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Abstract

In this thesis, I explore various experimental, theoretical, and observational consequences
of supersymmetry (SUSY). I show how copious production of Higgs bosons in SUSY events
at the LHC can be a striking signal of multiple SUSY-breaking. In the context of anomaly
mediation in supergravity, I demonstrate how goldstino couplings can be used as a probe of
the underlying symmetry structure of unbroken SUSY in anti-de Sitter space. When mutiple
SUSY-breaking occurs and goldstini comprise most of the dark matter in the universe, I
find a new two-body decay mode of a goldstini to a gravitino and a single photon that could
be a striking indirect detection of dark matter if it were seen at gamma-ray telescopes such
as FERMI.
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5.1 Sfermion soft masses and goldstino couplings from minimal anomaly media-

tion (i.e. "gravitino mediation" in the language of Ch. 5, so (K) = 0). Here,

-y is the anomalous dimension of the chiral multiplet and -y = dy/d log p.

Starting with unbroken SUSY in AdS4 with Ricci curvature R = 12As 

12n 2  we show how the spectru evolves as SUSY breaking is tuned to3/2'

achieve flat space with 7 -* 0. In this table, "soft mass-squared" and "gold-

stino coupling" refer to the supertraces in Eqs. (5.87) and (5.90), and the loop

level refers to the order at which the effect starts. Minimal anomaly media-

tion also yields A-terms and B-terms, which are described in Sec. 5.4.5. This

table only includes the contributions from bulk terms and not from one- and

two-loop boundary terms (analogous to Ref. [87]) necessary to preserve the

SUSY algebra in AdS 4 ; these boundary terms are irrelevant in flat space. . 107

17



18



Chapter 1

Introduction

My studies here at MIT have coincided with one of the most exciting periods in modern

particle physics-the opening and first major operational period of the CERN Large Hadron

Collider (LHC). The first collisions took place in September 2008, barely a month after my

matriculation, and the first running period began in 2010 and continued until 2013. The

largest achievement of the first running period came in July 2012 with the discovery of the

Higgs boson, the last heretofore-undiscovered particle in the Standard Model. Operating

at center-of-mass energies of 7 and 8 TeV (with an upgrade to at least 13 TeV due for

completion in 2015), the LHC has been pushing the high energy frontier, and continues to

be well-poised to discover any Beyond the Standard Model (BSM) physics that may exist

at the TeV scale.

A well-motivated and extensively-studied model of such BSM physics is supersymme-

try (SUSY). In this thesis, I will discuss a number of phenomenological and theoretical

surprises of supersymmetry as it may be realized in nature. The only allowed non-trivial

extension of the Poincar6 group, supersymmetry is a fermionic symmetry that transforms

bosons into fermions and vice versa. For every fermion (boson) in the Standard Model, it

predicts a partner boson (fermion) with the same gauge quantum numbers and, for unbro-

ken supersymmetry, the same muass. As such superpartners have yet to be discovered, if

supersymmetry is realized in nature it must be spontaneously broken, with (almost) all of

the superpartners acquiring masses of at least the weak scale. In Ch. 2 (based in part on

the TASI lectures of Ref. [21]), I will review the basics of supersymmetry necessary for the

remainder of the thesis.
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Supersymmetry provides a particularly appealing solution to the hierarchy problem, the

puzzle of why the Higgs boson mass (and its vacuum expectation value) are so small com-

pared to other expected scales in high-energy physics when it generically receives radiative

corrections to its mass-squared proportional to the square of such scales. Supersymme-

try protects scalar masses from such quadratic corrections, as supersymmetry relates the

renormalization of bosons to that of fermions, whose masses are in turn protected by chiral

symmetries. As a result, if supersymmetry is to resolve the hierarchy problem, one ex-

pects to find superpartners near or not too much above the weak scale, which is precisely

the range that the LHC is currently probing. Already after its first full run, the ATLAS

and CMS collaborations at the LHC have managed to place impressive bounds on various

superpartner masses, ranging upwards of a TeV for the colored squarks and gluinos.

Supersymmetric theories also often provide a good particle candidate for the dark matter

which comprises nearly a quarter of the energy density of the universe. Viable SUSY

theories usually require the imposition of a discrete symmetry called R-parity, in order to

avoid dangerous lepton- and baryon-violating couplings that would mediate unacceptably

short proton decay lifetimes in contradiction to experiment. Such a symmetry mandates

that superpartners can only be created or destroyed in pairs, which implies that the lightest

supersymmetric particle (the LSP) will be absolutely stable, and as such is a good dark

matter candidate if it is electrically neutral and a color singlet. This is especially true if the

LSP is the superpartner of a Standard Model particle (such as the Z or the Higgs), in which

case it would be expected to have a weak-scale mass and interaction cross section, and would

thus be produced with the correct abundance in the early universe (the so-called 'WIMP

miracle'). At the LHC, this would imply that collisions can only produces SUSY particles

in pairs, each of which would decay (perhaps in a cascade) to the invisible LSP, resulting in

a signal with many Standard Model particles and considerable missing transverse energy.

The breaking of SUSY necessarily features particles that couple only very weakly to

the Standard Model-through heavy messengers and/or non-renormalizable interactions.

If this were not the case, supertrace sum rules would imply that at least one scalar with

electric or color charge would be considerably lighter than the corresponding fermions, in

contradiction with experiment. As a result, SUSY-breaking is, in the usual paradigm, said

to take place in a hidden sector. As particles in the hidden sector couple so weakly to the

supersymmetric Standard Model (SSM), their interactions are usually irrelevant to physics
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at LHC scales -unless one of them is lighter than all the SSM superpartners, in which case

the lightest observable-sector SUSY particle (LOSP) would be expected to decay to such a

hidden sector particle.

The best-motivated candidate for such a light hidden sector SUSY state is the goldstino-

a particle whose presence figuratively permeates all the work in this thesis.1 As with any

other spontaneously broken symmetry, spontaneously broken SUSY will have a massless

Goldstone mode in its spectrum that obeys a shift symmetry. As SUSY is a fermionic sym-

metry, the Goldstone mode is the fermionic goldstino. The goldstino necessarily couples

derivatively to the Noether current of supersymmetry---that is, to a fermion and its super-

partner boson, with a strength that can be readily shown to be proportional to the partners'

mass(-squared) difference (itself a measure of SUSY-breaking). If the goldstino is lighter

than the LOSP (as is guaranteed for global SUSY, where it is always massless), one expects

LHC SUSY events to always feature two cascade decays ending with the decay of a LOSP

to its SM partner and an invisible goldstino. For example, a bino LOSP (the superpartner

of the U(1) hypercharge gauge boson) would predominantly decay into a single photon or Z

boson and a goldstino, yielding signals at the LHC that would include photons and missing

energy.

If SUSY is independently broken in multiple hidden sectors, then each sector will have

its own goldstino. One linear combination of these goldstini will be the true goldstino,

which couples derivatively to the supercurrent, but the other goldstini may have strikingly

different couplings in general. As a result, LOSP decays to these other goldstini may result

in unconventional LHC phenomenology. In Ch. 3, based on work in Ref. [146], I will discuss

a scenario in which a bino LOSP would primarily decay to a Higgs boson and one of the

goldstini, contrary to the usual expectation for a single hidden sector. This would result in

copious production of potentially boosted Higgses in LHC SUSY events, which would give

us considerable insight into the structure of both SUSY breaking and the Higgs sector.

If SUSY is a local symmetry, the resulting gauge degree of freedom is a spin-3/2

fermion-the gravitino, the superpartner of the graviton. When this supergravity (SUGRA)

is broken, the gravitino acquires a mass M 3 /2 , and it eats the goldstino degrees of freedom.

This is called the super-Higgs mechanism, by analogy with the Higgs mechanism for ordi-

nary bosonic internal symmetries in which gauge bosons acquire mass by eating goldstone

'Literally, too, should it comprise the dark matter of the universe.
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bosons. At energies well above m 3/2 , the interactions of the longitudinal polarizations of

the gravitino are well described by those of the goldstino-a goldstino equivalence theorem

much like the goldstone equivalence theorem for internal symmetries.

In local SUSY, a ubiquitous cause of boson-fermion mass differences is anomaly media-

tion, which occurs when SUSY-breaking is communicated to the visible sector at loop level

by the regulators of the theory. In order to elucidate this theory, which has been the subject

of much confusion in the literature, in Ch. 4, drawing from work in Ref. [53], I approach

anomaly mediated gaugino masses from the point of view of (eaten) goldstino couplings. I

find that there are two fundamentally different 'faces' of anomaly mediation-Khhler medi-

ation, in which gaugino masses and the corresponding goldstino couplings are identical (as

expected), and gravitino mediation, in which gaugino masses occur without corresponding

goldstino couplings. This quite surprising result suggests that anomaly mediation is not a

SUSY-breaking effect.

In Ch. 5, based on Ref. [54], I show explicitly that anomaly mediation does not break

SUSY, as it exists for unbroken SUGRA, whose background metric is that of anti-de Sitter

(AdS) space. In AdS space, spacetime translations and supersymmetry transformations no

longer commute, and there can be boson-fermion mass differences proportional to r- =

M3/2 even in the absence of SUSY breaking. This is clearest for scalar masses and B-terms at

tree level-there are both B-terms without corresponding goldstino couplings, and goldstino

couplings without corresponding scalar masses for SUGRA in flat space. I find the usual

anomaly-mediated effects arise starting at one- or two-loop level by carefully considering a

1PI effective action-the running of couplings in AdS SUSY are necessarily associated with

corresponding boson-fermion mass differences, which are preserved when SUSY-breaking

uplifts the background metric to flat space. As a result, anomaly-mediated effects, as they

do not break SUSY, do not have associated goldstino couplings, while there are additional

loop-level goldstino couplings without associated mass differences arising from the uplifting

to flat space caused by SUSY breaking.

In models with multiple SUSY-breaking, one of the corresponding goldstini can easily

comprise most of the dark matter in the universe. Such dark matter will not be abso-

lutely stable, however, as the uneaten goldstini can decay to the gravitino on cosmological

timescales. In Ch. 6, drawing off Ref. [126], I discuss a striking two-body decay mode that

can occur in the presence of electroweak symmetry breaking-that of an uneaten goldstino
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to a single photon and a gravitino. The resulting signal would be a monochromatic gamma

(or X-) ray line visible at telescopes such as FERMI, an impressive indirect detection of

dark matter. I find that such a mode can generically be the first sign of such dark matter

for goldstini masses at or below the TeV scale.

23



24



Chapter 2

Supersymmetry

Supersymmetry (SUSY) is a well-motivated extension of the Standard Model (SM), with

rich implications for collider physics and cosmology. In this chapter, I will introduce SUSY

in 3+1 dimensions using the language of superspace (in both Minkowski and anti-de Sitter

spacetimes), and briefly discuss some of the more prominent phenomenological ramifications

of both global and local SUSY. Certain portions of this chapter draw heavily from parts of

Ref. [21].

First, a brief note on notation-in this thesis I will use exclusively two-component

spinor notation, also known as Weyl spinors, largely following the conventions of Ref. [154].1

While it is possible to do superspace manipulations using four-component notation (as

in Refs. [152, 73]), Weyl spinors are far more convenient, since they are true irreducible

representations of the Lorentz group.

2.1 Superspace

SUSY relates the properties of bosous and fermions, but in ordinary relativistic quantum

field theory, bosons and fermnions are represented by very different objects. For example, a

spin-O boson is described by a complex-valued scalar field O(x), while a spin-1/2 fermion is

described by a Grassmann-valued Weyl field 0,(x) (with a Lorentz spinor index, no less).

In order to make SUSY manifest, we want to somehow package bosons and fermions into a

single object.

'We differ in that we use daggers instead of bars to denote the hermitian conjugates of spinors, and our
gauginos are normalized such that Wa = a.
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To do so, we introduce the technique of superspace, which augments the ordinary space-

time coordinates with an additional Grassmann spinor 0O (and its complex conjugate 6ta):

x1, -+ {X", , t6fa}. (2.1)

A field that depends on {xl', 0', Ota} is called a superfield, which automatically packages

boson and fermion fields into multiplets. While it is possible to describe SUSY theories

using ordinary space-time alone, superspace makes it simpler to identify SUSY-invariants

and write SUSY Lagrangians.

A generic scalar supermultiplet is

S(X/", C", 6'), (2.2)

which depends on the Grassmann spinor placeholders/coordinates 0'. Throughout this

thesis we will use boldface letters to indicate superfields. This object is an overall Lorentz

scalar, but it contains spin-0, spin-1/2, and spin-1 components. Because of the Grassmann

nature of our placeholders, the Taylor expansion is exact:

S a + (k + 02 b

+ OtXt + Otuovp + 0 20 t(t (2.3)

+ Ot2c + 0 t2t0  + 04d.

Invariance of the action under shifts in x1' corresponds to translation invariance, an

important subset of the full Poincar6 space-time symmetry. It is natural to explore what

corresponds to translation invariance in superspace under the shift

00 -+ O" + EC, (2.4)

where 0f is an infinitesimal Grassmann parameter. This (passive) transformation of the

coordinate can be interpreted instead as an (active) transformation of the components. For

example, starting with

<(") = 0 + H"..., (2.5)
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translations yield

4=(0± (+ + (0' + a ) 'O/' + . .. (2.6)

(0 + O*C' + Ooa +(2.7)

so the components transform as # 9 + OVL, (with 0a, left fixed). As desired, we have

related bosons to fermions! However, we know that boson and fermion kinetic terms have

differing numbers of derivatives, so in order to successfully build a SUSY Lagrangian, we

must somehow combine 0' translations with space-time derivatives.

The key to SUSY is that the shift of the fermionic coordinate 0' is accompanied by a

translation of the ordinary bosonic coordinate xY as well

06 o' + d6' (2.8)

XP- x1' + AP,

where

A -_ -icO- idt"O. (2.9)

We could have guessed the form of A", since this is the unique real four-vector object one

can build that is linear in e and has the right dimension. 2

Let us now act this SUSY coordinate shift on a generic supermultiplet S:

S(X", 0, 6ta) - S( " + Ax", 0" + E", Ota + cta) (2.10)

= S(WI, 00, 0 60)

+ (Apo, + 6CD2 + EC t.) S(X", Q0, otO),

where we have used the Taylor expansion up to the first order, both for ordinary and

Grassmann coordinates. Here, we are using the notation Oc, and W6

We see immediately that translations in superspace act in two different ways. First,

the shift 0' - 0 + E0 relates higher components of the superfield to lower components

as in Eq. (2.6). Second, because AP contains factors of 0', the translation x" -> xP + A"

2 Note that from Eq. (2.5), 0 (and thus c) must have mass dimension [0] = -1/2.
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relates derivatives of lower components to higher components. This is crucial for relating

the kinetic terms for bosons and fermions.

2.2 The SUSY Algebra

Thus far, we have talked about SUSY transformations without ever mentioning the under-

lying SUSY algebra. Indeed, one advantage of superspace is that Eq. (2.8) contains the full

structure of SUSY. However, it is instructive to turn the superspace translation picture into

an operator picture to show that the SUSY algebra closes.

Recall that ordinary space-time translations are generated by the energy-momentum

operator

e iavPtf(x") = f ( + a"), (2.11)

where

P I -i O. (2.12)

Translations are part of the full

erated by M,, with algebra

[MwVMPT] =-

[Pp,My] =-

[P,, Pv] = 0.

Poincare group that includes Lorentz transformations gen-

i VPMy1 + '11 M[ P - r1pMVT - Th)TM/p),

i (r Pp - P

(2.13)

(2.14)

(2.15)

Note that the explicit expression of M,,, depends on the spin of the field it acts on. For a

scalar field, for example,

Mt = -i (X,,&v - X'O') . (2.16)

We want to introduce new SUSY generators that implement Eq. (2.10), namely operators

Q and Qt such that

ehQ- - Qt S(X/1, 0, Ota) = S(z" + AP, 00 + CC, 0 ta + e6a). (2.17)
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In analogy with Eq. (2.11), we see immediately that

&
Qa = a + (woI t)&,, (2.18)

a
Qta = i + (54)0,. (2.19)

aW6

It is straightforward to show that these generators satisfy the SUSY algebra

a, Q } = I 2o' P

{Q ,Q} = {Q , Q} = 0,

Qa, P,] = M , P, = 0, (2.20)

[M,, Qa] = -io-ve Q,

[M"V,Qt&] = -iTgtdQH,

thus extending the Poincard algebra. In this way, two SUSY translations are equivalent to

one ordinary space-time translation, and we sometimes refer to SUSY as being the "square

root" of translations. The non-trivial commutator between SUSY and Lorentz generators

just indicates that the SUSY generator is a Lorentz spinor. The SUSY algebra indeed

closes, and accounting for the possibility of higher AN, one can show that SUSY is the

unique extension of the Poincar6 algebra. [89]

The SUSY algebra allows us to write the Hamiltonian H = P0 as a sum of squares of

SUSY generators:

H =(QtQi + QiQt + QQ2 + Q2Q ). (2.21)
4 1

If SUSY is unbroken (i.e. it is a symmetry of the vacuum, Q 10) = 0), then

(H) = (01 H 10) = 0 (SUSY vacuum), (2.22)

so the vacuum energy is zero. The converse is also true, such that a zero vacuum energy

implies Qa 10) = 0 and SUSY is unbroken. In contrast, if the vacuum energy is non-zero,

then SUSY is spontaneously broken in the vacuum. In fact, because each term in Eq. (2.21)

is an operator squared,

(H) > 0 (SUSY-breaking vacuum), (2.23)
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so spontaneous SUSY breaking corresponds to a strictly positive vacuum energy. It should

be stressed that this statement only holds for global SUSY in flat space, in which gravity

is not dynamical; SUSY-breaking is indeed compatible with the (nearly) vanishing cosmo-

logical constant in our universe.

As Q and Qt commute with P 2 , we can immediately make a very powerful statement

about unbroken SUSY-every component of a superfield satisfies the same Klein-Gordon

equation and therefore has the same mass. The fact that boson and fermion masses are

related by SUSY has extremely important implications for the "hierarchy problem" of the

Standard Model-the question as to why the Higgs boson mass-squared is so small compared

to any putative higher energy scales in physics (the Planck scale, if nothing else) as it

receives quantum corrections quadratic in those scales. SUSY protects scalar mass-squareds

by relating them to fermion masses, which are themselves protected by chiral symmetries.

Of course, there is no 511 keV bosonic partner of the electron, so if SUSY is realized in

nature, it must be spontaneously broken. However, even in spontaneously broken SUSY,

scalar mass-squareds receive at most corrections logarithmic in new energy scales. The

coefficients of such logarithms are generically scalar mass-squareds themselves-so for a

natural theory, one expects the mass scale of superpartners to be not that far above the

weak scale, exactly the scale that the LHC is probing.

One can augment the SUSY algebra with an additional U(1)R symmetry that does not

commute with Q:

[Q, R] = -Q [Q1, R] = Q. (2.24)

Effectively, this gives a charge of +1 to 0 and a charge of -1 to Ot, so different components

of a superfield will have different R-charges.

2.3 SUSY-Covariant Derivatives and Chiral Multiplets

Since superspace includes both ordinary spacetime coordinates and the new Grassman co-

ordinates, it is natural to consider derivatives with respect to these new coordinates. The

most obvious choice would be -S, but note that it does not commute with SUSY trans-

formations, rendering its use very impractical. We can, however, construct SUSY-covariant
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derivatives

D(_ =a + i(7-i8t ),,, L

. a
Dt = a + ( ) .

50tt6

(2.25)

(2.26)

that do commute with Qa, and Q. as desired. As a result, SUSY-covariant derivatives of

superfields transform as sensible superfields. Note also that

{DaI D } = -2io- . (2.27)

Like any sensible derivative, these obey a Leibniz (product) rule

Da( XY) = (D 0X)Y + X(DCY). (2.28)

There is one subtlety, however, because the Ds pick up a minus sign if you move them across

an odd number of spinor indices:

DV(XOY) = (D 0XO)Y - X3(DY). (2.29)

Note that D3S = Dt3S = 0, because

with /,.

These SUSY-covariant derivatives

can use them to constrain superfields.

constraint

{a, DO} = 0.3 Like the Qs, the Ds also commute

are useful in a large variety of circumstances. We

For example, we define a chiral superfield 4 by the

D t 1= 0. (2.30)

Similarly, an anti-chiral superfield 4t satisfies De4 = 0; they are hermitian conjugates

of each other. We can also use SUSY-covariant derivatives to construct chiral superfields;

Dt2 V is automatically chiral for any V as Dt3 = 0.

SUSY-covariant derivatives can also be used to extract components of a superfield. For

3 This fact is not true in AdS 4 space or SUGRA, which is part of the reason why SUGRA is so complicated.
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example, a chiral superfield has the components

(2.31)

1De =, (2.32)

_D2) -F. (2.33)
4

where I means to take the lowest component of a superfield. Note that any other components

of P (i.e. by applying Dt to these) will be proportional to derivatives of these components

due to Eq. (2.27) and the chirality of P. For chiral superfields, we will often write this as

q + 2x0 + F0 2 , suppressing the Ot components (or, more technically, incorporating the Ot

dependence into a modified spacetime coordinate).

In the presence of an R-symmetry, D (Dt) has charge -1 (+1), so for a chiral multiplet

of charge r, 0 has charge r, x has charge r - 1, and D has charge r - 2.

SUSY-covariant derivatives provide a different and generally more useful means for

finding SUSY transformations of a superfield:

6V = 2i(OaEc - CO 7 Ot)D V +-i SEcD + c. Dt6V, (2-34)

Brief calculations then give the SUSY transformations of fields in a chiral multiplet:

69 = E"D'a4| - 2EX, (2.35)

6xc = _JD 3DcyJI + 1 tDt6D,(D - f2aF - iv(oct)aOp#, (2.36)

1 1
F tDtD2 -| cE)DD 2 . t .(2.37)4 4

The component q is a complex scalar, x its partner Weyl fermion, and F is another complex

scalar that can be shown to be an auxiliary field-its kinetic term has no derivatives, so it

does not propagate and may be completely integrated out of the Lagrangian. If (F) / 0,

note that x transforms as a shift--X is then a goldstone fermion and SUSY is spontaneously

broken. Therefore, F is an order parameter for SUSY-breaking.

Note that since D3 = 0 and 4 is chiral, F =-D 2 I transforms as a total derivative.

This makes it a good candidate for a SUSY-invariant action. The same is also true of

I D 2 Dt 2 Vj since D3 = Dt 3 = 0. In fact, any SUSY-invariant action can be written in the
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form

= d4 0 Vcomp + (J d 2 0 <bcomp + h.c.) (2.38)

for some composite superfields V and <bcomp satisfying Vt = V, Dt-4 = 0, with f d40 and

f d2 0 shorthands for I ED2Dt2 I and - D 2 , respectively.4 It is often useful to write this

purely as an integral over half of superspace

fC d2 0 8 - comp + h.c. (2.39)

If the theory obeys ail R-symmetry, it is clear that V must have R-charge 0 and <bcomP

must have R-charge 2.

If our theory only has chiral superfields <b , a candidate renormalizable Lagrangian is

the Wess-Zumino Lagrangian

C = d4 0 <bti4b + (J d2 0 W(<bi) + h.c. , (2.40)

where W is some (holomorphic) function of the superfields Vb, which we call the superpo-

tential. For a renormalizable theory, the superpotential is at most cubic in fields. A brief

calculation gives the corresponding Lagrangian in components:

£ = -* - ixtI oX + FiF*i

1
+ FWi - Wijxix3 + hi.c. (2.41)

2

As promised, F is an auxiliary field as it has no kinetic terms. As a result, we carl

immediately perform the path integral over its possible field configurations, solving its (full

quantum) equation of motion:

F' = - W,*, (2.42)

£ = -0Pia4** - ixti6:yaP Xi + FiF*"

1
- W -W* - yWij X + h.c. (2.43)

2

4Due to their Grassmann nature, integration and differentiation with respect to 0(t) are equivalent.
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A generic (non-renormalizable) SUSY effective field theory will in general feature terms

higher order in fields in the superpotential, terms higher order in fields in the integrand

of f d4 0 (then called the Kihler potential K, which was just -V)i' in the Wess-Zumino

model), as well as terms with arbitrary numbers of spacetime or SUSY-covariant derivatives.

Note that the SUSY Lagrangian is invariant under the Kdhler transformation K -

K + P + Pt for P chiral, as the resulting terms either vanish or are a total derivative.

2.4 Gauge Interactions

Chiral multiplets do not contain a vector degree of freedom, so SUSY gauge interactions

will require another sort of multiplet. Let us begin by considering the transformation of a

charged chiral multiplet under a U(1) gauge transformation:

(D e i . (2.44)

Due to the possible spacetime dependence of a, such a gauge transformation does not

commute with SUSY unless a is promoted to a full superfield:

4 e - Cq4), (2.45)

with Q chiral. As (non-constant) chiral and anti-chiral superfields cannot cancel against

each other, this means that the kinetic term 4)t14 is not gauge-invariant. We rectify this by

introducing a real vector superfield V V t that transforms under a gauge transformation

as

V V - , (2.46)2

so that the Lagrangian

L d40 4)tC2qV4) (2.47)

is now gauge-invariant. The superfield V has a large number of components, but many of

them are pure gauge, as they can be removed by the gauge transformation of Eq. (2.46). The

physical components are those which are not present in a chiral or anti-chiral superfield-a
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gauge boson A,, (the 00t component), a fermionic gaugino Aa (the O0 t2 component) and its

hermitian conjugate, and real scalar D (the 04 component) which will prove to be auxiliary.

The latter two components do not transform under a gauge transformation, while the vector

transforms as expected.

The superfield V of course needs its own gauge-invariant kinetic term. In order to build

one, we need a gauge-invariant superfield containing V:

1
WC, -- Dt 2DV, (2.48)

4

= AG + DO, - i(o-4 vO)aF, - i02(o-J'0At). (2.49)

In addition to being gauge invariant, W, is also chiral as Dt3 = 0. Note that D is also

an order parameter for SUSY-breaking, as A, will transform as a shift (and will thus be

a Goldstone fermion) if D obtains a vev. It is generally true, however, that a D-term can

only be non-zero if a F-term is also non-zero (with one exception for Abelian groups which

is difficult to generalize to local SUSY).

A suitable kinetic Lagrangian is then 5

J d20 IW"W, + h.c. (2.50)

11
S-F FIv - iAt A + 2(2.51)11V -P 2 (2.51)

This can be generalized to non-abelian gauge groups, in which the components of V are

in the adjoint representation of the gauge group:

1
W -- Dt2 (e- 2VDE) 2 V) , (2.52)

8

W, a eQWae-Q, (2.53)

e 2V C t C2V - , (2.54)

<D 9 "<b, 1(2.55)

J d2O Tr [W"Wa]. (2.56)

If our theory obeys an R-symmetry, V must have vanishing R-charge (as it is real),

5 Here, we switch to a canonical normalization for the gauge multiplet, in which g is in the covariant
derivative rather than the kinetic term.
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which implies that the gaugino A must have R-charge 1.

The most general renormalizable SUSY theory with gauge interactions is then 6

L d4 4tI e2gaV'Tre i + d20 W ) + WaaWa + h.c. (2.57)
4

= Dy*Dlq i -6t ix-Dpqi + F*2F

1 1
-Fa F alu - IA tatpD P Aa + -DaDa
4 2" 2

.1
+W- F - Wij xjx3 + h.c.

2

+ ga (* (TU )/jO )Da - ( g (0*(Ta),jgxi)Aa + h.c. , (2.58)

where the derivatives are the usual gauge-covariant ones, and where we work in Wess-Zumino

gauge, where all the pure gauge degrees of freedom in Va (apart from the standard one the

vector component has) are transformed to zero. Note that Da, like F', is an auxiliary field

that may simply be integrated out.

This Lagrangian also reinforces the fact that (Da) and (Fl) are order parameters for

SUSY-breaking, as (H) / 0 only when at least one of them is non-vanishing.

2.5 SUSY Breaking and Goldstinos

As we noted in Sec. 2.2, SUSY must be spontaneously broken as there are no 511 keV

selectrons in nature. We can make this statement even stronger by consider a supertrace

sum rule valid for renormalizable theories at tree level that spontaneously break SUSY [68]:

STr [m 2] Z(_1) 2 3(2s + 1)Tr [m2] = -2gaTr [Ta] (D') = 0, (2.59)
SS

where s represents the spin of the particle. 7 Consider the MSSM with flavor conservation

(i.e. no mixing between scalars of different generations) and with no additional broken U(1)

symmetries involved in SUSY breaking. For the first generation of squarks, for example,

6 We have omitted here the possibility of Fayet-Iliopoulos terms, f d40 V, which are gauge-invariant for
Abelian groups but difficult to incorporate into local SUSY theories in flat space. We have also omitted
6-terms for the gauge fields, which correspond to an imaginary coefficient of the gauge kinetic term; they
only yield the usual FF term in components.

7 This last equality is obvious for a non-Abelian gauge theory with Tr(T") = 0. For a U(1) gauge group,
the sum of the hypercharges must vanish to avoid the gravitational anomaly.
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mediators
SSM -------- S

Visible Sector Hidden Sector

Figure 2-1: Standard paradigm of a SUSY-breaking hidden sector coupled to the SUSY SM
via mediators.

since

Tr(0 3 ) = 0 and Yn +Y +Yg + Yg = 0, (2.60)

Eq. (2.59) decouples, leading to the relation

2 2 2 2 ( 2r2).

TLR + mI + M + m L = 2(m + mrl). (2.61)

If SU(3)c is to remain unbroken, this would imply light (MeV) scale superpartners, in

conflict with observation. Similar arguments exist in the presence of large flavor mnixings[57],

even apart from the dangerous flavor-changing neutral currents they would introduce.

For these reasons, the standard SUSY-breaking paradigm is for SUSY to be broken in

a "hidden sector", and the effects of SUSY breaking communicated to the SUSY SM (the

"visible sector") via loop processes or higher-dimension operators. We draw this schemati-

cally as in Fig. 2-1. The effect of SUSY breaking on the visible sector is obviously important,

but the phenomenological implications of the SUSY-breaking sector itself are typically mea-

ger (with one important exception); as a result, I will try to abstract the most important

features of the hidden sector.

There is one hidden sector state with broad phenomenological relevance. As with any

other spontaneously broken global symmetry, SUSY will have a gapless goldstone mode.

However, since SUSY is a fermionic symmetry, this mode will be a fermion-the goldstino

CL. To abstract hidden sector dynamics as much as possible, we will consider the goldstino

residing in a non-linear superfield X satisfying X 2 = 0:

2

X= 0+ GL F. (2.62)
f2 2F)
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Note that we have effectively integrated out the sgoldstino by using this multiplet. For the

purposes of this thesis (in which we never care about Lagrangian terms with more than two

goldstinos), we can safely consider F to be a (real) non-dynamical background field-that

is, we never solve its equation of motion, and we just consider it to be a constant.

The Lagrangian for the goldstino multiplet itself takes the simple form

L = d4 XtX - J d2 OFX + h.c. (2.63)

The constraint X 2 = 0 forbids any additional terms without SUSY-covariant or spacetime

derivatives. The coefficient of the superpotential is constrained to be -F by consistency (if

we were to treat F as dynamical, the solution to its equation of motion should yield F).

Note that this Lagrangian by itself obeys an R-symmetry under which X has R-charge 2

(and thus the goldstino 6L has R-charge 1).

Coupling the goldstino superfield X to visible sector fields will communicate SUSY-

breaking to the visible sector in the form of soft-SUSY breaking parameters. By SUSY,

these come with goldstino couplings that are exactly proportional to those soft terms. The

full set of (relevant) soft terms for the visible sector is given by8

Lsoft= da ilXtX ipi - dg aXW"VWC
F2 f 2F

-d20 BijX Dj + AijXpik _ -aXWaWa.
-J 2F 6F 2F W(264)

L + rnGix, *J + h.c.
F

1 iMa Ma
Maha a + a LA F + Ma GL aDa + h.c.

2 VF VTF
I B-- ~

- BijO p + ' GLX71' + h.c.
2 F

1 Aijk +Aik + LXIJk + h.c. (2.65)
6 2F

Note that if the theory obeys an R-symmetry, Majorana gaugino masses of the type shown

here are forbidden, as are A- and B-terms corresponding to allowed superpotential terms.

8 This is not an exhaustive list, for two reasons. First, many different terms in superspace give the
same soft terms (e.g. XD4>4 or XtXb 2 can both give B-terms). Secondly, we have omitted soft terms
corresponding to tadpoles for scalars or Dirac masses for gauginos and adjoint fermions, neither of which
occur in the Minimal SUSY SM (MSSM).
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2.5.1 The Supercurrent

Using the non-linear goldstino multiplet, we found that goldstino couplings were directly

related to soft terms. There is a more formal way of seeing this same effect using conservation

of the supercurrent.

The supercurrent is the Noether current associated with SUSY transformations[155, 50]

o = - i 2( ')W*

1 (2.66)
2 (U"NPoMiAt)Fa - rTg claa

Note that the supercurrent has an extra a-index to match the SUSY generator Qo. Con-

servation of the supercurrent implies j = 0.

We can isolate the goldstino contribution to the supercurrent via[64, 65]

-Ip -p matter ~2~
do = doate + iv'Ftot (o'7), , (2.67)

where Ft,0 t = H-Fs+ 2 also includes any SUSY breaking in the visible sector.

Conservation of the full supercurrent implies

ttjc = 0 jrnat t er + i 2Ft (o&'/P)Q. (2.68)

As expected, because SUSY in the visible sector is broken, &Oj.matter 7 0. If we interpret

Eq. (2.68) as an equation of motion for the goldstino, this implies that in addition to a

kinetic term, the goldstino Lagrangian must contain

1
En -D -- r/8j,,natter + h.c. (2.69)

v/'Ftot

This is called a Goldberger-Treiman relation from the analogous relation for couplings of

Goldstone bosons of spontaneously broken global symmetries to matter currents.[85]

For a massless on-shell goldstino

(/)oe = 0, (2.70)

so after integration by parts, the second and fourth terms in Eq. (2.66) are irrelevant for
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Table 2.1: Quantum Numbers of the MSSM.
SU(3)c SU(2)L U(1)y

Q a 2 -

U 3 1 +
D 3 1
L 1 2
E 1 1 -1

Hu 1 2 1

Hd 1 2 +1

Eq. (2.69), which reduces to

En7 J - )+ +9# 1 vP(J-,Ata)Fa"

4~DFtotlk - L<>t A (.1

a 
(2.71)1

2 9A)"F + h .c .

Using equations of motion for the visible sector fields, we find that the three-point couplings

of the goldstino are proportional to physical mass differences:

m2 m2

rC q. + B IMA ,jWaa (2.72)
Ftot Tlil Ftot X v -2Ftt TI-' 4v

where, for simplicity, we have assumed unbroken gauge groups and dropped terms with more

than three particles. We see that this result exactly reproduces Eq. (2.65) in a non-trivial

way.9

2.6 The MSSM

With all of these ingredients, we can finally write down the field content and Lagrangian

of the Minimal Supersymmetric Standard Model (MSSM). The chiral superfields in the

MSSM are given in Table 2.1. The quantum numbers may differ by a sign from those in

other references; this is because in our conventions, chiral superfields are right-handed fields.

As a result, Q and L should be interpreted as the conjugates of the left-handed fields we

normally deal with.

The leading relevant and marginal interactions are given by the gauge interactions of

9The terms with D" would show up here among the terms with more than three particles, on the D"
equation of motion.
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these fields, and by terms in the superpotential of up to dimension 3, which could include

W D IIHuHd + A§Q1U HU + AIQUDJH H+ Ai.El LQ H3. (2.73)

The ferinions and scalars in the H superfields (the Higgs bosons and Higgsinos) receive

a supersymmetric mass from the p mass term. If Hu and Hd get vevs in their lowest

component, the other three superpotential terms then yield masses for the up-type quarks,

down-type quarks, and leptons, respectively. As the superpotential must be holomorphic,

we need at least two Higgs doublets in order to give masses to all fermions. Two Higgs

doublets are also required to avoid the Higgsinos introducing gauge anomalies.

As written, this superpotential obeys two additional global U(1) symmetries: a baryon

number symmetry under which Q and U/D have opposite charges, and a lepton number

symmetry under which L and E have opposite charges. However, we can easily write down

terms that do not respect these symmetries:

W D piL ' H + A )QiD Lk + A (2 )UiDjDk + A(3) L"L3Ek (2.74)ijk ijk ijk

Note that the last two terms must involve particles from multiple generations, since the

SU(2) and SU(3) indices are contracted antisymmnetrically. If one wanted to forbid all of

these terms, one could impose baryon and lepton number symmetries explicitly.

Alternatively, one could use a U(1)R symmetry to forbid the terms in Eq. (2.74). If one

gives the Higgs doublets an R-charge of 1, and all other superfields an R-charge of +1/2,

the problematic terms are forbidden since the resulting superpotential would not have an

R-charge of 2. We do not even need a full R-symmetry to achieve the same effect, which is

desirable as we generally expect continuous R-symmetries to be broken by SUSY-breaking

effects (or by m 3/ 2 if nothing else; see Sec. 2.7). The R-symmetry contains a discrete Z2

subgroup called R-parity (Rp), under which the Higgs doublets have R-parity +1 and the

other multiplets have R-parity -1. This is sufficient to forbid the terms in Eq. (2.74).

SUSY-breaking will generically give scalar mass-squareds for all scalars, Majorana gaug-

ino masses for all gauginos, and A- and B-terms corresponding to each term in the super-

potential. R-parity (under which X is even) will also forbid soft SUSY breaking terms

corresponding to the dangerous terms in Eq. (2.74).

Note that the imposition of R-parity means that R-parity odd particles (all the super-
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Table 2.2: Particle Content of the MSSM.
Re-even Rp-odd

q qL, qR (squarks)
1 IL, IR (sleptons)
v ~ (sneutrinos)

,y, Z, h, A 0, H0  X0 (neutralinos)
W+, H± (charginos)

g g (gluino)
G (graviton) i4 (gravitino)

partners of SM fields) may only interact in pairs. This has wide-ranging phenomenological

implications. The decay of any SUSY particle must feature another SUSY particle as one

of the decay products; this implies that the lightest SUSY particle (the LSP) will be ab-

solutely stable. If the LSP is electrically neutral and a color singlet, this could be a good

dark matter candidate. This is especially true if the LSP is in the visible sector, as then

one would expect it to have weak-strength interactions, allowing it to be produced in the

early universe with the right relic abundance via the so-called 'WIMP miracle'.

R-parity also implies that all SUSY particles must be created in pairs. Therefore,

SUSY events at colliders such as the LHC will generally feature the production of two

SUSY particles, each of which will undergo a series of decays down to the LSP, which, if

it is the dark matter, is stable and exits the collider invisibly. Such signals of multiple SM

particles (most typically jets at the LHC) and missing energy is a striking signal for SUSY

that can be seen at colliders that has relatively little background from SM processes.

A full discussion of the MSSM spectrum and phenomenology is beyond the scope of this

introduction, but a brief enumeration of the particle content of the MSSM should prove

useful for the reader, and is given in Table 2.2. Every SM fermion has a partner scalar; for

quarks and leptons, there are superpartners for both the left- and right-handed fermions.

After electroweak symmetry breaking (EWSB), the superpartners of left- and right-handed

fermions can mix, but this mixing is generally only important for the third generation.

Sfermions of different generations can of course mix, but there are often stringent limits on

such mixing from the absence of flavor-changing neutral currents (FCNC).

Since the MSSM has two Higgs doublets, there are four additional Higgs bosons--the

charged H1, a scalar H0 , and a pseudoscalar A 0 . After EWSB, the superpartners of the

Higgses and the electroweak gauge bosons (the Higgsinos, binos, and winos) can mix, so
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generically there are four neutral Rp-odd fermions (the neutralinos x6) and four charged

ones (the charginos x"-). The gluon has a partner color adjoint fermion, the gluino, which

does not have the correct quantum numbers to mix with any other states.

The only visible sector R-parity odd particles that are neutral and colorless (and thus

potential LSP dark matter candidates) are the sneutrinos and neutralinos. In the MSSM,

sneutrino dark matter has long been ruled out by a combination of direct detection ex-

periments and (for low masses) the invisible width of the Z [31, 32, 136, 128. Neutralino

dark matter has thus been the standard paradigm for SUSY dark matter, but it is by no

means the only possibility. A non-minimal visible sector can feature additional candidates,

such as singlinos (gauge singlet fermions) or the scalar superpartner of a right-handed neu-

trino [88, 13].

The LSP could of course be in a hidden sector, such as one responsible for SUSY-

breaking. The most obvious candidate would be the goldstino, but the goldstino is exactly

massless in global SUSY. This drawback can be rectified in local SUSY or supergravity

by considering the gravitino 0,, the spin-3/2 partner of the graviton--a possibility we'll

consider in detail in Sec. 2.8.

2.7 SUSY in AdS

The previous sections considered rigid SUSY only in Minkowski space. Rigid SUSY can be

considered in other spacetime backgrounds, as well-the case of anti-de Sitter (AdS) space

is especially relevant, as it forms the global limit of unbroken SUGRA. AdS space is a space

of negative uniform curvature:

Rpv M3/2(gppgvA - 9gpA9vp), (2.75)

RM, = 3m29, (2.76)

R = 12n 2  (2.77)

with m 3 / 2 = rAT the inverse radius of AdS curvature.' 0 Naively, one might think that

SUSY in AdS might just consist of promoting flat-space derivatives to spacetime-covariant

derivatives. However, recall that in such a curved space, spacetime derivatives no longer

'OThe notation m 3/2 comes from SUGRA, where the same parameter also plays the role of mass parameter
for the spin-3/2 gravitino.
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commute when not acting on Lorentz scalars. As a result, the Poincard algebra is modified

in AdS:

[Pp, Pi'] = -imi/12Myy.(278

As SUSY is an extension of the Poincar6 algebra, the SUSY algebra is also modified in AdS.

We can see this immediately by considering such Jacobi identities as

0 = [Qa, [P, P] + [P,1, [P,, Qa]] + [P, [QaPt]]. (2.79)

As the first term is non-vanishing in AdS (recall that Q, as a spinor, does not commute

with M), the consistency of the SUSY algebra in AdS requires [P, Qa] -/ 0 as well. Using

such Jacobi identities, one can easily show that the SUSY algebra in AdS must include [4,

51, 104, 156, 95]

[Q, P] = M3/2,Qt {Q, Q0} = 2im 3/ 2 ff" a M,,,. (2.80)

Note that this modification of the SUSY algebra for AdS precludes the existence of R-

symmetries.

The fact that SUSY and spacetime translations no longer commute is one of the most

important features of SUSY in AdS, and has many unexpected implications which we will

see throughout this thesis. One of them follows from the requirement that 6susYal =

op8susyo (so that the algebra is consistent); this implies a non-trivial requirement on the

infinitesimal SUSY transformation parameter:

0 = D Et +i 3 / 2o+& (2.81)

2.7.1 SUSY Covariant Derivatives

Just as in flat space, one can define superspace-covariant derivatives. These obey the

following commutation relations, which follow straightforwardly from the SUSY algebra in
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{D, D }

{D, D}V y

[Dr, D|]

-2ior D,,

0,

2- Im3/2 (uDf ) ,

-- 3/2 (V(7-,v)7.

{DQ, DO}V = -2m 3 / 2 (VQ37 + V0627),

Da, D } V' =m 3 / 2 (("")a3 Vv,

[D,, Du] VP m 3 /2 (V5V" -

(2.82)

One can yet again use these SUSY covariant derivatives to construct constrained super-

fields. Just as before, a chiral superfield is defined by the requirement

DVt6< = 0. (2.83)

Rather than thinking about an explicit expansion in 0, y, we'll just define components with

the SUSY covariant derivatives themselves

1
D c Il = Xa,

v'2
D I = F.

4
(2.84)

We can think of this schematically as <D = 0 + v2xH + F_2 . These O are really and

truly placeholders; one can treat them as normal for addition and multiplication of chiral

multiplets, but not much else.

In flat-space SUSY, Dt2 V is chiral since Dt3 = 0. This is no longer true for AdS SUSY,

as {D_, D3} 7 0. However, this can be easily remedied, and (anti-)chiral projectors still

exist:

D (D2 - 4m 3/ 2 )V = 0, Dt6 (V t 2 - 4m 3/ 2 )V = 0.

Note again that [D,, D0] 0 0. One immediate consequence of this is that bosons and
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fermions have differing masses, even for unbroken SUSY:

1.
D(m + BtI) = im3 /2 c~ [Dt[, D -t( Dt P + 3mD/2 )DA

m Da m 3 / 2 Da + ( -3/2)D

M = m - 2mT/ 2 . (2.86)

We've performed some sleight of hand here on the right side of the equation, by applying

the Klein-Gordon equation to the superfield rather than its lowest component. One can

easily show that this is legitimate, though there are some subtleties at loop level that we

will see in Sec. 5. We can easily do the same trick for B-terms:

Dt6-DtLD11 = [Dta, D"]D~ + D1, [Dt, D1 ] (

1
( + B 2) = zM3/ 2 5[ Da, Dp] P im 3 / 2 5:aaD,D

B = -m3/2mX, (2.87)

m2 = m 2m/ 2 Fm3/2mx, (2.88)m8, X 3/2-Trn/ 2

where the final line shows the masses of the scalar and pseudoscalar in the chiral multiplet,

respectively. We see that even for unbroken SUSY at tree level, there are 'soft' scalar

masses and B-terms in AdS. The sign of the scalar mass squared may worry the reader;

for certain values of m., one or both of the scalars may have a negative mass-squared,

which naively would correspond to a tachyonic instability. However, defining mass in AdS

is a subtle proposition, as P 2 is no longer a Casimir of the algebra. Breitenlohner and

Freedman [25] showed that negative scalar masses are stable in AdS, so long as they are

not too negative (M2 > -9m /2 ). This bound is saturated for mx =m 3 / 2 /2, but is never

exceeded; unbroken SUSY in AdS is always stable.

We can also use the SUSY covariant derivatives to find the SUSY transformations of the

components of chiral superfields. The following holds in both flat-space and AdS SUSY:

We) =a evaate ts- fteOt)Dr t dd - E w'Drwsk - g eDtws. (2.89)

We can evaluate this for the individual components. Since we're always taking the lowest
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component, the first term never matters. The lowest and fermionic components follow

through exactly as in the flat space case:

(2.90)

-v 26X, (2.91)

1/ 1
(5Xa = e_~ t - et ) -tD (2.92)

- 2EaF - o )(2.93)

The F-component, however, transforms differently:

6F =I ( Dt D2.| +I ecDD24 (2.94)
4Q 4

The first term is exactly what you would expect in flat space (except of course now with an

appropriately-covariant derivative). The {Dt6, D'} anti-commutators are exactly the same

as in flat space; there's a possible [D', D1] commutator to perform, but this yields a Dt,

which vanishes on the chiral superfield. The other term vanishes in flat space, but in AdS

gives a new contribution arising from Eq. (2.89):

DID2D = 4m 3/ 2D,4 (2.95)

WF = 2r 3 /2 EX - i 2E6t-DPX. (2.96)

2.7.2 The AdS SUSY Lagrangian

Note that the F component of a chiral superfield does not transform as a total derivative,1 '

both due to the first term and due to the fact that Dfc 7 0. However, the following

combination can easily be shown to transform as a total derivative:

F + 3m 3/20 (2.97)

We can define a 'chiral density' 2E e(1 + 3m 3/ 2 E2 )--this is the equivalent of e, the

determinant of the vielbein, for chiral superspace. The following is then is a good choice

"We do riot consider here terms on the boundary of AdS, though they can play an important role in
general.
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for a SUSY-invariant Lagrangian:

= d26 2E -[ + h.c. (2.98)

with 4D any chiral superfield (elementary or composite), and f d 2 0 1 D 2 1, as usual. This

corresponds to superpotential-style terms. We can write down kinetic terms in a similar

fashion, by making use of the fact that (Dt2 - 4m 3/ 2 ) is automatically chiral.

= d2 2E [- (Dt2 - 4m 3 / 2 )K + WI + h.c., (2.99)

where K is an arbitrary function of chiral and anti-chiral superfields, and W is a holomor-

phic function of chiral superfields alone. There may also be terms with additional covariant

derivatives which we omit here.

Note that holomorphic terms in the Kdhler potential no longer give a vanishing con-

tribution to the Lagrangian, so the Kdhler transformation K -± K + P + Pt (for P

some chiral superfield) is no longer an invariance of the theory. However, the Kihler in-

variance can be restored by including in the Kdhler transformations W -+ W - m 3/ 2P-

We can use this freedom to kill W entirely, leaving our entire Lagrangian in terms of

G = K + W/m 3/ 2 + Wt/m 3/ 2 :

J = d20 2[E (Dt2 - 4m 3/ 2 )G + h.c. (2.100)

It may occasionally be more convenient to rewrite the Lagrangian as the following integral

over all of superspace:

L - d4 EG, (2.101)

E e(1 + m 3/ 2E 2 + m 3 / 2 3t 2 + 3ml/ 2 8 4 ). (2.102)

We have only discussed chiral superfields here. One can easily include vector superfields,

as well, but the resulting component Lagrangian can be shown to be the same as in flat space.

I note briefly here that Fayet-Iliopoulos terms are no longer gauge-invariant for SUSY in

AdS, as f d4 0 E (Q + Qt) 6 0. This obstruction persists in SUGRA, where Fayet-Iliopoulos

terms correspond to a gauged U(1)R symmetry [18, 67], which is difficult to reconcile with
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the explicit violation of R-symmetry here.

2.7.3 The Component Lagrangian

A short calculation yields the Lagrangian of Eq. (2.101) in components:

£ = GrFiF*J - iGijxtIIDpx" - Gi&&"oil*3 + 3m /2 G (2.103)
C GijF* X 1 1 k /

2GzikF*Jx X - 2 G Fix X + 4 Gijkix ix Xxt X (2.104)

1
+ m 3/ 2GiF - 2 n3/2Gij + h.c. (2.105)

After integrating out the auxiliary fields:

£ = -iGCjXf'atD~x' - Gi 4tlQ[it1 *# (2.106)

+ I Ri]uxixxXt ti (2.107)
4
Sn 3/ 2ViGjXiXi + h.c. (2.108)

m3/2 (GiGz - 3G) (2.109)

This is written in a 'Kahler-covariant' manner. We can think of Gi as a metric of sorts, with

a well-defined inverse Gl2 . We raise and lower indices with the metric and its inverse. The

metric has associated Christoffel symbols I G2IG - , GlGk, sensible covariantjk ikjkl c'

derivatives ViGj = Gij - IkGk, and a curvature tensor R Jk. GiJkT - gmIF'J&. All of

this of course simplifies if the Kahler metric is just 6Sj (as it must be if we don't want any

irrelevant operators), in which case V.Gj = Gi and the four-fermion term vanishes.

From this Lagrangian, we can easily find the mass spectrum

Mil = M3 / 2 VG (2.110)

Vi = 7/ 2 (GCV 2 Gk - 2Gi) (2.111)

V12 = mi /2 ( iV k - RiJkIGk GI - 2Gi2 ) (2.112)

ViVj = m3 /2 (C VkV3Ck - ViG1 ) (2.113)

2 /IikMkJ - 2r/ 2 Gij - m/2 R -GkGi (2.114)mi3 = -3/2MJj + mT1/X2GN~ G3/2 ijk(

rn 2 = _ m37 2AiJ + rn32 GkV Vj Gk (2.115)
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The last term on each of the last two lines contributes if there is SUSY-breaking ((Gi) f 0).

2.7.4 The Goldstino

If SUSY is spontaneously broken in AdS, one still has a goldstino that transforms as a

shift under SUSY transformations. However, since Dye 4 0 in AdS, the kinetic goldstino

Lagrangian by itself is no longer invariant under a shift symmetry. This can be rectified by

the addition of a goldstino mass term

, = -iTIt1Dpy - m 3/2/rl - m 3/ 2 / tT1 t. (2.116)

In AdS, the goldstino has a Lagrangian mass term, m 2m 3 / 2.

We can also write down a superspace Lagrangian for the same XNL = 1(q + V/2F) 2

superfield:

S= d2e0 2[ - (Dt2 -4m 3 / 2 )(XtX- Fm 1 X - FmT Xt) + h.c. (2.117)
J 1-8 -- 3/2 3/2 1 t.. 217

If I couple the goldstino to matter, its couplings are proportional to deviations from

the unbroken results-not, as in flat space, the boson-fermion mass difference (which is

non-zero for unbroken SUSY). In particular, suppose I have a massless fermion and enough

SUSY-breaking to make the scalars massless as well; then there is a goldstino coupling
2m 2

~ 2 despite no boson-fermion mass difference. The same results can also be derived

from supercurrent conservation, as in Sec. 2.5.1; we will consider this more thoroughly in

Sec. 5.2.2.

2.8 Supergravity

So far, we have been considering global (or rigid) SUSY, in which the allowed spacetime

dependence of the SUSY transformations is extremely constrained. Since SUSY is an ex-

tension of the Poincar6 algebra, making SUSY a local symmetry requires making the rest

of the Poincar6 symmetry local as well-i.e. one needs to consider general relativity (GR).

As a result, the terms 'local SUSY' and 'supergravity' (SUGRA) are used interchangeably

in the literature. Most of the features of supergravity are well beyond the scope of this

chapter, but we will discuss a few phenomenologically relevant features here.
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The gauge fermion of local SUSY is spin-3/2 gravitino V,, so called because it is the

superpartner of the spin-2 graviton of GR. Along with these, there are two auxiliary fields

in the gravity multiplet, 12 a real vector bl and a complex scalar M. In SUGRA, the

superpotential serves as a source for M* and a mass term for the gravitino:

1 W
L -D M*M - WM* - 2 ot0t"$o + h.c. (2.118)

3 Mp

Defining mn3/2 -- (W) /M 2 1 the gravitino gets a mass term of M3/ 2 , M* obtains a vev of

-3m 3 / 2 , and there is a cosmological constant term (V) = -3m3/ 2 Mpl. The Einstein equa-

tion then yields an AdS spacetime, and we can finally see that rAdSis 3 /2 , as promised.

This is just the local version of the SUSY in AdS considered in Sec. 2.7, so we see that a

vev for M/ does not break SUSY (though it does break any U(1)R symmetry). F and D'

are still the SUSY-breaking order parameters, and since we are considering a theory with

dynamical gravity, large enough amounts of SUSY breaking can lift the spacetime from AdS

to flat space:

I1 ) 31 W 2
(V) = F 1F* + 1 Da _ 2 (2.119)

2 MP1

This is shown schematically in Fig. 2-2. As our universe is flat, this lets us express M3/ 2 in

terms of Mpi and the amount of SUSY-breaking:

mn3 / 2 = -3Ft (2.120)

It should be stressed that this relation is a fine-tuning (the same fine-tuning as for the

cosmological constant), and does not hold outside of flat space.

The gravitino transforms under SUSY as

+ 2 DPE + M 3/ 2 1) EtC +*- (2.121)

This is highly reminiscent of Eq. (2.81), the rigidity constraint on E in AdS. This is no

surprise, as rigid SUSY transformations had better not introduce a gravitino where there

was not one to begin with [70, 114]. As with any other gauge field, the leading coupling of

12 The question of what auxiliary fields are present in the gravity multiplet depends on what formalism
one uses; I predominantly use that of Ref. [154] in this thesis.
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Figure 2-2: Two ways to think about achieving SUSY breaking with V ~ 0. The second
picture makes clear the underlying AdS 4 algebra.

the gravitino is to the corresponding Noether current, in this case the supercurrent:

1
L D - 1 0j1 + h.c. (2.122)2MpI

Naively, one might think that couplings of the gravitino are Planck-suppressed. However,

this is not the case in practice, due to the gravitino's longitudinal polarizations, which

come with inverse powers of m3/ 2. When SUSY is broken, Eq. (2.122) contains a goldstino-

gravitino mixing:

iFt~ot-
L F GtP: + h.c. (2.123)2 Mpi

We can use SUSY transformations to eliminate the goldstino from the spectrum-in this

unitarity gauge, the gravitino has eaten the goldstino to acquire its longitudinal degrees

of freedom. This is the super-Higgs mechanism [55, 149, 71, 72], and it comes with an

associated goldstino equivalence theorem [64, 65, 33, 34]-at energies well above m 3 / 2 , the

couplings of longitudinal gravitinos are well described by the couplings of goldstinos. As

a result, the technical difficulties involved in performing calculations involving a spin-3/2

fermion can avoided in many cases, and gravitino couplings are really only suppressed by

F-, not MpR.

Couplings suppressed by F-1 can still be quite weak, however, which has important

implications for both collider and dark matter phenomenology. Gravitinos are unlikely to be
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phenomenologically relevant unless they are the LSP, in which case the lightest observable-

sector SUSY particle (the LOSP) would be expected to decay to the gravitino [56, 8, 58, 7].

Therefore, SUSY cascade decays would be expected to always terminate in a LOSP to

gravitino decay, making the identity of the LOSP quite important. If the coupling is weak

enough, the LOSP lifetime may be long enough to see displaced vertices or for it to be

stable on collider time scales, which would be very striking for a charged or colored LOSP.

As a dark matter candidate, the weak couplings of the gravitino mean it does not an-

nihilate efficiently in the early universe, and therefore would tend to be overproduced; the

gravitino is most emphatically not a WIMP. This can be avoided if the reheating temper-

ature of the universe is sufficiently low [129, 48]. The correct relic abundance can arise

naturally by the super-WIMP mechanism [66]-LOSPs are produced in the early universe

with roughly the correct relic abundance (by the usual WIMP miracle), which then later

decay to gravitinos after Big Bang Nucleosynthesis (BBN).
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Chapter 3

Goldstini Give the Higgs a Boost

3.1 Introduction

As discussed in Sec. 2.5, most SUSY theories consist of an "observable sector" coupled to one

or more "hidden sectors." The observable sector contains the fields of the supersymmetric

standard model (SSM), in particular the lightest observable-sector supersymmetric particle

(LOSP). The hidden sectors are responsible for breaking SUSY and generating soft masses

for SM superpartners, and may contain light states accessible to colliders.

A typical SUSY collider event involves production of two heavy SM superpartners which

then undergo cascade decays to a pair of LOSPs. If there are hidden sector particles lighter

than the LOSP, then the subsequent LOSP decays-if they occur inside the detector-can

dramatically impact SUSY collider phenomenology. In Sec. 2.8, we discussed the most well-

known example of a decaying LOSP, which occurs when the light hidden sector particle

is a gravitino [56, 8, 58, 7]. In that case, the LOSP decays to its superpartner and a

longitudinal gravitino via interactions constrained by the conserved supercurrent and the

goldstino equivalence theorem [64, 65, 33, 34]. For example, a mostly bino LOSP will decay

to a photon, Z, or--through its small Higgsino fraction-a Higgs boson.

In this chapter, we will show how changes in the couplings between the observable

and hidden sectors can have a dramatic impact on the decay modes of the LOSP, shown

generically in Fig. 3-1. Our case study will be a nearly pure bino LOSP A with an order one

branching fraction to Higgs bosons, a very counterintuitive decay pattern from the point of

view of the standard decay of a bino LOSP to a -y/Z plus a longitudinal gravitino. In fact,

in this example, the LOSP branching ratio to Higgs bosons is enhanced with increasing
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0

A 0 0

Figure 3-1: A generic LOSP decay. We will focus on the case where A is a bino-like LOSP,
and ( is a (pseudo-)goldstino from spontaneous SUSY breaking. Contrary to the naive
expectation, A can decay dominantly to Higgs bosons, even if A has negligible Higgsino
fraction.

F1  2L Q2 3

4.44.R-preserving

SSM

Figure 3-2: The R-symmetric setup that will be the focus of this chapter. Here, sector 1
has a higher SUSY breaking scale than sector 2, i.e. F1 > F2 , so the LOSP preferentially
decays to the pseudo-goldstino ( coming mostly from sector 2. Since sector 2 preserves an
R symmetry, the decay A -+ y/Z + ( is highly suppressed, and the mode A - ho + ( can
dominate.

Higgsino mass p, approaching 100% in the small (mA tan 0)/p limit. This is unlike the case

of a Higgsino LOSP, which generically has equal branching fractions to Higgs and Z bosons.

These novel bino LOSP decays are possible in the presence of multiple sectors which

break supersymmetry, yielding a corresponding multiplicity of "goldstini" [42]. While the

couplings of the true goldstino (eaten by the gravitino) are constrained by the supercurrent,

the orthogonal uneaten goldstini can have different couplings from the naive expectation.

The spectrum of goldstini exhibits a number of fascinating properties [42, 45, 10], and they

may play a role in cosmology or dark matter [40, 37]. Here, we will focus on properties of

goldstini relevant for their collider phenomenology.

For our case study, we consider two sectors which break SUSY, both of which commu-

nicate to the SSM, but one of which preserves an U(1)R symmetry, as in Fig. 3-2.1 For the

'There have been recent studies where the entire SUSY breaking and SSM sectors preserve a U(1)R
symmetry [112, 9].
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tan 3= 5

-1.5

( =mA lan#// p

Figure 3-3: Branching ratio A -* h0 + ( for a bino LOSP in the R-symmetric setup from
Fig. 3-2. Throughout this parameter space, the remaining branching ratio is dominated
by A -+ Z + (. The expected mode A + -y + ( is almost entirely absent. Shown is
Br(A -* h)as a function of c mi tan//p and 'y tan--1 (F2,/5g), fixing tan# = 5
and M 1 =165 GeV. The plot terminates on the left and right side at the kinematic bound
mx < mho.

appropriate hierarchy of SUSY breaking scales, the LOSP will couple more strongly to the

uneaten goldstino 4 than to the longitudinal gravitino OL. Since the uneaten goldstino 4( is

charged under the U(1)R symmetry, the R-violatinig decay A -+ '/Z+( is suppressed, letting

the counterintuitive decay A -+ h0 + ( dominate.2 This fascinating result is demonstrated

in Fig. 3-3.

In this way, goldstini can give the Higgs a boost: a boost in production cross section

since most LOSP decays yield a Higgs boson; and a boost in kinematics since the Higgses are

produced with relatively large gamma factors in SUSY cascade decays. This example gives

further motivation to identify boosted Higgses using jet substructure techniques [30, 111, 21.

This example also motivates searches for other counter-intuitive LOSP decay patterns,

where there is a mismatch between the identity of the LOSP and its decay products.

In the next section, we summarize and explain the main results of this chapter. We

then describe the framework of goldstini in Sec. 3.3, and derive the low energy effective

goldstini interactions and resulting LOSP decay widths in Sec. 3.4. We explain in more

detail why the goldstini case differs from the more familiar gravitino case in Sec. 3.5. Plots

2 In Ref. [42], it was erroneously claimed that in the presence of an R symmetry, the dominant decay is
A cu ' tn±+i, where d is a SM fermion. This chapter corrects that error.
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of the LOSP branching ratios appear in Sec. 3.6, and we conclude in Sec. 3.7. Various

calculational details are left to the appendices.

3.2 Counterintuitive LOSP Decays

Throughout this chapter, we will be considering the situation where a LOSP decays to

a lighter neutral fermion as in Fig. 3-1, and we will assume the minimal SSM (MSSM)

field content. The possible decay patterns of a LOSP are constrained by symmetries, at

minimum conservation of SM charges. In the familiar case where the LOSP decays to its

superpartner and a gravitino, there are further constraints imposed by conservation of the

supercurrent. We will see that these constraints can be significantly relaxed in the presence

of multiple SUSY breaking sectors.

3.2.1 A Conventional Goldstino

In the conventional setup with a single SUSY breaking sector and a light gravitino, the

couplings of the helicity-1/2 components of the gravitino are linked via the goldstino equiv-

alence theorem to the couplings of the goldstino CL. Recall from Sec. 2.5.1 that supercur-

rent conservation implies that, at leading order in the inverse SUSY breaking scale 1/F,

the goldstino couples only derivatively to observable sector fields via the supercurrent:

~1
Leff = + OpIGLJ , (3.1)

vF
1

V27 O" iDvj* - -oI'&,p AtaFa (3.2)
2 (3.2

where we have elided terms that vanish on the goldstino equation of motion. Here, O5 is

a scalar and Oi is its fermionic superpartner, and F,, is a gauge field strength with A" its

corresponding gaugino. In particular, the only possible LOSP decays are to its superpartner

and a gravitino. This implies, for example, that a pure right-handed stau LOSP ;-p can

only decay to a gravitino and a right-helicity taU TR, despite the fact that after electroweak

symmetry breaking, there is no symmetry forbidding the decay to a left-helicity tau TL.

For concreteness we will focus on a bino-like LOSP throughout this chapter, though

many of the following arguments hold with only minor modifications for a wino, as well. In

that case, the supercurrent in Eq. (3.2) permits the decay A -* -y/Z+dL via the second term
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Figure 3-4: The standard decays of a bino-like LOSP to the longitudinal gravitino. They are
primarily to a photon or Z (left), though the bino may also decay to a Higgs via its Higgsino
component (right). The derivatives in Eq. (3.2) yield the Yukawa coupling labeled here,
proportional to the mass-squared difference of the on-shell bino and Higgs. A cancellation
between the two possible intermediate Higgsinos means the propagator contributes a factor
of p- 2 to the amplitude at leading order, leading to a very large suppression of this channel
in the Higgsino decoupling limit. Feynman diagrams throughout follow the framework of
Ref. [61].

in the supercurrent. There is also a possible decay A - ho + 6L where h0 is the physical

Higgs boson, but since this occurs entirely through the Higgsino fraction of the LOSP, it will

be comparatively suppressed. 3 Explicitly, to leading order in mA/u, the dominant LOSP

partial widths are

m5 cos 2 oW
F = A(3.3)

167F 2

M 5 sin2 oW MAI2 )
z=(1 -A (3.4)

167rF2 Mj '

where mA ~ M 1 is the bino-like LOSP mass, and Ow is the weak mixing angle. The

subdominant width to Higgs bosons is

mM2 m sin 2 OW cos 2 21 m o 2 (2
Fho = 4 - h (3.5)

pA 327rF 2 m '

where tan 3 V=L/Vd. Feynman diagrams for these standard decays are shown in Fig. 3-4.

3.2.2 Additional Operators?

In the case of the true goldstino 6L, its couplings are saturated by Eq. (3.2). But if the

LOSP were to decay not to a true goldstino but to a generic neutral fermion (, then there are

many more operators that might mediate LOSP decay instead. For example, the dimension

3See Ref. [127] for a recent discussion of more general neutralino decays.
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5 operator

o = C5 ' A((H - Hd)* (A -+ h0 + () (3.6)
F

mediates the decay A -+ h0 + ( after electroweak symmetry breaking. Here, the coefficient

p/F has been chosen with malice aforethought, as this will turn out to be the approximate

scaling behavior for the eaten goldstino. The subscript R indicates that this operator will

preserve a U(1)R symmetry once we identify ( with an uneaten goldstino of R-charge 1.

There are also additional operators at dimension 5 which violate this U(1)R symmetry,

Cu61 A((Hu - He), (3.7)

- C t A ( H Hu, (3.8)

- C' dAH H. (3.9)

Considering these 05 operators together, the partial width for the decay A -+ h0 + is

22 5 msn2 oW 2 )2
ho ( 5 ) 2 MI.sin I - M O (3.10)hO= Cet m 327F2 m 2

Here, we have defined

et 7 ( (C + Cyd) cos(a + ) - 2C 1 , sin 3 cos a + 2C cos 0 sin a) , (3.11)

with a being the physical Higgs mixing angle. Thus, if somehow the 05 operators were

dominant over operators like those in Eq. (3.2), then the decay of a pure bino LOSP to a

Higgs would dominate over the decay to a -/Z. Note that the 05 operators only mediate a

decay to one or more Higgs bosons, and not to a longitudinal Z, due to the gauge invariance

of the scalar portion of the operators.

Now, in the conventional goldstino case, there is a sense in which the 05 operators are

indeed generated after integrating out the Higgsino as in Fig. 3-5. This occurs not in the

derivatively-coupled basis, but rather in the non-linear goldstino basis described in Sec. 3.3.

The pertinent combination of Wilson coefficients attains the value

5 (m2 - m2d) sin 20 + 2B, cos 20 ±0
Cnet Hu " 2 + ( M ) (3.12)

It P
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Figure 3-5: Additional diagrams which could contribute to LOSP decay. The dimension 5
operator (left) can be generated by integrating out an intermediate Higgsino (right). There
is also a diagram with h0 and (H) reversed. However, if ( is a longitudinal gravitino GL,
then the width F(A - h0 + () vanishes in the Higgsino decoupling limit.

which MSSM aficionados will recognize as being zero for the tree-level Higgs potential in

the decoupling limit ,l > Mz-the same limit in which it was legitimate to integrate out

the Higgsinos in the first place (see App. A.1 for an explanation of this cancellation). This

is as it must be; the physical predictions in this field basis must agree with those of the basis

corresponding to the supercurrent picture of Eq. (3.2), in which the decay rate to Higgs

bosons is highly suppressed.

However, because Cnet = 0 arises only because of a delicate cancellation in the true

goldstino case, any deviation will give rise to additional LOSP decays beyond the supercur-

rent prediction. In particular, if there are multiple sectors that break SUSY [42], each of

which contributes only partially to the SSM soft masses, then the couplings of the uneaten

goldstini cannot be determined by supercurrent considerations. 4 In general, the goldstini

will have very different couplings from the gravitino; concretely, the goldstini need not be

derivatively coupled to observable-sector particles. For a generic uneaten goldstino

S(i2 2H in')sin 20 + 2hp cos 20 m
net = "1 2 + 0 ,\ (3.13)

where the tildes indicate the linear combination, appropriate to the given goldstino, of

contributions from the SUSY-breaking sectors to the corresponding soft mass. These pa-

rameters need not cancel and thus a pure bino LOSP can exhibit the counterintuitive decay

to a Higgs boson and an uneaten goldstino.

4 This fact was recently exploited in Ref. [37] to arrange for goldstini dark matter with leptophilic decays.
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Figure 3-6: Representative diagrams contributing to the dimension 6 operators. After

integrating out the intermediate Higgsinos or sfermions, these diagrams mediate LOSP

decays to Z bosons and SM difermions, as well as generating additional LOSP decays to
ho.

3.2.3 Goldstini and R Symmetries

The differences between LOSP decays to an eaten goldstino versus an uneaten goldstino

become especially striking in the presence of a U(1)R symmetry, and they will be the main

example in this chapter. Consider the case of two SUSY breaking sectors as in Fig. 3-2

where the uneaten goldstino is associated with a sector 2 that preserves an R-symmetry.

As we will argue in Sec. 3.3, if the scale of SUSY breaking in sector 1 is much higher than

in sector 2, i.e. F1 > F2, then we can ignore the standard LOSP decay to a gravitino, since

it will be overwhelmed by the LOSP decay to the uneaten goldstino from sector 2.

The gaugino soft mass terms violate the R-symmetry, so a bino LOSP cannot undergo

the associated decay to a -y/Z and the uneaten goldstino (. Instead, it must (at tree level)

decay to the uneaten goldstino via a virtual Higgsino or sfermion as in Figs. 3-5 and 3-6,

producing a Higgs ho, an arbit arily- polarized Z, or two SM fermions @yin the process.

To understand this effect more clearly, note there are only a limited number of R-

symmetric operators that can mediate the decay of a bino LOSP to an uneaten goldstino

and standard model particles once the Higgsinos and sfermions are integrated out. At

dimension 5, only 0 5 respects the R-symmetry; the other 05 operators are associated with

the R-symmetry-violating B. term. At dimension 6, we will show that the only operators

consistent with gauge symmetries, R-parity, and our imposed R-symmetry are

o6 Z t&1'Ai t D (A hO/Z + ),(3.14)

F
C 6

o6 =H ((t))(A) (A 'I + (3.16)

/ F
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where <D stands for either H, or Hd, 0 is an SM fermion, and we have indicated in paren-

theses the corresponding LOSP decay mode. The values of the Wilson coefficients C6 are

omitted here for clarity; they are given explicitly in Eq. (3.33). Despite the fact that we

have integrated out a Higgsino/sferinion, these operators are not suppressed by the Hig-

gsino/sfermion mass as there is a cancellation between the propagator of the virtual heavy

particle and its coupling to the goldstino. We will explain this fact in more detail in Sec. 3.4;

it is sufficient to note for now that the 06 are suppressed by a power of P relative to 0 .

The relative importance of 05, 06 and 06 for LOSP decays depend sensitively on

the SSM parameters. In general, the three-body decay A -+ 44 + ( is subdominant to the

two-body decays A -k h0/Z + (. As mentioned already, 05 only mediates a decay to Higgs

bosons, not to longitudinal Z bosons, whereas 06 can yield either, or even a transverse Z.

One might naively expect 05 to dominate over 06, since the dimension 6 operator has

a decay amplitude suppressed by MA/p. However, 05 contains H, - Hd which involves an

additional 1/ tan 0 suppression in the large tan 0 limit, while the operators 06 have no

such suppression. Thus, the dimension 6 decays are only suppressed by

MA tan 
(3.17)

compared to the dimension 5 decays, which may not even be a suppression at large tan .

In Fig. 3-3, we showed the LOSP branching ratios as a function of both E and the most

important other free parameter in the theory

tan. rH, (3.18)
Hd

which is the ratio of the contributions to m 2 and m2 from the sector containing the un-

eaten goldstino. For special values of -y, the decay mode A - Z +( can either be completely

suppressed or enhanced relative to A -+ h0 +( due to cancellations. Our main interest will be

in the Higgsino decoupling limit with small i, where the Higgs mode generically dominates.

Thus, in the presence of a R-symmetry, the LOSP decay to an uneaten goldstino gives

a boost to Higgs boson production, even if (and especially if) the LOSP has a negligible

Higgsino fraction. Moreover, the decays to the uneaten goldstino, whether featuring a

Higgs boson or not, will completely dominate over any decays to the gravitino if there is
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an appropriate hierarchy between the two SUSY-breaking scales, as we will describe in the

next section.

3.3 Goldstino and Gravitino Couplings

Having understood the possibility of enhanced A -+ ho + ( decays from an operator per-

spective, the remainder of this chapter will show how precisely this works in the explicit

example of multiple SUSY breaking sectors.

3.3.1 The General Framework

As in Ref. [42], we consider two sequestered sectors, each of which spontaneously breaks

SUSY. Each sector has an associated goldstino (TI, and 12, respectively), and we characterize

the size of SUSY breaking via the goldstino decay constants (F and F2 , respectively). Each

SUSY breaking sector can be parametrized in terms of a non-linear goldstino multiplet

[109, 42]
2

X, = 2 + V12Q, + O 2 Fi, (3.19)
2Fi

for i = 1, 2. We define the quantities

F - F + F2, tan0= F2  (3.20)

and we take tan 0 < 1 (F 1 > F2 ) without loss of generality.

The combination OL = sin 0 1 + cos O 2 is eaten by the gravitino to become its

longitudinal components via the super-Higgs mechanism, but the orthogonal goldstino

( = cos 0 71, - sinO 012 remains uneaten and will be the focus of our study. For simplic-

ity, we will work in the Mpj - oc limit where the uneaten goldstino remains massless,

though in general ( will get a mass proportional to m 3/ 2 via SUGRA effects, in particular

m( = 2m 3/ 2 in the minimal goldstini scenario [42]. In addition, variations in the SUSY-

breaking dynamics [45] or induced couplings between the two sectors [42, 10] can modify

the mass term for (.5

5 At minimum, one expects loops of SM fields to generate m ~ msoft/(167r 2 ), [42], where n depends
on the number of loops necessary to effectively connect sectors 1 and 2 and transmit the needed U(1)R
breaking. The uneaten goldstino will also obtain a tree-level mass due to mixing with the neutralinos, but
this is of order 1/F 2 and is comparatively negligible.
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Supersymmetry breaking is communicated from the two hidden sectors to the visible

sector by means of a non-trivial Kdhler potential and gauge kinetic function (presumably

coming from integrating out heavy messenger fields). Some representative terms contribut-

ing to the SSM soft masses are6

2
K = <Dt<D Xj 'iXt, (3.21)

1 2Ma~
fab = 26ab I + "'Xj (3.22)

where i = 1, 2, and cD stands for a general SSM multiplet. These yield the following terms

in the Lagrangian up to order 1/F [23]:

2

2 MA " + M rAI/2 "AaFa", + M 2 Aa D". (3.23)

Thus, the parameter m (Mai) is the contribution to the SUSY-breaking scalar (gaugino)

mass from each respective sector. Note that they are intrinsically related to the coupling

of the SSM fields to the goldstini.

Rotating to the 6L-( basis yields similar interaction terms for the eaten goldstino 6L

and the uneaten goldstino (,

n2 iM a
- G + a GLupAF"' + a GLAaDa, (3.24)

0L F 2F [ 2 F

£ rn= (00* + iM 7PuA + a aDa (3.25)
F 2F 2 -F

where the untilded and tilded mass parameters associated with gauginos denote

Ma = Ma,I + Ma,2 , (3.26)

Ma = Ma,2 cot - Ma, tan 0, (3.27)

with the analogous notation for the scalar mnass-squared parameters. Throughout, we will

6 We only give the Kdhler potential for a single species of scalar; more general A and B-terms involving
multiple species can also be formed.
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work in the limit cot 0 > 1, for which we can take

-- 2 2
Ma _ Ma,2 m - 0,2(.8

F F 2 ' F F2

02
In this limit, as long as any of the Ma,2 or mgare at least on the order of the weak scale,

LOSP decays to gravitinos are very suppressed and can be ignored for collider purposes. We

see that as predicted via the supercurrent, the true goldstino GL couples to SSM fields in

proportion to the physical soft masses. In contrast, ( couples via the tilded mass parameters

which in the cot 0 > 1 limit are proportional just to the contribution of sector 2 to the SSM

soft masses.

3.3.2 The Decoupling and R-symmetric Limit

In this chapter, we will focus on the Higgsino decoupling and R-symmetric limits. That is,

we will be considering the limit where p is large compared to m\, and the limit where sector

2 preserves a U(1)R symmetry. There are a number of important features of this limit.

When the Higgsinos are decoupled, the soft terms m2H H 2, and B must scale as

O(,2) in order to get successful electroweak symmetry breaking. 7 We can see from the

above Lagrangian that the coupling of dL to a Higgsino and a Higgs is proportional to

these 0(p 2) soft SUSY-breaking masses. The same is true for the couplings of ( if we

make the additional simplifying assumption that the tilded mass parameters scale in the

same fashion, so long as this is not forbidden by a symmetry. With one noted exception

in Sec. 3.6.2, however, our results do not depend on this assumption. From the diagrams

in Fig. 3-5, one would naively expect the amplitudes for the decay of a bino LOSP to

the physical Higgs and either goldstino via a virtual Higgsino to be of order P and thus

dominant over other decays to the same goldstino in the decoupling limit. As we will argue

in Sec. 3.5.2, there is a cancellation in the GL case which renders the decay A - ho + GL

small, whereas for (, the decay A -+ h0 + ( can indeed dominate.

In the limit where sector 2 is R-symmetric, the contribution from sector 2 to SSM A-

terms, B-terms, and gaugino masses is zero. Most relevant for our purposes, this implies

7Strictly speaking, this is only true for the combinations mH, and mH1 + Bd , tan / (working in the large
tan /3 limit). However, if one simultaneously decouples the heavy Higgs scalars in the same way, so that
mAO is of order p2, then all three soft mass parameters scale as p2 barring accidental cancellations. Our
later results for the uneaten goldstino are robust against this assumption, since m2 has the desired scaling
properties regardless.
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that B, and M, are nearly zero. The absence of a B,, term implies that the cancellation

in Eq. (3.12) seen for GL cannot persist for the uneaten goldstino (. The absence of a M-1

term means that the LOSP decay to a -y/Z and ( is highly suppressed.8 Both of these facts

imply a large A -i ho + ( branching fraction. Depending on the relative importance of the

dimension 5 or dimension 6 operators, the mode A -- Z + ( can be large as well.

3.4 Higgsino Decoupling Limit Effective Field Theory

Starting from the above goldstini framework, we can now systematically describe which

operators contribute to bino LOSP decay in the Higgsino decoupling and R-symmetric

limits. We will then give the resulting decay rates for the three main decay modes: A -

h0 + (, A -± Z + (, and A -- bo +.

3.4.1 Leading R-symmetric Operators

In the Higgsino decoupling limit, it is convenient to organize the LOSP decay operators in

terms of the small parameter mA/p. This may be accomplished practically by integrating

out the heavy Higgsino degrees of freedom, yielding an effective field theory with successively

higher-dimension operators suppressed by additional powers of ,. Away from the decoupling

limit, App. A.3 describes how to calculate the LOSP branching fractions for arbitrary p.

For simplicity, we will take F > F2 , in which case the couplings of the uneaten goldstino

are completely determined by sector 2.

Recall that in the MSSM, gauginos have R-charge 1, Higgs multiplets have R-charge

1, and matter multiplets have R-charge 1/2. For arn R-symmetric SUSY breaking sector,

the corresponding goldstino has R-charge 1. Putting this together, at dimension 5, there is

only a single operator contributing to bino LOSP decay consistent with the symmetries of

the theory (including the imposed R-symmetry):

5 =5 C± A((H, - Hd)*. (3.29)
F

This operator may riediate the decay of a bino LOSP to the uneaten goldstino and one or

two physical Higgs bosons h0 .9

8 In the alternative limit where sector 1 preserves an R-symmetry, one expects A -a 'y/Z + ( to still be
relevant, but that will not be the focus of this chapter.

9 Gauge invariance of the scalar portion of the operator forbids production of goldstone bosons (i.e. lon-
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At dimension 6, there are three sorts of additional operators: 10

C,6
, 1 = (tP4AtD D (3.30)

F z(
C 6

o6, = ,2 - t-t'A(D (Dt)4, (3.31)

o6 c6F
00 = (tgt)@A),(3.32)

where b stands for either H, or Hd, and 0 is a standard model fermion. The dimension 6

operators 06 may produce a Z boson (longitudinal or otherwise) instead of or in addition

to any Higgs boson production. The dimension 6 operator 0' will produce a difermion pair

instead." The effects of 06 but not the others, were considered in Ref. [42].

We have omitted two possible R-symmetric operators, 01o"vAtF,, and &o"Af,

which could mediate the decay of the bino to a photon or Z and the goldstino. It is clear by

examining the original Lagrangian of Eq. (3.25) that in the R-symmetric limit with M1 = 0,

a decay to a photon cannot occur at tree-level, so that any effects of such operators will be

suppressed compared to the others of the same mass dimension.

The values of the Wilson coefficients for the above operators can be found by matching

onto the original Lagrangian of Eq. (3.25):

_ ________ _ _____ gmH- fn-
/ H d) 2 ~ 2

R 2 H,, I - Hd,1 22

C6 =- 2g'Yo - , C 2 = 0, C6 2  0. (3.33)

Here, g' is the hypercharge gauge coupling, Yp is the hypercharge of the relevant SM fermion,

and the tilded mass parameters are defined in Eq. (3.27). Inverse powers of the Higgsino

mass-squared p2 and scalar mass-squared m2 appear as expected, since these are the masses

of the fields we are integrating out.

gitudinal W/Z bosons), and the heavier Higgs bosons AO, HO, and H± are of course kinematically excluded
in the decoupling limit.

iOWe have used integration by parts to move all derivatives off of A, and used field redefinitions to eliminate
terms proportional to the equations of motion of the goldstino and gauge bosons. We elect not to use field
redefinitions to eliminate terms proportional to CO',A, as the resulting operators (arising from the gaugino
mass term) would violate the R-symmetry.

"This operator arises from integrating out intermediate sfermions as opposed to Higgsinos, so our power
counting may be spoiled if there are any relatively light sfermions. We will later explicitly calculate the
decay rate for A -+ + ( at tree level to all orders in m2/m2 to account for this possibility.
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The key observation is that the above Wilson coefficients are still order O(p 0 ) in the

Higgsino decoupling limit, 12 since the soft masses scale as O(p2). Thus, even if the LOSP

has negligible Higgsino fraction, there are relevant bino-goldstino-Higgs couplings. As ad-

vertised, the leading decays in the Higgsino-decoupling and R-symmetric limits are

A-*h 0 +(, A - Z + , A - + . (3.34)

Now, using the effective operators of Sec. 3.4.1, we can calculate the various bino LOSP

decay widths in the Higgsino decoupling and R-symmetric limits. Possible R-violating

decays are described in App. A.2.

3.4.2 Decay to Higgs Bosons

The contributions to the A -+ ho + ( decay from the dimension 5 and dimension 6 operators

may be expressed in terms of an effective Yukawa interaction for on-shell states:1 3

neef) et + Cet Ach . (3.35)
v/2F (1

The coefficients C' and Ciet are appropriate linear combinations of the Wilson coefficients

of the dimension 5 and 6 operators, respectively, and are given explicitly in App. A.2. In

the decoupling and R-symmetric limits, they take on the values

net =- " - ) , (3.36)

F2 sin 2 / - /32 COS237
Cnet = H 2 H

The decay rate via this channel is

mAI 2 M sin 2 Ow c5 MA 6 3o 82
32rF2  net + Cnet - (3.38)

12 Note that they are not of order 1, but rather of order cot 0. We have chosen to leave such dependence in

the Wilson coefficients, rather than replacing F with F2 everywhere, so that the only modification needed
to describe the couplings of the eaten goldstino is to remove tildes from all soft mass parameters.

1 3 This is not strictly speaking the whole story; the bino may also decay via two local dimension 5 operators

(O and AA(H. - Hd)* or their wino equivalents) connected by a virtual wino or bino. However, their

contributions to the decay amplitude are suppressed by mA/(ptano) compared to that of 05 alone, or

1/ tan2 3 to those of the dimension 6 operators, and can be safely ignored in most limits.
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In the extreme decoupling limit, we would expect the Cnset term, arising from the di-

mension 5 operator, to dominate over the effects of any dimension 6 operators, which are

naturally suppressed by a factor of mA/Ip. However, our power counting may be spoiled

for large tan/3, due to the factor of sin 23 ~ 2/ tan 3 in C5et. In the event that tan S is of

the same order as P/mA, we cannot neglect the dimension 6 operators. There are no such

complications for the dimension 7 or higher operators, which may be safely ignored in the

decoupling limit.

As a side note, there are only a few changes to the above calculation if we consider a

wino LOSP. There are now two allowed operators at dimension 5--namely, Aa((H.Ta -Hd)*

and A"((He - TaHd)*-but the results throughout are almost identical, requiring only the

replacement g' -+ -g or sin 0w -+ - cos Ow (as the neutral Higgsinos have T 3 and Y

differing only by a sign). In particular, one can verify that there is no net coupling to the

Z boson from the dimension 5 operators, 14 so the neutral wino LOSP decays dominantly

to Higgs bosons in the small (mA tan )/p limit.

3.4.3 Decay to Z Bosons

The dimension 5 operator does not contribute to Z decay. The dimension 6 operators

mediate the decay A -+ Z + ( due to the presence of covariant derivatives. Expanding the

Lagrangian in unitarity gauge, we find a relatively simple coupling to the Z boson:

m2 sin 0w
L = c6et ,z(t&/AZ/, (3.39)

vf2F

with C6aet z being a different linear combination of the Wilson coefficients of the dimension

6 operators. The definition of C6 is given explicitly in App. A.2, and attains the valuenet,Z

62 Si 2 H ii COS2
06 _ n in 2  

Hd co 2  ~(3.40)net, Z - P_2(3.4)

in the decoupling and R-symmetric limit. The resulting decay rate is

M2 mn sin 2 OW ) 2 M)\2
Iz - 32mrF Z(CAtz (I - 1 + 2 ). (3.41)

1
4 Dimension 5 operators can, however, induce a A+ -+ W"( decay. Such decays may well be phenomeno-

logically interesting, as the competing observable-sector decays (A' -± 1'vA3, A: -> 7rA 3, et al. [36]) can be
highly suppressed due to the near-degeneracy of the chargino and wino. However, such decays are certainly
not specific to this R-symmetric limit, or even to the multiple goldstino model.
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3.4.4 Decay to Difermions

Finally, the operator 0 6 mediates the decay of a bino LOSP to a goldstino and a fermion

pair. The decay rate from just this operator is

m sec 2 9 W o'EM l (3.42)
327F 2  127r m4

in the limit of vanishing fermion masses.15

As argued in Ref. [42], the decay rate is non-zero even in the limit of very large scalar

masses. However, due to the factor of 'EMY 2Y/(127r), the decay rate to fermions is typically

subdominant to the Higgs and Z modes, even after summing over all possible fermion final

states. One might wonder whether there could be an enhancement at moderate values of the

scalar masses. Calculating the explicit tree-level decay rate for this mode to all orders in the

scalar mass (while still working in the Higgsino decoupling limit), the result in Eq. (3.42)

is multiplied by a function f[m 2/m2]:

2 1] 41
f[x = 6x2 -5+6x+2(x-1)(3x-1)log 1 )- - ~1+ + 0 2). (3.43)

x 5x x

This function never grows larger than 6 (at mr = mA), and drops off quite sharply from

that value as mo increases. For example, mp must be less than 1.25nA for f to be greater

than 2. Thus, the difermion mode is indeed subdominant. The sole exception occurs when

mH and mH, are both close to zero, where the Higgs and Z decay modes are suppressed.

3.5 Comparisons to the Gravitino Case

Before showing results for bino LOSP branching ratios in the next section, it is instructive

to compare the R-symnetric goldstino results in Sec. 3.4 to the more familiar case of a grav-

itino. Indeed, the existence of a bino-goldstino-Higgs coupling in the Higgsino decoupling

limit is quite surprising from the point of view of the more familiar longitudinal gravitino

couplings, where it is known that the decay A -a ho + dL is highly suppressed. In this

section, we will go to the Higgsino decoupling limit and calculate the effective interactions

1 5 We also neglect here possible contributions from interference between diagrams featuring this operator

and diagrams in which the fermions originate from an off-shell Higgs or Z produced by one of the other

dimension 6 operators.
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for a longitudinal gravitino. In the decoupling limit effective theory, we will find seemingly

miraculous cancellations enforced by supercurrent conservation.

3.5.1 Additional Operations for the Gravitino

In the Higgsino decoupling limit for a longitudinal gravitino, the operators from Sec. 3.4.1

persist after the replacement ( -+ OL, and they have the same Wilson coefficients as

Eq. (3.33) after removing the tildes from the soft mass parameters. In addition, there

are eight R-symmetry-violating operators at dimension 5 and 6 which contribute to bino

LOSP decay. Their associated Wilson coefficients can again be found by matching' 6

1
$ $,B F LF,,

o5 ,HH H - AGL(Hu - H),
#,HuHd - H,, H d,

H d -ALH3H,

$,Hd - $,dF d,

06 -M C$,-t A(Hu -DIH) ,

C6

S C$2 t0A(D/Hu - HF)*,

C6
-id &PA( H, - Dl,Hd),

FL
C6

- 0 i d & A (D ,I H - H ) ,
FL

c5

C, Hu H

CIdu / -2

c6 -;(2>

06 - ____
#4,2 V -- _~

c6

c6 0.

The first operator 0 is exactly the second term in Eq. (3.24). The terms proportional

to M, in C5 and C5 derive from the third term in Eq. (3.24), which contains the

auxiliary field D. The remaining contributions arise from the R-symmetry-violating B1

term.

Looking at these Wilson coefficients, one might (erroneously) conclude that in the Hig-

gsino decoupling limit, a bino LOSP should dominantly decay to a gravitino via a physical

Higgs instead of via a -/Z. After all, the leading order bino-goldstino-Higgs couplings come

16 There are also analogous results in the case of an uneaten goldstino in the absence of an R-symmetry,
as long as tildes are added to the soft mass parameters and GL is replaced with (. See App. A.2.
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from four dimension-5 operators-(5 , (5 (5 and 05 -which are enhancedR #,Hu-Hd' $,H,, #,Hd

by a factor of pI/mA compared to the bino-goldstino--y/Z coupling from 05

However, we know this not to be the case for the gravitino. From conservation of

the supercurrent, the decay rate for A -+ h0 + 6L given in Eq. (3.5) is suppressed in the

decoupling limit by a factor of O(m 2M /P 4 ) from the decay rates for A -s '}/Z+CL given in

Eqs. (3.3) and (3.4). Apparently, when calculating the decay rate of a bino LOSP to a Higgs

boson and a gravitino using the decoupling limit effective field theory, the contributions

to the amplitude from the dimension 5, dimension 6, and dimension 7 operators yield

cancellations up to three orders in the MA/p expansion.

3.5.2 Miraculous Cancellations

The easiest way to see that there must be a cancellation is to go back to the gravitino

coupling from Eq. (3.24) before integrating out the Higgsino. We can make a standard

SUSY transformation on all of our visible sector fields with infinitesimal parameter CL/F,

1 I + t, (3.52)
F

with similar expressions for other fields. This is an allowed field redefinition since it leaves

the one-particle states unchanged. Since the coefficients of the SUSY-breaking mass terms

and the couplings of CL are identical up to a sign, the coupling terms (at order 1/F) cancel

under this transformation. This cancellation is special to the eaten goldstino and does not

in general occur for an uneaten goldstino. The SUSY-respecting part of the Lagrangian

will clearly remain unchanged under this field redefinition except for terms proportional to

0,6L. Thus, CL only couples derivatively to MSSM particles, and does so in exactly the

manner described by the supercurrent formalism of Eq. (3.2).

It is also instructive to see how this cancellation works in the decoupling limit effective

field theory. The A -+ ho + CL decay may still be completely parametrized as a Yukawa

interaction as in Eq. (3.35) for the leading two orders in mA/P: 17

£ =-Mzysinw (5et + Cnet ACLho. (3.53)

1 7The diagrams featuring two dimension 5 operators connected by a virtual bino or wino cancel separately.
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A A H GH ,
I GL

Figure 3-7: These diagrams, which we would expect to yield 0(po) contributions to the
A - ho + GL amplitude, cancel among themselves.

I C C6 have new contributions proportional to B and M1:

c5 -(mH _ 2H., cos(ce + )-2B,, sin(ce +,3) M,
net- 2 + sin(a + (3.54)

, m2 cos, sin ce + m 2 , sin #COS a - B, COS(13 - a)

c6 A -d 2

Cnet =2 .(3.55)

If one uses the tree-level relations for the parameters in the Higgs potential (see App. A. 1)

these simplify considerably:

c (5 -r + , C i3) =B si s 2+ + 0. (3.56)

netP ft 2  ne s==+/) (3.54)2
2 2

We see that the 0(l) term in C.5et have cancelled entirely, and the O(M1/p,) term, which

arose from the AsLD term in Eq. (3.25), cancels against C csn e =

Diagrammatically, the first cancellation is among the diagrams in Fig. 3-5, and the second

cancellation is among those in Fig. 3-7. There is yet another cancellation at the next order

in p involving dimension 7 operators, but it is not instructive to show it explicitly here;

it may be verified using the methods of App. A.3 after diagonalizing the neutralino mass

matrix order by order in p.

3.5.3 Why Goldstini are Different

These miraculous cancellations for the gravitino case, removing the leading three orders of

contributions to the bino LOSP decay to Higgs, are very specific to the gravitino and the

values of its associated Wilson coefficients. There is much more freedom in choosing the

couplings of the uneaten goldstino. Concretely, the Wilson coefficients feature the tilded

versions of soft SUSY-breaking mass parameters, recalling M= Mi,2 cot 6 - Mi,1 tan 0 from

Eq. (3.27). These tilded parameters need not satisfy any a priori relation among themselves,
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and thus the cancellations above will not occur in general for a goldstino.

Said another way, the mechanisms which ensured the cancellations for the gravitino are

not applicable in the goldstino case. The field redefinition of Eq. (3.52) made it manifest

that the gravitino couples derivatively to observable sector fields, but the same cannot be

done in general for the uneaten goldstino. We could attempt to remove one such coupling

with the same sort of SUSY transformation, with

Fm2
#-+#+ - m , (3.57)

but unless i2/rm = Ma/Ma for all scalar and gaugino mass terms, there is no transforma-

tion that will remove all such couplings and make ( purely derivatively coupled.

Thus, one expects a variety of counterintuitive LOSP decay patterns in the presence

of goldstini, such as wrong-helicity decays like '~R --+ TL + (, flavor-violating decays, or

reshuffled neutralino/chargino branching fractions. Of course, the phenomenological differ-

ences between a longitudinal gravtino and an uneaten goldstino are highlighted when the

"standard" decay is forbidden. This is precisely the case for our bino LOSP in the Higgsino

decoupling and R-symmetric limit, where the standard -/Z decay is suppressed and the

novel h0 mode can dominate.

3.6 Branching Ratio Results

We now discuss the bino LOSP branching ratios in the presence of multiple SUSY breaking

sectors, using the R-symmnetric setup from Fig. 3-2. In the bulk of parameter space, the

decay mode A -a 'V + ( is suppressed, so we will first focus on the branching ratios to

Higgs and Z bosons, neglecting any three-body decays. A brief discussion of what happens

away from the R-symnmetric limit appears in Sec. 3.6.3.

3.6.1 Higgs and Z Boson Branching Ratios

When three-body decays can be neglected, the dominant phenomenology is determined by

the two parameters
-- 2

C-M tali, tany ~ , (3.58)
Iy mH
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tan # = 5

4 -3 -2 -1 0 1 2 3 -4 -3 - 1- 0 1 3
c in tan [3/ p c nim tan /3/p

Figure 3-8: Branching ratios for A -4 ho + <in the c--y plane for tan = 5 (left, same as
Fig. 3-3) and tan# = 20 (right), respectively. The remaining branching ratio is dominated
by A -> Z + (. The main differences between the two plots arise because at larger tan /,
the kinematically excluded region mA < mo (which bounds the left plot) is not encountered
until larger c. In this and the remaining plots, we have fixed M, = 165 GeV, which is
mainly relevant for setting the phase space factors in the partial widths.

previously mentioned in Eqs. (3.17) and (3.18). Using the partial widths calculated in

Eq. (3.38) and Eq. (3.41), the branching ratio for the bino LOSP decay to ho or Z, assuming

both are kinematically allowed, may be expressed in the relatively compact form:

(cl-l 2

Br(A - h0() = - Br(A -* Z<) = 1 .(3.59)
1+ 1+ 2

In particular, the branching ratio to Z bosons is a Lorentzian in C-1 and is thus negligible

for small r, as expected. The Lorentzian is centered at r--j with a width w,

-i _1 - tan y tan2 3
(3.60)0 2 tan2 0(tan - - 1)'

1 + tan y tan2 M 2i - M Z2 2)
W = 1 A__ _+ 2 (mZ (3.61)

2 tan2 0(tan 1) m2 - m2o m

where the precise values of E0 and w depend on the Higgs soft mass ratio tan y, tan 0, and

various kinematic factors. Of course, additional three-body decays, whether to fermions or

to multiple Higgs or Z bosons, will spoil the simplicity of these expressions.

Plots of the branching ratio to Higgs in the e-y plane are shown in Fig. 3-8, and slices

76

tail 13= 5



tail /S/i
1 1

'j

-4 -2 (1

I iina tin #/ p

tan y ia # /n# 0.3

1.0

-4 -2 0
f - ni tait /3 1 p

tain y nri /m1O = -0.5

-1 0 2

E iii tin /p

tan y in1 /i. = h 0.7

0.8

0.6

0.4-

0.2-

0.0

-4 -2 0 2

inii tan 3 / p

Figure 3-9: Branching ratios for the bino LOSP as a function of C for fixed values of tan -y.

These are all slices of the left plot in Fig. 3-8 with tan 3 = 5 and M, = 165 GeV. The solid

curves are the all-orders result from App. A.3, while the dashed curves are from the Higgsino

decoupling effective theory in Sec. 3.4. The curves are Br(A -+ ho() (blue), Br(A -+ ZO)

(red), Br(A - OV)() (green), and Br(A --+ -y) (yellow). The decay to Higgses dominates
in the small E limit, with the next most relevant mode being the Z. The branching ratio

to difermions is calculated using the results of Sec. 3.6.2, taking the parameter p defined in

Eq. (3.64) to be 1.0. As advertised, this branching ratio to difermions is very suppressed,
and the branching ratio to photons is essentially zero.

through that plane are shown in Figs. 3-9 and 3-10. In the latter plots, the solid lines are

the all-orders tree-level calculations from App. A.3, while the dashed lines are the analytic

results obtained using the Higgsino decoupling effective theory from Sec. 3.4 (while still

using the all-orders result for the physical LOSP mass m\).

The small c limit corresponds to the extreme Higgsino decoupling regime, where not

only pI > m,\, but the tan 0 suppressed dimension 5 operator 05 dominates over the

dimension 6 operators. Thus, generically, for small c, the decay is overwhelmingly to Higgs

bosons, as expected. However, there is an exception for the region around tan y 1. When

tan -y =1, mi - jj and Cnet are both zero and the branching ratios to Higgs and Z

bosons should be roughly equal up to phase space factors. For tan -y slightly removed from
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Figure 3-10: Same as Fig. 3-9, but with branching
values of E.
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unity (downwards for c > 0, upwards for c < 0), C,5et will destructively interfere with Cnet

and the Z mode will dominate.

Moving away from small c, we expect the Z branching ratio to increase, as the contri-

butions from dimension 6 operators to bino decay are roughly equal for the Higgs and Z

modes. This is shown in Fig. 3-9. The effects of interference between the dimension 5 and

dimension 6 operators on the Higgs amplitude also grow more pronounced for larger C. For

C > 0, the interference is destructive for tan C (1/ tan2 , 1), and vice versa for C < 0.18

For extremely large E, the approximations based on being in the Higgsino decoupling

limit break down as mA//p approaches 0(1). Ultimately, the Higgs mode is kinematically

excluded once the mass of the lightest neutralino (by now predominantly Higgsino) drops

below the Higgs mass.

3.6.2 Difermion Branching Ratio

In most of parameter space, the decay mode A -+ 4' + ( is suppressed. We can see this

most clearly by comparing the decay rate to all fermion species to the decay rate to a Z:

Zg Eg _ 'EM 2 < 2f6 rn'2 _ -,22  MA 2-lK1 1- + 2I, (3.62)
Fz 37r sin2 20w n 2 2 m2 mrI 2

net,Z )-/

where Tr mn i/m2 and fi - f[m /m 2], with the function f defined in Eq. (3.43).

For concreteness, consider the limit where tan 3 > 1, pui, mno > MA, and the Th are

all equal to a common value To. The sum over SM fermion hypercharges (excluding the

presumably kinematically inaccessible top) is 103/12. Assuming that the tree-level relations

between the soft masses approximately hold, 6 = To. All the T values then cancel, and

the net result is

EV , I M 2 MI 2 2 -
A I - (I + 2 ./I (3.63)Fz 107MH2 rn 2 M 2)

This ratio obtains a minimum of around 1/28 at rnA 140 GeV, and it is smaller than 1/10

for MA in the approximate range 100-300 GeV.

Of course, there is one somewhat contrived region of parameter space for which the

"The operative relative sign is that between y and mx. The 05 operator features an odd power of p,
while the mA factor conies from the C6 operators, whose only non-vanishing contributions feature the Dirac
equation applied to the external bino spinor.
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Figure 3-11: Branching ratios for the bino LOSP as a function of the parameter p defined
in Eq. (3.64) below, measuring in effect the relative contributions to the Higgs and sfermion
mass terms by sector 2. If this parameter is tuned close to zero, then the Higgs and Z modes
shut off, leaving only the difermion channel. For larger values of p, the difermion channel is
suppressed; this occurs generically when the tilded Higgs soft mass parameters scale with

P2 , as mentioned in Sec. 3.3.2. For concreteness, all prior figures have used p = 1.0.

decay to fermions can dominate; if the sector containing the uneaten goldstino gives no

contribution to any of the Higgs soft masses, then Fa 2 and F2 vanish and the decay via

an off-shell sfermion are the only ones allowed. Fig. 3-11 shows that the decay to fermions

can indeed dominate if the parameter

in 2 -2 Zi y 2

p Hc, + M ~ f (3.64)2p Cot 0 EiY2,T

with sums taken over all appropriate sfermion species, is tuned close enough to zero.

3.6.3 The R-violating Regime

Though not the focus of this chapter, we wish to briefly comment on possible R-violating de-

cays, for which calculations are given in App. A.2. As we move away from the R-symmetric

limit, the LOSP decay to photons is now allowed at tree level, and will generally garner a

branching ratio that is at least of the same order as of those to Higgs or Z. In Fig. 3-12,

we show branching ratios as a function of a parameter 3 which measures the amount of

deviation from the R-symmetric limit,

2 Ti + T2 + TBA (3.65)
3 TH + THd
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E= 0.5 tan # 5

(0.6-

0.4

Br(A -Z + )

Figure 3-12: Branching ratios for the bino LOSP as a function of the parameter 6, defined
in Eq. (3.65), that measures the deviation from the R-symmetric limit. When 6 = 0, we
are in the R-symmetric limit of the previous figures. When 6 = 1, the branching ratios for
A -- X + ( are exactly what one would predict for A -+ X + GL in the more conventional

model with only one hidden sector; the photon mode dominates and the Higgs mode is
highly suppressed.

with Ti= Mi/Mi for any soft mass(-squared) parameter Mi. In Fig. 3-12, we hold Ti = T2

TBA and THd THu = To, for simplicity. When 6 = 0 we have the exact R-symmetric limit;

when 6 1 we have the "aligned" limit in which the uneaten goldstino couples simply

as a rescaled version of the gravitino (i.e. there is a basis, obtained by making the field

redefinition Eq. (3.57), in which it couples only derivatively). Note in the latter limit the

Higgs branching ratio effectively shuts off, as expected.

The diversity of possible LOSP decay branching ratios shown in Fig. 3-12 is reminiscent

of mixed neutralino LOSP scenarios, where the LOSP has comparable bino, wino, and

Higgsino fractions. Here, however, we are still working in the Higgsino decoupling limit, so

the interesting pattern of LOSP widths come not from varying the identity of the LOSP

but rather from varying how the hidden sectors couple to the SSM.

3.7 Conclusion

SUSY breaking scenarios with a light gravitino offer fascinating phenomenological possibil-

ities. With the LOSP no longer stable, gravitinos could comprise part or all of the dark

matter of the universe, and collider experiments could discover extended SUSY cascade

decays. However, the gravitino need not be the only SUSY state lighter than the LOSP.

In the context of multiple SUSY breaking, there is a corresponding multiplicity of goldstini

whose masses are all typically proportional to m 3/ 2 (or loop suppressed compared SSM soft
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masses). Thus, the LOSP may dominantly decay to an uneaten goldstino instead of the

gravitino. Since the couplings of the uneaten goldstino are unconstrained by supercurrent

conservation, the LOSP can exhibit counterintuitive decay patterns.

In this chapter, we have focused on the case of a bino-like LOSP which decays dominantly

to Higgs bosons despite having negligible Higgsino fraction. This effect is particularly

pronounced in the presence of a U(1)R symmetry, which suppresses the expected A -a + (

decay. By studying which low energy effective operators are generated in the Higgsino

decoupling limit, we have understood why the mode A -+ h0 + ( dominates in the limit

of small (mA tan )/p, and also why there is a non-standard A -4 Z + ( decay mode away

from that limit. We have seen explicitly that there are delicate cancellations in the decay

width of the LOSP to a gravitino, and the counterintuitive decays of a LOSP to an uneaten

goldstino arise from incomplete cancellations.

Similar counterintuitive decay patterns would be present for a wino-like LOSP, and in

general, one should contemplate the possibility of any LOSP decay pattern consistent with

SM charges. Those LOSP decays might involve an uneaten goldstino as in this chapter, but

could also be present with a light axino [105, 134] or a new light hidden sector [15, 49, 41].

To our mind, the most intriguing possibilities involve copious Higgs boson production in the

final stages of a SUSY cascade decay, which may offer new Higgs production modes and give

further motivation for boosted Higgs searches. Studying these phenomena is particularly

relevant given the expected LHC sensitivity to SUSY scenarios in the 13 TeV run to begin

next year.
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Chapter 4

The Two Faces of Anomaly

Mediation

4.1 Introduction

As we discussed in Ch. 2, if SUSY is realized in nature, then it must be spontaneously broken

and the effects of SUSY breaking must be mediated to the supersymmetric standard model

(SSM). In the context of supergravity (SUGRA), the most ubiquitous form of mediation

is "anomaly mediation" [135, 84, 133, 81], which persists even when (and especially when)

a SUSY-breaking hidden sector is sequestered from the visible sector. Of course, anomaly

mediation need not be the dominant source of SSM soft masses, and there are theories

where anomaly mediation is suppressed or absent [115, 120, 119]. But given its ubiquity,

it is worth better understanding the physics of anomaly mediation and the circumstances

which give rise to sequestering.

Indeed, anomaly mediation has been the source of much theoretical confusion, and var-

ious papers have aimed to clarify the underlying mechanism [35, 16, 17, 60, 46, 99, 44, 140].

The original description of anomaly mediation involved the super-Weyl anomaly [135, 84],

and the most straightforward derivation of anomaly-mediated soft masses uses the confor-

imal compensator formalism of SUGRA [80]. As discussed in Ref. [16], anomaly mediation

really involves three different anomalies: a super-Weyl anomaly, a Khler anomaly, and

a sigma-model anomaly. More recently, Ref. [60] emphasized that SUGRA is not even a

necessary ingredient, as a version of anomaly mediation (corresponding to the sigma-model
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anomaly) appears even in the MpI -+oo limit.1

In this chapter, we will show that the phenomenon known as "anomaly mediation" really

consists of two physically distinct effects. This realization clarifies a number of confusions

surrounding anomaly mediation, and leads to a physical definition of sequestering in terms

of goldstino couplings. Throughout this chapter, we will use "goldstino" to refer to the

longitudinal gravitino mode in the high energy limit (E > M3/ 2 ) [64, 34, 33].2 The two

effects are as follows.

" Gravitino Mediation. As we showed in Sec. 2.7, bosonic and fermionic modes in

the same multiplet have SUSY mass splittings in the bulk of four-dimensional anti-de

Sitter (AdS) space [25, 132, 87].3 These mass splittings are proportional to the AdS

curvature, and thus to the gravitino mass in3/2- If SUSY AdS space is minimally

uplifted to Minkowski space via SUSY breaking, these mass splittings are preserved,

leading to SSM soft masses from "gravitino mediation". These soft masses do not

have associated couplings to the goldstino, naively violating the (flat space) goldstino

equivalence theorem [64, 34, 33]. Nevertheless, the absence of goldstino couplings

is necessary for conservation of the AdS 4 supercurrent. Gravitino mediation closely

resembles traditional anomaly mediation [135, 84], and is related to the super-Weyl

anomaly. Gravitino mediation can never be turned off, since it arises from the infrared

symmetry structure of SUSY AdS space.

" Kdhler Mediation. If visible sector fields have linear couplings to SUSY-breaking

fields in the Kihler potential, then this gives rise to "Kihler mediation", where SSM

fields get mass splittings proportional to beta function coefficients. Linear couplings

are ubiquitous in the presence of modulus fields, so Kiihler mediation typically ac-

companies (and sometimes cancels) gravitino mediation in explicit SUGRA construc-

tions [115, 120, 119, 11]. As expected from the (flat space) goldstino equivalence

'Ref. [60] also emphasized that the language of "anomalies" is not necessary, as the effect can be alter-
natively described in terms of gaugino counterterms. These gaugino counterterms are necessary to maintain
SUSY in the 1PI effective action, including all anomaly contributions.

2 For Mpi -± oc and Mr3/ 2 -+ 0, this mode is the true goldstino from spontaneous SUSY breaking [148, 137,
139]. Here, we will keep m 3 /2 fixed by considering the goldstino mode in rigid AdS space [104, 156, 94, 95].
In particular, the familiar relation m 3 / 2 = Feff /VMpi is only true after adjusting the cosmological constant
to zero, so we can still take Mp, -4 oc while preserving effects proportional to m3/2/Fef.

3 These splittings are required by the global AdS SUSY algebra. The case of massless gauge multiplets
is subtle, since physical gauginos are massless in AdS 4 . Crucially, a bulk gaugino mass term is required to
cancel an infrared contribution to the gaugino mass in the 1-loop 1PI effective action, arising from boundary
conditions in AdS 4 [87].
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Anomaly? mx x ? SUGRA? Goldstino?

Gravitino Mediation Super-Weyl (3TG - TR)m 3 / 2

Super-Weyl 1(3TG - TR)KiF/

K~ihler Mediation Kahler - TRKiF / /

Sigma-Model 21(log det K') F

Table 4.1: The two faces of anomaly mediation. Shown are the corresponding anomalies
and their contributions to gaugino masses, with a notation to be explained in the body
of the text. (All the masses have an overall factor of g2/1672.) We indicate whether the
effect requires SUGRA and whether there is an associated gauge boson-gaugino-goldstino
coupling. Gravitino mediation can be distinguished from Kdhler mediation by the goldstino
coupling. If SUSY breaking couples directly to gauginos, then there is an additional anomaly
contribution discussed in App. B.1, which yields both one-loop gaugino masses and goldstino
couplings.

principle, these soft masses have a corresponding coupling to the goldstino. In the

Mpj - oc limit, Kihler mediation appears via the sigma-model anomaly (as em-

phasized in Ref. [60]). It also receives 1/Mpi corrections due to the super-Weyl and

Kdlhler anomalies. Unlike gravitino mediation, Kdhler mediation is sensitive to the

ultraviolet couplings of the theory.

These two contributions to anomaly mediation are summarized in Table 4.1, focusing on

the case of gaugino soft masses. Full anomaly mediation is simply the sum of gravitino

mediation and Kdhler mediation. 4

One might naively expect that no physical measurement could distinguish between grav-

itino mediation and Kdhler mediation, since they only appear in combination in SSM soft

masses. However, there is a crucial physical distinction in terms of goldstino couplings. 5 In

usual SUSY breaking scenarios, gaugino soft masses are accompanied by a corresponding

coupling between the gaugino A', the gauge boson A', and the goldstino CL,

1 icA
£C MA ~T Aa Aa +± C GL91 AaF av (4.1)

2 v 2Feff f

4 As pointed out in Ref. [44] in the context of string theory, there is an additional anomaly-mediated
gaugino mass which arises from an anomalous rescaling of the gauge multiplets. We discuss this effect in
App. B.1 and show that it yields a corresponding goldstino coupling consistent with (flat space) supercurrent
conservation.

5 Our results can be interpreted as describing goldstino couplings in the analog of Landau gauge where
the gravitino field is purely transverse. At the end of Sec. 4.4.2, we explain the same effect in unitary gauge.
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where Fff is the scale of SUSY breaking.6 For global SUSY, the relation cA = mx is required

by the (flat space) goldstino equivalence theorem. In contrast, gravitino mediation is dic-

tated by SUSY in AdS space, and generates a contribution to mA without a corresponding

contribution to cX. Indeed, the difference mA - c\ is necessarily proportional to m 3/ 2 by

conservation of the AdS supercurrent, and this gives a physical way to measure gravitino

mediation as distinct from all other sources of SSM soft masses. We will show this explicitly

in Eq. (4.30).

This result allows us to give an unambiguous definition of sequestering [135], which is

the condition necessary for traditional anomaly mediation (i.e. gravitino mediation) to be

the sole source of SSM soft masses.

* Visible sector fields are sequestered from SUSY breaking if they do not have linear

couplings to the goldstino. 7

In other words, cA is measure of how well the visible sector is sequestered from the goldstino.

Previously, sequestering was known to occur when the Kdhler potential K and superpoten-

tial W took a special "factorized" form [135]

-3e-K/ 3 = Qvis + hid, W = Wvis + Whid- (4.2)

However, Eq. (4.2) is ambiguous, since the separation into "visible" and "hidden" sectors is

not robust to Kdhler transformations by a chiral multiplet X with K -+ K + X + Xt and

W -± c-XW. Also, sequestering usually (but not always) requires moduli to be stabilized

[86, 121, 14, 122, 125, 63]. Sequestering does have an unambiguous extra-dimensional

interpretation in terms of geometric separation [135]. Here we can use the absence of

goldstino couplings as a purely four-dimensional definition of sequestering. Since physical

couplings are invariant to Lagrangian manipulations such as Kdhler transformations, this

definition does not suffer from the ambiguities of Eq. (4.2), and gives a robust criteria for

determining when traditional anomaly mediation is dominant.

We can highlight the distinction between gravitino mediation alone and anomaly me-

6 There is also an additional coupling between the gaugino, goldstino, and the auxiliary field D',
7C A a~GD". The c, of this coupling is guaranteed to be identical to the c\ in Eq. (4.1), so we omit

\/2Feff

this term for brevity throughout.
7 Strictly speaking this is only true for gauginos. As we will explain below, scalar soft masses are more

subtle because of irreducible couplings to the goldstino, but sequestering for scalars can still be defined as
the absence of any further couplings to the goldstino.
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diation more generally by comparing models with strict sequestering [135] to models with

warped [121, 14, 122, 119, 125, 63, 144] or conformal sequestering [130, 108, 131, 123, 107,

118, 106, 59, 92, 93, 141]. In the case of strict sequestering, SUSY breaking is confined

to a brane which is geometrically separated from the visible sector brane. This geometric

separation forbids couplings between the goldstino and the visible sector. The only source

of visible sector soft masses comes from gravitino mediation, which can be captured by the

conformal compensator 8

(CD) = 1 + 02m 3 / 2. (4.3)

In the case of warped sequestering, visible sector fields on the IR brane feel an "effective"

conformal compensator

wO -P ekT~ (4.4)

where T is the radion superfield. Visible sector fields obtain anomaly-mediatied soft masses

proportional to

Kw = m 3 / 2 - kFT, (4.5)

but because the radion has overlap with the goldstino direction, there are visible sector

couplings to the goldstino proportional to kFT. In the language of this chapter, warped

sequestering exhibits a cancellation between gravitino mediation and Kdhler mediation.9

Throughout this chapter, we focus on gaugino masses, leaving a full description of

anomaly-mediated scalar soft masses to Ch. 5. As a preview, there is a mass splitting

between scalars and matter fermions in the bulk of AdS 4 , analogous to the gaugino case,

which includes the familiar two-loop anomaly-mediated scalar masses. However, already

at tree-level in AdS 4 , scalars have tachyonic scalar soft masses equal to -2n 2 [25, 132].

While tachyonic scalar masses do not destabilize the theory in AdS space, they do in flat

space. Thus, the SUSY breaking that uplifts the theory from AdS to flat space must

remove these tree-level tachyonic soft masses, resulting in irreducible goldstino couplings

which complicate the definition of sequestering.10

8The relation (F4,) = n 3 2 is special to strict sequestering. See Eq. (4.19) for a more general expression.
9This cancellation is not a fine tuning, since it arises from the geometry of the warped (AdS 5 ) space.

The curvature of AdS5 should not be confused with the curvature of AdS 4 , which is responsible for gravitino
mediation.

l 0There is a related subtlety involving tree-level holomnorphic B-terms, since B terms arising from the
superpotential have different associated goldstino couplings than B terms arising from the Giudice-Masiero
mechanism [82]. Previously, both phenomena were considered to occur in the sequestered limit, but Giudice-
Masiero secretly violates the conditions for sequestering, as we will see in Ch. 5.
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In the remainder of this chapter, we derive the gaugino soft masses and goldstino cou-

plings arising from anomaly mediation, emphasizing the distinction between gravitino me-

diation and Kdhler mediation. The soft masses are well-known in the literature, but to

the best of our knowledge, the goldstino couplings have never been calculated explicitly.

In Sec. 4.2, we give a straightforward derivation of how Kihler mediation arises in global

SUSY. We then turn to full SUGRA in Sec. 4.3, applying the improved SUGRA gauge

fixing of Ref. [38]. This is the simplest way to isolate gravitino mediation, since this gauge

automatically decouples the (transverse) gravitino, leaving the goldstino coupling manifest.

In Sec. 4.4, we describe the same physics using a more conventional SUGRA notation of

Ref. [16]. We also explain the connection to the AdS4 supercurrent conservation and the

goldstino equivalence theorem. We conclude in Sec. 4.5.

4.2 Ka*hler Mediation in Global SUSY

Before deriving full anomaly mediation in Sec. 4.3, it is useful to focus on the case of pure

Kdhler mediation, which arises in the limit of global SUSY. This example was emphasized

in Ref. [60], but in order to connect to the (perhaps) more familiar language of Ref. [16],

we will derive the result using chiral anomalies (instead of gaugino counterterms).

Consider a field redefinition acting on a chiral superfield Q of the form

Q -+ e0Q, (4.6)

where a is another chiral superfield."1 This field redefinition changes the Lagrangian in a

classical way, but it also introduces a term related to the Konishi anomaly [43, 110]. If Q

is in the representation R of non-Abelian gauge field, then the Lagrangian shifts as

L(X) -+ L(eaX)+ 6 TR d2OaWaWa (4.7)
167r~2 j al

where TR is the Dynkin index of the representation R. In the language of Ref. [83, 12],

Eq. (4.7) is simply the chiral anomaly analytically continued into superspace.

"Throughout this chapter, we will use the notation of Ref. [38], where boldface (X) indicates a superfield
and regular typeface (X) indicates the lowest component of the corresponding superfield. Superscripts are
field labels and subscripts indicate derivatives with respect to chiral fields. As needed, we raise and lower
indices using the Khler metric. We will use Q to indicate visible sector fields and X to indicate hidden
sector SUSY-breaking fields.
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In global SUSY, Kdhler mediation arises whenever charged matter has linear couplings

to SUSY breaking in the Kdhler potential. This is easiest to understand using a non-

linear representation XNL of a SUSY-breaking field which obeys the constraint XNL 0

[137, 116, 109, 42, 39]. Consider a Lagrangian which contains a matter field Q coupled to

SUSY breaking as

C D d4OQtQ I + XNL +XNL (4.8)

We can remove the linear couplings of XNL by performing an (anomalous) field redefinition

Q -+ Q ( XNL Q-XNL/A (49)

where the last equality relies on XNL 0. From the Konishi anomaly, this yields

L D d4 OQtQ ( - XNLXNL _ 92 TR d 20 XNL WaWa (4.10)

After the field redefinition, XNL only has quadratic couplings to Q, at the expense of

introducing new couplings between XNL and the gauge multiplet. This is the essence of

Kdhler mediation.

Expanding out XNL in terms of Fx and the goldstino GL [137, 116, 109, 42, 39]

X NL = 0 + 1 L2Fx, (4.11)
v1- Fx)

Eq. (4.10) contains a soft mass for the gauginos and a corresponding coupling to the gold-

stino, as anticipated in Eq. (4.1)

1 iCA
C D rrtAAaAa + GLCA VAaFa,, (4.1)

2 2Feff

where Fff Fx in this example, and

92 TR FX
m= cA = 87 2 A (4.12)

As expected from the goldstino equivalence theorem (see Sec. 4.4.2), the goldstino couplings

are proportional to the gaugino mass.
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In the above derivation, the matter superfield Q was assumed to be massless, which was

crucial for seeing a physical effect from the sigma-model anomaly. Indeed, without massless

"messengers" to communicate SUSY breaking, one does not expect Khhler potential terms

to affect holomorphic quantities like gaugino masses. To see what happens for massive

matter, consider vector-like chiral superfields with a supersymmetric mass term PQQC. In

this case, the chiral rescaling in Eq. (4.9) yields a new superpotential term - LQQCXNL. For

large p, Q and QC are just heavy messenger fields, generating a gauge-mediated contribution

to the gaugino masses which exactly cancels Eq. (4.12), as explicitly shown in Refs. [142, 62].

This insensitivity to heavy supersymmetric thresholds is a well-known feature of anomaly

mediation, and persists in SUGRA as well; we may in general evaluate anomaly or beta-

function coefficients at the scale of interest. For simplicity, we will take all matter superfields

to be massless in the remainder of this chapter.

The chiral rescaling procedure in Eq. (4.9) can be generalized to an arbitrary Kdhler

potential K.

L d d4OK. (4.13)

Consider a set of chiral multiplets Q in the representation R with the Kdhler metric K4'.12

In general, KI'j will be a function of SUSY-breaking fields X2 , but as shown in App. B.2,

there is a field redefinition that removes all linear couplings of X' in KI'j but generates the

anomalous term

sf -d2g 2 wa"Wa [ log det-K 2'l , (4.14)
-L Jd 167 2  a 16 EL dR R1

where dR is dimension of the representation R. This form makes explicit use of the chiral

projection operator (Dt2 D 2 /16 E), which is overkill for our purposes. Since we are only

interested in soft masses and goldstino couplings, we will assume that all SUSY-breaking

fields have been shifted such that (X') = 0, and focus on a subset of terms from expanding

Eq. (4.14) to first order in X':

20g 2 TR XiaW
6L 16 2 TR (log det K|)1X" Wa"Wa. (4.15)

167r2 di?

In each SUSY-breaking multiplet X', the fermionic component /V' has overlap with the

1
2 The Kdhler metric KI'" is just Kiu where Qi and Qi transform in R.

90



goldstino direction as
F-

x FCO6, (4.16)
Feff

where Feff is the total amount of SUSY breaking (in the absence of D terms, Fff = FIFI).

We see that Eq. (4.15) contains a gaugino mass and corresponding goldstino coupling

92 2TR
mA CA c -= R(logdetKl);Fi. (4.17)

167r 2 dR

Once we sum over representations R, this is the general expression for Kdhler mediation in

global SUSY. As we will see, this chiral field scaling procedure will persist when we go to

SUGRA, but the equality between mA and cA will be broken.

4.3 Gravitino and Kifhler Mediation in SUGRA

Having derived Kdhler mediation in global SUSY, we can now understand the analogous

effect in full SUGRA. Now, the goldstino is eaten by the super-Higgs mechanism to become

the longitudinal component of the gravitino, but it is still convenient to isolate the goldstino

mode by using goldstino equivalence in the high energy limit. For simplicity, we will use

"anomaly mediation" to refer to the combined effect of gravitino and Kdhler mediation.

As we will see, these two effects are physically distinct from the perspective of goldstino

couplings.

The improved SUGRA gauge fixing of Ref. [38] is particularly convenient for under-

standing anomaly mediation, both in terms of soft masses and goldstino couplings. In this

gauge, matter multiplets (including the goldstino multiplet) are decoupled from the gravity

multiplet up to 1/M2 suppressed effects. This allows calculations involving the matter

fields alone to be performed in global superspace. After giving a brief description of the

SUGRA Lagrangian and the gauge fixing of Ref. [38], we will calculate gaugino masses and

goldstino couplings to see the two faces of anomaly mediation.

4.3.1 The SUGRA Lagrangian

The conformal compensator formalism arises from gauge fixing conformal SUGRA using the

conformal compensator field <b. As reviewed in Ref. [38], the tree-level SUGRA Lagrangian
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can be written as

L = -3Jd 40t 4e-K/3 + d 20 3 W +h.c.+ Jd20 f abWaaW -+ h.c. +..., (4.18)

where the ellipsis (...) corresponds to terms involving the graviton and gravitino. In general,

the ellipsis contains quadratic mixing terms between matter multiplets and the graviton

multiplet, but Ref. [38] showed that there is an improved gauge fixing for 4) where this

mixing is absent:

P = CZ/3(1 + 2FO), (4.19)

Z = (K/2 - i Arg W) + (Ki) X. (4.20)

In this gauge, one can simply drop the ellipsis terms in Eq. (4.18) for any calculation not

involving gravitons or gravitinos, allowing one to study matter multiplets in SUGRA using

global superspace manipulations.

There are a few important caveats to this gauge fixing. First, Eq. (4.19) only removes

mixing terms at tree level, so strictly speaking, one can only study tree-level and one-loop

effects using this formalism. This is sufficient for understanding anomaly-mediated gaugino

masses at one loop, but we will have to postpone a study of two-loop scalar soft masses

for future work. Second, this gauge fixing assumes that the cosmological constant has been

adjusted to zero to yield a Minkowski vacuum, a necessary assumption for phenomenology.

Third, Eq. (4.19) explicitly contains vacuum expectation values (vevs), which is perhaps

unfamiliar but conceptually sound.

A nice feature of this gauge is that after adjusting the cosmological constant to zero

(F4) _= m3/2, (4.21)

making it easy to identify terms proportional to the gravitino mass [38]. In particular,

note that the (1 + 0 2 m 3/ 2 ) part of 4 has a SUSY-breaking F-component without any

coupling to fermions. This will be the origin of gravitino mediation, which yields soft

masses proportional to M3/2 without a corresponding goldstino coupling.

In addition to the tree-level terms in Eq. (4.18), there is a contribution to the La-

grangian coming from anomaly matching. Before introducing (and gauge fixing) b, con-
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formal SUGRA contained a non-anomalous U(1)R gauge symmetry with gauge field bji so

the corresponding global U(1)R must also be non-anomalous. Under this U(1)R, <b (which

we have yet to gauge fix) has R-charge 2/3 and matter fields have R-charge 0. Since chiral

fermions have R-charge -1 and gauginos have R-charge +1, the gauge kinetic function for

each gauge field must contain

fab D aab 42 (3TR - 3TG) log 4), (4.22)47 2

such that these anomalies can be cancelled by a U(1)R shift of log <P [103] (see also Ref. [17]).

Note that this is not the familiar expression for <P coupling involving the beta function (see

e.g. Ref. [135]). This will arise after appropriate field redefinitions of the matter fields.

4.3.2 Field Redefinitions in SUGRA

The Lagrangian shift in Eq. (4.7) appears for any field rescaling of chiral inultiplets, includ-

ing rescalings involving the conformal compensator. With the improved gauge fixing, there

is no mixing between matter multiplets and the gravity multiplet, and this lack of mixing

persists (at least at one loop) after field rescalings.13 In addition to the appearance of

Eq. (4.22), the main difference between Kdhler mediation in global SUSY and full anomaly

mediation in SUGRA is that K in Eq. (4.13) is replaced by 4)4) Q, with

S -3-K/34.23)

We can now use the same fields manipulation as in Sec. 4.2, treating <P as one of the

SUSY-breaking fields. First, to remove linear couplings to the conformal compensator, we

can perform the field redefinition

Q +4). (4.24)

Combined with Eq. (4.22), this leads to the familiar anomaly-mediated term

6= 916 2  d20 3TG-TR log4WaWa, (4.25)

which is proportional to the beta function bo -- 3TG - TR as expected. To remove linear

1 3 This rescaling does induce a gravitational anomaly term, but this is irrelevant for our present purposes.
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couplings to SUSY-breaking fields in Q, we use Eq. (4.14), replacing K with Q

1 1 I
1

'A~-~I'1(log det Q '") - K + (log det K 1'"). (4.26)
dR 3 dRgR

Here, we have used the fact that for unbroken gauge symmetries, the vev of Ki (and of any

derivatives of Ki with respect to the SUSY-breaking fields) is zero for charged fields Q'.

Combined with Eq. (4.25), we arrive at the final anomaly-mediated expression 1 4

f 2  g2  (3TG -TR NDt 2 D2 [TR TR (ALI'l

61= d 20 2 3G-T) log <1k + D2D2 T K + T (log det K|'k) W aaW a
167r2  2 16) g 3 dR I ) a*

(4.27)

Using the improved gauge fixing, anomaly mediation in SUGRA has essentially the same

origin as Kshler mediation in global SUSY, arising from performing anomalous chiral rescal-

ings to remove linear couplings to SUSY breaking in the Kdhler potential.

As emphasized in Ref. [16], anomaly mediation is associated with three different anomalies-

a super-Weyl anomaly, a Kdhler anomaly, and a sigma-model anomaly-corresponding to

the three terms in Eq. (4.27). In our rescaling procedure, the Kdhler and sigma-model

anomalies in SUGRA have a common origin, and arise from taking the global sigma-model

anomaly involving the Khhler potential K and replacing it with an "effective" Khhler po-

tential Q. In this way, the Kdhler anomaly should be regarded as a 1/Mpi correction to

the sigma-model anomaly. The super-Weyl anomaly is truly a SUGRA effect, and depends

crucially on the fact that prior to gauge fixing, there was an anomaly-free global U(1)p

symmetry. 15

4.3.3 Soft Masses and Gaugino Couplings

Before expanding Eq. (4.27) in components, there is no apparent difference between grav-

itino mediation and Kdhler mediation. This difference only becomes visible after identifying

the gaugino soft masses and corresponding gaugino couplings in Eq. (4.1), repeated for con-

venience:
1 icW

L D -m AaA + d, aL"AaFa,. (4.1)
2 V2Feff

14 As discussed in App. B.1, there is an additional anomaly-mediated contribution arising from rescaling
gauge multiplets from a holomorphic basis to a canonical basis. This effect is not captured by Ref. [16] since
it requires direct couplings between SUSY breaking and gauginos, but it does appear in Ref. [44].

15 As a side note, the derivation of anomaly mediation in Ref. [60] focused only on an Abelian gauge theory,
so it does not capture the TC dependence in non-Abelian theories which arises from Eq. (4.22).
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The gaugino mass from expanding Eq. (4.27) is

___ Ki F2  TR T ft , 'mA 2  ((3TG - TR) (m 3/ 2 + 3) 2 TKF + 2  (log det K ')Fi) . (4.28)1672 3 3 dRR

Note that both the super-Weyl and Kdhler anomaly pieces have contributions proportional

to KiF, and we have used the fact that (FO) = M3/ 2 in the improved gauge fixing from

Eq. (4.19). We can extract the goldstino coupling CA from Eq. (4.27), using Eq. (4.16) to

identify the goldstino direction:

C = 2 (3TG -- TR) -- 2 KIF + 2 (log det K )jF' (4.29)
167 2  3 3 dR R

Crucially, cA differs from MA by terms proportional to M3/ 2 , owing to the fact that the (1 +

02m3/2) piece of 4P has a SUSY-breaking F-component without a corresponding goldstino

components. These terms are summarized in Table 4.1.

We can rewrite the gaugino mass and goldstino coupling in the following suggestive way:

mA = MAdS + cA, (4.30)

where

mAdS 16 2 (3/2(3TG - TR)) , (4.31)

CA = 1& 2 (K3F (3 TG - 3TR) + 2 
7 R (log det K ),iF ) . (4.32)

This is the primary result of this chapter. Here, mAdS is the gaugino mass splitting from

the bulk of SUSY AdS space (derived in Ref. [87] and discussed further in Sec. 4.4.2), and

gives rise to a gravitino-mediated soft mass with no associated goldstino coupling. The

remaining part of anomaly mediation CA is Kdhler mediation, which generalizes the global

SUSY results from Sec. 4.2. As advertised, cA is an effective measure of sequestering- in

particular, sequestering of visible sector gauginos from the goldstino----and the limit cA = 0

corresponds to pure gravitino mediation.
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4.4 Alternative Descriptions

Having seen the two faces of anomaly mediated in the conformal compensator formalism,

it is worth repeating the calculation in the (perhaps) more familiar language of Ref. [16].

We first rederive Eq. (4.30) in components, and then explain the connection to the AdS

supercurrent and the goldstino equivalence theorem.

4.4.1 Anomaly Mediation in Components

As shown in Refs. [27, 117, 16], after lifting the super-Weyl, Khhler, and sigma-model

anomalies to superspace, the IPI effective action contains

£SF D- .9 2 J d2 2F WcWaC, (4.33)
25672

where for convenience, we have defined a chiral superfield C as

1 (,Dt2 !TD 2K TR-D2lRog.34C 1 (Dt2 - 8R) [4(TR - 3Tc)Rt - 3 K + dR log detK , (4.34)

where R is the curvature superfield. This expression is valid in "supergravity frame" where

the Einstein-Hilbert term has the non-canonical normalization e-/REH .16 By taking the

lowest component of C in App. B.3, we recover (non-local) terms in the Lagrangian that

express the three anomalies.

In order to derive physical couplings and masses from the other components of C, we

need to transform to "Einstein frame" where the graviton (and gravitino) have canonical

6 1t may be confusing that Eq. (4.33) is only a function of the Khhler potential K and not the Khhler
invariant G = K + log W + log W*. Because of the Kahler anomaly, there is a physical distinction between
the superpotential W and the holomorphic terms in K. See Refs. [16, 17].
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kinetic terms. This can be accomplished by performing the field redefinitions [16, 154]

C" c--K/6e , (4.35)

S+K/12 i t2oiXtK/6), (4.36)

M* c -K/6(M* - F K ), (4.37)

A' - K4 (4.38)

X - e-K/42 i (4.39)

F e-KF1 (4.40)

b-+ bp + (Otxt K - VI,xLKi) (4.41)
22

Note that the gravitino <,, scalar auxiliary field M*, and vector auxiliary field bi, transform

inhomogeneously under this redefinition.' 7 With this field redefinition and adjusting the

cosmological constant to zero, the scalar auxiliary vev is

(M*) -3m 3/ 2 , (4.42)

analogous to Eq. (4.21).

After performing the field redefinitions, the pertinent components of C are

eK/12,DVC 16 * 32 32 TR(3TG - TR)Kjx1 - TR (Ki) x' + 2TR (log det K R)x
3 v2 3,,f2 (A V d I

32
-3 (3TG - TR)(Io-IP9 P, 1 fJ)a + ' , (4.43)30D

e K/6 D2 C 32 TG - TR )(-3M3 / 2 - FK ) + 64 TRKF
3 3

- 6 4 TR (log det KI)jF + . (4.44)
dR R

Here, it is understood that we have shifted all fields such that their vevs are zero and any

expressions contained in angle brackets above are purely c-numbers. The ellipses represent

omitted terms that do not correspond to any local terms in the resultant Lagrangian, but

are necessary to maintain SUSY in the 1PI action. The gravitino coupling in the last term

of Eq. (4.43) will be important in Sec. 4.4.2 below.

The (2 component of C yields the gaugino soft mass, and the 0 component of C yields

17Indeed, the improved gauge fixing of Ref. [38] was designed to avoid having to perform such transfor-
mations.
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the gauge boson-gaugino-goldstino coupling. We can now derive Eq. (4.1), after identifying

the goldstino mode through Eq. (4.16), and we recover the same answer as Eq. (4.30):

1 c\
C D - (mAds + cA) A, A' + Aao GLF (4.45)

2 \/2Feff

with

g2

mAdS - 167 2 (m 3/ 2 (3TG - TR)) (4.46)

9 2_ Kii TP
A (3TG -3 TR) + 2 iR(log det K ),iFi). (4.47)

1672 3 dRR

Because of the gravitino shift in Eq. (4.36) and the auxiliary field shift in Eq. (4.37), the

super-Weyl anomaly contributes to both gravitino mediation and Kihler mediation. Again,

we see that gravitino mediation is physically distinct from Kdhler mediation by the absence

of goldstino couplings.

4.4.2 Supercurrent Conservation and Goldstino Equivalence

The fact that gravitino mediation gives rise to gaugino soft masses without corresponding

goldstino couplings is perhaps confusing from the point of view of the goldstino equivalence

theorem [34, 33]. However, we will see that this is necessitated by conservation of the AdS

supercurrent.

The goldstino equivalence theorem states that at energies well above the gravitino mass

m3/2, the couplings of longitudinal gravitinos can be described by the (eaten) goldstino

mode. In global SUSY, linear couplings of the goldstino are fixed by conservation of the

(flat space) supercurrent

1
- IU (4.48)

L /2Feff

The part of the supercurrent that depends on the gauge boson and gaugino is

j"a D - 1cv-fPo7PAtFa 4.9
flat 2 a (4.49)

Using the gaugino equation of motion (assuming a massless gauge boson for simplicity),
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this gives rise to the interaction

im),
Flat space: GLU-"AaF (4.50)

2Feff

where mHA is the physical gaugino mass. In flat space, therefore, cA must equal MA, and

there can be no contribution from gravitino mediation.

The resolution to this apparent paradox is that the gravitino mediation arises from

uplifting an AdS SUSY vacuum to SUSY-breaking Minkowski space, so we should really

be testing the goldstino equivalence theorem for (rigid) AdS space [104, 156, 94, 95].18

Indeed, the last term in Eq. (4.43) contains an additional coupling to the gravitino, which

contributes to the (AdS) supercurrent.19 In principle, it should be possible to derive the

one-loop AdS supercurrent directly from the SUSY algebra in AdS space, but we know of no

such derivation in the literature. Instead, we can simply extract the one-loop contribution to

the supercurrent by recalling that the gravitino couples linearly to the (AdS) supercurrent

as

£ 2Mp 1 i 2ds V2Feff LJAds. (4.51)

In this last step, we have identified the goldstino direction via [154]

2 ~ Feff
0 - m 3/ 2& L - 6 G M3/2 = ,3- (4.52)

- 3 .- O'' V6 MVMpi,

and dropped the term proportional to 6t ijj */Mp since it does not contain a gauge

boson-gaugino-goldstino coupling.

We see that Eq. (4.43) contains a linear (non-local) coupling to the gravitino, and thus

an additional (local) coupling to the goldstino

- (j2 m13 /2(3TG -- TF) e Lo" aFa. (4.53)
167r2 v/2Feffjt

We recognize the term in parentheses as -MAdS from Eq. (4.31). Combining with Eq. (4.50),

1
iRigid AdS corresponds to the limit Mp --- oc leaving the AdS curvature fixed. This limit maintains

couplings proportional to mn3 /2 despite the fact that the gravitino itself is decoupled.
19 Strictly speaking, this term contributes only to the bulk AdS 4 supercurrent, as there is an additional

boundary term that compensates to allow massless gauginos in SUSY AdS 4 [87]. After lifting AdS space to
flat space, this boundary term becomes irrelevant.
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the full goldstino coupling in SUGRA is

MA - TnAdS
AdS space: iOdS "AF (4.54)

vdS Feff

in perfect agreement with Eq. (4.30). Thus, the goldstino equivalence theorem holds even

in the presence of gravitino mediation, albeit with the AdS supercurrent. This is as we

anticipated, since particles and sparticles have SUSY mass splittings in the bulk of AdS

space, so "soft masses" arising from mAds should not have an associated goldstino coupling.

We could alternatively derive the same effect in unitary gauge for the gravitino by realizing

that the last term in Eq. (4.43) modifies longitudinal gravitino interactions by an amount

proportional to mAdS/m3/2.

4.5 Discussion

In this chapter, we have shown that anomaly mediation consists of two physically distinct

phenomena, which can be distinguished by their associated goldstino couplings. Gravitino

mediation (i.e. traditional anomaly mediation) is familiar from the phenomenology litera-

ture, but it has the counter-intuitive feature that it has no associated goldstino coupling.

Indeed, the difference mA - cA = mAdS is a physical way to measure gravitino mediation,

and cA characterizes the degree of sequestering between the visible sector and the gold-

stino. Kdhler mediation simply arises from linear couplings of SUSY-breaking fields in the

Kdhler potential, and appears in both global and local SUSY. The soft masses and goldstino

couplings from Kdhler mediation satisfy the (flat space) goldstino equivalence theorem.

While these two faces of anomaly mediation can be understood directly in SUGRA

component fields as in Sec. 4.4, the physics is more transparent using the improved gauge

fixing of Ref. [38]. In this gauge, it is obvious why soft masses proportional to m3/ 2 do

not have any associated goldstino couplings, since the conformal compensator <P contains

a piece (1 + 02m 3 / 2 ) with no fermionic component. It is also obvious that the super-Weyl

anomaly contributes both to gravitino mediation and to Kdhler mediation. For deriving

Kihler mediation in SUGRA, it is convenient that the Kdhler and sigma-model anomalies

are tied together into a single Q function.

As previewed in the introduction, the case of scalar soft masses is more subtle, and

we leave a detailed study to Ch. 5. For gravitino mediation, conservation of the AdS 4
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supercurrent must hold to all loop orders, such that any soft mass proportional to the AdS

curvature will have no associated goldstino coupling. However, tree-level tachyonic scalars

masses given by -2mT 2 must be compensated by SUSY breaking to have a stable theory in

flat space. This tachyonic piece is in addition to the well-known two-loop anomaly-mediated

soft masses, so even in sequestered theories, there will be irreducible (but unambiguous)

couplings between matter multiplets and the goldstino. Since anomaly mediation can be

alternatively derived using Pauli-Villars regulating fields [84, 78, 77], we should find that

the soft masses and goldstino couplings of the regulators are precisely those necessary to

maintain the gravitino/Kiihler mediation distinction in the regulated theory.

We have emphasized the fact that a gaugino soft mass can appear with no associated

goldstino couplings in the case of strict sequestering, which yields pure gravitino mediation.

Interestingly, there are also reversed cases where a goldstino coupling is present with no

associated gaugino mass. Famously, anomaly mediation is absent in no-scale SUSY break-

ing (and suppressed in almost-no-scale models) [120]. Also, theories with extra-dimensional

warping can have suppressed anomaly mediation [119]. However, these arise from a cancel-

lation between gravitino mediation and Kdhler mediation (through moduli F-components),

and thus goldstino couplings are still present even when there are no anomaly-mediated

soft masses. This bizarre result is nevertheless required by conservation of the AdS super-

current, and emphasizes the fact that the underlying symmetry structure of our universe is

not just SUSY, but SUSY in AdS space.
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Chapter 5

Anomaly Mediation from

Unbroken Supergravity

5.1 Introduction

As we discussed in Ch. 2, spontaneously broken SUSY yields a positive contribution to the

cosmological constant, so in order to achieve the nearly zero cosmological constant we see

today, the underlying symmetry structure of our universe must be SUSY in anti-de Sitter

(AdS) space. In the context of supergravity (SUGRA), the inverse AdS radius A-s is equal

to the gravitino mass M3/ 2 . Thus, because of the underlying AdS SUSY algebra, there will

be effects on the supersymmetric standard model (SSM) proportional to m 3/ 2 . These would

appear as "SUSY-breaking" effects from the point of view of the flat space SUSY algebra,

but are actually SUSY-preserving effects when viewed from AdS4 space.

Famously, anomaly mediation [135, 84] yields gaugino masses proportional to m 3 / 2 -

As we showed in Ch. 4, these gaugino masses do riot break AdS SUSY, and are in fact

necessary for conservation of the AdS supercurrent. We called this phenomenon "gravitino

mediation" to separate this mf 3 / 2 effect from other anomaly-mediated effects which have

nothing to do with the AdS SUSY algebra.1 Throughout this chapter, we will use the more

familiar (but less accurate) name "anomaly mediation" to refer to all effects proportional

to M3/ 2 (i.e. gravitino mediation; see Refs. [35, 16, 17, 60, 87, 99, 44, 140] for additional

'These other effects were dubbed "Kdhler mediation" since they arise from linear couplings of SUSY
breaking to visible sector fields in the Kihler potential. Full anomaly mediation is simply the sum of Kihler
mediation and gravitino mediation. See Ch. 5 for details. There is also a (usually subleading) anomaly-
mediated effect noted in Ref. [44] if there are direct couplings of SUSY breaking to the gauginos at tree-level.
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theoretical perspectives). Unlike usual SUSY-breaking effects, anomaly mediation generates

gaugino masses without accompanying goldstino couplings, further emphasizing that this

is a SUSY-preserving effect.

The goal of this chapter is twofold. First, we wish to extend the analysis of Ch. 5 to

the case of sfermions. It is well known that anomaly mediation yields two-loop scalar mass-

squareds proportional to ml/2 , but we will show that from the point of view of AdS4 space,

anomaly mediation already yields scalar masses at tree level. Following the strategy of Ch. 5,

we will use goldstino couplings as a guide to determine which effects preserve AdS SUSY,

allowing us to distinguish between SUSY-preserving effects that are genuinely proportional

to Mr3 / 2 versus SUSY-breaking effects that are only proportional to m3/ 2 because of the

need to fine tune the cosmological constant to zero. Second, we wish to counter recent

claims by de Alwis that anomaly mediation does not exist [46, 47]. In contrast, we will use

the same logical starting point as de Alwis (which is based on the analysis of Kaplunovsky

and Louis [103]) but come to the conclusion that anomaly mediation not only exists, but is

necessary for the preservation of AdS SUSY.

Along the way, we will encounter a number of surprises, all ultimately having to do with

the structure of AdS SUSY:

e Tree-Level Tachyons and Sequestering. Already at tree-level in AdS space, the

components of a chiral multiplet get SUSY mass splittings proportional to m3/ 2. For

example, if the fermionic component is massless, then its scalar partner has a negative

mass-squared -2/m 2  satisfying the Breitenlohner-Freedman bound [25].2 In order3/2'

to have a stable theory after AdS SUSY is lifted to flat space via SUSY breaking,

this negative mass-squared must also be lifted. Since such a lifting must break AdS

SUSY, this requires irreducible couplings between the SUSY-breaking sector ("hidden

sector") and the SSM ("visible sector"), even in theories where the hidden and visible

sectors are sequestered [135]. For a chiral multiplet with components {, x, F} there

is necessarily a coupling to the goldstino OL when the sfermion soft mass is zero in

flat space:
2m 2

L -Feff /GLX*, (5.1)
Feff

where Feff is the scale of SUSY breaking. Intriguingly, this coupling is renormalization-
2 A fermion with mass ±}m3 / 2 will have one scalar partner with mass-squared -}m/, exactly saturating

the bound.
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group invariant, and effectively defines what it means to sequester the hidden and

visible sectors. 3

* Giudice-Masiero in AdS Space. In flat space, the harmonic part of the Kihler

potential (i.e. the chiral plus anti-chiral part) is unphysical. This is not the case

in AdS space, and the Giudice-Masiero mechanism [82] is a way to generate p and

Bf, terms via K D HuHd + h.c. While the generated y term preserves AdS SUSY,

the BP term actually breaks AdS SUSY, since it secretly involves direct couplings

between Higgs multiplets and the goldstino. When written in a more natural basis, it

becomes clear that Giudice-Masiero arises from a combination of a SUSY-preserving

and SUSY-breaking effect.

* Anomaly Mediation and Super-Weyl Invariance. As emphasized in Ref. [60],

anomaly mediation is not due to any anomaly of SUSY itself,4 but is rather due to

the need to add local counterterms to preserve SUSY of the 1PI effective action. A

related story presented in Ref. [87] is that bulk counterterms are needed to counteract

otherwise SUSY-breaking effects due to the boundary of AdS 4. Here, we will follow

the logic of de Alwis [46, 47] (based on the analysis of Kaplunovsky and Louis [103])

to show how anomaly mediation arises from preserving super-Weyl invariance of a

UV-regulated SUGRA theory. While de Alwis (erroneously) concluded that anomaly

mediation cannot exist in such a situation, we find that there is residual gauge de-

pendence in de Alwis' calculation (and a similar issue implicit in Kaplunovsky and

Louis). In the langauge of the Weyl compensator, anomaly mediation depends not

just on the FC component of the compensator (which can be gauge-fixed to zero), but

on the super-Weyl-invariant combination

1
Fsw - Fc - M*, (5.2)

3

where 1I is the scalar auxiliary field. Accounting for the fact that (Fsw) depends on

rm3/ 2 , we reproduce the familiar anomaly-mediated spectrum.

3 In Ch. 5, we (erroneously) advocated that the absence of goldstino couplings could be used as a physical
definition of sequestering. Because of this tree-level tachyon subtlety, though, this goldstino coupling is
needed to have a stable theory.

40f course, the name "anomaly mediation" is still justified since it generates effects proportional to beta
function coefficients.
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" Supertraces Resolve Spectrum Ambiguities. We will use an ansatz for the

SUGRA-invariant 1PI effective action to extract sfermion soft masses and goldstino

couplings. Because there are many such ansdtze consistent with SUGRA, there is an

ambiguity in the resulting sfermion spectrum. For example, there are three terms

that show up at Q(mi/2 ) in the 1PI effective action:

4 soft mass = -Cs#*O - CaF*L-lF + iCf xti5TD,--Ilx, (5.3)

where E is the d'Alembertian appropriate to curved space. The first term is the

familiar sfermion soft mass-squared term, but the two non-local terms necessarily

appear as m 2 /p 2 corrections to the self-energies. We will find that while the coefficients

Ci are indeed ambiguous (since they depend the precise form of the ansatz), the

supertrace

S = Cs +Ca - 2C5 (5.4)

is unambiguous and gives a useful measure of the "soft mass-squared" for a sfermion

(see Ref. [12] for a related story). Not surprisingly, a similar supertrace is needed to

define unambiguous "goldstino couplings".

* SUSY-Breaking in the SUGRA Multiplet. The key confusion surrounding

anomaly mediation is that there are two different order parameters in SUGRA-one

which sets the underlying AdS curvature and one which accounts for SUSY breaking-

which are only related to each other after tuning the cosmological constant to zero.

In particular, a non-vanishing vacuum expectation value (vev) for M* (containing the

term -3m 3/ 2 in SUGRA frame) does not break SUSY. Instead, the SUSY-breaking

order parameter in SUGRA comes from the F-component of the chiral curvature

superfield R:

1

12 -m 3 / 2. (5.5)

After using the Einstein equation, FR vanishes for unbroken SUSY in AdS, but takes

on the value -in 2 once the cosmological constant has been tuned to zero. Thus in3/2

flat space, we will find both SUSY-breaking and SUSY-preserving effects proportional
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Tree-Level One-Loop Two-Loop

SUSY AdS 4  Soft Mass-Squared -2m 2  2y rm 2

(R = 12m 2  Goldstino Coupling3/2 3/2

Curved Space Soft Mass-Squared -- R1 -

(broken SUSY) Goldstino Coupling -2(m 2 - ) 2 - ) -

Flat Space Soft Mass-Squared - Im
(broken SUSY) Goldstino Coupling -2m3/ 2  3/ 2

Table 5.1: Sfermion soft masses and goldstino couplings from minimal anomaly mediation
(i.e. "gravitino mediation" in the language of Ch. 5, so (K) = 0). Here, -y is the anomalous
dimension of the chiral multiplet and -- dy/d log p. Starting with unbroken SUSY in
AdS 4 with Ricci curvature R = 12As = 12n,2 we show how the spectrum evolves
as SUSY breaking is tuned to achieve flat space with R -+ 0. In this table, "soft mass-
squared" and "goldstino coupling" refer to the supertraces in Eqs. (5.87) and (5.90), and
the loop level refers to the order at which the effect starts. Minimal anomaly mediation also
yields A-terms and B-terms, which are described in Sec. 5.4.5. This table only includes the
contributions from bulk terms and not from one- and two-loop boundary terms (analogous
to Ref. [87]) necessary to preserve the SUSY algebra in AdS4 ; these boundary terms are
irrelevant in flat space.

to m 2 , and we will have to tease these two effects apart by carefully considering

AdS SUSY. We will also find corresponding goldstino couplings proportional to FR,

arising from terms in the SUGRA multiplet proportional to the gravitino equations

of motion.

* Two-Loop Soft Masses and One-Loop Goldstino Couplings. Using an ansatz

for the all-orders SUGRA-invariant 1PI effective action, we will recover the familiar

two-loop soft masses from anomaly mediation. But in addition, we will find one-loop

goldstino couplings proportional to anomalous dimensions (on top of the tree-level

goldstino coupling from Eq. (5.1)). As a cross check of our calculation, both the two-

loop soft mass and the one-loop goldstino coupling are renormalization-group (RG)

invariant quantities, as expected from the general analysis of Refs. [98, 97, 133, 12].

The complete sfermion spectrum is summarized in Table 5.1.

The remainder of this chapter is organized as follows. In Sec. 5.2, we review the structure

of SUGRA at tree-level, and show how the underlying AdS algebra gives rise to SUSY-

preserving mass splittings between fermions and sfermions. In Sec. 5.3, we discuss super-
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V 0 ----- - --- Flat Space
(broken AdS1 SUSY)

+ FiN

V =-3m/ i - SUSY in AdS4

Figure 5-1: Fine-tuning of the cosmological constant, adapted from Ref. [21]. Starting with
the underlying AdS radius A = 3 /2 , SUSY-breaking effects lead to flat space with
broken (AdS) SUSY.

Weyl invariance in UV-regulated SUGRA theories at one loop, and show how anomaly

mediation arises as a super-Weyl-preserving and SUSY-preserving effect. In Sec. 5.4, we

discuss anomaly mediation for sfermions up to two-loop order, completing the analysis of

goldstino couplings that was initiated in Ch. 5. We conclude in Sec. 5.5.

5.2 Invitation: Anomaly Mediation at Tree Level

It is well known that rigid AdS SUSY requires mass splittings between particles and spar-

ticles [25, 132]. Less well known is that those mass splittings have an impact on the phe-

nomenology of SUGRA, even if the geometry (after SUSY breaking) is that of flat space. In

particular, the couplings of the goldstino (eaten to form the longitudinal components of the

gravitino) can be used to track which effects break SUSY and which effects preserve SUSY.

Crucially, these couplings depends on m 3 / 2 , which in turn depends on the underlying AdS

radius Ajs = rn3/2 prior to SUSY breaking. The fine-tuning of the cosmological constant

to achieve flat space is summarized in Fig. 5-1.

Considering only chiral multiplets, we can write the fermion and sfermion masses and

sfermion-fermion-goldstino couplings as

L D - Bjj2i/ - 2Mix 3x+ *3 xGL+ 52X 3 L + h.c., (5.6)Z3 22 x Feff x Feff

where $i is a sfermion, Oi is its fermion partner, 6L is the goldstino, and Feff is the scale

of SUSY breaking. Assuming the flat space SUSY algebra, one can show that

flat - M kM J, b =B (5.7)
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which emphasizes that goldstino couplings arise when sferinions and fermions have non-zero

mass splittings (i.e. when flat space SUSY is broken). In AdS space at tree-level, however,

we will show that

a dS = rn2 - Mk Mkj + 2m 2  j, bAdS = Bij + m 3/ 2Mij, (5.8)

which shows that one can have m 3 / 2-dependent mass splittings between multiplets without

corresponding goldstino couplings (i.e. without breaking AdS SUSY).

In this section, we give two different derivations of Eq. (5.8), with a third derivation

using the conformal compensator given in App. C.1. We then discuss the phenomenological

implications of these goldstino couplings for sequestering, Giudice-Masiero terms, and regu-

lator fields. Though the goldstino is eaten by the gravitino in SUGRA, the couplings of the

goldstino are still physically relevant. Indeed, in the goldstino equivalence theorem regime

with energies E >> n3/ 2 , the interactions of the longitudinal components of the gravitino

are captured by the goldstino couplings in Eq. (5.8) (plus modifications to those goldstino

couplings that appear at higher-loop order).

5.2.1 Derivation from the SUGRA Lagrangian

The first way to derive Eq. (5.8) is to consider the SUGRA Lagrangian directly. The scalar

potential for SUGRA is [154]

V = CG(GkGk - 3), (5.9)

where the K dhler-invariant potential G is given by5

G -- K + log W + log Wt. (5.10)

Throughout the text, we use the conventions of Ref. [154]. Here, subscripts represent

derivatives with respect to scalar fields (Gk= OG/D0k), and indices are raised and lowered

with the Kdhler metric Gij and its inverse. The gravitino mass is given by

-3/2 = CG/2 , (5.11)

5The Kdlhler anomaly [16, 17] implies a physical difference between the Khhler potential and the super-
potential, but it does not enter at tree level.

109



and the quadratic fermion interactions in SUGRA are

L D -iGjjy Xt4 X - CG/2(ViGj + GiGj)x'xi + h.c. (5.12)
2

where D, and Vi are the Kdhler-covariant derivatives with respect to spacetime and scalar

fields, respectively.

If SUGRA is unbroken ((Gj) = 0), then we have a negative cosmological constant

(KV) = -3mi/ 2 M2l), so the spacetime background is AdS, with curvature A-s

The fermion mass matrix is

Mij =in3/2 (ViGj) (unbroken SUGRA), (5.13)

and at the extremum of the potential ((Vi) = 0), the scalar mass-squared and holomorphic

mass can be expressed in terms of Mij as

m, = Mi Mk3 - 2m 3 /2
6ij, (5.14)

Bij = -m 3/ 2 Mij (unbroken SUGRA). (5.15)

These are the same as the results we found in for rigid AdS SUSY in Sec. 2.7, as expected.

Note that inserting these mass values into Eq. (5.8) yields no goldstino couplings, as is to

be expected since there is no goldstino when SUGRA is unbroken.

If SUGRA is broken, then there are a few important effects. Defining the SUSY-breaking

scale as

Feff = eGGkGk, (5.16)

we find the the cosmological constant is modified to be

(V) = ff - 3m3/ 2 M P, (5.17)

where we have restored factors of the Planck constant Mpl. As shown in Fig. 5-1, it is

possible to fine-tune V = 0 by choosing

Fef = /m 3 / 2Mp1 . (5.18)
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In addition, SUSY breaking gives rise to a goldstino, which (assuming no D-terms for the

gauge multiplets for simplicity) points in the direction

GL = 1_Gi. (5.19)
v/3

The fermion and sfermion mass matrices are generically deformed due to the presence of

SUSY breaking, and their form is well-known for KV) = 0 and ( V) 0 [154]: 6

M = M3 / 2 (ViGj + GjGj) , (5.20)

2d 32 )kmi,= mrn/2 2 3ViGkV-Gk R-kTGG +GjT), (5.21)

m2 = m /2 \GvVjGk - 2ViGj (5.22)

where RiJk. is the Kdhler curvature tensor. 7

The Yukawa couplings can similarly be extracted from Eq. (5.12):

£D I - n3 / 2  RijkIG1 + GijGk + G iGj ixki*j (5.23)

1
I n 3 / 2 (ViVjGk + GiVjGk + GkViGj + GjVkGi + GjGjGk) Xixkqj. (5.24)

One can read off the couplings of the goldstino to visible-sector fields after picking out the

goldstino direction:

a, = T 2  - Ri3 G GKGi + 3Gj, (5.25)

bi = m/ 2 KGk viV jGk + 3ViGj, (5.26)

recalling that (Gi) is negligible for visible-sector fields. This then yields the goldstino

couplings anticipated in Eq. (5.8) (at least for the case of (V) = 0).

Thus, despite the fact that SUGRA is broken and the cosmological constant is lifted

to yield (V) = 0, the goldstino couplings retain information about the structure of the

underlying AdS SUSY, and not the structure of flat space SUSY.

6 There is a typo in Ref. [154] which omits the first term in Eq. (5.22).
7 Here, and throughout the text, we do not choose any gauge fixing for the gravitino, so there is also

quadratic mixing between the goldstino and the gravitino. See Eq. (5.31) below.
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5.2.2 Derivation from Supercurrent Conservation

An alternative derivation of Eq. (5.8) uses conservation of the AdS supercurrent. The

supercurrent is the Noether current of (rigid) SUSY transformations, and in SUGRA, the

linear couplings of the gravitino hp to matter are determined by the supercurrent alone:

c vP7taD m/2 4"M + h.c. 2p 1 tjt + h.c. (5.27)

Appropriate manipulation of the gravitino equation of motion (and the Einstein equation,

given Eq. (5.17)) yields the relation

1 ~F 2

0 DtjI + ZM3/20~4jp -i e "'ip. (5.28)

This relation can be most naturally interpreted in the rigid limit (Mpi - 00, m 3/ 2 and

Feff fixed), in which the last term vanishes and the spacetime background is AdS (with

A m3/2). In the rigid limit, we see clearly that conservation of the supercurrent is

different in flat space versus AdS space. In flat space, the fermionic SUSY transformation

parameter c satisfies the criteria 1,c = 0, whereas in AdS space

DAE = - Tn 3/ 2 0,7E t, (5.29)

where DP is the (gravity) covariant derivative [4, 70]. Among other things, this implies

that the goldstino in rigid AdS space has a mass of 2m 3 / 2 [42, 391. It also implies that the

condition for conservation of the supercurrent is not 9,j = 0 but rather the rigid limit of

Eq. (5.28), as Noether's theorem requires D,(j" + j+IEt) = 0.

When SUSY is broken, the supercurrent contains the goldstino

we = ih e n " " parFit D + t th (5.30)

where 7,is the remaining "matter" part of the supercurrent. Eq. (5.28) can then be
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interpreted as the goldstino equation of motion arising from the Lagrangian

'C= id~at 1 2T~2GGi Fef~L -iCL GL - -(2 LL + h.c. + FeGf tP1, + h.c.
2 v/2 Mpi

- 2 D Fe- 2m 3 /2j5,u) 6L + h.c., (5.31)

where the last term is necessary for conservation of the AdS supercurrent.

In both flat space and AdS space, the supercurrent for chiral inultiplets contains 8

jP D /2 fgij7v *Jxi-a"jV. (5.32)

The other term proportional to xt'DtW*xtio/ is irrelevant for our discussions since it

vanishes on the goldstino equation of motion. Using the equations of motion for the matter

fields and the goldstino equation of motion, we find that Eq. (5.31) contains the goldstino

couplings

ai = m -- Mik Mkj + 2n /2 6I, (5.33)

bij = Bij + m 3 / 2Mij, (5.34)

as expected from Eq. (5.8). Note that the terms proportional to M 3/ 2 arise from the

additional goldstino mass and Fimrn3 /2j I GL terms necessary for AdS supercurrent con-

servation.

5.2.3 Tachyonic Scalars and Sequestering

The fermions in the standard model are massless (prior to electroweak symmetry breaking),

so in the absence of AdS SUSY breaking, the sfermions would be tachyonic, with a common

mass-squared -2m3/2 (see Eq. (5.14)). In order to have a (meta)stable vacuum after SUSY

breaking, these tachyonic masses must be lifted, but from the ai, term in Eq. (5.8), this

implies an irreducible coupling between the goldstino and the matter fields.

This result is rather surprising from the point of view of strictly sequestered theories

[135], where anomaly mediation is the only source of soft masses. As shown in Fig. 5-

8This assumes that the SUGRA action only contains a Kdhler potential and a superpotential without
additional higher-derivative interactions. The supercurrent is modified when loop effects are taken into
account, giving rise to new effects detailed in Sec. 5.4.
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---------------- GL

Visible Sector Hidden Sector

Figure 5-2: An extra-dimensional realization of the sequestered limit, where SUSY is broken
only in a hidden sector. Naively, the goldstino is localized in the hidden sector and would
not couple to visible sector fields. But due to mixing with the gravitino, there are irreducible
couplings between the goldstino and chiral multiplets in the visible sector in order to have
a stable tree-level theory in flat space after SUSY breaking.

2, one way to achieve the sequestered limit is to have the visible sector (i.e. the SSM)

and the hidden sector (i.e. SUSY-breaking dynamics) live in different parts of an extra-

dimensional space with no light degrees of freedom connecting the two apart from gravity.

This implies a special sequestered form of the effective four-dimensional Khler potential

and superpotential:

3e-K/ 3 = vis + Qhid, W = Wvis + Whid. (5.35)

Naively, one would think that the goldstino from SUSY-breaking must be localized in the

hidden sector (assuming the SSM itself does not break SUSY [96, 20]), and therefore decou-

pled from the visible sector. But Eq. (5.8) shows that there are direct connections between

the visible and hidden sectors necessary for stability of the theory. In particular, there is

an irreducible coupling to the goldstino when the sfermion soft mass is zero in flat space:

2m 2

LD 3/2 & Ux/*. (5.36)
Feff

There are two potential ways to interpret this result. One interpretation is to conclude

that sequestering corresponds to a fine-tuned limit. After all, in the sequestered limit at

tree-level, one has the underlying -2m 2  AdS tachyonic mass balanced against the +2m 2
3/2 t3/2

SUSY-breaking mass to yield the physical tree-level sfermion mass of zero once the cosmo-
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logical constant is tuned to zero. This interpretation is probably too pessimistic, though,

since the tachyonic uplifting is an automatic consequence of adjusting the cosmological

constant. Concretely, this uplifted mass arises from the scalar auxiliary field (and the cor-

responding goldstino couplings arise from mixing with the gravitino), so once you have the

sequestered form of K and W, you necessarily obtain zero scalar masses but non-zero ag

couplings.

A second, more optimistic, interpretation is that Eq. (5.36) gives a concrete definition of

sequestering. While the extra-dimensional picture in Fig. 5-2 is a nice realization of seques-

tering, the sequestered limit can be achieved in more general theories. In four-dimensional

models with conformal sequestering [123, 118, 141], the visible and hidden sectors effectively

decouple under RG flow to the infrared, assuming all composite vector multiplets in the

hidden sector have mass dimension greater than 2. As we explain in App. C.2, Eq. (5.36) is

actually RG invariant, so one might conjecture that it corresponds to precisely the (attrac-

tive) IR fixed point needed to have a conformally sequestered theory. More generally, one

can identify when a theory is sequestered if Eq. (5.36) (and corresponding loop corrections,

see Sec. 5.4.5) is the only coupling between the visible and hidden sectors. 9

Regardless of how one interprets this result, the irreducible goldstino coupling is an

unavoidable consequence of AdS SUSY lifted to flat space, since something needs to lift the

tachyonic scalars to have a stable theory in flat space. One might even hope to measure

Eq. (5.36) experimentally as a way to gain access to the underlying AdS curvature.

5.2.4 Giudice-Masiero Terms

The Giudice-Masiero mechanism [82 is a way to generate a /t term and a BY term pro-

portional to m3 / 2 without (apparently) requiring couplings between the visible and hidden

sectors. Via a holomorphic piece in the Kihler potential (written using boldface to empha-

size that these are superfields)

-3c 3 K D EH Hd - h.c., (5.37)

9 As shown in Ch. 5, the sequestered limit implies that gaugino-gauge boson-goldstino couplings are zero.
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one generates the fermion and scalar mass terms

L ->D-m/2 - E3/2hhd + h.c. B1 = +m 3 /2 . (5.38)
C-

The sign of BP here is crucial, since if instead one had the superpotential

W D pHuHd, (5.39)

the fermion and scalar mass terms would be

L D -P/)u/ld + m 3 / 2 phuhd + h.c. BP -rM3 / 2 . (5.40)
P

From Eq. (5.8), we see that the Giudice-Masiero mechanism actually does break SUSY

(with bij = 2M 3/ 2 ), while generating B,, from the superpotential does not break SUSY

(i.e. bij = 0). Written in this language, it is confusing how a goldstino coupling could appear

in the Giudice-Masiero mechanism since there is no goldstino present in Eq. (5.37).

We can do a Kdhler transformation to make the physics manifest. To model SUSY

breaking, we use a non-linear goldstino multiplet [137, 116, 109, 42, 39]

XNL = Fx ( + 1 L (5.41)
v/2Fx

that satisfies XNL = 0. In a theory where the visible Higgs multiplets are sequestered from

SUSY-breaking, the relevant pieces of the Kliler potential and superpotential are

-3e-K/ 3 = -3 + XNLXNL + E(HuHd + h.c.) +..., (5.42)

W =m 3/ 2 + fXNL + . . ., (5.43)

where the equations of motion set F = -f and fine-tuning the cosmological constant

to zero requires f = v/5m 3/ 2 . At tree-level, the physics is invariant to doing a Kdhler

transformation10

K - K + Q + Qt, W -+e--W, (5.44)

1"At loop level, one must account for the Kdhler anomaly [16].
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so choosing 1 = -cH.Hd, we have

-3e-K/ 3 =3 + XLXNL - NL XNL(HHd + h.c.) +..., (5.45)

W = m 3 / 2 + f XNL + Ern3 / 2 HHd + Ef XNLHuHd + - (5.46)

We see immediately that the Higgs multiplets have a SUSY-preserving P= Em3 / 2 , and a

corresponding SUSY-preserving contribution to B, of -pm 3 / 2 =-m 2  But there are

also SUSY-breaking Bf, terms from direct couplings to XNL in both the Kdhler potential

and superpotential. This yields a contribution to B, of (- +1)E1f1 2 , which equals +2m 2
P 3 3/2

after tuning the cosmological constant to zero. Therefore, we have

B = -Cm2/ 2 + 2crmi 2 - +cm/ 2 , b = 2cm 2  (5.47)3 3/23/213/21

as required by Eq. (5.8).

Despite the fact that Giudice-Masiero can be written in a sequestered form in Eq. (5.42),

there is secretly a coupling between the visible sector Higgs multiplets and the hidden

sector goldstino.1 ' Thus, we conclude that the relation B,/p = +m 3/ 2 is due to a partial

cancellation between a SUSY-preserving and a SUSY-breaking effect, and corresponds to a

tuning between (otherwise) independent parameters. In the strict sequestered limit where

only irreducible goldstino couplings are allowed, Giudice-Masiero terms must be absent.

5.2.5 Mass Splittings for Regulators

In order to set the stage for talking about anomaly mediation at loop level in the next

section, we want to discuss a bit about the physics that regulates logarithmic UV diver-

gences in SUGRA. There are various ways to introduce an effective cut-off scale Auv into

SUGRA, for example by introducing Pauli-Villars regulators [75, 76] or higher-dimension

operators that regulate the UV behavior [103]. However, already at tree-level, we can see

the consequences of having a physical regulator in AdS SUSY.

Consider a Pauli-Villars chiral regulator field with a SUSY-preserving mass Auv. If

this regulator does not break AdS SUSY, then it must have an additional scalar negative

mass-squared -2m 2 as well as a B-term of -m 3 / 2 Auv, giving rise to SUSY-preserving3/2

"Of course, the physics is invariant to Kshler transformations at tree-level; all we have done here is choose
a convenient Kdhler basis to make the physics more clear.
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mass splittings between the Pauli-Villars fermions and scalars:

mPv-scalar = -2m3/ 2 + AUv - m 3/ 2 Auv, mPV-fermion Auv. (5.48)

Any UV-divergent SUGRA calculation that properly includes the regulator modes will be

affected by this mass splitting, and this fact is one way to understand the necessity of

anomaly mediation.1 2 We often say that anomaly mediation is "gauge mediation by the

regulators", in the sense that the (SUSY-preserving) mass splitting at the threshold Auv

acts analogously to the (SUSY-breaking) messenger mass threshold of gauge mediation.

Crucially, we will see that the mass splittings generated by anomaly mediation do not

break AdS SUSY.

It is possible, however, to regulate SUGRA with a regulator multiplet whose scalar and

fermionic components have a common mass AUv, for example by appropriately coupling

the regulators to the SUSY-breaking XNL. All this means is that the regulator multiplet

must have corresponding goldstino couplings by conservation of the AdS supercurrent:

apv = 2m /2 , bpv = m 3 /2 AUV. (5.49)

Since there is no mass splitting among the regulators, no mass splittings are generated.

However, we would instead get goldstino couplings from the regulator fields! One can of

course consider an intermediate case with a combination of mass splittings and goldstino

couplings. In either event, one can show that modifying regulator couplings in this fashion

is phenomenologically equivalent to changing (KiF') for the purposes of loop-level calcu-

lations,1 3 so for simplicity we will assume regulators have no explicit coupling to SUSY

breaking in the subsequent sections.14

1
2 In Sec. 5.3.4, we will show how the regulators must be included to get super-Weyl-invariant gaugino

masses.
1 3 In the language of Sec. 5.3, coupling regulators in such a fashion is largely equivalent to making the

replacement C -- C(1 + XNL/A), with C the Weyl compensator.
1 4 To avoid later confusion, we want to point out that there are two different types of ambiguities. The

ambiguity discussed here is whether the regulators do or do not experience SUSY breaking, which is a

physical effect that can be measured using goldstino couplings. There is a separate ambiguity in Sec. 5.4.4

having to do with how to write down a SUGRA-invariant 1PI effective action. This is (partially) resolved

using supertraces to define the soft mass spectrum, up to a puzzling ambiguity in how the C7 term affects

T.
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5.3 Anomaly Mediation and Super-Weyl Invariance

In Ch. 5, we described one-loop anomaly-mediated gaugino masses using the conformal

compensator formalism of SUGRA [143, 114, 801, which is a gauge fixing of super-conformal

SUGRA. Here, we will instead use the super-Weyl invariant formulation of SUGRA, which

will allow us to connect directly to the claims of de Alwis in Refs. [46, 47]. Starting with a

review of the super-Weyl formalism, we will follow the logic of de Alwis (which itself follows

the logic of Kaplunovsky and Louis [1031) to construct a Wilsonian effective action. After

demonstrating the existence of anomaly mediation in the Wilsonian picture, we derive the

same effect using a super-Weyl invariant and SUSY-preserving IPI effective action. We will

only consider gaugino masses in this section, leaving our main result on sfermion masses to

Sec. 5.4.

5.3.1 Super-Weyl Formalism for SUGRA

The SUGRA Lagrangian can be derived from a gauge fixing of super-Weyl-invariant SUGRA.

Super-Weyl transformations are the most general transformations that leave the torsion

constraints of SUGRA unchanged, and they may be parameterized by a chiral superfield

E (and its conjugate anti-chiral superfield Et) [90, 154]. The components of the chiral su-

perfield E correspond to different types of transformations which may be familiar from the

superconformual algebra: Re El corresponds to dilatations, mi El to chiral U(1)R rotations,

and DEj to conformal supersymmnetry. The FE component of E corresponds to a new

symmetry which will play a key role in understanding anomaly mediation. 15

The complete super-Weyl transformations are given in App. C.3. Crucially, the only

field that transforms under Fz is the scalar auxiliary field AN of supergravity [90, 154, 103]:

M* - M* - 6F . (5.50)

This auxiliary field appears in the determinant of the SUSY vielbein E, the corresponding

1 5 Super-Weyl transformations do not include special conformal transformations, and superconforial trans-
formations do not include the symmetry generated by Fy, so neither super-Weyl transformations nor super-
conformal transformations are a subset of the other.
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chiral density 2e, and chiral curvature superfield R:

1 1 1 1
ED M*G2 + h.c. + -M| 2 O4 , 2E D -eM*D2 , RD M -IM6 2 2 +

3 9 6 9
(5.51)

We will often talk about the Weyl weights w of chiral superfields Qw and vector superfields

Vw which transform as [154]

Q > 4 QwCe'3, VW & VWCW(E+±t). (5.52)

Ordinary matter fields have Weyl weight 0, so the Kihler potential K and superpotential W

also have Weyl weight 0. For a vector superfield of weight 0, the gauge-covariant superfield

W, has Weyl weight -3. In the gravity multplet, E has Weyl weight 4 and 2E has Weyl

weight 6.

The usual SUGRA action (e.g. in Ref. [154]) is not invariant under super-Weyl trans-

formations, so one needs to introduce a super-Weyl compensator C with Weyl weight -2

(i.e. C - c-2EC). In that case, the tree-level Lagrangian

L= d 4 E CtC (-3c-K/ 3 ) + f 2 8 2E C 3 W + I J d2 2E W WO, + h.c. (5.53)

has Weyl weight 0 as desired. The components of the super-Weyl compensator are

C = C{1, Xc, Fc}, (5.54)

and due to the non-vanishing Weyl weight of C, Fc transforms under Fy as

Fc - Fc - 2FE. (5.55)

It should be stressed that this super-Weyl invariance (and the corresponding super-

Weyl compensator) were introduced into Eq. (5.53) simply for calculational convenience,

and physical results will not actually exhibit super-Weyl symmetry. After all, one can

use the super-Weyl transformations to gauge-fix C in some convenient fashion, leaving a

theory without spurious symmetries or degrees of freedom. Because FE transformations

are a gauge redundancy of the theory, though, physical observables will only depend on the
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combination16
1

Fsw - Fc - IM*, (5.56)3

regardless of what gauge choice is ultimately made. As we will argue, this Fr-invariance is

the key point missed in Refs. [46, 47] (and implicitly missed in Ref. [103]).

5.3.2 Choice of Gauge Fixing

To recover the familiar SUGRA Lagrangian from Eq. (5.53), one must gauge fix C. The

choice C = 1 yields the Lagrangian in "SUGRA frame" (i.e. without performing any super-

Weyl transformations). A more convenient choice is [103]

log C +log C t = IK H, (5.57)
3

with KJH being the harmonic (i.e. chiral plus anti-chiral) part of the Kdhler potential.

This yields the Lagrangian in "Einstein frame" (i.e. after having performed appropriate

super-Weyl transformations). Effectively, this gauge choice is the equivalent of going to

Wess-Zumino gauge for the real superfield K.17 It must be stressed that Eq. (5.57) is not a

supersymmetric relation amongst superfields, since KJH is not a superfield itself. Instead,

Eq. (5.57) should be thought of merely as a prescription for setting each component of C and

Ct. Of course, other gauge-fixing prescriptions will give physically equivalent results, but

Eq. (5.57) is particularly convenient since this choice for Re C yields canonically-normalized

Einstein-Hilbert and Rarita-Schwinger terms and this choice for xc eliminates troublesome

matter-gravitino mnixings.

However, it is not so clear what is accomplished by gauge-fixing Fc. We can investigate

this by examining the portion of Eq. (5.53) that depends on FC and M*, since these are

the only two fields that are not inert under FE transformations.

-1 = C*C (C /3) (-3 (F(* - IM) (Fc - M*) + K F' (F * - M + h.c.

+ 3C3 Fc - IM* W+ h.c.+... (5.58)

16The superconformal formalism does not contain Al*, since that degree of freedom is contained in the
F4 component of the conformal compensator (see App. C.1). In the super-Weyl case, the F component is
a pure gauge degree of freedom.

1 7 This gauge choice leaves still leaves arg C undetermined, though one can fix arg C by imposing that the
gravitino mass parameter has no phase.
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As expected from Eq. (5.56), Fc and M* only appear in the Fr-invariant combination

Fsw -- FC - lM* which has the vacuum expectation value
3

1
(Fsw) = m3/2 + I (KiF) . (5.59)

Thus, different gauge-fixings for FC only serve to shift the vev of M*. After one solves

the M* equation of motion, physical observables do not (and cannot) depend on the gauge

fixing of FC.

5.3.3 Counterterms in the Wilsonian Effective Action

As emphasized in Ref. [46, 471, it is possible to regulate all UV-divergences in SUGRA in

a way that preserves SUSY and super-Weyl invariance. This was shown in Ref. [103] using

higher-derivative regulators in a version of Warr's regularization scheme [150, 151]. This

implies that the super-Weyl symmetry discussed above is not anomalous, and consequently,

any physical results we derive must be completely super-Weyl invariant. Indeed, we will

see that anomaly mediation (despite its name) is necessary to preserve both SUSY and

super-Weyl invariance.

The key observation of Ref. [103] is that to preserve super-Weyl invariance in a UV-

regulated theory, the Wilsonian effective action must consist of Eq. (5.53) augmented with

the counterterm

AL 163 2 (TG - TR) d2 e 2( log C WW,. (5.60)

This term can be deduced from the requirement that the U(1)R part of the super-Weyl

transformations remains non-anomalous. It is convenient to canonically normalize the mat-

ter fields Qi by performing the (anomalous) rescaling Qi -+ Q"/C such that the rescaled

matter field have Weyl weight -2. Due to the Konishi anomaly [110, 43], this rescaling

modifies Eq. (5.60) to become

AE = 16 2 (3TG - TR)] 20 2E log C W,7W . (5.61)

Immediately this presents a conundrum, since Eq. (5.61) contains a gaugino mass that

depends only on FC:
2

m ambiguous z 2  (3TG - TR) Fc. (5.62)A 17
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Following the analysis of Ref. [103], Refs. [46, 47] claimed this was the complete formula

for the gaugino mass, and by gauge-fixing FC = 'KiF' as in Eq. (5.57), de Alwis found

no contribution to mA proportional to the gravitino mass m3/2, and hence no anomaly

mediation. 18

However, we see immediately that Eq. (5.62) cannot be the complete answer, since it is

not invariant under FE transformations. This is incompatible with the assertion that the

physical predictions of this theory should be invariant under such super-Weyl transforma-

tions. By Eq. (5.56), the physics should depend on the combination Fsw - F0 - 1M*
3

(which does contain m 3/ 2 ). One could try to make the replacement

1
log C -> log C + - log 2, (5.63)

3

to make the dependence on Fsw manifest, but as emphasized emphatically (and correctly)

in Refs. [46, 47], 2E is a chiral density and not a chiral superfield, and one cannot include

arbitrary extra factors of a chiral density in a SUGRA-invariant action, just as one cannot

include arbitrary extra factors of det c in a diffeomorphically-invariant action. Indeed, there

is no local term that one can add to the Wilsonian action to make Eq. (5.61) manifestly

super-Weyl invariant. 19

5.3.4 Effect of the Regulators

The resolution to the above puzzle is that the Wilsonian effective action (as defined in

Ref. [103]) needs to violate super-Weyl invariance in order for physical results to be super-

Weyl invariant. This is familiar from Yang-Mills gauge theories with a hard Wilsonian cutoff,

where the Wilsonian action must be non-gauge invariant in order compensate for the non-

gauge invariance of the cutoff (see also Ref. [60]). In this case, the tree-level expression in

Eq. (5.62) will combine with loops of the regulators to yield a super-Weyl invariant result.

To understand how this effect arises, consider a Pauli-Villars regulator, as anticipated

in Sec. 5.2.5. Given a chiral superfield Q in some representation of a gauge group, one can

regulate its contributions to loop diagrams by introducing two superfields, L and S, with

"In the language of Ch. 5, de Alwis was only claiming the absence of gravitino mediation. The Kalhler-
mediated terms proportional to KiF' are not in dispute.

"We will see in Sec. 5.3.5 that one can write down a non-local IPI effective action that depends only on
Fsw.
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L in the same representation of the gauge group and S in the conjugate representation:

JPV = d46 E [_LtevL - SteVS] + f d2 0 2E APv L S + h.c. (5.64)

Gauge fields can be similarly regulated by introducing chiral superfield regulators in the

adjoint representation. By using many such regulators and including appropriate couplings,

all divergences of SUGRA can be removed [74, 75, 761. The kinetic terms suggest that the

regulator fields have Weyl weight -2, but since the Pauli-Villars mass term is Apv instead

of CApv, the Pauli-Villars fields break super-Weyl invariance. However, Ref. [103] showed

that Eq. (5.61) is precisely the term needed to restore super-Weyl invariance of the action.

Now, because the Pauli-Villars regulators have a SUSY-preserving mass Apv, they ex-

hibit boson/fermion mass splitting due to the 02 component of 2E. Expanding Eq. (5.64),

we find
1

$Pv D AUvM* L S, (5.65)
3

which is a B-term that is not super-Weyl invariant! Doing calculations with these regulators

will yield an M*-dependent gaugino mass at one loop. Adding this loop-level contribution

to the tree-level contribution from Eq. (5.62), we have the super-Weyl invariant gaugino

mass

mrphysical 2 (G - Tr) Fsw - 16 2 (3TG - TR) m3/2 + I KF . (5.66)

This expression is manifestly super-Weyl invariant, and reproduces the familiar anomaly-

mediated result. As discussed in Sec. 5.2.5, if the regulators couple to SUSY breaking in

such a way to remove the m 3/ 2 dependence in the gaugino mass, this effect would show up

as an M3/ 2 dependence in the associated goldstino couplings.

One can avoid this subtlety of regulator contributions by making a gauge choice such

that the vev (M*) = 0. In that gauge (and only for that gauge), there are no regulator B-

terms, so Eq. (5.62) then yields the correct gaugino mass with FC = M3/ 2 + jKiF.2O This

is essentially the strategy used in Ch. 5 (since the superconformal framework automatically

sets M* = 0), and is effectively what was done in the original anomaly-mediated literature

[135, 84] (though not in this language). For any other gauge-including the choice of

2 0
1t is worth noting here that m 3 / 2 here is really the vev of the superpotential W, which is allowed to

appear in the gauge fixing of Fc.
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Eq. (5.57) used by Refs. [103, 46, 47]-one cannot neglect contributions to the gaugino

mass due to the UV regulators. Alternatively, one can regulate the theory with super-

Weyl-invariant Pauli-Villars fields, in which case Eq. (5.61) is absent but the regulators

have B-terms proportional to Fsw, again reproducing Eq. (5.66).

5.3.5 1PI Effective Action and Goldstino Couplings

We argued above that there is no way to make super-Weyl invariance manifest in a Wilsonian

effective action. However, the super-Weyl formalism is entirely valid at the quantum level,

since there exists a variety of regularization schemes that preserve the super-Weyl symmetry

(i.e. it is not anomalous). Therefore, we should be able to write down a 1PI effective action

that exhibits all of the relevant symmetries of the theory (including super-Weyl invariance).

Here, we will write down the relevant IPI action to describe gauginos at one loop, and

extend the logic to sfermions at two loops in Sec. 5.4.

One disadvantage of the IPI action is that it will inevitably be non-local, since it involves

integrating out light degrees of freedom. On the other hand, the IPI action allows us to

extract all anomaly-mediated effects from the action directly, without having to worry about

the contributions of regulators explicitly as we did in Sec. 5.3.4. To avoid SUSY-breaking

terms in the regulators as discussed in Sec. 5.2.5, we can study a IPI effective action that

does not have explicit dependence on XNL. In general, the IPI effective action will depend

on XNL, but this will just give extra soft masses and goldstino couplings in agreement with

flat space intuition, whereas we are interested in isolating the anomaly-mediated effects.

At one-loop, the IPI effective action for the gauge multiplet is

C -1 f d2 2E W S(D)W , (5.67)

The superfield S is a chiral superfield with the gauge coupling as its lowest component

(see Ref. [12]). The running of the coupling with the momentum scale is encapsulated by

the dependence of S on E, an appropriately SUGRA-covariant, super-Weyl-covariant, and

chiral version of the d'Alembertian. This IPI action depends on the holomorphic gauge

coupling, which is sufficient if we are only interested in one-loop expressions. To describe

the canonical gauge coupling (including two-loop effects), one needs an alternative action

described in App. C.4.
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As we will discuss further in Sec. 5.4, the choice of E is in fact ambiguous. All choices

are equivalent at O(m3 / 2 ), though, and we will choose to work with21

I ~DO W~
W (Dt2 - 8R)Da . (5.68)

8 . CtC I.

It is then possible to expand out Eq. (5.67) and derive super-Weyl-invariant gaugino masses

and goldstino couplings. 22 Note that DWa, like Wa, is chiral and has Weyl weight -3.

In practice, though, it is much more convenient to use the F_ gauge freedom to set

M* = 0. The remaining components of C can be fixed using the gauge choice in Eq. (5.57)

such that (to linear order in fields)

C 1, -KiXi, m3/2 + }KiF . (5.69)
3 3

Note that the fermionic component of C contains a goldstino if Ki attains a vev:

1 GL
xc = (KF) . (5.70)3 Feff

In this gauge, the graviton and gravitino are canonically normalized and there are no

gravitino-goldstino kinetic mixing terms to worry about. We can also drop the chiral cur-

vature superfield R in Eq. (5.68) because it only contributes at O(m 7 2) in M* 0 gauge

(and in fact gives no contribution in this gauge if the cosmological constant has been tuned

to zero). Similarly, - Dt2D D W,3 equals the ordinary flat space d'Alembertian E acting

on W, at this order. So for the purposes of getting the O(m 3 / 2 ) gaugino mass and goldstino

couplings, we can simply make the replacement

~ 1 1+ ~1 ~ -
C - E + - i(DCt)616 ,3 - 1 Dt2C) E2, (5.71)

Cf C 2 a16

where we have dropped terms with superspace derivatives on multiple copies of C (they

never contribute at 0(m 3/ 2 )) and terms with spacetime derivatives on C (they would only

yield terms with derivatives on goldstinos, which can be ignored at this order in m3/ 2 in

the goldstino equivalence limit). The form of E in Eq. (5.71) is not as manifestly chiral as

2 1Ref. [103] never explicitly wrote down the form for D acting on Wa. This slightly complicated form is

needed because We, has a spinor index.
2 2 As written, this form of D is only gauge-invariant for an abelian gauge symmetry. It can be easily

modified for non-abelian gauge symmetries by appropriate insertions of e.
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in Eq. (5.68), but it can be verified to be chiral (up to terms that we have dropped at this

order).

This gauge choice for C is equal to the gauge choice for the conformal compensator <D

used in Ch. 5, and yields identical results. Plugging Eq. (5.71) into Eq. (5.67) yields the

expected soft masses and goldstino couplings from traditional anomaly mediation: 23

C D nAAaAa" + CA AealVdLF",, (5.72)
2 vf2Fe ff

where

MA = nm3/2 + K c = 2PCA o KjF', (5.73)
g 3 9 3

and Og is the beta function for the relevant gauge group. Note that the piece of mA

proportional to m 3/ 2 does not come with a goldstino coupling, which tells us that it is not

an (AdS) SUSY breaking effect. Had we instead worked in a gauge where M* = -3m 3/2

(as was the case in Refs. [46, 47]), then the gaugino mass proportional to m 3 / 2 would arise

from the parts of D that depend on the lowest component of the chiral curvature superfield

R.

Thus, we have seen how anomaly mediation is a necessary consequence of SUSY in-

variance and super-Weyl invariance. Because of the underlying AdS SUSY algebra, terms

proportional to m 3/ 2 necessarily appear in the regulated SUGRA action. Crucially, mn3/ 2

is not an order parameter for (AdS) SUSY breaking, so anomaly-mediated soft masses

proportional to m3/ 2 do not have associated goldstino couplings.

5.4 All-Orders Sfermion Spectrum from Anomaly Mediation

It is well-known that anomaly mediation yields sfermion soft mass-squareds at two loops pro-

portional to m032 [135]. In this section, we want to show that this effect can be understood

as being a consequence of AdS SUSY. To do so, we will follow the logic of Sec. 5.3.5 and

derive the sfermion spectrum by constructing a super-Weyl-invariant and SUSY-preserving

IPI effective action for chiral imultiplets.

2 3 Strictly speaking, this is only the piece of anomaly mediation related to the super-Weyl anomaly. See
Refs. [16, 53] for how the Kdhler and Sigma-Model anomalies contribute to the 1PI effective action.
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The obvious choice for the IPI effective action is

= d4e ECtCQtZ()Q. (5.74)

Here, Q is a chiral matter multiplet, Z is the superfield associated with wave function

renormalization, and D is a super-Weyl invariant version of the d'Alembertian acting on

chiral superfields. Our key task in this section is to figure out which pieces of Eq. (5.74)

preserve SUSY and which pieces break SUSY. To do this, we first identify the order pa-

rameter FR for SUSY breaking in the SUGRA multiplet, which is valid at order O(m2.

We then use FR to help identify all places where the goldstino field can appear. Because

E is in fact ambiguous at O(m2), we will need to construct appropriate supertraces to

extract unambiguous "soft mass-squareds" and "goldstino couplings". With these tools in

hand, we can then use the PI effective action to derive the familiar two-loop scalar soft

mass-squareds, as well as unfamiliar one-loop goldstino couplings.

5.4.1 The Order Parameter for SUSY Breaking

As already emphasized a number of times, the gravitino mass m /2 is not an order parameter

for SUSY breaking but is simply a measure of the curvature of unbroken AdS space. With

an appropriate gauge choice (see Eq. (5.79) below), we can extract m 3 / 2 from the lowest

component of the chiral curvature superfield R,

1 1
R = M* = m 3 / 2 , (5.75)

62

and effects proportional to RI will preserve (AdS) SUSY.

The SUGRA multiplet does contain a SUSY-breaking order parameter at order V(m2

namely the highest component of R:

11 1IE2 RI = R - - M*M +..(5.76)
4 12 9

where R. is the Ricci scalar. Upon using the Einstein equation, this takes on the value

1 F 2

FR--R in2  eff (5.77)
12 3/2 3M21 (.7
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regardless of whether Feff is tuned to yield flat space or not. Since Fff is an order parameter

for SUSY breaking, so is FR for finite Mpl. In an arbitrary gauge, we will define FR in terms

of Eq. (5.77) (instead of -- D 2 R ).

As expected, FR = 0 for unbroken AdS SUSY (i.e. -F2. m3/ 2 ). When SUSY is broken

and the cosmological constant is tuned to zero, then FR -- n 7 2 (i.e. R = 0). So while

m 3 / 2 itself does not break SUSY, FR can yield effects proportional to m 2  that do break3/2

SUSY. This distinction lies at the heart of the confusion surrounding anomaly mediation.

To better understand why FR is an order parameter for SUSY-breaking, it is helpful to

note that FR controls the amount of gravitino-goldstino mixing in the super-Higgs mecha-

nism. This can be seen by examining the various forms of the gravitino equation of motion

one cal obtain by plugging Eq. (5.30) into Eq. (5.27):

1 IVPT P 3i FR C + ,

A/pI 2 Feff
1 _ 3 F +

A - PD11 ) = FR +..., (5.78)M/pi I /2 Feff
1 3i FR

MpiaD 1  2 FeffAGL+

where we have also used the Einstein equation from Eq. (5.77). Thus, gravitino couplings

which look innocuous can secretly contain (SUSY-breaking) goldstino couplings when FR

is non-zero. This will be of great importance when we track goldstino couplings in the

next subsection. The ellipses of Eq. (5.78) contain terms not relevant to our discussion. In

particular, we can ignore any T 3 / 20, terms since we only care about effects up to O(m 29'

We can also ignore terms proportional to F''b, since applying its equation of motion would

only serve to reintroduce derivatives acting either on gravitinos or goldstinos.

5.4.2 Goldstinos in the SUGRA Multiplet

Since our ultimate goal is to compute the sfermion soft masses and goldstino couplings

advertised in Table 5.1, it is crucial to identify all places where the goldstino field can

appear.

The most straightforward case is when there are direct couplings between the visible

sector fields and the SUSY-breaking superfield XNL from Eq. (5.41), which has the goldstino

as its ferrnionic component. This case is not interesting for our purposes since it generates
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soft masses and goldstino couplings in agreement with flat space intuition. We therefore

take the wavefunction superfield Z to be independent of XNL for simplicity.

Somewhat less obviously, the Weyl compensator C itself can also contain a goldstino,

and different (super-Weyl) gauge fixings give different goldstino dependence in C. We find

it convenient to work in the gauge where

C 1' (K) xi' (K) F}. (5.79)
3 3

This is effectively the gauge choice of Eq. (5.57) carried out to linear order in fields, which

is the minimum necessary to have canonically-normalized Einstein-Hilbert and Rarita-

Schwinger terms [38]. In this gauge - jM m 3/ 2 (see Eq. (5.75)). Upon picking out

the goldstino direction, neglecting other fermions, and dropping terms with multiple gold-

stinos,

~L 2
C = I + - (Kjk) 0+ . (5.80)

3 v2 2Fe f

This gauge choice clearly shows that wherever (Fc) = 1 KKiF') appears in a soft SUSY-

breaking term, it will have an associated goldstino coupling. Of course, FC is always

accompanied by -IM* = m 3 / 2 by super-Weyl invariance, but effects proportional to M*

do not have associated goldstino couplings. After all, (M*) 7 0 does not break AdS SUSY,

whereas (KF') # 0 does.

The most subtle case is to identify goldstino fields hiding in the SUGRA multiplet. These

arise through the gravitino equations of motion shown in Eq. (5.78), which are necessarily

SUSY invariant. The SUSY transformation of Eq. (5.78) then tells us any goldstino arising

in such a fashion must be accompanied by an FR, thus giving us an easy way to track such

goldstinos. FR only occurs (without derivatives acting on it) within the SUGRA superfields

R and G,,, and the components of these superfields can be extracted by the methods of

Refs. [154, 19].24

Extensively using the gravitino equations of motion of Eq. (5.78), we find that R and

2 4 There are also goldstinos lurking in E, but these are most easily tracked by making the replacement

d E1 fd2e 2E - 'Dt2 - 8R)] + h.c.,

since 29 does not have hidden goldstinos.
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GP can be written as:

1 ( GL\
R=--M+FR 0+ 2+..., (5.81)

6 2FeffJ

GY = -FR (O GL) 0_p ( ... , (5.82)2 V--Feff V2_Feff

where the ellipses include terms containing m 3 / 20,, 5 p, b, O, M, &, F R , 25 or multiple

gravitinos or goldstinos. For simplicity, we have assumed that the Ricci tensor is propor-

tional to the metric, as it is in any homogeneous space.

Note that with this particularly convenient gauge choice, we call identify all of the

goldstino couplings in XNL, C, R, and Gy, by first finding the vevs of these fields, and then

making the replacement

L - 0 + . (5.83)
2Feff

At the component level, this implies that any terms in the Lagrangian with coefficient FX,

KjF , or FR (but crucially not rm3 / 2 ) will have associated goldstino couplings. These can be

found by making a global SUSY transformation of those terms 26 with infinitesimal SUSY

parameter

G L
- (5.84)

2Feff

This will allow us to identify goldstino couplings directly from the sfermion spectrum,

without having to wrestle with complicated component manipulations.

The simplest application of this method for finding goldstino couplings is the tree-level

analysis of Sec. 5.2. The tachyonic scalar masses are removed by a SUSY-breaking coupling

2FR#*# when uplifting from AdS to flat space. This indeed has a corresponding goldstino

coupling in flat space proportional to -2FR/Feff = 2Mr/ 2 /Feff (see Eq. (5.36)).27

2 5 Terms containing 1,FR (which has vanishing vev) may have associated goldstino couplings, but they will
always feature a derivative acting on the goldstino. Such terms will always be of O(n3/2 ) in the goldstino
equivalence regime, and can be ignored here.

2 6 The situation is more subtle for terms with coefficients like m 3 /2 KjF , a product of SUSY-breaking and
SUSY-preserving effects. In such cases, one only makes half of the transformation of Eq. (5.84). This arises
since for KjF' (KF*'), one is really only making the replacement of Eq. (5.83) for a (0t), not et (e),
recalling that we have a hermitian action.

2 7 In practice, the use of gravitino equations of motion is less than transparent, which is the reason why we
relied on the Einstein frame Lagrangian in Sec. 5.2.1. Finding the Einstein frame is more difficult beyond
tree-level, however, which is why we choose to work in SUGRA frame in this section and exploit gravitino
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5.4.3 Supertraces and the PI Effective Action

Now that we have identified our SUSY-breaking order parameters and how they are as-

sociated with goldstino couplings, we now need to consider what possible SUSY-breaking

terms can arise from the 1PI effective action in Eq. (5.74). This action accounts for the

quantum corrections coming from loop diagrams of massless particles. For this reason, one

must be careful to include both local and non-local terms when considering SUSY-breaking

in a 1PI effective action. For a chiral multiplet at quadratic order in fields, there are three

terms at order m 2 /p 2 (where m is some soft mass), corresponding to corrections to the field

self-energies:

ESUSY-breaking -Cs * - CaF*E]lF + iCf xtLDE-lx, (5.85)

where the coefficients Ci are all 0(m 2 ). In the context of anomaly mediation, these contribu-

tions are already 0(m 2 ), so we can neglect any further SUGRA corrections. In particular,

at this order the operator E appearing in Eq. (5.85) can be thought as the d'Alembertian

in flat space.

The non-local action in Eq. (5.85) does not break SUSY in the limiting case C, = Ca=

Cf. 28 The simple field redefinition (or the appropriately super-Weyl- and SUGRA-covariant

equivalent, see Ref. [103])

Q - C Q + Q (5.86)
2W

eliminates all three terms for Ci = C. Thus, a single coefficient Ci is not a good measure of

SUSY-breaking by itself. On the other hand, the supertrace

S = Cs + Ca - 2Cf, (5.87)

is invariant under the transformation of Eq. (5.86) and is an unambigous measure of SUSY-

breaking. Ref. [12] considered a similar supertrace over the 0(m 2 ) SUSY-breaking contri-

butions to the self-energy for the components of vector superfields.

Of course, there is another independent combination of the Ci which is invariant under

equations of motion.
2 8Obviously, C, also does not break SUSY if it arises in conjunction with a fermion mass term after an

auxiliary field redefinition. We will therefore define Cs to exclude such contributions.
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Eq. (5.86), which we take to be

T = Ca -C5. (5.88)

This is the unique independent choice which vanishes for tree-level SUGRA (the tachyonic

scalar mass in AdS discussed in Sec. 5.2 yields vanishing T). A non-vanishing value of T is

still a SUSY-breaking effect, and can be present even when the supertrace S vanishes. This

can arise most notably from terms like

£ D d40 D X 5cDXNL Qt DQ. (5.89)

which yields S = 0 but T = F /A 2 . In the context of anomaly mediation, non-vanishing

values for T frequently arise but they in general depend on how the theory is regulated. In

contrast, we will find that the supertrace S from anomaly mediation is unambiguous and

irreducible, so we will mainly focus on S in our explicit calculations.

Analogously to Eq. (5.85), there will be non-local goldstino couplings. In the case of

global flat-space SUSY, one can simply transform the terms in Eq. (5.85) under SUSY, with

infinitesimal parameter c = - (see Eq. (5.84)),
VFEff

gS - gT gT ~
£golGstino =LXO* + iGLt&D XtD-F. (5.90)

Ffj Feff

For global flat-space SUSY, gS = S and gT = T. This will riot be the case, however,

for AdS SUSY or for SUGRA, where there can be non-vanishing values of S or T that

do not break SUSY. Such effects will always be proportional to the inverse AdS radius

A-' i=3 / 2 - For example, at tree level in AdS SUSY, one would use the appropriate

AdS SUSY transformations (which has terms proportional to 'M3/ 2 ) on the full Lagrangian,

which would yield gT = T but gS = S + 2m 2  In the following subsections, we will find3/2'

these relations to be modified, but always by terms proportional to H13/ 2 -

5.4.4 The Super-Weyl-Invariant d'Alembertian

The operator D appearing in Eq. (5.74) has not been yet defined. Its definition is the

last ingredient we need to computing sfermion soft masses and goldstino couplings. We

will see that while D is generically ambiguous, our final results for the supertrace S and
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corresponding goldstino coupling gS are not.2 9

The operator D is a super-Weyl-invariant version of the d'Alembertian acting on scalar

superfields, which reduces to E in the limit of global flat-space SUSY. Given a generic

spinless superfield U, there are a limited number of options (neglecting fractional powers

of derivatives):

~1 1
EjU = ptPU + pptU - D"(Dt2 - 8R)DaU

8C t C

+ c1(1P)TftU + c'I(Pt)PU + c2(Pt)PtU + c'2(P)PU

+ c3 (Pt7P)U + c'3(PP' t )U + C4(Pt)(?)U

+ c5 (Pt2 )U + c'(P 2 )U + cPt(('P)U) + c'6P((Pt)U)

+ c 7 GaC~Dta Ctl-EDU - c'7Gc Ct-DT C-lDaU

1 ~. (~.91
+ c8 GaaG U. (5.91)

The operators and superfields P, P, and Gaa (and their hermitian conjugates) are super-

Weyl covariant versions of I (Dt2 - 8R), 2R, and G,6, respectively, and are defined in

App. C.3. For matter fields Q that are charged under a gauge group, the operators of

Eq. (5.91) would need to be modified by appropriate insertions of c±Vj3

Many of the terms in Eq. (5.91) vanish in the limit of global fiat-space SUSY, so the

associated coefficients ci are left completely undetermined. We could impose certain desir-

able properties for D, which would lead to constraints on the ci. For example, requiring

that DU is chiral for chiral U and that D possesses a sensible analogue of integration by

parts would set c6 = -1 and all other ci 0. This is the choice made in Ref. [103] (which

they denote A), though it does not satisfy El = 0.31 In order to actually determine the

ci, one would have to explicitly take into account virtual effects to all orders in a specific

regularization scheme, which is beyond the scope of this chapter. Because our final results

for S and gs are independent of the ci, we choose not to impose any constraint on them.

At this point, we could use the full machinery developed in Ref. [154] to extract the

2 9 This ambiguity is a reflection of an ambiguity in how to write down a SUGRA-invariant 1PI effective
action, which is in addition to the ambiguity discussed in Sec. 5.2.5 in whether the regulators feel SUSY
breaking.

3 0 There could also be additional possible operators proportional to the field strength W, which would
not give any contributions to self-energy corrections or goldstino couplings at the desired order.

3 1Another obvious candidate is C] DaD" in the C = 1 limit (corresponding to c' = ci, -ci = C3

c4/2= c6 = c7= -1/2, c2 = C5= c= 0), though it is not chiral.
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components of DU. We could then determine D"U by recursion and find the component

form of Eq. (5.74) by treating Z(D)Q as a Taylor expansion.32 However, this procedure is

overkill for our purposes, since we will ultimately use the trick in Sec. 5.4.2 to find goldstino

couplings once we know the dependence of the supertrace on KjF' and FR. By super-Weyl

invariance, we know our results can only depend on two parameters:

1 1
Fsw =n3/ 2 + 3Ki F and 12 R m3/ 2 + FR. (5.92)

Moreover, because S is dimension two, its only dependence on FR can be linear, 33 so if we

know the behavior of S for two different values of FR, we can use interpolation to determine

S for all FR. Thus, it is sufficient to discuss two limiting cases where the behavior of DU

simplifies.

The first limiting case is flat space but arbitrary (Ki). Here, one can use the gauge choice

FC = Fsw to set M* = 0, and since R = 0, one can use the global fiat-space SUSY algebra

to find the components of DU, keeping careful track of all of the factors of C contained

therein. In fact, one does not even need to be all that careful, by noting that

~1I
Dflat E + (terms with supercovariant derivatives on C, Ct) . (5.93)

CtC

There is a limited set of the possible terms in the parentheses that can contribute to physics

up to O(m2). At 0(m3 /2 ), it can be shown explicitly that they have no effect (up to bound-

ary terms). At 0(m/2, the effects of all such terms can be eliminated by transformations

like Eq. (5.86) or they take the form of Eq. (5.89) (with C ini place of XNL). In either case,

they yield no contribution to the supertrace S of Eq. (5.87).34 Therefore, for the purposes

of finding S we need only consider the first term in Eq. (5.93), which is clearly independent

of the ci. Furthermore, this is exactly the term which is already considered in the anomaly

mediation literature, so the results for S are well-known [135] (though they are usually

stated as being the soft mass-squared and not the supertrace).

3 2 And we have.
3 3 Fractional or negative powers of r 3 / 2 or R do not appear in the 1PI effective action.3 4 Terms of the latter form do contribute to the parameter T defined in Eq. (5.88), and contributions

to T proportional to FR should still be considered SUSY-breaking. It can be readily shown that non-zero
values of T will only be induced by the first line of Eq. (5.91) or by the C7 term (see Eq. (C.40)). This c7
dependence implies that the value of T depends on exactly how one regulates the theory. In unbroken rigid
AdS, this ambiguity does not arise; Gd = 0 in rigid AdS, so the term associated with c7 vanishes.
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The second limiting case is unbroken SUSY in rigid AdS where (Ki) = 0. Because a

flat space analysis cannot distinguish between effects proportional to mi/2 (which have no

associated goldstino couplings) and those proportional to FR (which do), we need a limiting

case which captures terms proportional to the scalar curvature R. Starting with unbroken

SUSY in AdS, we can luckily consider the rigid (Mpi -> oc) limit without missing any

physics. The rigid AdS SUSY algebra [4, 51, 104, 156, 95] is dramatically simpler than the

SUGRA algebra, corresponding to the limit C = 1, R = m 3/ 2 /2, Ga = Way = 0 [70].

This reduces the number of independent operators in D to four:

1 D2 1 t M2(.4
[]rigid AdS = DaD' - di 4D2 - d'jm 3 / 2Dt + d 2 m3/ 2 , (5.94)

where the d. coefficients are related to the ci coefficients via

di c1+ c 2 + c6, d' c' + c' + c', d 2  2 + di + d' +--c3 + c + c 4 - cs + c'. (5.95)

One can then use the AdS SUSY algebra to easily extract the components of DU in AdS,

find i1"U by recursion, and Z(LI)Q by Taylor expansion. 5

5.4.5 Soft Masses and Goldstino Couplings for Chiral Multiplets

We now have all of the ingredients to determine the soft masses and goldstino couplings

which follow from Eq. (5.74).

Applying the procedure outlined in Sec. 5.4.4, we first find the behavior of Z(E)Q at

O(M/ 2) in the flat space and rigid AdS limits. Since we have argued that the final result

(up to the transformation of Eq. (5.86)) will depend on no parameter in Eq. (5.91) except

3 5 Alternatively, one could simply work with the component form of the AdS SUSY Lagrangian. In that

case, Z(EI) does not commute with SUSY transformations due to Eq. (5.29), so one will find additional

terms proportional to positive powers of m 3 / 2 . This approach makes it clear that the results in AdS space

must be completely independent of the ci, up to the transformation Eq. (5.86).
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for c 7 , we will only present the answer for a choice of ci such that Z(D)Q is (nearly) chiral:3 6

Q + +E 82 + ( 2F, (5.96)

Z(Lrigid Ads) Z(L]) [( - 13/2 F + Im 2 (_ 2 + y - 10)]4#) + (- V2,

+ E 2 F - 1iM3/ 2 y + IrM/ 2 ( 2 + y + 2)D-1F), (5.97)

Z(FIlflat) = Z() [(05 SFsw& _F + F(I 2 +A E - 10)#) + 0 X

+o2 (F - IFsw#+ IFs2W ( 2 + + 2y)W- 1F)]

+ Z(D)fF?- [(1 - c7)D 1 # + 82(1 + c7)r-'F]

where the anomalous dimensions are defined as

d log Z

d log 0'

(5.98)

(5.99)
d log D

While y (y) is first non-zero at one-loop (two-loop) order, our results will hold to any loop

order (at O(n2)). As outlined in Sec. 5.4.4, we can now find an appropriate super-Weyl

invariant interpolation valid for any spacetime curvature,

Z(D)= Z() (7+e xe + 02F),

F- Fsw7 -'F + ( rFw(72 + - (6 + 4c7y) 1jm3/ 2 + FR)-(1

F F -Fswy# + (IFw (_2 + y + (6 + 4c)7) - I(m/ 2 + FR)(1 + Ci)) :1-F,

remembering that Fsw = M3/ 2 in flat space, and m2 + FR vanishes in flat space but is

min2  for unbroken SUSY in AdS.3/2SUY AS

It is now straightforward to expand the superspace action of Eq. (5.74) (dropping factors

3 6 This choice corresponds c 6 = -1 + c7/2, c = -c7/2, c3 = C4 = -3/2, and all other c1 = 0. This
is not chiral outside of AdS space, but deviations from chirality only appear in terms with gravitinos, by,
or at O(mn3/ 2 ), so we neglect such terms in the following. This choice also has the appealing feature of
automatically setting Cf = 0.
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c7)) -1,



of Z(I) for clarity):

22,C = 0* E1 - Z'Xt-&D X + F + (2 - 7)FswO + 2(FR -+ m2#*

+ IFsw (-7Y2 + - (2 + 4c7y))0*# + I Fs2w (72 + + (2 + 4cy)7)F*L-lF
8 8

1 C7 (My9* 2 + C7  2 -F
2 /(m/2 + F2)#*- (in3/ 2 + FR)7F*DlF. (5.101)

To extract the sfermion spectrum, is it helpful to perform the shift

1
F -- F - -(2 - 7)Fsw#, (5.102)

2

which renders the F equation of motion trivial, but induces non-zero B- and A-terms at

O(m3 / 2 ) if there are superpotential terms. Generalizing to multiple fields Qi with anomalous

dimensions -yi and a superpotential

1 1W = ±ijQ'Ql + - AijkQQ 3Q, (5.103)
2 6

the associated scalar potential terms are

1 kV - Bi j + (Aijk#WO + h.c., (5.104)

Bij=I pi, (-2+ 7i+ 7j) mr3/2 + IKkFE , (5.105)

Aijk = Aijk (7i + 7 + yk) m 3/ 2 + IKeF , (5.106)

where we have expanded FSW = M3/ 2 + 1KFi. These are the familiar one-loop anomaly-

mediated results that can be found in Ref. [135, 84].

These B- and A-terms will have corresponding goldstino couplings proportional only to

KjF but not to M3/ 2 . Because the result in Eq. (5.105) is super-Weyl invariant, we are

free to choose the gauge of Eq. (5.79) and use the trick in Sec. 5.4.2 to extract goldstino

couplings. For example, the B-term has a corresponding goldstino coupling bij defined in
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Eq. (5.6). Performing the shift in Eq. (5.83), we find37

1k
b -pi (-2 + . + yj)KF (5.107)

At 0(M 3 / 2 ), this goldstino coupling is independent of tuning the cosmological constant.

The difference between the B-term and the goldstino coupling is proportional to M3/2

1
Bij -- bij = 6tij (-2 + -1j + '}j) M3/ 2 , (5.108)

emphasizing the role of AdS SUSY.

The key result of this chapter is the sfermion supertrace S defined in Eq. (5.87). After

performing the auxiliary field shift of Eq. (5.102), we can read off the value at O(m2:

1 +1 2
Si m Tn3 / 2 + KFk - (2 - i) (m 2 2 + FR). (5.109)

The first term is the usual two-loop anomaly-mediated result for S expected from Ref. [135].

The second term is the tree-level mass splitting in AdS discussed in Sec. 5.2, modified

starting at one-loop order to include the anomalous dimension. The fact that we have

a contribution to S proportional to (2 - -y) could have been anticipated, since anomaly

mediation effectively tracks scale-breaking effects, and (2 - -y) is the true scaling dimension

of the operator QtQ.38 Because m 2 + F? = 1R, this second term vanishes in flat

space, which is why it does not appear in the original literature. 3 9 As discussed further

in App. C.2, this whole expression is RG-stable, as it must be since it comes from a iPI

effective action. The j and -yi terms are known to be RG-stable from the general arguments

in Refs. [98, 97, 133, 12], while we argue in App. C.2 that the tree-level result is RG-stable

once one accounts for goldstino-gravitino mixing.

We can again use the trick in Sec. 5.4.2 to extract the goldstino coupling gS defined in

3 7 Note that the result in Eq. (5.107) is still invariant under the super-Weyl Fy_ transformations. The
KkFk factor arises by isolating the goldstino direction out of the fermion in Eq. (5.79), not from Fc.

3
8The same factor appeared in the auxiliary field shift of Eq. (5.102) for related reasons.

"For any negative curvature, one expects the -yj and -j terms to be partially cancelled off by AdS boundary
effects, as in Ref. [87]. While we have not computed them explicitly, such boundary terms are necessary for
the structure of the AdS SUSY algebra to be maintained in the unbroken limit.
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Eq. (5.90):40

S- iKkFk (n 3 2 + KF) - (2 - -Y)FR, (5.110)

As advertised, there are no goldstino couplings proportional to m 2
3/2' Like Si, this associ-

ated goldstino coupling is RG-stable. The tree-level and one-loop goldstino couplings arise

because there are SUSY-preserving scalar masses in the bulk of AdS, which are then lifted

by an amount proportional to the SUSY-breaking order parameter FR. For (K) = 0, the

two-loop anomaly-mediated masses familiar from Ref. [135] have no corresponding goldstino

coupling, as such masses are also present in the bulk of AdS when SUSY is unbroken. Cu-

riously, such two-loop goldstino couplings also vanish in the no-scale limit (where Fsw = 0)

[115] and will be suppressed for almost no-scale models [120]. The difference between Si

and 9S is

S7 - g -= ) - m3 / 2 ( 3 /2 + KkF /2 (2 - y). (5.111)

which is independent of the curvature R. As anticipated, this difference vanishes with

vanishing m 3/ 2 , as it is intimately related to SUSY-preserving anomaly mediation effects in

AdS SUSY. Whereas the second term proportional to m 2 arises purely from the structure3/2

of unbroken AdS SUSY, the first term proportional to m 3 / 2 Fsw is a cross term between a

SUSY-preserving and a SUSY-breaking effect and vanishes in the no-scale limit.

Results for Si and 9S are shown in Table 5.1 for various values of the curvature. The

answer is particularly striking when (K) 0 in the flat space limit with FR = -- 2

1.32
4i = 3tm/2,

gf = (2 - yi)m /2 , (flat space, (Kj) = 0) (5.112)

s, - = -m/ 2  2 - -y +

While anomaly-mediated sfermion soft mass-squareds are colloquially described as a two-

loop effect, this expression makes it clear that this is an artifact of tuning the cosmological

constant to zero, since anomaly mediation has important tree-level and one-loop effects on

40As in footnote 37, the result in Eq. (5.110) is invariant under Fy transformations. FR (arising here from
the gravitino equations of motion of Eq. (5.78)) does not implicitly contain M*M.
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the goldstino couplings. Indeed, the difference Si - gf has important effects at all orders.

For completeness, we give results for the parameter T defined in Eq. (5.88) and the

associated goldstino coupling gT:

1 +C (5.113)Tj=- 8(7?j + ,j + (2 + 4C7)_Yi) mtT3/2 +3 KkF + 2 1 + c7(M3/2 + FR). 513

gT = - 1(Y + , + (2 + 4C7)() KkFk M3/2 + KF k + 1 + C7.FR. (5.114)-i (24/ 3 Kki+ + cy) Km/ 2

,T - g = - m m3/2+ K F + I+ 2 ) + 1 + c 7 m2 (5.115)Z = 8 /2 1\( 3 3 kF) \ i - (2 + 47J) 2 m3 /2 Yi 515

As expected, the difference T - gT is always proportional to m 3/ 2 , arising as it does from

the structure of AdS SUSY. However, these results are harder to interpret, since T has

residual dependence on the parameter c7 defined in Eq. (5.91). This indicates that the

value of T depends on exactly how one regulates the theory (i.e. on the correct choice of C

for a given regularization scheme). Note that if (K) 0 then T - gT is independent of c7 .

Furthermore, in unbroken AdS SUSY (FR (K ) 0), all c 7 dependence vanishes since

Gd = 0 in rigid AdS SUSY.

5.5 Conclusions

This chapter completes the task originally started in Ch. 5 to understand anomaly mediation

as being a SUSY-preserving effect in AdS space. For the R-violating terms (gaugino masses,

A-terms, and B-terms), anomaly mediation generates soft masses proportional to H13/ 2

without corresponding goldstino couplings, making it clear that these are SUSY-preserving

effects. 4 1 For the sfermion soft mass-squareds, the situation is far more interesting, since

there are SUSY-preserving effects proportional to mi/2 and SUSY-breaking effects propor-

tional to F?, but these two effects are difficult to disentangle because FR happens to equal

-in 2  after tuning for flat space. Having successfully isolated these two effects, we see that3/2

the familiar two-loop aniomaly-mediated sfermion soft mass-squareds are accompanied by

tree-level and one-loop goldstino couplings, and all three terms are needed to preserve the

underlying AdS SUSY structure.

Along the way, we have learned a number of lessons about AdS SUSY and SUGRA.

4 1 Strictly speaking, we have not carried out the calculation of gaugino masses beyond one-loop order. We
sketch how to do this in App. C.4.
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First, the peculiar behavior of anomaly mediation is already evident at tree-level, and the

irreducible goldstino coupling in Eq. (5.36) offers strong evidence that AdS SUSY (and

not flat space SUSY) is the correct underlying symmetry structure for SUGRA theories.

Second, to incorporate quantum effects, one has to work with a regulated SUGRA action.

Unfortunately, it is impossible to write down a Wilsonian action that captures the full effects

of anomaly mediation at tree-level, since there are important effects of the regulator fields at

loop-level. Instead, we used a 1PI effective action to make super-Weyl invariance manifest,

countering the (gauge-dependent) claims in Refs. [46, 47] (and implicit in Ref. [103]) about

the non-existence of anomaly mediation. Third, even with a SUSY-preserving, super-Weyl-

invariant 1PI effective action in hand, there is residual ambiguity starting at O(m 2 ) in

how to write down a SUGRA-invariant theory. Luckily, the supertrace S is unambiguous,

yielding the same soft mass-squareds known in the literature.

This chapter has focused on formal aspects of anomaly mediation, and therefore has not

addressed a number of important phenomenological questions. First, anomaly mediation

was motivated in part by the possibility of sequestering, and one would like to know whether

the sequestered limit is physically obtainable without fine-tuning. To that end, it would

be useful to know whether the irreducible goldstino coupling in Eq. (5.36) is indeed an

attractive IR fixed point, as one would expect in conformally sequestered theories. Second,

we have used goldstino couplings as a probe of which effect preserve SUSY and which effects

break SUSY. Ideally, one would want to find an experimental context where these goldstino

couplings could be measured, since this would give an experimental handle on the underlying

AdS curvature. Measuring such a coupling to two-loop precision would even probe the value

of Fsw, though the physical significance of that dependence is not clear to us. Third, in

addition to the supertrace S, we identified the independent trace T which is perhaps known

to SUSY aficionados but is unfamiliar to us. Even in global flat space SUSY, it would be

helpful to know what effects a non-zero value of T can have on phenomenology. Finally, the

big question facing particle physics in 2013 is whether (weak scale) SUSY is in fact realized

in nature. We of course have no insight into this broader question, but we can say that if

(AdS) SUSY and SUGRA do exist, then anomaly mediation will yield irreducible physical

effects proportional to M3/2
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Chapter 6

A Photon Line from Decaying

Goldstini Dark Matter

6.1 Introduction

As we discussed in Ch. 2, SUSY-breaking generically must occur in some hidden sector,

whose couplings to the supersymmetric Standard Model (SSM) are suppressed by an inverse

power of F, the SUSY-breaking scale and order parameter. The particles in the hidden

sector generally have little phenomenological relevance with the one exception of the light

goldstino, the goldstone fermion of SUSY. In supergravity (SUGRA), the goldstino is eaten

to become the longitudinal components of the gravitino (the superpartner of the graviton)

via the super-Higgs mechanism.

If SUSY is broken in multiple hidden sectors, there will generically be multiple goldstini

[42], one linear combination will be eaten in the super-Higgs mechanism [55, 149, 71, 72],

while the other, uneaten goldstini remain in the theory. One of the uneaten goldstini can

easily be the predominant component of the dark matter in the universe [42]. It is not

absolutely stable, however, as it is generically heavier than the gravitino, to which it can

decay on cosmological timescales [42, 37]. The products of these decays can potentially be

seen by indirect detection experiments such as FERMI-LAT, PAMELA, or AMS-02.

In this chapter, we discuss a hitherto-unexplored decay channel of the uneaten goldstino

a two-body decay to a photon and the gravitino, which occurs via the small mass mixing

between the uneaten goldstino and the electroweak gauginos induced by electroweak sym-
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Figure 6-1: One of the leading Feynman diagrams mediating the decay of the uneaten
goldstino dark matter ( to a gravitino 0, and a photon. The goldstino and bino have a
mass mixing proportional to the hypercharge D-term after electroweak symmetry breaking,
allowing the goldstino to decay to a gravitino and photon.

metry breaking. One of the dominant Feynman diagrams mediating this decay is given

in Fig. 6-1. The resulting production of monochromatic gamma rays would be a striking

signature at experiments such as the FERMI-LAT, being relatively easier to distinguish

from background and harder to fake from astrophysical sources, allowing such experiments

to probe longer dark matter lifetimes. Unlike other sources of gamma ray lines, this de-

cay mode is not loop-suppressed compared to other modes, and so can naturally be the

discovery channel for indirect detection of dark matter.

The usual obstacle to considering dark matter decays featuring a monochromatic photon

is that they typically occur much too quickly; the dark matter would have either decayed

away early in the lifetime of the universe, or we would be awash in the resulting gamma

rays in the present era. This happens generically for decays induced by transition magnetic

dipoles, the lowest dimension operator that would allow such a decay consistent with the

observed electric neutrality of dark matter:

c
OMDM C W"JXF,,, (6.1)M

x ~ 8(6.2)

Even for M ~ Mpl, c , 10-11 is required for consistency with observation. In the framework

of multiple SUSY-breaking, however, an astrophysically-reasonable lifetime can arise quite

naturally without the need to set any parameter to artificially small values. The leading
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operator mediating this decay is

C msoft,2 F1 HtH,
Om, ' ,o-(f F"H H,(6.3)

AlpF 2 msofti

with F2 the smaller of the two SUSY-breaking scales and msoft,i the contribution of that

sector to SUSY-breaking soft masses in the visible sector. Note that the decay requires

electroweak symmetry breaking to proceed, and involves the couplings of each hidden sector

to the SSM, thus providing a naturally small decay rate scaling as

c 2 Mim~ mSOft, 28rF2F mft. (6.4)

In the next section, we review the framework of goldstini. We then discuss the major

two- and three-body decay modes of the uneaten goldstino in Sec. 6.3. In Sec. 6.4, we

discuss the prospects for indirect detection of goldstini dark matter via this decay mode.

In Sec. 6.5, we discuss the renormalization group running of goldstino couplings, which is

necessary to understand the branching ratios of the goldstino decay modes in the benchmark

scenarios we present in Sec. 6.6. In Sec. 6.7, we discuss some non-minimal models that can

enhance the photon mode's branching ratio without depending on electroweak symmetry

breaking, by introducing additional mass mixing between the bino and other gauge singlet

fermions, and we conclude in Sec. 6.8.

6.2 Review of Goldstini

As in Ch. 3, we consider two sequestered sectors, each of which spontaneously breaks

SUSY-though many of our results can be easily generalized to the case with three or

more SUSY-breaking sectors. Each sector has an associated goldstino (fl and T/ 2 , respec-

tively), and we characterize the size of SUSY breaking via the goldstino decay constants

(F and F2 , respectively). Each SUSY breaking sector can be parametrized in terms of a

non-linear goldstino multiplet [109, 42]1

2

Xa = 1a - 201/a + 02Fa, (6.5)
2Fa

'Throughout, we use boldface to denote a superfield, with regular typeface denoting its lowest component.
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SSM

Figure 6-2: In our framework, SUSY is broken in two sectors sequestered from each other,
with the strength of SUSY-breaking parameterized by F1 > F2 . The true goldstino GL,
eaten by the gravitino, resides mainly in sector 1, while the uneaten goldstino ( resides
mainly in sector 2. Each sector contributes to SUSY-breaking terms in the visible SSM
sector, which are accompanied by corresponding goldstino couplings.

for a = 1, 2. We define the quantities

F2 F 1F 2Feff F1 +F, tan F_ Fef (6.6)
2 F1 Feff

and we take tan 0 < 1 (F 1 > F2 ) without loss of generality.

The combination 6L = sin 01 + cosO0q2 is eaten by the gravitino to become its

longitudinal components via the super-Higgs mechanism, but the orthogonal goldstino

( = cos 0 ?1 - sin 0 12 remains uneaten and will be the focus of our study. Due to SUGRA

effects, ( receives a mass of 2m 3 / 2 in the minimal goldstini scenario [42]. In addition, vari-

ations in the SUSY-breaking dynamics [45] or induced couplings between the two sectors

[42, 10] can modify the mass term for (.2

Supersymmetry breaking is communicated from the two hidden sectors to the visible

sector by means of a non-trivial Kiihler potential and gauge kinetic function (presumably

coming from integrating out heavy messenger fields). This is depicted schematically in

2 At minimum, one expects loops of SM fields to generate m ~ mSoft/(167r2
), [42], where n depends

on the number of loops necessary to effectively connect sectors 1 and 2 and transmit the needed U(1)R

breaking. The uneaten goldstino will also obtain a tree-level mass due to mixing with the neutralinos, but
this is of order 1/F 2 and is comparatively negligible.
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Fig. 6-2. Some representative terms contributing to the SSM soft masses are3

K = <' X Xa, (6.7)
a a

IA 7 SAB 1 2M-AA aX)a (6.8)

1 1B
W = -pijlb <b + '" 4 2j iXa, (6.9)

2 2 a2 Fa

a

where i= 1, 2, and 4 stands for a general SSM multiplet. These yield the following terms

in the lagrangian up to order 1/F [154]:

22rn3 2
2___ a/ I F2

L = - m *j# + ,TO a T/aXV* + 2 6 FIaXS aff~~h5 Fa a a Fff

Bija - m3/2p + 'a B~aXii + h.c. (6.10)
2 a a

- MA,aA A - z iMAao nvA AFA + 5 MAa i aAD A (6.11)
aav2Fa a 2FV a

Thus, the parameters ma,, MA,a, and Bij,a are the contributions to the SUSY-breaking

scalar mass-squareds, gaugino masses, and B-terms, respectively, from the sector a. Note

that they are intrinsically related to the coupling of the SSM fields to the goldstini. The

final term on the first line of Eq. (6.10) is a universal supergravity effect, arising from the

fact that for unbroken supergravity in anti de-Sitter space, scalar masses are -2m 2 ; this

is a generalization to multiple goldstini of the term discussed in Ch. 5. Similarly, the second

term on the second line, proportional to M3/ 2 and the fermion mass matrix pj, is a tree-

level anomaly-mediated contribution to B-termis that is not truly a SUSY-breaking effect

(as it is present in unbroken AdS SUSY), and therefore arises from neither sector [54].

Rotating to the dL-( basis yields similar interaction terms for the eaten goldstino dL

3This is not an exhaustive list of terms that contribute to the desired soft terms, especially in the Kahler
potential. However, the omission of such terms here does not affect the final result, at least at tree level. We
also do not include A-terms here, though they can have important RG effects, as we will discuss in Sec. 6.5.

4Throughout, we use the conventions of Ref. [154], except we have redefined their gauginos by a factor
of i: AWB + jA.
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and the uneaten goldstino (,

ML m+2m / 2  ~ .LX Bij + Mi~ff
SFeff GLx'$ + + m GLX'$2

i'M ~ MA ~_ MA GL"A^F + GLAD, (6.12)
V2_Fe ff /IV v/2Feff

- i B
'C = (x o**+ GLxtO$

F- F-L

iM- ( " AAFA + MA aDa (6.13)
2FL "I ' F

where the untilded mass parameters are defined as5

MA = MA,2 cos2 0 - MA,1 sin 2 0, (6.14)

and analogously for scalar mass-squareds and B-terms. The parameters m2 -, MA, and Bijii,

are here the physical scalar mass-squareds, gaugino masses, and B-terms. Generally, they

are just equal to the sum of the contributions from each sector (i.e. MA = MA,1 + MA,2).

6.3 Decays of the Goldstino

In the presence of electroweak symmetry breaking, there is a mass mixing between the

goldstinos and the neutralinos of the MSSM, as can be seen directly from the Lagrangian of

Eqs. (6.12) and (6.13). For the goldstino that is eaten by the gravitino, this is fundamentally

due to the fact that electroweak symmetry breaking induces a small amount of SUSY-

breaking in the visible sector, as the Higgs F-terms and electroweak D-terms obtain vevs.

The amount of mixing between the eaten goldstino and the neutralinos can be directly read

off the eaten goldstino direction, given by

1 1 A
GL = (Fi) x' + (DA) A (6.15)

5 Note that this differs by a factor of sin 0 cos 0 from the equivalent definition in Ch. 3.6 This is not true for the B-terms at tree level, due to the anomaly-mediated contribution discussed above.
A similar story will hold for loop-level anomaly-mediated contributions, so all soft terms m appearing in
Eq. (6.12) should really be replaced by m-mAMSB. As m > m 3/ 2 in the scenario we consider (as the gravitino
is the LSP), the effects of loop-level anomaly mediation on these coefficients are of little phenomenological
relevance here. Also at loop level, the 2m3/ 2 term should have corrections starting at one loop proportional
to anomalous dimensions, as in Ch. 5.
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For the uneaten goldstino, the cancellations that ensure Eq. (6.15) do not occur, and the

mixings can be parametrically larger (even after accounting for a possible hierarchy in the

hidden sector F"), arising from the terms

£ D _g M A

C D j (Xi W$5) + UCxi K$*J)+ r1AA (DA) + h.c. (6.16)
F1L F-L v2F1

Due to this mass mixing, an uneaten goldstino can undergo a two-body decay to a

gravitino and a photon, Higgs, or Z boson through its neutralino components. Such a

decay process has not previously been fully considered in the literature. 7

Since the decay of a goldstino of mass 2m 3 / 2 (in the minimal goldstini scenario) to

a gravitino of mass m 3 / 2 is somewhat outside of the regime of the goldstino equivalence

theorem [64, 34, 33], in order to calculate the decay rate, one must consider the explicit

coupling of the spin-3/2 gravitino. While this presents its own technical challenges (see

App. D.2), it does allow us to factorize the calculation in a convenient way. We will choose to

work in unitarity gauge for the gravitino; in this gauge, the eaten goldstino is removed from

the theory entirely (i.e. it is made infinitely massive). Therefore, terms in the Lagrangian

that contain the fermion bilinear 6L( coupled to Standard Model particles can be safely

ignored. Furthermore, the gravitino, unlike the goldstini, no longer has any mass mixings

with any other fermions after gauge fixing.

The goldstino to gravitino decay calculation can therefore be factorized into two separate

problems. The first is finding the bino, wino, and Higgsino fractions of the uneaten goldstino,

which derive solely from the neutralino-goldstino mass matrix. Then, one can calculate the

decay rate of a hypothetical bino, wino, or Higgsino of physical mass 2M3/2 to a gravitino

and a photon, Higgs, or Z boson. Including the mixing angles in the latter calculation then

yields the goldstino to gravitino decay rates. We will consider each of these calculations in

turn.

7 Ref. [37] did consider the possibility of two-body decays to the Higgs or a longitudinal Z, though not a
photon or transverse Z.
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6.3.1 Goldstino-Neutralino Mass Matrix

The neutralino-goldstino mass matrix can be parameterized in the {B, W/T3, Hd, Hu, (, GL

basis as follows [146]:

/

p

0

(

p

0

2m 3/2

iMzM1 SWC2,3

2 MZ MM2CW C2 ,3

i 2m-Hus3 -+- B~co

V
2FL

V
2 F-p = - f

(6.17)

(6.18)

IMzMISWC213

-IMZM2CWC2,3

md 2+ 2m /2 )cp + (B, - m 31 2 u)s

(6.19)

(M 2mu + 2mi/2sf + (Bi, - M 3 / 2 P)CO ,

where M. is the usual 4 x 4 neutralino mass matrix (see e.g. Ref. [124]),8 sw = sin OW,

co = cos /, v ~ 246 GeV. The uneaten goldstino has mass m(, which takes the value 2m 3 / 2

at tree level but may receive substantial radiative corrections [10].

Throughout, we will work in unitarity gauge for the gravitino, in which the eaten gold-

stino is removed from the theory. This may be done easily at 0(1/F), and amounts to just

considering the upper 5 x 5 block of Eq. (6.17).

8 Note especially that the Higgsino mass term appearing in Mx is -p, hence the apparent sign difference
in the 7m3 / 2P term as compared to Eq. (6.12). Note also that our convention for B, differs by a sign from
that in Ref. [124], and p is taken to be real.
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The overlap between the uneaten goldstino and a given neutralino is given by the vector

0 (11 - MX) --'. (6.20)

For goldstino decay into a gravitino and a given boson, the mixing angle we care about is

the one between the uneaten goldstino and the linear combination of the neutralinos that

forms the superpartner of that boson (in the interaction basis):

0, = PT0, (6.21)

{cos Ow, sin Ow, 0, 0}, Ph {0, 0,- sincosa},

PZT {-sin0wcosw, 0,0}, PZL {0, 0, cos 1, - sin3}. (6.22)

We will assume throughout that the uneaten goldstino is lighter than the heavy Higgs

states A 0 and H 0 , so that they are not produced in decays. In such a Higgs decoupling

limit, a 3 3 - rr/2, so Ph {0, 0, sin0, cos3}.

6.3.2 Goldstino Couplings

The couplings of a single gravitino to visible sector fields are entirely determined by the

supercurrent [22, 154]9:

1
L D -- bj + h.c. (6.23)

2Mpi
1 1

g3Dp*3X'aMi3"v2p + - p o-VPo1tA FA + h.c. (6.24)
2Mp 2Mp VP

We have dropped terms in the supercurrent proportional to U-Mt (for t any elementary or

composite fermion), as the associated gravitino coupling terms will vanish on the unitarity

gauge gravitino equations of motion.

As long as the uneaten goldstino ( is the dark matter, it is necessarily lighter than all

R-parity odd states in the SSM. As a result, we can simply integrate out all such particles

to yield an effective field theory of goldstino decay, organized by powers of m/nsusy. We

9Note that this automatically includes all the tree-level effects proportional to Mn3 / 2 , such as those dis-
cussed in Eq. (6.10).
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also assume that the goldstino is much lighter than the heavy Higgs scalars, so that we can

integrate them out and take a = 3 - r/2, H, = sin/3H, and Hd = cos/3cH* at leading

order. The first operators appear at dimension 6 after integrating out a single Higgsino at

tree level:

2B sin2 0 + mH s0 2B Cos 2 3 + FH sin2D
L6 - d sin L I DIHtH - VtF 1 HtDH.

F1 MpiLMpi

(6.25)

These operators give the leading contributions to the two-body decays to Higgs and longi-

tudinal Z discussed in the previous section, and can mediate three body decays to hho, or

hZLOIy that we will discuss in the next section.

There are many operators at dimension 5 and 6 allowed by gauge symmetries that do

not appear in Eq. (6.25). Many of these simply vanish on the unitary gauge equations of

motion of the gravitino (most notably, NWif = 0 and D",, = 0) and can be safely omitted.

Even so, there is still one operator at dimension 5 and several at dimension 6 that cannot

be so neglected a priori:

05 - p),-vItF"V, 6k x V[( x. (6.26)

To explain why these do not appear, we need to remember that the couplings of the grav-

itino are strongly constrained by the fact that it needs to couple to the supercurrent. While

the effective supercurrent can be heavily modified when one begins integrating out super-

partners, it is still clear that an operator like 05 would only be allowed if ( were at least

partially the superpartner of the B boson in the absence of electroweak symmetry breaking.

In models with a minimal SSM, it is not, but we will return to this suggestive possibility

in Sec. 6.7.10 The four-fermi operator 06 can be generated if SM fermions and the uneaten

sgoldstino (which obtains a vev) are both charged under a gauge symmetry broken at a

high scale, after integrating out the massive vector boson. However, one generally expects

the scale of any such hidden sector dynamics to be much larger than the masses of the

superpartners we integrated out to obtain Eq. (6.25), so we will neglect this possibility

henceforth.

ioSimilar arguments forbid other operators (starting at dimension 6) that leverage the U(1) nature of
hypercharge in minimal models.
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There are many additional operators at dimension 7:

~7 Z M A F - 2,C7vfM~A _ Oto-,,(F A IPF A"f) - 2 i t

A MAFLMp 0i FLFMpl

i'[(Mi - 2B,/Ip) cos 2/ - (Fn2  - Fn 2 )p-I sin 2]

2 2M 1 F_L Mp

ig[(M 2 - 2B, 1 p) cos 20 - (F2 - F p- sin 23]

2M2 F_L Mp,

2Fn cos 2 0 + B, sin 2 3

- d i I2- 2 sn2 Ht gtaP 9f(9"H@v)
2,u2 F1 Mp1

2r1. sin213+jsin20
i H 2I (t5:D/(D"Ht<))H + h.c.

Vdp2F_L Mpi

t CP i A

Po-7,(F Al-" H tT A H

(6.27)

The operators on the first line mediate three-body decays to two gauge bosons or two

fermions, respectively. The next two operators give the leading contributions to single

photon and Z emission, while the last two give sub-leading contributions to decays to Higgs

and Zs.

6.3.3 Two-Body Decays of the Goldstino

The decay rate of the uneaten goldstino ( (with mixings with the neutralinos to be specified

in the next section) to a single boson and a gravitino can be extracted from these couplings

after some modest calculational effort, given the Oj from Eq. (6.21). The decay to the Higgs

is mediated by the first term in Eq. (6.24), the decay to a photon is mediated by the second,

while the decay to a Z is mediated by both after electroweak symmetry breaking.

The decay rates for the photon [66] and Higgs modes are given by

m 2 /

167Fek11

M5- 2

327ffgy

m/2) 3 + 3m/2\2
M2 1 + 2 ,

T 2 2 Th 3/M3/2 2 M /2
m_/2 m__ m3/2 mhl-- (1+ r m h
m( mn m2 T( m2

The decay rate for the Z mode for general m 3 / 2 for arbitrary m( is too complicated to give

here, and is left for App. D.3.

These decay rates are more tractable in certain limits. When the goldstino gets most of

its mass from loop-level effects so that m( > m 3/ 2 , the decay rates simplify considerably,
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and follow from the goldstino equivalence theorem:

M5/
m( _(

Tce =167rF e

5 /
6 (1

167Feff

m( > n3 / 2
M2 4

2z + ZT 2z ) , Z
(6.30)

where the angles (J are the mixing angles of the uneaten goldstino with the superpartner

of the corresponding boson, defined in Eq. (6.21).

When the goldstino gets most of its mass from tree-level SUGRA effects so that m( =

2M3/2, the goldstino equivalence theorem is no longer a good approximation and the spin-

3/2 nature of the gravitino cannot be ignored. The part of the calculation that may be the

least familiar to the reader is the sum over final-state gravitino spinors; for convenience,

these are given for our two-component fermion notation in App. D.2. The resulting decay

rates of an uneaten goldstino to a photon, Higgs, or Z are given by

189 m
256 167Fff

189 M 9 4m2
256 167F 2 14 m

189 m, ( 4M2 E2+Ifj1 4MZ2
256 167F~f 14 L 2m

2 +JzLm2z

32 M3 4MZ2

63 m3 fz[ m ZTOZL

One could trade Feff for MpI in the above by using the relation Feff = /3m 3 /2Mp. The

kinematic functions f are given by

fh [X] (1 - X)3/2(I _ X19)5/2

fzTI[] (1 - x)1/2 (1 X19) 1/ 2 (1 - 7x/9 + 11X2 /63 - x3 /63)

fzLrl (1 - X)3/2(1 - X/9) 1/ 2 (1 + 2x/9 + X2 /9)

fzX [x] X(1 - 3/2(1 -X9)1/2.

(6.32)

(6.33)

(6.34)

(6.35)
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Note that f [1] = 0 (the decays shut off when they are no longer kinematically allowed), and

we have chosen f[0] 1 (corresponding to the m( > rn limit). Note in particular that

the longitudinal Z mode is a factor of 7 weaker compared to the transverse Z mode than it

was in the goldstino equivalence regime.

6.3.4 Three-Body Decays of the Goldstino

All the two-body decays only occur in the presence of electroweak symmetry breaking, as

otherwise the goldstinos do not mix with the neutralinos. Therefore, all the two-body decay

rates feature at least one factor of v2 , and may become dominated by three-body modes,

despite the latter's smaller phase space, in the limit n( > v.

The same operators of Eq. (6.25) mediate both the ( -- hV~p and ( -+ hhV; the same is

true for ( -a ZLOp and ( -9 ZLh<p. As a result, the two- and three-body decay widths are

intimately connected-to leading order, they are parameterized by the same mixing angles

Oh and 0 ZL, respectively:

W m F n 3 / 2
51207 3v2 F 2  

LmnJ

ZL( F[' M 3 / 2
19207 3 v2 F 2 F I [

where we are working in the limit in( > nh where these modes may be competitive. The

kinematic functions Fhh and FhzL are discussed in the appendices, but take on the values

Fhh(O) = Fhz (0) = 1, Fjh,(1/2) = 0.44, Fhz, (1/2) = 0.04. The hZL mode experiences

destructive interference at non-zero in3/ 2 due to the pseudoscalar nature of ZL, hence ex-

plaining the disparity between the two functions at tn = 2m 3/2-

Since it is the same mixing angles 01, (ZL that appear in the two- and three-body

decay modes to Higgs and ZL, ratios of these decay rates are largely model-independent to

leading order in mn/mSUSY:

________ -Fhh/h 

(6.36)
F(,+,,p 1607r2v2  mn

I*ZL, 1  ( F, n3/ 2  (6.37)
F(_ ZLp 607 2 v2  L/Z I M(

where the kinematic functions Fhh7;, and FhzL/zL are given in the appendix, but take on
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the values Fh/h(O) = Fhz/zt(0) = 1, Fhh/h(1/ 2 ) - 0.46, Fhzl/z - 0.39. We can use this

to easily determine when exactly the two Higgs mode becomes dominant compared to the

single Higgs mode: m( - 10 TeV for m( > m 3/ 2 , and m ~ 14 TeV for m( a 2m 3 / 2 . These

are both outside the sensitivity of the HESS experiment (whose present results only reach

up to 5 TeV gamma rays), so we will neglect this possibility when considering the limits

on photon lines in Sec. 6.4. The situation is slightly less dire for the hZL mode, which

takes over from the ZL mode for m ~ 6 TeV for m( > m3/2 or 10 TeV for m a 2m 3/ 2 -

Although this mode may have an impact at the upper range of the HESS data for Oz > Oh,

we will find that the limits on single Higgs production tend to preclude the possibility of

observing the gamma ray signal by themselves, as the gamma ray mode is quite suppressed

compared to the single Higgs mode at such high energies.

All other three-body decay modes are mediated by operators of at least dimension 7

(such as those in Eq. (6.27)), and will be subdominant by a factor of at least m2 /M .

This may be compensated for by the much sheer number of modes allowed by dimension 7

operators, especially the difermion channel, so we consider them briefly here.

The decay width to a single chiral fermion species is given by

Ncm 9 in1 M3/2\- Nfn Tn (n, 9 , (6.38)
-*GLff 153607 3 F2 F2 mf( (.)

eff If

with Ff(0) = 1, Ff(1/2) - 1/8, and the full expression for Ff given in App. D.3.

In the low mass regime m - M 3 / 2 < Mz, the difermion and di-gauge boson modes are

once again important as the only possible competition to the single photon mode. However,

they are suppressed both by phase space and by the smallness of M compared to the weak

scale. Barring cancellations, the three-body modes very rarely amount to more than a

handful of percent of goldstino decays even for m4- - M3/2 = Mz, and can often be even

more subdominant, as in split SUSY scenarios (see Sec. 6.6) or for the m( = 2m 3 / 2 case

(see App. D.3). In such a regime, the single photon mode would likely be the only possible

signal for the foreseeable future.
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6.4 Indirect Detection

If the uneaten goldstino comprises some or all of the dark matter in the universe, its de-

cay products can be observed by experiments, allowing indirect detection of goldstino dark

matter. The decay ( -y<, would be particularly striking, as galactic sources would con-

stitute a monochromatic source of photons. Such a photon line could stand out clearly from

the diffuse photon background, and would be difficult to fake from astrophysical sources.

In fact, there has been some excitement recently from tentative signals in gamma rays at

about 130 GeV in gamma rays from the galactic center [26, 153, 145], and at 3.55 keV in

X-rays from surveys of galactic clusters [29, 24]. Before discussing goldstino interpretations

of these anomalies we will first review current constraints on goldstino decays.

The largest source of gamma rays originating from goldstino decays would be the galactic

center, which also has the largest backgrounds of astrophysical gamma rays. However, for

decaying dark matter the galactic center is not as prominent a source as it would be in

the case of dark matter self-annihilation, as the flux scales only linearly (not quadratically)

with dark matter number density. As a result, the spatially uniform extragalactic sources,

with more manageable backgrounds, can be of comparable importance.

Both the FERMI-LAT and HESS collaborations have performed searches for monochro-

matic sources of gamma rays [3, 1], allowing limits to be determined on the lifetime r, for

the decay of fermionic dark matter to a -yv final state [3, 91]. The identity of the produced

fermion is unimportant, as long as it can be treated as massless. Therefore, they apply

equally to goldstino decays which also produce monochromatic gamma lines and may be

very easily adapted for non-negligible final-state fermion mass m 37 2 .

Of course, if the two-body decay featuring a photon is not the dominant decay mode,

other goldstino decay modes may produce a detectable signal first. As we saw in the pre-

vious sections, the main competing modes at lower energies are the single Higgs and, to a

lesser extent (up to phase space), the single Z. The ultimate decay products of the Higgs

or Z will include all stable Standard Model particles-electrons and positrons, neutrinos,

(anti)protons, and a soft photon spectrum. The astrophysical backgrounds are modest and

well-understood [91]. Unfortunately, due to the effects of galactic electromagnetic fields,

experiments can extract no information about their original energy and source location.

Furthermore, these same effects mean that the expected flux of antiprotons given a particu-
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lar dark matter mass and lifetime is highly dependent on the particular model of antiproton

propagation through the galaxy.

Antiproton fluxes still provide the best limits on the lifetime of fermionic dark matter

in the channels hv and Zv, as has been studied extensively in Refs. [52, 79] using data from

PAMELA [5, 6]. As with the photon mode, these limits also apply exactly to goldstino dark

matter in the m 3/ 2 < m( regime.1 1

In adapting any of these limits it should be remembered that the number density (and

thus the number of decays) scales as m 1 . Accounting for this and the appropriate values

of m( and m 3 / 2 , this allows us to map known limits from standard decaying dark matter

searches X - Bv. If these limits are defined at a specific DM mass m. as a limit on

the lifetime 7(m.), for the final states B -y, Z, h, then these limits may be adapted to

goldstino decays ( -± Bo, with the following mapping

T(m(, M3/ 2 , mB) = T (mX(M(, M3/ 2 , mB)) inv((, m 3 / 2 , inB) x BR(( - B@p,1 ) x F(,

(6.39)

where

m + m2- m2/2 +n(mm+(m + mFin -(inB+ m 3/ 2 )2) -i (mB - m3 / 2)2 )
m. (mTn, M3/2, MB) B-M/ m

(6.40)

and BR(( -+ BO,) is the branching ratio to that final state and F( is the fraction of DM

made up by the goldstino F( = 9(/Qx.

Combining the gamma ray line and antiproton limits, we can find the minimum branch-

ing fraction needed for the photon mode 7 V), to be currently observable while the

existing antiproton limits on ( - ZV&, and ( - hi, do not to exclude it. These are shown

for both m3/ 2 regimes in Fig. 6-4.

"This is only strictly true at tree level, as electroweak radative corrections can have a substantial impact
on the number of produced antiprotons at higher dark matter masses when the fermion produced in the
decay is a Standard Model neutrino [52]. Ref. [52] does not take these corrections (which do not exist in our
case) into account explicitly in their analysis, however.
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Figure 6-3: Constraints on the effective goldstino lifetime , = -r/(BR(( - BO,) x FO)

where B = -, Z, h calculated from Refs. [91, 79]. Constraints are shown for the MED
propogation parameter choice in Ref. [79] for B = Z, h. Different propagation models lead
to constraints that may beweaker or stronger by a factor O(few). The left panel shows the
scenario where the goldstino mass is dominated by tree-level mSUGRA effects, and the right
panel the scenario where the goldstino picks up large one-loop corrections to the tree-level
mass. ( - y'/ lead to the strongest constraints however for m - M32 > mz, mh the
branching ratio to these final states may be larger.
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Figure 6-4: Minimum branching ratio required for a putative observed decay ( - y- b with
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( -+ ZO,/ and ( -+ ho, from PAMELA. The plots begin at the lowest mass goldstino such
that the decays are kinematically accessible. As in Fig. 6-3, different propagation models
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6.4.1 The 130 GeV Line

There has been some excitement in the last two years over the tentative observation of a

gamma ray line at approximately 130 GeV originating very near the galactic center. Such a

signal can arise from the decay of dark matter [26, 153, 145], although its spatial distribution

is more suggestive of annihilation at present [28]. Rather than discussing the robustness of a

DM interpretation of this anomaly we simply consider whether or not such a spectral feature

could arise from goldstino decays in accordance with other limits and generic expectations

in models of goldstino decays.

For such an interpretation an effective lifetime of r= T/(BR(( a B- ,) x F) ~ 0(10 29s)

is required. Furthermore, Fig. 6-4 demonstrates that the branching ratio to Yo, must be

at least 0(10%) for the model to be consistent with antiproton bounds.

For the loop-dominated goldstino mass M( >> M3/ 2 a 130 GeV line would require m=

260 GeV. Using Eq. (6.30) we find that

BRy _1.7E2

~ZT + (6.41)
BRzo ()2+ 1E2

thus for typical parameters if (', - 0 ZTL1 then the branching ratio constraints are satisfied.

The more detailed analysis of Sec. 6.6 will show that 07/OZL scales roughly as Mz/MI, so

the branching ratio constraints will be satisfied so long as the bino is not too far above the

weak scale.

Obtaining the required lifetime is also quite feasible. Again using Eq. (6.30) we find

F(3 x 1029 S .(- (6.42)
1 x 109 GeV I x 1014

For this value of Feff we have M3/2 ~ 24 MeV, satisfying the criteria m( > M3/2 . Such a

small value of 07 is to be expected, since 0 x (Mz/F 2 )(MsUSy/MSUSy) where Msusy is

near the weak scale and Msusy is the typical soft-term mediated by sector 2 to the visible

sector. For vFff - 10 9 GeV, one expects 6, ~ 8 x 10-15 if the two sectors have a common

messenger mass.

For the SUGRA-dominated goldstino mass m = 2m 3/ 2 a 130 GeV line corresponds to

a 346 GeV goldstino and 173 GeV gravitino. Phase space and kinematics further disfavor
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the Z mode here, so the branching ratio constraints are easier to satisfy:

BR, 1.502
- o , 'Y(6.43)

BRzV, (2 + -LE2 - -LE)z 0zBR~11, T, 14 ZL 1 2
0

ZT ZL (.3

As the gravitino mass is fixed, we know Fff = 3m 3 / 2Mp= (2.70 x 1010 GeV)2 and we

have one fewer free parameter in the lifetime:

(1 x 1029 s) (6 x1012 (6.44)

6.4.2 The 3.5 keV Line

There has also been excitement very recently regarding a 3.5 keV line in X-rays tentatively

observed in various galactic clusters [29, 24]. The goldstini framework has many features

that make it a plausible candidate for such observations. It can produce a monochromatic

photon line without producing other features-the only other kinematically allowed modes

are multiphotons and neutrinos, which are strongly phase-space suppressed at these energies

(and the latter are effectively invisible). The morphology of the signal is also very suggestive

of a dark matter decay, corresponding to a lifetime of 2 x 1027 - 1 x 1028 s.

However, it can be difficult to accommodate such a large X-ray signal in the goldstini

framework. For the scenario m( = 2m 3 / 2 (and thus F 4.5 x 106 GeV), it is almost

impossible, as

67rM2 2=7E (7 x 1027 s) . (6.45)

One cannot obtain a signal large enough to correspond to the observations of Refs. [29, 24]

in the limit that goldstino-neutralino couplings are a small perturbation of the neutralino

mass matrix. The same conclusion holds true to a somewhat greater degree for the scenario

n 3/2 < m < 2m7 3/2-

The prospects are less dire for m( > m 3/ 2 (as F, m, and Mpj are no longer directly

related), but it still requires a small SUSY-breaking scale and a relatively large 0-,:

167rF2 X(_ - 2
= (2 x 102 s) 10 TeV 104 (6.46)
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For this scenario to be feasible, the corrections to the goldstino mass need to be keV-

scale. At tree level, these corrections arise at 0(1/F 2 ), mainly from the direct couplings of

the goldstino bilinears in the lowest components of Xi12. These corrections scale roughly

as

PIM>y mnH,,dMZp M 1,2 M (6.47)
~ F 2  ' F 2  ' F 2

It can be quite difficult to make m be keV scale while simultaneously making 8, large

enough (and F small enough) for this decay to have the necessary lifetime; it is typically

only feasible in minimal models for light binos (MI < 20 GeV).

Radiative corrections will also generally induce the operator

d4OE X1XtXX 2, (6.48)
(16.r2)n M '

with M some effective messenger scale and n the number of loops required for cross-talk

between the two sectors. This yields an uneaten goldstino mass of [42]

1 F1 F(
(167r 2 )n F2 M

To make sure that the goldstino mass induced by such an operator is no larger than keV

will typically require n to be relatively large or for there to be small couplings.

For the non-minimal models discussed in Sec. 6.7, the prospects can be much improved.

For example, for the model of Sec. 6.7.1 dominated by kinetic mixing between the bino and

uneaten goldstino has E8 ~ cos Ow, which can work for large enough E, assuming that

radiative corrections to the goldstino mass are well-controlled. 13

Scenarios with three or more SUSY-breaking sectors can also more feasibly produce

such an X-ray signal, arising from transitions between different uneaten goldstini. As there

is no gravitino involved in such a decay, cancellations that occur for the true goldstino do

not occur for the uneaten goldstino, and the decay rate is only proportional to the third

(as opposed to the fifth) power of the 3.55 keV photon energy, allowing for a significant

enhancement. Such decays are beyond the scope of this thesis, but are covered in more

1 2There are also contributions from the mass mixing with the neutralinos, but these are suppressed by
powers of the neutralino masses assuming that soft SUSY-breaking arises mainly from sector 1.

1 3Note that the uneaten goldstino does not receive O(C2) tree-level corrections to its mass in this scenario.
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Figure 6-5: One-loop diagrams that serve to renormalize the uneaten goldstino mass-squared
style couplings. Note that the resulting effects will be proportional to the gaugino-mass style
coupling multiplied by the physical gaugino mass for the left and middle diagrams, and
similarly for A-terms for the right diagram. If sector 1 provides the dominant contribution
to soft terms, RG effects can greatly enhance the mass-squared style couplings of the uneaten
goldstino.

detail in Ref. [126]. The same decay, with weak-scale goldstini, was considered on the

vastly shorter timescales of the LHC in Ref. [69].

6.5 Renormalization Group Evolution of Goldstino Couplings

The couplings in Eq. (6.13) will help mediate goldstino decays, so in order to fully assess the

relative importance of the possible decay modes, we will need to understand the possible

relative strengths of these couplings. In general, we will have to take into account the

RG flow of these couplings. One might not expect such effects to be extremely important,

especially since we do not have definite expectations of how these couplings compare at the

messenger scale. However, we will find that in scenarios in which the contributions of sector

2 to soft SUSY-breaking parameters are much smaller than those of sector 1, these RG

effects can very quickly become the dominant source of mass-squared goldstino couplings.

The fundamental reason for this is that physical gaugino masses, A-terms, and fermion

masses feed into the RG evolution of scalar mass-squared goldstino couplings, in addition to

their corresponding goldstino couplings. This can be seen on the level of Feynman diagrams

in Fig. 6-5. The one-loop RG equations for the mass-squared style couplings are (following
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the notation of Ref. [124])

1-
16= 2 

[A I - 8g Ca(i)M*Maij + 0(in2 ). (6.50)ij 167 ._iA k

This looks extremely similar to the RG equations for the (untiled) soft scalar mass-squareds,

and for good reason-removing the tildes from Eq. (6.50) yields the RG equations for the

eaten goldstino couplings, which must be identical for those for the soft scalar mass-squareds

by supercurrent conservation.

As a result, the RG equations for the other goldstino couplings are identical to those

for their corresponding soft terms, after adding tildes to all soft parameters, as none of

those RG equations contain terms proportional to products of soft terms. In particular,

this implies the following RG equations for the B-terms:

1 [i nn' 2 jo ij 9.~)
= 167r2 YMpy*mn m  + gaCa(i)4MaM + O(ah3 ). (6.51)

Note that these terms are unsurprisingly proportional to the physical SUSY-respecting

fermion mass. Similar terms can arise at the messenger scale from Kdhler potential terms

like X2Ht /dHU d, as well, of course.

This RG running behavior can have very important consequences for the uneaten gold-

stino decays. In the limit that the (messenger-scale) contributions to soft masses from sector

2 are smaller than weak scale, one might naively expect that one could neglect the dimension

two couplings compared to the dimension 1 couplings. As discussed above, this can already

be false at the messenger scale for B-terms. As one runs below the messenger scales, the

dominant contributions to scalar mass-style couplings (and B-terms if they vanish at the

messenger scale) will come from this RG-running, and they can no longer be neglected.

6.6 Benchmark Scenarios in the MSSM

In order to understand these decay rates, we need to understand the mixing angles Oi defined

in Eq. (6.21), and more generally the uneaten goldstino direction W defined in Eq. (6.20),

both of which are quite complicated in general. In this section, we will.consider certain

limits in which 0 simplifies, and some more general benchmark scenarios which can help to

give a sense of the variety of branching ratios and decay rates of the uneaten goldstino.
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6.6.1 The Ultra-Aligned Limit

The uneaten goldstino direction 9 defined in Eq. (6.20) will simplify dramatically it aligns

precisely with the eaten goldstino direction, which we know to be exactly {FI, Da/ 2}.

This 'ultra-aligned' limit will occur when mT = 2m 3/ 2 and is a multiple of p; that is, when

M1,2 = 2MI,2, rnH H a /2), ( - m 3 / 2 P), (6.52)

for some constant K. Leveraging the fact that we know the goldstino direction (or extensively

using conditions arising from the minimization of the Higgs potential), we find

Mz sin Ow cos 20 Dy / 2

~Mz cos wcos2 20 D3/V2
2F =. (6.53)

v/2F_ FL
p sin - r 3/ 2 cos 0 FH

Scos 0 -m 3/ 2 sin B Fju

Note that in this limit, 0'y is 0 and the goldstino does not decay to a photon and gravitino,

as the effective D-term for electromagnetism vanishes in the absence of Fayet-Iliopoulos

terms. This criterion provides an excellent check on all of our calculations, and is especially

useful in the non-minimal scenarios discussed in Sec. 6.7. In this 'ultra-aligned' limit, the

other mixing angles become:

0-Y =0 Oh~ i'v(p cos(a + 0) + M3/ 2 sin(a - )) (6.54)
2F 1

, Mzv cos 2 m/3os2
0ZT - mv cos 2 Z = - (6.55)

2 v-F L ~ Z - 2F1

This 'ultra-aligned' limit is somewhat artificial, however, due to the presence of the 2mi2
3/2

term in Eq. (6.52).14 It can be readily seen from Eq. (6.50) that this limit is not RG-stable;

even if it were imposed as a boundary condition at some scale, it would not hold true at

any other scale.

1 4 There is no similar issue with the m3 / 2 / term; see Footnote 15.
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6.6.2 The Aligned Limit

The more physically reasonable 'aligned' limit, in which mi //MA,2 = /Bij,2

for all soft terms, is RG-stable, and the 2m 2 term in Eq. (6.52) would be omitted.' 5 In3/2

turn, this implies the cancellation for 0, would not be complete in the 'aligned' limit:

v/_2_(M1 - M2)m'/Mocs2 i 0
312 MZV cos 2sin(2W 'aligned' limit), (6.56)

M 1 M2[i2FL

at lowest order in Mz and m 3 / 2 , while the other Oj would receive O(mi/2 /mjUSY cor-

rections. Although the photon mode is non-vanishing in this limit, it is generally quite

suppressed as 2m 3 / 2 < M 1 , M 2 , p in the regime of interest. 16 It is interesting to note that

in this aligned limit, the tree level goldstino to photon decay channel is entirely due to the

2m 2 coupling discussed in Ch. 5. Plots of branching ratios in this regime are given in3/2

Fig. 6-6 and Fig. 6-7, with the latter exploring some regions of parameter space in which

the single photon mode cannot be neglected.

The cancellation also fails whenever m( deviates from 2m 3/ 2 . To lowest order in m3/2,

m(, and Mz, the photino mixing angle becomes

(MI - A 2 ) Mz(m - 2m 3/ 2 )vr Kcos 20 sin 2Ow
4 =2F l, (6.57)

while the other mixing angles receive subdominant corrections. This effect can be substan-

tial for gauge-mediation inspired models in which m 3 / 2 is negligible and m arises mainly

from loop effects, as can be seen in Fig. 6-8.

6.6.3 Split SUSY Models; Gauge Mediation

In split SUSY scenarios with M1, M 2 < p the effects of scalar soft masses can largely be

neglected. RG running effects induce Fn 2 proportional to M2M 2 , but to find the uneaten

goldstino decay rates, one has to integrate out a Higgsino of mass /1. Similar considerations

1 5Note that the m 3 /2 A term in Eq. (6.52) is not modified, as that contribution to B terms arises from
neither hidden sector (and is in fact not SUSY-breaking, see Ch. 5). However, since B terms do not feed into
the RG running of any other soft parameters or goldstino couplings (we neglect the subtle issue of threshold
corrections here), one can replace the m 3 / 2 with any other fixed scale A without affecting the RG stability of
the limit. Picking A = 0 means the cancellation in R, is even less complete, with f9- non-vanishing already
at O(m 3 / 2 ). Picking A > p is equivalent to the B-term dominance models we will discuss in Sec. 6.6.4.

16 1f the Z or Higgs modes should be kinematically inaccessible, the three-body decay to fermions would
dominate instead.
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Figure 6-6: The branching ratios for goldstino decay in the aligned, m = 2n 3/ 2 limit, as
a function of m 3/ 2 , for M 1 = 10 TeV, M 2 = 20 TeV, [- 30 TeV, tan 0 20. Note that
except for the photon mode and the upper limit on 'rrI, this plot is extremely insensitive to

the values of M, and M 2 . The vanishing of the single Higgs mode is due to a cancellation
in Oh that occurs for for M3/i2 ~t sin 2,3 in the aligned limit. The same sin 2/ suppression
helps explain the relative subdominance of the two-Higgs mode at higher energies. The
single photon mode is not visible on this plot, except for the case barely visible on the
extreme right where m( and M, are almost degenerate.
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Figure 6-7: Left: the branching ratios for goldstino decay in the aligned, mT = 2m 3/ 2 limit,
as a function of M3/ 2 , for M1 = 250 GeV, M 2 = 500 GeV, p = 750 GeV, 13 arctan 20.
Right: the branching ratios for goldstino decay in the same limit, as a function of M 1 , for

M3/ 2 = 45 GeV, M 2 = 2M 1 , p = 3M 1 . The photon mode can be non-negligible, even in
this aligned limit, for modest neutralino masses.
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Figure 6-8: The branching ratios for goldstino decay in the aligned, M( 2m 3 / 2 limit, as
a function of m(, for MI 400 GeV, M 2 =800 GeV, p =1200 GeV, 13 =:arctan 20. Even
when the couplings are aligned, the fact that m( 4 2m 3/ 2 has a substantial effect, even for
heavier neutralinos than in Fig. 6-7, with the photon mode remaining substantial over the
whole range of mC.

will suppress the difermion modes as well.1 7 The same is not true of B-term style couplings,

as the p naturally occurring in , simply cancels the p-1 from the Higgsino propagator;

one cannot ignore such couplings even for ultra-heavy Higgsinos.

Working in this limit, with p > M 2 , M, > Mz, m(, and rewriting B,= -bp,

Z sin Ow cos 2 (Mii 1 + 2b)

1 Mi

~ M- cos Ow cos 20 (M2 + 2(6
T1=2 (6.58)

b cos 0

sin /3

remembering that we are working in the {B, W, Hd, HS1} basis. Note that if MI/MI =

M 2 /M 2 (or even if they both vanish), the photon mode still occurs through the B-term

coupling.

We see from Eq. (6.58) that if b, Mi and M2 are comparable, the Higgs and longitudinal

Z modes will tend to dominate in this regime. However, one can easily arrange for b to

be smaller than Mi and M2-if it vanishes at a messenger scale, and there are few enough

decades removed from m( that Eq. (6.51) only has a modest effect. This in fact occurs if

1
7 The difermion mode induced by scalar mass couplings in this regime will still dominate over those

induced by A-terms, even for the tt mode.
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Figure 6-9: Branching ratios for goldstino decay as a function of m( in a scenario inspired
by gauge mediation, with m( > 'M3/2 , M 1 =1 TeV, M 2 = 2 TeV, y = 3 TeV, tan = 5,
Mi = 1 GeV, M 2 = -2 GeV, b= 27 MeV, fi2 /t = 18 MeV, and F2 /p = 10 MeV.

sector 2 transmits SUSY-breaking to the SSM via minimal gauge mediation.

Fig. 6-9 shows plots of representative branching ratios for a scenario inspired by gauge

mediation. Note that we have not picked a split SUSY benchmark here; all that is required

is for RG running effects to be modest, B-terms from sector 2 to be suppressed at the

messenger scale, and Msusy < MSUSY.

6.6.4 B-term Dominance

In a different extreme, one can have B-terms being the only non-vanishing contribution to

soft masses from sector 2, as B-terms do not feed into the running of any other soft terms.

In this limit (and only keeping terms to the lowest order in Mz and m), the mixing angles

become

(M 2 - MI) Mzvb cos 20 sin 2 0 w vb sin(3 - a)

2V F1 M1 M2  eh V' FL

0 
ZT - Mzvb cos 203(M 1 cos 2 Ow + M 2 sin 2 Ow) e vb cos 2/3 (6.59)

v'2FIM1M2  ZL V' FL

Recall that in the Higgs decoupling limit, sin(/-a) ~ 1. Fig. 6-10 shows some characteristic

branching ratios. As expected, once the higgs and Z modes are kinematically accessible,

they become the dominant decay modes.

6.7 Non-Minimal Models

All two-body decay modes of the uneaten goldstino to a gravitino necessarily arise from

a mass mixing of the uneaten goldstino with neutral visible-sector fermions. So far, we
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Figure 6-10: Branching ratios for goldstino decay in the limit of B-term dominance (,/p >>
M1, M 2 , 5in- /p), with m( = 2m 3 / 2 . Left: as a function of Mr3/ 2 for M1 = 1 TeV, M 2 = 2

TeV, p 3 TeV, tan/= 5. Right: as a function of M 1 , for m 3 / 2 = 173 GeV, M 2 = 2M 1 ,
p = 3M 1 , tan3 = 5.

have only considered mixings arising from electroweak symmetry breaking; as a result, the

corresponding decay widths scale as at least v 2 (v 4 for the photon mode), and are thus

subdominant for m( > 1 TeV.

There can be mass mixing that does not depend on electroweak symmetry breaking,

but only for the bino the only gauge singlet fermion in the MSSM. In this chapter, we will

discuss one way in which the bino can mix with the uneaten goldstino-kinetic mixing with

the uneaten goldstino.18 This mediates a decay of the uneaten goldstino to the gravitino

and a B boson, the only accessible gauge singlet boson-in other words, a photon or a

Z, with the latter mode suppressed by tan2 Ow (and phase space). We will find this can

easily dominate over other contributions that depend on electroweak symmetry breaking,

and that they can remain dominant over three-body modes even for m( > 1 TeV.

6.7.1 Bino-Uneaten Goldstino Kinetic Mixing

The uneaten goldstino can experience kinetic mixing with the bino via the operator:

L d d0 2E W'"WY, (6.60)

with W'" defined as 19

W - (Dt - 8R)D1[XtX 2], (6.61)
4F 2

18 Other possibilities are discussed further in Ref. [126].
'9 Similar effects would arise from a mixing with sector 1, but they are comparatively suppressed assuming

soft mass contributions come primarily from the first sector.
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with c a small parameter (i.e. we only work to O(E) throughout). Such an effect can be

induced at loop level below the messenger scale if Tr Yin2 4 0, but can also arise more

directly.

We can diagonalize the kinetic terms by the transformation

E~t
2

2 V - XtX2 (6.62)
F2

on the hypercharge vector superfield. This induces new couplings of the visible and hidden

sectors from the hypercharge gaugino mass terms and from the hypercharge gauge couplings

to matter superfields. It should be stressed that it does not produce new couplings from

the standard gauge kinetic terms themselves--or rather, any new couplings induced cancel

completely against those in Eq. (6.60) by construction. In particular, this includes the

gravitino coupling to the gauge kinetic part of the supercurrent, so the transformation of

Eq. (6.62) does not induce a direct coupling of the gravitino to a photon and a goldstino.

The transformation of Eq. (6.62) acting on the matter-gauge coupling terms does pro-

duce an effective Fayet-Iliopoulos term for hypercharge (though note that Dy itself does

not obtain a vev):

CFI= - gEF2 Yi*. (6.63)

If we do not want to break electromagnetism or color as a result, this gives a rough upper

bound on 6 of

2

< 3 SUSY
, 1F (6.64)

for m2usy the scale of soft SUSY-breaking scalar mass-squareds.

When acting on the gaugino mass terms, the transformation of Eq. (6.62) also produces

a mass mixing between the bino and the dark gaugino

D - d2e 2E M 1  i W'CWY, (6.65)
F,

where we have assumed for simplicity that no similar term appeared in the Lagrangian

before the transformation of Eq. (6.62). Note that the equivalent term with X 2 vanishes,
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as X 2W'" = 0 due to X2 = 0 this is an effect that only exists with multiple hidden

sectors. This yields an uneaten goldstino-bino mass mixing:

Feff
L D eM 1 ,1 (A ~ eMI(A, (6.66)

F1

where the approximation assumes that F1 > F 2 and M 1,1 > M 1,2 . A careful examination

of Eq. (6.65) reveals that there is no equivalent mixing for the eaten goldstino CL, as must

be the case as this effect does not depend on any visible sector D obtaining a vev.

In the limit that this effect is the leading contribution to the uneaten goldstino decay

and that MI > m(, the mixing angles take on the incredibly simple form

0 ~~ (e, 0, 0, 0), 0 e cosO w, z ~ -e sin Ow. (6.67)

For the case m( ~ 2m 3/ 2 , this is an incredibly predictive framework, with only two free

parameters:

100lf GeV\ (10_11N 2

(3 x 1029 s) 10G ) 1 (6.68)
( T3/2E

Naively, it seems like this reintroduces the problem we first discussed in the introduction

that a decay of this sort requires tuning a parameter to be incredibly small. However, in

this case, the smallness of the parameter is required by the stability of the electromagnetic

and color neutrality of the vacuum:

10 (100 GeV ( 10-2
mn3/2 F2/F1

Furthermore, the parameter e is generally expected to be the quite small

1 F2

(167r2 )n Mm~ 8 2 ' (6.70)

with Mmess,2 the effective messenger scale for sector 2 and n the number of loops required

to induce such a coupling. This does not generically saturate the bound of Eq. (6.64).
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6.8 Conclusions

In this chapter, we have argued that the goldstini framework provides a well-justified sce-

nario which can feature a gamma ray line visible at indirect detection experiments, at

energies ranging from a keV to a TeV. Such a line occurs from the decay of uneaten gold-

stino dark matter to a single photon and a gravitino, a process mediated by the small mass

mixing between goldstini and electroweak gauginos after electroweak symmetry breaking.

Since such a process proceeds through the suppressed couplings of both hidden sectors to

the SSM, the goldstino lifetime can naturally be of cosmological timescales.

If such a line were to be observed, however, it would be difficult to determine that

the decaying dark matter was truly comprised of goldstini. One striking piece of evidence

would be the determination of the goldstino mass, which would take on the value 8/3E,

in the minimal goldstino model with n = 2m 3/ 2 . While performing additional accurate

spectroscopic measurements solely with indirect detection experiments would be all but

impossible, a collider measurement could be quite promising. For example, a bino LOSP

would have a lifetime of approximately:

Ice TeV 5 M3/2 3 (.1
C~h ) (1030 S M, 100 GeV

If binos were produced in cascade decays at the LHC, they could then decay, yielding a

(very) displaced photon-a striking, if challenging signal at the LHC, yet excellent evidence

that SUSY is broken in multiple hidden sectors.
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Chapter 7

Conclusions

Supersymmetry is a well-motivated and extensively studied theory for physics beyond the

Standard Model. In the coming years, as the LHC pushes to higher energies and dark matter

experiments increase their reach, we are well-poised to discover SUSY particles at the TeV

scale-or to rule out some of the more constrained supersymmetric models. As a result,

it is more important than ever to consider non-minimal models of SUSY. In this thesis, I

have discussed a number of results that explore some of the resulting unconventional and

counterintuitive aspects of supersymmnetric theory and phenomenology.

In Ch. 3, we found that if SUSY is broken in multiple hidden sectors, collider phe-

nomenology can be drastically altered. Most notably, if one of those hidden sectors preserves

an R-symmetry, a predominantly bino lightest observable-sector particle (LOSP) can decay

predominantly to a Higgs and that hidden sector's goldstino, even in (in fact, especially

in) the limit that the LOSP has vanishing Higgsino fraction. This would result in copious

production of boosted Higgses in SUSY events at the LHC, providing a unique window into

both the structure of the Higgs and SUSY-breaking sectors.

In Ch. 4 and Ch. 5, we stressed that the structure of unbroken supergravity (SUGRA)

is SUSY in anti-de Sitter (AdS) space, which has a fundamentally different algebra than

flat space SUSY, as we explored in Sec. 2.7. In particular, bosons and fermions in the same

multiplet do not have the same mass for unbroken SUGRA in AdS. This underlying structure

can be probed in the flat space in which we reside by considering goldstino couplings; there

can be mass differences without associated goldstino couplings, and vice versa. This can

arise already at tree level in the case of scalar masses and B-terms. At loop level, this
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manifests itself as (minimal) anomaly mediation, which we showed was not a SUSY-breaking

effect, as it exists for unbroken SUSY in the bulk AdS. This work has provided a clearer

perspective on and more rigorous grounding of anomaly mediation, which had been the

object of some confusion in the literature.

In Ch. 6, we found that multiple SUSY breaking can also have profound implications

for our understanding and observation of dark matter. A goldstino from one of the hidden

sectors can decay to a photon and the gravitino (which mostly resides in another hidden

sector), through each sector's communication of SUSY breaking to the SUSY Standard

Model (SSM). The lifetime of such a decay can easily be on cosmological timescales, so if the

goldstino comprises most of the dark matter of the universe, the resulting photon line could

be a striking indirect detection signal of decaying goldstino dark matter at telescopes such as

FERMI. The energy of such a line can quite plausibly be anywhere from a keV to hundreds

of GeV (or even higher in non-minimal models), providing a well-motivated scenario for

such a photon line without recourse to artificially small parameters. Furthermore, in the

limit in which two SUSY-breaking sectors communicate SUSY breaking to the SSM in the

same manner, this decay occurs via the (absence of) the goldstino couplings arising from

AdS discussed in Ch. 5, providing a possible observational probe of the underlying AdS

SUSY symmetry structure of the universe.
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Appendix A

Goldstini Give the Higgs a Boost:

Appendices

A.1 Tree-Level Higgs Potential

The MSSM tree-level Higgs potential for the neutral Higgs sector arises from a combination

of F-terms, D-terms, and three soft SUSY-breaking terms:

V(Hu, HO)d (|2 + 2 )H| 2 ( 2  + T 2 )|H| 2 + B,(HOHO + HO*H*)

+ 9 + ( Hu12 - IHdj 2 )2 . (A.1)
8

Once we recall that

tanI

tan 0

= 2 +g 2 ) ((H )2

=(Hfu) / (Hdo) ,

+ (Ho) , (A.2)

(A.3)

we can use the fact that the vacuum must minimize the Higgs potential to find relations

among these parameters.

0 = m+p 2 + B, cot 3 M2 cos 2,3
Z2

(A.4)

(A.5)0 = H 1/2 + B, tan/3 + MZ 223
Hd It2
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It is convenient to take linear combinations of these relations, one without 1pl2 and one

without B,1 :

0 (M2 2) si 2/ + 2 m2Sin 40
o = (mH, - myd) sin2/ + 2B, cos2/3 Ms0 2, (A.6)

0 o m2 sin2  - m2 cos 2  /_12 cos 2/ - M2 cos 20 (A.7)

In the Higgsino decoupling limit (jpj2, m2 0 >> Mi), we may neglect the terms proportional

to M2. Also in the same limit, the tree-level relation for the physical Higgs mixing angle a

simplifies considerably:

M 2 + M2 2ytan 2a = tan 20 -> a = / -37r/2+ 0 2 . (A.8)
A0  Z mAO

Once one applies Eq. (A.8), the relations Eqs. (A.6) and (A.7) are precisely those which

cause the cancellation of the A - ho + GL amplitude at the first two orders in pI/M1 in

Eqs. (3.54) and (3.55). Another linear combination of Eqs. (A.4) and (A.5) gives a (non-

independent) relationship that can be useful for simplifying CnSet,z

0 = + m, sin 2 /3+ mi cos 2 /3+ B, sin 2 + MVOS 2/3 (A.9)

A third relation, involving the pseudoscalar mass m20 , allows us to solve for all three soft

mass parameters if desired:

1
B, = 2MAO sin 20, (A.10)

2 2 2 20+M cos 2/3
m = -P2 +mAocos+M 2 (A.11)

2 = 2 2 2 - cos2/. (A.12)mHd = 11+mAOsn 3MZ 2(A12

Of course, all of the above relations are valid only at tree-level, and one does expect correc-

tions to these relations from the same loop effects needed to raise the physical Higgs mass

to 126 GeV.

178



A.2 R-Symmetry Violating Decays

In the body of Ch. 3, we focused on the setup in Fig. 3-2 where sector 2 preserves an

R-symmetry. If the sector 2 does not preserve an R-symmetry, then there are many more

allowed operators that can mediate the decay of a bino LOSP to the uneaten goldstino.

They are exactly those previously given for the gravitino in Sec. 3.5.1, except with the

replacement of 6L with ( and with all soft masses tilded.

A decay to photon at tree-level is now allowed through the usual operator

with resultant decay rate

iM1
(9=5 d Aa "(F,,#,B Ff2 I F

6mi cos2 Ow
S16TrF2

The couplings of the bino LOSP to the physical Higgs h0 and any further couplings to

the Z not already found in 05 may be parametrized at the first two orders in mA/p as

S- Mz 'sin Ow c5 + AC A(ho - Cz(IAZ 1
vi CF t Inetg P net l net,mba s Wsceie :

with Gnet representing the following linear combinations of Wilson coefficients:

- net

c 6
v2 net

v2

(c + C 5 cos(a +)

- 2C5 sin / cos a + 2C5 cos / sin a,

= (,,+ C H,2) sin # cosa (C d + C d,2) cos 0 sin a

+ c6 + c6 il sin sin a - C 6 + C ) cos 0 cos a,

C- (C I- C6r,2) sin 2 3 + (C6 C ) cos 2 3

+ C - C -- C + C#4) sin 2/.

(A.15)

(A.16)

(A.17)

(A.18)

Here, the factors of g'/ 2 are inserted purely for convenience. In the R-symmetric limit,

all the C# are of course zero.

For the decay to Higgs, the formula Eq. (3.38) for the decay rate still holds, but Cnet
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now has contributions proportional to BA and M 1, as it did in Eq. (3.54):1

S (in2 2 n ) sin 20 + 2F3co # ~
Cnet - 2 cos 20. (A.19)

For thyea oZ
For the decay to Z, CnetZ obtains a term proportional to F,

in 2si 2 /+ f2 COS2 0 + Bsn2sin 6H, Hd / P 3 sin 2/3
Cnet,Z =P" , 2 (A.20)

and we must also include the effects of Mi from 05 to find the full decay rate:

m 3m2 sn2 MZw M 2
Fz = S O 1- _167rF 2  A

m~F6 sin Ow m
1 ____3___et_ MzC.SetzM

x 1 + ~ Z M2ne, + ~M~e, 1 +2' . (A.21)
2 mn 2 im M 22

For the gravitino, C6  simplifies to unity at this order due to the tree-order relationCnet,Z

Eq. (A.9), and the complicated expression in Eq. (A.21) simplifies to the same result we

obtained from the supercurrent in Eq. (3.4), as it must. We demonstrated in Sec. 3.5 that

the decay rate to Higgs bosons simplifies similarly and in fact completely cancels at this

order. For an uneaten goldstino, however, such cancellations do not generically occur, unless

the ratio -i Mi/Mi is equal for all soft SUSY-breaking mass(-squared) terms Mi. It is

precisely when all the T are equal that one can make the field redefinition Eq. (3.57) to

make the goldstino couple only derivatively to visible-sector fields. In this limit, it would

couple in exactly the same way as the longitudinal gravitino, except with an enhancement

factor of r2 ~ cot 2 o. Of course, we should not expect such alignment to occur in general (if

only due to loop corrections), so a generic uneaten goldstino will have branching ratios to

photons, Zs, and Higgses of roughly the same order of magnitude, as suggested by Fig. 3-12.

A.3 All-Orders Tree-Level Calculation

The Higgsino decoupling limit studied in Sec. 3.4 is convenient for understanding the phys-

ical origin of the counterintuitive LOSP decays, but it is tedious in practice for moderate

Again, we use the approximation a f 3 - 7r/2 from Eq. (A.8), which is appropriate at this order in
m/a/p. This eliminates a term proportional to h. cos(/3 - a) in Cet.
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values of y. Instead of integrating out the Higgsinos and finding an arbitrarily long series

of operators and associated Wilson coefficients, we may conduct the calculation with the

original Lagrangian in the mass eigenstate basis. As long as one can explicitly diagonalize

the 4 x 4 neutralino mass matrix (analytically or numerically), one can perform the full

tree-level calculation to all orders in p.

To do so, we parametrize the relevant interactions from Eq. (3.23) as follows:

1 1
C = 2Mixixy + pi(x 1  I Yijxixjh +yi xh

2 2

+ Gjt[j/ - Li u/lv Xja,z,. (A. 22)

In the {ABA 3 ,HdHfu} basis, the neutralino mass matrix is [124]

( 0

0

-Mzc5jsw Mzs3sw

-H2 ]MVzcg3cw -Mzs,3cw

-MZC,38jW MZCgjcw

\ MzsOsw

0 - P

0MzsOcw

(A.23)

/

the linear mixing with the uneaten goldstino is

V
SF

vf2F

(
_ g'vM cos 2,3

-;jgvM 2 cos 2,3

Fnu s co + Btcs,

HdJ+] 3
Jf

fiW1 12

(A.24)

/
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the couplings to the physical Higgs boson are

0 0 g's, g'ca

0 0

g' a

g ca

-gsa

-gca

gse -gca

0 0

0 0 /

1
y = v--

/
-MMzsw sin(a + 3)

M 2Mzcw sin(a + 3)

B ca - i ' s a

i-2
Hucc - B[Isa

(A.25)

and the couplings to the Z boson are

G- =
2cw

( 0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 -1
/

L = 2

F

( Mi sw

-M 2cw

0

0 /

(A.26)

In the above matrixes, we have used the notation co = cos 0 and so - sin 0, with W standing

for the weak mixing angle Ow.

To calculate the decays of the lightest neutralino, we go to the mass eigenstate basis:

M -> M' = PTMP, (A.27)

with P chosen to make M' diagonal. Note that we treat the linear mixing with the uneaten

goldstino as an insertion, which is valid to leading order in 1/F. The other matrices and

vectors rotate as

p -_ p' = pTp,

and so forth.

y _y y' = pTyp, (A.28)

The full tree-level amplitude for the decay of the lightest neutralino to a
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Higgs/Z and a goldstino is thus:

rriA (I P __

IhO y' -
16m M L'

A ~ ( M ) 2 I
F z =6 1 - M

167r m 2

r ") , (A.29)

I M 2 L'K' K'_2 M (A
-m 3 TA+ M2 1+ + 2 ,(A.30)

2 ) Aim

where the neutralino masses are labeled by m0, the LOSP mass is n = tn, and

K' z G'2 p'
m o

(A.31)

A similar calculation for diferimion production is beyond the scope of this work; it would

in general need to include the effects of A-terns, finite fermion masses, and sfermion mixing

for the third generation, as well as possible interference from diferinions produced by off-

shell Z bosons.
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Appendix B

The Two Faces of Anomaly

Mediation: Appendices

B.1 The Fourth Anomaly in Anomaly Mediation

As mentioned in Table 5.1 and footnote 4, there is a fourth anomaly which can contribute

to the gaugino mass, though it is not so important for phenomenology since it requires

direct couplings of SUSY breaking to the gauginos at tree-level. It was first pointed out in

Ref. [44] in a string theory context. For completeness, we derive in this appendix the extra

contribution within our framework, and we show that the associated goldstino coupling

respects (flat space) supercurrent conservation.

Following the notation in Ref. [12], the Yang-Mills term in a SUSY gauge theory is

C - d20 S Wa"Wa, (B.1)

where S is the holornorphic gauge coupling. The superfield S is chiral and does not run

beyond one-loop in perturbation theory. However, the component fields of the gauge multi-

plet appearing in Eq. (B.1) are not canonically normalized. In order to go to a canonically-

normalized basis, we need to perform an anomalous rescaling of the gauge multiplet. This

will induce an additional anomaly-mediated contribution to the gaugino mass.

As shown in Ref. [12], the effects of this rescaling are encoded in the real vector superfield
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R (not to be confused with the curvature superfield), given by'

R =_ (S + St) + Glog S+S .. (B.2)

The physical meaning of the components of R can be identified from the 1PI effective action

PIp= d4RWaa Wa + h.c. (B.3)
-8F]

The lowest component of R defines the canonical gauge coupling, and the 02 component is

related to the physical gaugino mass, via

1
2 = RIO, MA = log R Q (B.4)

The physical gaugino-gauge boson vertex is determined by

L 2 "F, log R10 . (B.5)

If S has a 02 component at tree-level, then there is an extra contribution to the gaugino

mass and goldstino coupling from the second term in Eq. (B.2), in addition to the expected

tree-level gaugino mass and goldstino coupling from the first term. This additional piece

due to the anomalous rescaling of the gauge multiplet is

AmA = 2 F Oi log S. (B.6)
87r2

We can also read off the associated goldstino coupling from Eqs. (B.2) and (B.5), after

identifying the goldstino direction through Eq. (4.16). This gives an additional goldstino

coupling

AcA = AmA (B.7)

in the notation of Eq. (4.1), consistent with (flat space) supercurrent conservation.

'The elided terms include the sigma-model anomaly term already contained in Eq. (4.14).
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B.2 General Chiral Field Redefinitions

In order to derive Eq. (4.14), we want to find a field redefinition on our (charged) matter

superfields of the form

Qi -- cc"Qi (B.8)

that removes all chiral couplings of the Qi to the SUSY-breaking fields X t , while preserving

the canonical normalization of all kinetic terms. Explicitly, we want that after this field

redefinition,

(Kij) = 6ij, (Kjjf) = 0, (B.9)

where exactly one of the indices on the latter corresponds to a SUSY-breaking field.

Assuming we have shifted away all vevs of our scalar fields, the most general Kdhler

potential for charged matter can be written as

K = QiQIJaij + AigfQiQtjXf + h.c. + , (B.10)

where we have omitted any terms that have no impact on Eq. (B.9) and rotated and rescaled

the matter fields to have canonical kinetic terms. The linear couplings to Xe can be removed

by the field redefinition

Q1 ~ c 2 (lo K")kiQk ( kX ... )Qk(n)Q, -+ -- 06 c , 0k = (Oki -kif Xf 61- - Q ( B. 11)

with K" being the Kdhler metric. This redefinition induces the anomaly term

S = d20 162 TRi (log K")) w aaWa

= - l d2 0 T? D2 D2 logdt K' Waa
16R 2 dR 16gR

The sum in the last line is now over the matter representations R.

B.3 Non-Local Anomaly Terms

The lowest component of the superfield C in Eq. (4.34) yields (non-local) terms in the

Lagrangian that express the three anomalies of the theory. In supergravity frame, we have
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explicitly

1 8 {1 16C| = [ (T? - 3TG) -R + 10bY) -T,(KiA + K 3 D1,A
2D" Ai)

+16T ((ogdetK )wA + (log det K )jjDpADIA) +- . (B.12)

For example, the super-Weyl anomaly (or more accurately, the U(1)R anomaly [16]) is

expressed via

SD9 2 (3TG - T ) FtjvP", (B.13)
96w2 (T T? F/LVF

where bp is the vector auxiliary field which shifts as bp - bp + Ooz under a U(1) trans-

formation. Rearranging Eq. (B.12), the Kihler anomaly and sigma-model anomaly are

similarly expressed via the Kdhler connection and sigma-model connection [16]:

(1 2 T p(iKOPAiK - ZKDOPA*z)L - 967 2 TR F,FP", (B.14)

g2 T? Op(i(log det K )P A - i(log det K)PA*D) F "B
32Dr2 dR R R. (B.15)
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Appendix C

Anomaly Mediation from

Unbroken Supergravity:

Appendices

C.1 Goldstino Couplings from the Conformal Compensator

In this appendix, we provide a third derivation of the goldstino couplings in Eq. (5.8),

working in the conformal compensator formalism of SUGRA to connection to our previous

analysis in Ref. [53].1 Here, the extra gauge redundancies of conformal SUGRA are gauge

fixed to recover minimal SUGRA [101, 100, 102, 147] via a conformal compensator <b, a

chiral field with conformal weight 1. We can use <P to build a superconformally invariant

action at tree-level (dropping Yang-Mills terms for convenience)

S=J d4<tbp Q + Id2O tp3W + h.c. +..., -3e-K/ 3  (C.1)

Here, we use global superspace variables to express only the matter parts of the action, and

the ellipsis ( ... ) represents the action for the gravity multiplet as well as couplings of the

matter fields to the gravity multiplet (see, e.g., Refs. [114, 38]).

The gauge choice for <P proposed by Kugo and Uehara [113] allows us to use the "global

superspace" terms of Eq. (C.1) to find the pertinent features of supergravity, including scalar

'For details on the conformal compensator formalism see Refs. [143, 80, 114]. This formalism is reviewed
in Ref. [38] using two-component fermion notation.
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masses and goldstino couplings in curved space, without having to worry about supergravity

effects from the terms in the ellipsis. 2 This gauge is

- =K/6-i/3 Arg W 1, KixiFe}, (C.2)

where the field FD is an auxiliary complex degree of freedom, corresponding to the complex

auxiliary field M of supergravity. Unlike in the super-Weyl formalism, FD is not a gauge

degree of freedom.

The most general Kdhler and superpotential for unbroken SUGRA in AdS (i.e. (Wi)

(K,) = 0) is 3

1 = QtV + - (Qij) Q2Qj + h.c.+..., (C.3)
2

1
W = n 3/2 + (Wij) QiQj ... , (C.4)

where the ellipses represent higher-order terms. Inserting these expression into Eq. (C.1)

and rescaling the fields Qi - Qi/<b, we can solve the F4 equation of motion to find

F4 = m 3/ 2 + . . .. The extra terms are suppressed by at least two powers of Mpl, and thus

irrelevant for our purposes. It is then simple to read off the cosmological constant, as well

as the fermion and scalar mass matrices:

(V) = -3M2m2 (C.5)

Mij = (Wij) + in3/ 2 (Qij) , (C.6)

m,, = Mik MkJ 2 m 2 6i, (C.7)

Bij = -n3/ 2 (Wi) + mT/ 2 KQij) - 2m /2 (Qi,) -m 3 /2Mij. (C.8)

Thus, we recover the universal tachyonic soft mass-squared in Eq. (5.14) for scalars in

unbroken AdS SUGRA, as well as B-terms proportional to the fermion mass matrix.

SUSY breaking effects then lift AdS space up to flat space. We represent the source of

2 An alternative gauge fixing was proposed in Ref. [38], but it is only valid in flat space. Given this
limitation, it would obfuscate the derivation of the sfermion spectrum in curved space.

3 For simplicity, we assume none of the visible-sector fields are singlets. The physics does not appreciably
change if there are singlets, as long as there is no SUSY breaking in the visible sector.
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SUSY breaking in the hidden sector by a non-linear goldstino multiplet [137, 116, 109, 42, 39]

XNL=FX(O + 6L) (C-9)
f2Fx

where 6L is the goldstino. Because of the constraint XNL 0, the Kihler potential and

superpotential terms involving the non-linear field XNL are strongly constrained

Q D -3 + (Qx) XNL + (Kx) XNL + XNLXNL, (C-10)

W D M3/ 2 + (Wx) XNL. (C.11)

The coefficients (Qx) and (Wx) can be made real by using our freedom to rotate XNL and

perform Kdhler transformations. A canonically-normalized goldstino (i.e. K D XtLXNL)

enforces the condition (QXX) =1 - (Qx) 2 . Upon rescaling the non-linear field XNL -

XNL/<D and integrating out auxiliary fields, we find from Eq. (C.1):

(Fx) = - (Wx - M3/2Qx), (C.12)

(F4,) = mn3/ 2 + 3 (QxFx), (C.13)

(V) = F2) - 3,M/2. (C.14)

The amount of SUSY breaking to achieve flat space is thus Fx) = V3m3 / 2 . We also have

a canonically-normalized goldstino with mass 2I3/2 [42, 39].

The Kdhler potential and superpotential will also include direct couplings between vis-

ible matter fields and the SUSY breaking sector. For simplicity, we start our study of

goldstino couplings for massless visible sector fermions (e.g. QiQi is never a singlet under

any of the gauge symmetries in the theory). In this simple case the operators we can add

are

Z D 3(QiXX) Qt!Qi XLXNL, (C.15)

W D (Wijk) Q2QjQk + I(Wijkx) QiQiQkXNL, (C.16)

where we have eliminated any possible QtJQiXNL terms by using our freedom to perform

a transformation Q' -+ Q' + nijQXNL [53]. The scalar masses and A-terms can be easily
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read off from Eq. (C.1):

S2 = -3mn2 (xX,(C.17)

AiJk =\m 3/ 2 (Wijkx) . (C.18)

The terms in Eq. (C.15) also yield goldstino couplings to visible sector fields from the

fermionic component of XNL; namely aij D m . Less obvious is that there are additional

goldstino couplings coming from D. In the gauge from Eq. (C.2), the fermionic component

of 4 contains visible sector fermions (coupled to its conjugate scalar):

1 .1 1~-
-Kix= -1(Qx) L + -I* +-- (C.19)
3 3 3

This means that the KWx) XNL term in the superpotential of Eq. (C.11) (multiplied by 42

after rescaling) gives an additional coupling (2m /2 /Fx) KixGL (i.e. the universal goldstino

couplings from Eq. (5.36)). The full goldstino coupling reads

ai. = m + 2m/ 2&iJ , (C.20)

in agreement with Eq. (5.8) in the Mij = 0 limit.

Finally, we consider superpotential and Giudice-Masiero mass terms for the fermions.

This introduces a plethora of new possible terms:

Q 2 Q'Qi (GQij) + (Qijx) XNL + jA NL + ijXX/ NLXNL] (C.21)
2 i

W D (Wij) QiQi + - (Wijx) Q'Q 3 XNL. (C.22)
2 2

Fermion masses and B-terms can be easily extracted from this Lagrangian. Goldstino

couplings are more difficult to read off. As already mentioned, the goldstino lives both in

4 and XNL, but in addition, the Kdhler potential cubic terms QiQitt and Q2QjXNL

contain derivative interactions with the goldstino. After using the equation of motion for

the goldstino of mass 2m 3/ 2

-X(-io+Gf - 2M3/203 XGL, (C.23)
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these yield Yukawa interactions between matter fields and the goldstino. 4 The resulting

goldstino couplings are exactly those of Eq. (5.8).

C.2 Renormalization Group Invariance of Irreducible Gold-

stino Couplings

In Sec. 5.2, we found a universal tree-level goldstino coupling to matter scalars and fermions

proportional in mn /2 In Sec. 5.4, we expanded this result to all loop orders, finding further

couplings by carefully analyzing the SUGRA- and super-Weyl invariant 1PI effective action:

9S = 2M /2  2 (m + IK F) (flat space). (C.24)

12h ~ / 3  j

Since these results follow from a 1PI action, they have incorporated all quantum corrections

and are thus completely RG stable-that is, their coefficients solve their own RG equations.

For the terms proportional to yi and 'i, it has long been known in the literature [98, 97,

133, 12] that mass terms of such a form are RG stable. This is true for the 'Yi term by itself,

and is true for the 'i term given corresponding A terms in the form of Eq. (5.106). The

same logic for soft terms can be trivially extended to goldstino couplings, which makes it

clear that the goldstino couplings proportional to yi and i above are also RG stable. 5

However, the tree-level term, proportional to a constant, is not so clearly RG stable.

Naively, one would expect it to receive quantum corrections starting at one loop (separate

from the term proportional to -y in Eq. (C.24)), just as a constant scalar mass would.

This puzzle is resolved by remembering that the goldstino and gravitino mix in SUGRA,

so quantum corrections to gravitino couplings feed into quantum corrections to goldstino

couplings, making the tree-level goldstino coupling in Eq. (C.24) RG stable.

For clarity, we give an example of how this occurs in one concrete model: a sequestered

theory (in the sense of Eq. (5.35)) in flat space with (K) = 0 and a Wess-Zumino visible

sector:

W _is AQ3, (C.25)
6

4 The problematic cubic term QiQ-'Dt could have been eliminated by a redefinition of <D, or equivalently
choosing a different gauge fixing than the one in Eq. (C.2). The Q'QjXtL term, however, cannot be
eliminated by any redefinition that preserves XNL = 0.

5This logic is less clearly applicable for the im 3/2 KjF crossterm, as the goldstino coupling corresponding
to the A-terms of Eq. (5.106) is not expected to depend on r13/2 . Nevertheless, the logic still holds.
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0

GL

Figure C-1: One-loop diagram that renormalizes the goldstino coupling to visible-sector
scalars and fermions in the Wess-Zumino theory from Eq. (C.25). The diagram has the same
logarithmic divergence in both global SUSY and SUGRA, and would seem to renormalize
the tree-level goldstino coupling g D 2Mi2

S3/2'

with Q = {#, X, F}. The goldstino coupling seems to receive a correction from the logarith-

mically divergent diagram in Fig. C-1. Using a Pauli-Villars regulator, the divergent part

of this diagram is

2mi /2 A2
0 = Feff XL YX K(47r) 2 log A2 )+..., (C.26)

with x6, and y. the external wave function spinors for the goldstino and the visible-

sector fermion, respectively.6 The presence of such a divergence would be fine if it could

be completely absorbed by the wave-function renormalization of the visible sector fields.

However, we know that it cannot be absorbed in the global SUSY case, which features

the exact same diagram (up to a soft scalar mass that does not affect its divergent part).

Explicitly, one can see this by noting that the divergent one-loop contribution to Z is

1 A2
Z = 2 log A 2 +.... (C.27)

2 (47r)2

This differs by a factor of -2 from what would be needed to have the entire divergence in

Eq. (C.26) explained by wave function renormalization. Thus, one would seem to find that

the 3/ D 2mn/ 2 goldstino coupling runs at one-loop order, in conflict with the claims that

gf arises from a valid IPI effective action.

What we have not accounted for, however, is the mixing between the gravitino and the

6 We use the methods of Ref. [61] for calculations here, but keep the sign and sigma matrix conventions
of Ref. [154].
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0 
X

Figure C-2: These two diagrams yield logarithmically divergent corrections to the goldstino
coupling after using the equation of motion in Eq. (C.28) for the gravitino. When combined
with the diagram in Eq. (C-1), the goldstino coupling 9S - 2mn2 is RG stable.

goldstino in SUGRA. Recall that the equation of motion of the gravitino in flat space is

3 +3 +0m"DIZV = m3/2GL + gim3 / 2&t t, (C.28)

so diagrams with an external gravitino may yield corrections to the goldstino coupling after

using this equation of motion (or making an appropriate field redefinition).7 Effectively, by

trading away couplings proportional to the left-hand side of Eq. (C.28), we are making sure

that we are still in Einstein frame at one-loop order.

Using G defined in Eq. (5.10), the gravitino couples to visible-sector fields as [154]

1 TLC - gMiy ,*3X a13" -i e 2 Gix outt + h.c. (C.29)

- 2 /m3 2 42 +F + ... + h.c., (C.30)SF 2m /2~ (C23F

where in the second line we have specialized to the theory in Eq. (C.25). The two diagrams

featuring an external gravitino that can give contributions proportional to the left-hand side

of Eq. (C.28) are shown in Fig. C-2. Each of these diagrams is logarithmically divergent,8

7 One can of course pick a gauge for the Rarita-Schwinger gravitino field which removes the the quadratic
mixing and changes this equation of motion. As in the text, we will only pick a gauge for the gravitino-
goldstino system after computing quantum corrections to all orders in visible-sector couplings. This does
not pose a problem as we never have to consider gravitinos or goldstinos (whose couplings are suppressed
by M 1,) as internal legs when computing such quantum corrections.8 1n fact, they are linearly divergent, but any ensuing subtleties will only affect the finite pieces, not the
logarithmically divergent ones.
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and they give equal corrections to the goldstino coupling. Combining these with Eq. (C.26),

we find
2m 2  1 A2

Z-Mtotal = __Fe 2 ( 2 log A2 + . ... (C.31)
C (7L YX ~2 (47w) 2  '

Comparing this to Eq. (C.27), we see this is precisely the logarithmic divergence that can

be completely absorbed by the wave function renormalization of the visible-sector fields. At

the one-loop level in this model, we confirm that the tree-level goldstino coupling does not

run, as we knew had to be the case from our 1PI analysis in Sec. 5.4.

C.3 Super-Weyl Transformations

Super-Weyl transformations are the most general transformations that leave the torsion

and chirality constraints of SUGRA unchanged. They may be completely parameterized by

a chiral superfield E and its conjugate anti-chiral superfield Et [90, 154]. The super-Weyl

transformations act infinitesimally on the gravity multiplet as [90, 154, 103]

Em' = (E + Et)E,,a, EM = (2 Et - E)E..a - EMa(D t )a,
2

6Da = (E - 2 Et)Da - 2(DOE)L,3, D = (Et - 2E)D - 2(Dt 3Et)L

6E = 2(E + Et)E, 6(2E) = 6E(29) + ... ,

6R = 2 (Et - 2E)R - -Dt2Et aGaa = -(E + Et)G.6 + iDcj (Et _)-
4

6Wa0 = -3EWaoy, (C.32)

where a is a local Lorentz spacetime index, L,0 are the Lorentz generators acting on spinors,

E is the determinant of the supersymmetric vielbein, 2E is the corresponding chiral density,

R is the chiral curvature superfield, and G,6 is the real superfield having the vector auxiliary

field of supergravity b. as its lowest component. The ellipsis in the transformation of the

chiral vielbein are omitted terms irrelevant for the construction of a super-Weyl invariant

action. The transformation of Da is too complicated to include here, but Da may always

be expressed as some composition of the above objects. For example, when acting on a

Lorentz scalar superfield U,

DaU = i5a{Da,DA}U. (C.33)
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Chiral superfields Q and vector superfields V transform as [154]

6Q =wEQ, 6V = W'(E + Et)V, (C.34)

where w and w' are the Weyl weights of their respective superfield; for ordinary matter

or gauge superfields, these weights vanish. Note that the higher components of matter

superfields still transform, due to the non-trivial transformation of the Da used to project

them out. For a vector superfield of weight 0, the superfield

1
Wa = -- (Qt2 - 8R)Da V (C.35)

4

transforms as a chiral superfield of Weyl weight -3.

The SUGRA action of Ref. [154] can be made super-Weyl invariant by including a

super-Weyl compensator C of Weyl weight -2. The tree-level Lagrangian then reads

= d4 0 E CtC (- 3 6 -K/3) + Jd2 2 C 3 W + 1 f d2 0 29 W"W, + h.c. (C.36)

The super-Weyl compensator can also be used to build versions of R and G,6 that transform

homogeneously under super-Weyl transformations:

1 1
p= _I - I -- (E2 - 8R)Ct, (C.37)4 C2

-P - (D 2 - 8R)C, (C.38)
4 Ct 2  (.8

6Pz =zP t :=0, (C.39)
1 D t±1 DDCH 1

G06 Gaa - 4C C+ DDC+ (DC)(D 4C0), (C.40)
4Ct a 4C 4CtCa

653=-(E + E t)6"'. (C.41)

These objects also obey appropriately-modified versions of the Bianchi identities:

DPP = 0, E Pt = 0, (C.42)

D"(CGa) = -Ct2P pt, Pt6(CtG ) = -C2P . (C.43)
2 2

The superfield P (Pt) can also be serve as an operator, which we denote by the non-
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boldface P (Pt). When acting on a super-Weyl invariant spinless superfield, P (Pt ) returns

a super-Weyl invariant (anti-)chiral superfield [103]. The operator P (Pt) thus acts as an

(anti-)chiral projector.

C.4 1PI Gaugino Masses

In Eq. (5.67), we used a 1PI effective action for the gauge multiplet built as an integral

over chiral superspace. This is sufficient for extracting one-loop results, but in a general

renormalization scheme, the 1PI action must instead be written as an integral of a non-local

quantity over all of superspace. For the familiar case of global SUSY in flat space, we may

write the 1PI action as [12, 84]

L D d40 R(E)Wo [_D2 -1W + h.c., (C.44)
4 4

or alternatively, remembering that IDt2p2 = E when acting on chiral superfields,16

L D- d40 R(E)WC Dt2 W, + h.c. (C.45)
4 4

The superfield R (not to be confused with the chiral curvature superfield R) is the real

vector superfield with the 1PI gauge coupling as its lowest component. The dependence of

R on El encapsulates the running of the coupling with the momentum scale (selected by El,

which should be thought of as acting only on the first W'). A non-vanishing 02 component

for R yields a gaugino mass. If R only has a lowest component, it then follows trivially that

Eq. (C.45) is equivalent, after integrating over half of superspace, to the usual expression

for the gauge kinetic Lagrangian in chiral superspace (proportional to f d20 WaW).

It is now a simple matter to generalize most of Eq. (C.45) to be SUGRA and super-Weyl

covariant

LD J d40 E Ct CR(D)W P-1W, + h.c., (C.46)
4

where W = C-A W, has vanishing Weyl weight, and P is the super-Weyl covariant chiral

projector given in Eq. (C.37). It can be easily verified that when R(EI)W is chiral,

Eq. (C.46) reduces to Eq. (5.67), an integral of a local quantity over chiral superspace.
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The only potentially ambiguous part of this equation is D, the appropriately super-Weyl

covariant version of E acting on a super-Weyl inert superfield with an undotted spinor index.

If we only care about O(m 3 / 2 ) effects such as gaugino masses, however, there are only two

families of possible choices 9

~ !t1 1 _ D1C2U'3 I I DOC2PUO
ElUc, = -CPCt Da -+ -C2Ct- 1),

2 CtC 2 CtC

+ +CCf- D DC--D1C CtDtU,

1 D'3(C3/2 ('P)Up)+ a(-Pt)-PU + IbDeD1(32()U3 (C.47)
2 CtC

parameterized by arbitrary coefficients a and b.10 Note that the choice a 0, b -1

is especially convenient, as DUc is chiral for Un chiral. This is precisely the choice used

in Eq. (5.68), and allows us to write the 1PI action as an integral over chiral superspace.

However, this choice is not necessary; regardless of the values of a and b chosen, a (more

difficult) calculation shows that

MA = 9 M 3/ 2- (C.48)
9

9 For O(m/ 2 ) effects, such as non-local contributions to the self-energies of the particles in the vector mul-
tiplet (as considered in Ref. [12]), one would need to consider additional terms. Such effects, the equivalents
of the S and 'T of Sec. 5.4.3 for vector multipets, are beyond the scope of this work.

1 0This is only gauge invariant for an abelian gauge theory; appropriate factors of ev would need to be
inserted for a non-abelian gauge theory.
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Appendix D

A Photon Line from Decaying

Goldstino Dark Matter:

Appendices

D.1 Complete Goldstino-Neutralino Mixing Angles

We give here the complete set of mixing angles between the uneaten goldstino and the

neutralinos (to lowest order in 1/F 1 ), as defined in Eq. (6.20):

V 1

V 2F_ 2 det [M. - mj1]

1'
Cy

C3

Cd

(D.1)
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with

d 2 det [MX - mjI] (D.2)

2(M- - - m()

+ Mji(p sin 2/ + mo)(Mi + M 2 - 2mr- + (MI - M 2 ) cos 20w),

Cy Mz sin Ow ((AM 1 - M~2 )MZ cos 20 cos 2 Ow (p sin 20 + m

+ (M 2 - m() (-M 1 cos 20(p2 - m ) + 25,p1 cos 20

-m 4 -(inf + mi ) cos 2 + (iH,, -H d)(p sin 2/ + m( ))),

C3 -Mz cos Ow ((M 2 - ii)M~M cos 20 sin2 Ow (p sin 20 + m(

+ (Mi - m) (-M 2 cos 2/3(_2 - m() - 213,p COS 20

-m (F 2 "+ F 2) cos 2 + (in2 - FBjrnd)(p sin 20 + mc)))

Cd -M2 cos 23(1t sin / + m( cos /) (M~1 (M 2 - mc-) sin2 2w + M 2 (M 1 -m) cos 2 OW)

+2(M, - m )(M 2 - mT)(F,(p cos/3 - 7n sin ) + i 2i p sin 0 - mgmdin cos )

Mz sin (M + M 2 - 2m( + (Mi - M 2 ) cos 2Ow)(b, + (Hc + mild) sin / cos /),

C NI cos 20/(p cos / + m( sin /) (M~1 (M 2 - mg) sin 2 2w M2(MI - m ) cos 2 ow)

+ 2(MI - mo)(M 2 - m()(h,(p sin3 - m( cos /) + frn Icos/3 - m Fm2 sin /)

- Mz sin /3(Mi + M 2 - 2m( + (MI - A/ 2 ) cos 2 0w) (B, + (in 1 + mid) sin 3 cos 3).

D.2 Spin-3/2 Fermions in Two Component Notation

When calculating the decay rate of the uneaten goldstino ( to the spin-3/2 gravitino 0,, one

cannot use the goldstino equivalence theorem [64, 34, 33], as the relevant energy, the mass

of the uneaten goldstino at 2m 3/ 2 , is not much greater than the gravitino mass m 3/ 2 . There-

fore, one needs to use the vector-spinors of the fully spin-3/2 gravitino when performing

calculations, including its transverse polarization modes.

The main obstacle in dealing with these vector-spinors is in the sums over them when

summing over the gravitino polarization modes. For the convenience of the reader, we give

these spin sums below for two-component fermion notation, as to our knowledge they do not

appear elsewhere in the literature. The notation of these spin sums should be interpreted

analogously to those in Ref. [61], though note that we use the sigma matrix and metric
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conventions of Ref. [154] throughout.'

Z ~

S x"il=V

S

S

S

S

(2 (
3 (g

3 (g

(4 (g
( (g

2

3 rTm3/ 2

/IV + V k f -

kMk 2

k~k" V

32)

rn3 +k +
m 2

(gl) 3/2

2 [(l)kuk2-m3 / 2 19 ±-t + lbk
3 Mk2

3/2)

2 [ kl k kv

3~ m
-d 2 [j + m2

3/2)

ieVPT kT cypa6

iI"PT k7- ff e

1 IIVPT kT Ce

iEiVPrkT

[itllPTk :C~

T P
+ allP+ 2 k

3/2

+(7 V + kkA 07 A_

2 2m3 2

+ Tjv+k~kA (7 [A
M2m3 /2

These two-component spin sums can be obtained from their four component equivalents,

such as those found in [152, 138]. They can be easily derived independently by considering

the on-shell gravitino equations of motion (the Dirac equation, as well as the constraints

U - x= y = k - x = k - y = 0), and goldstino equivalence can be used to fix the overall

normalization.

D.3 Arbitrary Mass Goldstino Decays

The simplest case is the decay to a photon and a gravitino. The decay is mediated only by

the last term in Eq. (6.24), and is simply given by [66]

1671eg2

M3 2 / 2 ( 1 + 3 , 2 ) (D.11)

'To convert to the conventions of Ref. [61], for the purposes of these spin sums, send o. -> -o-,,> , -+ -U,
"I"PT -> -E "V, C" -p -iol"", and or" -> -io 1"", then, following the prescriptions of Ref. [61], change

metric conventions from mostly plus to mostly minus.
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where 0', is the (-photino mixing angle, which is defined in Eq. (6.21). If we had attempted

to use the goldstino equivalence theorem for the gravitino here, we would have omitted the

final factor, which can roughly be interpreted as the enhancement to the decay rate arising

from the transverse gravitino modes.

The decay to a Higgs and gravitino is mediated solely by the first term in Eq. (6.24):

5 2 ((1 /2 2 m m3 / 2  2 m() 5/ 2
hc4, 2 1- 1n/ n hI+ .n/ n2 (D. 12)

' 32 7r ef m( m m2 M( m,

The angle Oh is the mixing angle between ( and the superpartner of the physical Higgs (i.e.

ftucos a - Hd sin c).

The decay to a Z boson has contributions from both terms in Eq. (6.24), the first roughly

corresponding to longitudinal Z couplings, and the second to transverse Z couplings. As a

result, the decay rate is the complicated

I MZ2 - mn2 )2 4mT21 3/2_3/

Ocz,=167rmn(. 
( 2W6r~Ff 2 MZ2) 2 )4 4rn/ 4 ) M

(ZT ((m - Mj)3 + m/2(m - AZ) - m3/2(5m + Mz) + 3m2

+±1 o2 (( _ -2 2 2 M2)2 + M2 2\
+ ZL ((m - mn3/2) - Mj) ((m( / + 8Mm 3 / 2

- 20zTzZL (2m 3/ 2Mz) ((mr - m3 / 2 )2 - MZ) x

(M2 - (mn - 2m 3/ 2 )(m( + m 3/ 2 )) ). (D.13)

D.3.1 Three-body Decay to Fermions

For m( > Mz, three body modes become increasingly important compared to the two-

body modes we mainly discussed in this paper. As discussed in Sec. 6.3.4, the leading decay

modes in that limit will generically be ( -+ hh<p, and ( -+ hZLOIp, dominating by a factor

of m /m j. However, the sheer number of possible difermion modes may compensate for

this in aggregate, so we consider them here.

Working in the limit in which A-terms and fermion masses can be neglected (a good

approximation for all fermions but the top quark), and the limit my >> m(, the decay rate

of a goldstino to a pair of Standard Model fermions of a given handedness and a gravitino
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is given by

F Nm F (m 3/2\
C+GLff 153607r3 F2 FM 

Ff (x) 1 - 8x2 + 30x 4 - 80x6 + 35X 8+ 24x 10 - 2x12 - 120x 8 log X

(D.14)

(D.15)

+ x - 20x3 - 220X5 + 80x7 + 1552" + 4x" - 120X5 (2 + 4X 2 + X 4 ) log X

For m( = 2m 3 / 2 , Ff (x) - 1/8.2

D.3.2 Three-body Decay to Two Higgses

Using the effective field theory term of Eq. (6.25), we find the differential width in terms of

the two energies of the produced higgses as

dF c2

dE1 dE 2 F2rTC (m- Eli + E2) (m (2 (E 2 + E2) - 2mr (El + E2) + mK)

+2m3/ 2 (m (Ei + E2

2B 1, - (2 + in2 ) sin 20
c a "

2v 2piF1

n) - 2m2) + r/ 2)

An analytic expression for dF/dE, exists, but not for F to the authors' knowledge, except

in certain limits. For m- - m 3/ 2 > rr (the regime in which this decay is most dominant):

C 2 M 7 -M3/2F = - I
76807r3F2£h [mj

Fh (X) --- 1 5 - 2 - 1X4 + 15x8
4

9'

4

(D.18)

(D.19)30x 6 log X

Note that Fj,(1/2) - .29.

2 Note that this is smaller by a factor of about three than the equivalent calculation in Ref. [37], which
used the goldstino equivalence theorem. In the x -+ 0 limit, where the theorem is valid, our results agree,
as expected.
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