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The oldest and most robust technique to search for new particles is to look for “bumps” in invariant mass
spectra over smoothly falling backgrounds. We present a new extension of the bump hunt that naturally
benefits from modern machine learning algorithms while remaining model agnostic. This approach is based
on the classification without labels (CWoLa) method where the invariant mass is used to create two
potentially mixed samples, one with little or no signal and one with a potential resonance. Additional
features that are uncorrelated with the invariant mass can be used for training the classifier. Given the lack
of new physics signals at the Large Hadron Collider (LHC), such model-agnostic approaches are critical for
ensuring full coverage to fully exploit the rich datasets from the LHC experiments. In addition to
illustrating how the new method works in simple test cases, we demonstrate the power of the extended
bump hunt on a realistic all-hadronic resonance search in a channel that would not be covered with existing
techniques.
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I. INTRODUCTION

Searching for new resonances as bumps in the invariant
mass spectrum of the new particle decay products is one of
the oldest and most robust techniques in particle physics,
from the ρ meson discovery [1] and earlier up through the
recent Higgs boson discovery [2,3]. This technique is very
powerful because sharp structures in invariant mass spectra
are not common in background processes, which tend to
produce smooth distributions. As a result, the background
can be estimated directly from data by fitting a shape in
a region away from the resonance (sideband) and then
extrapolating to the signal region. It is often the case that
the potential resonance mass is not known a priori and a
technique like the BumpHunter [4] is used to scan the
invariant mass distribution for a resonance. In some cases,
the objects used to construct the invariant mass (e.g., jet
substructure) and their surroundings (e.g., presence of

additional forward jets) have properties that can be used
to increase the signal purity. Both ATLAS and CMS1 have
conducted extensive searches for resonances decaying into
jets originating from generic quarks and gluons [5–7], from
boostedW [8,9],Z [10],Z0 [11–13] orHiggs bosons [14–16],
from b-quarks [17], as well as from boosted top quarks
[18,19]. There is some overlapping sensitivity in these
searches, but in general the sensitivity is greatly diminished
away from the target process (see e.g., [20–22] for examples).
It is not feasible to perform a dedicated analysis for every
possible topology and so some signals may be missed.
Global searches for new physics have been performed by
the LHC experiments and their predecessors, but only utilize
simple objects and rely heavily on simulation for background
estimation [23–34].
The tagging techniques used to isolate different jet types

have increased in sophistication with the advent of modern
machine learning classifiers [35–58]. These new algorithms
can use all of the available information to achieve optimal
classification performance and could significantly improve
the power of hadronic resonance searches. Deep learning
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techniques are able to outperform traditional methods by
exploiting subtle correlations in the radiation pattern inside
jets. These correlations are not well modeled in general [40]
which renders classifiers suboptimal when training on
simulation and testing on data. This is already apparent
for existing multivariate classifiers where post hoc mis-
modeling corrections can be large [59–67]. Ideally, one
would learn directly from data (if possible) and/or combine
with other approaches to mitigate potential mismodeling
effects during training (e.g., with adversaries [68]).
We propose a new method that combines resonance

searches with recently proposed techniques for learning
directly from data [69–72]. Simply stated, the new algo-
rithm trains a fully supervised classifier to distinguish a
signal region from a mass sideband using auxiliary observ-
ables which are decorrelated from the resonance variable
under the background-only hypothesis. A bump hunt is
then performed on the mass distribution after applying a
threshold on the classifier output. This is classification
without labels (CWoLa) [70] where the two mixed samples
are the signal region and sideband and the signal is a
potential new resonance and the background is the
Standard Model continuum. The algorithm naturally inher-
its the property of CWoLa that it is fully based on data and
thus is insensitive to simulation mis-modeling.2 The key
difference with respect to Refs. [70,71] is that the signal
process need not be known a priori. Therefore, we can
become sensitive to new signatures for which we did not
think to construct dedicated searches.
In addition to CWoLa, the extended bump hunt shares

some features with the sPlot technique [73]. Our proposed
extension to the bump hunt makes use of auxiliary features
to enhance the presence of signal events over background
events in a target distribution, where the signal is expected
to be resonant. Similarly, sPlot provides a procedure for
using auxiliary features (“discriminating variables” in the
language of Ref. [73]) to extract the distribution of signal
and background events in a target distribution (“control
variable” in Ref. [73]). In both cases, the auxiliary features
must be uncorrelated with the target feature. One main
difference between the methods is that the extended bump
hunt uses machine learning to identify regions of phase
space that are signal-like. A second key distinction between
methods is that sPlot takes the distribution of the auxiliary
features as input, whereas this information is not required
for the extended bump hunt.
This paper is organized as follows. Section II formally

introduces the CWoLa hunting approach and briefly dis-
cusses how auxiliary information can be useful for bump
hunting. Then, Sec. III uses a simplified example to show

how a neural network can be used to identify new physics
structures from pseudodata. A complete procedure for
applying the CWoLa hunting approach is given in Sec. IV.
Finally, a realistic example based on a hadronic resonance
search is presented in Sec. V. Conclusions and the future
outlook are presented in Sec. VI.

II. BUMP HUNTING USING CLASSIFICATION
WITHOUT LABELS

In a typical resonance search, events have at least two
objects whose four-vectors are used to construct an
invariant mass spectrum. The structure of these objects
as well as other information in the event may be useful for
distinguishing signal from background even though there
may be no other resonance structures. Let mres be a random
variable that represents the invariant mass. The distribution
of mres given background is smooth while mres given signal
is expected to be localized near some m0. Let Y be another
random variable that represents all other information
available in the events of interest. Define two sets of events:

M1 ¼ fðmres; YÞjjmres −m0j < δg ðthe signal regionÞ
ð2:1Þ

M2 ¼ fðmres; YÞjδ < jmres −m0j < ϵg
ðthe sideband regionÞ; ð2:2Þ

where ϵ > δ. The value of δ is chosen such that M1 should
have much more signal thanM2 and the value of ϵ is chosen
such that the distribution of Y is nearly the same between
M1 and M2. CWoLa hunting entails training a classifier to
distinguish M1 from M2 using Y and then performing a
usual bump hunt on mres after placing a threshold on the
classifier output. This procedure is then repeated for all
mass hypotheses m0. Note that nothing is assumed about
the distribution of Y other than that it should be nearly the
same forM1 andM2 under the background-only hypothesis.
Ideally, Y incorporates as much information as possible

about the properties of the objects used to construct the
invariant mass and their surroundings. The subsequent
sections will show how this can be achieved with neural
networks. To build intuition for the power of auxiliary
information, the rest of this section provides analytic
scaling results for a simplified bump hunt with the most
basic case: Y ∈ f0; 1g.
Suppose that we have two mass binsM1 andM2 and the

number of expected events in each mass bin is Nb. Further
suppose that the signal is in at most one of the Mi (not
required in general) and the expected number of signal
events is Ns. A version of the bump hunt would be to
compare the number of events in M1 and M2 to see if
they are significantly different. As a Bernoulli random
variable, Y is uniquely specified by PrðY ¼ 1Þ. Define
PrðY ¼ 1jbackgroundÞ ¼ p and PrðY ¼ 1jsignalÞ ¼ q.

2The algorithm also inherits the assumptions of the CWoLa
method. In this context, the main assumption will be that the
signal region and the sideband region can only be distinguished
with the mass. More details on this are in the next sections.
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The purpose of CWoLa hunting is to incorporate the
information aboutY into the bump hunt. By only considering
events with Y ¼ 1, the significance of the signal scales as
qNs=

ffiffiffiffiffiffiffiffiffi
Nbp

p
. Therefore, the information about Y is useful

when q >
ffiffiffiffi
p

p
.

More quantitatively, suppose that we declare discovery
of new physics when the number of events with Y ¼ 1 in
M1 exceeds the number of events with Y ¼ 1 in M2 by
some amount. Under the background-only case, for
Nb ≫ 1, the difference between the number of events in
M1 and M2 with Y ¼ 1 is approximately normally distrib-
uted with mean 0 and variance 2Nbp. If we want the
probability for a false positive to be less than 5%, then the
threshold value is simply

ffiffiffiffiffiffiffiffiffiffiffiffi
2Nbp

p
×Φ−1ð0.95Þ, where Φ is

the cumulative distribution function of a standard normal
distribution. Ideally, we would like to reject the SM often
when there is beyond the SM (BSM), Ns > 0. Figure 1
shows the probability to reject the SM for a one-bin search
using Nb ¼ 1000 and Ns ¼ 20 for different values of p as a
function of q. The case p ¼ q ¼ 1 corresponds to the
standard search that does not gain from having additional
information. However, away from this case, there can be a
significant gain from using Y, especially when p is small and
q is close to 1. In the case where Y is a truth bit, i.e.,
p ¼ 1 − q ¼ 0, the SM is rejected as long as a single BSM
event is observed. By construction, when q → 0 (for p > 0),
the rejection probability is 0.05. Note that when q < p, only
considering events with Y ¼ 1 is suboptimal—this is a
feature that is corrected in the full CWoLa hunting approach.

While the model used here is simple, it captures the key
promise of CWoLa hunting that will be expanded upon in
more detail in the next sections. In particular, the main
questions to address are: how to find Y and how to use the
information about Y once it is identified.

III. ILLUSTRATIVE EXAMPLE: LEARNING
TO FIND AUXILIARY INFORMATION

This section shows how to identify the useful attributes
of the auxiliary information using a neural network. The
example used here is closer to a realistic case, but is still
simplified for illustration. Let the auxiliary information
Y ¼ ðx; yÞ be two-dimensional and assume that Y and the
invariant mass are independent given the process (signal or
background). This auxiliary information will become the
jet substructure observables in the next section. For
simplicity, for each process Y is considered to be uniformly
distributed on a square of side length l centered at the
origin. The background has l ¼ 1 ð−0.5<x<0.5;−0.5<
y<0.5Þ and the signal follows l ¼ w ð−w=2 < x <
w=2;−w=2 < y < w=2Þ. Similarly to the full case, suppose
that there are three bins of mass for a given mass
hypothesis: a signal region m0 � Δ and mass sidebands
ðm0 − 2Δ; m0 − ΔÞ, ðm0 þ Δ; m0 þ 2ΔÞ. As in the last
section, the signal is assumed to only be present in one
bin (the signal region) with Ns expected events. There are
Nb expected background events in the signal region and
Nb=2 expected events in each of the mass sidebands.
The model setup described above and used for the rest of

this section is depicted in Fig. 2. The numerical examples
presented below useNb ¼10, 000,Ns ¼ 300, and w ¼ 0.2.
Without using Y, these values correspond to
Ns=

ffiffiffiffiffiffi
Nb

p ¼ 3σ. The ideal tagger (one that is optimal by
the Neyman-Pearson lemma [74]) should reject all events
outside of the square in the ðx; yÞ plane centered at zero
with side length w. For the Ns and Nb used here, the
expected significance of the ideal tagger is 15σ. The goal of
this section is to show that without using any truth
information, the CWoLa approach can recover much of
the discriminating power from a neural network trained in
the ðx; yÞ plane. Note that optimal classifier is simply given
by thresholding the likelihood ratio [74] psðYÞ=pbðYÞ; in
this two-dimensional case it is possible to provide an
accurate approximation to this classifier without neural
networks. However, these approximations often do not
scale well with the dimensionality and will thus be less
useful for the realistic example presented in the next
section. This is illustrated in the context of the CWoLa
hunting in Fig. 3.
To perform CWoLa hunting, a neural network is trained

on ðx; yÞ values to distinguish events in the mass sidebands
from the signal region. Due to the simple nature of the
example, it is also possible to easily visualize what the
network is learning. A fully connected feed-forward net-
work is trained using the PYTHON deep learning library

FIG. 1. The probability to reject the SM as a function of q for
fixed values of p as indicated in the legend when only consid-
ering events with Y ¼ 1. The expected background is fixed at
1000 and the expected BSM is fixed at 20. When q ¼ 0, there is
no signal and therefore the rejection probability is 5%, by
construction. When q ¼ p ¼ 1, Y is not useful, but the proba-
bility to reject is above 5% simply because there is an excess of
events inclusively.
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KERAS [75] with a TENSORFLOW [76] backend. The net-
work has three hidden layers with (256, 256, 64) nodes.
The network was trained with the categorical cross-entropy
loss function using the ADAM algorithm [77] with a
learning rate of 0.003 and a batch size of 1024. The data
are split into three equal sets, one used for training, one for
validation, and one for testing. The training is terminated

based on the efficiency of the signal region cut on the
validation data at a fixed false-positive rate of 2% for
the sideband data. If it fails to improve for 60 epochs, the
training is halted and the network reverts to the last epoch
for which there was a training improvement. This simple
scheme is robust against enhancing statistical fluctuations
but reduces the number of events used for the final search

sideband

target

signal + bg

bg only

CWoLa labels

FIG. 2. An illustration of the CWoLa procedure for the simple two-dimensional uniform example presented in Sec. III. The left plot
shows the mass distribution for the three mass bins, which is uniform for the background. The blue line is the total number of events and
the other lines represent thresholds on various neural networks described in the text leading up to Fig. 5. The center plots show the ðx; yÞ
distribution for the events in each mass bin with truth labels (purple for background and yellow for signal). The black square is the true
signal region for this example model, with signal distributed uniformly inside. The right plot shows the combined distribution in the
ðx; yÞ plane with CWoLa labels that can be used to train a classifier even without any truth-level information (red for target window, blue
sideband).

NN h(x,y)

training data

x

y
h

=

=

sideband

target

Histogram h(x,y)

FIG. 3. The CWoLa-labeled data can be used to construct an estimate for the optimal classifier hðx; yÞ ¼ pbðx;yÞþpsðx;yÞ
pbðx;yÞ . The top path

shows an estimate constructed by histogramming the observed training events in the ðx; yÞ plane. The bottom path shows an estimate
constructed by using a neural network trained as described in the text, which can be efficiently generalized to higher dimensional
distributions. The optimal classifier would be 1 outside of the small box centered at the origin and 1.75 inside the box.
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by a factor of 3 as only the classifier output on the test set is
used for the bump hunt. In the physical example described
later, a more complicated scheme maximizes the statistical
power of the available data.
Visualizations of the neural network trained as described

above are presented in Fig. 4. In the top two examples, the
network finds the signal region and correctly estimates
the magnitude of the likelihood ratio. In both these cases,
the network also overtrains on a (real) fluctuation in the
training data, despite the validation procedure. Such
regions will tend to decrease the effectiveness of the
classifier, since a given cut threshold will admit more
background in the test data. In the bottom left example of
Fig. 4, the network finds a function approximately mon-
otonic to hðx; yÞ but with different normalization—while
the cost function would have preferred to optimize this
network to reach hðx; yÞ, the validation procedure cut off
the optimization when the correct shape to isolate the signal
region had been found. Due to the nature of the cuts, there
is no performance loss for this network, since crucially it
has found the correct shape near the signal region. The last
network fails to converge to the signal region, and instead
focuses its attention on the fluctuation in the training data.
The variation in the network performance illustrates the
importance of training multiple classifiers and using
schemes to mitigate the impact of statistical fluctuations
in the training dataset.
Figure 5 shows the mass distribution in the three bins

after applying successfully tighter threshold on the neural
network output. Since Y is not a truth bit, the data are
reduced in both the signal region and the mass sidebands.
For each threshold, the background expectation n̂b assuming
a uniform distribution is estimated by fitting a straight line
to the mass sidebands. Then, the significance is estimated
from the number of observed events in the signal region, no,

via S≈ðno−n̂bÞ=
ffiffiffiffiffi
n̂b

p
. Of the threshold presented, the

maximum significance corresponds to the 5% efficiency
with S ≈ 10.8σ. Even though the ideal significance is 15σ,
for the particular pseudodataset shown in Fig. 5, the ideal
classifier significance is 13.9σ.
We can study the behavior of our neural network (NN)

classifiers by looking at the significance generated by
ensembles of models trained on signals of different
strength, as shown in Fig. 6. The top histogram shows
the significance for an ensemble of models trained on the
example signal (blue) and on a control dataset with no
signal (green). The control ensemble appears to be nor-
mally distributed around s=

ffiffiffi
b

p ¼ 0, while the example
signal ensemble is approximately normally distributed
around 12σ (compared to 13.9σ for the ideal cut), along
with a smallOð5%Þ population of networks that fail to find
the signal. The middle histogram shows the effect of
decreasing the size of the signal region ws while modifying
Ns to maintain an expected significance of 15σ with ideal
cuts. When ws is decreased, the training procedure appears
to have a harder time picking up the signal, possibly due to
our choice of an operating point of 2% false-positive rate
for the sideband validation. For ws ¼ 0.1 (green), about
50% of the networks effectively find the signal. For ws ¼
0.05 (red), only about 5% find the signal. The bottom plot
shows the effect of increasing ws while keeping Ns fixed,
so that the strength of the signal decreases. When the size of
the signal region is doubled to ws ¼ 0.4 (green), giving an
expected significance of 7.5σ, the network performs
similarly to the ws ¼ 0.2 example (blue). When the signal
distribution is identical to the background distribution

FIG. 4. The classifier hðx; yÞ constructed from four indepen-
dent training runs on the same example two-dimensional model
dataset described in the text. The thick contours represent the cuts
that would reduce the events in the test data target window by a
factor of ϵtest ¼ 10%, 5%, 1%.

FIG. 5. The mass distribution after various threshold on the
neural network classifier. The flat background fit from the
sideband regions are the dashed lines, and the statistical un-
certainty for each bin is shown by the error bars. The top
histogram is the model before any threshold in the ðx; yÞ plane,
and from top to bottom respectively the histogram is given for
efficiency thresholds of 10%, 5%, 1%, 0.2%. The significance is
S ¼ 3σ, 9.4σ, 10.8σ, and 3.4σ for respectively no threshold, 10%,
5%, and 1%. The 0.2% threshold reduces the signal to no
statistical significance.
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(ws ¼ 1.0, red), there is on average a small decrease in
performance compared to simply not using a classifier.

IV. FULL METHOD

The previous sections use key elements of the full
extended bump hunt but do not include all components,
including the full background estimation and statistical
analysis. This section gives a concrete prescription for
applying the CWoLa hunting method in practice, which
will be used in an explicit example in Sec. V. The setup is as
in the previous sections: there is feature mres where the
signal is expected to be resonant and then a set of other
features Y that are uncorrelated with mres, but potentially
useful for distinguishing signal from background. It is
important to state that while a detailed model of Y is not
required to perform the CWoLa hunting procedure that is
described in the rest of the section, a limited model of Y is
required to ensure the correlations with mres are minimal.
Such a model could come from simulation, from theory, or
directly from a sufficiently signal-devoid data sample.
While in the presence of signal, the CWoLa hunting

method would ideally learn systematic correlations between
mres and Y, instead, it may focus on statistical fluctuations in
the background distributions. A naive application of CWoLa
directly on the data may produce bumps in mres by seeking
local statistical excesses in the background distribution. This
corresponds to a large look-elsewhere effect over the space

of observables Y—the classifier may search this entire space
and find the selection with the largest statistical fluctuation.
In Sec. III, we took the approach of splitting the dataset into
training, validation and test samples which eliminates this
affect, since the statistical fluctuations in the three samples
will be uncorrelated. However, applying this approach in
practice would reduce the effective luminosity available for
the search and thus degrade sensitivity. We therefore apply a
cross-validation technique which allows all data to be used
for testing while ensuring that event subsamples are never
selected using a classifier that was trained on them. We split
the events randomly, bin-by-bin, into five event samples of
equal size. The first sample is set aside, and the first classifier
is trained on the signal- and sideband-region events of the
remaining four samples. This classifier may learn the
statistical fluctuations in these event samples, but those will
be uncorrelated with the fluctuations of the first sample.
Applying the classifier to the set-aside event sample will then
correspond to only one statistical test, eliminating the look-
elsewhere effect. By repeating this procedure 5 times, each
time setting aside one k-fold for testing and four for training
and validation, all the data can be used for the bump hunt by
adding up the selected events from each k-fold.
The algorithm we used for this procedure is summarized

in Algorithm 1, and illustrated in Fig. 7. For each set-aside
test set, we perform four rounds of training and validation
using the four remaining data subsets. In each round, we set
aside one of the remaining subsets as validation data, and

FIG. 6. Top left: Histogram of significance at a test threshold of 6% for 100 NN trained on the example toy model data (blue), and 100
NN trained on a control dataset with no signal present (green). The dashed green line gives the expected significance of 13.9σ for the
example dataset with ideal cuts. Top right: Histogram of significance for ensembles with expected signal strength of 15σ with ideal cuts.
The blue is ðNb ¼ 10000; Ns ¼ 300; ws ¼ 0.2Þ at a test threshold of 6%, the green is ðNB ¼ 10000; Ns ¼ 150; ws ¼ 0.1Þ at a test
threshold of 1.5%, and the red is ðNB ¼ 10000; Ns ¼ 75; ws ¼ 0.05Þ at a test threshold of 0.4%. For each ensemble, 100 independent
instances of the dataset are generated and one NN is trained on each dataset. Bottom: Histogram of significance for ensembles with
ðNb ¼ 10000; Ns ¼ 300Þ and varying ws. Blue is ws ¼ 0.2 at a test threshold of 6%, green is ws ¼ 0.4 at a test threshold of 24%, and
red is ws ¼ 1.0 [for which the background and signal distribution in ðx; yÞ are identical] at a test threshold of 50%. For each ensemble,
100 independent instances of the dataset are generated and one NN is trained on each dataset. The dashed line gives the expected
significance for each ensemble.
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the final three are used for training data. Only data falling in
the signal and sideband regions are used for training and
validation. The training and validation data are labeled as 0
or 1 if they fall in the sideband or signal regions, respectively.
For each round, we train 20 NNs on the same training and
validation data, using a different initialization each time.
Each classifier is validated according to its performance as
measured on validation data. Our performance metric ϵval is
the true positive rate for correctly classifying a signal-region

event as such, evaluated at a threshold with given false
positive rate s% for incorrectly classifying a sideband region
event as a signal region event. If a signal is present in the
signal region and the classifier is able to find it, then it should
be that ϵval > s%. On the other hand, if no signal is present
then ϵval ≃ s% is expected. Since we will be typically
considering Oð1%Þ-level signals we consider s% ∼ 1% in
our test, and set s% ¼ 0.5% to generate our final results. For
each of the twenty models, we end training if its performance

FIG. 7. Illustration of the nested cross-validation procedure. Left: The dataset is randomly partitioned bin-by-bin into five groups.
Center: For each group i ∈ f1; 2; 3; 4; 5g (the test set), an ensemble classifier is trained on the remaining groups j ≠ i. There are four
ways to split the four remaining groups into three for training and one for validation. For each of these four ways, many classifiers are
trained and the one with best validation performance is selected. The ensemble classifier is then formed by the average of the four
selected classifiers (one for each way to assign the training/validation split). Right: Data are selected from each test group using a
threshold cut from their corresponding ensemble classifier. The selected events are then merged into a single mres histogram.

Algorithm 1. Nested cross-validation training and event selection procedure. See Appendix A for further details on the last two points.

Split dataset into five subsets stratified by mres binning
for subseti in subsets do

Set aside subseti as test data
for subsetj in subsets, j ≠ i do

Validation data sideband ¼ merge sideband bins of subsetj
Validation data signal-region ¼ merge signal-region bins of subsetj
Training data sideband ¼ merge sideband bins of remaining subsets
Training data signal-region ¼ merge signal-region bins of remaining subsets
Assign signal-region data with label 1
Assign sideband data with label 0
Train twenty classifiers on training data, each with different random initialization
modeli;j ¼ best of the twenty models, as measured by performance on validation data

end
modeli ¼

P
j modeli;j=4

Select Y% most signal-like data points of subseti, as determined by modeli. The threshold on the neural network to achieve Y%
is determined using all other bins with large numbers of events and so the uncertainty on the value is negligible.

end
Merge selected events from each subset into new mres histogram
Fit smooth background distribution to mres distribution with the signal region masked
Evaluate p-value of signal region excess using fitted background distribution interpolated into the signal region.
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has not improved in 300 epochs, and revert the model to a
checkpoint saved at peak performance. We select the best
of these 20 models, and discard the others. At the end of
four rounds, the four selected models are averaged to form
an ensemble model which is expected to be more robust
than any individual model. The ensemble model is used to
classify events in the test set, by selecting the r% most
signal-like events. This procedure is repeated for all five
choices of the test set, and the selected events from each are
combined into a signal histogram inmres. The presence of an
identifiable signal will be indicated by a bump in the signal
region, for which standard bump-hunting techniques can be
used to perform a hypothesis test. The use of averaged
ensemble models is important to reduce any performance
degradation due to overfitting. Since each of the four models
used to make each ensemble model has been trained on
different training sets and with different random weight
initialization, they will tend to overfit to different events.
The models will therefore disagree in regions where
overfitting has occurred, but will tend to agree in any
region where a consistent excess is found.
Further technical details about the statistical methods can

be found in Appendix A. Asymptotic formulas can be used
to determine the local p-value of an excess, but such
formulas must be validated using more computationally
expensive methods for each application of CWoLa hunting,
as is demonstrated in the Appendix A.

A. Interpreting the Results

The main result following the application of the method
from Sec. IV is the local p-value. To determine the
compatibility of the entire mass range with the no-
resonance hypothesis, it is desirable to be able to compute
a global p-value. In the result presented here, the mass
bins were fixed ahead of time and were also nonoverlap-
ping. Therefore, it is relatively simple to estimate a global
p-value using e.g., a Bonferroni correction. However,
this is not ideal (overconservative) when the mass bin
width is scanned as part of the procedure. It is still
possible to determine a global p-value, in the same spirit
as the full BumpHunter statistic [4]. This would require a
significant computational overhead as a large number of
neural networks would need to be trained for each of
many pseudoexperiments. An additional trials factor
would be associated with scanning the threshold fraction
on the neural network output. In the simplest approach, a
small number of well-separated working points would
be chosen, such as 10%, 1%, and 0.1%. These should be
sufficiently different that the three local p-values could
be treated as independent. However, a finer scan would
require a proper assessment of the global p-value using
pseudoexperiments. It may be possible to significantly
reduce the computational cost by estimating the correlation
between mass windows and threshold fractions in order to
properly account for the look-elsewhere effect [78,79].

One final remark is about how one would use CWoLa
hunting to set limits. In the form described above, the
CWoLa hunting approach is designed to find new signals in
data without any model assumptions. However, it is also
possible to recast the lack of an excess as setting limits on
particular BSM models. Given a simulated sample for a
particular model, it would be possible to set limits on this
model by mixing the simulation with the data and training a
series of classifiers as above and running toy experiments,
re-estimating the background each time. This is similar to the
usual bump hunt, except that there is more computational
overhead because the background distribution is determined
in part by the neural networks, and the distribution in
expected signal efficiencies cannot be determined except
by these toy experiments.3 In the absence of an excess, it is
also possible to directly recast the results by taking the
classifier trained on data with no significant signal. However,
without a real excess, the classifier will have nothing to learn.
Such a classifier will likely not be useful for any particular
signal model. Therefore, while it is technically possible to do
a standard reinterpretation of the results, the most powerful
limit setting requires access to the data to retrain the neural
networks for an injected signal.

V. PHYSICAL EXAMPLE

This section uses a dijet resonance search at the LHC to
show the potential of CWoLa hunting in a realistic setting.
As discussed in Sec. I, both ATLAS and CMS have a broad
program targeting resonance decays into a variety of SM
particles. Due to significance advances in jet substructure-
based tagging [35], searches involving hadronic decays of
the SM particles can be just as if not more powerful
than their leptonic counterparts. The usual strategy for these
searches is to develop dedicated single-jet classifiers, includ-
ing4 W=Z- [45,81], H- [82,83], top- [45,81,84], b- [46,85],
and quark-jet taggers [63,86]. Simulated events with per-
instance labels are used for training and then these classifiers
are deployed in data. However, the best classifier in data may
not be the best classifier in simulation. This problem is
alleviated when learning directly from data.
Learning directly from data has another advantage—the

decay products of a new heavy resonance may themselves
be beyond the SM. If the massive resonance decays into
new light states such as BSM Higgs bosons or dark sector
particles that decay hadronically, then no dedicated SM
tagger will be optimal [20,21]. A tagger trained to directly
find nongeneric-jet structure could find these new inter-
mediate particles and thus also find the heavy resonance.

3This complicates the legacy utility of the results, but it would
be possible to tweak procedures like those advocated by
RECAST [80] in which neutral networks would be automatically
trained for a new signal model.

4These are the latest
ffiffiffi
s

p ¼ 13 TeV results—see references
within to find the complete history.
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This was the approach taken in [87], but that method is
fully supervised and so suffers the usual theory prior
bias and potential sources of mismodeling. Here we will
illustrate how the CWoLa hunting approach could be used
instead to find such a signal. The next section (Sec. VA)
describes the benchmark model in more detail, as well as
the simulation details for both signal and background.

A. Signal and background simulation

For a benchmark signal, we consider the process
pp → W0 → WX, X → WW, where W0 and X are a new
vector and scalar particle respectively. This process is
predicted, e.g., in the warped extra dimensional construc-
tion of [22,88,89]. The typical opening angle between the
two W bosons resulting from the X decay is given by
ΔRðW;WÞ ≃ 4mX=mW0 for 2mW ≪ mX ≪ mW0, and so the
X particle will give rise to a single large-radius jet in the
hadronic channel when mX ≲mW0=4. Taking the mass
choices mW0 ¼ 3 TeV and mX ¼ 400 GeV, the signal in
the fully hadronic channel is a pair of large-radius jets J
with mJJ ≃ 3 TeV, one of which has a jet mass mJ ≃
80 GeV and a two-pronged substructure, and the other has
mass mJ ≃ 400 GeV with a four-prong substructure which
often is arranged as a pair of two-pronged subjets.
Events are generated with MADGRAPH5_AMC@NLO

[90] v2.5.5 to generate 104 signal events, using a model
file implementing the tensor couplings of [89] and selecting
only the fully hadronic decays of the three W bosons. The
events are showered using PYTHIA 8.226 [91], and are passed
through the fast detector simulator DELPHES 3.4.1 [92].
Jets are clustered from energy-flow tracks and towers using
the FASTJET [93] implementation of the anti-kt algorithm
[94] with radius parameter ΔR ¼ 1.2. We require events to
have at least two ungroomed large-radius jets with pT >
400 GeV and jηj < 2.5. The selected jets are groomed
using the soft drop algorithm [95] in grooming mode, with
β ¼ 0.5 and zcut ¼ 0.02. The two hardest groomed jets are
selected as a dijet candidate, and a suite of substructure
variables are recorded for these two jets. With the same
simulation setup, 4.45 × 106 quantum chromodynamic
(QCD) dijet events are generated with parton level cuts
pT;j > 300 GeV, jηjj < 2.5, mjj > 1400 GeV.
In order to study the behavior of the CWoLa hunting

procedure both in the presence and absence of a signal, we
produce samples both with and without an injected signal.
The events are binned uniformly in logðmJJÞ, with 15 bins
in the range 2001 GeV < mJJ < 4350 GeV.

B. Training a Classifier

In order to test for a signal with mass hypothesis
mJJ ≃mres, we construct a “signal region” consisting of
all the events in the three bins centered aroundmres. We also
construct a low- and a high-mass sideband consisting of
the events in the two bins below and above the signal

region, respectively. The mass hypothesis will be scanned
over the range 2278 GeV ≤ mres ≤ 3823 GeV, to avoid the
first and last bins that cannot have a reliable background
fit without constraints on both sides of the signal region.
The signal region width is motivated by the width of
the mJJ peak for the benchmark signal process described
earlier. Because all particles in the process are very narrow,
this width corresponds to the resolution allowed by the jet
reconstruction and detector smearing effects and will be
relevant for other narrow signal processes also. For proc-
esses giving rise to wider bumps, the width of the signal
hypothesis could be scanned over just as we scan over the
mass hypothesis. We will then train a classifier to distin-
guish the events in the signal region from those in the
sideband on the basis of their substructure. The objective in
constructing the training framework is that the classifier
should be very poor (equal efficiency in signal region and
sideband for any threshold) in the case that no signal is
present in the signal region, but if a signal is present with
unusual jet substructure then the classifier should be able to
locate the signal and provide discrimination power between
signal and SM dijet events.
The background is estimated by fitting the regions

outside of the signal region to a smoothly falling distribu-
tion. In practice, this requires that the auxiliary information
Y is nearly independent of mJJ; otherwise, the distribution
could be sculpted. To illustrate the problem, consider a
classifier trained to distinguish the sideband and signal
regions using the observables mJ and the N-subjettiness

variable τð2Þ1 [96]. The ratio mJ=
ffiffiffiffiffiffiffi
τð2Þ1

q
is approximately the

jet pT, which is highly correlated with mJJ for the back-
ground. While it is often possible to find ways to decorre-
late substructure observables [87,97–99], we take a simpler
approach and instead select a basis of substructure variables
which have no strong correlations withmJJ. Wewill use the
following set of 12 observables which does not provide
learnable correlations with mJJ sufficient to create signal-
like bumps in our simulated background dijet event
samples, as we shall demonstrate later in this section:

For each jet∶ Yi ¼
�
mJ;

ffiffiffiffiffiffiffi
τð2Þ1

q
=τð1Þ1 ; τ21; τ32; τ43; ntrk

�
;

ð5:1Þ

where τMN ¼ τð1ÞM =τð1ÞN . The full training uses Y ¼ ðY1; Y2Þ.
All ratios of N-subjettiness variables are chosen to be
invariant under longitudinal boosts, so that the classifier
cannot learn pT from mJ and the other observables. The
two jets are ordered by jet mass, so that the first six
observables Y1 correspond to the heavier jet while the last
six Y2 correspond to the lighter jet. We find that while the
bulk of the mJ distribution in our simulated background
dijet samples do not vary strongly over the sampled range
of mJJ, the high mass tails of the heavy and light jet mass
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distributions are sensitive to mJJ. In lieu of a sophisticated
decorrelation procedure, we simply reject outlier events
which have mJ;A > 500 GeV and mJ;B > 300 GeV, where
the subscripts A and B refer to the heavier and lighter jet
respectively.
In our study, the classifiers used are dense neural networks

built and trained using KERAS with a TENSORFLOW backend.
We use four hidden layers consisting of a first layer of 64
nodes with a leaky rectified linear unit activation (using an
inactive gradient of 0.1), and second through fourth layers of
32, 16, 4 nodes respectively with exponential linear unit
activation [100]. The output node has a sigmoid activation.
The first three hidden layers are regulated with dropout
layers with 20% dropout rate [101]. The neural networks
are trained to minimize binary cross-entropy loss using the
ADAM optimizer with learning rate of 0.001, batch size of
20 000, first and second moment decay rates of 0.8 and
0.99, respectively, and learning rate decay of 5 × 10−4.
The training data is reweighted such that the low sideband
has equal total weight to the high sideband, the signal region
has the same total weight as the sum of the sidebands, and
the sum of all events weights in the training data is equal to
the total number of training events. This ensures that the NN
output will be peaked around 0.5 in the absence of any
signal, and ensures that low and high sideband regions
contribute equally to the training in spite of their disparity in
event rates.

C. Results

We use a sample of 553 388 QCD dijet events with
dijet invariant mass mJJ > 2001 GeV, corresponding to a
luminosity of 4.4 fb. We consider two cases: first, a
background-only sample; and second, a sample in which

a signal has been injected withmJJ ≃ 3000 GeV, with 877
events in the range mJJ > 2001 GeV. In the signal region
2730 GeV < mJJ < 3189 GeV, consisting of the three
bins centered around 3000 GeV, there are 81341 back-
ground events and 522 signal events, corresponding to
S=B ¼ 6.4 × 10−3 and S=

ffiffiffiffi
B

p ¼ 1.8. Labeling the bins 1
to 15, we perform the procedure outlined previously to
search for signals in the background-only and back-
ground-plus-signal datasets in signal regions defined
around bins 4–12. This leaves room to define a signal
region three bins wide, surrounded by a low and high
sideband each two bins wide.
In Fig. 8 (left), we plot the background-plus-signal

dataset which survive cuts at varying thresholds using the
output of the classifier trained on the signal bin centered
around 3 TeV. The topmost distribution corresponds to
the inclusive dijet mass distribution, while the subsequent
datasets have thresholds applied on the neural network
with overall efficiencies of 10%, 2%, and 0.5%, respec-
tively. A clear bump develops at the stronger thresholds,
indicating the presence of a 3 TeV resonance. The
automated procedure used to determine the significance
is explained in detail in Appendix A. In brief, we estimate
the background in the signal region by performing a fit
of a smooth three-parameter function to the event rates
in all the bins besides those in the signal region. We
perform a simple counting experiment in the signal region,
using the profile likelihood ratio as the test statistic, with
the background fit parameters treated as nuisance, with
preprofile uncertainties taken from the background fit
itself. The significance is estimated using asymptotic
formulas describing the properties of the profile like-
lihood ratio statistic [102]. Figure 8 shows the signal
significance for each signal mass hypothesis, in the case

FIG. 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled histogram) before and after applying jet
substructure cuts using the NN classifier output for the mJJ ≃ 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data
points outside of the signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet distribution with
no cut applied, while the subsequent datasets have cuts applied at thresholds with efficiency of 10−1, 10−2, 2 × 10−3, and 2 × 10−4.
Right: Local p0-values for a range of signal mass hypotheses in the case that no signal has been injected (left), and in the case that a
3 TeV resonance signal has been injected (right). The dashed lines correspond to the case where no substructure cut is applied, and the
various solid lines correspond to cuts on the classifier output with efficiencies of 10−1, 10−2, and 2 × 10−3.
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that no signal is present (left), and in the case that the
signal is present (right). We see that when no signal is
present, no significant bump is created by our procedure.
When a signal is present with mres ¼ 3 TeV, there is a
significant bump which forms at this signal hypothesis,
reaching 7σ at 0.2% efficiency. In Appendix B, we show
the mJJ distributions for each scan point used for the
calculation of these p-values.
The fact that there is no significant bump in the left

plot of Fig. 8 is an important method closure test. When
deploying the CWoLa hunting approach in practice, we
advocate to test the method in simulation in order to
validate that there are no bump-catalyzing correlations in
the selected classification features. A residual concern
may be that there are correlations in the data which are not
present in simulation. Residual correlations may come in
two forms: process and kinematic. Process correlations
occur when Y depends on the production channel (e.g.,
pp → qq or pp → gg) and mJJ also depends on the
production channel; kinematic correlations are the case
when mJJ is correlated with Y given the process. Residual
process correlations do not cause bumps because the mJJ
distribution of each process type (aside from signal) is
smoothly falling. Thus, even if the classifier can exactly
pick out one process, no bumps will be artificially sculpted.
Residual kinematic correlations could cause artificially
bumps in the mJJ distribution. Physically, kinematic corre-
lations occur because Yi is correlated with pT;i. One way to
show in data that residual kinematic correlations are neg-
ligible is to use a mixed sample in which pairs of jets from
different events are combined. As long as the potential signal
fraction is small, this mixed sample will have no resonance
peak.While the features chosen in this section were designed
to be uncorrelated withmJJ and not sculpt bumps, it may be
possible to utilize correlated features in a modified CWoLa
hunting procedure that includes systematic uncertainties for
strong residual correlations. We leave studies of this pos-
sibility to future work.
We can investigatewhat the classifier has learnt by looking

at the properties of events which have been classified as
signal-like. In the first (second) plot of Fig. 9, events in the
signal (sideband) region have been plotted on the plane of

the jet masses of the heavier jet (mJ;A) and the lighter jet
(mJ;B). After being trained to discriminate the events of the
signal region from those of the sideband, the 0.2% most
signal-like events as determined by the classifier are plotted in
red in the third plot of Fig. 9, overlaid on top of the remaining
events in gray. The classifier has selected a population of
events with mJA ≃ 400 GeV and mJB ≃ 80 GeV, consistent
with the injected signal. The final plot of the figure shows in
red the truth-level signal events, overlaid on top of the truth-
level background in grey.
Figure 10 shows some further 2D projections of the data.

In each case, the x-axis is the jet mass of the heavier or the
lighter jet in the top three or bottom three rows, respec-
tively, while the y-axes correspond to observable substruc-
ture variables as measured on the same jet. The first column
is all events in the signal region. The second column is
truth-level signal events in red overlaid on truth-level
background in gray. The third column is the 0.2% most
signal-like events as determined by the classifier trained on
this data. The fourth column shows the 0.2% most signal-
like events as determined by a classifier trained on the data
sample with no signal data, only background. We see that
the tagger trained when signal is present has found a cluster

of events with a 400 GeV jet with small τð1Þ43 and small ntrk;

and an 80 GeV jet with relatively small
ffiffiffiffiffiffiffi
τð2Þ1

q
=τð1Þ1 , small

τð1Þ21 , and small ntrk. On the other hand, the events selected
by the classifier trained on the background-only sample
show no obvious clustering or pattern, and perhaps represent
artifacts of statistical fluctuations in the training data.
The ability of the CWoLa approach to discriminate

signal from background depends on the number of signal
and background events in the signal and sideband regions.
In Fig. 11, we keep the number of background events fixed
but vary the size of the signal, and plot truth-label receiver
operating characteristic (ROC) curves for each example.
This allows us to directly assess the performance of the
taggers for the signal. For varying thresholds, the x-axis
corresponds to the efficiency on true signal events in the
signal region, ϵS, while the y-axis represents the inverse
efficiency on true QCD events in the signal region, ϵB. The
gray dashed lines labeled 1 to 32 indicate the significance

FIG. 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to discriminate events in the signal region
(left plot) from those in the sideband (second plot). The third plot shows in red the 0.2% most signal-like events determined by the
classifier trained in this way. The rightmost plot shows in red the truth-level signal events.
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improvement, ϵS=
ffiffiffiffiffi
ϵB

p
, which quantifies the gain in stat-

istical significance compared to the raw mJJ distribution
with no cuts applied. In solid black we show the perfor-
mance of a dedicated tagger trained with labeled signal and
background events using a fully supervised approach. This
gives a measure of the maximum achievable performance

for this signal using the selected variables. A true dedicated
tagger which could be used in a realistic dedicated search
would be unlikely to reach this performance, since this
would require careful calibration over 12 substruc-
ture variables with only simulated data available for the
signal. While the CWoLa-based taggers do not reach the

FIG. 10. 2D projections of the 12D feature-space of the signal region dataset. First column: All signal region events. Second column:
Truth-level simulated signal events are highlighted in red. Third column: 0.2% most signal-like events selected by the classifier
described in Sec. Vare highlighted in red. Fourth column: Highlighted in red are the 0.2% most signal-like events selected by a classifier
trained on the same sample but with true-signal events removed.
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supervised performance in these examples, we find that
performance does gradually improve with increasing
statistics.
We also show in the dashed black curve the performance

of the W=Z tagger in identifying this signal for which the
tagger is not designed. This tagger is trained on a sample
of pp → W0 → WZ events in the fully hadronic channel.
In this case, the tagger is trained on the individual W=Z
jets themselves rather than the dijet event, as is typical in
the current ATLAS and CMS searches. In producing the
ROC curve, dijet events are considered to pass the tagging
requirement if both large-radius jets pass a threshold cut
on the output of theW=Z-tagger. We see that for ϵB ∼ 10−4,
which is a typical background rejection rate for recent
hadronic diboson searches, the signal rate is negligible
since the X-jet rarely passes the cuts. This illustrates that
CWoLa hunting may find unexpected signals which are
not targeted by existing dedicated searches is S=B if high
enough. If S=B is too low, then the CWoLa hunting
approach is not able to identify the signal and it underper-
forms compared with the search that is targeting a different
signal model.
The datasets and code used for the case study can be

found at Refs. [103,104].

VI. CONCLUSIONS

We have presented a new anomaly detection technique
for finding BSM physics signals directly from data.
The central assumption is that the signal is localized
as a bump in one variable in which the background is
smooth, and that other features are available for addi-
tional discrimination power. This allows us to identify
potential signal-enhanced and signal-depleted event sam-
ples with almost identical background characteristics on
which a classifier can be trained using the classification
without labels approach. In the case that a distinctive

signal is present, the trained classifier output becomes an
effective discriminant between signal events and back-
ground events, while in the case that no signal is present
the classifier output shows no clear pattern. An event
selection based on a threshold cut on the classifier output
produces a smooth distribution if no signal is present and
produces a bump if a signal is present, and so standard
bump hunting techniques can be used on the selected
distribution.
The prototypical example used here is the dijet resonance

search in which the dijet mass is the one-dimensional
feature where the signal is localized. Related quantities
could also be used, such as the single jet mass for boosted
resonance searches [11–13] or the average mass of pair
produced objects [105–110]. Jet substructure information
was used to augment information from just the dijet mass
and a CWoLa classifier was trained using a deep neural
network to discriminate signal region events from sideband
events based on their substructure distributions. Additional
local information such as the number of leptons inside the
jets, the number of displaced vertices, etc. could be used in
the future to ensure sensitivity to a wide variety of models.
Furthermore, event-level information such as the number of
jets or the magnitude of the missing transverse momentum
could be added to an extended CWoLa hunt.
The CWoLa hunting strategy is generalizable beyond this

single case study. To summarize, the essential requirements
are:
(1) There is one bump-variable mres in which the

background forms a smooth distribution, for which
there is a background model such a parametric
function, and a signal can be expected to be localized
as a bump. This was the variable mJJ in the dijet
case study.

(2) There are additional features Y in the events which
may potentially provide discriminating power be-
tween signal and background, but the detailed top-
ology of the signal in these variables is not known in
advance. This was the set of substructure variables in
the dijet study.

(3) The background distribution in Y should not have
strong correlations with mres over the resonance
width of the signal. In the case that such correlations
exist, it may be possible to find a transformation of
the variables that removes these correlations before
being fed into the classifier, or alternatively to train
the classifier in such a way that penalizes shaping of
the mres distribution outside of the signal region.
Closure tests in simulation or with mixed samples in
data can be used to confirm that Y is not strongly
correlated with mres.

By harnessing the power of modern machine learning,
CWoLa hunting and other weakly supervised strategies
may provide the key to uncovering BSM physics lurking
in the unique datasets already collected by the LHC
experiments.

FIG. 11. Truth-label ROC curves for taggers trained using
CWoLa with varying number of WX signal events, compared to
those for a dedicated tagger trained on pure WX signal and
background samples (dashed black) and one trained to discrimi-
nate W and Z jets from QCD (dot-dashed black). The CWoLa
examples have B ¼ 81341 in the signal region and S ¼ ð230;
352; 472; 697; 927Þ.
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APPENDIX A: STATISTICAL ANALYSIS

The significance of the bump is evaluated in the
following way. First, after selecting the signal-like events
in each cross-validation sample using its corresponding
classifier, we merge the selected events from the k samples
into a single selected dataset. This dataset is binned in mJJ,
and we estimate the background by fitting a smooth,
parametric function to the dataset with the signal region
masked out. We use the following three-parameter function
(also used in the ATLAS [9] and CMS [111] searches for
fully hadronic diboson resonances5):

dN
dmJJ

¼ p0

ð1 −mJJ=
ffiffiffi
s

p Þp1

ðmJJ=
ffiffiffi
s

p Þp2
; ðA1Þ

which is fitted using a least-squares fit. The number of
events in the signal region is predicted by summing the
predictions in each of the three signal region bins. The
systematic uncertainty in this fit is estimated by propagat-
ing linearly the uncertainties on the fit parameters onto an
uncertainty in the signal region prediction. The fits and fit
uncertainties are indicated in the left plot in Fig. 8 by the
red dashed lines and gray bands. We tested the goodness of
fit of this functional form in background-only simulations
using Kolmogorov-Smirnov tests, and in any real search we
would advocate similar tests in simulation. In the case that
simulation is not completely reliable, it is possible to define
data validation regions using nonsignal selections in order
to provide a cross-check of the fit function, as is done in
e.g., Ref. [9]. In the case of CWoLa hunting, this would
entail selecting events in nonsignal windows of the clas-
sifier output. For example, if using a 1% selection for the
signal search, one could use other percentile windows of

the NN output to define nonsignal selections with similar
statistics which should be well fitted by the fit function
under both the null and alternate hypotheses.
Since the shape of the signal in the signal region is

a priori unknown we base our hypothesis test on the total
number of events in the signal region. We form the profile
likelihood ratio,

λ0 ¼
Lðμ ¼ 0; ˆ̂θÞ
Lðμ̂; θ̂Þ ; ðA2Þ

where μ indicates the signal rate and θ is the nuisance
parameter associated with the systematic uncertainties on

the background prediction. In the numerator, ˆ̂θ represents
the best fit value for the nuisance parameter in the back-
ground-only hypothesis μ ¼ 0, while in the denominator μ̂
and θ̂ represent the combined best fit for μ and θ. The
likelihood is formed from a product of a Poisson factor for
the number of events in the signal region, and a Gaussian
constraint for the background nuisance parameter,

Lðμ; θÞ ¼ Poissðnjbþ θ þ μÞe−θ2=ð2σ2Þ; ðA3Þ

where n is the observed number of events in the signal
region, b is the number of background events predicted by
the sideband fit, θ is the nuisance parameter associated with
the systematic uncertainty for the background prediction,
and σ is the uncertainty on that nuisance parameter.
Our test statistic is

q0 ¼
�−2 logðλ0Þ; μ̂ > 0;

0; μ̂ ≤ 0:
ðA4Þ

Using asymptotic formulas [102] gives a significance Z ¼ffiffiffiffiffi
q0

p
and p0 ¼ 1 −ΦðZÞ, where Φ is the cumulative

distribution function of the normal distribution.
The null hypothesis is that the dijet invariant mass

distribution after selection by the classifiers is well
described by the smooth functional form of Eq. (A1).
This requires that prior to any classification, the spectrum is
smooth (already assumed by ATLAS and CMS) and that
the classifiers are not able to generate localized features in
the mass distribution following the CWoLa hunting pro-
cedure. In order to use the asymptotic formulas from
Ref. [102], the bin counts in the selected, merged datasets
must be Poissonian. The rest of the section investigates the
validity of these approximations.
Let fðxÞ represent the function described by Eq. (A1)

prior to any classification and consider a dataset with

NðuncutÞ
i events in mJJ bin i (bin center mres;i) with

NðuncutÞ
i ∼ Poissðfðmres;iÞÞ. Let Y be a set of auxiliary

5More complex procedures for fitting the background such as
Gaussian processes are also possible [112] but their use is beyond
our scope.
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observables whose probability distributions are indepen-
dent of mres. The goal is to demonstrate that the p-values
reported from the statistical procedure described above

are accurate. To begin, the dataset with NðuncutÞ
i events is

partitioned into k samples with equal probability for an
event to be assigned to one of the samples. Next, a classifier
is trained to discriminate signal region events from side-
band events using all subsamples except the jth. The
classifier is then used to select a fraction ϵ of events in
the held out jth sample, using all other bins to determine ϵ.6

This means that

nðcutÞj;i ∼ Poiss

�
ϵ

k
fðmres;iÞ

�
: ðA5Þ

In the case that the cross-validated selected event rates in
the k samples are uncorrelated, then it would follow that
after merging these datasets the total selected event rate
distribution would be given by

NðcutÞ
i ¼

X
j

nðcutÞj;i ∼ Poissðϵfðmres;iÞÞ: ðA6Þ

However, because the events in one sample are used to train
a classifier applied to the other samples, it cannot neces-
sarily be assumed that the event rates are uncorrelated
between samples. If strong correlations are expected
between selected samples then in order to calculate reliable
p-values the test statistic would need to be calibrated by
running many toy experiments on either new simulated
event samples or on bootstrapped samples, with the NNs
trained fresh each time. Since this is a computationally
expensive procedure, it is preferable if a simpler alternative
is available.
In order to check that the simpler approach (assuming

no correlations between cross-validated samples) is valid,
we have performed an empirical test of this effect in the
following way. We generated 103 toy datasets with binned
event counts drawn from Poisson distributions with means
determined by the distribution of Eq. (A1), with param-
eters obtained by a fit to the uncut dijet dataset used in
Sec. V. Each event has 12 auxiliary variables, as in Sec. V,
but with these variables drawn from a random uniform
distribution in the range [0, 1]. NNs were trained using a
cross-validation procedure exactly as described in Sec. V,
except for the following modifications that were required
to reduce the computational time required. We used
fourfold cross validation (rather than fivefold), trained
only four NNs per iteration from which the best was

selected (rather than 20), and the NNs were trained with a
patience of 100 epochs of no improvement in validation
performance before stopping (instead of 300 epochs). The
trained NNs were used to select the 1% most “signal-like”
events for each toy. For each toy we then calculated the
test statistic for rejection of the null hypothesis, and the
distribution of these test statistics is shown by the black
markers in Fig. 12.
Additionally, we generated 105 toy datasets with mres

drawn in the same way. Instead of training NNs to select
events, we randomly selected 1% of events. For each toy
we then calculated the test statistic for rejection of the
null hypothesis, and the distribution of these test statistics
is shown by the orange histogram in Fig. 12. Finally, we
show the expected asymptotic distribution with the blue
line.
The key feature of Fig. 12 is that the test statistic

distribution for the NN toys shows no apparent deviation
from that for the simple toys or from the asymptotic form.
We therefore find no evidence of any distortion caused by
correlations between cross-validation samples in this toy
experiment.
Finally, it is worth remarking that the p-value computed

with the above procedure is only local. If a local p-value is
below some threshold, a follow-up, dedicated analysis
using an orthogonal dataset should target the identified
region of phase space with no trials factor penalty. One
could also estimate a global p-value in a standard way
using e.g., a Bonferroni correction. Other methods like the
full BumpHunter statistic could be used [4] but that is not
the standard practice in the current ATLAS and CMS
diboson resonance searches.

FIG. 12. Toy test statistic distributions. Black data points: 103

toys with NN training and cross-validation procedure; error bars
represent

ffiffiffiffi
N

p
Poisson uncertainty. Orange histogram: 105 toys

with random selection (no NN training or cross validation). Blue:
Asymptotic formula.

6The number of events used to determine ϵ is sufficiently large
that the uncertainty on the value of the NN used to achieve ϵ
efficiency is negligible.
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APPENDIX B: DIJET MASS SCANS

In Figs. 13 and 14 we plot the dijet invariant mass distributions before and after applying tagger cuts over
the full range of the mass scan described in Sec. V. The p-values calculated from the top four distributions in these
plots are displayed in Fig. 8 (right).

FIG. 13. Dijet invariant mass distributions in the resonance mass scan in the case that no signal is present. In each plot, the signal and
sideband regions used for training the tagger are indicated by the vertical dashed lines. The top distribution in each plot is the original
dijet mass distribution, and the subsequent distributions have had cuts applied at efficiencies of 10−1, 10−2, 2 × 10−3, and 2 × 10−4

respectively. The dashed red curves are fits determined by weighted least squares, and the gray bands the corresponding systematic
uncertainty in the fit. In the lowest distribution of each plot the fit is poor as the presence of low-count bins makes the least-squares fit
inappropriate—the fit line is kept to guide the eye, but the fit uncertainty band is omitted.
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