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Abstract

In this thesis, I explore various experimental, theoretical, and observational consequences
of supersymmetry (SUSY). I show how copious production of Higgs bosons in SUSY events
at the LHC can be a striking signal of multiple SUSY-breaking. In the context of anomaly
mediation in supergravity, I demonstrate how goldstino couplings can be used as a probe of
the underlying symmetry structure of unbroken SUSY in anti-de Sitter space. When mutiple
SUSY-breaking occurs and goldstini comprise most of the dark matter in the universe, I
find a new two-body decay mode of a goldstini to a gravitino and a single photon that could
be a striking indirect detection of dark matter if it were seen at gamma-ray telescopes such
as FERMI.
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Chapter 1

Introduction

My studies here at MIT have coincided with one of the most exciting periods in modern
particle physics—the opening and first major operational period of the CERN Large Hadron
Collider (LHC). The first collisions took place in September 2008, barely a month after my
matriculation, and the first running period began in 2010 and continued until 2013. The
largest achievement of the first running period came in July 2012 with the discovery of the
Higgs boson, the last heretofore-undiscovered particle in the Standard Model. Operating
at ccnter-of-mass energies of 7 and 8 TeV (with an upgrade to at least 13 TeV due for
completion in 2015), the LHC has been pushing the high energy frontier, and continues to
be well-poised to discover any Beyond the Standard Model (BSM) physics that may exist

at the TeV scale.

A well-motivated and extensively-studied model of such BSM physics is supersymme-
try (SUSY). In this thesis, I will discuss a number of phenomenological and theoretical
surprises of supcrsymmetry as it may be realized in nature. The only allowed non-trivial
extension of the Poincaré group, supersymmetry is a fermionic symmetry that transforms
bosons into fermions and vice versa. For every fermion (boson) in the Standard Model, it
predicts a partner boson (fermion) with the same gauge quantum numbers and, for unbro-
ken supersymmetry, the same mass. As such superpartners have yet to be discovered, if
supersymmetry is realized in nature it must be spontaneously broken, with (almost) all of
the superpartners acquiring masses of at least the weak scale. In Ch. 2 (based in part on
the TASI lectures of Ref. [21]), I will review the basics of supersymmetry necessary for the

remainder of the thesis.
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Supersymmetry provides a particularly appealing solution to the hierarchy problem, the
puzzle of why the Higgs boson mass (and its vacuum expectation value) arc so small com-
pared to other expected scales in high-cnergy physics when it gencrically receives radiative
corrections to its mass-squarcd proportional to the square of such scales. Supersymme-
try protects scalar masses from such quadratic corrections, as supersymmetry relates the
renormalization of bosons to that of fermions, whose masses are in turn protected by chiral
symmetries. As a result, if supersymmetry is to resolve the hierarchy problem, one ex-
pects to find superpartners near or not too much above the weak scale, which is precisely
the range that the LHC is currently probing. Already after its first full run, the ATLAS
and CMS collaborations at the LHC have managed to place impressive bounds on various

superpartner masses, ranging upwards of a TeV for the colored squarks and gluinos.

Supersymimetric theories also often provide a good particle candidate for the dark matter
which compriscs nearly a quarter of the energy density of the universe. Viable SUSY
theories usually require the imposition of a discrete symmetry called R-parity, in order to
avoid dangerous lepton- and baryon-violating couplings that would mediate unacceptably
short proton decay lifetimes in contradiction to experiment. Such a symmetry mandates
that supcrpartners can only be created or destroyed in pairs, which implies that the lightest
supersymmetric particle (the LSP) will be absolutely stable, and as such is a good dark
matter candidate if it is clectrically ncutral and a color singlet. This is especially true if the
LSP is the superpartner of a Standard Model particle (such as the Z or the Higgs}, in which
case it would be expected to have a weak-scale mass and interaction cross section, and would
thus be produced with the correct abundance in the early universe (the so-called “WIMP
miracle’). At the LHC, this would imply that collisions can only produces SUSY particles
in pairs, each of which would decay (perhaps in a cascade) to the invisible LSP, resulting in

a signal with many Standard Model particles and considerable missing transverse energy.

The breaking of SUSY nccessarily features particles that couple only very weakly to
the Standard Model-- through heavy messengers and/or non-recnormalizable interactions.
If this were not the case, supertrace sum rules would imply that at least one scalar with
electric or color charge would be considerably lighter than the corresponding fermions, in
contradiction with experiment. As a result, SUSY-breaking is, in the usual paradigm, said
to take place in a hidden sector. As particles in the hidden sector couple so weakly to the

supersymmetric Standard Model (SSM), their interactions are usually irrelevant to physics
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at LHC scales—unless onc of them is lighter than all the SSM superpartners, in which casce
the lightest observable-sector SUSY particle (LOSP) would be expected to decay to such a
hidden sector particle.

The best-motivated candidate for such a light hidden sector SUSY state is the goldstino—
a particle whose presence figuratively permeates all the work in this thesis.! As with any
other spontaneously broken symmetry, spontaneously broken SUSY will have a massless
Goldstone mode in its spectrum that obeys a shift symmetry. As SUSY is a fermionic sym-
metry, the Goldstone mode is the fermionic goldstino. The goldstino necessarily couples
derivatively to the Noether current of supersymmetry— that is, to a fermion and its super-
partner boson, with a strength that can be readily shown to be proportional to the partners’
mass(-squared) difference (itself a measure of SUSY-breaking). If the goldstino is lighter
than the LOSP (as is guaranteed for global SUSY, where it is always massless), one expects
LHC SUSY events to always fecature two cascade decays ending with the decay of a LOSP
to its SM partner and an invisible goldstino. For example, a bino LOSP (the superpartner
of the U(1) hypercharge gauge boson) would predominantly decay into a single photon or Z
boson and a goldstino, yielding signals at the LHC that would include photons and missing
cnergy.

If SUSY is independently broken in multiple hidden sectors, then each sector will have
its own goldstino. One linear combination of these goldstini will be the true goldstino,
which couples derivatively to the supercurrent, but the other goldstini may have strikingly
different couplings in general. As a result, LOSP decays to these other goldstini may result
in unconventional LHC phenomenology. In Ch. 3, based on work in Ref. [146], I will discuss
a scenario in which a bino LOSP would primarily decay to a Higgs boson and one of the
goldstini, contrary to the usual expectation for a single hidden sector. This would result in
copious production of potentially boosted Higgses in LHC SUSY cvents, which would give
us considerable insight into the structure of both SUSY breaking and the Higgs sector.

If SUSY is a local symmetry, the resulting gauge degree of freedom is a spin-3/2
fermion the gravitino, the superpartner of the graviton. When this supergravity (SUGRA)
is broken, the gravitino acquires a mass msy /2, and it cats the goldstino degrees of freedom.
This is called the super-Higgs mechanism, by analogy with the Higgs mechanism for ordi-

nary bosonic internal symmetries in which gauge bosons acquire mass by eating goldstone

'Literally, too, should it comprise the dark matter of the universe.
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bosons. At energies well above mg/9, the interactions of the longitudinal polarizations of
the gravitino arc well described by those of the goldstino—a goldstino equivalence theorem
much like the goldstone equivalence theorem for internal symmetries.

In local SUSY, a ubiquitous cause of boson-fermion mass differences is anomaly media-
tion, which occurs when SUSY-breaking is communicated to the visible sector at loop level
by the regulators of the theory. In order to clucidate this theory, which has been the subject
of much confusion in the literature, in Ch. 4, drawing from work in Ref. [53], I approach
anomaly mediated gaugino masses from the point of view of (eaten) goldstino couplings. I
find that there are two fundamentally different ‘faces’ of anomaly mediation Kahler medi-
ation, in which gaugino masses and the corresponding goldstino couplings are identical (as
cxpected), and gravitino mediation, in which gaugino masses occur without corresponding

goldstino couplings. This quite surprising result suggests that anomaly mediation is not a

SUSY-breaking effect.

In Ch. 5, based on Ref. [54], I show explicitly that anomaly mediation does not break
SUSY, as it exists for unbroken SUGRA, whose background metric is that of anti-de Sitter
(AdS) space. In AdS space, spacetime translations and supersymmetry transformations no
longer commute, and there can be boson-fermion mass differences proportional to 7";(118 =
mg,y even in the absence of SUSY breaking. This is clearest for scalar masses and B-terms at
tree level—there are both DB-terms without corresponding goldstino couplings, and goldstino
couplings without corresponding scalar masses for SUGRA in flat space. T find the usual
anomaly-mediated effects arise starting at one- or two-loop level by carefully considering a
1PI effective action—the running of couplings in AdS SUSY are necessarily associated with
corresponding boson-fermion mass differences, which are preserved when SUSY-breaking
uplifts the background metric to flat space. As a result, anomaly-mediated effects, as they
do not break SUSY, do not have associated goldstino couplings, while therc arc additional
loop-level goldstino couplings without associated mass differences arising from the uplifting

to flat space caused by SUSY breaking.

In models with multiple SUSY-breaking, one of the corresponding goldstini can easily
comprise most of the dark matter in the universe. Such dark matter will not be abso-
lutely stable, however, as the uncaten goldstini can decay to the gravitino on cosmological
timescales. In Ch. 6, drawing off Ref. [126], I discuss a striking two-body decay mode that

can occur in the presence of electroweak symmetry breaking—that of an uneaten goldstino
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to a single photon and a gravitino. The resulting signal would be a monochromatic gamma,
(or X-) ray line visible at telescopes such as FERMI, an impressive indirect detection of
dark matter. I find that such a mode can generically be the first sign of such dark matter

for goldstini masses at or below the TeV scale.
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Chapter 2

Supersymmetry

Supersymmetry (SUSY) is a well-motivated extension of the Standard Model (SM), with
rich implications for collider physics and cosmology. In this chapter, I will introduce SUSY
in 341 dimensions using the language of superspace (in both Minkowski and anti-de Sitter
spacetimes), and briefly discuss some of the more prominent phenomenological ramifications
of both global and local SUSY. Certain portions of this chapter draw heavily from parts of
Ref. [21].

First, a brief note on notation—in this thesis I will use exclusively two-component
spinor notation, also known as Weyl spinors, largely following the conventions of Ref. [154].1
While it is possible to do superspace manipulations using four-component notation (as
in Refs. [152, 73|), Weyl spinors are far more convenient, since they are true irreducible

representations of the Lorentz group.

2.1 Superspace

SUSY rclates the propertics of bosons and fermions, but in ordinary relativistic quantum
tield theory, bosons and fermions are represented by very different objccts. For example, a
spin-0 boson is described by a complex-valued scalar field ¢(x), while a spin-1/2 fermion is
described by a Grassmann-valued Weyl field ¢, () (with a Lorentz spinor index, no less).
In order to make SUSY manifest, we want to somehow package bosons and fermions into a

single object,

'We differ in that we use daggers instead of bars to denote the hermitian conjugates of spinors, and our
gauginos are normalized such that W, | = A,.



To do so, we introduce the technique of superspace, which augments the ordinary space-

time coordinates with an additional Grassmann spinor 8% (and its complex conjugate GM):
ot — {2, 6%, 674}, (2.1)

A field that depends on {z#,0% 6%} is called a superfield, which automatically packages
boson and fermion fields into multiplets. While it is possible to describe SUSY theories
using ordinary space-time alone, superspace makes it simpler to identify SUSY-invariants

and write SUSY Lagrangians.

A generic scalar supermultiplet is
S(z*, 6%, 67%), (2.2)

which depends on the Grassmann spinor placeholders/coordinates 6%, Throughout this
thesis we will use boldface letters to indicate superfields. This object is an overall Lorentz
scalar, but it contains spin-0, spin-1/2, and spin-1 components. Because of the Grassmann

nature of our placeholders, the Taylor expansion is exact:

S = a + 6¢ + 6%
+ 0'xT + 65H0v, + 6207 (2.3)
+ 6%+ 0ty + 6.

Invariance of the action under shifts in z* corresponds to translation invariance, an
important subset of the full Poincaré space-time symmetry. It is natural to explore what

corresponds to translation invariance in superspace under the shift
0% — 0% + €, (2.4)

where €” is an infinitesimal Grassmann parameter. This (passive) transformation of the
coordinate can be interpreted instead as an (active) transformation of the components. For

example, starting with

D) =+ 0P+ ..., (2.5)
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translations yield

@(9@ + E(ﬁl) — d) + (60 + 6(1),2/)0[ + . (26)

= (¢4 €*tha) + 0y + ..., (2.7)

s0 the components transform as ¢ — ¢ + €*¢), (with 1), left fixed). As desired, we have
related bosons to fermions! However, we know that boson and fermion kinetic terms have
differing numbers of derivatives, so in order to successfully build a SUSY Lagrangian, we
must somehow combine ¢ translations with space-time derivatives.

The key to SUSY is that the shift of the fermionic coordinate 6% is accompanied by a

translation of the ordinary bosonic coordinate x,, as well

0" — 6% + €,
gie — gl 4 ¢fe (2.8)

ot — of + AH

where

AF = —jeatdt — ielFr0. (2.9)

We could have guessed the form of A¥, since this is the unique real four-vector object one

can build that is linear in € and has the right dimension.?

Let us now act this SUSY coordinate shift on a generic supermultiplet S

S(zH,6%,0T%) - S(aH + Azt 0% + €, 014 4 €14) (2.10)
= S(a", 0™, 0'%)

+ (A“Z)u + €D, + ej.la’fd) S(zt, 67, 1),

where we have used the Taylor expansion up to the first order, both for ordinary and
Grassmann coordinates. Here, we are using the notation 9, = ggﬁ and 9% = 3—‘37.
&

We see immediately that translations in superspace act in two different ways. First,

the shift % — 8% + €® relates higher components of the superfield to lower components

as in Eq. (2.6). Second, because A* contains factors of #%, the translation x# — z# + AH

*Note that from Eq. (2.5), 8 (and thus €) must have mass dimension [#] = —1/2.
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relates derivatives of lower components to higher components. This is crucial for relating

the kinetic terms for bosons and fermions.

2.2 The SUSY Algebra

Thus far, we have talked about SUSY transformations without ever mentioning the under-
lying SUSY algebra. Indeed, one advantage of superspace is that Eq. (2.8) contains the full
structure of SUSY. However, it is instructive to turn the supcrspace translation picture into

an operator picture to show that the SUSY algebra closes.

Recall that ordinary space-time translations arc generated by the energy-momentum
operator

eiaﬂP“’f(mu) = f(z" + aM), (2.11)

where

-Pu. = 72’8/1,- (212)

Translations are part of the full Poincaré group that includes Lorentz transformations gen-

erated by M, with algebra

U\/f[um A/‘/[p’r] = —1 (nl/pMp,T + n;LT]\/[up - nﬂpMu‘r - nllTM,up) i (213)
[});1,7 A[Vp] =—1 (77/.L1/Pp - 7]uppu> s (214)
[P,,P,] = 0. (2.15)

Note that the explicit expression of M, depends on the spin of the field it acts on. For a
scalar field, for example,

M/u/ =1 (‘ruau - ml/au) . (216)

We want to introduce new SUSY generators that implement Eq. (2.10), namely operators

Q and Q' such that

T QIR G (i g gT4) = S(2t 4 AF, 0% 4 €, 0T 4 ). (2.17)
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In analogy with Eq. (2.11), we see immediately that

)
Qu = i+ (6"01)ad), (2.18)
QM = v% + (70)%0),. (2.19)

It is straightforward to show that these generators satisfy the SUSY algebra

{Qon Q;} = 2UZBPI““
{Qu Qst = {QL.Q%} =0,

(Qur P = QL R = 0. (2.20)
[]V[;u/v Qa] = _io'uuaﬁQﬁa

|:A/[H1/-,QT(.}:| - _LaﬂvangTﬂa

thus extending the Poincaré algebra. In this way, two SUSY translations are equivalent to
one ordinary space-time translation, and we sometimes refer to SUSY as being the “square
root” of translations. The non-trivial commutator between SUSY and Lorentz generators
just indicates that the SUSY generator is a Lorentz spinor. The SUSY algebra indeed
closes, and accounting for the possibility of higher A, one can show that SUSY is the

unique extension of the Poincaré algebra.[89)

The SUSY algcbra allows us to write the Hamiltonian H = P% as a sum of squares of
SUSY gencrators:
1
H = (Q1Q1 + @:1Q] + Q1Q2 + Q:Q)). (2.21)

If SUSY is unbroken (i.e. it is a symmetry of the vacuum, Q*|0) = 0), then
(H)=(0|H|0) =0 (SUSY vacuum), (2.22)

so the vacuum energy is zero. The converse is also true, such that a zero vacuum cnergy
implics Q@ |0) = 0 and SUSY is unbroken. In contrast, if the vacuum energy is non-zero,
then SUSY is spontaneously broken in the vacuum. In fact, because each term in Eq. (2.21)

is an operator squared,

(Hy >0 (SUSY-breaking vacuum), (2.23)
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so spontaneous SUSY breaking corresponds to a strictly positive vacuum energy. It should
be stressed that this statement only holds for global SUSY in flat space, in which gravity
is not dynamical; SUSY-breaking is indeed compatible with the (nearly) vanishing cosmo-

logical constant in our universe.

As Q and Q' commute with P?, we can immediately make a very powerful statement
about unbroken SUSY—every component of a superfield satisfies the same Klein-Gordon
equation and therefore has the same mass. The fact that boson and fermion masses are
related by SUSY has extremely important implications for the “hierarchy problem” of the
Standard Modecl

the question as to why the Higgs boson mass-squared is so small compared
to any putative higher energy scales in physics (the Planck scale, if nothing else) as it
receives quantum corrections quadratic in those scales. SUSY protects scalar mass-squareds
by relating them to fermion masses, which are themselves protected by chiral symmetries.
Of course, there is no 511 keV bosonic partner of the electron, so if SUSY is realized in
nature, it must be spontancously broken. However, even in spontaneously broken SUSY,
scalar mass-squareds receive at most corrections logarithmic in new energy scales. The
coeflicients of such logarithms are generically scalar mass-squarcds themsclves—so for a
natural theory, one expects the mass scale of superpartners to be not that far above the
weak scale, cxactly the scale that the LHC is probing.

One can augment the SUSY algebra with an additional U(1) g symmetry that does not

commute with @:
(@ Rl=-Q Q"R =Q. (2:24)

Effectively, this gives a charge of 41 to # and a charge of —1 to 8%, so different components

of a superfield will have different R-charges.

2.3 SUSY-Covariant Derivatives and Chiral Multiplets

Since superspace includes both ordinary spacetime coordinates and the new Grassman co-

ordinates, it is natural to consider derivatives with respect to these new coordinates. The

most obvious choice would be %S , but note that it does not commute with SUSY trans-
(43

formations, rendering its use very impractical. We can, however, construct SUSY-covariant
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derivatives

D, = 527 + ("0, 0, (2.25)
rDTa 0 (G0 ('x-’) 9 on
- va—-H-TE + 'L(U ) (/1" (2.26)

that do commute with @, and Q;; as desired. As a result, SUSY-covariant derivatives of

superfields transform as sensible superfields. Note also that
{DQ,D;;} = ~2i0" 0y (2.27)
Like any sensible derivative, these obey a Leibniz (product) rule
D.(XY)=(D.,X)Y + X(D,Y). (2.28)

There is one subtlety, however, because the Ds pick up a minus sign if you move them across

an odd number of spinor indices:

Du(X5Y) = (Do X3)Y — X 5(D,Y). (2.29)
Note that D38 = D38 = 0, because {D..Dg} = 0.3 Like the @Qs, the Ds also commute
with d,,.

These SUSY-covariant derivatives arc uscful in a large varicty of circumstances. We
can usc them to constrain superfields. For example, we define a chiral superfield ® by the

constraint
D@ =, (2.30)

Similarly, an anti-chiral superficld ®1 satisfies D,® = 0; they are hermitian conjugates
of each other. We can also use SUSY-covariant derivatives to construct chiral superfields;

D12V is automatically chiral for any V as D13 = (.

SUSY-covariant derivatives can also be used to extract components of a superfield. For

3This fact is not true in AdS4 space or SUGRA, which is part of the reason why SUGRA is so complicated.
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example, a chiral superfield has the components

®| = ¢, (2.31)
1
—D®| = X, 2.32
7 | =x (2.32)
1
711)2@; =F. (2.33)

where | means to take the lowest component of a superfield. Note that any other components
of ® (i.e. by applying D to these) will be proportional to derivatives of these components
due to Eq. (2.27) and the chirality of ®. For chiral superfields, we will often write this as
é+/2x0 + F6?, suppressing the 87 components (or, more technically, incorporating the 61
dependence into a modified spacetime coordinate).

In the presence of an R-symmetry, D (D) has charge —1 (+1), so for a chiral multiplet
of charge r, ¢ has charge r, x has charge r — 1, and ® has charge r — 2.

SUSY-covariant derivatives provide a different and gencrally more useful means for

finding SUSY transformations of a supcrficld:
§V = 2i(Bote" — oD,V + D, ® + L DIV, (2.34)
Brief calculations then give the SUSY transformations of fields in a chiral multiplet:

5¢p = €* Dy D] = V2ex, (2.35)

X 1 1 A
Sxa = —26573573(1@4 + ~—2€LD‘L“DQ€[)[ —V2e,F — ivV2(" 1) 00,0, (2.36)

V2 V2
1

§F = ~%€Z‘DMD2(I)| - ZGQDQDEM = iv2el 50, x. (2.37)
The component ¢ is a complex scalar, x its partner Weyl fermion, and I is another complex
scalar that can be shown to be an auxiliary ficld—its kinetic term has no derivatives, so it
does not propagate and may be completely integrated out of the Lagrangian. If (F) # 0,
notc that x transforms as a shift-—yx is then a goldstone fermion and SUSY is spontancously
broken. Therefore, F' is an order parameter for SUSY-breaking.

Note that since D? = 0 and & is chiral, F = —iDQ'I’[ transforms as a total derivative.
This makes it a good candidate for a SUSY-invariant action. The same is also true of

f—GDgDTQV since D* = D? = 0. In fact, any SUSY-invariant action can be written in the
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form

E/@%me+(/ﬁ%¢mw+h&> (2.38)

for some composite superfields V' and ®¢om,, satisfying vi=v, DI® = 0, with J d*0 and
J d?# shorthands for %6'D2DT2] and —%DQ\, respectively.? It is often useful to write this

purely as an integral over half of superspace
- 1.
cﬁ/wwéwmp—gpﬂvgmp+hc. (2.39)

If the theory obeys an R-symmetry, it is clear that V must have R-charge 0 and ®comp

must have R-charge 2.

If our theory only has chiral superficlds ®¢, a candidate renormalizable Lagrangian is

the Wess-Zumnino Lagrangian

Ez/f“ﬂ@+(/fﬂV@U+m0, (2.40)

where W is some (holomorphic) function of the superficlds ®¢, which we call the superpo-
tential. For a renormalizable theory, the superpotential is at most cubic in fields. A brief

calculation gives the corresponding Lagrangian in components:

L= ¢ ud)i(‘)“(ﬁ*i _ iXTiauauXi + F’iF*’L

; 1 i
+ W, — i‘VL-jXI'XJ + h.c. (2.41)

As promised, F*? is an auxiliary feld as it has no kinetic terms. As a result, we can
immediately perform the path integral over its possible field configurations, solving its (full

quantuin) equation of motion:

F' = —W;, (2.42)
L=—0,4'0"¢* — ix"e"0,x" + F'F*

1
= W} — Wix'x’ + he. (2.43)

"Due to their Crassmann nature, integration and differentiation with respect to 81 are equivalent.
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A generic (non-renormalizable) SUSY effective field theory will in general feature terms
higher order in fields in the superpotential, terms higher order in fields in the integrand
of f d'@ (then called the Kihler potential K, which was just &'®" in the Wess-Zumino
model), as well as terms with arbitrary numbers of spacctime or SUSY-covariant derivatives.

Note that the SUSY Lagrangian is invariant under the Kahler transformation K —

K + P + P for P chiral, as the resulting terms either vanish or are a total derivative.

2.4 Gauge Interactions

Chiral multiplets do not contain a vector degree of freedom, so SUSY gauge interactions
will require another sort of multiplet. Let us begin by considering the transformation of a

charged chiral multiplet under a U(1) gauge transformation:
b - 0P, (2.44)

Due to the possible spacetime dependence of «, such a gauge transformation does not

commute with SUSY unless « is promoted to a full superficld:
P — 1P, (2.45)

with € chiral. As (non-constant) chiral and anti-chiral superfields cannot cancel against
cach other, this means that the kinetic term ®1® is not gauge-invariant. We rectify this by
introducing a real vector superfield V = V' that transforms under a gauge transformation

as

Q+Qf
VovV-— +T (2.46)
so that the Lagrangian
= / d0 &tV & (2.47)

is now gauge-invariant. The superfield V has a large number of components, but many of
them are pure gauge, as they can be removed by the gauge transformation of Eq. (2.46). The

physical components are those which arc not present in a chiral or anti-chiral superfield—a
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gauge boson A, (the 0% component), a fermionic gaugino A, (the 882 component) and its
hermitian conjugate, and real scalar D (the 8* component) which will prove to be auxiliary.
The latter two components do not transform under a gauge transformation, while the vector
transforms as expected.

The superfield V of course needs its own gauge-invariant kinetic term. In order to build

one, we need a gauge-invariant superfield containing V'

1.
W, = —ZD“DQV, (2.48)

= Ao+ DOy — i(0"0) o Frupy — 0 (0" 9\ . (2.49)

In addition to being gauge invariant, W, is also chiral as D™ = 0. Note that D is also
an order paramcter for SUSY-breaking, as A\, will transform as a shift (and will thus be
a Goldstone fermion) if D obtains a vev. It is generally true, however, that a D-term can
only be non-zero if a F-term is also non-zero (with one exception for Abelian groups which
is difficult to generalize to local SUSY).

A suitable kinetic Lagrangian is then®

5, 1
L= /dzﬁ ZW“WQ + h.c. (2.50)

1 i 1.
= Bk~ iINGRON + §D2. (2.51)

This can be generalized to non-abelian gauge groups, in which the components of V' are

in the adjoint representation of the gauge group:

W, = —éng (e72VDue?V), (2.52)
W, — fTW,e 2, (2.53)
AV e"'meﬂ/e*ﬂ, (2.54)
® - VP, (2.55)
L= /d20 %Tr [WoW,]. (2.56)

If our theory obeys an R-symmetry, V must have vanishing R-charge (as it is real),

"Here, we switch o a canonical normalization for the gauge multiplet, in which ¢ is in the covariant
derivative rather than the kinetic term.



which implics that the gaugino A must have R-charge 1.

The most general renormalizable SUSY theory with gauge interactions is then®

_ ara s . 1
L= /d49 Pl VT gt (/d29 W (@) + W™ W] +h.c.> (2.57)

— _D/L¢*1Du¢i o iXTfﬁpDH(pi + F*fFi

1 apy N et ]' L
= FL F =i D A + S D D"

1 o
+ Wi F* — 5 iiX'x’ + h.c.

+ 9a(¢*(T*)15¢" ) D" — (\/iga,(fb*i(T“)ﬁxj)/\a + h.c.) : (2.58)

where the derivatives are the usual gauge-covariant ones, and where we work in Wess-Zumino
gauge, where all the pure gauge degrees of freedom in V¢ (apart from the standard one the
vector component has) arc transformed to zero. Note that D%, like F*, is an auxiliary field

that may simply be integrated out.

This Lagrangian also reinforces the fact that (D®) and <F 'i> are order parameters for

SUSY-breaking, as (H) # 0 only when at least one of them is non-vanishing.

2.5 SUSY Breaking and Goldstinos

As we noted in Sec. 2.2, SUSY must be spontaneously broken as there are no 511 keV
selectrons in nature. We can make this statement even stronger by consider a supertrace

sum rule valid for renormalizable theories at tree level that spontaneously break SUSY [68]:

STr [m?] = (—1)*(2s + )Tr [m?] = —2¢,Tr [T (D*) = 0, (2.59)
where s represents the spin of the particle.” Consider the MSSM with flavor conservation
(i.e. no mixing between scalars of diffcrent generations) and with no additional broken U(1)

symmetrics involved in SUSY breaking. For the first generation of squarks, for example,

SWe have omitted here the possibility of Fayet-Iliopoulos terms, I d*0 V| which are gauge-invariant for
Abelian groups but difficult to incorporate into local SUSY theories in flat space. We have also omitted
©-terms for the gauge fields, which correspond to an imaginary coeflicient of the gauge kinetic term; they
only yield the usual FF term in components.

"This last equality is obvious for a non-Abelian gauge theory with Tr(7) = 0. For a U(1) gauge group,
the sum of the hypercharges must vanish to avoid the gravitational anomaly.
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mediators
Visible Sector Hidden Sector

Figure 2-1: Standard paradigm of a SUSY-breaking hidden scctor coupled to the SUSY SM
via mediators.

since

Tr(c®) =0 and Ya, + Yar + Yi +Y; =0, (2.60)

(lR

Eq. (2.59) dccouples, leading to the relation

ma +m3 + m2~n + m‘fh = 2(m2 +m3). (2.61)

UR Uy, d

If SU(3)¢ is to remain unbroken, this would imply light (MeV) scale superpartners, in
conflict with observation. Similar arguments exist in the presence of large flavor mixings[57],

even apart from the dangerous flavor-changing neutral currents they would introduce.

For these reasons, the standard SUSY-breaking paradigm is for SUSY to be broken in
a “hidden sector”, and the effects of SUSY breaking communicated to the SUSY SM (the
“visible scctor”) via loop processes or higher-dimension operators. We draw this schemati-
cally as in Fig. 2-1. The effect of SUSY breaking on the visible sector is obviously important,
but the phenomenological implications of the SUSY-breaking sector itself are typically mea-
ger (with one important exception); as a result, [ will try to abstract the most important

features of the hidden sector.

There is one hidden sector state with broad phenomenological relevance. As with any
other spontaneously broken global symmetry, SUSY will have a gapless goldstone mode.
However, since SUSY is a fermionic symmetry, this mode will be a fermion—the goldstino
G 1. To abstract hidden sector dynamics as much as possible, we will consider the goldstino

residing in a non-linear superficld X satisfying X? = 0:

~ 2
X = (9+ Cr ) F. (2.62)




Note that we have effectively integrated out the sgoldstino by using this multiplet. For the
purposes of this thesis (in which we never care about Lagrangian terms with more than two
goldstinos), we can safely consider F to be a (rcal) non-dynamical background field—that

is, we never solve its equation of motion, and we just consider it to be a constant.

The Lagrangian for the goldstino multiplet itself takes the simple form
L= / deXTX — / d*0F X + h.c. (2.63)

The constraint X2 = 0 forbids any additional terms without SUSY-covariant or spacetime
derivatives. The coeflicient of the superpotential is constrained to be —F by consistency (if
we were to treat F' as dynamical, the solution to its equation of motion should yield F).
Note that this Lagrangian by itself obeys an R-symmetry under which X has R-charge 2
(and thus the goldstino Gy, has R-charge 1).

Coupling the goldstino superfield X to visible sector fields will communicate SUSY-
breaking to the visible sector in the form of soft-SUSY breaking parameters. By SUSY,
these come with goldstino couplings that are exactly proportional to those soft terms. The

full set of (relevant) soft terms for the visible scctor is given by®

Lot = — / d'e F”X*X@“cbf / d%0 XW“W

B o A o M,
2 ] i ijk i k aq a >

- P 4 ik P .

/d92FX<I> +TEXe'P SR XWeOWe, (2.64)

9 er m? -~
L= —mjo™¢" + T]GLXZQW +h.e.

1 ] M, -~
— S MGAINY 4 Fo 4+ 22 GAD + h,

2 ﬂ w BE "

1 o o
- —Bij<l57¢] + Bij GLxquﬂ + h.c.

- —Amﬁquﬁ" ”"GLx ¢ oF + hee. (2.65)

Note that if the theory obceys an R-symmetry, Majorana gaugino masses of the type shown

here arc forbidden, as are A- and B-terms corresponding to allowed superpotential terms.

®This is not an exhaustive list, for two reasons. First, many different terms in superspace give the
same soft terms (e.g. X®®' or XTX®2 can both give B-terms). Secondly, we have omitted soft terms
corresponding to tadpoles for scalars or Dirac masses for gauginos and adjoint fermions, neither of which
oceur in the Minimal SUSY SM (MSSM).
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2.5.1 The Supercurrent

Using the non-lincar goldstino multiplet, we found that goldstino couplings were directly
rclated to soft terms. There is a more formal way of seeing this same effect using conservation

of the supercurrent.

The supercurrent is the Noether current associated with SUSY trausformations[155, 50]

i = VA TG ) oDy — V2 )W

—~

(2.66)

(0Va o NV EL, = igad™ (T9)i(o A1)

[N

Note that the supercurrent has an extra a-index to match the SUSY generator Qn. Con-

scrvation of the supercurrent implies 8,55 = 0.

We can isolate the goldstino contribution to the supercurrent via[64, 65]

]g — jg,mattor + ’L.\/iﬂot (O‘“ﬁ) (2()7)

@ ?

where Fioy = \/ | Fuis]? + | Frial? also includes any SUSY breaking in the visible sector.

Conservation of the full supercurrent implies

Bt = 0 = 8, Jromatter 4 i \/IF o (04D,7)., . (2.68)
As expected, because SUSY in the visible sector is broken, 8,75 ™" # 0. If we interpret

Eq. (2.68) as an equation of motion for the goldstino, this implies that in addition to a

kinetic term, the goldstino Lagrangian must contain

L, S G (2.69)

1
\/iFtoL

This is called a Goldberger-Treiman relation from the analogous relation for couplings of

Goldstone bosons of spontaneously broken global symmetries to matter currents.[85]

For a massless on-shell goldstino
(a,u'r))o"u =0, (2.7())

so after integration by parts, the second and fourth terms in Eq. (2.66) are irrelevant for
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Table 2.1: Quantum Numbers of the MSSM.

SUBB)e SU(2)., U(l)y
Q 3 2 -1
U 3 1 =
p| s 1 -
L 1 2 +§
E 1 1 -1
H, 1 2 -3
H, 1 2 +3

Eq. (2.69), which reduces to

Ly D n( — (Y] + ¢'0lp) + 2L v P8\ F,

Ftot \/§

1

(2.71)
- EUPAT‘Z@”F,Z) +h.c.

Using equations of motion for the visible sector fields, we find that the three-point couplings

of the goldstino arc proportional to physical mass differences:

2
m T 71
et Ty

Lol + nx g 4 A ya e (2.72)

LD
Flot \/' m ad

where, for simplicity, we have assumed unbroken gauge groups and dropped terms with more
than three particles. We see that this result exactly reproduces Eq. (2.65) in a non-trivial

way.”?

2.6 The MSSM

With all of these ingredients, we can finally write down the field content and Lagrangian
of the Minimal Supersymmetric Standard Model (MSSM). The chiral superficlds in the
MSSM are given in Table 2.1. The quantum numbers may differ by a sign from those in
other references; this is because in our conventions, chiral superfields are right-handed fields.
As a result, Q and L should be interpreted as the conjugates of the left-handed fields we

normally deal with.

The leading relevant and marginal interactions are given by the gauge interactions of

°The terms with D® would show up here among the terms with more than three particles, on the D®
equation of motion.
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these fields, and by terms in the superpotential of up to dimension 3, which could include
W o uHH;+ QU H, + X;Q'D'Hy + X;E'L' H,. (2.73)

The fermions and scalars in the H superficlds (the Higgs bosons and Higgsinos) receive
a supersyminetric mass from the g mass term. If H, and H, get vevs in their lowest
component, the other three superpotential terms then yield masses for the up-type quarks,
down-type quarks, and leptons, respectively. As the superpotential must be holomorphic,
we need at least two Higgs doublets in order to give masses to all fermions. Two Higgs
doublets are also required to avoid the Higgsinos introducing gauge anomalies.

As written, this superpotential obeys two additional global U(1) symmetrics: a baryon
number symmetry under which Q and U /D have opposite charges, and a lepton number
symmetry under which L and E have opposite charges. However, we can casily write down

terms that do not respect these symmetries:
W S pL H, + 2\ QDILF + \U'DID* + \{) L'V E*. (2.74)

Note that the last two terms must involve particles from multiple generations, since the
SU(2) and SU(3) indices are contracted antisymmetrically. If one wanted to forbid all of
these terms, one could impose baryon and lepton number symmetries explicitly.

Alternatively, one could use a U(1) g symmetry to forbid the terms in Eq. (2.74). If one
gives the Higgs doublets an R-charge of 1, and all other superfields an R-charge of +1/2,
the problematic terms are forbidden since the resulting superpotential would not have an
R-charge of 2. We do not even need a full R-symmetry to achieve the same effect, which is
desirable as we generally expect continuous R-symmetries to be broken by SUSY-breaking
effects (or by my/y if nothing clse; see Sec. 2.7). The R-symmetry contains a discrete Zy
subgroup called R-parity (R,), under which the Higgs doublets have R-parity +1 and the
other multiplets have R-parity —1. This is sufficient to forbid the terms in Eq. (2.74).

SUSY-breaking will generically give scalar mass-squareds for all scalars, Majorana gaug-
ino masses for all gauginos, and A- and B-terms corresponding to each term in the super-
potential. R-parity (under which X is even) will also forbid soft SUSY breaking terms
corresponding to the dangerous terms in Eq. (2.74).

Note that the imposition of R-parity means that R-parity odd particles (all the super-
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Table 2.2: Particle Content of the MSSM.

R,-even Ry-odd
q qr: 4R (squarks)
! I, lr (sleptons)
v v (sneutrinos)
v, Z, h, A0 HO | ¥ (neutralinos)
W+ H* Xft (charginos)
g g (gluino)
G (graviton) Py (gravitino)

partners of SM fields) may only interact in pairs. This has wide-ranging phenomenological
implications. The decay of any SUSY particle must feature another SUSY particle as one
of the decay products; this implies that the lightest SUSY particle (the LSP) will be ab-
solutely stable. If the LSP is electrically neutral and a color singlet, this could be a good
dark matter candidate. This is especially true if the LSP is in the visible sector, as then
one would cxpect it to have weak-strength interactions, allowing it to be produced in the

early universe with the right relic abundance via the so-called ‘WIMP miracle’.

R-parity also implies that all SUSY particles must be created in pairs. Therefore,
SUSY events at colliders such as the LHC will generally feature the production of two
SUSY particles, each of which will undergo a series of decays down to the LSP, which, if
it is the dark matter, is stable and exits the collider invisibly. Such signals of multiple SM
particles (most typically jets at the LHC) and missing energy is a striking signal for SUSY

that can be scen at colliders that has relatively little background from SM processes.

A full discussion of the MSSM spectrum and phenomenology is beyond the scope of this
introduction, but a brief enumeration of the particle content of the MSSM should prove
useful for the reader, and is given in Table 2.2. Every SM fermion has a partner scalar; for
quarks and leptons, there are superpartners for both the left- and right-handed fermions.
After electroweak symmetry breaking (EWSB), the superpartners of left- and right-handed
fermions can mix, but this mixing is generally only important for the third generation.
Sfermions of different generations can of course mix, but there arc often stringent limits on

such mixing from the absence of flavor-changing neutral currents (FCNC).

Since the MSSM has two Higgs doublets, there are four additional Higgs bosons—the
charged H*, a scalar H?, and a pseudoscalar A°. After EWSB, the superpartners of the

Higgses and the electroweak gauge bosons (the Higgsinos, binos, and winos) can mix, so
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generically there are four neutral R,-odd fermions (the neutralinos x§) and four charged
ones (the charginos X:’r) The gluon has a partuer color adjoint fermion, the gluino, which
does not have the correct quantum numbers to mix with any other states.

The only visible sector R-parity odd particles that are neutral and colorless (and thus
potential LSP dark matter candidates) are the sneutrinos and neutralinos. In the MSSM,
sneutrino dark matter has long been ruled out by a combination of direct detection ex-
periments and (for low masses) the invisible width of the Z [31, 32, 136, 128]. Neutralino
dark matter has thus been the standard paradigm for SUSY dark matter, but it is by no
means the only possibility. A non-minimal visible sector can feature additional candidates,
such as singlinos (gauge singlet fermions) or the scalar superpartner of a right-handed neu-
trino [88, 13].

The LSP could of course be in a hidden sector, such as one responsible for SUSY-
breaking. The most obvious candidate would be the goldstino, but the goldstino is exactly
massless in global SUSY. This drawback can be rectified in local SUSY or supergravity
by considering the gravitino ¢, the spin-3/2 partner of the graviton—a possibility we’ll

consider in detail in Sec. 2.8.

2.7 SUSY in AdS

The previous sections considered rigid SUSY only in Minkowski space. Rigid SUSY can be
considered in other spacetime backgrounds, as well—the case of anti-de Sitter (AdS) space
is especially relevant, as it forms the global limit of unbroken SUGRA. AdS space is a space

of negative uniform curvature:

R,u.up/\ = nlg/Q(g/l,pgu)\ - gu)\gu,n), (275)
R,uu - 37"5/29#1/7 (276>
R = 127)13/27 (277)

with my = 7'A<1is the inverse radius of AdS curvature.! Naively, one might think that
SUSY in AdS might just consist of promoting flat-space derivatives to spacetime-covariant

derivatives. However, recall that in such a curved space, spacetime derivatives no longer

"WThe notation my /2 comes from SUGRA, where the same parameter also plays the role of mass parameter
for the spin-3/2 gravitino.
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commute when not acting on Lorentz scalars. As a result, the Poincaré algebra is modified

in AdS:
[P, P| = —im3 ;o My, . (2.78)

As SUSY is an extension of the Poincaré algebra, the SUSY algebra is also modified in AdS.

We can scc this immediately by considering such Jacobi identities as

0= [Qa; [P, Pl + [Py, [Py, Qall + [Py, [Qa, Pl (2.79)

As the first term is non-vanishing in AdS (recall that @, as a spinor, docs not commutc

with M), the consistency of the SUSY algebra in AdS requires [P,, Qa) # 0 as well. Using

?

such Jacobi identitics, one can easily show that the SUSY algebra in AdS must include [4

51, 104, 156, 95]

1 . w
[Qa P;L] = ~§T”3/20—;LQT7 {QQ»QB} = 2@777,3/20‘ aﬁﬂf/w- (2'80)

Note that this modification of the SUSY algebra for AdS precludes the existence of R-

symimetrics.

The fact that SUSY and spacetime translations no longer commute is onc of the most
important features of SUSY in AdS, and has many unexpected implications which we will
see throughout this thesis. One of them follows from the requircment that dsusydu¢ =
Judsusy ¢ (so that the algebra is consistent); this implies a non-trivial requirement on the

infinitesimal SUSY transformation parameter:

1
0= D”GT + 5“713/26#6. (281)

2.7.1 SUSY Covariant Derivatives

Just as in flat space, one can define superspacc-covariant derivatives. These obey the

following commutation relations, which follow straightforwardly from the SUSY algebra in
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AdS:

{Da.D}} = ~2ic" Dy, (Do D}V = —2my ;o (Vadg” + V304",
(Do, D}V =0, {Da, DPIVH = my n(a)o PV,
[D,,Ds| = V%i7713/2(0‘uDT>ﬂ, [D,,D,|V? = m,g/Z(Vﬂ(S,/) - Vo7,
D, DV = —mf (Vo). (2.82)

One can yet again use these SUSY covariant derivatives to construct constrained super-

fields. Just as before, a chiral superfield is defined by the requirement
Didd = 0. (2.83)

Rather than thinking about an explicit expansion in 8, y, we’ll just define components with

the SUSY covariant derivatives themselves

1

1 .
(I)| = (/), WIDQCI)[ = Xas —szq)I = F. (284)

We can think of this schematically as ® = ¢ + /2yO + FO2?. These O are really and
truly placeholders; one can treat them as normal for addition and multiplication of chiral

multiplets, but not much else.

In flat-space SUSY, D2V is chiral since DT = 0. This is no longer true for AdS SUSY,
as {D,,Dg} # 0. However, this can be easily remedied, and (anti-)chiral projectors still

exist:

Do(D? — dmy)V =0, DD — dingy)V = 0. (2.85)

Note again that [D,, D] # 0. One immediate consequence of this is that bosons and
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fermions have differing masses, even for unbroken SUSY:

D,D"D,® = [D,, D,|D"® + D"[D,,D,|® + D'D,D,®
p 1 . & ) —
Do(mi® + BB = 5 13/20 o (D1, D¥]® — (0- DG - D + 3m3 ) Do®
m?bDMI’ = 'mg/z’Da(I) + (mi - 3m§/2)Da<I>

m(zb = m?( - 2m§/2. (2.86)

We've performed some sleight of hand here on the right side of the equation, by applying
the Klein-Gordon equation to the superfield rather than its lowest component. One can
easily show that this is legitimate, though there are some subtleties at loop level that we

will see in Scc. 5. We can easily do the same trick for B-terms:

DI*D'D,® = [DI* DMD,® + D,[DI* D'®

. . 1 . .
DI(mi® + BPT) = 5 17113/20"%" Doy, Dy | @ + iy 557Dy, Dy @

B = —mgmy, (2.87)
mz’p = mi - 2m§/2 F Mgy, (2.88)

where the final line shows the masses of the scalar and pseudoscalar in the chiral multiplet,
respectively. We scc that even for unbroken SUSY at tree level, there are ‘soft’ scalar
masses and B-terms in AdS. The sign of the scalar mass squared may worry the reader;
for certain values of m,, one or both of the scalars may have a negative mass-squared,
which naively would correspond to a tachyonic instability. However, defining mass in AdS
is a subtle proposition, as P? is no longer a Casimir of the algebra. Breitenlohner and
Freedman [25] showed that negative scalar masses are stable in AdS, so long as they are
not too negative (m? > fﬁmg/z). This bound is saturated for m, = +mg,3/2, but is never

exceeded; unbroken SUSY in AdS is always stable.

We can also use the SUSY covariant derivatives to find the SUSY transformations of the

componcents of chiral superfields. The following holds in both flat-space and AdS SUSY:
80 = —2i(fo*e! — 01D, ® — D, ® — €, DI, (2.89)

We can evaluate this for the individual components. Since we're always taking the lowest
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component, the first term never matters. The lowest and fermionic components follow

through exactly as in the flat space case:

dp = —€*D,D| (2.90)
= —2¢x, (2.91)
1 1 )
SXa = ——=c"DgD,®| — —=cl DI*D,0 2.92
= — V2, F — iV2(c"e) 10, 0. (2.93)
The F-component, however, transforms differently:
1 T ytamy2 1 « 2
OF = chD D°o| + € D, D“®| (2.94)

The first term is exactly what you would expect in flat space (except of course now with an
appropriately-covariant derivative). The {DTd, D>} anti-commutators are exactly the same
as in flat space; there’s a possible [D® D*] commutator to perform, but this yields a DT,
which vanishes on the chiral superfield. The other term vanishes in flat space, but in AdS

gives a new contribution arising from Eq. (2.89):

D, D*® = 4y oD@ (2.95)
OF = \/‘Emg/zex —1 QGTEMD#X. (2.96)

2.7.2 The AdS SUSY Lagrangian

Note that the F' component of a chiral superficld does not transform as a total derivative,!!

both due to the first term and duc to the fact that D,e # 0. However, the following

combination can easily be shown to transform as a total derivative:
F + 377L3/2§b (297)

We can define a ‘chiral density’ 2 = e(1 + 3rmngz/90?)-—this is the cquivalent of ¢, the

determinant of the vielbein, for chiral superspace. The following is then is a good choice

"We do not consider here terms on the boundary of AdS, though they can play an important role in
general.
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for a SUSY-invariant Lagrangian:
L= / d’02E® + h.c. (2.98)

with @ any chiral superfield (elementary or composite), and [ d’0 = —%’D2|7 as usual. This
corresponds to superpotential-style terms. We can write down kinetic terms in a similar

fashion, by making use of the fact that (D12 — 4777,3/2) is automatically chiral.
. 1,
L= /dz(-) 2 [—g(D“ —dmg ) K + W | + hec, (2.99)

where K is an arbitrary function of chiral and anti-chiral supcrficlds, and W is a holomor-
phic function of chiral superfields alone. There may also be terms with additional covariant

derivatives which we omit here.

Note that holomorphic terms in the Kahler potential no longer give a vanishing con-
tribution to the Lagrangian, so the Kihler transformation K — K + P + P! (for P
some chiral superfield) is no longer an invariance of the theory. However, the Kéhler in-
variance can be restored by including in the Kahler transformations W — W — mg,», P.

We can use this freedom to kill W entirely, leaving our entire Lagrangian in terms of

G=K + W/m3/2 + W]L/mg)/z:
1
L= /d2@ 2E {—g(DTg —4ms)G | +hec. (2.100)

Tt may occasionally be more convenient to rewrite the Lagrangian as the following integral

over all of superspace:

L= /d“@EG, (2.101)

E = 6(1 + m3/2@2 —+ T’L3/2®T2 —+ 3777%/2@4). (2102)

We have only discussed chiral superfields here. One can easily include vector superfields,
as well, but the resulting component Lagrangian can be shown to be the same as in flat space.
I note briefly here that Fayet-Tliopoulos terms are no longer gauge-invariant for SUSY in
AdS, as [d*0 E (Q+ Q') # 0. This obstruction persists in SUGRA, where Fayet-Iliopoulos

terms correspond to a gauged U (1) symmetry [18, 67], which is difficult to reconcile with
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the explicit violation of R-symmetry here.

2.7.3 The Component Lagrangian

A short calculation yields the Lagrangian of Eq. (2.101) in components:

L= GyF'F — G e" D,y — Gijauqbia#qs*ﬂ + 3mj,G (2.103)

— 5 G XX - —G XX G,J XXX (2.104)
o1

+mgppGi b — 57713/2Gijxlx5’ + h.c. (2.105)

After integrating out the auxiliary fields:

L= —iG-vX”E“Duxi — G 50,0 0" 9™ (2.106)
+ RU XXX (2.107)
— %77L3/2V1G_jxixj + h.c. (2.108)
—m3 (GG = 3G) (2.109)

This is written in a ‘Kahler-covariant’ manner. We can think of G;, as a metric of sorts, with
iy B

a well-defined inverse GY*. We raise and lower indices with the metric and its inverse. The

metric has associated Christoffel symbols I’%k SNelre ki Fi’}l = GHGJM, sensible covariant

derivatives V,;G; = G;; — Fi-”ij, and a curvature tensor Rijki = Gijkl gmnl‘m " All of

this of course simplifies if the Kahler metric is just d;; (as it must be if we don’t want any

irrelevant opcrators), in which case V;G; = G;; and the four-fermion term vanishes.

From this Lagrangian, we can easily find the mass spectrum

Mij = mg3;5ViGj (2.110)
Vi = m3y(GFViGy, — 2G,) (2.111)
Vig = m3 5 (ViGiV,G* — Ry GH G — 2Gy,) (2.112)

ViV = 77l§/2(Gkviijk — V.G)) (2.113)

mi; = My M¥5 — 2m3 ,Giy — m3 Ry Gh G! (2.114)

"L;‘Zj = —myM;; + mé/gG"'ViVij (2.115)
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The last term on each of the last two lines contributes if there is SUSY-breaking ((G;) # 0).

2.7.4 The Goldstino

If SUSY is spontaneously broken in AdS, one still has a goldstino that transforms as a
shift under SUSY transformations. However, since D,e # (0 in AdS, the kinetic goldstino
Lagrangian by itself is no longer invariant under a shift symmetry. This can be rectified by

the addition of a goldstino mass term
L = —in'G*Dyn —myyumn — mapn'n'. (2.116)

In AdS, the goldstino has a Lagrangian mass term, m, = 2mg/,.
We can also write down a superspace Lagrangian for the same X ni, = #(n +V2F0)?

superfield:

. 1 .
L= /dZG) 2& [—g(DTz - 4m3/2)(XTX - F'm;/IQX - Fm;/IQXT) +h.c (2.117)

If 1 couple the goldstino to matter, its couplings are proportional to deviations from
the unbroken results—not, as in flat space, the boson-fermion mass difference (which is
non-zero for unbroken SUSY). In particular, suppose I have a massless fermion and enough

SUSY-breaking to make the scalars massless as well; then there is a goldstino coupling

2m?2
T3/2 despite no boson-fermion mass difference. The same results can also be derived

from supercurrent conservation, as in Sec. 2.5.1; we will consider this more thoroughly in

Sce. 5.2.2.

2.8 Supergravity

So far, we have been considering global (or rigid) SUSY, in which the allowed spacetime
dependence of the SUSY transformations is extremely constrained. Since SUSY is an ex-
tension of the Poincaré algebra, making SUSY a local symmetry requires making the rest
of the Poincaré symmetry local as well—i.e. one needs to consider general relativity (GR).
As a result, the terms ‘local SUSY” and ‘supergravity’ (SUGRA) are uscd interchangeably
in the literature. Most of the features of supergravity are well beyond the scope of this

chaptcr, but we will discuss a few phenomenologically relevant features here.



The gauge fermion of local SUSY is spin-3/2 gravitino #,, so called because it is the
superpartuncr of the spin-2 graviton of GR. Along with these, there are two auxiliary fields
in the gravity multiplet,'? a real vector b and a complex scalar M. In SUGRA, the
superpotential serves as a source for M* and a mass term for the gravitino:

LD —E_M*Z\/I - WM™ — KZ/J o, + h.c. (2.118)

3 M3

Defining mg/, = (W) /MZ,, the gravitino gets a mass term of mgyp, M* obtains a vev of
—3mg /9, and there is a cosmological constant term (V) = ~3m§ /2.M E,]. The Einstein equa-
tion then yields an AdS spacetime, and we can finally sce that 7';(115 = /9, as promised.
This is just the local version of the SUSY in AdS considered in Scc. 2.7, so we sce that a
vev for M does not break SUSY (though it does break any U(1)g symmetry). F* and D®
are still the SUSY-breaking order paramcters, and since we arc considering a theory with
dynamical gravity, large enough amounts of SUSY breaking can lift the spacetime from AdS

to flat space:

ik 1 a 3W‘2
(V) = FUE + 5 DuD* — i, (2.119)

This is shown schematically in Fig. 2-2. As our universe is flat, this lets us express mg/, in

terms of Mp, and the amount of SUSY-breaking:

'\/gFt()t

myjo = Mp,

(2.120)

It should be stressed that this relation is a fine-tuning (the same fine-tuning as for the
cosmological constant), and does not hold outside of flat space.

The gravitino transforms under SUSY as

Y — Y +2 (D“€ + %7”3/20“6> +-- (2.121)

[e3

This is highly reminiscent of Eq. (2.81), the rigidity constraint on ¢ in AdS. This is no
surprise, as rigid SUSY transformations had better not introduce a gravitino where there

was not one to begin with [70, 114]. As with any other gauge field, the leading coupling of

12The question of what auxiliary fields are present in the gravity multiplet depends on what formalism
one uses; [ predominantly use that of Ref. [154] in this thesis.
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Figure 2-2: Two ways to think about achieving SUSY breaking with V' ~ 0. The second
picture makes clear the underlying AdS, algebra.

the gravitino is to the corresponding Noether current, in this case the supercurrent:

LD —szﬂ i#* + h.c. (2.122)

Naively, one might think that couplings of the gravitino are Planck-suppressed. However,
this is not the case in practice, due to the gravitino’s longitudinal polarizations, which
come with inverse powers of mg ;. When SUSY is broken, Eq. (2.122) contains a goldstino-

gravitino mixing:

t E ot

LD — GJr Lo, + he. (2.123)

We can use SUSY transformations to eliminate the goldstino from the spectrum-——in this
unitarity gauge, the gravitino has eaten the goldstino to acquire its longitudinal degrees
of freedom. This is the super-Higgs mechanism [55, 149, 71, 72|, and it comes with an
associated goldstino equivalence theorem [64, 65, 33, 34] —at energies well above mjy /2, the
couplings of longitudinal gravitinos are well described by the couplings of goldstinos. As
a result, the technical difficulties involved in performing calculations involving a spin-3/2
fermion can avoided in many cases, and gravitino couplings are really only suppressed by
F~!' not ]'LIFTII.

Couplings suppressed by F~! can still be quite weak, however, which has important

implications for both collider and dark matter phenomenology. Gravitinos are unlikely to be



phenomenologically relevant unless they are the LSP, in which case the lightest observable-
sector SUSY particle (the LOSP) would be expected to decay to the gravitino [56, 8, 58, 7].
Therefore, SUSY cascade decays would be expected to always terminate in a LOSP to
gravitino decay, making the identity of the LOSP quite important. If the coupling is weak
enough, the LOSP lifetime may be long enough to see displaced vertices--or for it to be
stable on collider time scales, which would be very striking for a charged or colored LOSP.

As a dark matter candidate, the weak couplings of the gravitino mean it does not an-
nihilate efficiently in the early universe, and therefore would tend to be overproduced; the
gravitino is most emphatically not a WIMP. This can be avoided if the rcheating temper-
aturc of the universe is sufficiently low [129, 48]. The correct relic abundance can arise
naturally by the super-WIMP mechanism [66] LOSPs are produced in the early universe
with roughly the correct relic abundance (by the usual WIMP miracle), which then later

decay to gravitinos after Big Bang Nucleosynthesis (BBN).
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Chapter 3

Goldstini Give the Higgs a Boost

3.1 Introduction

As discussed in Sec. 2.5, most SUSY theories consist of an “observable sector” coupled to one
or more “hidden sectors.” The observable sector contains the fields of the supersymmetric
standard model (SSM), in particular the lightest observable-sector supersymmetric particle
(LOSP). The hidden sectors arc responsible for breaking SUSY and generating soft masses
for SM superpartners, and may contain light states accessible to colliders.

A typical SUSY collider event involves production of two heavy SM superpartners which
then undergo cascade decays to a pair of LOSPs. If there are hidden sector particles lighter
than the LOSP, then the subsequent LOSP decays—if they occur inside the detector can
dramatically impact SUSY collider phenomenology. In Sec. 2.8, we discussed the most well-
known example of a decaying LOSP, which occurs when the light hidden sector particle
is a gravitino [56, 8, 58, 7]. In that case, the LOSP decays to its supcrpartner and a
longitudinal gravitino via interactions constrained by the conserved supercurrent and the
goldstino equivalence theorem [64, 65, 33, 34]. For example, a mostly bino LOSP will decay
to a photon, Z, or-—through its small Higgsino fraction—a Higgs boson.

In this chapter, we will show how changes in the couplings between the observable
and hidden sectors can have a dramatic impact on the decay modes of the LOSP, shown
generically in Fig. 3-1. Our case study will be a nearly pure bino LOSP A with an order one
branching fraction to Higgs bosons, a very counterintuitive decay pattern from the point of
view of the standard decay of a bino LOSP to a v/Z plus a longitudinal gravitino. In fact,

in this example, the LOSP branching ratio to Higgs bosons is enhanced with increasing
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Figure 3-1: A generic LOSP decay. We will focus on the case where A is a bino-like LOSP,
and ¢ is a (pseudo-)goldstino from spontancous SUSY breaking. Contrary to the naive
expectation, A can decay dominantly to Higgs bosons, even if A has negligible Higgsino
fraction.
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Figure 3-2: The R-symmetric setup that will be the focus of this chapter. Here, sector 1
has a higher SUSY breaking scale than sector 2, i.e. F} > F), so the LOSP preferentially
decays to the pseudo-goldstino ¢ coming mostly from sector 2. Since sector 2 preserves an
R symmetry, the decay A — ~/Z + ( is highly suppressed, and the mode A — h® + ¢ can
dominate.

Higgsino mass 1, approaching 100% in the small (my tan 3)/p limit. This is unlike the case
of a Higgsino LOSP, which generically has equal branching fractions to Higgs and Z bosons.

These novel bino LOSP decays are possible in the presence of multiple sectors which
break supersymmetry, yielding a corresponding multiplicity of “goldstini” [42]. While the
couplings of the true goldstino (eaten by the gravitino) are constrained by the supercurrent,
the orthogonal uneaten goldstini can have different couplings from the naive expectation.
The spectrum of goldstini exhibits a number of fascinating properties [42, 45, 10], and they
may play a role in cosmology or dark matter [40, 37]. Here, we will focus on properties of
goldstini relevant for their collider phenomenology.

For our case study, we consider two sectors which break SUSY, both of which commu-

nicate to the SSM, but one of which preserves an U(1)y symmetry, as in Fig. 3-2.! For the

"There have been recent studies where the entire SUSY breaking and SSM sectors preserve a U(1)p
symmetry [112, 9].
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Figure 3-3: Branching ratio A — h° 4 ¢ for a bino LOSP in the R-symmetric setup from
Fig. 3-2. Throughout this parameter space, the remaining branching ratio is dominated
by A = Z + (. The expected mode A\ — ~+ + ( is almost entirely absent. Shown is
Br(A — hY() as a function of € = my tan 3/p and v = tan_l(ﬁﬁ,u/ﬁafjd), fixing tanj3 = 5
and M; = 165 GeV. The plot terminates on the left and right side at the kinematic bound
my < Mmyo.

appropriate hierarchy of SUSY breaking scales, the LOSP will couple more strongly to the
uneaten goldstino ¢ than to the longitudinal gravitino G . Since the uneaten goldstino ( is
charged under the U (1) g symmetry, the R-violating decay A — «/Z+( is suppressed, letting
the counterintuitive decay A — h” + ¢ dominate.? This fascinating result is demonstrated
in Fig. 3-3.

In this way, goldstini can give the Higgs a boost: a boost in production cross section
since most LOSP decays yield a Higgs boson; and a boost in kinematics since the Higgses are
produced with relatively large gamma factors in SUSY cascade decays. This example gives
further motivation to identify boosted Higgses using jet substructure techniques [30, 111, 2].
This example also motivates searches for other counter-intuitive LOSP decay patterns,
where there is a mismatch between the identity of the LOSP and its decay products.

In the next section, we summarize and explain the main results of this chapter. We
then describe the framework of goldstini in Sec. 3.3, and derive the low energy effective
goldstini interactions and resulting LOSP decay widths in Sec. 3.4. We explain in more

detail why the goldstini case differs from the more familiar gravitino case in Sec. 3.5. Plots

?In Ref. [42], it was erroneously claimed that in the presence of an R symmetry, the dominant decay is
A — ) + ¢, where ¥ is a SM fermion. This chapter corrects that error.



of the LOSP branching ratios appear in Sec. 3.6, and we conclude in Sec. 3.7. Various

calculational details arc left to the appendices.

3.2 Counterintuitive LOSP Decays

Throughout this chapter, we will be considering the situation where a LOSP decays to
a lighter neutral fermion as in Fig. 3-1, and we will assume the minimal SSM (MSSM)
ficld content. The possible decay patterns of a LOSP are constrained by symmetries, at
minimum conservation of SM charges. In the familiar case where the LOSP decays to its
superpartner and a gravitino, there are further constraints imposed by conservation of the
supercurrent. We will see that these constraints can be significantly relaxed in the presence

of multiple SUSY breaking sectors.

3.2.1 A Conventional Goldstino

In the conventional setup with a single SUSY breaking sector and a light gravitino, the
couplings of the helicity-1/2 components of the gravitino are linked via the goldstino equiv-
alence theorem to the couplings of the goldstino Gr. Recall from Sec. 2.5.1 that supercur-
rent conscrvation implies that, at leading order in the inverse SUSY breaking scale 1/F,

the goldstino couples only derivatively to observable sector ficlds via the supercurrent:

it 1 o~
Lo — —ZGTLof'a,,,GHWaMGLJ#, (3.1)

;1
" = V20"5";D,¢* — 501’5”0“’/\“‘17“ (3.2)

I//)’

where we have clided terms that vanish on the goldstino equation of motion. Here, ¢; is
a scalar and ); is its fermionic superpartner, and F, is a gauge field strength with A® its
corresponding gaugino. In particular, the only possible LOSP decays are to its superpartner
and a gravitino. This implics, for example, that a pure right-handed stau LOSP 7r can
only decay to a gravitino and a right-helicity tau 7g, despite the fact that after electroweak
symmetry breaking, there is no symmetry forbidding the decay to a left-helicity tau 7.
For concreteness we will focus on a bino-like LOSP throughout this chapter, though

many of the following arguments hold with only minor modifications for a wino, as well. In

that case, the supercurrent in Eq. (3.2) permits the decay A — ’y/Z—%—CNJL via the second term
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Figure 3-4: The standard decays of a bino-like LOSP to the longitudinal gravitino. They are
primarily to a photon or Z (left), though the bino may also decay to a Higgs via its Higgsino
component (right). The derivatives in Eq. (3.2) yield the Yukawa coupling labeled here,
proportional to the mass-squared difference of the on-shell bino and Higgs. A cancellation
between the two possible intermediate Higgsinos means the propagator contributes a factor
of ;=2 to the amplitude at leading order, leading to a very large suppression of this channel
in the Higgsino decoupling limit. Feynman diagrams throughout follow the framework of
Ref. [61].

in the supercurrent. There is also a possible decay A — hY + G 1, where h® is the physical
Higgs boson, but since this occurs entirely through the Higgsino fraction of the LOSP, it will
be comparatively suppressed.® Explicitly, to leading order in my /g, the dominant LOSP

partial widths are

my cos? By

I, 672 (3.3)
m?3 sin? Oy M2N\*
r, = ’\7 1 ——a ) . 3.4
“ 167 F2 ( m3 ) ‘ e

where my =~ M, is the bino-like LOSP mass, and fy is the weak mixing angle. The

subdominant width to Higgs bosons is

2002 05 o2 a2 2 N 2
Lo = my M7z my sin® Oy cos® 23 Mo (3.5)
' put 327 F? m3

where tan 3 = v, /vy. Feynman diagrams for these standard decays are shown in Fig. 3-4.

3.2.2 Additional Operators?

In the case of the true goldstino G L, its couplings are saturated by Eq. (3.2). But if the
LOSP were to decay not to a true goldstino but to a generic neutral fermion ¢, then there are

many more operators that might mediate LOSP decay instead. For example, the dimension

3 . : : : ;
See Ref. [127] for a recent discussion of more general neutralino decays.

59



5 operator
O%:Cﬁ%AdH@JﬁY (A= h® +¢) (3.6)

mediates the decay A — h® + ¢ after electroweak symmetry breaking. Here, the coefficient
w/ F has been chosen with malice aforethought, as this will turn out to be the approximate
scaling behavior for the eaten goldstino. The subscript. R indicates that this operator will

preserve a U(1)p symmetry once we identify ¢ with an uneaten goldstino of R-charge 1.

There are also additional operators at dimension 5 which violate this U(1)z symmetry,

5 _ 5 M
O}}é,u-d - Cﬂ,udf/\C(Hu : Hd)a (37)
5o o8 Paet
Oﬂ..u - Cﬂ’uF/\CHuHuv (38)
L
Opy = Cp g CHIH. (3.9)

Considering these O operators together, the partial width for the decay A — h? + ¢ is

o 2 A2 B in? 20\ 2
—_— ( 5 )2 1Mz ms sin® Oy - Mo
ho — 2 ‘

.10
net mi 327 F2 ms (3.10)

Here, we have defined

2 5 5
Co. = g ((C;g + C%MD cos(a+ 3) — 2C;,u sin fcos a + QC';’d cos 3 sin a) ,  (3.11)

with « being the physical Higgs mixing angle. Thus, if somehow the O° operators were
dominant over operators like those in Eq. (3.2), then the decay of a pure bino LOSP to a
Higgs would dominate over the decay to a 7/Z. Note that the O operators only mediate a
decay to one or more Higgs bosons, and not to a longitudinal Z, due to the gauge invariance

of the scalar portion of the operators.

Now, in the conventional goldstino case, there is a sense in which the O° operators arc
indeed gencrated after integrating out the Higgsino as in Fig. 3-5. This occurs not in the
derivatively-coupled basis, but rather in the non-linear goldstino basis described in Sec. 3.3.

The pertinent combination of Wilson coeflicients attains the value

m?2, —m?, )sin28 + 2B, cos 23
o3, — M, = i) S0 20 . [+o(@g, (3.12)

net — 2
% I
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Figure 3-5: Additional diagrams which could contribute to LOSP decay. The dimension 5
operator (left) can be generated by integrating out an intermediate Higgsino (right). There
is also a diagram with h° and (H) reversed. However, if ¢ is a longitudinal gravitino G,
then the width T'(A — h” + ¢) vanishes in the Higgsino decoupling limit.

which MSSM aficionados will recognize as being zero for the tree-level Higgs potential in
the decoupling limit |u| 3> Mz—the same limit in which it was legitimate to integrate out
the Higgsinos in the first place (see App. A.1 for an explanation of this cancellation). This
is as it must be; the physical predictions in this field basis must agree with those of the basis
corresponding to the supercurrent picture of Eq. (3.2), in which the decay rate to Higgs

bosons is highly suppressed.

However, because C},

. = 0 arises only because of a delicate cancellation in the true
goldstino case, any deviation will give rise to additional LOSP decays beyond the supercur-
rent prediction. In particular, if there are multiple sectors that break SUSY [42], each of
which contributes only partially to the SSM soft masses, then the couplings of the uneaten
goldstini cannot be determined by supercurrent considerations.? In general, the goldstini

will have very different couplings from the gravitino; concretely, the goldstini need not be

derivatively coupled to observable-sector particles. For a generic uneaten goldstino

(m‘}!lu — 'ﬁ’“%m) sin.Qﬁ -+ 25’“ cos 2/ 8 (m,\) ’

5 _
Cnet - 2 T3
M

(3.13)
where the tildes indicate the linear combination, appropriate to the given goldstino, of
contributions from the SUSY-breaking sectors to the corresponding soft mass. These pa-
rameters need not cancel and thus a pure bino LOSP can exhibit the counterintuitive decay

to a Higgs boson and an uneaten goldstino.

*This fact was recently exploited in Ref. [37] to arrange for goldstini dark matter with leptophilic decays.
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Figure 3-6: Representative diagrams contributing to the dimension 6 operators. After
integrating out the intermediate Higgsinos or sfermions, these diagrams mediate LOSP
decays to Z bosons and SM difermions, as well as generating additional LOSP decays to
B,

3.2.3 Goldstini and R Symmetries

The differences between LOSP decays to an eaten goldstino versus an unecaten goldstino
become especially striking in the presence of a U(1)g symmetry, and they will be the main
example in this chapter. Consider the case of two SUSY breaking sectors as in Fig. 3-2
where the uneaten goldstino is associated with a sector 2 that preserves an R-symmetry.
As we will argue in Sec. 3.3, if the scale of SUSY breaking in sector 1 is much higher than
in sector 2, i.e. F} = Fb, then we can ignore the standard LOSP decay to a gravitino, since

it will be overwhelmed by the LOSP decay to the uneaten goldstino from sector 2.

The gaugino soft mass terms violate the R-symmetry, so a bino LOSP cannot undergo
the associated decay to a v/Z and the uneaten goldstino (. Instead, it must (at tree level)
decay to the uneaten goldstino via a virtual Higgsino or sfermion as in Figs. 3-5 and 3-6,
producing a Higgs h", an arbitarily-polarized Z, or two SM fermions 1) in the process.

To understand this effect more clearly, note there are only a limited number of R-
symmetric operators that can mediate the decay of a bino LOSP to an uneaten goldstino
and standard model particles once the Higgsinos and sfermions are integrated out. At
dimension 5, only O% respects the R-symmetry; the other O° operators are associated with
the R-symmetry-violating B, term. At dimension 6, we will show that the only operators

consistent with gauge symmetries, R-parity, and our imposed R-symmetry are

. -
Og.1 = %icfﬁ“)@@u@ (A= h/Z + ), (3.14)
CG
Ob . — P2 . ot _p i 0 =
b2 = —5 il MND, 2N (A= h°/Z +0), (3.15)
< P )
Oy = 7 (1) (wA) (A = ¥ +©), (3.16)
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where ® stands for cither H, or Hgy, 1 is an SM fermion, and we have indicated in paren-
theses the corresponding LOSP decay mode. The values of the Wilson coefficients C® are
omitted here for clarity; they are given explicitly in Eq. (3.33). Despite the fact that we
have integrated out a Higgsino/sfermion, these operators are not suppressed by the Hig-
gsino/sfermion mass as there is a canccllation between the propagator of the virtual heavy
particle and its coupling to the goldstino. We will explain this fact in more detail in Sec. 3.4;

it is sufficient to note for now that the Og, are suppressed by a power of u relative to O%.

The relative importance of 0%, Og,w and ij} for LOSP decays depend sensitively on
the SSM parameters. In general, the three-body decay A — ¥ + ¢ is subdominant to the
two-body decays A — h%/Z + (. As mentioned already, (’)"2{ only mediates a decay to Higgs
bosons, not to longitudinal Z bosons, whereas O?p,i can yield either, or even a transverse Z.
One might naively expect O% to dominate over (’)g’i, since the dimension 6 operator has
a decay amplitude suppressed by my/u. However, C’)‘;’% contains H, - H; which involves an
additional 1/tan 8 suppression in the large tan 8 limit, while the operators O?Iw have no

such suppression. Thus, the dimension 6 decays are only suppressed by

my tan 3
7

Ifl

(3.17)

compared to the dimension 5 decays, which may not even be a suppression at large tan 3.

In Fig. 3-3, we showed the LOSP branching ratios as a function of both € and the most

important other free parameter in the theory

m2

HKL
tany = 2 (3.18)
Hd

which is the ratio of the contributions to m% and m%l from the sector containing the un-
k73 ¢

eaten goldstino. For special values of 7, the decay mode A — Z + ( can either be completely
suppressed or enhanced relative to A — kY +¢ due to cancellations. Our main interest will be

in the Higgsino decoupling limit with small €, where the Higgs mode generically dominates.

Thus, in the presence of a R-symmetry, the LOSP decay to an uneaten goldstino gives
a boost to Higgs boson production, even if (and cspecially if) the LOSP has a negligible
Higgsino fraction. Moreover, the decays to the uneaten goldstino, whether featuring a

Higgs boson or not, will completely dominate over any decays to the gravitino if there is

63



an appropriate hierarchy between the two SUSY-breaking scales, as we will describe in the

next section.

3.3 Goldstino and Gravitino Couplings

Having understood the possibility of enhanced A — h® 4 ¢ decays from an operator per-
spective, the remainder of this chapter will show how precisely this works in the explicit

example of multiple SUSY breaking sectors.

3.3.1 The General Framework

As in Ref. [42], we consider two sequestered sectors, each of which spontaneously breaks
SUSY. Each sector has an associated goldstino (1, and 72, respectively), and we characterize
the size of SUSY breaking via the goldstino decay constants (Fy and Fy, respectively). Each
SUSY breaking scctor can be parametrized in terms of a non-linear goldstino multiplet

1109, 42]
n?

X; =
i oF;

+V20n; + 0°F;, (3.19)

for i = 1,2. We define the quantities

; : F
F=\/F}+ F}, tan = FQ’ (3.20)
1

and we take tanf < 1 (F} > Fy) without loss of generality.

The combination Gj = sinflr; + cos@ny is eaten by the gravitino to become its
longitudinal components via the super-Higgs mechanism, but the orthogonal goldstino
¢ = cosf8mn — sinfne remains uneaten and will be the focus of our study. For simplic-
ity, we will work in the Ap; — oo limit where the uneaten goldstino remains massless,
though in general ¢ will get a mass proportional to mgz/, via SUGRA effects, in particular
m¢ = 2mgyo in the minimal goldstini scenario [42]. In addition, variations in the SUSY-
breaking dynamics [45] or induced couplings between the two sectors [42, 10] can modify

.
the mass term for (.°

5 At minimum, one expects loops of SM fields to generate me msoﬂ,/(l67r2)" [42], where n depends
on the number of loops necessary to effectively connect sectors 1 and 2 and transmit the needed U(1)gr
breaking. The uneaten goldstino will also obtain a tree-level mass due to mixing with the neutralinos, but
this is of order 1/F? and is comparatively negligible.
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Supersymmetry breaking is communicated from the two hidden sectors to the visible
sector by means of a non-trivial Kéhler potential and gauge kinetic function (presumably
coming from integrating out heavy messenger fields). Some representative terms contribut-

ing to the SSM soft masses are®

TTL2 . s
K = o) Tj’X}X,L-, (3.21)
1 2M, ; ‘
fub = g_zéab (1 + Z __F#Xl) s (322)
a i 2

where = 1,2, and @ stands for a general SSM multiplet. These yield the following terms

in the Lagrangian up to order 1/F [23]:

2
- ey ;
= _ E 'rrzil-cj) o+ E ;L7]i/¢¢*

- Z]V[a AENE Z 1M, a,i ialu/)\uFu + Z f )\aDa (323)

Thus, the parameter m (]\[a ;) is the contribution to the SUSY-breaking scalar (gaugino)
mass from each rcspcctlve sector. Note that they are intrinsically related to the coupling

of the SSM fields to the goldstini.

Rotating to the G 1~ basis yields similar interaction terms for the caten goldstino G,

and the uneaten goldstino ¢,

iM, ~ M, -~

Lrn = 0 o+ ———G Lo N, + —==G A" D, 3.24

G Wt Bt (3.24)
m? iM, M,

Lo = 00" + = (oA Fy, + XD 3.25

where the untilded and tilded mass parameters associated with gauginos denote

A/[a - ]\/[a,l + A’fa,‘Zv (326)

M, = M,yycotf — M, tan6, (3.27)

with the analogous notation for the scalar mass-squared parameters., Throughout, we will

“We only give the Kihler potential for a single species of scalar; more general A and B-terms involving
multiple species can also be formed.
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work in the limit cot @ > 1, for which we can take

AT 2 2
M, M, my o mg

3.28
F 7 F Ey ( )

In this limit, as long as any of the M, or m?b’2 are at least on the order of the weak scale,
LOSP decays to gravitinos are very suppressed and can be ignored for collider purposes. We
see that as predicted via the supercurrent, the true goldstino G L couples to SSM fields in
proportion to the physical soft masses. In contrast, ¢ couples via the tilded mass parameters
which in the cot 8 > 1 limit are proportional just to the contribution of sector 2 to the SSM

soft masses.

3.3.2 The Decoupling and E-symmetric Limit

In this chapter, we will focus on the Higgsino decoupling and R-symmetric limits. That is,
we will be considering the limit where u is large compared to my, and the limit where sector
2 preserves a U(1)g symmetry. There are a number of important features of this limit.

When the Higgsinos are decoupled, the soft terms m%[u, m%[d, and B, must scale as
O(p?) in order to get successful clectrowecak symmetry breaking.” We can sce from the
above Lagrangian that the coupling of G/ to a Higgsino and a Higgs is proportional to
these O(u?) soft SUSY-breaking masses. The same is true for the couplings of ¢ if we
make the additional simplifying assumption that the tilded mass parameters scale in the
same fashion, so long as this is not forbidden by a symmetry. With one noted exception
in Sec. 3.6.2, however, our results do not depend on this assumption. From the diagrams
in Fig. 3-5, onc would naively expect the amplitudes for the decay of a bino LOSP to
the physical Higgs and either goldstino via a virtual Higgsino to be of order p and thus
dominant over other decays to the same goldstino in the decoupling limit. As we will argue
in Sec. 3.5.2, there is a cancellation in the G 1 case which renders the decay A — AV + Gl
small, whereas for ¢, the decay A — h" + ¢ can indced dominate.

In the limit where sector 2 is R-symmctric, the contribution from sector 2 to SSM A-

terms, B-terms, and gaugino masses is zero. Most relevant for our purposes, this implies

“Strictly speaking, this is only true for the combinations m%u and m%,d + B, tan 3 (working in the large
tan 8 limit). However, if one simultancously decouples the hcavy Higgs scalars in the same way, so that
mio is of order p?, then all three soft mass parameters scale as 42 barring accidental cancellations. Qur
later results for the uneaten goldstino are robust against this assumption, since mi,“ has the desired scaling
properties regardless.
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that E# and M, 1 are nearly zero. The absence of a Eﬂ term implies that the cancellation
in Eq. (3.12) seen for G [, cannot persist for the uneaten goldstino (. The absence of a M 1
term means that the LOSP decay to a v/Z and ( is highly suppressed.® Both of these facts
imply a large A\ — h% + ¢ branching fraction. Depending on the relative importance of the

dimension 5 or dimension 6 operators, the mode A — Z 4 ( can be large as well.

3.4 Higgsino Decoupling Limit Effective Field Theory

Starting from the above goldstini framework, we can now systematically describe which
operators contribute to bino LOSP decay in the Higgsino decoupling and R-symmetric
limits. We will then give the resulting decay rates for the three main decay modes: A —

R+ X = Z 4 ¢ and A — Yo + (.

3.4.1 Leading R-symmetric Operators

In the Higgsino decoupling limit, it is convenient to organize the LOSP decay operators in
terms of the small parameter my/u. This may be accomplished practically by intcgrating
out the heavy Higgsino degrees of freedom, yielding an effective field theory with successively
higher-dimension operators suppressed by additional powers of ;1. Away from the decoupling
limit, App. A.3 describes how to calculate the LOSP branching fractions for arbitrary u.
For simplicity, we will take F} > F5, in which case the couplings of the uneaten goldstino
are completely determined by sector 2.

Recall that in the MSSM, gauginos have R-charge 1, Higgs multiplets have R-charge
1, and matter multiplets have R-charge 1/2. For an R-symmetric SUSY breaking scctor,
the corresponding goldstino has R-charge 1. Putting this together, at dimension 5, there is
only a single operator contributing to bino LOSP decay consistent with the symmetries of

the theory (including the imposed R-symmetry):
08, = C}"z%)\q(Hu CHy)*. (3.29)

This operator may mediate the decay of a bino LOSP to the uneaten goldstino and one or

two physical Higgs bosons h°.2

In the alternative limit where sector 1 preserves an R-symmetry, one expects A — v/Z + ¢ to still be
relevant, but that will not be the focus of this chapter.
9Cauge invariance of the scalar portion of the operator forbids production of goldstone bosons (i.e. lon-
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At dimension 6, there are three sorts of additional operators:19

6
04, = C}f_’,’lic*a“A@TD,ﬁP, (3.30)
6 Can. 1. i o
0fs = —Fricla"ND,e)e, (3.31)
CG
of, = (N, (3:32)

where ® stands for either H, or Hy, and v is a standard model fermion. The dimension 6
operators Of . may produce a Z boson (longitudinal or otherwise) instead of or in addition
to any Higgs boson production. The dimension 6 operator 02) will produce a difermion pair

instead.!! The effects of (’)2], but not the others, were considered in Ref. [42].

We have omitted two possible R-symmetric operators, c{)“CUV/\TFW and 6“{0”)@‘? v
which could mediate the decay of the bino to a photon or Z and the goldstino. It is clear by
examining the original Lagrangian of Eq. (3.25) that in the R-symmetric limit with Ml =0,
a decay to a photon cannot occur at tree-level, so that any effects of such operators will be

suppressed comparcd to the others of the same mass dimension.

The valucs of the Wilson coefficients for the above operators can be found by matching

onto the original Lagrangian of Eq. (3.25):

R — /i2 5 Hy,l — \/5/1,2 s “Hal \/§M2 "
6 / ﬁz(Zb 6 6
Cy = —V2gYy—, Y, =0, CY0 =0, (3.33)
¢

Here, ¢’ is the hypercharge gauge coupling, Yy, is the hypercharge of the relevant SM fermion,
and the tilded mass parameters are defined in Eq. (3.27). Inverse powers of the Higgsino
mass-squared p? and scalar mass-squared mi appear as cxpected, since these are the masses

of the fields we are integrating out.

gitudinal W/Z bosons), and the heavier Higgs bosons A%, H, and H* are of course kinematically excluded
in the decoupling limit.

19%We have used integration by parts to move all derivatives off of A, and used field redcfinitions to eliminate
terms proportional to the equations of motion of the goldstino and gauge bosons. We elect not to use field
redefinitions to eliminate terms proportional to %9, A, as the resulting operators (arising from the gaugino
mass term) would violate the R-symmetry.

"'This operator arises from integrating out intermediate sfermions as opposed to Higgsinos, so our power
counting may be spoiled if there are any relatively light sfermions. We will later explicitly calculate the
decay rate for A — 9t + ¢ at tree level to all orders in mi/mi to account for this possibility.
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The key observation is that the above Wilson cocfficients are still order O(p") in the

Higgsino decoupling limit,'? since the soft masses scale as O(p?). Thus, even if the LOSP
has negligible Higgsino fraction, there are relevant bino-goldstino-Higgs couplings. As ad-

vertised, the leading decays in the Higgsino-decoupling and R-symmetric limits are
A RV ¢, A= Z+¢, A= Y+ C. (3.34)

Now, using the cffective operators of Sec. 3.4.1, we can calculate the various bino LOSP
decay widths in the Higgsino decoupling and R-symmetric limits. Possible R-violating

decays arc described in App. A.2.

3.4.2 Decay to Higgs Bosons

The contributions to the A — k% + ¢ decay from the dimension 5 and dimension 6 operators

may be expressed in terms of an effective Yukawa interaction for on-shell states: '3

Mzpusinfy (o my Qe
Eef‘f - _—\/_§—F— net + Tcgct )‘gho' (335)

The coefficients C2., and CO,, are appropriate linear combinations of the Wilson coefficients
of the dimension 5 and 6 operators, respectively, and are given explicitly in App. A.2. In
the decoupling and R-symmetric limits, they take on the values

5
net

(3, —m3 )sin2p -
— ., (3.36)

o m%,u sin® 8 — ﬁl:led cos? 3

net

= (3.37)

The dccay rate via this channel is

r_ map? M2 sin? Oy, 5 A 6 ? 1 Inliu 2 (3.38)
— 327’1’F2 net /L ‘net Tn?\ : ’

2Note that they are not of order 1, but rather of order cot 8. We have chosen to leave such dependence in
the Wilson coeflicients, rather than replacing £ with £ everywhere, so that the only modification needed
to describe the couplings of the eaten goldstino is to remove tildes from all soft mass parameters.

" This is not strictly speaking the whole story; the bino may also decay via two local dimension 5 operators
(0% and ANH. - Hy)" or their wino cquivalents) connected by a virtual wino or bino. However, their
contributions to the decay amplitude are suppressed by my/(ptan 8) compared to that of Of alone, or
1/ tan? 8 to those of the dimension 6 operators, and can be safely ignored in most limits.
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In the extreme decoupling limit, we would expect the C°

et term, arising from the di-

mension 5 operator, to dominate over the effects of any dimension 6 operators, which are
naturally suppressed by a factor of my/u. However, our power counting may be spoiled
for large tan B, due to the factor of sin28 =~ 2/tan 8 in C2,. In the event that tan 3 is of
the same order as u/mj, we cannot neglect the dimension 6 operators. There are no such
complications for the dimension 7 or higher operators, which may be safely ignored in the
decoupling limit.

As a side note, there are only a few changes to the above calculation if we consider a
wino LOSP. There are now two allowed operators at dimension 5—namely, A*¢(H,T%- Hy)*
and A\*C(H, - T*Hg)* but the results throughout are almost identical, requiring only the
replacement g’ — —g or sinfy — —cosfy (as the neutral Higgsinos have 7% and Y
differing only by a sign). In particular, one can verify that there is no net coupling to the
Z boson from the dimension 5 opcrators,!* so the neutral wino LOSP decays dominantly

to Higgs bosons in the small (my tan 8)/p limit.

3.4.3 Decay to Z Bosons

The dimension 5 operator does not contribute to Z decay. The dimension 6 operators
mediate the decay A — Z 4 ( due to the presence of covariant derivatives. Expanding the

Lagrangian in unitarity gauge, we find a relatively simple coupling to the Z boson:

B Mé sin Gy,

L
V2F

Crer, 2814 NZ,, (3.39)

with C% . . being a different linear combination of the Wilson coefficients of the dimension

6 operators. The definition of Cget. » 1s given explicitly in App. A.2, and attains the value

~2 2 ~ 2 2
6 myy sin ,6+de cos” 3

Cret,z = — 2 (3.40)
in the decoupling and R-symmetric limit. The resulting decay rate is
M2Zm3 sin? Oy 2 M2\? M?2
y="22A" "7 (C8, -—Z) (1+2=£). 3.41
Z 327rF2 ( IILL,Z) mg\ mi ( )

"Dimension 5 operators can, however, induce a At —» W*(¢ decay. Such decays may well be phenomeno-
logically interesting, as the competing observable-sector decays (AT — [Tz, AT = 75 g, et al. [36]) can be
highly suppressed due to the near-degeneracy of the chargino and wino. However, such decays are certainly
not specific to this R-symmetric limit, or even to the multiple goldstino model.

70



3.4.4 Decay to Difermions

Finally, the opcrator 03 mediates the decay of a bino LOSP to a goldstino and a fermion

pair. The decay rate from just this operator is

o m‘;’\ sec? Oy OéEMY,f ﬁlé s 4
Fq/n/l - 397 F2 197 m—i (3. )

in the limit of vanishing fermion masses.'®

As argued in Ref. [42], the decay rate is non-zero even in the limit of very large scalar
masses. However, due to the factor of CMEMY,(? /(127), the decay rate to fermions is typically
subdominant to the Higgs and Z modcs, cven after summing over all possible fermion final
states. One might wonder whether there could be an enhancement at modcrate values of the
scalar masses. Calculating the explicit tree-level decay rate for this mode to all orders in the
scalar mass (while still working in the Higgsino decoupling limit), the result in Eq. (3.42)

is multiplied by a function f [mé / m‘f\]:

flz] = 622 (5 + 62+ 2(x — 1)(3z — 1) log [1 - —H) ~ 1+ ! +0 (%) . (3.43)

S5z

This function never grows larger than 6 (at mg = my), and drops off quite sharply from
that value as mg increases. For example, mg must be less than 1.25m, for f to be greater
than 2. Thus, the difermion mode is indeed subdominant. The sole exception occurs when

ﬁzfqu and ﬁlfqi arc both close to zero, where the Higgs and Z decay modes are suppressed.
L 1

3.5 Comparisons to the Gravitino Case

Before showing results for bino LOSP branching ratios in the next section, it is instructive
to compare the R-symmetric goldstino results in Sec. 3.4 to the more familiar case of a grav-
itino. Indeed, the existence of a bino-goldstino-Higgs coupling in the Higgsino decoupling
limit is quite surprising from the point of view of the more familiar longitudinal gravitino
couplings, where it is known that the decay A — AY + G 1, is highly suppressed. In this

section, we will go to the Higgsino decoupling limit and calculate the effective interactions

'5We also neglect here possible contributions from interference between diagrars featuring this operator
and diagrams in which the fermions originate from an off-shell Higgs or Z produced by one of the other
dimension 6 operators,
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for a longitudinal gravitino. In the decoupling limit effective theory, we will find seemingly

miraculous cancellations enforced by supercurrent conservation.

3.5.1 Additional Operations for the Gravitino

In the Higgsino decoupling limit for a longitudinal gravitino, the operators from Sec. 3.4.1
persist after the replacement ¢ — G, and they have the same Wilson coeflicients as
Eq. (3.33) after removing the tildes from the soft mass parameters. In addition, there
are eight R-symmetry-violating operators at dimension 5 and 6 which contribute to bino

LOSP dccay. Their associated Wilson coefficients can again be found by matching!®

M 1

Op = Cppp A" GrEu, Chn = 75 (3.44)
O;Q,Hu- 1;2111, HdF/\GL(H - Hg), C;,Hu.Hd =0, (3.45)
O 1 = Chy FAGLHLH,, Ch o = % (f—g = -]2%) , (3.46)
O;é,ud - ;}?’dF)‘G[H Ha, C]?(’,.H(, = \‘% (f—’; - %) , (3.47)
(9%1 _ Cjz,l G GRA(H,y, - D, Hy)*, C;J = \g/’;’; (3.48)
O = % iGLE N Dy H, - Hy)*, Cho=— f]/g*; (3.49)
Oy = MZGTL”“A(H - Dy Hg), Cps="0, (3.50)

O, = ;é %iGh 5" N(DH, - Hy), Chy =0 (3.51)

The first operator 0% is exactly the sccond term in Eq. (3.24). The terms proportional

to M in Cﬁ and Cﬁ derive from the third term in Eq. (3.24), which contains the
) Hy 3 d

auxiliary field D. The remaining contributions arise from the R-symmetry-violating B,

term.
Looking at these Wilson coeflicients, one might (erroneously) conclude that in the Hig-
gsino decoupling limit, a bino LOSP should dominantly decay to a gravitino via a physical

Higgs instead of via a v/Z. After all, the leading order bino-goldstino-Higgs couplings come

8 There are also analogous results in the case of an uneaten goldstino in the absence of an R-symmetry,
as long as tildes are added to the soft mass parameters and G, is replaced with ¢. See App. A.2.
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- : I O R |
from four dimension-5 opcrators—Oy, Oﬁ?, ol

by a factor of pu/my compared to the bino-goldstino-y/Z coupling from O3,.

O} 7. and O H —which are enhanced
i s H

However, we know this not to be the case for the gravitino. From conservation of
the supercurrent, the decay rate for A — h® 4 éL given in Eq. (3.5) is suppressed in the
decoupling limit by a factor of O(m3 M2 /u*) from the decay rates for A — v/Z+Gp given in
Eqs. (3.3) and (3.4). Apparently, when calculating the decay rate of a bino LOSP to a Higgs
boson and a gravitino using the decoupling limit effective field theory, the contributions
to the amplitude from the dimension 5, dimension 6, and dimension 7 operators yield

cancellations up to three orders in the my /p expansion.

3.5.2 Miraculous Cancellations

The easicst way to see that there must be a cancellation is to go back to the gravitino
coupling from Eq. (3.24) before integrating out the Higgsino. We can make a standard

SUSY transformation on all of our visible sector fields with infinitesimal parameter G/ F,
1 = $ I3
6 = 6+ 1w, (3.52)

with similar expressions for other fields. This is an allowed field redefinition since it leaves
the one-particle states unchanged. Since the coefficients of the SUSY-breaking mass terms
and the couplings of C:’L are identical up to a sign, the coupling terms (at order 1/F) cancel
under this transformation. This cancellation is special to the caten goldstino and does not
in general occur for an uncaten goldstino. The SUSY-respecting part of the Lagrangian
will clearly remain unchanged under this field redefinition except for terms proportional to
OHCNJ r- Thus, Gl only couples derivatively to MSSM particles, and does so in exactly the
manner described by the supercurrent formalism of Eq. (3.2).

It is also instructive to sec how this cancellation works in the decoupling limit effective
field theory. The A — AV + G 1, decay may still be completely parametrized as a Yukawa

intcraction as in Eq. (3.35) for the leading two orders in my /p:'’

L = ma
L

Mz psin Oy (Cﬁ N
- net

—~AF ijet) AG LR, (3.53)

"The diagrams featuring two dimension 5 operators connected by a virtual bino or wino cancel separately.
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Figure 3-7: These diagrams, which we would expect to yield O(u) contributions to the
X = BV, amplitude, cancel among themselves.

v . 5 3 . - -
The coefficients C3,, and CS,; have new contributions proportional to B, and M;:

(m¥, — mf{d) cos(a + B) — 2By sin(a+ 8) M,

Coet = > + m sin(a + 3)., (3.54)
12 s 2 2
: m3;, cos Bsina+ my; sinBcosa — By, cos(f —
Che = — e P — o (3.55)

12

If one uses the tree-level relations for the parameters in the Higgs potential (see App. A.1),

these simplify considerably:

5 M cos 2 M? : M2
2= M1 602 + @ ( 27) ; C8, =cos28+ 0O ( 22) : (3.56)
i I 1

We see that the O(1) term in C2

et have cancelled entirely, and the O(M, /u) term, which

arose from the A\G D term in Eq. (3.25), cancels against C®

. since My = m. at this order.
net 1 A

Diagrammatically, the first cancellation is among the diagrams in Fig. 3-5, and the second
cancellation is among those in Fig. 3-7. There is yet another cancellation at the next order
in 4 involving dimension 7 operators, but it is not instructive to show it explicitly here;
it may be verified using the methods of App. A.3 after diagonalizing the neutralino mass

matrix order by order in .

3.5.3 Why Goldstini are Different

These miraculous cancellations for the gravitino case, removing the leading three orders of
contributions to the bino LOSP decay to Higgs, are very specific to the gravitino and the
values of its associated Wilson coefficients. There is much more freedom in choosing the
couplings of the uneaten goldstino. Concretely, the Wilson coefficients feature the tilded
versions of soft SUSY-breaking mass parameters, recalling ﬂ = M; s cot @ — M; ; tan 8 from

Eq. (3.27). These tilded parameters need not satisfy any a priori relation among themselves,
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and thus the cancellations above will not occur in general for a goldstino.

Said another way, the mechanisms which ensured the cancellations for the gravitino are
not applicable in the goldstino case. The field redefinition of Eq. (3.52) madc it manifest
that the gravitino couples derivatively to observable sector fields, but the same cannot be
done in general for the uncaten goldstino. We could attempt to remove one such coupling

with the same sort of SUSY transformation, with

2

1 7, .

¢ — ¢+ =t (3.57)
Fm >

but unless ﬁLé / mi = Ha /M, for all scalar and gaugino mass terms, there is no transforma-

tion that will remove all such couplings and make ¢ purely derivatively coupled.

Thus, onc cxpects a varicty of counterintuitive LOSP decay patterns in the presence
of goldstini, such as wrong-helicity decays like 7p - 71 + (, flavor-violating decays, or
reshuffled neutralino/chargino branching fractions. Of course, the phenomenological differ-
ences hetween a longitudinal gravtino and an uneaten goldstino are highlighted when the
“standard” decay is forbidden. This is precisely the case for our bino LOSP in the Higgsino
dccoupling and R-symmetric limit, where the standard v/Z decay is suppressed and the

novel h° mode can dominate.

3.6 Branching Ratio Results

We now discuss the bino LOSP branching ratios in the presence of multiple SUSY breaking
sectors, using the R-symmetric setup from Fig. 3-2. In the bulk of parameter space, the
decay mode A — ¥ + ( is suppressed, so we will first focus on the branching ratios to
Higgs and Z bosons, neglecting any three-body decays. A brief discussion of what happens

away from the R-symmetric limit appears in Sec. 3.6.3.

3.6.1 Higgs and Z Boson Branching Ratios

When three-body decays can be neglected, the dominant phenomenology is determined by

the two parameters

~ 2
my tan m
€= )‘—ﬁ, tany = ~12q“ , (3.58)
I my
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Figure 3-8: Branching ratios for A — h" + ¢ in the e~ plane for tan 3 = 5 (left, same as
Fig. 3-3) and tan 3 = 20 (right), respectively. The remaining branching ratio is dominated
by A — Z 4+ (. The main differences between the two plots arise because at larger tan 3,
the kinematically excluded region m) < m{ (which bounds the left plot) is not encountered
until larger e. In this and the remaining plots, we have fixed M; = 165 GeV, which is
mainly relevant for setting the phase space factors in the partial widths.

previously mentioned in Eqgs. (3.17) and (3.18). Using the partial widths calculated in
Eq. (3.38) and Eq. (3.41), the branching ratio for the bino LOSP decay to h" or Z, assuming

both are kinematically allowed, may be expressed in the relatively compact form:

e~ ler! 2
Br(x — h%) = ( o _)] 5 Br(A — Z() = ! —. (3.59)
1+(‘”%) 1+(i;—(L)

In particular, the branching ratio to Z bosons is a Lorentzian in ¢! and is thus negligible

for small €, as expected. The Lorentzian is centered at ¢ ! with a width w,

_ 1 —tan~y tan? I5]

1 .
— . ) 3.60
‘o 2tan? B(tany — 1) 54

1 + tan 7y tan? 2 _ M2 M2
s S ] B i BN o (3.61)
2tan® B(tany — 1) \ m5 —mj, my

where the precise values of ¢ Iand w depend on the Higgs soft mass ratio tan~, tan 3, and
various kinematic factors. Of course, additional three-body decays, whether to fermions or

to multiple Higgs or Z bosons, will spoil the simplicity of these expressions.

Plots of the branching ratio to Higgs in the e~y plane are shown in Fig. 3-8, and slices
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Figure 3-9: Branching ratios for the bino LOSP as a function of € for fixed values of tan~.
These are all slices of the left plot in Fig. 3-8 with tan 3 = 5 and M; = 165 GeV. The solid
curves are the all-orders result from App. A.3, while the dashed curves are from the Higgsino
decoupling effective theory in Sec. 3.4. The curves are Br(A — hYC) (blue), Br(A — Z()
(red), Br(A — ¢4¢) (green), and Br(A — ¢) (vellow). The decay to Higgses dominates
in the small e limit, with the next most relevant mode being the Z. The branching ratio
to difermions is calculated using the results of Sec. 3.6.2, taking the parameter p defined in
Eq. (3.64) to be 1.0. As advertised, this branching ratio to difermions is very suppressed,
and the branching ratio to photons is essentially zero.

through that plane are shown in Figs. 3-9 and 3-10. In the latter plots, the solid lines are
the all-orders tree-level calculations from App. A.3, while the dashed lines are the analytic
results obtained using the Higgsino decoupling effective theory from Sec. 3.4 (while still

using the all-orders result for the physical LOSP mass my).

The small € limit corresponds to the extreme Higgsino decoupling regime, where not
only |p| = my, but the tan 3 suppressed dimension 5 operator O‘?{ dominates over the
dimension 6 operators. Thus, generically, for small €, the decay is overwhelmingly to Higgs
bosons, as expected. However, there is an exception for the region around tan~y = 1. When
tany = 1, ffz'ﬂ“ — ﬁt'f{d and C?., are both zero and the branching ratios to Higgs and Z

bosons should be roughly equal up to phase space factors. For tan~ slightly removed from
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Figure 3-10: Same as Fig. 3-9, but with branching ratios given as a function of + for fixed
values of e.
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unity (downwards for € > 0, upwards for € < 0), C?

o . will destructively interfere with C°

net
and the Z mode will dominate.

Moving away from small €, we expect the Z branching ratio to increase, as the contri-
butions from dimension 6 operators to bino decay arc roughly cqual for the Higgs and Z
modes. This is shown in Fig. 3-9. The effects of interference between the dimension 5 and
dimension 6 operators on the Higgs amplitude also grow more pronounced for larger €. For
e > 0, the interference is destructive for tan~ € (1/tan? 4, 1), and vice versa for ¢ < 0.8

For extremely large €, the approximations based on being in the Higgsino decoupling
limit break down as my/p approaches O(1). Ultimately, the Higgs mode is kinematically
excluded once the mass of the lightest neutralino (by now predominantly Higgsino) drops

below the Higgs mass.

3.6.2 Difermion Branching Ratio

In most of parameter space, the decay mode A — ¢ +  is suppressed. We can see this

most clearly by comparing the decay rate to all fermion species to the decay rate to a Z:

Zw FW; B OEM > Y/L-QTffi mi ) M’% -2 L4 2]\[% -1 (3.62)
Iy ~ 3rsin? 26y, (Cﬁ )2 M m3 m3 ’ )
‘net,Z

where 7; = ffzil / m?b,, and fi = f [m?m Jm3], with the function f defined in Eq. (3.43).

For concreteness, consider the limit where tan3 > 1, |u|,mg, > my, and the 7; are
all equal to a common value 73. The sum over SM fermion hypercharges (excluding the
presumably kinematically inaccessible top) is 103/12. Assuming that the tree-level rclations
between the soft masses approximately hold, Cffet, » = 1g. All the 7; values then cancel, and

the net result is

Ly m3 MEN\ M}
2olye 1 0§ (1__2) <1+2 Z

', - ﬁ?@ mf\ mf\

)1 . (3.63)

This ratio obtains a minimum of around 1/28 at my ~ 140 GeV, and it is smaller than 1/10
for my in the approximate range 100-300 GeV.

Of course, there is onc somewhat contrived region of parameter space for which the

"8 The operative relative sign is that between i and my. The @° operator featurcs an odd power of pu,
while the my factor comes from the C°® operators, whose only non-vanishing contributions feature the Dirac
equation applied to the external bino spinor.
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Figure 3-11: Branching ratios for the bino LOSP as a function of the parameter p defined
in Eq. (3.64) below, measuring in effect the relative contributions to the Higgs and sfermion
mass terms by sector 2. If this parameter is tuned close to zero, then the Higgs and Z modes
shut off, leaving only the difermion channel. For larger values of p, the difermion channel is
suppressed; this occurs generically when the tilded Higgs soft mass parameters scale with
12, as mentioned in Sec. 3.3.2. For concreteness, all prior figures have used p = 1.0.

decay to fermions can dominate; if the sector containing the uneaten goldstino gives no
contribution to any of the Higgs soft masses, then 7?1:{!“ and 7?7'21-1,, vanish and the decay via
an off-shell sfermion are the only ones allowed. Fig. 3-11 shows that the decay to fermions
can indeed dominate if the parameter

~ 9 ~ 9 3
my, t My, 3, Y
2u2cot Y YA f’

p (3.64)

with sums taken over all appropriate sfermion species, is tuned close enough to zero.

3.6.3 The R-violating Regime

Though not the focus of this chapter, we wish to briefly comment on possible R-violating de-
cays, for which calculations are given in App. A.2. As we move away from the R-symmetric
limit, the LOSP decay to photons is now allowed at tree level, and will generally garner a
branching ratio that is at least of the same order as of those to Higgs or Z. In Fig. 3-12,
we show branching ratios as a function of a parameter § which measures the amount of

deviation from the R-symmetric limit,

5 T+ T2+ TR,

Il

2
3 7H, +7TH,
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Figure 3-12: Branching ratios for the bino LOSP as a function of the parameter d, defined
in Eq. (3.65), that measures the deviation from the R-symmetric limit. When § = 0, we
are in the R-symmetric limit of the previous figures. When § = 1, the branching ratios for
A — X + (¢ are exactly what one would predict for A — X + G'f, in the more conventional
model with only one hidden sector; the photon mode dominates and the Higgs mode is
highly suppressed.

with r; = j\—fl /M; for any soft mass(-squared) parameter M;. In Fig. 3-12, we hold 71 = =
T, and Ty, = Ty, = T4, for simplicity. When § = 0 we have the exact R-symmetric limit;
when & = 1 we have the “aligned” limit in which the uneaten goldstino couples simply
as a rescaled version of the gravitino (i.e. there is a basis, obtained by making the field
redefinition Eq. (3.57), in which it couples only derivatively). Note in the latter limit the
Higgs branching ratio effectively shuts off, as expected.

The diversity of possible LOSP decay branching ratios shown in Fig. 3-12 is reminiscent
of mixed neutralino LOSP scenarios, where the LOSP has comparable bino, wino, and
Higgsino fractions. Here, however, we are still working in the Higgsino decoupling limit, so
the interesting pattern of LOSP widths come not from varying the identity of the LOSP

but rather from varying how the hidden sectors couple to the SSM.

3.7 Conclusion

SUSY breaking scenarios with a light gravitino offer fascinating phenomenological possibil-
ities. With the LOSP no longer stable, gravitinos could comprise part or all of the dark
matter of the universe, and collider experiments could discover extended SUSY cascade
decays. However, the gravitino need not be the only SUSY state lighter than the LOSP.
In the context of multiple SUSY breaking, there is a corresponding multiplicity of goldstini

whose masses are all typically proportional to mg, (or loop suppressed compared SSM soft

31



masses). Thus, the LOSP may dominantly decay to an uneaten goldstino instcad of the
gravitino. Since the couplings of the uneaten goldstino are unconstrained by supercurrent
conservation, the LOSP can exhibit counterintuitive decay patterns.

In this chapter, we have focused on the case of a bino-like LOSP which decays dominantly
to Higgs bosons despite having negligible Higgsino fraction. This effect is particularly
pronounced in the presence of a U(1)g symmetry, which suppresscs the expected A = v+ (¢
decay. By studying which low energy effective operators are generated in the Higgsino
dccoupling limit, we have understood why the mode A — A + ¢ dominates in the limit
of small (m) tan3)/u, and also why there is a non-standard A — Z + { decay mode away
from that limit. We have seen explicitly that there are delicate cancellations in the decay
width of the LOSP to a gravitino, and the counterintuitive decays of a LOSP to an uneaten
goldstino arisc from incomplete cancellations.

Similar counterintuitive decay patterns would be present for a wino-like LOSP, and in
general, one should contemplate the possibility of any LOSP decay pattern consistent with
SM charges. Those LOSP decays might involve an uneaten goldstino as in this chapter, but
could also be present with a light axino [105, 134] or a new light hidden sector [15, 49, 41].
To our mind, the most intriguing possibilities involve copious Higgs boson production in the
final stages of a SUSY cascade decay, which may offer new Higgs production modes and give
further motivation for boosted Higgs searches. Studying these phenomena is particularly
relevant given the expected LHC sensitivity to SUSY scenarios in the 13 TeV run to begin

next year.
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Chapter 4

The Two Faces of Anomaly
Mediation

4.1 Introduction

As we discussed in Ch. 2, if SUSY is realized in nature, then it must be spontaneously broken
and the effects of SUSY breaking must be mediated to the supersymmetric standard model
(SSM). In the context of supergravity (SUGRA), the most ubiquitous form of mediation
is “anomaly mediation” [135, 84, 133, 81], which persists even when (and especially when)
a SUSY-breaking hidden sector is sequestered from the visible sector. Of course, anomaly
mediation need not be the dominant source of SSM soft masses, and there are theories
where anomaly mediation is suppressed or absent [115, 120, 119]. But given its ubiquity,
it is worth better understanding the physics of anomaly mediation and the circumstances
which give rise to sequestering,.

Indeed, anomaly mediation has been the source of much theoretical confusion, and var-
ious papers have aimed to clarify the underlying mechanism [35, 16, 17, 60, 46, 99, 44, 140].
The original description of anomaly mediation involved the super-Weyl anomaly [135, 84],
and the most straightforward derivation of anomaly-mediated soft masses uses the confor-
mal compensator formalism of SUGRA [80]. As discussed in Ref. [16], anomaly mediation
really involveg three different anomalies: a super-Weyl anomaly, a Kéhler anomaly, and
a sigma-model anomaly. More recently, Ref. [60] emphasized that SUGRA is not even a

necessary ingredient, as a version of anomaly mediation (corresponding to the sigma-model
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anomaly) appears even in the Mp| — oo limit.!

In this chapter, we will show that the phenomenon known as “anomaly mediation” really
consists of two physically distinct effects. This realization clarifies a number of confusions
surrounding anomaly mediation, and leads to a physical definition of sequestering in terms
of goldstino couplings. Throughout this chapter, we will use “goldstine” to refer to the
longitudinal gravitino mode in the high energy limit (E 3> myg/,) [64, 34, 33].2 The two

effects arc as follows.

e Gravitino Mediation. As we showed in Sec. 2.7, bosonic and fermionic modes in
the same multiplet have SUSY mass splittings in the bulk of four-dimensional anti-de
Sitter (AdS) space [25, 132, 87].% These mass splittings are proportional to the AdS
curvature, and thus to the gravitino mass mgs. If SUSY AdS space is minimally
uplifted to Minkowski space via SUSY breaking, these mass splittings arc preserved,
leading to SSM soft masses from “gravitino mediation”. Thesc soft masses do not
have associated couplings to the goldstino, naively violating the (flat space) goldstino
equivalence theorem [64, 34, 33]. Nevertheless, the absence of goldstino couplings
is neccssary for conservation of the AdS4 supercurrent. Gravitino mediation closely
resembles traditional anomaly mediation [135, 84], and is related to the super-Weyl
anomaly. Gravitino mediation can never be turned off, since it arises from the infrared

symmetry structurc of SUSY AdS space.

e Kahler Mediation. If visible sector fields have lincar couplings to SUSY-breaking
ficlds in the Kéhler potential, then this gives rise to “Kahler mediation”, where SSM
fields get mass splittings proportional to beta function coefficients. Linear couplings
are ubiquitous in the presence of modulus fields, so Kahler mediation typically ac-
companies (and sometimes cancels) gravitino mediation in explicit SUGRA construc-

tions [115, 120, 119, 11]. As cxpected from the (flat space) goldstino equivalence

'Ref. [60] also emphasized that the language of “anomalies” is not necessary, as the effect can be alter-
natively described in terms of gaugino counterterms. These gaugino counterterms are necessary to maintain
SUSY in the 1PI effective action, including all anomaly contributions.

?For Mp1 — oo and mg/2 — 0, this mode is the true goldstino from spontaneous SUSY breaking [148, 137,
139]. Here, we will kecp mg/s fixed by considering the goldstino mode in rigid AdS space [104, 156, 94, 95].
In particular, the familiar relation mg/, = Fett /v/3Mp1 is only truc after adjusting the cosmological constant
to zero, so we can still take Mp; — oo while preserving effects proportional to Mg,/ Fes.

3These splittings are required by the global AdS SUSY algebra. The case of massless gauge multiplets
is subtle, since physical gauginos are massless in AdSs. Crucially, a bulk gaugino mass term is required to
cancel an infrared contribution to the gaugino mass in the 1-loop 1PI effective action, arising from boundary
conditions in AdS, [87].
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Anomaly? my o ? SUGRA? Goldstino?
Gravitino Mediation | Super-Weyl (3T — Tr)ms s v
Super-Weyl 1(8Tq — Tr) K I v v
Kiahler Mediation Kihler —2TRKF? v v
Sigma-Model 2%(1053; det K|},) F* v

Table 4.1: The two faces of anomaly mediation. Shown are the corresponding anomalies
and their contributions to gaugino masses, with a notation to be explained in the body
of the text. (All the masses have an overall factor of ¢?/167%.) We indicate whether the
effect requires SUGRA and whether there is an associated gauge boson-gaugino-goldstino
coupling. Gravitino mediation can be distinguished from Kéahler mediation by the goldstino
coupling. If SUSY breaking couples directly to gauginos, then there is an additional anomaly
contribution discussed in App. B.1, which yields both one-loop gaugino masses and goldstino
couplings.

principle, these soft nasses have a corresponding coupling to the goldstino. In the
Mp) — oo limit, Kdhler mediation appears via the sigma-model anomaly (as em-
phasized in Ref. [60]). It also receives 1/Mp corrections due to the super-Weyl and
Kahler anomalies. Unlike gravitino mediation, Kahler mediation is sensitive to the

ultraviolet couplings of the theory.

These two contributions to anomaly mediation are summarized in Table 4.1, focusing on

the case of gaugino soft masses. Full anomaly mediation is simply the sum of gravitino

mediation and Kihler mediation.?

One might naively expect that no physical measurement could distinguish between grav-
itino mediation and Kéhler mediation, since they only appear in combination in SSM soft
masses. However, there is a crucial physical distinction in terms of goldstino couplings.® In
usual SUSY breaking scenarios, gaugino soft masses are accompanied by a corresponding

coupling between the gaugino A%, the gauge boson A;‘“ and the goldstino G Ly

iC,\
\/§Feff

*As pointed out in Ref. [44] in the context of string theory, there is an additional anomaly-mediated
gaugino mass which arises from an anomalous rescaling of the gauge multiplets. We discuss (his effect in
App. B.1 and show that it yields a corresponding goldstino coupling consistent with (fat space) supercurrent
conservation.

50ur results can be interpreted as describing goldstino couplings in the analog of Landau gauge where
the gravitino field is purely transverse. At the end of Sec. 4.4.2, we explain the same effect in unitary gauge.

Grot A F° (4.1)

Iz

1
LD —im,\/\,,,/\“ +
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where Fug is the scale of SUSY breaking.® For global SUSY, the relation ¢y = m, is required
by the (flat space) goldstino cquivalence theorem. In contrast, gravitino mediation is dic-
tated by SUSY in AdS space, and gencrates a contribution to my without a corresponding
contribution to cx. Indeed, the difference my — cy is necessarily proportional to mg/, by
conservation of the AdS supercurrent, and this gives a physical way to measure gravitino
mediation as distinct from all other sources of SSM soft masses. We will show this explicitly
in Eq. (4.30).

This result allows us to give an unambiguous definition of sequestering [135], which is
the condition necessary for traditional anomaly mediation (i.e. gravitino mediation) to be

the sole source of SSM soft masses.

e Visible sector fields are sequestered from SUSY breaking if they do not have linear

couplings to the goldstino.”

In other words, ¢y is measure of how well the visible sector is sequestered from the goldstino.
Previously, sequestering was known to occur when the Kéhler potential K and superpoten-

tial W took a special “factorized” form [135]
—3¢57% = Quis + Qnia, W = Wiis + Whia. (4.2)

However, Eq. (4.2) is ambiguous, since the scparation into “visible” and “hidden” scctors is
not robust to Kihler transformations by a chiral multiplet X with K — K + X + XT and
W — ¢~ XW. Also, sequestering usually (but not always) requires moduli to be stabilized
(86, 121, 14, 122, 125, 63]. Sequestering does have an unambiguous extra-dimensional
interpretation in terms of gecometric scparation [135]. Here we can use the absence of
goldstino couplings as a purely four-dimensional definition of sequestering. Since physical
couplings are invariant to Lagrangian manipulations such as Kéahler transformations, this
definition does not suffer from the ambiguities of Eq. (4.2), and gives a robust criteria for
determining when traditional anomaly mediation is dominant.

We can highlight the distinction between gravitino mediation alone and anomaly me-

IGThere is also an additional coupling between the gaugino, goldstino, and the auxiliary field D¢,
’I,(‘,A

Vb )\(L(‘:I;LDQ. The ¢ of this coupling is guaranteed to be identical to the ¢y in Eq. (4.1), so we omit

this term for brevity throughout.

"Strictly speaking this is only true for gauginos. As we will explain below, scalar soft masses are morce
stibtle because of irreducible couplings to the goldstino, but sequestering for scalars can still be defined as
the absence of any further couplings to the goldstino.
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diation more generally by comparing models with strict sequestering [135] to models with
warped [121, 14, 122, 119, 125, 63, 144] or conformal sequestering [130, 108, 131, 123, 107,
118, 106, 59, 92, 93, 141]. In the case of strict sequestering, SUSY breaking is confined
to a brane which is gcometrically separated from the visible sector brane. This geometric
separation forbids couplings between the goldstino and the visible scctor. The only source
of visible sector soft masses comes from gravitino mediation, which can be captured by the
conformal compensator®

<@> =1 -+ 927”3/2. (43)

In the case of warped sequestering, visible sector fields on the IR brane feel an “effective”
conformal compensator

w=®e T (4.4)

where T is the radion superfield. Visible sector fields obtain anomaly-mediatied soft masses

proportional to

Fy
<w> == 7n3/2 — kF’T‘, (45)

but because the radion has overlap with the goldstino direction, there are visible sector
couplings to the goldstino proportional to kFp. In the language of this chapter, warped
sequestering exhibits a cancellation between gravitino mediation and Kihler mediation.?
Throughout this chapter, we focus on gaugino masses, leaving a full description of
anomaly-mediated scalar soft masses to Ch. 5. As a preview, there is a mass splitting
between scalars and matter fermions in the bulk of AdS4, analogous to the gaugino case,
which includes the familiar two-loop anomaly-mediated scalar masses. However, already
at tree-level in AdSy, scalars have tachyonic scalar soft masses cqual to —2m; /2 [25, 132].
While tachyonic scalar masses do not destabilize the theory in AdS space, they do in flat
space. Thus, the SUSY breaking that uplifts the theory from AdS to flat space must
remove these tree-level tachyonic soft masses, resulting in irreducible goldstine couplings

which complicate the definition of sequestering.!®

*The relation (Fp) = my o is special to strict scquestering. Sce Eq. (4.19) for a more general expression.

“This cancellation is not a fine tuning, since it arises from the geometry of the warped (AdSs) space.
The curvature of AdSs should not be confused with the curvature of AdS,, which is responsible for gravitino
mediation.

Y here is a related subtlety involving tree-level holomorphic B-terms, since B terms arising from the
superpotential have different associated goldstino couplings than B terms arising from the Giudice-Masiero
mechanism [82]. Previously, both phenomena were considered to occur in the sequestered limit, but Giudice-
Masicro secretly violates the conditions for sequestering, as we will see in Ch. 5.
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In the remainder of this chapter, we derive the gaugino soft masses and goldstino cou-
plings arising from anomaly mediation, emphasizing the distinction between gravitino me-
diation and Kéahler mediation. The soft masses are well-known in the literature, but to
the best of our knowledge, the goldstino couplings have never been calculated explicitly.
In Sec. 4.2, we give a straightforward derivation of how Kéhler mediation arises in global
SUSY. We then turn to full SUGRA in Sec. 4.3, applying the improved SUGRA gauge
fixing of Ref. [38]. This is the simplest way to isolate gravitino mediation, since this gauge
auntomatically decouples the (transverse) gravitino, leaving the goldstino coupling manifest.
In Sec. 4.4, we describe the same physics using a more conventional SUGRA notation of
Ref. [16]. We also explain the connection to the AdS; supecrcurrent conscrvation and the

goldstino equivalence theorem. We conclude in Sec. 4.5.

4.2 Kahler Mediation in Global SUSY

Before deriving full anomaly mediation in Sec. 4.3, it is useful to focus on the case of pure
Kahler mediation, which arises in the limit of global SUSY. This example was emphasized
in Ref. [60], but in order to connect to the (perhaps) more familiar language of Ref. [16],
we will derive the result using chiral anomalies (instead of gaugino counterterms).

Consider a field redefinition acting on a chiral superfield @ of the form

Q — °Q, (4.6)

where « is another chiral superficld.!" This field redefinition changes the Lagrangian in a
classical way, but it also introduces a term related to the Konishi anomaly [43, 110]. If Q
is in the representation R of non-Abelian gauge field, then the Lagrangian shifts as

¢*Tr

[,(X) — E(CQX) + m

/ d*0 aW*ewWe, (4.7)

where T is the Dynkin index of the representation R. In the language of Ref. [83, 12],

Eq. (4.7) is simply the chiral anomaly analytically continued into superspace.

" Throughout this chapter, we will use the notation of Ref. [38], where boldface (X)) indicates a superfield
and regular typeface (X) indicates the lowest component of the corresponding superfield. Superscripts are
field labels and subscripts indicate derivatives with respect to chiral fields. As needed, we raisc and lower
indices using the Kahler metric. We will use Q to indicate visible sector ficlds and X to indicate hidden
sector SUSY-breaking fields.
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In global SUSY, Kihler mediation arises whenever charged matter has linear couplings
to SUSY breaking in the Kéhler potential. This is easiest to understand using a non-
lincar representation Xy, of a SUSY-breaking ficld which obeys the constraint X QNL =0
[137, 116, 109, 42, 39]. Consider a Lagrangian which contains a matter field Q coupled to
SUSY breaking as

X+ X| ,
£o /d49QTQ (1 + w> . (4.8)
We can remove the linear couplings of X'ny, by performing an (anomalous) field redefinition
Q-Q <1 - XANL> = Qe Xnu/h (4.9)

where the last equality relies on X %L = (. From the Konishi anomaly, this yiclds

‘ - Xy X! ¢*Tr 2, X NL :
4 NL 2 W e/ @
£ / Qe (1 e 1672 /d “7A * (4.10)

After the field redefinition, Xn1, only has quadratic couplings to Q, at the cxpense of
introducing new couplings between X i, and the gauge multiplet. This is the essence of

Kahler mediation.

Expanding out Xy, in terms of Fx and the goldstino G, [137, 116, 109, 42, 39]

~ 2
1 Gy,
XnL=10+ — | Fy, 4.11

NL ( \/QFX) X ( )

Eq. (4.10) contains a soft mass for the gauginos and a corresponding coupling to the gold-

stino, as anticipated in Eq. (4.1)

1 a Z.C/\ -~ 1Y
LD _5'”5)\/\0/\ + \/iFeﬂ.GLUL A(LFLIV? (41>

where Fog = Fx in this example, and

4Tk Fx
8t A

my = cy = (4.12)

As expected from the goldstino equivalence theorem (see Sec. 4.4.2), the goldstino couplings

arc proportional to the gaugino mass.
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In the above derivation, the matter superfield Q was assumed to be massless, which was
crucial for seeing a physical effect from the sigma-modecl anomaly. Indced, without massless
“messengers” to communicate SUSY breaking, one does not expect Kahler potential terms
to affect holomorphic quantities like gaugino masses. To see what happens for massive
matter, consider vector-like chiral superficlds with a supersymmetric mass term pQQ°. In
this case, the chiral rescaling in Eq. (4.9) yields a new superpotential term —£QQ° X . For
large 1, Q and Q° are just heavy messenger fields, generating a gauge-mediated contribution
to the gaugino masses which exactly cancels Eq. (4.12), as explicitly shown in Refs. [142, 62].
This insensitivity to heavy supersymmetric thresholds is a well-known feature of anomaly
mediation, and persists in SUGRA as well; we may in general evaluate anomaly or beta-
function coefficients at the scale of interest. For simplicity, we will take all matter superfields

to be massless in the remainder of this chapter.

The chiral rescaling procedure in Eq. (4.9) can be generalized to an arbitrary Kahler

potential K.
LD /d4HK. (4.13)

Consider a sct of chiral multiplets @ in the representation R with the Kahler metric K |}’z.12
In general, K|}, will be a function of SUSY-breaking fields X * but as shown in App. B.2,
there is a field redefinition that removes all linear couplings of X* in K % but generates the

anomalous term

2 12 12
g D™D TR "
6L =— [ d*o=—WrWe ~“logdet K|7 | , 4.14

/ 1672 * 1601 [dR ogdet K (4.14)
where dp is dimension of the representation R. This form makes explicit use of the chiral
projcction opcerator (DTZD2 /16 0), which is overkill for our purposes. Since we are only
interested in soft masses and goldstino couplings, we will assume that all SUSY-breaking
fields have been shifted such that <X 7> = 0, and focus on a subset of terms from expanding

Eq. (4.14) to first order in X

> 2
: Tr ;
5> — | d20-2 - ——(logdet K|3); X'W**W&. 4.15

In each SUSY-breaking multiplet X*, the fermionic component X’ has overlap with the

12The Kiahler metric K|% is just K;; where Q and Q7 transform in J2.
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goldstino direction as
Fi

X' —
Feﬁ

Gr, (4.16)

where F,g is the total amount of SUSY breaking (in the absence of D terms, Fog = v/ F;F*).

We see that Eq. (4.15) contains a gaugino mass and corresponding goldstino coupling

g> 2Tg

67 o (log det K|} F*. (4.17)

My — C)\ =

Once we sum over representations R, this is the general expression for Kéhler mediation in
global SUSY. As we will see, this chiral field scaling procedure will persist when we go to

SUGRA, but the equality between my and ¢, will be broken.

4.3 Gravitino and Kahler Mediation in SUGRA

Having derived Kéahler mediation in global SUSY, we can now understand the analogous
cffcet in full SUGRA. Now, the goldstino is caten by the super-Higgs mechanism to beconie
the longitudinal component of the gravitino, but it is still convenient to isolate the goldstino
mode by using goldstino equivalence in the high energy limit. For simplicity, we will use
“anomaly mediation” to refer to the combined effect of gravitino and Kahler mediation.
As we will see, these two effects are physically distinct from the perspective of goldstino
couplings.

The improved SUGRA gauge fixing of Ref. [38] is particularly convenient for under-
standing anomaly mediation, both in terms of soft masses and goldstino couplings. In this
gauge, matter multiplets (including the goldstino multiplet) are decoupled from the gravity
multiplet up to 1 /AIIQ,] suppressed effects. This allows calculations involving the matter
fields alone to be performed in global superspace. After giving a brief description of the
SUGRA Lagrangian and the gauge fixing of Ref. [38], we will calculate gaugino masses and

goldstino couplings to see the two faces of anomaly mediation.

4.3.1 The SUGRA Lagrangian

The conformal compensator formalism arises from gauge fixing conformal SUGRA using the

conformal compensator ficld ®. As reviewed in Ref. [38], the tree-level SUGRA Lagrangian

91



can be written as
. . ] 1
L= _3/d49 ol pe—K/3 +/d29 W +he + 3 /d26 FaaW W 4 he. +..., (4.18)

where the ellipsis (.. .) corresponds to terms involving the graviton and gravitino. In general,
the ellipsis contains quadratic mixing terms between matter multiplets and the graviton
multiplet, but Ref. [38] showed that there is an improved gauge fixing for ® where this

mixing is absent:

® = ZB(1+6°Fy), (4.19)

Z = (K/2 —iArgW) + (K;) X" (4.20)

In this gauge, one can simply drop the ellipsis terms in Eq. (4.18) for any calculation not
involving gravitons or gravitinos, allowing one to study matter multiplets in SUGRA using

global superspace manipulations.

There are a few important caveats to this gauge fixing. First, Eq. (4.19) only removes
mixing terms at tree level, so strictly speaking, one can only study tree-level and one-loop
effects using this formalism. This is sufficient for understanding anomaly-mcdiated gaugino
masses at one loop, but we will have to postpone a study of two-loop scalar soft masses
for future work. Second, this gauge fixing assumes that the cosmological constant has been
adjusted to zero to yield a Minkowski vacuum, a necessary assumption for phenomenology.
Third, Eq. (4.19) cxplicitly contains vacuum expectation values (vevs), which is perhaps

unfamiliar but conceptually sound.

A nice feature of this gauge is that after adjusting the cosmological constant to zero

<F¢> = mga, (4.21)

making it easy to identify terms proportional to the gravitino mass [38]. In particular,
note that the (1 + 6%my /2) part of ® has a SUSY-breaking F-component without any
coupling to fermions. This will be the origin of gravitino mediation, which yiclds soft
masscs proportional to mg,, without a corresponding goldstino coupling.

In addition to the tree-level terms in Eq. (4.18), there is a contribution to the La-

grangian coming from anomaly matching. Before introducing (and gauge fixing) ®, con-
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formal SUGRA contained a non-anomalous U(1)r gauge symmetry with gauge field b,, so
the corresponding global U(1)g must also be non-anomalous. Under this U(1)g, ® (which
we have yet to gauge fix) has R-charge 2/3 and matter fields have R-charge 0. Since chiral
fermions have R-charge —1 and gauginos have R-charge +1, the gauge kinetic function for

each gauge ficld must contain

2 .
3Ty — 3T¢;
PO ( R e

~a_ log & 4.22
o (PR s, (4.22)

such that these anomalies can be cancelled by a U (1) g shift of log ® [103] (see also Ref. [17]).
Note that this is not the familiar expression for ® coupling involving the beta function (sce

e.g. Ref. [135]). This will arise after appropriate field redefinitions of the matter fields.

4.3.2 Field Redefinitions in SUGRA

The Lagrangian shift in Eq. (4.7) appears for any field rescaling of chiral multiplets, includ-
ing rescalings involving the conformal compensator. With the improved gauge fixing, there
is no mixing between matter multiplets and the gravity multiplet, and this lack of mixing
persists (at least at one loop) after ficld rescalings.'® In addition to the appearance of
Eq. (4.22), the main difference between Kahler mediation in global SUSY and full anomaly

mediation in SUGRA is that K in Eq. (4.13) is replaced by ®'® Q, with
Q= -3¢ K3 (4.23)

We can now use the same fields manipulation as in Sec. 4.2, treating € as one of the
SUSY-breaking fields. First, to remove linear couplings to the conformal compensator, we
can perform the field redefinition

i

Q" — - (4.24)

Combined with Eq. (4.22), this leads to the familiar anomaly-mediated term

2

" T —T
5L = _L d20 3Te —Tr log BWW?, (4.25)
1672 2

which is proportional to the beta function by = 31y — Tk as expected. To remove linear

3This rescaling does induce a gravitational anomaly term, but this is irrelevant for our present purposcs.
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couplings to SUSY-breaking ficlds in €, we use Eq. (4.14), replacing K with €2
1 14 1 1 "
—(log det Q|;) = — K + —(logdet K%,). (4.26)

Here, we have used the fact that for unbroken gauge symmetrics, the vev of K; (and of any

derivatives of K; with respect to the SUSY-breaking fields) is zero for charged fields Q".

Combined with Eq. (4.25), we arrive at the final anomaly-mediated expression!?

‘ 2 3Te — Tr Di2D2 1 T Tr
5L = — | a%9 2 )1 2B B ogdet K1) | ) weewe
£ / e << 2 ) o8P+ Tpm |y Ky, logde IR)D o
(4.27)

Using the improved gauge fixing, anomaly mediation in SUGRA has essentially the same
origin as Kahler mediation in global SUSY, arising from performing anomalous chiral rescal-
ings to remove lincar couplings to SUSY breaking in the Kahler potential.
As emphasized in Ref. [16], anomaly mediation is associated with three different anomalies—

a supcr-Weyl anomaly, a Kahler anomaly, and a sigma-model anomaly—corresponding to
the three terms in Eq. (4.27). In our rescaling procedure, the Kéahler and sigma-model
anomalies in SUGRA have a common origin, and arise from taking the global sigma-model
anomaly involving the K#hler potential K and replacing it with an “effective” Kahler po-
tential €2. In this way, the Kéhler anomaly should be regarded as a 1/Mp; correction to
the sigma-modecl anomaly. The super-Weyl anomaly is truly 2 SUGRA effect, and depends
crucially on the fact that prior to gauge fixing, there was an anomaly-free global U(1)g

symmetry. 15

4.3.3 Soft Masses and Gaugino Couplings

Before expanding Eq. (4.27) in components, there is no apparent, difference between grav-
itino mediation and Kéhler mediation. This difference only becomes visible after identifying
the gaugino soft masses and corresponding gaugino couplings in Eq. (4.1), repeated for con-

venience:
1o

\/iFeff

1 As discussed in App. B.1, there is an additional anomaly-mediated contribution arising from rescaling
gauge multiplets from a holomorphic basis to a canonical basis. This effect is not captured by Ref. [16] since
it requires direct couplings between SUSY breaking and gauginos, but it does appear in Ref. [44].

5 As a side note, the derivation of anomaly mediation in Ref. [60] focused only on an Abelian gauge theory,
so it does not capture the Ty dependence in non-Abelian theories which arises from Eq. (4.22).

1 -
LD —im,\)\a)\”‘ + GLU‘“’)\QF;’V. (4.1)
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The gaugino mass from expanding Eq. (4.27) is

2

1672

my =

K, F T
((STG — Tg) (7723/2 + 3 ) —2 3“

; T
K F" + 255(10g det K|, L-Fl) . (4.28)
R
Note that both the super-Weyl and Kéhler anomaly pieces have contributions proportional
to K;F*, and we have used the fact that (Fy) = myy in the improved gauge fixing from
Eq. (4.19). We can extract the goldstino coupling ¢y from Eq. (4.27), using Eq. (4.16) to

identify the goldstino direction:

2

q
1672

K, F' , T .
: Q%KZFZ+2d—g(l«)gdetk’|%)iFl>. (4.29)

Cy =

<(3TG —Tr)

Crucially, ¢y differs from my by terms proportional to my /2, owing to the fact that the (1+
6%ms /2) piece of ® has a SUSY-breaking F-component without a corresponding goldstino

components. These terms arc summarized in Table 4.1.

We can rewrite the gaugino mass and goldstino coupling in the following suggestive way:

My = MAgS + C), (4.30)
where
9 :
MAds = m (m3/2(3TG - TR)) y (4.31)
2 i
) g K I . Tr i -1 i
A= {62 (T(JTG —3TR) + 2d—H(log det K|pp) i F" ). (4.32)

This is the primary result of this chapter. Here, maqgs is the gaugino mass splitting from
the bulk of SUSY AdS space (derived in Ref. [87] and discussed further in Sec. 4.4.2), and
gives rise to a gravitino-mediated soft mass with no associated goldstino coupling. The
remaining part of anomaly mediation ¢y is Kéhler mediation, which generalizes the global
SUSY results from Sec. 4.2. As advertised, ¢y is an effective measure of sequestering - in
particular, sequestering of visible sector gauginos from the goldstino—and the limit ¢y = 0

corresponds to pure gravitino mediation.
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4.4 Alternative Descriptions

Having seen the two faces of anomaly mediated in the conformal compensator formalism,
it is worth repeating the calculation in the (perhaps) more familiar language of Ref. [16].
We first rederive Eq. (4.30) in components, and then explain the connection to the AdS

supercurrent and the goldstino equivalence theorem.

4.4.1 Anomaly Mediation in Components

As shown in Refs. [27, 117, 16], after lifting the super-Weyl, Kéhler, and sigma-model

anomalies to superspace, the 1PI effective action contains

Lsp D —

2 [
o / 4’026 WoW ,C, (4.33)

where for convenience, we have defined a chiral superfield C as

1 ‘ 1 T
C=7 (D“ — SR) {4(TR — 3T;)R — gTHD?K | dRDZ log det K|} | , (4.34)
'R

where R is the curvature superficld. This cxpression is valid in “supergravity frame” where
the Einstein-Hilbert term has the non-canonical normalization ¢~ 573 Rpr.16 By taking the
lowest component of C in App. B.3, we recover (non-local) terms in the Lagrangian that

express the three anomalies.

In order to derive physical couplings and masses from the other components of C, we

need to transform to “Einstein frame” where the graviton (and gravitino) have canonical

18Tt may be confusing that Eq. (4.33) is only a function of the Kihler potential K and not the Kihler
invariant G = K + log W + log W*. Because of the Kahler anomaly, there is a physical distinction between
the superpotential W and the holomorphic terms in K. See Refs. [16, 17].
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kinetic terms. This can be accomplished by performing the field redefinitions [16, 154]

et — e K/0ek, (4.35)
W — e K20, 4 iV20,xTT KL /6), (4.36)
M* — e K50+ — UK, (4.37)
A e—[\’/ll)\a7 (438)
x' = e K21 (4.39)
Fi efK/(SFi7 (4.4())
Lt TR o ViR
by — by + 2—\/_—2(1/1/”( K; —¢ux'Ky) (4.41)

Note that the gravitino i, scalar auxiliary field M*, and vector auxiliary ficld b, transform
inhomogeneously under this redefinition.!” With this field redefinition and adjusting the

cosmological constant to zero, the scalar auxiliary vev is

(M*) = =3y, (4.42)

analogous to Eq. (4.21).

After performing the field redefinitions, the pertinent components of C are

1 16 ; 32 , 327 " -
K/12 _ Y o b R __H< ) - > i
e D,C| = 31 —Tr)K ——=TRr{K;) xo + log det K w
o l 3\/5( G H—) iXa 3\/5 R < l> Xo \/§d1? ( 1S ‘R)l X
32 . e .
- 35 3Te — Tr)(io"T PDuDyt )+ -+ (4.43)
32 64

K6 p2C| = -

B

(3Tq = Tr)(—3myps — F'K;) + ?TRKiF"’

T 1 .
- 64]—R(10g det K| )i FP + - - . (4.44)
ar

Here, it is understood that we have shifted all fields such that their vevs arc zero and any
expressions contained in angle brackets above are purely c-numbers. The cllipses represent
omitted terms that do not correspond to any local terms in the resultant Lagrangian, but
are necessary to maintain SUSY in the 1PI action. The gravitino coupling in the last term
of Eq. (4.43) will be important in Sec. 4.4.2 below.

The ©? component, of C yields the gaugino soft mass, and the © component of C yields

"Indeed, the improved gauge fixing of Ref. [38] was designed to avoid having to perform such transfor-
mations.
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the gauge boson-gaugino-goldstino coupling. We can now derive Eq. (4.1), after identifying

the goldstino mode through Eq. (4.16), and we rccover the same answer as Eq. (4.30):

1 C) ~
£5 =2 (mags + e3) AN + —2— A" G IS, 4.45
5 (mads + ¢x) NT» Lty (4.45)

with
g2
MAdS = T3 (g2 (3T — Tr)) (4.46)
2 (KF T .
e =3 = (3T — 3TR) + 2" (logdet K|L) .F' ) . (4.47)
1672 dn '

Because of the gravitino shift in Eq. (4.36) and the auxiliary field shift in Eq. (4.37), the
super-Weyl anomaly contributes to both gravitino mediation and Kéhler mediation. Again,
we see that gravitino mediation is physically distinct from Kéahler mediation by the absence

of goldstino couplings.

4.4.2 Supercurrent Conservation and Goldstino Equivalence

The fact that gravitino mediation gives rise to gaugino soft masses without corresponding
goldstino couplings is perhaps confusing from the point of view of the goldstino equivalence
theorem [34, 33]. However, we will sce that this is necessitated by conservation of the AdS

supcrcurront .

The goldstino equivalence theorem states that at energies well above the gravitino mass
my/9, the couplings of longitudinal gravitinos can be described by the (eaten) goldstino
mode. In global SUSY, linear couplings of the goldstino are fixed by conservation of the
(flat space) supercurrent

c 8. Gt .. (4.48)

1
B \/iFeﬁ"

The part of the supercurrent that depends on the gauge boson and gaugino is
b 1 v—=p 1 pa
Jfat 2 —50 00 Aoy, (4.49)

Using the gaugino equation of motion (assuming a massless gauge boson for simplicity),
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this gives rise to the interaction

1),

V2F

G Lo A\ F° (4.50)

Flat space: o

where mj is the physical gaugino mass. In flat space, therefore, ¢y must equal my, and

there can be no contribution from gravitino mediation.

The resolution to this apparent paradox is that the gravitino mediation arises from
uplifting an AdS SUSY vacuum to SUSY-breaking Minkowski space, so we should really
be testing the goldstino equivalence theorem for (rigid) AdS space [104, 156, 94, 95].1
Indeed, the last term in Eq. (4.43) contains an additional coupling to the gravitino, which
contributes to the (AdS) supercurrent.'” In principle, it should be possible to derive the
one-loop AdS supercurrent directly from the SUSY algebra in AdS space, but we know of no
such derivation in the literature. Instead, we can simply extract the one-loop contribution to
the supercurrent by recalling that the gravitino couples linearly to the (AdS) supercurrent

as

1 1, =
L= ——hj o = ———— G . 4.51
2 Mp, l/; JAds \/§Fgff Y LIAds ( )

In this last step, we have identified the goldstino direction via [154]

2' 1 ~ 'i "’-[- o Feﬂ' -
P, — \[37713/28#GL — %(‘J’#Gb, Mgy = \/iT[Pl (4.52)

and dropped the term proportional to C~7TL Tujhas/Mp since it does not contain a gauge

boson-gaugino-goldstino coupling.

We see that Eq. (4.43) contains a linear (non-local) coupling to the gravitino, and thus

an additional (local) coupling to the goldstino

9 .
g i
— | S—=myp8Ty —T Grot A\ F,. 4.53

We recognize the term in parentheses as —maqgg from Eq. (4.31). Combining with Eq. (4.50),

¥ Rigid AdS corresponds to the limit Mp > oo leaving the AdS curvature fixed. This limit maintains
couplings proportional to my,s despite the fact that the gravitino itself is decoupled.

198¢trictly speaking, this term contributes only to the bulk AdSs supercurrent, as there is an additional
boundary term that compensates to allow massless gauginos in SUSY AdS, [87]. After lifting AdS space to
flat space, this boundary term becomes irrelevant.
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the full goldstino coupling in SUGRA is

AdS spacce: wi@;ﬁ””)\FHW (4.54)
V2F.q

in perfect agreement with Eq. (4.30). Thus, the goldstino equivalence theorem holds cven
in the presence of gravitino mediation, albeit with the AdS supercurrent. This is as we
anticipated, since particles and sparticles have SUSY mass splittings in the bulk of AdS
space, s0 “soft masses” arising from maqs should not have an associated goldstino coupling.
We could alternatively derive the same effect in unitary gauge for the gravitino by realizing
that the last term in Eq. (4.43) modifies longitudinal gravitino interactions by an amount

proportional to mads/ms /-

4.5 Discussion

In this chapter, we have shown that anomaly mediation consists of two physically distinct
phenomena, which can be distinguished by their associated goldstino couplings. Gravitino
mediation (i.e. traditional anomaly mediation) is familiar from the phenomenology litera-
ture, but it has the counter-intuitive feature that it has no associated goldstino coupling.
Indeed, the difference my — ¢y = magg is a physical way to measure gravitino mediation,
and ¢y characterizes the degree of sequestering between the visible sector and the gold-
stino. Kahler mediation simply arises from linear couplings of SUSY-breaking fields in the
Kahler potential, and appears in both global and local SUSY. The soft masses and goldstino
couplings from Kéhler mediation satisfy the (flat space) goldstino equivalence theorem.

While these two faces of anomaly mediation can be understood directly in SUGRA
component fields as in Sec. 4.4, the physics is more transparent using the improved gauge
fixing of Ref. [38]. In this gauge, it is obvious why soft masses proportional to my /2 do
not have any associated goldstino couplings, since the conformal compensator @ contains
a piece (1 + 6%mg /2) With no fermionic component. It is also obvious that the super-Weyl
anomaly contributes both to gravitino mediation and to K&hler mediation. For deriving
Kahler mediation in SUGRA, it is convenient that the Kahler and sigma-model anomalies
are tied together into a single 2 function.

As previewed in the introduction, the case of scalar soft masses is morc subtle, and

we leave a detailed study to Ch. 5. For gravitino mediation, conservation of the AdSy
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supercurrent must hold to all loop orders, such that any soft mass proportional to the AdS
curvature will have no associated goldstino coupling. However, tree-level tachyonic scalars
masses given by —2m§ /2 must be compensated by SUSY breaking to have a stable theory in
flat space. This tachyonic picee is in addition to the well-known two-loop anomaly-mediated
soft masses, so even in sequestered theories, there will be irreducible (but unambiguous)
couplings between matter multiplets and the goldstino. Since anomaly mediation can be
alternatively derived using Pauli-Villars regulating fields [84, 78, 77], we should find that
the soft masses and goldstino couplings of the regulators are preciscly those necessary to
maintain the gravitino/Kéhler mediation distinction in the regulated theory.

We have emphasized the fact that a gaugino soft mass can appear with no associated
goldstino couplings in the case of strict sequestering, which yields pure gravitino mediation.
Interestingly, there are also reversed cases where a goldstino coupling is present with no
associated gaugino mass. Famously, anomaly mediation is absent in no-scale SUSY break-
ing (and suppressed in almost-no-scale models) [120]. Also, theories with extra-dimensional
warping can have suppressed anomaly mediation [119]. However, these arise from a cancel-
lation between gravitino mediation and Kéhler mediation (through moduli F-components),
and thus goldstino couplings are still present even when there are no anomaly-mediated
soft masses. This bhizarre result is nevertheless required by conservation of the AdS super-
current, and emphasizes the fact that the underlying symmetry structure of our universe is

not just SUSY, but SUSY in AdS space.
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Chapter 5

Anomaly Mediation from

Unbroken Supergravity

5.1 Introduction

As we discussed in Ch. 2, spontaneously broken SUSY yields a positive contribution to the
cosmological constant, so in order to achieve the nearly zcro cosmological constant we see
today, the underlying symmetry structure of our universe must be SUSY in anti-de Sitter
(AdS) space. In the context of supergravity (SUGRA), the inverse AdS radius /\X}is is equal
to the gravitino mass my/,. Thus, because of the underlying AdS SUSY algebra, there will
be effects on the supersymmetric standard model (SSM) proportional to m;,,. These would
appear as “SUSY-breaking” effects from the point of view of the flat space SUSY algebra,
but are actually SUSY-preserving effects when viewed from AdSy space.

Famously, anomaly mediation [135, 84] yields gaugino masscs proportional to msy/y.
As we showed in Ch. 4, these gaugino masses do not brecak AdS SUSY, and are in fact
necessary for conservation of the AdS supercurrent. We called this phenomenon “gravitino
mediation” to separate this mg/, effect from other anomaly-mediated effects which have
nothing to do with the AdS SUSY algebra.! Throughout this chapter, we will use the more
familiar (but less accurate) name “anomaly mediation” to refer to all effects proportional

to my/, (ie. gravitino mediation; see Refs. (35, 16, 17, 60, 87, 99, 44, 140] for additional

'"These other cffects were dubbed “Kahler mediation” since they arise from linear couplings of SUSY
breaking to visible sector fields in the Kahler potential. Full anomaly mediation is simply the sum of Kihler
mediation and gravitino mediation. Sce Ch. 5 for details. There is also a (usually subleading) anomaly-
mediated effect noted in Ref. [44] if there are direct couplings of SUSY breaking to the gauginos at tree-level.
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theoretical perspectives). Unlike usual SUSY-breaking effects, anomaly mediation generates
gaugino masses without accompanying goldstino couplings, further emphasizing that this
is a SUSY-preserving effect.

The goal of this chapter is twofold. First, we wish to extend the analysis of Ch. 5 to
the case of sfermions. It is well known that anomaly mediation yields two-loop scalar mass-
squareds proportional to m% /20 but we will show that from the point of view of AdSy space,
anomaly mediation already yields scalar masses at tree level. Following the strategy of Ch. 5,
we will use goldstino couplings as a guide to determine which effects preserve AdS SUSY,
allowing us to distinguish between SUSY-preserving effects that are genuinely proportional
to myy versus SUSY-breaking effects that are only proportional to mg/, because of the
need to fine tune the cosmological constant to zero. Second, we wish to counter recent
claims by de Alwis that anomaly mediation does not exist [46, 47]. In contrast, we will usc
the same logical starting point as de Alwis (which is based on the analysis of Kaplunovsky
and Louis [103]) but come to the conclusion that anomaly mediation not only exists, but is
nccessary for the prescervation of AdS SUSY.

Along the way, we will encounter a number of surprises, all ultimately having to do with

the structure of AdS SUSY:

e Tree-Level Tachyons and Sequestering. Already at tree-level in AdS space, the
components of a chiral multiplet get SUSY mass splittings proportional to mgy/y. For
example, if the fermionic component is massless, then its scalar partner has a negative
mass-squared ~2m§ /20 satisfying the Breitenlohner-Freedman bound [25].? In order
to have a stable theory after AdS SUSY is lifted to flat space via SUSY breaking,
this negative mass-squared must also be lifted. Since such a lifting must break AdS
SUSY, this requires irreducible couplings between the SUSY-breaking sector (“hidden
sector”) and the SSM (“visible sector”), even in theories where the hidden and visible
sectors are sequestered [135]. For a chiral multiplet with components {¢, x, F'} there
is necessarily a coupling to the goldstino G 1, when the sfermion soft mass is zero in

flat space:

LX ) 5.1
For (5-1)

where Fig is the scale of SUSY breaking. Intriguingly, this coupling is renormalization-

2A fermion with mass i%’)’ng/g will have one scalar partner with mass-squared — %mg/Z, exactly saturating
the bound.
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group invariant, and effectively defines what it means to sequester the hidden and

visible sectors.?

¢ Giudice-Masiero in AdS Space. In flat space, the harmonic part of the Kahler
potential (i.c. the chiral plus anti-chiral part) is unphysical. This is not the case
in AdS spacc, and the Giudice-Masiero mechanism [82] is a way to generate p and
B, terms via K D> H,H;+ h.c. While the generated p term preserves AdS SUSY,
the B, term actually breaks AdS SUSY, since it secretly involves direct couplings
between Higgs multiplets and the goldstino. When written in a more natural basis, it
becomes clear that Giudice-Masiero arises from a combination of a SUSY-preserving

and SUSY-breaking effect.

¢ Anomaly Mediation and Super-Weyl! Invariance. As emphasized in Ref. [60],
anomaly mediation is not duc to any anomaly of SUSY itself,* but is rather due to
the need to add local counterterms to preserve SUSY of the 1PI effective action. A
related story presented in Ref. [87] is that bulk counterterms are needed to counteract
otherwise SUSY-breaking cffects due to the boundary of AdS;. Here, we will follow
the logic of de Alwis [46, 47| (based on the analysis of Kaplunovsky and Louis [103])
to show how anomaly mediation arises from preserving super-Weyl invariance of a
UV-regulated SUGRA theory. While de Alwis (erroneously) concluded that anomaly
mediation cannot cxist in such a situation, we find that there is residual gauge de-
pendence in de Alwis’ calculation (and a similar issue implicit in Kaplunovsky and
Louis). In the langauge of the Weyl compensator, anomaly mediation depends not
Just on the fx component of the compensator (which can be gauge-fixed to zero), but

on the super-Weyl-invariant combination
— ]' * =
FSVV = F() - EA/[ 5 (02)

where Al is the scalar auxiliary field. Accounting for the fact that (Fyw) depends on

mg e, we reproduce the familiar anomaly-mediated spectrum.

3In Ch. 5, we (erroncously) advocated that the absence of goldstino couplings could be used as a physical
definition of scquestering. Because of this tree-level tachyon subtlety, though, this goldstino coupling is
nceded to have a stable theory.

4Of course, the name “anomaly mediation” is still justified since it generates effects proportional to beta
function coefficients.
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¢ Supertraces Resolve Spectrum Ambiguities. We will use an ansatz for the
SUGRA-invariant 1PI cffective action to extract sfermion soft masses and goldstino
couplings. Because there are many such ansitze consistent with SUGRA, there is an
ambiguity in the resulting sfermion spectrum. For example, there are three terms

that show up at (’)(mg/g) in the 1PI effective action:
Esoft mass _C.Sd)*d) - CaF*L_—]—lF + inXTEILD;Lljile (53)

where [0 is the d’Alembertian appropriate to curved space. The first term is the
familiar sfermion soft mass-squared term, but the two non-local terms nccessarily
appear as m?/p? corrections to the self-energies. We will find that while the coefficients
C; are indeed ambiguous (since they depend the precise form of the ansatz), the

supertrace
S =0Cs+Co—2Cs (5.4)

is unambiguous and gives a useful measure of the “soft mass-squared” for a sfermion
(see Ref. [12] for a related story). Not surprisingly, a similar supertrace is needed to

define unambiguous “goldstino couplings”.

e SUSY-Breaking in the SUGRA Multiplet. The key confusion surrounding
anomaly mediation is that there are two different order parameters in SUGRA—one
which sets the underlying AdS curvature and one which accounts for SUSY breaking—
which are only related to each other after tuning the cosmological constant to zero.
In particular, a non-vanishing vacuum expectation value (vev) for M* (containing the
term —3mg/o in SUGRA frame) does not break SUSY. Instead, the SUSY-breaking
order parameter in SUGRA comes from the F-component of the chiral curvature

superfield R:
_ 1 2
FR: ER?mg/Q. (5.5)

After using the Einstein equation, Fi vanishes for unbroken SUSY in AdS, but takes
on the value —m% /o once the cosmological constant has been tuned to zero. Thus in

flat space, we will find both SUSY-breaking and SUSY-preserving effects proportional
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Tree-Level One-Loop Two-Loop
SUSY A§S4 Soft Mass-Squared —Qm?3 /2 ’ymg /2 —%7771% /2
(R =12m?2,.) . . .
3/2 Goldstino Coupling — -
Curved Space | Soft Mass-Squared —%R %77% —ﬁ"ymg /2
(broken SUSY) Goldstino Coupling —2(m§/2 - +R) 'y(m?,)/2 - LR) —
Flat Space Soft Mass-Squared — — w%’ymg /2
(broken SUSY) Goldstino Coupling —2m§ /2 'y’mg /2 —

Table 5.1: Sfermion soft masses and goldstino couplings from minimal anomaly mediation
(i.c. “gravitino mediation” in the language of Ch. 5, so (K;) = 0). Here, v is the anomalous
dimension of the chiral multiplet and 4 = dv/dlog . Starting with unbroken SUSY in
AdS, with Riccl curvature R = 12’\X§S = 12777,3 5> we show how the spectrum evolves
as SUSY breaking is tuned to achieve flat space with R — 0. In this table, “soft mass-
squared” and “goldstino coupling” refer to the supertraces in Egs. (5.87) and (5.90), and
the loop level refers to the order at which the effect starts. Minimal anomaly mediation also
yields A-terms and B-terms, which are described in Sec. 5.4.5. This table only includes the
contributions from bulk terms and not from one- and two-loop boundary terms (analogous
to Ref. [87]) necessary to preserve the SUSY algebra in AdSs; these boundary terms are
irrelevant in flat space.

to m% 2 and we will have to tease these two effects apart by carcfully considering
AdS SUSY. We will also find corresponding goldstino couplings proportional to Fg,
arising from terms in the SUGRA multiplet proportional to the gravitino equations

of motion.

e Two-Loop Soft Masses and One-Loop Goldstino Couplings. Using an ansatz
for the all-orders SUGRA-invariant 1PI effective action, we will recover the familiar
two-loop soft masses from anomaly mediation. But in addition, we will find one-loop
goldstino couplings proportional to anomalous dimensions (on top of the tree-level
goldstino coupling from Eq. (5.1)). As a cross check of our calculation, both the two-
loop soft mass and the onc-loop goldstino coupling are renormalization-group (RG)
invariant quantitics, as expected from the general analysis of Refs. [98, 97, 133, 12].

The complete sfermion spectrum is summarized in Table 5.1.

The remainder of this chapter is organized as follows. In Sec. 5.2, we review the structure
of SUGRA at tree-level, and show how the underlying AdS algebra gives rise to SUSY-

preserving mass splittings between fermions and sfermions. In Sec. 5.3, we discuss super-
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V=0 --ccecc--- —— Flat Space
(broken AdS,; SUSY)

+ F%

V = —3mj,Mj —— SUSY in AdS,

Figure 5-1: Fine-tuning of the cosmological constant, adapted from Ref. [21]. Starting with
the underlying AdS radius ’\K(lls; = mg2, SUSY-breaking effects lead to flat space with
broken (AdS) SUSY.

Weyl invariance in UV-regulated SUGRA theories at one loop, and show how anomaly
mediation arises as a super-Weyl-preserving and SUSY-preserving effect. In Sec. 5.4, we
discuss anomaly mediation for sfermions up to two-loop order, completing the analysis of

goldstino couplings that was initiated in Ch. 5. We conclude in Sec. 5.5.

5.2 Invitation: Anomaly Mediation at Tree Level

It is well known that rigid AdS SUSY requires mass splittings between particles and spar-
ticles [25, 132]. Less well known is that those mass splittings have an impact on the phe-
nomenology of SUGRA, even if the geometry (after SUSY breaking) is that of flat space. In
particular, the couplings of the goldstino (eaten to form the longitudinal components of the
gravitino) can be used to track which effects break SUSY and which effects preserve SUSY.
Crucially, these couplings depends on ms /2, which in turn depends on the underlying AdS
radius )‘,f_\(lis = mgse prior to SUSY breaking. The fine-tuning of the cosmological constant
to achieve flat space is summarized in Fig. 5-1.

Considering only chiral multiplets, we can write the fermion and sfermion masses and

sfermion-fermion-goldstino couplings as

. 1 R ey s o o
£> _m?j‘-f)*?d’J - EBijfblqy = §Mrij)(")(“r + ;—;}d)”X}Gn + ;;T &'’ G + h.c., (5.6)
e e

where ¢; is a sfermion, v; is its fermion partner, G, is the goldstino, and F.q is the scale
7 ) ’ L eff

of SUSY breaking. Assuming the flat space SUSY algebra, one can show that

al® = mZ — M;* My, it = Byj, (5.7)
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which emphasizes that goldstino couplings arise when sfermions and fermions have non-zcro
mass splittings (i.e. when flat space SUSY is broken). In AdS space at tree-level, however,

we will show that

a,{\»db == m

A = MFMy +2m3 6, b5 = Bij 4+ my M, (5.8)

which shows that one can have g s2-dependent mass splittings between multiplets without
corresponding goldstino couplings (i.c. without breaking AdS SUSY).

In this section, we give two different derivations of Eq. (5.8), with a third derivation
using the conformal compensator given in App. C.1. We then discuss the phenomenological
implications of these goldstino couplings for scquestering, Giudice-Masiero terms, and regu-
lator fields. Though the goldstino is eaten by the gravitino in SUGRA, the couplings of the
goldstino are still physically relevant. Indeed, in the goldstino equivalence theorem regime
with cnergies £ 3> magyy, the interactions of the longitudinal components of the gravitino
are capturced by the goldstino couplings in Eq. (5.8) (plus modifications to those goldstino

couplings that appear at higher-loop order).

5.2.1 Derivation from the SUGRA Lagrangian

The first way to derive Eq. (5.8) is to consider the SUGRA Lagrangian directly. The scalar
potential for SUGRA is [154]
V =Y (GHGy - 3), (5.9)

where the Kihler-invariant potential G is given by?®
G=K+logW +logWT. (5.10)

Throughout the text, we use the conventions of Ref. [154]. Here, subscripts represent
derivatives with respect to scalar fields (G, = 0G/0¢"), and indices are raised and lowered

with the Kahler metric G;; and its inverse. The gravitino mass is given by

mays = (/7)) (5.11)

®The Kéhler anomaly [16, 17] implies a physical difference between the Kihler potential and the super-
potential, but it does not enter at tree level.
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and the quadratic fermion interactions in SUGRA are
_ 1 o
LD —iGyx e D, xt - §€G/Q<V1‘Gj + G;Gy)x'x? +hee. (5.12)

wherc D, and V; are the Kéhler-covariant derivatives with respect to spacetime and scalar

fields, respectively.

If SUGRA is unbroken ({(G;) = 0), then we have a negative cosmological constant
(V) = —3m§/2M€,]), s0 the spacetime background is AdS, with curvature )\Xés = mg/p.

The fermion mass matrix is
M;j = mg (ViGj) (unbroken SUGRA), (5.13)

and at the extremum of the potential ({V;) = 0), the scalar mass-squared and holomorphic

mass can be expressed in terms of M;; as

miy = MM, - 2m3 017, (5.14)
Bij = —mg oM (unbroken SUGRA). (5.15)

These are the same as the results we found in for rigid AdS SUSY in Sec. 2.7, as expected.
Note that inserting these mass values into Eq. (5.8) yields no goldstino couplings, as is to

be expected since there is no goldstino when SUGRA is unbroken.

If SUGRA is broken, then there are a few important effects. Defining the SUSY-breaking

scale as

Fopr = VeCGEG,, (5.16)

we find the the cosmological constant is modified to be
(V) = F — 3mj,, Mg, (5.17)

where we have restored factors of the Planck constant Mp). As shown in Fig. 5-1, it is

possible to fine-tune V = 0 by choosing

Feff = \/3777/3/2]\1191. (518)
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In addition, SUSY breaking gives rise to a goldstino, which (assuming no D-terms for the
gauge multiplets for simplicity) points in the direction

~ 1

G, = G ;. 5.19
I 70X (5.19)

The fermion and sfermion mass matrices are generically deformed due to the presence of

SUSY breaking, and their form is well-known for (V) = 0 and (V;) = 0 [154]:°

AL'J' = 7713/2 <V,GJ + GLGJ> s (520)
mfj = mg/2 <V¢Gkijk — Rijk[Gk’Gi + Gij> , (5.21)
¥ = m3, (GEViV, Gy + 29,Gj ), (5.22)

where I, is the Kihler curvature tensor.”

The Yukawa couplings can similarly be extracted from Eq. (5.12):

1 n i 7 ‘
LD —57Ma)2 <~Rijk[Gl + GG + Gin7> Yot (5.23)

1 S
= 52 (ViV;Gi + GiV;iGi + G VG + G VLG + GiGGr) X'l (5.24)

One can read off the couplings of the goldstino to visible-scctor ficlds after picking out the

goldstino direction:

Qi = 771§/2 <_R'ijk:leG[ + 3Gij> ; (5.25)

bij = "75/2 <GkViVij + BV’iGj> ) (5.26)

recalling that (G;) is negligible for visible-sector fields. This then yiclds the goldstino

couplings anticipated in Eq. (5.8) (at least for the case of (V) = 0).

Thus, despite the fact that SUGRA is broken and the cosmological constant is lifted
to yield (V) = 0, the goldstino couplings retain information about the structure of the

underlying AdS SUSY, and not the structure of flat space SUSY.

“There is a typo in Ref. [154] which omits the first terin in Eq. (5.22).
"Here, and throughout the text, we do not choose any gauge fixing for the gravitino, so there is also
quadratic mixing between the goldstino and the gravitino. Sce Eq. (5.31) below.
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5.2.2 Derivation from Supercurrent Conservation

An alternative derivation of Eq. (5.8) uses conservation of the AdS supcrcurrent. The
supercurrent is the Noether current of (rigid) SUSY transformations, and in SUGRA, the

linear couplings of the gravitino 1), to matter are determined by the supercurrent alone:

L= e“"pTz/JLE,,qu/JT - m3/21/)LE‘“’1/;lT, + h.c. — ™ + hee. (5.27)

1 QN
2Mp; H
Appropriate manipulation of the gravitino equation of motion (and the Einstein equation,
given Eq. (5.17)) yields the relation

, 1. . FL
0= <D“_7T“ + §ZTI13/2(J'“']“> - zj\;gl ', (5.28)

This relation can be most naturally interpreted in the rigid limit (Mp; — oo, Mg/, and
F.g fixed), in which the last term vanishes and the spacetime background is AdS (with
/\X!18 = mg/y). In the rigid limit, we see clearly that conservation of the supercurrent is
different in flat space versus AdS space. In flat space, the fermionic SUSY transformation
parameter e satisfies the criteria d,.e = 0, whereas in AdS space
i + .

D,e = —5M3/204€ (5.29)
where D,, is the (gravity) covariant derivative [4, 70]. Among other things, this implies
that the goldstino in rigid AdS space has a mass of 2my/, [42, 39]. It also implies that the

condition for conservation of the supercurrent is not d,j* = 0 but rather the rigid limit of

Eq. (5.28), as Noether’s thcorem requires D, (j*e + j1#¢f) = 0.

When SUSY is broken, the supercurrent contains the goldstino
Gt = 2Rzt G + T, (5.30)

where 7# is the remaining “matter” part of the supercurrent. Eq. (5.28) can then be
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interpreted as the goldstino equation of motion arising from the Lagrangian

1 Fogr

V2 Mpy
1 -1 - .
— ﬁF— (D’“jﬂ — 2'l'777/3/2jTHEH) GL + h.C., (531)
eff

~ -~ 1 -~ -
L=—iG7"v,Gp 5 (2ms32) GG+ hie. + Glaty, + he.

where the last term is necessary for conservation of the AdS supercurrent.

In both flat space and AdS space, the supercurrent for chiral multiplets contains®
7" D V2950,6" x 05" . (5.32)

The other term proportional to x*D;W*x&# is irrelevant for our discussions since it
vanishes on the goldstino equation of motion. Using the equations of motion for the matter
fields and the goldstino cquation of motion, we find that Eq. (5.31) contains the goldstino

couplings

aiy = mi; — My M*5 + 2m3 035, (5.33)

bij = Bij + My, (5.34)

as expected from Eq. (5.8). Note that the terms proportional to g 2 arise from the
additional goldstino mass and ﬁiwm /23”‘5“6' L, terms necessary for AdS supercurrent con-

servation.

5.2.3 Tachyonic Scalars and Sequestering

The fermions in the standard model are massless (prior to electroweak symmetry breaking),
so in the absence of AdS SUSY breaking, the sfermions would be tachyonic, with a common
mass-squared —27mn3 /2 (see Eq. (5.14)). In order to have a (meta)stable vacuum after SUSY
breaking, these tachyonic masses must be lifted, but from the a;; term in Eq. (5.8), this
implies an irreducible coupling between the goldstino and the matter fields.

This result is rather surprising from the point of view of strictly sequestered theories

[135], where anomaly mediation is the only source of soft masses. As shown in Fig. 5-

¥This assumes that the SUGRA action only contains a Kahler potential and a superpotential without
additional higher-derivative interactions. The supercurrent is modified when loop cffects are taken into
account, giving rise to new effects detailed in Sec. 5.4.
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Visible Sector Hidden Sector

Figure 5-2: An extra-dimensional realization of the sequestered limit, where SUSY is broken
only in a hidden sector. Naively, the goldstino is localized in the hidden sector and would
not couple to visible sector fields. But due to mixing with the gravitino, there are irreducible
couplings between the goldstino and chiral multiplets in the visible sector in order to have
a stable tree-level theory in flat space after SUSY breaking.

2, one way to achieve the sequestered limit is to have the visible sector (i.e. the SSM)
and the hidden sector (i.e. SUSY-breaking dynamics) live in different parts of an extra-
dimensional space with no light degrees of freedom connecting the two apart from gravity.
This implies a special sequestered form of the effective four-dimensional Kahler potential

and superpotential:
—3e™ %73 = Quis + Qnia, W = Wyis + Whia. (5.35)

Naively, one would think that the goldstino from SUSY-breaking must be localized in the
hidden sector (assuming the SSM itself does not break SUSY [96, 20]), and therefore decou-
pled from the visible sector. But Eq. (5.8) shows that there are direct connections between
the visible and hidden sectors necessary for stability of the theory. In particular, there is
an irreducible coupling to the goldstino when the sfermion soft mass is zero in flat space:

2
2m3 /2 =

-C; D Feﬂ- GLX(.b . (5.1}6)

There are two potential ways to interpret this result. One interpretation is to conclude
that sequestering corresponds to a fine-tuned limit. After all. in the sequestered limit at

2

tree-level, one has the underlying —2m§ /2 AdS tachyonic mass balanced against the +2m3 /2

SUSY-breaking mass to yield the physical tree-level sfermion mass of zero once the cosmo-
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logical constant is tuned to zero. This interpretation is probably too pessimistic, though,
since the tachyonic uplifting is an automatic consequence of adjusting the cosmological
constant. Concretely, this uplifted mass arises from the scalar auxiliary field (and the cor-
responding goldstino couplings arise from mixing with the gravitino), so once you have the
sequestercd form of K and W, you necessarily obtain zero scalar masses but non-zcro a;;

couplings.

A sccond, more optimistic, interpretation is that Eq. (5.36) gives a concrete definition of
scquestering. While the extra-dimensional picture in Fig. 5-2 is a nice realization of seques-
tering, the sequestered limit can be achieved in more general theories. In four-dimensional
models with conformal sequestering [123, 118, 141}, the visible and hidden sectors cffectively
decouple under RG flow to the infrared, assuming all composite vector multiplets in the
hidden sector have mass dimension greater than 2. As we explain in App. C.2, Eq. (5.36) is
actually RG invariant, so one might conjecture that it corresponds to precisely the (attrac-
tive) TR fixed point needed to have a conformally sequestered theory. More generally, one
can identify when a theory is sequestered if Eq. (5.36) (and corresponding loop corrections,

see Sec. 5.4.5) is the only coupling between the visible and hidden sectors.?

Regardless of how one interprets this result, the irreducible goldstino coupling is an
unavoidable consequence of AdS SUSY lifted to flat space, since something needs to lift the
tachyonic scalars to have a stable theory in flat space. Omne might even hope to measure

Eq. (5.36) experimentally as a way to gain access to the underlying AdS curvature.

5.2.4 Giudice-Masiero Terms

The Giudice-Masiero mechanism [82] is a way to generate a p term and a B, term pro-
portional to my/, without (apparently) requiring couplings between the visible and hidden
sectors. Via a holomorphic piece in the Kihler potential (written using boldface to empha-

size that these arc superfields)

3K S5 eH Hy +h.c., (5.37)

?As shown in Ch. 5, the sequestered limit implies that gaugino-gauge boson-goldstino couplings are zero.
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one generates the fermion and scalar mass terms

B,

LD —emg/phuthy — e7n§/2huhd +he = /—L

= +7YL3/2. (538)
The sign of By, here is crucial, since if instead one had the superpotential
W o uH, H,, (5.39)
the fermion and scalar mass terms would be
B,
LD —ppythg +mgpophyhg + he. = m = —mg/y. (5.40)

From Eq. (5.8), wec sce that the Giudice-Masiero mechanism actually does break SUSY
(with b;; = 2my/op), while generating B, from the superpotential does not break SUSY
(i.e. bi; = 0). Written in this language, it is confusing how a goldstino coupling could appear

in the Giudice-Masicro mechanism since there is no goldstino present in Eq. (5.37).

We can do a Kahler transformation to make the physics manifest. To model SUSY

breaking, we use a non-linear goldstino multiplet [137, 116, 109, 42, 39]

1 N 2
Xy, =Fx [0+ G 5.41
.= Py (04 50 (5.41)

that satisfies X 12\IL = 0. In a theory where the visible Higgs multiplets are sequestered from

SUSY-breaking, the relevant picces of the Kéhler potential and superpotential are

~3e KB - 34 XLLXNL +e(H,H;+he)+. .., (5.42)
W =mgjo+ fXNL+-.., (5.43)
where the equations of motion set Fy = —f and fine-tuning the cosmological constant

to zero requires f = \/§m3/2. At tree-level, the physics is invariant to doing a Kahler

transformationi®

Ko>K+Q+9Q, W %w, (5.44)

WAt loop level, one must account for the Kihler anomaly [16].
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so choosing Q@ = —eH ,H,, we have

—3e7 K = 34 X1 Xy - %XTNLXNL(H.,,,Hd Fhe)+. (5.45)
W = mg/o + fXnNL + f'mg/gHqu +efXNH Hy+.... (5.46)

We see immediately that the Higgs multiplets have a SUSY-preserving pu = emy /2, and a

corresponding SUSY-preserving contribution to B, of —pumg /2 = —em? But there are

3/2°
also SUSY-breaking B, terms from direct couplings to X i, in both the Kéhler potential
and superpotential. This yiclds a contribution to By, of (— % +1)e[f|?, which equals +26’II’L§/2

after tuning the cosmological constant to zero. Therefore, we have
B, = ~cm§/2 + 267’77,§/2 = —+—em§/2, bij = 26m§/2, (5.47)

as required by Eq. (5.8).

Despite the fact that Giudice-Masicro can be written in a sequestered form in Eq. (5.42),
there is secretly a coupling between the visible sector Higgs multiplets and the hidden
sector goldstino.!! Thus, we conclude that the relation B,/ = +mg /2 is due to a partial
cancellation between a SUSY-preserving and a SUSY-breaking effect, and corresponds to a
tuning between (otherwise) independent parameters. In the strict sequestered limit where

only irreducible goldstino couplings are allowed, Giudice-Masiero terms must be absent.

5.2.5 Mass Splittings for Regulators

In order to set the stage for talking about anomaly mediation at loop level .in the next
section, we want to discuss a bit about the physics that regulates logarithmic UV diver-
gences in SUGRA. There are various ways to introduce an effective cut-off scale Ayy into
SUGRA, for example by introducing Pauli-Villars regulators [75, 76] or higher-dimension
operators that regulatc the UV behavior [103]. However, already at tree-level, we can see
the consequences of having a physical regulator in AdS SUSY.

Counsider a Pauli-Villars chiral regulator field with a SUSY-preserving mass Ayy. If
this regulator does not break AdS SUSY, then it must have an additional scalar negative

mass-squared —2m2 . as well as a B-term of —mgnAyy, giving rise to SUSY-preserving
q 3/2 3/2 ) 8 g

"Of course, the physics is invariant to Kihler transformations at tree-level; all we have done here is choose
a convenicnt. Kahler basis to make the physics more clear.
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mass splittings between the Pauli-Villars fermions and scalars:
2 2 2
T”PV—scalar = —2m3/2 ~+ AUV =+ TI’L3/2AU\/, MPpvV-fermion — AUV- (5.48)

Any UV-divergent SUGRA calculation that properly includes the regulator modes will be
affected by this mass splitting, and this fact is one way to understand the necessity of
anomaly mediation.!? We often say that anomaly mediation is “gauge mediation by the
regulators”, in the sense that the (SUSY-preserving) mass splitting at the threshold Ayy
acts analogously to the (SUSY-breaking) messenger mass threshold of gauge mediation.

Crucially, we will scc that thc mass splittings generated by anomaly mediation do not

break AdS SUSY.

It is possible, however, to regulate SUGRA with a regulator multiplet whose scalar and
fermionic components have a common mass Ayy, for example by appropriately coupling
the regulators to the SUSY-breaking X np,. All this means is that the regulator multiplet

must have corresponding goldstino couplings by conservation of the AdS supercurrent:
apy = 2m§/2, bpy = mgz/aAuv. (5.49)

Since there is no mass splitting among the regulators, no mass splittings are generated.
However, we would instead get goldstino couplings from the regulator fields! One can of
course consider an intermediate case with a combination of mass splittings and goldstino
couplings. In either event, one can show that modifying regulator couplings in this fashion

is phenomenologically equivalent to changing <KiF Z> for the purposes of loop-level calcu-

1

lations,™® so for simplicity we will assume regulators have no explicit coupling to SUSY

breaking in the subsequent sections.!

2In Sec. 5.3.4, we will show how the regulators must be included to get super-Weyl-invariant gaugino
masses.

13In the language of Sec. 5.3, coupling regulators in such a fashion is largely equivalent to making the
replaccment C — C(1 + X~ /A), with C the Weyl compensator.

147y avoid later confusion, we want to point out that there are two different types of ambiguities. The
ambiguity discussed here is whether the regulators do or do not experience SUSY breaking, which is a
physical effect that can be measured using goldstino couplings. There is a separate ambiguity in Sec. 5.4.4
having to do with how to write down a SUGRA-invariant, 1PI cffective action. This is (partially) resolved
using supertraces to define the soft mass spectrum, up to a puzzling ambiguity in how the c¢; term affects

T.
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5.3 Anomaly Mediation and Super-Weyl Invariance

In Ch. 5, we described one-loop anomaly-mediated gaugino masses using the conformal
compensator formalism of SUGRA [143, 114, 80], which is a gauge fixing of super-conformal
SUGRA. Here, we will instead use the super-Weyl invariant formulation of SUGRA, which
will allow us to counect directly to the claims of de Alwis in Refs. [46, 47]. Starting with a
review of the super-Weyl formalisin, we will follow the logic of de Alwis (which itself follows
the logic of Kaplunovsky and Louis [103]) to construct a Wilsonian effective action. After
demonstrating the existence of anomaly mediation in the Wilsonian picture, we derive the
same effect using a super-Weyl invariant and SUSY-preserving 1P1 effective action. We will
only consider gaugino masses in this section, leaving our main result on sfermion masses to

Sec. 5.4.

5.3.1 Super-Weyl Formalism for SUGRA

The SUGRA Lagrangian can be derived from a gauge fixing of super-Weyl-invariant SUGRA.
Super-Weyl transformations are the most gencral transformations that leave the torsion
constraints of SUGRA unchanged, and they may be parameterized by a chiral superfield
Y (and its conjugate anti-chiral superficld ) [90, 154]. The components of the chiral su-
perfield X correspond to different types of transformations which may be familiar from the
supcrconformal algebra: Re X| corresponds to dilatations, Im 3| to chiral U(1) g rotations,
and D,X| to conformal supersymmetry. The Fy: component of ¥ corresponds to a new

symmetry which will play a key role in understanding anomaly mediation.'”

The complete super-Weyl transformations are given in App. C.3. Crucially, the only

field that transforms under Fy is the scalar auxiliary field M of supergravity [90, 154, 103]:
M* — M* —6Fy.. (5.50)

This auxiliary field appears in the determinant of the SUSY vielbein E, the corresponding

15 . - . .

“Super-Weyl transformations do not include special conformal transformations, and superconformal trans-
formations do not include the symmetry generated by Fx., so neither super-Weyl transformations nor super-
conformal transformations are a subset of the other.
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chiral density 2€, and chiral curvature superficld R:

E> —%M*@Q +he + é\M|2<~)4, 26 5 —eM*®?, RO -é—M - é[MF@z b
(5.51)
We will often talk about the Weyl weights w of chiral superfields Q,, and vector superfields
V. which transform as [154]

Qw - Qwewz7 Vi — Vi cw(E—}—ET). (552)

Ordinary matter fields have Weyl weight 0, so the Kahler potential K and superpotential W
also have Weyl weight 0. For a vector supcrficld of weight 0, the gauge-covariant superfield
W, has Weyl weight —3. In the gravity multplct, F has Weyl weight 4 and 2€ has Weyl
weight 6.

The usual SUGRA action (e.g. in Ref. [154]) is not invariant under super-Weyl trans-
formations, so one needs to introduce a super-Weyl compensator C' with Weyl weight —2

(i.c. C — ¢7?2C). In that case, the tree-level Lagrangian
L= / d*O ECTC (-3¢ K/3) + /d2(~) 26 CPW + i /d2@ 26 WOW,, +he.  (5.53)
has Weyl weight 0 as desired. The components of the super-Weyl compensator are
C =C{l,xc, Fcl, (5.54)
and due to the non-vanishing Weyl weight of C, Fi: transforms under Iy as

FC — FC — QFE. (5.55)

It should be stressed that this supcr-Weyl invariance (and the corresponding super-
Weyl compensator) were introduced into Eq. (5.53) simply for calculational convenience,
and physical results will not actually exhibit super-Weyl symmetry. After all, one can
use the super-Weyl transformations to gauge-fix C in some convenient fashion, leaving a
theory without spurious symmetries or degrees of freedom. Because Iy transformations

are a gauge redundancy of the theory, though, physical observables will only depend on the
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combination!?

1
Fyw = Fo = 5 M, (5.56)

regardless of what gauge choice is ultimately made. As we will argue, this Fy-invariance is

the key point missed in Refs. [46, 47] (and implicitly missed in Ref. [103]).

5.3.2 Choice of Gauge Fixing

To recover the familiar SUGRA Lagrangian from Eq. (5.53), one must gauge fix C. The
choice C = 1 yields the Lagrangian in “SUGRA frame” (i.e. without performing any super-

Weyl transformations). A more convenient choice is [103]
i1
logC +log C'" = §K|H, (5.57)

with K| being the harmonic (i.e. chiral plus anti-chiral) part of the Kihler potential.
This yiclds the Lagrangian in “Einstein frame” (i.e. after having performed appropriate
super-Weyl transformations). Effectively, this gauge choice is the equivalent of going to
Wess-Zumino gauge for the real superfield K.17 It must be stressed that Eq. (5.57) is not a
supersymmetric relation amongst superfields, since K|y is not a superfield itself. Instead,
Eq. (5.57) should be thought of merely as a prescription for setting each component of C' and
Ct. Of course, other gauge-fixing prescriptions will give physically equivalent results, but
Eq. (5.57) is particularly convenient since this choice for Re ' yields canonically-normalized
Einstein-Hilbert and Rarita-Schwinger terms and this choice for x¢ climinates troublesome
matter-gravitino mixings.

However, it is not so clear what is accomplished by gauge-fixing Fro. We can investigate
this by examining the portion of Eq. (5.53) that depends on F+ and M*, since these are

the only two fields that are not inert under Fy transformations.

» 1 . 1
e IL=CrC (e""“) (3 (Fg} — %M) (F(, —~ §M*> + K <F5 - §M> + h.c.>

y 1
+ 30% (F(; - 5M*) W +he +... (5.58)

"“The superconformal formalism does not coutain M™, since that degree of freedom is contained in the
Fp component of the conformal compensator (see App. C.1). In the super-Weyl case, the Frr component is
a pure gauge degree of freedom.

" This gauge choice leaves still leaves arg ' undetermined, though one can fix arg C by imposing that the
gravitino mass parameter has no phase.
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As expected from Eq. (5.56), Fo and M* only appear in the Fy-invariant combination

Foyw = Feo — %]W * which has the vacuum expectation value
P
(Fsw) = ma/ + 3 (KiF"). (5.59)

Thus, different gauge-fixings for Fr only serve to shift the vev of M*. After one solves
the M* cquation of motion, physical observables do not (and cannot) depend on the gauge

fixing of Fe.

5.3.3 Counterterms in the Wilsonian Effective Action

As emphasized in Ref. [46, 47], it is possible to regulate all UV-divergences in SUGRA in
a way that preserves SUSY and super-Weyl invariance. This was shown in Ref. [103] using
higher-derivative regulators in a version of Warr’s regularization scheme [150, 151]. This
implics that the super-Weyl symmetry discussed above is not anomalous, and consequently,
any physical results we derive must be completely super-Weyl invariant. Indeed, we will
see that anomaly mediation (despite its name) is necessary to prescrve both SUSY and
super-Weyl invariance.

The key observation of Ref. [103] is that to preserve super-Weyl invariance in a UV-
regulated theory, the Wilsonian effective action must consist of Eq. (5.53) augmented with
the counterterm

3

AL = F(TG — TR)/ d’02€ logC WoW. (5.60)
m

This term can be deduced from the requirement that the U(1)g part of the super-Weyl
transformations remains non-anomalous. Tt is convenient to canonically normalize the mat-
ter fields Q° by performing the (anomalous) rescaling Q° — Q°/C such that the rescaled

matter field have Weyl weight —2. Duec to the Konishi anomaly [110, 43], this rescaling
modifies Eq. (5.60) to become

1

AL —
£ 1672

(8T — Tg) / d?@2€ logC WoWE, (5.61)
Immediately this presents a conundrum, since Eq. (5.61) contains a gaugino mass that
depends only on Fg::
2
ambiguous _ g T — T\ Fre 5.62
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Following the analysis of Ref. [103], Refs. [46, 47] claimed this was the complete formula
for the gaugino mass, and by gauge-fixing Frr = %K,F ¢ as in Eq. (5.57), de Alwis found
no contribution to my proportional to the gravitino mass mg /2, and hence no anomaly

mediation.!®

However, we see immediately that Eq. (5.62) cannot be the complete answer, since it is
not invariant under Fy; transformations. This is incompatible with the assertion that the
physical predictions of this theory should be invariant under such super-Weyl transforma-
tions. By Eq. (5.56), the physics should depend on the combination Fyw = Fo — %M’ *

(which does contain mq s2)- One could try to make the replacement
1 = a
logC — log C + 3 log 2E (5.63)

to make the dependence on Fgw manifest, but as ecmphasized emphatically (and correctly)
in Refs. [46, 47], 2€ is a chiral density and not a chiral superfield, and onc cannot include
arbitrary extra factors of a chiral density in a SUGRA-invariant action, just as one cannot
include arbitrary extra factors of det e in a diffeomorphically-invariant action. Indeed, there
is no local term that one can add to the Wilsonian action to make Eq. (5.61) manifestly

super-Weyl invariant.!?

5.3.4 Effect of the Regulators

The resolution to the above puzzle is that the Wilsonian effective action (as defined in
Ref. [103]) needs to violate super-Weyl invariance in order for physical results to be super-
Weyl invariant. This is familiar from Yang-Mills gauge theories with a hard Wilsonian cutoff,
where the Wilsonian action must be non-gauge invariant. in order compensate for the non-
gauge invariance of the cutoff (scc also Ref. [60]). In this case, the tree-level expression in
Eq. (5.62) will combine with loops of the regulators to yield a super-Weyl invariant result.

To understand how this cffect arises, consider a Pauli-Villars regulator, as anticipated
in Scc. 5.2.5. Given a chiral superfield @ in some representation of a gauge group, one can

regulate its contributions to loop diagrams by introducing two superfields, L and S, with

"1n the language of Ch. 5, de Alwis was only claiming the absence of gravitino mediation. The Kihler-
mediated terms proportional to K, F* are not in dispute.

9We will see in Sec. 5.3.5 that one can write down a non-local 1PI effective action that depends only on
Fow.
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L in the same representation of the gauge group and S in the conjugate representation:
Lpy = /d4(—)E [—LTCVL - STeVS} + /dze 2€ Apy L'S + h.c. (5.64)

Gauge fields can be similarly regulated by introducing chiral superfield regulators in the
adjoint representation. By using many such regulators and including appropriate couplings,
all divergences of SUGRA can be removed (74, 75, 76]. The kinetic terms suggest that the
regulator fields have Weyl weight -2, but since the Pauli-Villars mass term is Apy instead
of CApy, the Pauli-Villars fields break super-Weyl invariance. However, Ref. [103] showed
that Eq. (5.61) is precisely the term needed to restore super-Weyl invariance of the action.

Now, because the Pauli-Villars regulators have a SUSY-preserving mass Apy, they ex-
hibit boson/fermion mass splitting due to the ©% component of 2€. Expanding Eq. (5.64),
we find

1
Lpyv D —§AU\/M* LS, (5.65)

which is a B-term that is not super-Weyl invariant! Doing calculations with these regulators
will yield an M*-dependent gaugino mass at one loop. Adding this loop-level contribution
to the tree-level contribution from Eq. (5.62), we have the super-Weyl invariant gaugino

mass

2 2

hysical g g 1 %
mi Y =~ 1672 (3T — Tr) Fsw = 1672 (3Tg — Tr) (777«3/2 + iKiF ) . (5.66)

This expression is manifestly super-Weyl invariant, and reproduces the familiar anomaly-
mediated result. As discussed in Sec. 5.2.5, if the regulators couple to SUSY breaking in
such a way to remove the mg/, dependence in the gaugino mass, this effect would show up
as an my,y dependence in the associated goldstino couplings.

One can avoid this subtlety of regulator contributions by making a gauge choice such
that the vev (M*) = 0. In that gauge (and only for that gauge), therc are no regulator B-
terms, so Eq. (5.62) then yields the correct gaugino mass with Fo = mg/p + %KiFi’.zo This
is essentially the strategy used in Ch. 5 (since the superconformal framework automatically
sets M* = 0), and is effectively what was done in the original anomaly-mediated literaturc

(135, 84] (though not in this language). For any other gauge—including the choice of

20Tt is worth noting here that mgs, herc is really the vev of the superpotential W, which is allowed to
appear in the gauge fixing of F¢.
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Eq. (5.57) used by Refs. [103, 46, 47]-—one cannot neglect contributions to the gaugino
mass due to the UV regulators. Alternatively, one can regulate the theory with super-
Weyl-invariant Pauli-Villars ficlds, in which case Eq. (5.61) is absent but the regulators

have B-terms proportional to Fsw, again reproducing Eq. (5.66).

5.3.5 1PI Effective Action and Goldstino Couplings

We argued above that there is no way to make super-Weyl invariance manifest in a Wilsonian
effective action. However, the super-Weyl formalism is entirely valid at the quantum level,
since there exists a variety of regularization schemes that preserve the super-Weyl symmetry
(i.e. it is not anomalous). Therefore, we should be able to write down a 1PI effective action
that exhibits all of the relevant symmetries of the theory (including super-Weyl invariance).
Here, we will write down the relevant 1PI action to describe gauginos at one loop, and
extend the logic to sfermions at two loops in Sec. 5.4.

One disadvantage of the 1PI action is that it will inevitably be non-local, since it involves
integrating out light degrees of freedom. On the other hand, the 1PI action allows us to
extract all anomaly-mediated effects from the action directly, without having to worry about
the contributions of regulators explicitly as we did in Sec. 5.3.4. To avoid SUSY-breaking
terms in the regulators as discussed in Sec. 5.2.5, we can study a 1PI effective action that
does not have explicit dependence on Xny,. In general, the 1PI effective action will depend
on X'np,, but this will just give extra soft masses and goldstino couplings in agreement with
flat space intuition, whereas we are interested in isolating the anomaly-mediated effects.

At one-loop, the 1PI effective action for the gauge multiplet is
1/ . ~
LD 1 / d*Q2EWS(O)W,, (5.67)

The superfield S is a chiral superfield with the gauge coupling as its lowest component
(see Ref. [12]). The running of the coupling with the momentum scale is encapsulated by
the dependence of S on ﬁ, an appropriately SUGRA-covariant, super-Weyl-covariant, and
chiral version of the d’Alembertian. This 1PI action depends on the holomorphic gauge
coupling, which is sufficient if we are only interested in one-loop cxpressions. To describe
the canonical gauge coupling (including two-loop cffects), one needs an alternative action

described in App. C.4.



As we will discuss further in Sec. 5.4, the choice of O is in fact ambiguous. All choices

are equivalent at O(my/,), though, and we will choosc to work with?!

OwW, = _é(DT2 ~ 8R)D,, {

DOW,
5} : (5.68)

cic
It is then possible to expand out Eq. (5.67) and derive super-Weyl-invariant gaugino masses
and goldstino couplings.?? Note that E]Wa, like W, is chiral and has Weyl weight —3.

In practice, though, it is much more convenicnt to use the Fy; gauge freedom to set
M* = 0. The remaining components of C can be fixed using the gauge choice in Eq. (5.57)

such that (to linear order in fields)
Lo i 1 i
C = {1 KX maps + SKGE" | (5.69)

Note that the fermionic component of C contains a goldstino if K; attains a vev:

Ly G
Xe =3 (KiF") T (5.70)

In this gauge, the graviton and gravitino are canonically normalized and there are no
gravitino-goldstino kinetic mixing terms to worry about. We can also drop the chiral cur-
vature superfield R in Eq. (5.68) because it only contributes at O(m% /2) in M* = 0 gauge
(and in fact gives no contribution in this gauge if the cosmological constant has been tuned
to zero). Similarly, —%DTQDQDB Wy equals the ordinary flat space d’Alembertian [ acting
on W, at this order. So for the purposes of getting the O(ms3/,) gaugino mass and goldstino

couplings, we can simply make the replacement
5. Y qo Liptaterasg L (ptzat) p2 :

where we have dropped terms with superspace derivatives on multiple copies of C (they
never contribute at O(mg/y)) and terms with spacetime derivatives on C (they would only
yield terms with derivatives on goldstinos, which can be ignored at this order in mg,; in

the goldstino equivalence limit). The form of 0 in Eq. (5.71) is not as manifestly chiral as

21Ref. [103] never explicitly wrote down the form for 0 acting on W,,. This slightly complicated form is
needed because W, has a spinor index.

#2As written, this form of O is only gauge-invariant for an abelian gauge symmetry. It can be easily
modified for non-abelian gauge symmetries by appropriate inscrtions of etV
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in Eq. (5.68), but it can be verified to be chiral (up to terms that we have dropped at this
order).
This gauge choice for C is equal to the gauge choice for the conformal compensator ®

used in Ch. 5, and yields identical results. Plugging Eq. (5.71) into Eq. (5.67) yields the

expected soft masses and goldstino couplings from traditional anomaly mediation:?3
LD —lm)\/\ P S o (5.72)
2" R a8
where
1 . 5,1 ;
my = —& ('mg/g + TKiFL) , ey = 2 K;F*, (5.73)
g 3 g 3

and 8, is the beta function for the relevant gauge group. Note that the piece of my
proportional to g3/, does not come with a goldstino coupling, which tells us that it is not
an (AdS) SUSY breaking effect. Had we instead worked in a gauge where M* = —3ms /2
(as was the case in Refs. [46, 47]), then the gaugino mass proportional to my,, would arise
from the parts of (7 that depend on the lowest component of the chiral curvature superfield

R.

Thus, we have seen how anomaly mediation is a necessary consequence of SUSY in-
variance and super-Weyl invariance. Because of the underlying AdS SUSY algebra, terms
proportional to myy necessarily appear in the regulated SUGRA action. Crucially, ms ),
is not an order parameter for (AdS) SUSY breaking, so anomaly-mediated soft masses

proportional to ms/y do not have associated goldstino conplings.

5.4 All-Orders Sfermion Spectrum from Anomaly Mediation

It is well-known that anomaly mediation yields sfermion soft mass-squareds at two loops pro-
portional to m§ /2 [135]. In this section, we want to show that this effect can be understood
as being a consequence of AdS SUSY. To do so, we will follow the logic of Sec. 5.3.5 and
derive the sfermion spectrum by constructing a super-Weyl-invariant and SUSY-preserving

1PT effective action for chiral multiplets.

ZGtrictly speaking, this is only the piece of anomaly mediation related to the super-Weyl anomaly. See
Refs. [16, 53] for how the Kahler and Sigma-Model anomalies contribute to the 1PI effective action.
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The obvious choice for the 1PI effective action is
L= /d4® EC'Cc Q' z(0)Q. (5.74)

Here, Q is a chiral matter multiplet, Z is the supcrficld associated with wave function
renormalization, and U] is a super-Weyl invariant version of the d’Alembertian acting on
chiral superfields. Our key task in this section is to figure out which pieces of Eq. (5.74)
preserve SUSY and which picces break SUSY. To do this, we first identify the order pa-
rameter F'p for SUSY breaking in the SUGRA multiplet, which is valid at order (9(771% /2).
We then use Fr to help identify all places where the goldstino field can appcar. Because
0 is in fact ambiguous at O(m?,’ /2), we will need to construct appropriate supertraces to
extract unambiguous “soft mass-squareds” and “goldstino couplings”. With these tools in
hand, we can then use the 1PI effective action to derive the familiar two-loop scalar soft

mass-squareds, as well as unfamiliar one-loop goldstino couplings.

5.4.1 The Order Parameter for SUSY Breaking

As already emphasized a number of times, the gravitino mass mng/, is not an order parameter
for SUSY breaking but is simply a measure of the curvature of unbroken AdS space. With
an appropriate gauge choice (see Eq. (5.79) below), we can extract my,, from the lowest

component, of the chiral curvature superfield IR,

1, 1

and effects proportional to R| will preserve (AdS) SUSY.
The SUGRA multiplet does contain a SUSY-breaking order parameter at order (’)(m% /2),

namely the highest component of R:

1, 1 1 .
~ D*Rl= R— oMM+ ..., (5.76)

where R is the Ricci scalar. Upon using the Einstein cquation, this takes on the value

P
3M3,

1 .
Fr= ER - mé/2 = (5.77)
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regardless of whether Fig is tuned to yield flat space or not. Since F,g is an order parameter
for SUSY breaking, so is F for finitc Mp. In an arbitrary gauge, we will define Fp in terms
of Eq. (5.77) (instead of —1D?RY).

As expected, Fi = 0 for unbroken AdS SUSY (i.c. 1-1272 = m§/2). When SUSY is broken
and the cosmological constant is tuned to zero, then Fp = —mg/,z (i.e. R = 0). So while
m e itself does not break SUSY, Fp can yield effects proportional to mzs /2 that do break
SUSY. This distinction lies at the heart of the confusion surrounding anomaly mediation.

To better understand why Fp is an order parameter for SUSY-breaking, it is helpful to
note that Fip controls the amount of gravitino-goldstino mixing in the super-Higgs mecha-
nism. This can be seen by examining the various forms of the gravitino equation of motion

one can obtain by plugging Eq. (5.30) into Eq. (5.27):

1 3t Fp ~
—PTE, Dy = — e GG
]\/1[)1 v pl/T \/§Feﬂ k
1 3 Fp ~
— "D, = ———GL +..., 5.78
Mp, W V2Fa " (5:78)
1 3t Fpp =~
——— "Dy = —=——0,G, + ...,
M AN VoY P

where we have also used the Einstein equation from Eq. (5.77). Thus, gravitino couplings
which look innocuous can secretly contain (SUSY-breaking) goldstino couplings when Fp
is non-zcro. This will be of great importance when we track goldstino couplings in the
next subsection. The ellipses of Eq. (5.78) contain terms not relevant to our discussion. In
particular, we can ignorce any ms 1, terms since we only care about effects up to (’)(m% /2).
We can also ignore terms proportional to o#4,, since applying its equation of motion would

only serve to reintroduce derivatives acting cither on gravitinos or goldstinos.

5.4.2 Goldstinos in the SUGRA Multiplet

Since our ultimate goal is to compute the sfermion soft masses and goldstino couplings
advertised in Table 5.1, it is crucial to identify all places where the goldstino field can
appear.

The most straightforward case is when there are direct couplings between the visible
sector fields and the SUSY-breaking superficld X Ny, from Eq. (5.41), which has the goldstino

as its fermionic component. This case is not interesting for our purposes since it generates
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soft masses and goldstino couplings in agreement with flat spacc intuition. We therefore
take the wavefunction superfield Z to be independent of Xy, for simplicity.

Somewhat less obviously, the Weyl compensator C' itsclf can also contain a goldstino,
and different (super-Weyl) gauge fixings give different goldstino dependence in C'. We find
it convenient to work in the gauge where

C = {1, % (K3 X, % (K;) F} (5.79)

This is effectively the gauge choice of Eq. (5.57) carried out to lincar order in fields, which
is the minimum necessary to have canonically-normalized Einstein-Hilbert and Rarita-
Schwinger terms [38]. In this gauge —3M* = my/, (see Eq. (5.75)). Upon picking out
the goldstino direction, ncglecting other fermions, and dropping terms with multiple gold-

stinos,

~ 2
C=1+ é (K F" (@ + \/ggeﬂ) . (5.80)
This gauge choice clearly shows that wherever (Fp) = % <KiF 7-'> appears in a soft SUSY-
breaking term, it will have an associated goldstino coupling. Of course, F is always
accompanied by —%M * = myy by super-Weyl invariance, but effects proportional to M *
do not have associated goldstino couplings. After all, (M*) # 0 does not break AdS SUSY,
whereas <K1;F i> = () does.

The most subtle case is to identify goldstino fields hiding in the SUGRA multiplet. These
arise through the gravitino equations of motion shown in Eq. (5.78), which arc necessarily
SUSY invariant. The SUSY transformation of Eq. (5.78) then tells us any goldstino arising
in such a fashion must be accompanied by an Fg, thus giving us an easy way to track such
goldstinos. Fp only occurs (without derivatives acting on it) within the SUGRA superfields
R and G, and the components of these superfields can be extracted by the methods of
Refs. [154, 19].24

Extensively using the gravitino equations of motion of Eq. (5.78), we find that R and

2" There are also goldstinos lurking in E, but these are most easily tracked by making the replacement
1 ;
/d‘*@EQ =5 /rf@ 2€ [%(D“ - 8R)Q| + hec,

since 2€ does not, have hidden goldstinos.
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G, can be written as:

~ 2
1 G, .
R=——-M+FplO+—=L") + .. 5.81
6 i \/iFeﬂ' ( )
1 G Gl
G,=-FplO+-— L o, |00+ 2L | +. ., (5.82)

where the ellipses include terms containing mz oW, o'y, by, 0, M, 8HFR,25 or multiple
gravitinos or goldstinos. For simplicity, we have assumed that the Ricci tensor is propor-
tional to the metric, as it is in any homogencous space.

Note that with this particularly convenient gauge choice, we can identify all of the
goldstino couplings in X, C, R, and G, by first finding the vevs of these ficlds, and then
making the replacement _

00— 0+ G—] (5.83)

V2F g

At the component level, this implies that any terms in the Lagrangian with coefficient Fy,

K;F* or Fg (but crucially not ms /2) will have associated goldstino couplings. These can be

found by making a global SUSY transformation of those terms?® with infinitesimal SUSY
parameter

€= fi—. (5.84)

V2Fg

This will allow us to identify goldstino couplings directly from the sfermion spectrum,
without having to wrestle with complicated component manipulations.

The simplest. application of this method for finding goldstino couplings is the tree-level
analysis of Sec. 5.2. The tachyonic scalar masses are removed by a SUSY-breaking coupling
2Fp¢* ¢ when uplifting from AdS to flat space. This indeed has a corresponding goldstino

coupling in flat space proportional to —2Fg/For = 277l§/2/Fc{f (see Eq. (5.36)).%7

*Terms containing d, Fr (which has vanishing vev) may have associated goldstino couplings, but they will
always feature a derivative acting on the goldstino. Such terms will always be of O(m:i/g) in the goldstino
cquivalence regime, and can be ignored here.

*The situation is more subtle for terms with cocfficients like mgy o K F', a product of SUSY-breaking and
SUSY-preserving effects. In such cascs, one only makes half of the transformation of Eq. {5.84). This arises
since for #;1™ (KGI'*"), one is really only making the replacement of Eq. (5.83) for © (61), not ©f (©),
recalling that we have a hermitian action.

#7In practice, the use of gravitino equations of motion is less than transparent, which is the reason why we
relied on the Einstein frame Lagrangian in Sec. 5.2.1. Finding the Einstein frame is more difficult beyond
tree-level, however, which is why we choose to work in SUGRA frame in this section and exploit gravitino
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5.4.3 Supertraces and the 1PI Effective Action

Now that we have identified our SUSY-breaking order parameters and how they are as-
sociated with goldstino couplings, we now need to consider what possible SUSY-breaking
terms can arise from the 1PI effective action in Eq. (5.74). This action accounts for the
quantum corrections coming from loop diagrams of massless particles. For this reason, one
must be careful to include both local and non-local terms when considering SUSY-breaking
in a 1PI effective action. For a chiral multiplet at quadratic order in fields, there are three
terms at order m?/p? (where m is some soft mass), corresponding to corrections to the field

self-energies:
ESUSbercaking = —Cs¢*¢ - C(LF*D_lF + inXTElLD,uD—]Xv (585)

where the coefficients C; are all O(m?). In the context of anomaly mediation, these contribu-
tions are already O(’TYL§ /2), so we can neglect any further SUGRA corrections. In particular,
at this order the opcrator O appearing in Eq. (5.85) can be thought as the d’Alembertian
in flat space.

The non-local action in Eq. (5.85) does not break SUSY in the limiting casc Cs = C, =
C f.28 The simple ficld redefinition (or the appropriately super-Weyl- and SUGRA-covariant
equivalent, see Ref. [103))

C o
Q- Q+ 2—D—Q (5.86)

eliminates all three terms for C; = C. Thus, a single coefficient C; is not a good measure of

SUSY-breaking by itself. On the other hand, the supertrace
S§=Cs+C, —2Cy, (5.87)

is invariant under the transformation of Eq. (5.86) and is an unambigous mcasure of SUSY-
breaking. Ref. [12] considered a similar supertrace over the O(m?) SUSY-breaking contri-
butions to the self-energy for the components of vector superficlds.

Of course, there is another independent combination of the C; which is invariant under

cquations of motion.
28Obviously, C. also does not break SUSY if it arises in conjunction with a fermion mass term after an
auxiliary ficld redefinition. We will therefore define C; to exclude such contributions.
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Eq. (5.86), which we take to be
T =C,—Cy. (5.88)

This is the unique independent choice which vanishes for tree-level SUGRA (the tachyonic
scalar mass in AdS discussed in Scc. 5.2 yields vanishing 7). A non-vanishing value of T is
still a SUSY-breaking effect, and can be present even when the supertrace S vanishes. This

can arise most notably from terms like
1 4 i i T —paa /-1 4
LD A2 d-6 §DdXNLU Dy XN, Q' "DQ. (5.89)

which yields § = 0 but 7 = F2 /A% In the context of anomaly mediation, non-vanishing
values for T frequently arisc but they in general depend on how the theory is regulated. In
contrast, we will find that the supertrace § from anomaly mediation is unambiguous and
irreducible, so we will mainly focus on & in our explicit calculations.

Analogously to Eq. (5.85), there will be non-local goldstino couplings. In the case of

global flat-space SUSY, one can simply transform the terms in Eq. (5.85) under SUSY, with

— G feoo Ea. (5
infinitesimal parameter € = T (see Eq. (5.84)),
S _ T _ T
E?;oldstino = uGLX‘b* + g iGIJUWD#XTmilF' (590)
Fegr Feg

For global flat-space SUSY, G = S and G7 = 7. This will not be the case, however,
for AdS SUSY or for SUGRA, where there can be non-vanishing values of & or 7T that
do not break SUSY. Such effects will always be proportional to the inverse AdS radius
/\/_\(11S = mysy. For example, at tree level in AdS SUSY, one would use the appropriate
AdS SUSY transformations (which has terms proportional to g s2) on the full Lagrangian,
which W(mld yield GT =T but G5 =8 + 2m§ /2 In the following subsections, we will find

these relations to be modified, but always by terms proportional to ms /2

5.4.4 The Super-Weyl-Invariant d’Alembertian

The operator O appearing in Eq. (5.74) has not been yet defined. lIts definition is the
last ingredicnt we need to computing sfermion soft masses and goldstino couplings. We

will see that while 0 is gencerically ambiguous, our final results for the supertrace & and
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corresponding goldstino coupling G are not.??

The operator Ois a super- Weyl-invariant version of the d’Alembertian acting on scalar
superfields, which reduces to O in the limit of global flat-space SUSY. Given a generic

spinless supcrficld U, there are a limited number of options (neglecting fractional powers

of derivatives):

~ 1
8U = PIPU + PPIU - 21
g8ctc

+c1(P)YPIU + H(PHYPU + eo(PHYPIU + cy(P)YPU

DD - 8R)D, U

+ es(PIPYU + (PPHU + ey(PH(P)U
+es(PYU + (PHU + sPT(P)U) + P((PHU)
+e7GoeCTIDICCTTIDOU - GO DT DU

1 ~ ~ i
‘*_CgﬁGadG U (591)

The operators and superfields P, P, and C:'ad (and their hermitian conjugates) are super-
Weyl covariant versions of —i(DJr2 — 8R), 2R, and G4, respectively, and are defined in
App. C.3. For matter ficlds @ that are charged under a gauge group, the operators of
Eq. (5.91) would need to be modified by appropriate insertions of e+V .30

Many of the terms in Eq. (5.91) vanish in the limit of global flat-space SUSY, so the
associated cocflicients ¢; are left completely undetermined. We could impose certain desir-
able properties for E], which would lead to constraints on the ¢;. For example, requiring
that QU is chiral for chiral U and that [J possesses a sensible analogue of integration by
parts would set c¢g = —1 and all other ¢; = 0. This is the choice made in Ref. [103] (which
they denote A), though it does not satisfy 01 = 0.1 In order to actually determine the
c;, one would have to cxplicitly take into account virtual effects to all orders in a specific
regularization scheme, which is beyond the scope of this chapter. Because our final results

for S and G° are independent of the ¢;, we choose not to impose any constraint on them.

At this point, we could use the full machinery developed in Ref. [154] to extract the

This ambiguity is a reflection of an ambiguity in how to write down a SUGRA-invariant 1PI effective
action, which is in addition to the ambiguity discussed in Sec. 5.2.5 in whether the regulators feel SUSY
breaking.

30There could also be additional possible operators proportional to the field strength W, which would
not give any contributions to self-energy corrections or goldstino couplings at the desired order.

31 Another obvious candidate is [ = D,D* in the C = 1 limit (corresponding to ¢} = ¢;, —c1 = ¢3 =
caf2 =cs =07 =—1/2, ¢ = ¢5s = ¢g = 0), though it is not chiral.
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components of OU. We could then determine [1*U by recursion and find the component
form of Eq. (5.74) by treating Z (E])Q as a Taylor expansion.®? However, this procedure is
overkill for our purposes, since we will ultimately use the trick in Sec. 5.4.2 to find goldstino

couplings once we know the dependence of the supertrace on K;F* and Fr. By super-Weyl

invariance, we know our results can only depend on two parameters:
_ | Loy 9
Fyw = myj + §KiF and ER =My + Fr. (5.92)

Moreover, becausc S is dimension two, its only dependence on Fg can be linear,®3 so if we
know the behavior of S for two different values of Fr, we can use interpolation to determine
S for all Fr. Thus, it is sufficient to discuss two limiting cases where the behavior of QU
simplifies.

The first limiting case is flat space but arbitrary (K;). Here, one can use the gauge choice
Fo = Fsw to set M* =0, and since R = 0, one can use the global flat-space SUSY algebra
to find the components of [iU, keeping careful track of all of the factors of C contained

therein. In fact, one does not even need to be all that careful, by noting that
~ 1 . . C t .
Ofar = %D + (terms with supercovariant derivatives on C,C ) . (5.93)

There is a limited set of the possible terms in the parentheses that can contribute to physics
up to O(m3 /2). At O(ng/s), it can be shown explicitly that they have no effect (up to bound-
ary terms). At O(mg /2), the effects of all such terms can be eliminated by transformations
like Eq. (5.86) or they take the form of Eq. (5.89) (with C in place of X ). In either case,
they yicld no contribution to the supertrace S of Eq. (5.87).3% Thercfore, for the purposes
of finding § we need only consider the first term in Eq. (5.93), which is clearly independent
of the ¢;. Furthermore, this is exactly the term which is already considered in the anomaly
mediation literature, so the results for S arc well-known [135] (though they arc usually

stated as being the soft mass-squared and not the supertrace).

2 And we have.

#BFractional or negative powers of mgzs2 or R do not appear in the 1PI cffective action.

MTerms of the latter form do contribute to the parameter 7 defined in Eq. (5.88), and contributions
to T proportional to Fg should still be considered SUSY-breaking. It can be readily shown that non-zero
values of 7 will only be induced by the first line of Eq. (5.91) or by the ¢7 term (see Eq. (C.40)). This ¢;
dependence implies that the value of T depends on exactly how one regulates the theory. In unbroken rigid
AdS, this ambiguity does not arise; G,s = 0 in rigid AdS, so the term associated with c7 vanishes.
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The second limiting case is unbroken SUSY in rigid AdS where (K;) = 0. Because a
flat space analysis cannot distinguish between effects proportional to m% /2 (which have no
associated goldstino couplings) and those proportional to Fz (which do), we need a limiting
casc which captures terms proportional to the scalar curvature R. Starting with unbroken
SUSY in AdS, we can luckily consider the rigid (Mp; — oo) limit without missing any
physics. The rigid AdS SUSY algebra [4, 51, 104, 156, 95] is dramatically simpler than the
SUGRA algebra, corresponding to the limit C = 1, R = mg;3/2, Gos = Wagy, = 0 [70].

This reduces the number of independent operators in 0 to four:
] a 1 2 ;1 12 2
Urigid ads = DD — dq ZD —d ETYL;),/Q'D + d2m3/2, (5.94)
where the d; coefficients are related to the ¢; coefficients via
di=cit+eates, di=d+dy+cy, d=2+di+d+egtcsy+cst+es+cg (5.95)

Onc can then use the AdS SUSY algebra to easily extract the components of OU in AdS,
find O"U by recursion, and Z (EI)Q by Taylor expansion.?®

5.4.5 Soft Masses and Goldstino Couplings for Chiral Multiplets

We now have all of the ingredients to determine the soft masses and goldstino couplings

which follow from Eq. (5.74).

Applying the procedure outlined in Scc. 5.4.4, we first find the behavior of Z (ﬁ)Q at
O(m?3 /2) in the flat space and rigid AdS limits. Since we have argued that the final result

(up to the transformation of Eq. {(5.86)) will depend on no parameter in Eq. (5.91) cxcept

35 Alternatively, one could simply work with the component form of the AdS SUSY Lagrangian. In that
case, Z({J) does not commute with SUSY transformations due to Eq. (5.29), so one will find additional
terms proportional to positive powers of ma/o. This approach makes it clear that the results in AdS spacc
must be completely independent of the ¢;, up to the transformation Eq. (5.886).
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for ¢7, we will only present the answer for a choice of ¢; such that Z(00)Q is (nearly) chiral:*

Q = ¢+ OV2x + O°F, (5.96)
Z(Biganas) = 20 [(6 = mayerDF 4 Imd (57 +5 = 109)0719) + 0v2x
+ o (F B %7”3/2'W) + %7”?5/2(72 +9+ 27)D71F)] , (5.97)
Z(ﬁﬂat) = 2(0) [(@ - %FSW’YDqF + %Fgw(’Yz +9— 107)[)‘1(;5) + 0V2y
+OH(F = [Fswno + £ (7 5+ 29)07' F)]

+ Z(D) 5 Fawry [(1 — er)D7 g + ©2(1 + ¢r)OLF], (5.98)

where the anomalous dimensions are defined as

_ dlogZ . dy

=2-—-— =2—-. 5.99
R dlog (1’ 7 dlog (5:59)

While v (%) is first non-zero at one-loop (two-loop) order, our results will hold to any loop
order (at (9(7713/2)). As outlined in Scc. 5.4.4, we can now find an appropriate super-Weyl

invariant interpolation valid for any spacetime curvature,

2(0) = 2() (¢ + 0V2x + 02F) (5.100)
— §Fown T F 1 (M (2 45— (64 der)) — By + P (1 - ) D%,

¢
F=F—{Fswyd+ (éFészZ + 5+ (6+4der)y) — 5(m3 + Fr)y(1+ (;7)) 0-'F,

remembering that Fyw = my /2 in flat space, and m% /ot F; vanishes in flat space but is

mi /2 for unbroken SUSY in AdS.

It is now straightforward to expand the superspace action of Eq. (5.74) (dropping factors

#This choice corresponds cg = —1 + c7/2, c1 = —er/2, ¢35 = ea = —3/2, and all other ¢; = 0. This
is not chiral outside of AdS space, but deviations from chirality only appcar in terms with gravitinos, by,
or at O(mg/z), so we neglect such terms in the following. This choice also has the appealing feature of
automatically setting C; = 0.
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of Z(O) for clarity):

. 1 ? .
L=¢'0¢ —ix'a"Dyx + |F + 5(2 —v)Fswo| +2(Fg + 7n§/2)¢ o)

1 ) . 1. 9 . o
+ P& (= + 4 — (2 +der)y)d o + gFﬁw(’Yz +5+ (2+der)y) O E

8
1- 1
: cr ¥(m§/2 + FR)yF O 'R, (5.101)

(Mg + Fr)v¢"¢ —
To extract the sfermion spectrum, is it helpful to perform the shift

1
FoF- 5(2 — v)Fswo, (5.102)

which renders the F' cquation of motion trivial, but induces non-zero B- and A-terms at

O(mg/,) if there are superpotential terms. Generalizing to multiple fields Q® with anomalous

dimensions «; and a superpotential
1 1 o ‘
W= ui;QQ + Q' Q' QY (5.103)

the associated scalar potential terms arc

1 1 o
Vo §Bij¢l¢7 + 6Am,¢’¢ﬂ¢k + h.e., (5.104)
1 1
B;; = SHij (2 + v +75) ('mg/g + §Kka) \ (5.105)
1 1.
Aijr = §>\71jk(% + 95 + ) { Mg + gKeF ; (5.106)

where we have expanded Fsw = mgy/y + %KiF *. These are the familiar one-loop anomaly-

mediated results that can be found in Ref. [135, 84].

These B- and A-terms will have corresponding goldstino couplings proportional only to
K;F'" but not to mg /2- Because the result in Eq. (5.105) is super-Weyl invariant, we arc
free to choosc the gauge of Eq. (5.79) and use the trick in Sec. 5.4.2 to extract goldstino

couplings. For example, the B-term has a corresponding goldstino coupling b;; defined in
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Eq. (5.6). Performing the shift in Eq. (5.83), we find?7

1 .
bij = i (2 + % + ) K. (5.107)

At O(mg,), this goldstino coupling is independent of tuning the cosmological constant.
The difference between the B-term and the goldstino coupling is proportional to mg,

1
By —bij = 6#@,7’ (=243 + Y5) mg/2, (5.108)

cmphasizing the role of AdS SUSY.

The key result of this chapter is the sfermion supertrace S defined in Eq. (5.87). After

performing the auxiliary field shift of Eq. (5.102), we can read off the value at O(m; /2):

2

1. 1 , i} ,
Si = ——Fi |mzyo + §Kka —(2- ')/z-)(mg/2 + Fp). (5.109)

4

The first term is the usual two-loop anomaly-mediated result for S expected from Ref. [135].
The second term is the tree-level mass splitting in AdS discussed in Sec. 5.2, modified
starting at one-loop order to include the anomalous dimension. The fact that we have
a contribution to S proportional to (2 — 7) could have been anticipated, since anomaly
mediation effectively tracks scale-breaking effects, and (2 — v) is the true scaling dimension
of the operator QTQ.%® Because mé st Fp = T%Rv this second term vanishes in flat
space, which is why it does not appear in the original literature.3® As discussed further
in App. C.2, this whole expression is RG-stable, as it must be since it comes from a 1PI
effective action. The 4; and +; terms are known to be RG-stable from the general arguments
in Refs. [98, 97, 133, 12|, while we argue in App. C.2 that the tree-level result is RG-stable

once one accounts for goldstino-gravitino mixing.

We can again use the trick in Sec. 5.4.2 to extract the goldstino coupling G® defined in

%TNote that the result in Eq. (5.107) is still invariant under the super-Weyl Fy transformations. The
K. F* factor arises by isolating the goldstino direction out of the fermion in Eq. (5.79), not from Fg.

*¥The same factor appeared in the auxiliary field shift of Eq. (5.102) for related reasons.

*For any negative curvature, one expects the v; and ¥; terms to be partially cancelled off by AdS boundary
effects, as in Ref. [87]. While we have not computed them explicitly, such boundary terms arc necessary for
the structure of the AdS SUSY algebra to be maintained in the unbroken limit.
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Eq. (5.90):10

1, . 1
G = ——4iKpF* mgse + ~KoF') — (2 — %) Fg, (5.110)
12 3

As advertised, there are no goldstino couplings proportional to mé /2° Like &, this associ-
ated goldstino coupling is RG-stable. The tree-level and one-loop goldstino couplings arise
because there are SUSY-preserving scalar masses in the bulk of AdS, which arce then lifted
by an amount proportional to the SUSY-breaking order parameter Fr. For (K;) = 0, the
two-loop anomaly-mediated masses familiar from Ref. [135] have no corresponding goldstino
coupling, as such masses are also present in the bulk of AdS when SUSY is unbroken. Cu-
riously, such two-loop goldstino couplings also vanish in the no-scale limit (where Fgw = 0)
[115] and will be suppressed for almost no-scale models [120]. The difference between S;

and G° is

1. 1 .
Si - g,S = —Z im:;/2 (7713/2 + 3KkFl‘) — m%/Q (2 — ’)/7) . (5111)

which is independent of the curvature R. As anticipated, this difference vanishes with
vanishing m3,y, as it is intimately related to SUSY-preserving anomaly mediation effects in
AdS SUSY. Whereas the second term proportional to m§ /2 arises purely from the structure
of unbroken AdS SUSY, the first term proportional to mg/, Fsw is a cross term between a
SUSY-preserving and a SUSY-breaking cffect and vanishes in the no-scale limit.

Results for &; and g;.? are shown in Table 5.1 for various values of the curvature. The
answer is particularly striking when (K;) = 0 in the flat space limit with Fr = —m% /2"

1. 5
S = _Z'Yﬂng/gy

Go = (2- ’y,j)mg/g, (flat space, (K;) = 0) (5.112)

1.
S =GP = —m3 ), <2 — i+ Z%) ~

While anomaly-mediated sfermion soft mass-squareds are colloquially described as a two-
loop effect, this expression makes it clear that this is an artifact of tuning the cosmological

constant to zero, since anomaly mediation has important tree-level and one-loop effects on

10 A5 in footnote 37, the result in Eq. (5.110) is invariant under Fy; transformations. Fg (arising here from
the gravitino cquations of motion of Eq. (5.78)) docs not implicitly contain M™* M.
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the goldstino couplings. Indeed, the difference S; — Q;-S has important effects at all orders.
For completeness, we give results for the parameter 7 defined in Eq. (5.88) and the
associated goldstino coupling G7:

2
1 Ccr

1,5, . | + . .
T = -3 (fyf +y + (24 407)%) mao + glﬁkFA + T%(méﬂ + Fr). (5.113)

1+(:7

1 . ’ 1 "
Gl = =57 (3 + 4 + 2+ der)y) K F* (ms/2 + gf(kF‘) + viFr.  (5.114)

24
1

T — 67 = —gma (m3/2 + %Kka) (%2 + %+ (2+ der)y) + 1—%—0—/37175/2% (5.115)
As expected, the difference T — G7 is always proportional to my /2, arising as it does from
the structure of AdS SUSY. However, these results are harder to interpret, since 7 has
residual dependence on the parameter ¢7 defined in Eq. (5.91). This indicates that the
value of T depends on exactly how one regulates the theory (i.e. on the correct choice of 0
for a given regularization scheme). Note that if (K;) = 0 then 7 — G7 is independent of c7.
Furthermore, in unbroken AdS SUSY (Fp = (K;) = 0), all ¢7 dependence vanishes since

G = 0 in rigid AdS SUSY.

5.5 Conclusions

This chapter completes the task originally started in Ch. 5 to understand anomaly mediation
as being a SUSY-preserving effect in AdS space. For the R-violating terms (gaugino masses,
A-terms, and B-terms), anomaly mediation genecrates soft masses proportional to g /2
without corresponding goldstino couplings, making it clear that these are SUSY-preserving
cffects. ! For the sfermion soft mass-squareds, the situation is far more interesting, since
there are SUSY-preserving effects proportional to m§ /2 and SUSY-breaking effects propor-
tional to F'r, but these two cffects are difficult to disentangle because Fr happens to equal
—m§ /2 after tuning for flat space. Having successfully isolated these two effects, we see that
the familiar two-loop anomaly-mediated sfermion soft mass-squareds arc accompanied by
tree-level and one-loop goldstino couplings, and all three terms arc needed to preserve the
underlying AdS SUSY structure.

Along the way, we have learned a number of lessons about AdS SUSY and SUGRA.

*Strictly speaking, we have not carried out the calculation of gaugino masses beyond one-loop order. We
sketch how to do this in App. C.4.
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First, the peculiar behavior of anomaly mediation is already cvident at tree-level, and the
irreducible goldstino coupling in Eq. (5.36) offers strong cvidence that AdS SUSY (and
not flat space SUSY) is the correct underlying symmetry structure for SUGRA theories.
Second, to incorporatec quantum cffects, onc has to work with a regulated SUGRA action.
Unfortunately, it is impossible to write down a Wilsonian action that capturcs the full effects
of anomaly mediation at tree-level, since there are important effects of the regulator fields at
loop-level. Instcad, we used a 1PI effective action to make super-Weyl invariance manifest,
countering the (gauge-dependent) claims in Refs. [46, 47] (and implicit in Ref. [103]) about
the non-existence of anomaly mediation. Third, even with a SUSY-preserving, super-Weyl-
invariant 1PI cffective action in hand, there is residual ambiguity starting at O(rng /2) in
how to write down a SUGRA-invariant theory. Luckily, the supertrace & is unambiguous,
yielding the same soft mass-squareds known in the literature.

This chapter has focused on formal aspects of anomaly mediation, and therefore has not
addressed a number of important phenomenological questions. First, anomaly mediation
was motivated in part by the possibility of sequestering, and onc would like to know whether
the sequestered limit is physically obtainable without fine-tuning. To that end, it would
be useful to know whether the irreducible goldstino coupling in Eq. (5.36) is indeed an
attractive IR fixed point, as one would expect in conformally sequestered theories. Second,
we have used goldstino couplings as a probe of which effect preserve SUSY and which effects
break SUSY. Ideally, one would want to find an experimental context where these goldstino
couplings could be measured, since this would give an experimental handle on the underlying
AdS curvature. Measuring such a coupling to two-loop precision would even probe the value
of Fgw, though the physical significance of that dependence is not clear to us. Third, in
addition to the supertrace S, we identified the independent trace 7 which is perhaps known
to SUSY aficionados but is unfamiliar to us. Even in global flat space SUSY, it would be
helpful to know what cffects a non-zero valuc of 7 can have on phenomenology. Finally, the
big question facing particle physics in 2013 is whether (weak scale) SUSY is in fact realized
in nature. We of course have no insight into this broader question, but we can say that if
(AdS) SUSY and SUGRA do exist, then anomaly mediation will yield irreducible physical

effects proportional to mg .
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Chapter 6

A Photon Line from Decaying
Goldstini Dark Matter

6.1 Introduction

As we discussed in Ch. 2, SUSY-breaking gencrically must occur in some hidden sector,
whose couplings to the supersymmetric Standard Model (SSM) are suppressed by an inverse
power of I, the SUSY-brecaking scale and order parameter. The particles in the hidden
sector generally have little phenomenological relevance with the one exception of the light.
goldstino, the goldstone fermion of SUSY. In supergravity (SUGRA), the goldstino is caten
to become the longitudinal components of the gravitino (the superpartuer of the graviton)
via the super-Higgs mechanisim,

If SUSY is broken in multiple hidden sectors, there will generically be multiple goldstini
[42], one linear combination will be eaten in the super-Higgs mechanisim [55, 149, 71, 72],
while the other, uneaten goldstini remain in the theory. One of the uncaten goldstini can
casily be the predominant component of the dark matter in the universe [42]. 1t is not
absolutely stable, however, as it is generically hcavier than the gravitino, to which it can
decay on cosmological timescales [42, 37]. The products of these decays can potentially be
seen by indirect detection experiments such as FERMI-LAT, PAMELA, or AMS-02.

In this chapter, we discuss a hitherto-unexplored decay channel of the uneaten goldstino
a two-body decay to a photon and the gravitino, which occurs via the small mass mixing

between the uncaten goldstino and the electroweak gauginos induced by electroweak sym-
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Figure 6-1: One of the leading Feynman diagrams mediating the decay of the uneaten
goldstino dark matter ¢ to a gravitino 1, and a photon. The goldstino and bino have a
mass mixing proportional to the hypercharge D-term after electroweak symmetry breaking,
allowing the goldstino to decay to a gravitino and photon.

metry breaking. One of the dominant Feynman diagrams mediating this decay is given
in Fig. 6-1. The resulting production of monochromatic gamma rays would be a striking
signature at experiments such as the FERMI-LAT, being relatively easier to distinguish
from background and harder to fake from astrophysical sources, allowing such experiments
to probe longer dark matter lifetimes. Unlike other sources of gamma ray lines, this de-
cay mode is not loop-suppressed compared to other modes, and so can naturally be the

discovery channel for indirect detection of dark matter.

The usual obstacle to considering dark matter decays featuring a monochromatic photon
is that they typically occur much too quickly; the dark matter would have either decayed
away early in the lifetime of the universe, or we would be awash in the resulting gamma
rays in the present era. This happens generically for decays induced by transition magnetic
dipoles, the lowest dimension operator that would allow such a decay consistent with the

observed electric neutrality of dark matter:

c
Ompm = M?)O“”XFW-. (6.1)
CQTHSX .
Do ~ o313 (6.2)

Even for M ~ Mpy, ¢ < 107! is required for consistency with observation. In the framework
of multiple SUSY-breaking, however, an astrophysically-reasonable lifetime can arise quite

naturally without the need to set any parameter to artificially small values. The leading
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operator mediating this decay is

c Mgoft,2 )

l/);LUUCTF‘wHTHa (63)

O¢yp, =
s Mp1F5 g 1

with Fo the smaller of the two SUSY-breaking scales and mgep,; the contribution of that
sector to SUSY-breaking soft masses in the visible sector. Note that the decay requires
electrowcak symmetry breaking to proceed, and involves the couplings of cach hidden sector

to the SSM, thus providing a naturally small decay rate scaling as

2a74,,.5 2
s A/[ch Mioft,2

&7 F f Fj m2

soft,1

Loy ~ : (6.4)

In the next section, we review the framework of goldstini. We then discuss the major
two- and three-body decay modes of the uneaten goldstino in Scc. 6.3. In Sec. 6.4, we
discuss the prospects for indirect detection of goldstini dark matter via this decay mode.
In Secc. 6.5, we discuss the renormalization group running of goldstino couplings, which is
necessary to understand the branching ratios of the goldstino decay modes in the benchmark
scenarios we present in Sec. 6.6. In Sec. 6.7, we discuss some non-minimal models that can
enhance the photon mode’s branching ratio without depending on clectroweak symmetry
breaking, by introducing additional mass mixing between the bino and other gauge singlet

fermions, and we conclude in Sec, 6.8.

6.2 Review of Goldstini

As in Ch. 3, we consider two sequestered scctors, each of which spontaneously breaks
SUSY —though many of our results can be easily generalized to the case with three or
more SUSY-breaking sectors. Each scctor has an associated goldstino (n; and 19, respec-
tively), and we characterize the size of SUSY breaking via the goldstino decay constants
(F1 and Fy, respectively). Each SUSY breaking sector can be parametrized in terms of a
non-linear goldstino multiplet [109, 42]!

2
N

Xa =
2F,

+V20n, + 6°F,, (6.5)

"Throughout, we use boldface to denote a superfield, with regular typeface denoting its lowest component.
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Figure 6-2: In our framework, SUSY is broken in two sectors sequestered from each other,
with the strength of SUSY-breaking parameterized by F} > F,. The true goldstino Gy,
eaten by the gravitino, resides mainly in sector 1, while the uneaten goldstino ¢ resides
mainly in sector 2. Each sector contributes to SUSY-breaking terms in the visible SSM
sector, which are accompanied by corresponding goldstino couplings.

for a = 1.2. We define the quantities

’ ) FiFy : 74
_ 2 2 . — —
Feg = \/ F{ + F2, tanf = % F = T’ (6.6)

and we take tanf < 1 (F; > F,) without loss of generality.

The combination é;, = sinfln; + cosfne is eaten by the gravitino to become its
longitudinal components via the super-Higgs mechanism, but the orthogonal goldstino
¢ = cosfn — sinf 1y remains uneaten and will be the focus of our study. Due to SUGRA
effects, ¢ receives a mass of 2my/, in the minimal goldstini scenario [42]. In addition, vari-
ations in the SUSY-breaking dynamics [45] or induced couplings between the two sectors

[42, 10] can modify the mass term for (.?

Supersymmetry breaking is communicated from the two hidden sectors to the visible
sector by means of a non-trivial Kiahler potential and gauge kinetic function (presumably

coming from integrating out heavy messenger fields). This is depicted schematically in

?At minimum, one expects loops of SM fields to generate m¢ =~ mqon /(167%)" [42], where n depends
on the number of loops necessary to effectively connect sectors 1 and 2 and transmit the needed U(1)g
breaking. The uneaten goldstino will also obtain a tree-level mass due to mixing with the neutralinos, but
this is of order 1/F? and is comparatively negligible.
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Fig. 6-2. Some representative terms contributing to the SSM soft masses are®

K =& qﬂfz ”’“XTX (6.7)
1 2M 4, .
Fap=-—50an|1->_ 7 Xa | (6.8)
QA = a
W = %J@ ‘P | q> ' Z Bija x X, (6.9)

where ¢ = 1,2, and ® stands for a general SSM multiplet.? These yield the following terms

in the lagrangian up to order 1/F [154]:

2m? .0 F2
1% Ll Lk 3/2°4 *
‘C:_E 7”17(1 ]§b+§ J( aX¢]+§ / 3 aX¢J

a Fe
1 Z Bija — mgpii | $'¢7 + Z B—”—ﬁr] x'¢! +h.c (6.10)
2 ij,a '3/2H015 ¢ . Fa a .C. .
Mya ,
-z Z M A2 - Z ® o NAFD Z A2 e NADA (6.11)

Thus, the parameters m“a, My, and B;j;, are the contributions to the SUSY-breaking
scalar mass—squareds, gaugino masses, and B-terms, respectively, from the sector a. Note
that they are intrinsically related to the coupling of the SSM fields to the goldstini. The
final term on the first line of Eq. (6.10) is a universal supergravity effect, arising from the

fact that for unbroken supergravity in anti de-Sitter space, scalar masses arc —2m?2 ,.; this

3/2)
is a generalization to multiple goldstini of the term discussed in Ch. 5. Similarly, the second
term on the sccond line, proportional to my/, and the fermion mass matrix p;;, is a tree-

level anomaly-mediated contribution to B-terms that is not truly a SUSY-breaking effect

as it is present in unbroken AdS SUSY), and therefore arises from neither sector [54].
p

Rotating to the G 1~ basis yields similar interaction terms for the eaten goldstino G I

FThis is not an exhaustive list of terms that contribute to the desired soft terms, especially in the Kahler
potential. However, the omission of such terms here does not affect the final result, at least at tree level. We
also do not include A-terms here, though they can have important RG effects, as we will discuss in Sec. 6.5.

*Throughout, we use the conventions of Ref. [154], except we have redefined their gauginos by a factor
of 2: Awp — A,
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and the uneaten goldstino (,

2 2
Myt 2my 0 . o Bij+mgpapg ~
Lo, =~ UG i LTI G i
GL Fegr xX¢ Feqr X
My ~ My ~
- A G oM AR + =2 G DA, (6.12)
m2 . Bii~
L = L] 1 %] Z]G b %]
CTF, Cx' o™+ T, CiX 0
— —— (o' \F! + XD, 6.13
V2F, ¢ VO 2l ¢ (6.13)
where the untilded mass parameters are defined as®
. — 2 2
Mas = Myocos®0 — My, sin®0, (6.14)

and analogously for scalar mass-squareds and B-terms. The parameters ’m,ffj, My, and B;;
are here the physical scalar mass-squareds, gaugino masscs, and B-terms. Generally, they

are just equal to the sum of the contributions from each sector (i.e. Mgy = My + M A,Q).6

6.3 Decays of the Goldstino

In the presence of electroweak symmetry breaking, there is a mass mixing between the
goldstinos and the neutralinos of the MSSM, as can be scen directly from the Lagrangian of
Egs. (6.12) and (6.13). For the goldstino that is caten by the gravitino, this is fundamentally
due to the fact that clectroweak symmetry breaking induces a small amount of SUSY-
breaking in the visible sector, as the Higgs F-terms and clectroweak D-terms obtain vevs.
The amount of mixing between the caten goldstino and the neutralinos can be directly read

off the eaten goldstino direction, given by

Gr=p- (<Fi> YT % (D) AA) . (6.15)

SNote that this differs by a factor of sin 6 cos# from the cquivalent definition in Ch. 3.

8This is not true for the B-terms at tree level, due to the anomaly-mediated contribution discussed above.
A similar story will hold for loop-level anomaly-mediated contributions, so all soft terms m appearing in
Eq. (6.12) should really be replaced by m—mawmsp. As m > mg,2 in the scenario we consider (as the gravitino
is the LSP), the effects of loop-level anomaly mediation on these coefficients are of little phenomenological
relevance here. Also at loop level, the 2m§/2 term should have corrections starting at one loop proportional
to anomalous dimensions, as in Ch. 5.
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For the uncaten goldstino, the cancellations that ensure Eq. (6.15) do not occur, and the
mixings can be parametrically larger (even after accounting for a possible hierarchy in the
hidden sector F¢), arising from the terms

M4
V2F,

N L
£ D80y (o) + T (o) ¢ MA L A (DAY £ (6.16)
F, F

Due to this mass mixing, an uneaten goldstino can undergo a two-body decay to a
gravitino and a photon, Higgs, or Z boson through its neutralino components. Such a

decay process has not previously been fully considered in the litcrature.”

Since the decay of a goldstino of mass 2 s2 (in the minimal goldstini scenario) to
a gravitino of mass mg/y is somewhat outside of the regime of the goldstino equivalence
theorem [64, 34, 33], in order to calculate the decay rate, one must consider the explicit
coupling of the spin-3/2 gravitino. While this presents its own technical challenges (see
App. D.2), it does allow us to factorize the calculation in a convenient way. We will choose to
work in unitarity gauge for the gravitino; in this gauge, the eaten goldstino is removed from
the theory entirely (i.e. it is made infinitely massive). Therefore, terms in the Lagrangian
that contain the fermion bilincar G 1.¢ coupled to Standard Modecl particles can be safely
ignored. Furthermore, the gravitino, unlike the goldstini, no longer has any mass mixings

with any other fermions after gauge fixing.

The goldstino to gravitino decay calculation can therefore be factorized into two separate
problems. The first is finding the bino, wino, and Higgsino fractions of the uneaten goldstino,
which derive solely from the neutralino-goldstino mass matrix. Then, one can calculate the
decay rate of a hypothetical bino, wino, or Higgsino of physical mass 2my /2 to a gravitino
and a photon, Higgs, or Z boson. Including the mixing angles in the latter calculation then
yields the goldstino to gravitino decay rates. We will consider each of these calculations in

turn.

"Ref. [37] did consider the possibility of two-body decays to the Higgs or a longitudinal Z, though not a
photon or transverse Z.
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6.3.1 Goldstino-Neutralino Mass Matrix

The ncutralino-goldstino mass matrix can be parameterized in the {E , w3 , f]d, Iqu,, ¢, G L}

basis as follows [146]:

My 7 p

M=| 3 m o | (6.17)

/)T 0 277’1,3/2

My M syesg
v 7%MZM20WC‘2/i
p= = ; (6.18)
g V2F, _y -
™8 + Buss
M, 85 + Bucy
LMz Msweas
v — LMz Mewens 610
p - bl . v
\/EFCH 9 9
(de + 2m3/2)c5 + (B — ”7/3/2/1)85
2

(myy, + 2m§/2)35 + (B, — mgyait)es

where M, is the usual 4 x 4 ncutralino mass matrix (sce e.g. Ref. [124]),% sy = sin Oy,
cpg = cos 3, v & 246 GeV. The uneaten goldstino has mass m., which takes the value 2mj3/,

at tree level but may receive substantial radiative corrections [10].

Throughout, we will work in unitarity gauge for the gravitino, in which the eaten gold-
stino is removed from the theory. This may be done casily at O(1/F'), and amounts to just

considering the upper 5 x 5 block of Eq. (6.17).

8Note especially that the Higgsino mass torm appearing in M, is —pu, hence the apparent sign difference
in the mgy/pp term as compared to Eq. (6.12). Note also that our convention for B, differs by a sign from
that in Ref. [124], and p is taken to be real.



The overlap between the uneaten goldstino and a given neutralino is given by the vector

0= (mcl — M) p. (6.20)

For goldstino decay into a gravitino and a given boson, the mixing angle we care about is
the one between the uneaten goldstino and the linear combination of the neutralinos that

forms the superpartner of that boson (in the interaction basis):

o,="r'o, (6.21)
P, = {cos by ,sin by, 0,0}, P, = {0,0, —sin a, cos a},
Py, = {—sinby,cosby 0,0}, Py, ={0,0,cos 8, —sin f}. (6.22)

We will assume throughout that the uneaten goldstino is lighter than the heavy Higgs
states A% and H?, so that they are not produced in decays. In such a Higgs decoupling

limit, o = 8 — 7/2, so Py =~ {0,0,sin 3, cos 8}.

6.3.2 Goldstino Couplings

The couplings of a single gravitino to visible sector fields are entirely determined by the

supercurrent [22, 154)%;

LD

- v, 7" + h.e 6.23
2]\/1131(/);.] + h.c ( )

1 - 1
D ———yg;7D "ot Y, + ,,a”pa“/\TAFVA + h.c. 6.24
\/51\/[1)1 9i7Dud™x Y, 2 Mpy Y, 0 ( )

We have dropped terms in the supercurrent proportional to o#¢! (for £ I any elementary or
composite fermion), as the associated gravitino coupling terms will vanish on the unitarity
gauge gravitino equations of motion.

As long as the uneaten goldstino ¢ is the dark matter, it is necessarily lighter than all
R-parity odd states in the SSM. As a result, we can simply integrate out all such particles

to yield an effective ficld theory of goldstino decay, organized by powers of ¢ /mgysy. We

“Note that this automatically includes all the tree-level effects proportional to Mg 2, such as those dis-
cussed in Eq. (6.10).
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also assume that the goldstino is much lighter than the heavy Higgs scalars; so that we can
integrate them out and take a = 8 — w/2, Hy, = sinfH, and Hyg = cos ScH* at lcading
order. The first operators appear at dimension 6 after integrating out a single Higgsino at

tree level:

B QEM sin? 8 + ﬁﬁfd sin 23
V2uF | Mp

QEM cos? 3+ m7; sin 23
V2uF| Mp

Lo =

(¢ D'H'H — ¢ HI'D,H.

(6.25)

These operators give the leading contributions to the two-body decays to Higgs and longi-
tudinal Z discussed in the previous section, and can mediate three body decays to hhy, or

hZ 1, that we will discuss in the next section.

There are many operators at dimension 5 and 6 allowed by gauge symmetries that do
not appear in Eq. (6.25). Many of these simply vanish on the unitary gauge equations of
motion of the gravitino (most notably, g*,, = 0 and D"v),, = 0) and can be safcly omitted.
Even so, there is still one operator at dimension 5 and several at dimension 6 that cannot

be so neglected a priori:
05 £ oL, Of = vuCx o (6.26)

To explain why these do not appear, we need to remember that the couplings of the grav-
itino are strongly constrained by the fact that it needs to couple to the supercurrent. While
the effective supercurrent can be heavily modified when one begins integrating out super-
partners, it is still clear that an operator like Os would only be allowed if ( were at least
partially the superpartuner of the B boson in the absence of clectroweak symmetry breaking.
In models with a minimal SSM, it is not, but we will return to this suggestive possibility
in Sec. 6.7.19 The four-fermi operator Og can be generated if SM fermions and the uneaten
sgoldstino (which obtains a vev) are both charged under a gauge symmetry broken at a
high scale, after integrating out the massive vector boson. However, one generally expects
the scale of any such hidden sector dynamics to be much larger than the masses of the
superpartners we integrated out to obtain Eq. (6.25), so we will neglect this possibility

henceforth.

'9Gimilar arguments forbid other operators (starting at dimension 6) that leverage the U(1) nature of
hypercharge in minimal models.
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There are many additional operators at dimension 7:

e,

) Mpy CTXTZVDMXWJ“

V2M 4 t App A
FApp pAv S~
Z MAF | Mp MR, My VHS g Zl: m

ig'[(M, — ZBu/,u)(Ob 28 — (mf; — m” ) sin 24
2v/2M, F| My,
. ig|(My — 2B,./p) cos 28 — (2, — 3y )~ sin 26]
V2MoF| Mpy
2m?, cos? B + B, sin 23
Ry ‘ﬂ - Hi¢Te, DH (DY Hy,)
V22 F| Mp
B Z_Q’ﬁz%u sin? 8 + E# sin 273
V242 F| Mp)

Plo, (P HTH

Wlo (P HITAH

', DD H ) H + hc. (6.27)

The operators on the first line mediate three-body decays to two gauge bosons or two
fermions, respectively. The next two operators give the leading contributions to single
photon and Z emission, while the last two give sub-leading contributions to decays to Higgs

and Zs.

6.3.3 Two-Body Decays of the Goldstino

The decay rate of the uneaten goldstino ¢ (with mixings with the neutralinos to be specified
in the next section) to a single boson and a gravitino can be extracted from these couplings
after some modest calculational effort, given the ©; from Eq. (6.21). The decay to the Higgs
is mediated by the first term in Eq. (6.24), the decay to a photon is mediated by the second,
while the decay to a Z is mediated by both after electroweak symmetry breaking.

The decay rates for the photon [66] and Higgs modes are given by

m>2e?2 m2, 3 3m?2,
MYy 3/2 3/2 ..
Feorru, = 167 FZ, <1 a mg ) (1 * m2 |’ (6.28)

4
52 ‘ .
ey, = _m.z. Oh 1— ms/e ? _ mj,
chn 32mF% me m

3/2 M\ 2 5/2
) ((1 + —3ﬁ> - —’2) . (6.29)
TIlC 77’LC

The decay rate for the Z mode for general my /2 for arbitrary m is too complicated to give

here, and is left for App. D.3.

These decay rates are more tractable in certain limits. When the goldstino gets most of

its mass from loop-level effects so that m¢ > my /2, the decay rates simplify considerably,
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and follow from the goldstino equivalence thcorem:

T)’Lg 9
FC‘V)”«Z};L - 167TF2ﬂ- C—)fyv

5 2 4
m m,
. ¢ 7% It
FC‘)hw“, - 167‘{'F92ﬁ (1 - m2> Oh’ ]77,< > 777,3/2

¢
m2 M2 4
¢ zZ 2 102
T = s - —Z C] =0 , 6.30
C—Z, 1671'Fezﬁ mé ( Zp T3 ZL) ; ( )

where the angles ©; are the mixing angles of the uneaten goldstino with the superpartner

of the corresponding boson, defined in Eq. (6.21).

When the goldstino gets most of its mass from tree-level SUGRA effects so that m, =
2mg9, the goldstino equivalence theorem is no longer a good approximation and the spin-
3/2 naturc of the gravitino cannot be ignored. The part of the calculation that may be the
least familiar to the reader is the sum over final-state gravitino spinors; for convenience,
these are given for our two-component fermion notation in App. D.2. The resulting decay

rates of an uncaten goldstino to a photon, Higgs, or Z arc given by

189 m? )
Feomn = 555 167 F2, 7
Lo, = ;EZ 167:52 el {%ﬂ O me = 2msy
M vre, %% (fZTFmM: o 114f llez o,
5 ngzx [434( 2 OzTOzL>, (6.31)

One could trade F.g for Mp; in the above by using the relation Fog = v/3ms s2Mpy. The

kinematic functions f arc given by

falz] = (1 —2)*2(1 — 2/9)/? (6.32)
Fzplr] = (1 —2)Y2(1 — 2/9)V2(1 — 72/9 + 1122 /63 — 23/63) (6.33)
fz lx) = (1 —2)%%(1 — 2/NY2(1 + 22/9 + 22 /9) (6.34)
fzlz) = (1= 2)2(1 = 2/9)'/2. (6.35)



Note that f[1] = 0 (the decays shut off when they are no longer kinematically allowed), and
we have chosen f[0] = 1 (corresponding to the me > my, limit). Note in particular that
the longitudinal Z mode is a factor of 7 weaker compared to the transverse Z mode than it

was in the goldstino equivalence regime.

6.3.4 Three-Body Decays of the Goldstino

All the two-body decays only occur in the presence of electroweak symmetry breaking, as
otherwise the goldstinos do not mix with the neutralinos. Therefore, all the two-body decay
rates feature at least one factor of v?, and may become dominated by three-body modes,
despite the latter’s smaller phase space, in the limit m¢ > v.

The same operators of Eq. (6.25) mediate both the ¢ — hypp and ¢ — hhipy,; the same is
true for ¢ — Zp9, and ¢ — Zphap,. As a result, the two- and three-body decay widths are
intimately connected—to leading order, they are parameterized by the same mixing angles

0y, and Oz, , respectively:

. o (—)IQLmZ P mszs
(—hhapy, — 51207312 F2 hh me
- B (—)QZLmZ mzyo
i T Ta0m52F? ML | T

where we are working in the limit rn; >> mjp where these modes may be competitive. The
kinematic functions Fjy, and Fjz, are discussed in the appendices, but take on the values
Fupn(0) = Frz, (0) = 1, Fyp(1/2) = 0.44, Fyz, (1/2) = 0.04. The hZ;, mode experiences
destructive interference at non-zero my /2 due to the pseudoscalar nature of 7, hence ex-
plaining the disparity between the two functions at m¢ = 2mgz/s.

Since it is the same mixing angles Oy, ©y, that appear in the two- and three-body
decay modes to Higgs and Zj,, ratios of these decay rates are largely model-independent to

leading order in m¢/mgusy:

5

Peshng, me Mg/ :
g 6.36
Tmhy, 1607202 M/ (6.36)
Tesnz,y, mg mz 2
» e M p 6.37
Ueszyy,  60m20? hZi/2L me (6:37)

where the kinematic functions Fypp, and Fjy, sz, are given in the appendix, but take on
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the values Fyp/p(0) = Fiz, 72, (0) = 1, Fppn(1/2) = 0.46, F,z, /7, ~ 0.39. We can use this
to easily determine when exactly the two Higgs mode becomes dominant compared to the
single Higgs mode: m¢ & 10 TeV for m > my/y, and m¢ ~ 14 TeV for m¢ = 2mg/. These
are both outside the sensitivity of the HESS experiment (whose present results only reach
up to 5 TeV gamma rays), so we will neglect this possibility when considering the limits
on photon lines in Sec. 6.4. The situation is slightly less dire for the hZ; mode, which
takes over from the Z;, mode for m¢ ~ 6 TeV for m¢ > mg/y or 10 TeV for me ~ 2my /2
Although this mode may have an impact at the upper range of the HESS data for © 7 > O,
we will find that the limits on single Higgs production tend to preclude the possibility of
observing the gamma ray signal by themselves, as the gamma ray mode is quite suppressed

compared to the single Higgs mode at such high energies.

All other three-body decay modes arc mediated by operators of at least dimension 7

(such as those in Eq. (6.27)), and will be subdominant by a factor of at least mg Jm2 ..
This may bc compensated for by the much sheer number of modes allowed by dimension 7

operators, especially the difermion channel, so we consider them briefly here.

The decay width to a single chiral fermion species is given by

9 mi
roooo Neme  Mpp (map (6.38)
I I5360m3F G FY m T\ me )0

with Fr(0) = 1, Fy(1/2) = 1/8, and the full expression for F; given in App. D.3.

In the low mass regime m; —mg,, < Mz, the difermion and di-gauge boson modes are
once again important as the only possible competition to the single photon mode. However,
they are suppressed both by phasc space and by the smallness of m¢ compared to the weak
scale. Barring cancellations, the three-body modes very rarely amount to more than a
handful of percent of goldstino decays even for m¢ — mg /2 = Mz, and can often be even
more subdominant, as in split SUSY scenarios (see Sec. 6.6) or for the m¢ = 2mg /2 case
(see App. D.3). In such a regime, the single photon mode would likely be the only possible

signal for the foreseeable future.



6.4 Indirect Detection

If the uneaten goldstino comprises some or all of the dark matter in the universe, its de-
cay products can be observed by cxperiments, allowing indirect detection of goldstino dark
matter. The decay ( — ¥, would be particularly striking, as galacf,ic sources would con-
stitute a monochromatic source of photons. Such a photon line could stand out clearly from
the diffuse photon background, and would be difficult to fake from astrophysical sources.
In fact, there has been some cxcitement recently from tentative signals in gamma rays at
about 130 GeV in gamma rays from the galactic center [26, 153, 145], and at 3.55 keV in
X-rays from surveys of galactic clusters [29, 24]. Before discussing goldstino interpretations
of these anomalies we will first review current constraints on goldstino decays.

The largest source of gamma rays originating from goldstino decays would be the galactic
center, which also has the largest backgrounds of astrophysical gamma rays. However, for
decaying dark matter the galactic center is not as prominent a source as it would be in
the case of dark matter self-annihilation, as the flux scales only linearly (not quadratically)
with dark matter number density. As a result, the spatially uniform extragalactic sources,
with more manageable backgrounds, can be of comparable importance.

Both the FERMI-LAT and HESS collaborations have performed searches for monochro-
matic sources of gamma rays [3, 1], allowing limits to be determined on the lifetime 7., for
the decay of fermionic dark matter to a yv final state [3, 91]. The identity of the produced
fermion is unimportant, as long as it can be treated as massless. Therefore, they apply
cqually to goldstino decays which also produce monochromatic gamma lines and may be
very easily adapted for non-negligible final-state fermion mass my /.

Of course, if the two-body decay featuring a photon is not the dominant decay mode,
other goldstino decay modes may produce a detectable signal first. As we saw in the pre-
vious sections, the main competing modes at lower energies are the single Higgs and, to a

lesser extent (up to phase space), the single Z. The ultimate decay products of the Higgs

or Z will include all stable Standard Modecl particles—clectrons and positrons, neutrinos,
(anti)protons, and a soft photon spectrum. The astrophysical backgrounds arc modest and
well-understood [91]. Unfortunately, due to the effects of galactic electromagnetic fields,

experiments can extract no information about their original energy and source location.

Furthermore, these same effects mean that the expected flux of antiprotons given a particu-



lar dark matter mass and lifetime is highly dependent on the particular model of antiproton

propagation through the galaxy.

Antiproton fluxes still provide the best limits on the lifetime of fermionic dark matter
in the channels hv and Zv, as has been studied extensively in Refs. [52, 79] using data from
PAMELA [5, 6]. As with the photon mode, these limits also apply exactly to goldstino dark

matter in the my/y < mg regime.!!

In adapting any of these limits it should be remembered that the number density (and
thus the numbecr of decays) scales as mgl. Accounting for this and the appropriate values
of m¢ and my/y, this allows us to map known limits from standard decaying dark matter
searches x — Bv. If these limits are defined at a specific DM mass m, as a limit on
the lifetime 7(m, ), for the final states B = ~, Z, h, then these limits may be adapted to

goldstino decays ¢ — B, with the following mapping

My (M, My e, Mp)
) X / x BR(
771(

T(m¢, Mgy, mp) =T (mX(mC,m;;/Q, mp ¢ — Biy,) x Fg,

(6.39)

where

mg 4 sz — m§/2 + \/(mg - (mp+ Tﬂg/g)z)(mg —(mp —mgy/,)?)

my (me, mgy, mp) = ,

2m<
(6.40)

and BR(¢ — DB4,) is the branching ratio to that final state and Fy is the fraction of DM

made up by the goldstino F; = Q¢/€,.

Combining the gamma ray line and antiproton limits, we can find the minimum branch-
ing fraction needed for the photon mode { — ~1, to be currently observable while the
existing antiproton limits on ¢ — Z4),, and ¢ — Ay, do not to exclude it. These arc shown

for both my /s regimes in Fig. 6-4.

"This is only strictly true at tree level, as electroweak radative corrections can have a substantial impact
on the number of produced antiprotons at higher dark matter masses when the fermion produced in the
decay is a Standard Model neutrino [52]. Ref. [52] docs not take these corrections (which do not exist in our
case) into account explicitly in their analysis, however.
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Figure 6-3: Constraints on the effective goldstino lifetime x = 7/(BR({ — Bup,) x F¢)
where B = ~,Z, h calculated from Refs. [91, 79]. Constraints are shown for the MED
propogation parameter choice in Ref. [79] for B = Z, h. Different propagation models lead
to constraints that may beweaker or stronger by a factor O(few). The left panel shows the
scenario where the goldstino mass is dominated by tree-level mSUGRA effects, and the right
panel the scenario where the goldstino picks up large one-loop corrections to the tree-level
mass. ¢ — Yy, lead to the strongest constraints however for m¢ — mg/; > myz,my, the
branching ratio to these final states may be larger.
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Figure 6-4: Minimum branching ratio required for a putative observed decay ¢ — v, with
effective lifetime s just beyond current bounds to not be in conflict with constraints on
¢ — Zv, and ¢ — hi, from PAMELA. The plots begin at the lowest mass goldstino such
that the decays are kinematically accessible. As in Fig. 6-3, different propagation models
will result in minimum branching ratios that may be larger or smaller by a factor O(few).
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6.4.1 The 130 GeV Line

There has been some excitement in the last two years over the tentative observation of a
gamma ray line at approximately 130 GeV originating very near the galactic center. Such a
signal can arise from the decay of dark matter {26, 153, 145], although its spatial distribution
is more suggestive of annihilation at present [28]. Rather than discussing the robustness of a
DM interpretation of this anomaly we simply consider whether or not such a spectral feature
could arise from goldstino decays in accordance with other limits and generic expectations

in models of goldstino decays.

For such an interpretation an effective lifetime of k = 7/(BR(¢ — B, )x F) ~ O(10%%)
is required. Furthermore, Fig. 6-4 demonstrates that the branching ratio to v, must be

at least O(10%) for the model to be consistent with antiproton bounds.

For the loop-dominated goldstino mass m¢ > my/; a 130 GeV line would require m¢ =

260 GeV. Using Eq. (6.30) we find that

BR,, 1702
BRzy 03 +456%°

(6.41)

thus for typical parameters if ©, ~ ©z,. , then the branching ratio constraints are satisfied.
The more detailed analysis of Sec. 6.6 will show that ©,/07z, scales roughly as Mz /M;, so
the branching ratio constraints will be satisfied so long as the bino is not too far above the

weak scale.

Obtaining the required lifetime is also quite feasible. Again using Eq. (6.30) we find

Fenr ! S} -2
b 2 (3 x 107 ¢ © b . 42
Teo % (3 % g)<1><109 ch> <1><10~14 (642)

For this value of F.g we have mqy /2 & 24 MeV, satisfying the criteria m¢ > mg/p. Such a
small value of @, is to be expected, since O, x (A[%/Fg)(MSUSy/MSUSy) where Mgugy is
near the weak scale and MSUSY is the typical soft-term mediated by sector 2 to the visible
sector. For \/Fog ~ 10° GeV, one expects 0, ~8x 10719 if the two sectors have a common

messenger mass.

For the SUGRA-dominated goldstino mass m¢ = 2mg/; a 130 GeV line corresponds to

a 346 GeV goldstino and 173 GeV gravitino. Phase space and kinematics further disfavor
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the Z mode here, so the branching ratio constraints are easier to satisfy:

BR,, _ 1.502
BRZw GZZT + 1]—4922L — ﬁ@ZT@ZL

(6.43)

As the gravitino mass is fixed, we know Fog = \/5771,3/2]\/1171 = (2.70 x 101° GeV)? and we
have one fewer free parameter in the lifetime:

‘ © -2
~ 29
TC“’“VY"/)H ~ (1 x 10 S) <W> . (644)

6.4.2 The 3.5 keV Line

There has also been excitement very recently regarding a 3.5 keV line in X-rays tentatively
observed in various galactic clusters [29, 24]. The goldstini framework has many features
that make it a plausible candidate for such observations. It can produce a monochromatic
photon line without producing other features—the only other kinematically allowed modes
are multiphotons and neutrinos, which are strongly phase-space suppressed at these energies
(and the latter are effectively invisible). The morphology of the signal is also very suggestive
of a dark matter decay, corresponding to a lifetime of 2 x 1027 — 1 x 10%% s.

However, it can be difficult to accommodate such a large X-ray signal in the goldstini
framework. For the scenario me = 2my /2 (and thus VF ~ 4.5 x 108 GeV), it is almost

impossible, as

6m M3, oy (O
Sy = oy A 10%7 s) [ =2 : .45
TC oy TEIOR (7 x10°" s) G (6.45)

One cannot obtain a signal large enough to correspond to the observations of Refs. [29, 24]
in the limit that goldstino-neutralino couplings are a small perturbation of the neutralino
mass matrix. The same conclusion holds true to a somewhat greater degree for the scenario

Mg < M < 2myyy.

The prospects are less dirce for me > my /2 (as F', m¢, and Mp are no longer directly

related), but it still requires a small SUSY-breaking scale and a relatively large ©.:

4 :

167TF2 27 \/F (';‘),Y -2 . .

TC%’W‘/)M = W ~ (2 x 10 S) m ‘1‘(‘)“:‘1 (646)
Y
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For this scenario to be feasible, the corrections to the goldstino mass need to be keV-
scale. At tree level, these corrections arise at O(1/F?), mainly from the dircet couplings of
the goldstino bilinears in the lowest components of X ;2. These corrections scale roughly
as

BuMZp ™, Mzu My oML
F2 0 F2 7 F?

me ~ (6.47)
It can be quite difficult to make m¢ be keV scale while simultaneously making ©., large
enough (and F small enough) for this decay to have the necessary lifetime; it is typically

only feasible in minimal models for light binos (M; < 20 GeV).

Radiative corrections will also generally induce the operator

with M some effective messenger scale and n the number of loops required for cross-talk

between the two sectors. This yields an uneaten goldstino mass of [42]

1 kKR

R it
M er?)n By M

(6.49)
To make sure that the goldstino mass induced by such an operator is no larger than keV
will typically requirc n to be relatively large or for there to be small couplings.

For the non-minimal models discussed in Sce. 6.7, the prospects can be much improved.
For example, for the model of Sec. 6.7.1 dominated by kinetic mixing between the bino and
uncaten goldstino has ©, ~ ¢cosfy, which can work for large enough €, assuming that
radiative corrections to the goldstino mass are well-controlled.!?

Scenarios with three or more SUSY-breaking sectors can also more feasibly produce
such an X-ray signal, arising from transitions between different uneaten goldstini. As there
is no gravitino involved in such a decay, cancellations that occur for the true goldstino do
not occur for the uneaten goldstino, and the decay rate is only proportional to the third
(as opposed to the fifth) power of the 3.55 keV photon encrgy, allowing for a significant

enhancement. Such decays are beyound the scopc of this thesis, but are covered in morc

2There are also contributions from the mass mixing with the neutralinos, but these are suppressed by
powers of the neutralino masscs assuming that soft SUSY-breaking arises mainly from sector 1.
13Note that the uneaten goldstino does not receive O(e?) tree-level corrections to its mass in this scenario.
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Figure 6-5: One-loop diagrams that serve to renormalize the uneaten goldstino mass-squared
style couplings. Note that the resulting effects will be proportional to the gaugino-mass style
coupling multiplied by the physical gaugino mass for the left and middle diagrams, and
similarly for A-terms for the right diagram. If sector 1 provides the dominant contribution
to soft terms, RG effects can greatly enhance the mass-squared style couplings of the uneaten
goldstino.

detail in Ref. [126]. The same decay, with weak-scale goldstini, was considered on the

vastly shorter timescales of the LHC in Ref. [69].

6.5 Renormalization Group Evolution of Goldstino Couplings

The couplings in Eq. (6.13) will help mediate goldstino decays, so in order to fully assess the
relative importance of the possible decay modes, we will need to understand the possible
relative strengths of these couplings. In general, we will have to take into account the
RG flow of these couplings. One might not expect such effects to be extremely important,
especially since we do not have definite expectations of how these couplings compare at the
messenger scale. However, we will find that in scenarios in which the contributions of sector
2 to soft SUSY-breaking parameters are much smaller than those of sector 1, these RG
effects can very quickly become the dominant source of mass-squared goldstino couplings.
The fundamental reason for this is that physical gaugino masses, A-terms, and fermion
masses feed into the RG evolution of scalar mass-squared goldstino couplings, in addition to
their corresponding goldstino couplings. This can be seen on the level of Feynman diagrams

in Fig. 6-5. The one-loop RG equations for the mass-squared style couplings are (following
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the notation of Ref. [124))

1 - . — .
B2 [A;k,Ajkl - 8g§Ca(i)M;Ma5ij] + O(i?). (6.50)

MG 16w2

This looks extremely similar to the RG equations for the (untiled) soft scalar mass-squareds,

and for good reason—removing the tildes from Eq. (6.50) yields the RG equations for the
eaten goldstino couplings, which must be identical for those for the soft scalar mass-squareds
by supercurrent conservation.

As a result, the RG equations for the other goldstino couplings arc identical to those
for their corresponding soft terms, after adding tildes to all soft parameters, as none of

thosc RG equations contain terms proportional to products of soft terms. In particular,

this implies the following RG equations for the B-terms:

1 . -, —~ -
B8, = 1o | M Wpmn A" + G2Ca(DAM,M] + O(Byy). (651)

Note that these terms are unsurprisingly proportional to the physical SUSY-respecting
fermion mass. Similar terms can arise at the messenger scale from Kihler potential terms
like X2H1/dHu/d, as well, of course.

This RG running behavior can have very important consequences for the uneaten gold-
stino decays. In the limit that the (messenger-scale) contributions to soft masses from sector
2 arc smaller than weak scale, one might naively expect that one could neglect the dimension
two couplings compared to the dimension 1 couplings. As discussed above, this can already
be falsc at the messenger scale for B-terms. As one runs below the messenger scales, the
dominant contributions to scalar mass-style couplings (and B-terms if they vanish at the

messenger scale) will come from this RG-running, and they can no longer be neglected.

6.6 Benchmark Scenarios in the MSSM

In order to understand these decay rates, we need to understand the mixing angles ©; defined
in Eq. (6.21), and more generally the uneaten goldstino dircction 6 defined in Eq. (6.20),
both of which are quite complicated in general. In this scction, we will consider certain
limits in which 8 simplifies, and some more general benchmark scenarios which can help to

give a sense of the variety of branching ratios and decay rates of the uneaten goldstino.
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6.6.1 The Ultra-Aligned Limit

The uneaten goldstino direction 0 defined in Eq. (6.20) will simplify dramatically it aligns
precisely with the eaten goldstino direction, which we know to be exactly {F?, D®/\/2}.

This ‘ultra-aligned’ limit will occur when m¢ = 2mg /5 and p is a multiple of p; that is, when

;7\71,2 = kM, 2, ﬁL%M = /s‘,(m?]d‘u + 2m§/2)7 By = k(B —my o), (6.52)

for some constant x. Leveraging the fact that we know the goldstino direction (or extensively

using conditions arising from the minimization of the Higgs potential), we find

%]\/[Z sin @y cos 23 Dy /2
N vk —%A/IZ cos Oy cos 23 " D3/\/2
\/§FJ_ FL
fesin B — mg o cos 3 Fy,
pcos I — mg o sin 8 Fy,

Note that in this limit, ©, is 0 and the goldstino does not decay to a photon and gravitino,
as the effective D-term for clectromagnetism vanishes in the absence of Fayet-Iliopoulos
terms. This criterion provides an excellent check on all of our calculations, and is especially
useful in the non-minimal scenarios discussed in Sec. 6.7. In this ‘ultra-aligned’ limit, the

other mixing angles become:

0, -0 o, — kv cos(a + 5\)/;Fm3/2 sin(a — 3)) (6.50)
i

KM /90 €OS 23

V2F,

wMzvcos2f3

Oy, — —2veosp
7 22F,

Oz =

This ‘ultra-aligned’ limit is somewhat artificial, however, due to the presence of the 2m§ /2
term in Eq. (6.52).'" Tt can be readily seen from Eq. (6.50) that this limit is not RG-stable;
even if it were imposed as a boundary condition at some scale, it would not hold true at

any other scale.

M There is no similar issue with the may it term; see [ootuote 15.
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6.6.2 The Aligned Limit

The more physically reasonable ‘aligned’ limit, in which mfj 1/ m‘fj’Q = Ma1/Mao = Bij1/Bijz
for all soft terms, is RG-stable, and the 2m3 /o term in Eq. (6.52) would be omitted.!® In

turn, this implies the cancellation for ©, would not be complete in the ‘aligned’ limit:

V2k(M, — MQ)TTlg/2Mz’U cos 23 sin 260w
v My Msu?F,

(‘aligned’ limit), (6.56)

at lowest order in Mz and mgj,, while the other ©; would receive O(m32 /2 /m3ygy) cor-
rections. Although the photon mode is non-vanishing in this limit, it is gencrally quite
suppressed as 2mgy/y < My, Ma, ps in the regime of interest.!® It is interesting to note that
in this aligned limit, the tree level goldstino to photon decay channel is entirely duc to the
2m§ /2 coupling discussed in Ch. 5. Plots of branching ratios in this regime are given in
Fig. 6-6 and Fig. 6-7, with the latter exploring some regions of parameter space in which
the single photon mode cannot be neglected.

The cancellation also fails whenever m deviates from 2m3,5. To lowest order in mg /25

m¢, and Mz, the photino mixing angle becomes

B (M1 — Ma)Mz(m¢ — 2mgs) vk cos 203 sin 20y
T AV2F | My M,

, (6.57)

while the other mixing angles receive subdominant corrections. This effect can be substan-
tial for gauge-mediation inspired models in which m; /2 1s negligible and m¢ ariscs mainly

from loop effects, as can be seen in Fig. 6-8.

6.6.3 Split SUSY Models; Gauge Mediation

In split SUSY scenarios with M;, My < p the effects of scalar soft masses can largely be
neglected. RG running effects induce 777%1 1 proportional to MQMQ, but to find the uneaten

goldstino decay rates, one has to integrate out a Higgsino of mass p. Similar considerations

®*Note that the mg/zit term in Eq. (6.52) is not modified, as that contribution to B terms arises from
neither hidden sector (and is in fact not SUSY-breaking, see Ch. 5). However, since B terms do not feed into
the RG running of any other soft parameters or goldstino couplings (we neglect the subtle issue of threshold
corrections here), one can replace the mg,o with any other fixed scale A without affecting the RG stability of
the limit. Picking A = 0 means the cancellation in @, is even less complete, with ©, non-vanishing already
at O(mgy2). Picking A > p is equivalent to the B-term dominance models we will discuss in Sec. 6.6.4.

181f the Z or Higgs modes should be kinematically inaccessible, the three-body decay to fermions would
dominate instead.
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Figure 6-6: The branching ratios for goldstino decay in the aligned, m; = 2my;, limit, as
a function of mg/y, for My = 10 TeV, My = 20 TeV, p = 30 TeV, tan 3 = 20. Note that
except for the photon mode and the upper limit on mg, this plot is extremely insensitive to
the values of M| and Ms. The vanishing of the single Higgs mode is due to a cancellation
in O, that occurs for for my /2 & psin2f3 in the aligned limit. The same sin 23 suppression
helps explain the relative subdominance of the two-Higgs mode at higher energies. The
single photon mode is not visible on this plot, except for the case barely visible on the
extreme right where m¢ and M are almost degenerate.
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Figure 6-7: Left: the branching ratios for goldstino decay in the aligned, m¢ = 2mg/, limit,
as a function of mg/,, for My = 250 GeV, My = 500 GeV, p = 750 GeV, 3 = arctan 20.
Right: the branching ratios for goldstino decay in the same limit, as a function of M;, for
mgs = 45 GeV, My = 2My, p = 3M;. The photon mode can be non-negligible, even in
this aligned limit, for modest neutralino masses.
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Figure 6-8: The branching ratios for goldstino decay in the aligned, m¢ > 2msy /2 limit, as
a function of m¢, for My = 400 GeV, My = 800 GeV, p = 1200 GeV, 3 = arctan 20. Even
when the couplings are aligned, the fact that m¢ # 2mg /2 has a substantial effect, even for
heavier neutralinos than in Fig. 6-7, with the photon mode remaining substantial over the
whole range of m,.

will suppress the difermion modes as well.!” The same is not true of B-term style couplings,
as the p naturally occurring in Eu simply cancels the ;' from the Higgsino propagator:
one cannot ignore such couplings even for ultra-heavy Higgsinos.

Working in this limit, with p = My, My > Mz, m¢, and rewriting éu = —E,u,

(

%% sin Oy cos 23 (ﬂl - 2?;) \

» - % % cos By cos 23 (ﬁg + 25)
V2F,|

Ty
I
_—
.U)
[ ]
Qo
S~

bcos 3

\ bsin 8 /

remembering that we are working in the {E,W,I;}d.ﬁu} basis. Note that if M /My =

M, /My (or even if they both vanish), the photon mode still occurs through the B-term
coupling.

We see from Eq. (6.58) that if 5, M 1 and ﬁ:’fg are comparable, the Higgs and longitudinal
Z modes will tend to dominate in this regime. However, one can easily arrange for b to
be smaller than M 1 and f\:fg—if it vanishes at a messenger scale, and there are few enough

decades removed from m that Eq. (6.51) only has a modest effect. This in fact occurs if

""The difermion mode induced by scalar mass couplings in this regime will still dominate over those
induced by A-terms, even for the ¢f mode.
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Figure 6-9: Branching ratios for goldstino decay as a function of m¢ in a scenario inspired
by gauge mediation, with m¢ > mysy, My =1 TeV, My = 2 TeV, p = 3 TeV, tan 8 = 5,
M; =1 GeV, f\;}g = —2 GeV, b= 27 MeV, ffziff_u/,u = 18 MeV, and 'ﬁszd/,u, =10 MeV.

sector 2 transmits SUSY-breaking to the SSM via minimal gauge mediation.

Fig. 6-9 shows plots of representative branching ratios for a scenario inspired by gauge
mediation. Note that we have not picked a split SUSY benchmark here; all that is required
is for RG running effects to be modest, B-terms from sector 2 to be suppressed at the

messenger scale, and Mgysy <€ Msysy.

6.6.4 B-term Dominance

In a different extreme, one can have B-terms being the only non-vanishing contribution to
soft masses from sector 2, as B-terms do not feed into the running of any other soft terms.

In this limit (and only keeping terms to the lowest order in Mz and m,), the mixing angles

become
(Mo — M, )J\JZ'UE cos 2/3 sin 20y vb sin(8 — a)
2F| M1 M, V2F,
= — ]\JZ’U?;COS 23(M; cos? Oy + My sin? Oy) By, = vb cos 24 ' (6.59)
V2F| My M, ’ V2F,

Recall that in the Higgs decoupling limit, sin(8—«) =~ 1. Fig. 6-10 shows some characteristic
branching ratios. As expected, once the higgs and Z modes are kinematically accessible,

they become the dominant decay modes.

6.7 Non-Minimal Models

All two-body decay modes of the uneaten goldstino to a gravitino necessarily arise from

a mass mixing of the uneaten goldstino with neutral visible-sector fermions. So far, we
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Figure 6-10: Branching ratios for goldstino decay in the limit of B-term dominance (E,,, Jp >
M, Hg.,ﬁ?%“/d/;r,), with m¢ = 2my . Left: as a function of my/, for My =1 TeV, My =2
TeV, p =3 TeV, tan§ = 5. Right: as a function of M, for mgz/, = 173 GeV, My = 2M|,
= 3M, tan 3 = 5.

have only considered mixings arising from electroweak symmetry breaking; as a result, the
corresponding decay widths scale as at least v? (v? for the photon mode), and are thus
subdominant for m¢ 2 1 TeV.

There can be mass mixing that does not depend on electroweak symmetry breaking,
but only for the bino the only gauge singlet fermion in the MSSM. In this chapter, we will
discuss one way in which the bino can mix with the uneaten goldstino—kinetic mixing with

18

the uneaten goldstino.'® This mediates a decay of the uneaten goldstino to the gravitino

and a B boson, the only accessible gauge singlet boson —in other words, a photon or a
Z, with the latter mode suppressed by tan? fiyy: (and phase space). We will find this can
easily dominate over other contributions that depend on electroweak symmetry breaking,

and that they can remain dominant over three-body modes even for m; > 1 TeV.

6.7.1 Bino-Uneaten Goldstino Kinetic Mixing

The uneaten goldstino can experience kinetic mixing with the bino via the operator:
“ &
LD [ d’e2¢& 5W’f”izvg’, (6.60)
with W' defined as'®

W' = 41F2(DT2 —- 8R)D*[ X1 X, (6.61)

"®Other possibilities are discussed further in Ref. [126].
"Similar effects would arise from a mixing with sector 1, but they are comparatively suppressed assuming
soft mass contributions come primarily from the first sector.
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with € a small parameter (i.e. we only work to O(e) throughout). Such an effect can be
induced at loop level below the messenger scale if Tr [Yﬁzé] # 0, but can also arise more

directly.

We can diagonalize the kinetic terms by the transformation
€
VoV-—- FX;SXZ (6.62)
2

on the hypercharge vector superfield. This induces new couplings of the visible and hidden
sectors from the hypercharge gaugino mass terms and from the hypercharge gauge couplings
to matter superfields. It should be stressed that it does not produce new couplings from
the standard gauge kinetic terms themselves—or rather, any new couplings induced cancel
completely against those in Eq. (6.60) by construction. In particular, this includes the
gravitino coupling to the gauge kinctic part of the supercurrent, so the transformation of

Eq. (6.62) does not induce a direct coupling of the gravitino to a photon and a goldstino.

The transformation of Eq. (6.62) acting on the matter-gauge coupling terms does pro-
duce an effective Fayet-Iliopoulos term for hypercharge (though note that Dy itself does

not obtain a vev):
1 ; e
L= —-Q—S/EF2 E Yigr o' (6.63)

If we do not want to break electromagnetism or color as a result, this gives a rough upper

bound on € of

2
migrie
< SUSY 6.64
N TgE (6.64)

for m%USY the scale of soft SUSY-breaking scalar mass-squarcds.

When acting on the gaugino mass terms, the transformation of Eq. (6.62) also produces

a mass mixing between the bino and the dark gaugino

‘ M ,
Lo / d02€ %Xlw’“wcf’ (6.65)
1

where we have assumed for simplicity that no similar term appcared in the Lagrangian

before the transformation of Eq. (6.62). Note that the equivalent term with Xo vanishes,
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as XoW'® = 0 due to X2 = 0—this is an effect that only exists with multiple hidden

sectors. This yields an uneaten goldstino-bino mass mixing:

i‘j“ CA = My, (6.66)
1

LD 6]%171

where the approximation assumes that £y 3> Fy and M; 1 > Mj 2. A careful examination
of Eq. (6.65) reveals that there is no equivalent mixing for the eaten goldstino éL, as must

be the case as this effect does not depend on any visible sector D obtaining a vev.

In the limit that this effect is the leading contribution to the uneaten goldstino decay

and that M| > m, the mixing angles take on the incredibly simple form

6 ~ (6,0,0,0), ©, ~ ecosby, Oy, ~ —esinfy. (6.67)

For the casec m¢ ~ 2my/y, this is an incredibly predictive framework, with only two free

paramecters:

100 GeV\® /10112
ey, 2 (3 x 107 s)< . ) ( - ) (6.68)

Naively, it seems like this reintroduces the problem we first discussed in the introduction—
that a decay of this sort requires tuning a parameter to be incredibly small. However, in
this case, the smallness of the parameter is required by the stability of the clectromagnetic

and color neutrality of the vacuum:

100 GeV 1072
< 10”10 ) .69
s 10 ( mz/o ) <F2/Fl> (6.69)

Furthermore, the parameter e is generally expected to be the quite small

1 £y
€ R (167297 312 ) (6.70)

mess,2

with My, 2 the effective messenger scale for sector 2 and n the number of loops required

to induce such a coupling. This does not generically saturate the bound of Eq. (6.64).
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6.8 Conclusions

In this chapter, we have argued that the goldstini framework provides a well-justified sce-
nario which can feature a gamma ray linc visible at indirect detection experiments, at
energies ranging from a keV to a TeV. Such a line occurs from the decay of uneaten gold-
stino dark matter to a single photon and a gravitino, a process mediated by the small mass
mixing between goldstini and clectroweak gauginos after electroweak symmetry breaking.
Since such a process proceeds through the suppressed couplings of both hidden sectors to
the SSM, the goldstino lifetime can naturally be of cosmological timescales.

If such a line were to be observed, however, it would be difficult to determine that
the decaying dark matter was truly comprised of goldstini. One striking piece of evidence
would be the determination of the goldstino mass, which would take on the value 8/3E,
in the minimal goldstino model with m; = 2mg,,. While performing additional accurate
spectroscopic measurements solely with indirect detection experiments would be all but
impossible, a collider measurement could be quite promising. For example, a bino LOSP

would have a lifetime of approximately:

e~ (1 m) (THW> (1 TCV)S( ms )3 (6.71)

1030 s M, 100 GeV

If binos were produced in cascade decays at the LHC, they could then decay, yielding a
(very) displaced photon—a striking, if challenging signal at the LHC, yet excellent evidence

that SUSY is broken in multiple hidden scctors.
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Chapter 7

Conclusions

Supersymmetry is a well-motivated and extensively studied theory for physics beyond the
Standard Model. In the coming years, as the LHC pushes to higher energies and dark matter

experiments increase their reach, we are well-poised to discover SUSY particles at the TeV

scale—or to rule out some of the more constrained supersymmetric models. As a result,
it is more important than ever to consider non-minimal models of SUSY. In this thesis, I
have discussed a number of results that explore some of the resulting unconventional and

counterintuitive aspects of supersymmetric theory and phenomenology.

In Ch. 3, we found that if SUSY is broken in multiple hidden sectors, collider phe-
nomenology can be drastically altered. Most notably, if one of those hidden sectors preserves
an f-symmetry, a predominantly bino lightest obscrvable-sector particle (LOSP) can decay
predominantly to a Higgs and that hidden scctor’s goldstino, even in (in fact, cspecially
in) the limit that the LOSP has vanishing Higgsino fraction. This would result in copious
production of boosted Higgses in SUSY events at the LHC, providing a unique window into

both the structurc of the Higgs and SUSY-breaking sectors.

In Ch. 4 and Ch. 5, we stressed that the structure of unbroken supergravity (SUGRA)
is SUSY in anti-de Sitter (AdS) space, which has a fundamentally different algebra than
flat space SUSY, as we explored in Scc. 2.7. In particular, bosons and fermions in the same
multiplet do not have the same mass for unbroken SUGRA in AdS. This underlying structure
can be probed in the flat space in which we reside by considering goldstino couplings; there
can be mass differences without associated goldstino couplings, and vice versa. This can

arise already at tree level in the case of scalar masses and B-terms. At loop level, this
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manifests itself as (minimal) anomaly mediation, which we showed was not a SUSY-breaking
effect, as it exists for unbroken SUSY in the bulk AdS. This work has provided a clearer
perspective on and more rigorous grounding of anomaly mediation, which had been the
object of some confusion in the literature.

In Ch. 6, we found that multiple SUSY breaking can also have profound implications
for our understanding and observation of dark matter. A goldstino from one of the hidden
scctors can decay to a photon and the gravitino (which mostly resides in another hidden
sector), through cach sector’s communication of SUSY breaking to the SUSY Standard
Model (SSM). The lifetime of such a decay can easily be on cosmological timescales, so if the
goldstino comprises most of the dark matter of the universe, the resulting photon line could
be a striking indircct detection signal of decaying goldstino dark matter at tclescopes such as
FERMI. The energy of such a line can quite plausibly be anywhere from a keV to hundreds
of GeV (or even higher in non-minimal models), providing a well-motivated scenario for
such a photon line without recourse to artificially small parameters. Furthermore, in the
limit in which two SUSY-breaking sectors communicate SUSY breaking to the SSM in the
same manner, this decay occurs via the (absence of) the goldstino couplings arising from
AdS discussed in Ch. 5, providing a possible observational probe of the underlying AdS

SUSY symmetry structure of the universe.
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Appendix A

Goldstini Give the Higgs a Boost:

Appendices

A.1 Tree-Level Higgs Potential

The MSSM tree-level Higgs potential for the neutral Higgs sector arises from a combination

of F-terms, D-terms, and three soft SUSY-breaking terms:

VHLHD = (1 + mi NHP + (u? +m ) HY? + Bu(HYHY + HY 1Y)
2 2
+ , b
+ T - Py, (A1)

Once we recall that

My = %(92+9’2) ((Hff>2+<H3>2), (A.2)
tan 8 = (Hy)/(Hg), (A.3)

we can use the fact that the vacuum must minimize the Higgs potential to find relations

among these parameters.

f , €082
0 = mfiu +|ul* + Bcot B — ]VI%CO; B, (A4)
. 5 COS 2
0 = m¥, + |+ Butan B + Méwz -y (A.5)
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It is convenient to take linear combinations of these relations, one without |u|?> and one

without B,:

sin 4 ,
0 = (m}, —m},)sin28+ 2B, cos2B — M2E 5 5, (A.6)
. 9 COS 2
0 = mj, sin®B— m%,d cos® B — |pl* cos 28 — M3 co; ﬁ. (A7)

In the Higgsino decoupling limit (|z|2, mao > M%), we may neglect the terms proportional
to M%. Also in the same limit, the tree-level relation for the physical Higgs mixing angle «

simplifies considerably:

2 2
me, + M
tan 2 = tan 23 —4 Z

M?Z
—4 = =f3—-n/2 Z A.
Y = a=08-7/24+0 ( 5 ) (A.8)

m4o

Once one applies Eq. (A.8), the relations Egs. (A.6) and (A.7) are precisely those which
cause the canccllation of the A — h° + G, amplitude at the first two orders in /My in
Eqgs. (3.54) and (3.55). Another linear combination of Eqs. (A.4) and (A.5) gives a (non-

independent) relationship that can be useful for simplifying Cget P2

2 2 2 2 2 . 5 cos” 203
0 = |p|” + mjy, sin® B+ my cos® B+ By,sin28 + M 5 (A.9)

A third relation, involving the pscudoscalar mass mag, allows us to solve for all three soft

mass parameters if desired:

1
B, = *§m2Ao sin 23, (A.10)
. . , . 5 cos2f3
my = —|u|* +micos® B+ Mz COZ f , (A.11)
; cos 2
m?{d = —|p|* + m%osin? B — MZ 5 /B. (A.12)

Of course, all of the above relations are valid only at tree-level, and one does expect correc-

tions to these relations from the same loop effects needed to raise the physical Higgs mass

to 126 GeV.
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A.2 R-Symmetry Violating Decays

In the body of Ch. 3, we focused on the setup in Fig. 3-2 where sector 2 preserves an
B-symmetry. If the sector 2 does not preserve an R-symmetry, then there are many more
allowed operators that can mediate the decay of a bino LOSP to the uneaten goldstino.
They are exactly those previously given for the gravitino in Sec. 3.5.1, except with the

replacement of G, with ¢ and with all soft masses tilded.

A decay to photon at tree-level is now allowed through the usual operator

N T (A.13)

with resultant decay rate
M fm:f\ cos? Oy

T, = g
7 167 E?

(A.14)

The couplings of the bino LOSP to the physical Higgs kY and any further couplings to

the Z not already found in O’% p may be parametrized at the first two orders in my/u as

Mz psin Oy . MA Mz 4 .,
L= T AR Cre + Fcr?et AChY — TCSet,ZCTU’ AZyl (A.15)

with Che representing the following linear combinations of Wilson coefficients:

/
9 s 5 : (e —
ﬁcnet - (CR T C;t,ﬁ,,,-ud) cos(a + 0
— 2(7%1[“ sin 3 cos a + 205" 1, €08 S8 sin a, (A.16)
/
e (C?;ml + C’%I“Q) sin S cos @ — (ng,l + Clbid,‘-Z) cos 3 sin a

ﬁ net
+ (CE»I + (7673) sin Asina — (Cb”’z + 06”4) cosfcosw, (A.17)

/
9 6 6 6 .2 6 6 2
— 50z = —(Chy = Ch o) sin® B+ (Chyy — Cl, 2) cos™ B

V2
Lrw 6 -6 6\ winor
+ 5 (Cp,— Cho— o+ CG ) sin 2. (A.18)

Here, the factors of ¢'/+/2 are inserted purely for convenience. In the R-symmetric limit,
all the Cy(’, arc of course zero.
For the decay to Higgs, the formula Eq. (3.38) for the decay rate still holds, but C2,,
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now has contributions proportional to E# and M, as it did in Eq. (3.54):!

. Mm%, — 2, )sin28 + 2B, cos 28 M
Crot = (i, ) 2 b a — Leos28. (A.19)
! M

For the decay to Z, C’Set’ 4 obtains a term proportional to Eu

777% sin? B + ﬁz%{d cos® 3+ By, sin 243

Chetz = — . , (A.20)
’ 1
and we must also include the effects of M 1 from O;t g to find the full decay rate:
r, m;\]f\?f sin? Oy _ %% 2
16w F? m3

1 M2 3A/[%C29t VA MZCr?et Z ’ M2
X |14+ - —="2% ¢ L <1+2 27> . (A21)

2 m3 Mymy, V2M, my

For the gravitino, Cget’ ,, simplifies to unity at this order due to the tree-order relation
Eq. (A.9), and the complicated expression in Eq. (A.21) simplifics to the same result we
obtained from the supercurrent in Eq. (3.4), as it must. We demonstrated in Sec. 3.5 that
the decay rate to Higgs bosons simplifies similarly and in fact completely cancels at this
order. For an uneaten goldstino, however, such cancellations do not generically occur, unless
the ratio ; = ]Tf/? /M; is equal for all soft SUSY-breaking mass(-squared) terms M;. It is
preciscly when all the 7; are equal that one can make the field redefinition Eq. (3.57) to
make the goldstino couple only derivatively to visible-scctor fields. In this limit, it would
couple in exactly the same way as the longitudinal gravitino, except with an enhancement
factor of 72 ~ cot? §. Of course, we should not expect such alignment to occur in general (if

only due to loop corrections), so a generic uneaten goldstino will have branching ratios to

photons, Zs, and Higgses of roughly the same order of magnitude, as suggested by Fig. 3-12.

A.3 All-Orders Tree-Level Calculation

The Higgsino decoupling limit studied in Sec. 3.4 is convenient for understanding the phys-

ical origin of the counterintuitive LOSP decays, but it is tedious in practice for moderate

'Again, we use the approximation o =~ 8 — 7/2 from Eq. (A.8), which is appropriate at this order in
mx/p. This eliminates a term proportional to B, cos(8 — &) in C§

net-

180



values of p. Instead of integrating out the Higgsinos and finding an arbitrarily long scries
of operators and associated Wilson coefficients, we may conduct the calculation with the
original Lagrangian in the mass eigenstate basis. As long as one can explicitly diagonalize
the 4 x 4 neutralino mass matrix (analytically or numerically), onc can perform the full

tree-level calculation to all orders in p.

To do so, we parametrize the relevant intcractions from Eq. (3.23) as follows:

1 1
L= —gMyxixj + piCxi = §YEszx_jhO +yiCxih°
+ GinI(?HXjZ,u — L;iCo""'xi0,2,. (A.22)

In the {)\B,/\gqu,ﬁg} basis, the ncutralino mass matrix is [124]

A,[l 0 —A[ZCﬁSVV A/fzsb’SW
0 M- Mzcgew  —Mzgsgew
M = : (A.23)
—Mzcegsw  Mzcegew 0 — [
]V[ZSBSW f]\/"[zSBCW — 0

the linear mixing with the uneaten goldstino is

ig’vﬂl cos 28

—%gv]\]z cos2p3

(A.24)

’fflfild()/j + B,usﬁ

ﬁlflus/g + Bcp

181



the couplings to the physical Higgs boson are

0 0 95  Gca — M Mysw sin(o + 3) \
1 0 0 —98s —gCa 1 MZJ\IZCW sin(a + )
Y= ; Y= —=
2 V2F - N
9 Sa —0Sa 0 0 Buco — m%ldsa
gca —gca 0 0 771%[“ Co — gﬂsa
(A.25)

and the couplings to the Z boson are

000 O M sw
000 O —Moeyw
g V2
a=_9_ L=Y° . A.26
Sery : 7 (A.26)
001 0 0
000 -1 0

In the above matrixes, we have used the notation ¢y = cos @ and sy = sin 6, with W standing

for the weak mixing angle 6y, .

To calculate the decays of the lightest neutralino, we go to the mass eigenstate basis:
M- M =pPTMP, (A.27)

with P chosen to make M’ diagonal. Note that we treat the linear mixing with the uneaten
goldstino as an insertion, which is valid to leading order in 1/F. The other matrices and

vectors rotate as

p—p =PTp, Y Y =P'YP, (A.28)
and so forth. The full tree-level amplitude for the decay of the lightest neutralino to a
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Higgs/Z and a goldstino is thus:

Fh()

Iy

where the neutralino masses are labeled by m

2 2 P}
ma , Ylli /),/L- Mo A
— | y7 — —t - —= .29
167 (!/1 51: 72,0 mf\ ’ ( )

X
3 2N\2 (12 2 I gt 72 2
my M7 L 1Mz JLK K M?
— 11— = — | 1 -——= -3 — |14+ 2—% J(A.30
167 ( mi) < 2 * 2m3 my + M2 * m3 ( )

v, the LOSP mass is my = m o, and
K3

X Xy’

G
K = Ll A.31
; 7TI,XQ ( )

A similar calculation for difermion production is beyond the scope of this work; it would

in general need to include the effects of A-terms, finite fermion masses, and sfermion mixing

for the third generation, as well as possible interference from difermions produced by off-

shell Z bosons.
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Appendix B

The Two Faces of Anomaly
Mediation: Appendices

B.1 The Fourth Anomaly in Anomaly Mediation

As mentioned in Table 5.1 and footuote 4, there is a fourth anomaly which can contribute
to the gaugino mass, though it is not so important for phenomenology since it requires
direct couplings of SUSY breaking to the gauginos at tree-level. 1t was first pointed out in
Ref. [44] in a string thcory context. For completeness, we derive in this appendix the extra
contribution within our framework, and we show that the associated goldstino coupling

respects (flat space) supercurrent conservation.

Following the notation in Ref. [12], the Yang-Mills term in a SUSY gauge theory is

1 [ .
LO3 / d*0 SWewe,

(B.1)

where S is the holomorphic gauge coupling. The superfield S is chiral and does not run
beyond one-loop in perturbation theory. However, the component fields of the gauge multi-
plet appearing in Eq. (B.1) are not canonically normalized. In order to go to a canonically-
normalized basis, we need to perform an anomalous rescaling of the gauge multiplet. This

will induce an additional anomaly-mediated contribution to the gaugino mass.

As shown in Ref. [12], the effects of this rescaling are encoded in the real vector superfield
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R (not to be confused with the curvature superficld), given by!

Rz(s+§)+§7

log [+ 8T + ... (B.2)

2
The physical meaning of the components of R can be identified from the 1PI effective action

DQ
—801

Lip = /d/lgRWaa Wg + h.c. (B3)

The lowest component of R defines the canonical gauge coupling, and the 82 component is

related to the physical gaugino mass, via

1
9—2 = R| 0, mx = log R|,,. (B.4)

The physical gaugino-gauge boson vertex is determined by

LD—%&MUngRM (B.5)

v

If S has a #2 component at tree-level, then there is an extra contribution to the gaugino
mass and goldstino coupling from the second term in Eq. (B.2), in addition to the expected
tree-level gaugino mass and goldstino coupling from the first term. This additional piece

due to the anomalous rescaling of the gauge multiplet is

2 T .

Amy = L=C Fi9;10g S. (B.6)
82

We can also read off the associated goldstino coupling from Egs. (B.2) and (B.5), after

identifying the goldstino dircction through Eq. (4.16). This gives an additional goldstino

coupling

Acy = Amy (B.7)

in the notation of Eq. (4.1), consistent with (flat space) supercurrent conservation.

'The elided terms include the sigma-model anomaly term alrcady contained in Eq. (4.14).
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B.2 General Chiral Field Redefinitions

In order to derive Eq. (4.14), we want to find a ficld redefinition on our (charged) matter

superfields of the form

Q' = ™' Q' (B.8)

that removes all chiral couplings of the Q* to the SUSY-breaking fields X?, while preserving
the canonical normalization of all kinetic terms. Explicitly, we want that after this field

redefinition,

(Kij) =63, (Kiz) =0, (B.9)

where exactly one of the indices on the latter corresponds to a SUSY-breaking field.
Assuming we have shifted away all vevs of our scalar fields, the most. general Kéhler

potential for charged matter can be written as
K = QiQTJ&i,j + AijﬂQiQTle +he +--0, (B.10)

where we have omitted any terms that have no impact on Eq. (B.9) and rotated and rescaled
the matter fields to have canonical kinetic terms. The linear couplings to X can be removed

by the field redefinition
Q' — ¢ TE BRI QF = (5, — A X'+ )Q" (B.11)

with K" being the Kihler metric. This redefinition induces the anomaly term

oL

Il

2 D2 D2
2 : 2, 9 _ " aayxs @
- /d f 167r2TH" ( 1600 (log K )”) M

9 N2 2
q 2 Tr D™D 1"
= - - df — — logdet K|, W*WE,

XR: 167r2/ dp 1600 8¢ [ a

The sum in the last line is now over the matter representations R.

B.3 Non-Local Anomaly Terms

The lowest component of the superfield C' in Eq. (4.34) yields (non-local) terms in the

Lagrangian that express the three anomalies of the theory. In supergravity frame, we have

187



explicitly

1 1 1 : . .
C|= O [i(TR - 3T¢) (—572 + i(’)ub“) - {—fTR(KiDA’ + K;;D,A'DH A7)

T 4 ; ” . P
+16d4R ((log det K| );0A" + (log det K‘R)yj_jD“AZDPJAJ> + .. } ' (B.12)
'R

For cxample, the super-Weyl anomaly (or more accurately, the U(1)r anomaly [16]) is

expressed via
LD g‘ (3T, Tr) & pF v (B.13)
967> ¢ " o ’ )

where b, is the vector auxiliary field which shifts as b, — b, + 9, under a U(1)pg trans-
formation. Rearranging Eq. (B.12), the Kéahler anomaly and sigma-model anomaly are

similarly expressed via the Kahler connection and sigma-model connection [16]:

2 e i 7

g Op(iK;0P A — iKG0PA™) | ~
£ —5Th = Fy F™, (B.14)
co 9 Eap(i(logdotf&’la)ia’w—i(logdetK\R)zapA*’>FWﬁ/tv, (B.15)

3272 dp a
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Appendix C

Anomaly Mediation from
Unbroken Supergravity:
Appendices

C.1 Goldstino Couplings from the Conformal Compensator

In this appendix, we provide a third derivation of the goldstino couplings in Eq. (5.8),
working in the conformal compensator formalism of SUGRA to connection to our previous
analysis in Ref. [53].] Here, the extra gauge redundancies of conformal SUGRA are gauge
fixed to recover minimal SUGRA [101, 100, 102, 147] via a conformal compensator ®, a
chiral field with conformal weight 1. We can use @ to build a superconformally invariant

action at tree-level (dropping Yang-Mills terms for convenience)
L= /d‘le PO+ /d20 W +he + ..., Q=3 K3 (C.1)

Here, we usc global superspace variables to express only the matter parts of the action, and
the ellipsis (...) represents the action for the gravity multiplet as well as couplings of the
matter ficlds to the gravity multiplet (sce, c.g., Refs. [114, 38]).

The gauge choice for ¢ proposed by Kugo and Uehara [113] allows us to use the “global

superspace” terms of Eq. (C.1) to find the pertinent features of supergravity, including scalar

"For details on the conformal compensator formalism see Refs. [143, 80, 114]. This formalism is reviewed
in Ref. [38] using two-component fermion notation.
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masses and goldstino couplings in curved space, without having to worry about supergravity

effects from the terms in the ellipsis.? This gauge is
d - eK/6~i/3ArgVV {1 EKXZ Ffb} (C2)
. ) 3 2 9 K

where the field F is an auxiliary complex degree of freedom, corresponding to the complex
auxiliary field M of supergravity. Unlike in the super-Weyl formalism, Fg is not a gauge

degree of freedom.

The most general Kahler and superpotential for unbroken SUGRA in AdS (i.e. (W;) =
(K;) = 0) is3

Q=Q"Q + % Qi) Q'Q +he. + ..., (C.3)

1 o
W =mg, + 3 (Wi Q'Q7 + ..., (C.4)

where the ellipses represent higher-order terms. Inserting these expression into Eq. (C.1)
and rescaling the ficlds Q° — Q'/®, we can solve the Fp cquation of motion to find
Fy =m3/5 +.... The extra terms are suppressed by at least two powers of Mpj, and thus
irrelevant for our purposes. It is then simple to read off the cosmological constant, as well

as the fermion and scalar mass matrices:

(V) = =3m3 , Mg, (C.5)
Mij = (Wij) +maza ($4) (C.6)
miy = MyMP®; — 2mj 85, (C.7)
Bij = —mgp (Wij) +m3 o (Qij) — 2m3 5 (Qij) = —mg e Mij. (C.8)

Thus, we rccover the universal tachyonic soft mass-squared in Eq. (5.14) for scalars in

unbroken AdS SUGRA, as well as B-terms proportional to the fermion mass matrix.

SUSY breaking effects then lift AdS space up to flat spacc. We represent the source of

2An alternative gauge fixing was proposed in Ref. [38], but it is only valid in flat space. Given this
limitation, it would obfuscate the derivation of the sfermion spectrum in curved space.

3For simplicity, we assume nonc of the visible-sector fields are singlets. The physics does not appreciably
change if there are singlets, as long as there is no SUSY breaking in the visible sector.
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SUSY breaking in the hidden sector by a non-linear goldstino multiplet [137, 116, 109, 42, 39]

2
XN = Fx <9 + éL) , (C.9)

1
V2Fy
where G is the goldstino. Because of the constraint X%; = 0, the Kihler potential and

superpotential terms involving the non-lincar field X i, are strongly constrained

QO -3+ (Qx) Xnw + () X + Q) X1 X e, (C.10)

W D mgs + (Wx) Xni.. (C.11)

The coefficients (Qx) and (Wx) can be made real by using our freedom to rotate X nj, and
perform Kahler transformations. A canonically-normalized goldstino (i.e. K D X }L\ILX NIL)
enforces the condition (Qy ) =1 — £ (Q x)2. Upon rescaling the non-linear field X ny, —

X n1./® and integrating out auxiliary fields, we find from Eq. (C.1):

(Fx)=— <WX - ’m:s/QQX> ) (C.12)
1

(Fo) =mgz/, + 3 (Qx X, (C.13)

(V) = (FX) — 3m3 ). (C.14)

The amount of SUSY breaking to achieve flat space is thus (Fy) = v/3my 2. We also have

a canonically-normalized goldstino with mass 2mg 5 [42, 39].

The Kahler potential and supcerpotential will also include direct couplings between vis-
ible matter fields and the SUSY breaking sector. For simplicity, we start our study of
goldstino couplings for massless visible sector fermions (e.g. Q'@Q’ is never a singlet under
any of the gauge symmetries in the theory). In this simple casc the operators we can add

are

Q2 (Qxx) QVQ XL, X1, (C.15)
WO S (W @QIQH+ | (Wijkx) QQIQ X (1)

where we have eliminated any possible Q7Q* X n1, terms by using our freedom to perform

a transformation Q° — Q' + n';Q’ Xy, [53]. The scalar masses and A-terms can be easily
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read off from Eq. (C.1):

mfj = —3m§/2 <Qin5(> \ (C.17)
Ak = V3mge (Wijnx) - (C.18)

The terms in Eq. (C.15) also yield goldstino couplings to visible sector fields from the
fermionic component of Xp,; namely a;; D m%. Less obvious is that there are additional
goldstino couplings coming from ®. In the gauge from Eq. (C.2), the fermionic component

of ® contains visible sector fermions (coupled to its conjugate scalar):

1. 1 -1

This means that the (Wx) X ni, term in the superpotential of Eq. (C.11) (multiplied by &2
after rescaling) gives an additional coupling (2m§/2/FX) KiX'Gyp (i.e. the universal goldstino

couplings from Eq. (5.36)). The full goldstino coupling reads
ai; = m?j + 27715/26,;5 , (C.20)
in agreement with Eq. (5.8) in the M;; = 0 limit.

Finally, we consider superpotential and Giudice-Masiero mass terms for the fermions.

This introduces a plethora of new possible terms:

1. .
Qo EQZQJ [(Qu> +{Qijx) XL+ (%) XTNL + (Qijxx) XTNLXNL} , (C.21)
1 o o
Wo o (W) QA7+ % (Wijx) Q'Q’ XnL. (C.22)

Fermion masses and B-terms can be easily extracted from this Lagrangian. Goldstino
couplings are more difficult to rcad off. As already mentioned, the goldstino lives both in
® and Xyr, but in addition, the Kahler potential cubic terms Q'Q’®' and Q'Q’ X LL
contain derivative interactions with the goldstino. After using the equation of motion for

the goldstino of mass 2my;

Cf)in(_iU“auéTL) - 2777/:3/2<757Xiél,a (C.23)
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4

these vield Yukawa interactions between matter ficlds and the goldstino.® The resulting

goldstino couplings are exactly those of Eq. (5.8).

C.2 Renormalization Group Invariance of Irreducible Gold-

stino Couplings

In Sec. 5.2, we found a universal tree-level goldstino coupling to matter scalars and fermions
proportional in mg /20 In Sec. 5.4, we expanded this rcsult to all loop orders, finding further
couplings by carefully analyzing the SUGRA- and super-Weyl invariant 1PI effective action:

{ 1 ) 1 )
GS = 2m§/2 - ’y,,;mﬁ/2 - E*’yinF-’ (ng/Q + ngFJ> (flat space). (C.24)

Since these results follow from a 1PI action, they have incorporated all quantum corrections
and are thus completely RG stable—that is, their coefficients solve their own RG equations.
For the terms proportional to ; and +;, it has long been known in the literature [98, 97,
133, 12] that mass terms of such a form arc RG stable. This is true for the ; term by itself,
and is true for the 4; term given corresponding A terms in the form of Eq. (5.106). The
same logic for soft terms can be trivially extended to goldstino couplings, which makes it
clear that the goldstino couplings proportional to ; and +; above are also RG stable.®

However, the tree-level term, proportional to a constant, is not so clearly RG stable.
Naively, one would expect it to receive quantum corrections starting at one loop (separate
from the term proportional to v in Eq. (C.24)), just as a constant scalar mass would.
‘This puzzle is resolved by remembering that the goldstino and gravitino mix in SUGRA,
80 quanturmn corrections to gravitino couplings feed into quantum corrections to goldstino
couplings, making the trec-level goldstino coupling in Eq. (C.24) RG stable.

For clarity, we give an example of how this occurs in one concrete model: a sequestered
theory (in the sense of Eq. (5.35)) in flat space with (K;) = 0 and a Wess-Zumino visible
sector:

ins — é/\st (025)

*The problematic cubic term Q'Q'®" could have been eliminated by a redefinition of ®, or equivalently
choosing a different gauge fixing than the one in Eq. (C.2). The QinXLL term, however, cannot be
eliminated by any redefinition that preserves X2 = 0.

®This logic is less clearly applicable for the %;my o K; F7 crossterm, as the goldstino coupling corresponding
to the A-terms of Eq. (5.106) is not expected to depend on mg 2. Nevertheless, the logic still holds.
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Figure C-1: One-loop diagram that renormalizes the goldstino coupling to visible-sector
scalars and fermions in the Wess-Zumino theory from Eq. (C.25). The diagram has the same
logarithmic divergence in both global SUSY and SUGRA, and would seem to renormalize
the tree-level goldstino coupling Qf D ng /2

with @ = {¢. x, F'}. The goldstino coupling seems to receive a correction from the logarith-
mically divergent diagram in Fig. C-1. Using a Pauli-Villars regulator, the divergent part

of this diagram is

2m§/2 N? 2
M) =i—"x5 yy | ————=log A | +..., C.26
: F&‘_H 8z Ux ( (47T}2 . ) ( )
with Te, and y, the external wave function spinors for the goldstino and the visible-

sector fermion, respectively. The presence of such a divergence would be fine if it could
be completely absorbed by the wave-function renormalization of the visible sector fields.
However, we know that it cannot be absorbed in the global SUSY case, which features
the exact same diagram (up to a soft scalar mass that does not affect its divergent part).
Explicitly, one can see this by noting that the divergent one-loop contribution to 7 is

/\2
(47)?

Z = log A2 +.... (C.27)

B =

This differs by a factor of —2 from what would be needed to have the entire divergence in
Eq. (C.26) explained by wave function renormalization. Thus, one would seem to find that
the g;? D Qm?; /2 goldstino coupling runs at one-loop order, in conflict with the claims that
G arises from a valid 1PI effective action.

What we have not accounted for, however, is the mixing between the gravitino and the

We use the methods of Ref. [61] for calculations here, but keep the sign and sigma matrix conventions
of Ref. [154].
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Figure C-2: These two diagrams yield logarithmically divergent corrections to the goldstino
coupling after using the equation of motion in Eq. (C.28) for the gravitino. When combined
with the diagram in Eq. (C-1), the goldstino coupling G > 2m§ /2 is RG stable.

goldstino in SUGRA. Recall that the equation of motion of the gravitino in flat space is

3 ~ 3
Dy = \/;Tn,g/gGL + Z'.im;;/zaﬂ'd?;ﬂ, (C.28)

so diagrams with an external gravitino may yield corrections to the goldstino coupling after
using this equation of motion (or making an appropriate field redefinition).” Effectively, by
trading away couplings proportional to the left-hand side of Eq. (C.28), we are making sure
that we are still in Einstein frame at one-loop order.

Using G defined in Eq. (5.10), the gravitino couples to visible-sector fields as [154]

1 ; cooa ;
L =——gi:0,0"x'a"5"Y, — P —G; 'U“'&!)Tl + h.c. C.29
\/gﬂdrp[‘j ] Qb X g} \/i X L ( )
m. .
= —\/g 3/2 Yot x0, 0" + -z)\f L}; Puot x'¢*2 + ...+ he., (C.30)

where in the second line we have specialized to the theory in Eq. (C.25). The two diagrams
featuring an external gravitino that can give contributions proportional to the left-hand side

of Eq. (C.28) are shown in Fig. C-2. Each of these diagrams is logarithmically divergent,?

"One can of course pick a gauge for the Rarita-Schwinger gravitino field which removes the the quadratic
mixing and changes this equation of motion. As in the text, we will only pick a gauge for the gravitino-
goldstino system after computing quantum corrections to all orders in visible-sector couplings. This does
not poso a problem as we never have to consider gravitinos or goldstinos (whose couplings are suppressed
by A[P, ) as internal legs when computing such quantum corrections.

®In fact, they are linearly divergent, but any ensuing subtleties will only affect the finite pieces, not the
logarithmically divergent ones.

195



and they give equal corrections to the goldstino coupling. Combining these with Eq. (C.26),
we find )
2ms . 1 A2

. . 3/2 2 ,

M =i—25 ———logA C.31

ol =y e (2 (4m)2 ) i (€31
Comparing this to Eq. (C.27), we see this is preciscly the logarithmic divergence that can
be completely absorbed by the wave function renormalization of the visible-sector fields. At

the one-loop level in this model, we confirm that the tree-level goldstino coupling does not

run, as we knew had to be the case from our 1PI analysis in Secc. 5.4,

C.3 Super-Weyl Transformations

Super-Weyl transformations are the most general transformations that leave the torsion
and chirality constraints of SUGRA unchanged. They may be completely parameterized by
a chiral superfield ¥ and its conjugate anti-chiral superfield =i [90, 154]. The super-Weyl

transformations act infinitesimally on the gravity multiplet as [90, 154, 103]

SEpm® = (2 + ZNHEN SEN® = (28T — S)Ep© — %Eﬁ.ﬁ(pngag"),
Do = (B~ 28ND, ~ 2(D°D)Lag, 6D} = (SF - 2:)D), - 2(DVShL,,
SE =2(X +=HE, 5(2E) = 6Z(2E) + ...,
SR=2(=t —25)R - ipf‘zz’f, 6Gas = — (B + ENGas + iDaa (BT — 2,
SWagy = —3EZW 5., (C.32)

where a is a local Lorentz spacetime index, L,g are the Lorentz generators acting on spinors,
FE is the determinant of the supersymmetric vielbein, 2€ is the corresponding chiral density,
R is the chiral curvature superfield, and G, is the real superfield having the vector auxiliary
field of supergravity b, as its lowest component. The ellipsis in the transformation of the
chiral vielbein are omitted terms irrelevant for the construction of a super-Weyl invariant
action. The transformation of D, is too complicated to include here, but D, may always
be expressed as some composition of the above objects. For example, when acting on a
Lorentz scalar superfield U,

1 .
DU = ~Zﬁga{pf D, U. (C.33)

o’
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Chiral superfields Q and vector superfields V' transform as [154]
5Q = wEQ, SV =uw'(E+2hHv, (C.34)

where w and w’ are the Weyl weights of their respective superfield; for ordinary matter
or gauge superfields, these weights vanish. Note that the higher components of matter
superfields still transform, due to the non-trivial transformation of the D, used to project

them out. For a vector supcrfield of weight 0, the superfield
1 ,
W, = —Z(DTQ —~ 8R)D,V (C.35)
transforms as a chiral superfield of Weyl weight —3.

The SUGRA action of Ref. [154] can be made super-Weyl invariant by including a

super-Weyl compensator C of Weyl weight —2. The tree-level Lagrangian then reads
. - 1
L= / 'O ECTC (-3¢ K3 / d?02E C*W + A /(12(—) 26 WeW,, 4+ h.c.  (C.36)

The super-Weyl compensator can also be used to build versions of R and G4 that transform

homogeneously under super-Weyl transformations:

11
=--—_ (D" - R
P=-;al 8R)CT, (C.37)
. 11
T e - 2 o .
Ph=— o ,(D* -~ 8R)C, (C.38)
sP=46P =0, (C.39)
~ 1 1 1
Goa = Goo — —D,DiCt + —DID,C + ——(D,C)(D.C, C.40
5Gos = (2 + 2N Gaa. (C.41)

These objects also obey appropriately-modified versions of the Bianchi identitics:

DIP =0, DPl =0, (C.42)

D*(CGos) = 5 CVDL P!, DI (C1Ga) = 5 C*DLP. (C.43)

The superfield P (PT) can also be serve as an operator, which we denote by the non-
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boldface P (PT). When acting on a super-Weyl invariant spinless superfield, P (PT) returns
a super-Weyl invariant (anti-)chiral superfield [103]. The operator P (P') thus acts as an

(anti-)chiral projector.

C.4 1PI Gaugino Masses

In Eq. (5.67), we used a 1PI effective action for the gauge multiplet built as an integral
over chiral superspace. This is sufficient for extracting one-loop results, but in a general
renormalization scheme, the 1PI action must instead be written as an integral of a non-local
quantity over all of superspace. For the familiar case of global SUSY in flat space, we may

write the 1PT action as [12, 84]
1 LY @ 1 2 -1
Lo [doROW® |- D?| 0 'W, +he., (C.44)

or alternatively, remembering that %DWDQ = [J when acting on chiral superfields,

£o % / &6 R(O)yW* {ipfg] Wt he. (C.45)
The superfield R (not to be confused with the chiral curvature superfield R) is the real
vector superfield with the 1P gauge coupling as its lowest component. The dependence of
RonO encapsulates the running of the coupling with the momentum scale (selected by O,
which should be thought of as acting only on the first W). A non-vanishing 62 component
for R yields a gaugino mass. If R only has a lowest component, it then follows trivially that
Eq. (C.45) is equivalent, after integrating over half of superspace, to the usual expression
for the gauge kinetic Lagrangian in chiral superspace (proportional to [ d2OWW,,).

It is now a simple matter to generalize most of Eq. (C.45) to be SUGRA and super-Weyl

covariant
1 , S~ o~
£ /d“(—)ECTCR(D)W PiW, + h.c., (C.46)

where ﬁ;@ =C3 W, has vanishing Weyl weight, and P is the supcer-Weyl covariant chiral
projector given in Eq. (C.37). It can be easily verified that when R"(E)VT/'“ is chiral,

Eq. (C.46) reduces to Eq. (5.67), an integral of a local quantity over chiral supcrspace.
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The only potentially ambiguous part of this equation is ﬁ, the appropriately super-Weyl
covariant version of [ acting on a super-Weyl inert superficld with an undotted spinor index.
If we only care about O(my /2) effects such as gaugino masses, however, there arc only two

families of possible choices®

v, - Letretp, 20 Loiorip 2P
+ iC‘éCT"DQDQCHDBC%DMUB
1 D[J(C.‘S/’Z(fP)U )
NPUe+ 3000 ’ C.47
+a(PHPU + 5 o , (C.a7)
parameterized by arbitrary coefficients ¢ and b.1° Note that the choice ¢ = 0, b = —1

is especially convenient, as OU, is chiral for U, chiral. This is precisely the choice used
in Eq. (5.68), and allows us to write the 1PI action as an integral over chiral superspace.
However, this choice is not nccessary; regardless of the values of a and b chosen, a (more

difficult) calculation shows that

my = é‘—q—mwz. (C.48)
g

Lor O('rn,ﬁ/z) effects, such as non-local contributions to the self-energies of the particles in the vector mul-
tiplet (as considered in Ref. [12]), one would need to consider additional terms. Such effects, the equivalents
of the & and T of Sec. 5.4.3 for vector multipets, are beyond the scope of this work.

9This is only gauge invariant for an abelian gauge theory; appropriate factors of e*Y would need to be
inserted for a non-abelian gauge theory.
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Appendix D

A Photon Line from Decaying
Goldstino Dark Matter:

Appendices

D.1 Complete Goldstino-Neutralino Mixing Angles

We give here the complete sct of mixing angles between the uneaten goldstino and the

neutralinos (to lowest order in 1/F) ), as defined in Eq. (6.20):

Cy
C-
- v 1 3
0= D.1
V2F, 2det [M, —m1] ’ (D-1)
Ca
C’Uy
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with

d = 2det [M, — m¢1] (D.2)
= —2(M; — m¢)(Ma — m¢)(p* — mg)
+ Mz (usin28 + me)(My + My — 2me + (My — My) cos 20w,
Cy = Mz sin Oy ((1\71 — MQ)M% cos 203 cos? Oy (j1sin 283 + me)
+ (Mg — myg) (—]\7[1 cos 23(u? — mg) + 2B,,41c08 283
—me (g, + 'rTL‘i,d) cos 28 + (3, — fh?id)(u sin28 +m¢))) ,
Cs = — My cos i ((H2 — My) M cos 28 sin? Oy (usin 28 + m¢)
+ (M) —m¢) (—Mg cos 2B(pu* — mg) + QEMM cos 23
—mne¢ (M, + ﬁ”l%,l) cos 2 + (i, — ﬁl%fd)(u sin28 +m¢))) .
Cy = —M% cos 23(jusin 8 + my cos ) (Mi(k'[g — m¢)sin® Oy + My(M; — me) cos® 9W>
+ 2(My — m¢) (M — mc)(ﬁu(u cos 8 — me sin B) + my psin 8 — mcfhild cos f3)
— M3 sin (M + My — 2m¢ + (M, — M>) cos 26W)(1§,,, + (ﬁz%{“ + ﬁﬁqd) sin 8 cos 3),
C, = M cos 28(p cos B + me sin 3) (A’jil(]\/lz —me) sin? Oy + Mz(]wl —myg) cos? (9W>
+2(M; — m¢)(Msy — mc)(f)’ﬂ(usinb’ — mecos 3) + ﬁL%{d,LL cos B — mcﬁz?{u sin j3)

— MZsin B(My + My — 2m¢ + (M — My) cos 29W)(§# + (M, + ﬁ?%[d) sin 3 cos 3).

D.2 Spin-3/2 Fermions in Two Component Notation

When calculating the decay rate of the uneaten goldstino ¢ to the spin-3/2 gravitino 1, one
cannot usc the goldstino equivalence theorem {64, 34, 33], as the relevant energy, the mass
of the uneaten goldstino at 2my /s, is not much greater than the gravitino mass mg/o. There-
fore, one needs to use the vector-spinors of the fully spin-3/2 gravitino when performing
calculations, including its transverse polarization modes.

The main obstacle in dealing with these vector-spinors is in the sums over them when
summing over the gravitino polarization modes. For the convenience of the reader, we give
these spin sums below for two-component fermion notation, as to our knowledge they do not
appear elsewhere in the literature. The notation of these spin sums should be interpreted

analogously to those in Ref. [61], though note that we use the sigma matrix and metric
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conventions of Ref. [154] throughout.!

2 ol e 1
Z g LV — < ( 7y ]v k ) kP — jetVPT )Upad (D.3)
" ; 3 m
2 KHEY
o, TV - v N ,uupT B
ZS:JQJQ = <3 (9“ i ) k I»T) Opac (D.4)
. 2 k“ LY .
St (22 ) L) .
s 3 3/2
. BV .
> ytiyre = (2 ( oy 2N ) k’)+ i€tk )—;’“ (D.6)
s 3/2
2 LR kiR 1°
S B 3 I 'm3/2 7713/2 m3/2 I
_ 18
2 kHEY kv k kHk
Zlu v ~ms g,uu + - 14 o 4 — A A ahN 2 A P2 (D.8)
3 I mg, mg/z ms/z IR

2
P ms i, m

- I
2 kHkY kY E kik

Z ylavh — — 3/ (9‘“’ + = ) 1+ ot + 2ot — =22 VA} (D.9)
: I 3/2 o

r &
Z alHey Tu = _gmsﬂ (-‘/“V fnzku> o f:2k/\ 7+ fnz]w\ /\} (D40
| 3/2 3/2 3/2 A
These two-component spin sums can be obtained from their four component equivalents,
such as those found in {152, 138]. They can be easily derived independently by considering
the on-shell gravitino equations of motion (the Dirac equation, as well as the constraints
c-x=0-y=k-x=k-y=0), and goldstino equivalence can be uscd to fix the overall

normalization.

D.3 Arbitrary Mass Goldstino Decays

The simplest case is the decay to a photon and a gravitino. The decay is mediated only by

the last term in Eq. (6.24), and is simply given by [66]

. 4 .
m ()2 m2..\' 3m?2
oy 3/2 3/2
I = 1 - ! 1 - , D.11
Y 167 F jﬁ ( mf ) ( + mf ) ’ ( )

'To convert to the conventions of Ref. [61], for the purposes of these spin sums, send ¢, —» —0,, 7, = -7,
VT o —PT gt 5 —o" and oY — —io*”| then, following the prescriptions of Ref. [61}, change
metric conventions from mostly plus to mostly minus.
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where ©, is the (-photino mixing angle, which is defined in Eq. (6.21). If we had attempted
to use the goldstino equivalence theorem for the gravitino here, we would have omitted the
final factor, which can roughly be interpreted as the enhancement to the decay rate arising

from the transverse gravitino modes.

The decay to a Higgs and gravitino is mediated solely by the first term in Eq. (6.24):

59 9 3/2 9 5/2
Ty = O () mapTmi TR L R P
C—hipy 327‘-F(;2ff me 77% my mg

The angle ©), is the mixing angle between ¢ and the superpartner of the physical Higgs (i.e.

H,cosa — Hgsina).

The decay to a Z boson has contributions from both terms in Eq. (6.24), the first roughly
corresponding to longitudinal Z couplings, and the second to transverse Z couplings. As a

result, the decay rate is the complicated

2 2 2 2
r B 1 . ]WZ — M3, B 4771,3/2 y
CZu 16mrm,F, fﬂ mg mg

(922T ((mf — M2+ mg/g(mg - M) - m§/2(5mf + M32) + 3mg/2)
1
+50%, (mc —map)? - M3) (m2 -~ m3j, — M3)? + 8M3m3, )
- 2®ZT@ZL(2m3/2MZ) ((mc - 7713/2)2 - M%) x

(MZ — (m¢ = 2mgpa)(me + myp)) ) (D.13)
D.3.1 Three-body Decay to Fermions

For m¢ > My, three body modes become increasingly important compared to the two-
body modes we mainly discussed in this paper. As discussed in Sec. 6.3.4, the leading decay
modes in that limit will generically be ¢ — hhi, and ( — hZ;,, dominating by a factor
of mg /m?2, 1~ However, the sheer number of possible difermion modes may compensate for

this in aggregate, so we consider them here.

Working in the limit in which A-terms and fermion masses can be neglected (a good
approximation for all fermions but the top quark), and the limit my > me, the decay rate

of a goldstino to a pair of Standard Model fermions of a given handedness and a gravitino
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is given by

Nem? ' ey

Leoé = Trnagpris =3 b ( W) : (D.14)
15360m° F g FY mf me

Fr(x) =1 — 8x% + 302" — 802° + 352% + 2420 — 22" — 12048 log & (D.15)

+ 2 — 2023 — 2202° + 802" + 15527 + 42!t — 12025(2 + 422 + 1Y) log x
For m¢ = 2my o, Fy(z) =~ 1/8.2

D.3.2 Three-body Decay to Two Higgses

Using the effective field theory term of Eq. (6.25), we find the differential width in terms of

the two energies of the produced higgses as

dr’ 2

dE,| dFy - ﬁmc(mc —Ey + E») (mf (2 (Ef + Ej) —2me(Ey + Ey) + mg)

+2m§/2 (me(Ey + By —me) — 2m3) + mg/z) (D.16)

2B, — (mj,, +m} )sin2g

2V2u k)

D
Il

(D.17)

An analytic expression for dI'/dE; exists, but not for ' to the authors’ knowledge, except

in certain limits. For m¢ —mg/, > my, (the regime in which this decay is most dominant):

(1'2'”1/7» ms3/9
P ! D.18
7680m3F? " { me ] ( )
15 6 8 9 10 4.6 :
Fplx)=1- Vi 102” + 152° — YR 30z° log x (D.19)

Note that Fj(1/2) ~ .29.

*Note that this is smaller by a factor of about three than the equivalent calculation in Ref. [37], which
used the goldstino equivalence theorem. In the  — 0 limit, where the theorem is valid, our results agree,
as expected.
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