z
H
dΩ2 ffiffiffi

q
p

fκδl2:

ð28Þ

A related point to consider is that in the limit v → ∞,
κ0 ¼ 1=l0, ∂vl ¼ 0, and for ξ0 ¼ ∂v (f ¼ 1; YA ¼ 0), the
expression (28) leads to

δQ0 ¼
1

8π
δ

Z
H
dΩ2 ffiffiffi

q
p ðl20κ0Þ

⇒ Q0 ¼
l0
2
: ð29Þ

Considering T0 ≡ ð2πl0Þ−1 and S0 ¼ AH=4 ¼ πl20, Q0 ¼
S0T0 can be interpreted as the heat observed by the static
patch observer in pure de Sitter [41]. In other words, the
static patch observer assigns an apparent temperature to its
horizon as a result of its inability to survey the entire
spacetime.

V. EXTENDED FIRST LAW OF
THERMODYNAMICS FOR A DYNAMICAL

INFLATING UNIVERSE

It is well known that there is an analogy between
equilibrium thermodynamics and gravity in black holes
[44–52]. In nonequilibrium thermodynamic cases, the end
state of dynamical gravitational systems such as mergers or
radiating black holes, can be either a stationary or
Minkowski spacetime. In other words, these dynamical
systems decay to settle into an analogue of an equilibrium
configuration. Undeniably, thermodynamic properties of
these systems cannot be described completely through
equilibrium thermodynamics.
For instance, one can refer to [53] for nonequilibrium

thermodynamic properties of an asymptotically flat space-
time containing gravitational radiation. There, gravitational
waves have been shown to be an entropy producing
mechanism of a viscous dynamical screen.
In an irreversible thermodynamic process, we have

dS >
dQ
T

; ð30Þ

which is due to entropy production in the system. In
addition, dS=dt ≠ 0, which makes any process with a
gravitational wave producing mechanism irreversible and
nonequilibrium. Here, we show that the relation (28) can be
taken as an analogue of an extended first law of

thermodynamics, hence indicating the dynamics of our
setup to include entropy production.
Proceeding with the first term in (28), we find that

1

2π
∂vδ

�
1

4

Z
H
dΩ2 ffiffiffi

q
p

fl2
�
¼ 1

2π
∂vδS ð31Þ

can be understood as a consequence of the nonconservation
of entropy in a dynamical system in an irreversible process.
It has a close resemblance to dS=dt which is not zero in
nonequilibrium thermodynamics. The existence of f again
is due to the infinite-dimensional symmetry in the system.
Taking ΛðvÞ ¼ 3=l2ðvÞ as a state parameter, the second

term

1

8π

Z
H
dΩ2 ffiffiffi

q
p

f∂vlδl ¼ −
1

8π

Z
H
dΩ2 ffiffiffi

q
p

f
l3

6
∂vlδΛ

¼ −
Z
H
dΩ2 ffiffiffi

q
p

f
l3

6
∂vlδρΛ

≡ ΘδρΛ ð32Þ

resembles ΘdΛ in [54].5 Here Θ is the generalized force
conjugate to Λ, and corresponds dimensionally to a gener-
alized volume. Specifically, Θ is the generalized time-
dependent volume inside the dynamical cosmological
horizon up to a factor. Since ρΛ ≡ Λ=8π, the term ΘδρΛ
is the contribution of vacuum energy production which is
consistent with the increase of vacuum energy in a dynami-
cally inflating universe. As long as ∂vl > 0, this term is the
contribution of the increase in the volume enclosed by the
horizon, due to the time dependent cosmological constant. In
the limit v → ∞, this term vanishes as expected for pure de
Sitter spacetime with a constant cosmological constant.
The term

1

16π

Z
H
dΩ2 ffiffiffi

q
p

YAδðl2hAÞ≡ΩδJ ð33Þ

is the contribution of angular momentum to the thermo-
dynamic potential.
The fourth term can be rewritten as

−
Z
H
dΩ2 ffiffiffi

q
p ∂vf

4πf
fδl2 ≡ σδA ð34Þ

and can be thought of as an analogue of the contribution of
surface tension when considering a screen or bubble. It has
been shown that this contribution is σδA, where σ is the
surface tension and A is the area of the horizon [53,56].
In Eq. (34), the surface tension is defined as σH ≡
−∂vf=4πf, and can be understood as a negative pressure.

5A similar analysis has been done for anti–de Sitter in [55],
where the negative cosmological constant is considered as a
thermodynamic variable.
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This term acts as the work done by a repulsive force,
expanding the horizon. Our result is different from that of
[57] since we have assumed Tμν ¼ 0 near the horizon,
while their definition of surface tension is proportional to
Tr
rjrc , where rc is the radius of the cosmological horizon in

their coordinates. Accordingly, that contribution is not
included in our case. The reason we have not combined
this term with (35) is based on the assumption of taking the
surface gravity to be only a function of v.
Finally, in the term

κ

2π

1

4

Z
H
dΩ2 ffiffiffi

q
p

fδl2 ≡ TδS; ð35Þ

we interpret κ=2π as the temperature of the dynamical
inflating spacetime and the expression

R
dΩ2 ffiffiffi

q
p

fδl2 can
be taken as the change in the area. Consequently, this term
can be interpreted as the equivalent of TδS. The coefficient
fðv; xÞ is defined by (11), and this can be a proposal for the
dynamical entropy and dynamical surface gravity. Note that
κ is restricted by the equations of motion and is not an
arbitrary function. It is also worth pointing out, this term
contributes to nonintegrability due to the fact that δκ ≠ 0.
This issue will become crucial in the study of charge
algebras, which will be studied in future work and is not a
subject in this work.
In a gravitational system such as a merger, or a ringing

black hole, entropy production is implemented by gravi-
tational waves. Here we have found, the stretching of
spacetime itself contributes to entropy production, when
dealing with an otherwise empty spacetime with positive
curvature due to a positive cosmological constant.
The extended first law of thermodynamics for such a

system is, therefore,

δQ ¼ 1

2π
∂vδSþ ΘδρΛ þΩδJ þ σδAþ TδS ð36Þ

As a result, what is found from (28) and consequently
(36), is that the dynamical spacetime of our setup is an
analogue of a nonequilibrium process.

VI. CONCLUSION

In this paper, we propose a process described by the
equations of motion for the near-horizon geometry of a
universe with a dynamical cosmological constant. We
consider this system to approach pure de Sitter at timelike
infinity, and find that such a system enjoys a larger
symmetry than the usual SOð4; 1Þ symmetry of pure de
Sitter given by (6). This larger symmetry consists of
supertranslation like generators on the horizon. The super-
translations generate the dynamical transition between
different states of an irreversible process. By calculating
the change in the charges associated to these symmetry
generators, we find an extended version of the first law of
thermodynamics, expressed in (36). This displays the
nonconservation of the charges in a nonequilibrium proc-
ess. The apparent nonconservation of the charges is due to
the dynamical aspect we have assumed and the incapability
of the observer to examine the degrees of freedom in the
entire spacetime beyond its horizon.
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