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Abstract In this paper, generalized polytropic equation of
state is used to get new classes of polytropic models from
the solution of Einstein-Maxwell field equations for charged
anisotropic fluid configuration. The models are developed
for different values of polytropic index n = 1, 1

2 , 2. Masses
and radii of eight different stars have been regained with the
help of developed models. The speed of sound technique and
graphical analysis of model parameters is used for the via-
bility of developed models. The analysis of models indicates
they are well behaved and physically viable.

1 Introduction

Polytropes are very useful to study the internal structure of
stars. They can be used to discuss various astronomical sit-
uations and description of compact objects. Chandrasekhar
[1] developed the basic theory of Newtonian polytropes by
using laws of thermodynamics for polytropic spheres. Tooper
[2] derived hydrostatic equilibrium equations for spherically
symmetric objects and obtained numerical solutions for adia-
batic process with compressible fluid. Irregularities arised in
Chandrasekhar’s theory of slowly rotating polytropes were
removed by Kovetz [3]. Generalized forms of Lane-Emden
equation (LEe) for cylindrical, spherical and planer poly-
tropes were derived by Abramowicz [4]. Ngubelanga and
Maharaj [5] obtained new classes of polytropic models for
different values of polytropic index. Isayev [6] discussed gen-
eral relativistic polytropes in anisotropic stars and derived
generalized LEe for arbitrary anisotropic parameter.

The discussion of anisotropy factor is essential while
studying the formation of stars. Bowers and Liang [7] high-
lights the importance of locally anisotropic equation of state
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by generalizing the equation of hydrostatic equilibrium. The
change in maximum equilibrium mass and red-shift was
found proportional to anisotropic factor. Dev and Gleiser
[8] studied effects of pressure anisotropy on stars and found
that it has significant effects on the structure and properties.
Maurya and Gupta [9] developed a family of anisotropic
fluid distributions using spherically symmetric space-time
to describe a family of charged perfect fluid distributions.
Thirukkanesh and Ragel [10] studied the properties of stellar
objects having anisotropic distribution in spherically sym-
metric space-time. Mardan et al. [11] investigated the gravita-
tional behavior of stellar objects by new classes of anisotropic
polytropes for different values of polytropic index. They used
GPEoS with anisotropic matter distributions and considered
quadratic form of gravitational potential to get the solutions
of Einstein field Equations (EFE).

It is important to discuss effects of charge in stellar mod-
els for many applications. The effects of electronic forces
in hydrostatic equilibrium state of charged stars were ini-
tially discussed by Rosseland [12]. Bonner [13,14] stud-
ied the effect of charge on spherically symmetric stellar
objects and found that electric repulsion can halt the gravita-
tional collapse. Sharma et al. [15] solved field equations for
charged sphere by taking a special class of hyper-surfaces
and more general behavior of charged spheres was observed
than uncharged spheres. They also presented the presence of
charge over wide range of parameters. The red shift, luminos-
ity and mass of the stellar objects were affected in the pres-
ence of electric field was presented by Ivanov [16]. Ray et
al. [17] analyzed the effect of charge in astronomical objects
and found the maximum charge a star can hold is about 1020

Coulomb. Thirukkanesh and Maharaj [18] obtained solution
of field equations in presence electromagnetic field which
described anisotropic compact objects having properties sim-
ilar to SAX J1808.4-3658, a star. To obtain exact solutions for
field equations with anisotropic pressure and electromagnetic
field Takisa and Maharaj [19] used the polytropic equation of
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state (PEoS). Sunzu and Danford [20] considered anisotropic
charged stellar objects with linear equation of state and gen-
erated new exact models for field equations. Noureen et al.
[21] studied the effect of charge and anisotropy on gravi-
tational interaction of compact objects using GPEoS. They
developed the solutions of Einstein-Maxwell field equations
(EMFE) by using linear form of gravitational potential.

The universe is made of radiative fields (photons), mat-
ter and vacuum. So the total energy density is sum of energy
density of photons, matter and vacuum. Prisco et al. [22] stud-
ied the non-adiabatic charged spherically symmetric gravita-
tional collapse as well as the energy density inhomogeneity
with shear dissipation. Herrera [23] explored energy den-
sity inhomogeneity and stability with dissipative anisotropic
fluid. Sharif and Bashir [24] studied effect of charge on
energy density inhomogeneity in self gravitating dissipative
and non-dissipative fluids using evolution equations of Weyl
tensor. Mardan et al. [25] studied anisotropic matter distri-
bution with radiation density using GPEoS in isotropic coor-
dinates. They used quadratic form of gravitational potential
to obtain the solutions of EFE.

The stability analysis of stellar objects has significant
importance in mathematical modeling. Any mathematical
model is worthless if this is unstable against variations in
physical parameters. The hydrostatic equilibrium equations
were developed by Bondi [26] for stability analysis of com-
pact objects. Herrera et al. [27] used local density perturba-
tion and cracking technique for stability analysis of models.
Azam et al. [28] used Tolman mass for the stability analy-
sis of relativistic polytropes. Azam and Mardan [29-31] used
local density perturbation technique for stability analysis, by
evaluating the cracking points for different compact objects
in spherical and cylindrical symmetry.

In this paper, we present physically viable solutions to
the EMFE for spherically symmetric spacetimes in isotropic
coordinates by using GPEoS. The models are developed for
different values of n = 1, 1

2 , 2 and they are well behaved.
We have plotted graphs of energy density, radial pressure,
mass, speed of sound, electric field intensity, and tangential
pressure for EXO 1785-248 and explained matter properties
of developed model. Discussion and summary is presented
in the last section.

2 Einstein Maxwell field equations

The metric in isotropic coordinates for spherically symmetric
fluid (xa) = (t, r, θ, φ) is of the form

ds2 = −A2dt2 + B2[dr2 + r2(dθ2 + sin2θdφ2)], (1)

where A and B are the metric quantities known as gravi-
tational potentials. In general relativity energy momentum
tensor acts as source of gravitational field. The anisotropic

fluid has energy momentum tensor of following form written
as [25]

Tαβ = (ρ + Pt )VαVβ + Pt gαβ

+(Pr − Pt )χαχβ + qαVβ + Vαqβ + ε	α	β, (2)

where ε is radiation density, qμ represents heat flux, V the
four velocity, χα unit four vector along the radial direction
and 	α is radial null four vector.

V α = A−1δα
0 , qα = qB−1δα

1 ,

lα = A−1δα
0 + B−1δα

1 , χα = B−1δα
1 , qα = qχα. (3)

If we have charged fluid, electromagnetic contribution is
needed to the fluid distribution. The set of EFE in presence
of charge are transformed into EMFE, which can be written
as

Gμυ = Rμυ − 1

2
Rgμυ = 8π(Tμυ + Sμυ), (4)

where Gμυ represents Einstein tensor, Sμυ electromagnetic
energy tensor, written as [22]

Sμυ = 1

4π

(
Fσ

μ Fυσ − 1

4
Fσr Fσr gμυ

)
, (5)

in above equation Fυσ is the electromagnetic field tensor.
The electric charge interior to radius r is time independent
and given by

s(r) = 4π

∫ r

0
ςBr2dr, (6)

where ς is charge density. By using Eqs. (2) and (4), the
EMFE for line element Eq. (1) takes the form

8π(ρ + ε) + 16π2E2 = −1

B2

[
2
B ′′

B
− B ′

B

[
B ′

B
− 4

r

]]
,

(7)

8π(Pr + ε) − 16π2E2 = 2
A′

A

[
B ′

B3 + 1

r B2

]

+ B ′

B3

[
B ′

B
+ 2

r

]
, (8)

8π Pt + 16π2E2 = 1

B2

[
B ′′

B
− B ′

B

[
B ′

B
− 1

r

]

+
[
A′′

A
+ A′

r A

]]
, (9)

σ = 1

4πr2 B
−1(r2E)′. (10)

The system of Eqs. (7)–(10) contain four independent equa-
tions with five variables (A, B, ρ, Pr and Pt ) and s =
4πr2EB2. The transformations of parameters is used to sim-
plify the system of EMFE

x ≡ r2, H ≡ B−1, N ≡ H A, (11)

123



Eur. Phys. J. C           (2020) 80:119 Page 3 of 8   119 

by using the above transformations the Eqs. (7)–(10) takes
the form

8πρ + 8πε + 16π2E2

= 4
[
2xHHxx − 3Hx (xHx − H)

]
, (12)

8π Pr + 8πε − 16π2E2

= 4H(H − 2xHx )
Nx

N
− 4Hx [2H − 3xHx ], (13)

8π Pt + 16π2E2 = 4xH2 Nxx

N
+ 4H(H − 2xHx )

Nx

N
−4(2H − 3xHx )Hx − 8xHHxx , (14)

σ 2 = 1

4π2x
H2(E + xEx )

2, (15)

the subscripts denote the derivatives w.r.t ‘x’.

Pr = αoρ + α1ρ
1+ 1

n . (16)

Using the GPEoS, in Eqs. (14) and (16) gives the anisotropy
factor � = 8π(Pt − Pr ) takes the form

� = 8π

[
1

8π

[
4xH2 Nxx

N
+ 4H(H − 2xHx )

Nx

N

− 4(2H − 3xHx )Hx − 8xHHxx − 16π2E2
]

− αo

8π
[4(2xHHxx − 3(xHxx − H)Hx )

−16π2E2 − 8πε] − α1

[
1

8π

]1+ 1
n

×[4(2xHHxx − 3(xHx − H)Hx )

−16π2E2 − 8πε]1+ 1
n

]
, (17)

where

Nx

N
= αo

4H(H − 2xHx )

[
4(2xHHxx − 3(xHx

−H)Hx ) − 16π2E2 − 8πε
]

+ 2πα1

H(H − 2xHx )

×
(

1

8π

)1+ 1
n [4(2xHHxx − 3(xHx − H)Hx )

−16π2E2 − 8πε]1+ 1
n + 8πε

4H(H − 2xHx )

− 16π2

4H(H − 2xHx )
+ 4(2H − 3xHx )Hx

4H(H − 2xHx )
. (18)

The measure of anisotropy is, attractive if � < 0, repulsive if
� > 0 and vanishes for isotropic pressures if � = 0. Also for
Instantaneous solution the gravitational mass function can be
used in following form

m(x) = 2π

∫ x

0

1√
ω

[
ωρ(ω) + E2

8π

]
dω, (19)

of an electric field intensity in the presence with anisotropy.
Here, ω is an integration variable [19].

3 Integration and polytropic model for n = 1

To obtain physically viable Instantaneous solution for matter
variables, the system of Eqs. (12), (15), (17) and (18) needs to
be solved by means of integration. To do so the gravitational
potential H in linear form is given by [5]

H = a + bx, (20)

and the electric field has the form

E2 = x p(c + dx)q , (21)

where p, q are constants and we take p = 0 and q = 1, in
the process of integration to get exact models. Hence, using
Eqs. (20) and (21) in Eqs. (12), (15), (16)–(18) gives

ρ = 1

8π

[
12ab − 16π2c − 16π2dx − 8πε

]
, (22)

Pr = αo

8π

[
12ab − 16π2c − 16π2dx − 8πε

]

+α1

[12ab − 16π2c − 16π2dx − 8πε

8π

]1+ 1
n
, (23)

σ 2 = (a + bx)2(2c + 3dx)2

16π2x(c + dx)
, (24)

the generalized form of � can be written as

� = 4b(−2a + bx) − 16π2(c + dx) − (8π)−
1
n

×
(

12ab(a + bx) − 16π2(c + dx) − 8πε
)1+ 1

2
α1

−4(3ab − 4cπ2 + 3b2x − 4dπ2x − 2πε)αo

+(8π)−
1
n

[
− 24+ 3

n dπ2+ 1
n x − b2x(8π)−

1
n

+(8π)1+ 1
n ε + 41+ 1

2 (3ab − 2π(2πc + 2πdx

+ε))1+ 1
n α1 + 22+ 3

n π
1
n (3ab − 2π(2πc

+2πdx + ε))αo

]
+ 1

n(a − bx)2 2− 2(1+n)
n

×π− 2
n x

[
16n(3ab − 2π(2πc + 2πdx + ε))2+ 2

n α2
1

+23+ 1
n π

1
n (3ab − 2π(2πc + 2πdx + ε))

1
n α1a

2(6b2n

−8d(1 + n)π2) + abn(9b2x − 56π2c + 9b2x

+4π(5ε − 14πdx) + 2π(32c2nπ3 + c(64dnπ3x

−6b2nπx) + b2x(−2d(−2 + n)πx − 3nε)

+8nπ(4d2π2x2 − ε2)) + 4n(3ab − 2π(2cπ + 2dπx

+ε))2αo) + n(2π)
2
n (−64a2dπ2 + 256c2π4 − 96

×b2cπ2x + 512cdπ4x − 3b4x2 − 32b2dπ2x2

+256d2π4x2 − 256cπ3ε + 48b2πxε − 256dπ3xε

+64π2ε2 + 4ab(−16cπ2 + 3b2x + 8π(−2dπ

×x + ε)) + 8(a2(6b2 − 8dπ2) + 2π(32c2π3

+32d2π3x2 + c(−6b2πx + 64dπ3x) − 8πε2

−b2x(2dπx + 3ε)) + ab(−56cπ2 + 9b2x + 4π
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×(−14dπx + 5ε)))αo + 16(3ab − 2π(2cπ + 2dπx

+ε))2α2
o)

]
, (25)

where

Nx

N
= αo

4(a + bx)(a − bx)

×
[
12ab − 16π2c − 16π2dx − 8πε

]

+ 2πα1

(a + bx)(a − bx)

×
[

12ab − 16π2c − 16π2dx − 8πε

8π

]1+ 1
n

+ 8πε

4(a + bx)(a − bx)

− 16π2(c + dx)

4(a + bx)(a − bx)

+ (2a − bx)b

4(a + bx)(a − bx)
. (26)

It is not easy to integrate above system in the presence of
general polytropic index n without specifying its values. To
obtain Instantaneous solution, we integrate it for polytropic
indices n = 1 here and polytropic Instantaneous solutions
for n = 1

2 and n = 2 are given in appendix.
For n = 1, we can integrate Eq. (26) to give

N (r) = KeW (a − br2)M (a + br2)X , (27)

where K is constant of integration, here

W = −8d2π3r2α1

b2 , (28)

M = − 1

8ab3

[
(2(a(−3b2 + 4dπ2) + 2bπ(2cπ + ε))2α1)

π

+ b(a(b2 − 16dπ2) + 8bπ(−2cπ + ε) + 4(a(3b2

− 4dπ2) − 2bπ(2cπ + ε))αo)
]
, (29)

X = 1

8ab3π

[
2(a(3b2 + 4dπ2) − 2bπ(2cπ + ε))2α1

+ bπ(a(3b2 + 16dπ2) + 8bπ(−2cπ + ε) + 4(a(3b2

+ 4dπ2) − 2bπ(2cπ + ε))αo)
]
. (30)

The degree of anisotropy becomes

� = −1

π(a − br2)2 2((a − br2)2(−3ab + 4cπ2

− 3b2r2 + 4dπ2r2 + 2πε)2α1 − a2b2M2r2

+ 8abcπ2r2 − 4a2dπ2r2 − 4ab3r4 − ab3Mr4

+ 2ab3M2r4 − 4b2cπ2r4 + 8abdπ2r4 + b4r6

− 2b4Mr6 + b4M2r6 − 4b2dπ2r6 + a3bX

− 4a2b2r2X − 2a2b2r2MX + 5ab3r4X − 2b4r6X

+ 2b4r6MX + a2b2r2X2 − 2ab3r4X2 + b4r6X2

− (a − br2)2(3ab − 4cπ2 + 3b2r2 − 4dπ2r2 − 2πε)αo

+ (a2 − b2r4)(a2 + b2r4(1 − 2M − 2X) − 2abr2

×(1 + M − X))W ′ + r2(a2 − b2r4)2W ′′ + a4r2W ′′)
− 2a2b2r6W ′′ + b4r10W ′′. (31)

The metric in Eq. (1) takes the form

ds2 = −Ke2W (a + br2)2(X−1)(a − br2)2Mdt2

+ (a + br2)−2[dr2 + r2(dθ2 + sin2dφ2)]. (32)

4 Properties of new solution

To discuss the physical properties of parameters for the poly-
tropic index n = 1, we obtain from Eq. (23)

Pr = α0

8π

[
12ab − 16π2c − 16π2dx − 8πε

]

+α1

[
12ab − 16π2c − 16π2dx − 8πε

8π

]2

. (33)

The proper charge density takes the form

σ 2 = (a + br2)2(2c + 3dr2)2

16π2r2(c + dr2)
. (34)

The charge density has singularity at r = 0 (center of star).
To avoid singularity c = 0 is considered

σ 2 = d

[
3(a + br2)2

4π

]2

. (35)

For c = 0 and n = 1 mass function, energy density and
radial pressure are

m(r) = r3

12

[
24ab − 16πε + d

(
10 − 96π2r2

5

)]
(36)

8πρ = 12ab − 16π2dr2 − 8πε, (37)

Pr = αo

8π

[
12ab − 16π2dr2 − 8πε

]

+α1

[
12ab − 16π2dr2 − 8πε

8π

]2

. (38)

The energy density, electric field intensity, and the proper
charge density remain finite at center of star, so

ρo = 1

8π
[12ab − 8πε] , (39)

Pro = αo

8π
[12ab − 8πε] + α1

[
12ab − 8πε

8π

]2

, (40)

σ 2
o = d

(
3a

4π

)2

, (41)

E2
o = 0. (42)

123



Eur. Phys. J. C           (2020) 80:119 Page 5 of 8   119 

Table 1 Mass, central density,
central radial pressure and
radiation density
ε = 7.5756 × 10−16, for stars
with α1 = 0.931

Stars name m r d h α0 ρ0 Pr0

(M�) (×10−8) (×10−4) (×10−4) (×10−4) (×10−9)

4U 1820-30 1.58 10.271 0.89 7.3709 − 3.2215 3.5193 1.9328

Cen X-3 1.49 10.098 6.18 7.7432 − 3.0734 3.6971 13.6287

EXO 1785-248 1.31 9.701 1.788 7.3427 − 3.1655 3.5058 3.4508

LMC X-4 1.29 9.678 4.88 7.1921 − 3.1702 3.4339 0.9181

SMC X-1 1.04 9.070 2.588 7.1427 − 3.0505 3.4103 4.2473

SAX JI 808.4-3658 0.90 8.676 5.58 7.2506 − 2.9770 3.4619 8.5181

4U 1538-52 0.87 8.558 0.18 6.9757 − 3.0927 3.3306 0.2682

Her X-1 0.85 8.524 0.98 6.9427 − 3.0441 3.3149 1.3920

Table 2 Variation of radiation
density, radial pressure, electric
field intensity and mass from
center to boundary of realistic
star EXO 1785-248

r ρ (×10−4) Pr (×10−9) m E2 υ2 (×10−6)

0 3.5059 3.4508 0 0 9.8430

0.970 3.5048 3.4153 0.001341 0.00005251 9.7446

1.940 3.5017 3.3088 0.010718 0.00021 9.4493

2.910 3.4964 3.1317 0.036140 0.0004726 8.9571

3.880 3.4889 2.8847 0.085557 0.00084017 8.2681

4.850 3.4795 2.5686 0.166831 0.001312 7.3822

5.820 3.4678 2.1845 0.287708 0.001890 6.2995

6.790 3.4541 1.7339 0.455788 0.002573 5.0199

7.760 3.4382 1.2183 0.678497 0.003360 3.5435

8.730 3.4202 0.6396 0.963057 0.004253 1.8701

9.701 3.4001 0 1.31 0.005251 0

We take parameter h = ab. The mass function also
remains finite. The speed of sound is

υ2 = dPr
dρ

, (43)

where υ2 ≤ 1 [5] to maintain causality. For stable configu-
ration of compact object Pr = 0 at boundary. Taking r = 1,
we get

αo = −α1

2π

(
3h − 4π2d − 2πε

)
. (44)

In order show the importance of Instantaneous solution
and presence of such situations in realistic stars, we have
selected different kinds of stars and obtained their masses
and radii for different values of parameters involve in our
solutions. Table 1 contain numerical values of all parameters
for eight different stars. On varying parameters d, h and αo,
masses of eight different stars were regained given in Table 1.
The acceptable values for ρ0 and Pr0 are given in Table 1 by
fixing α1 = 0.931 and ε = 7.5756 × 10−16 [32]. Table 2
contains varying values of ρ, Pr , m, E2 and υ2 from central
point to boundary of stars. No singularity is observed while
calculating instantaneous solution for different parametric
values given in Table 1. The properties of stars 4U 1820-
30, Cen X-3, EXO 1785-248, LMC X-4, SMC X-1, SAX

J1808.4-3658, 4U 1538-52 and Her X-1 are similar to this
object.

For detail discussion of physical quantities, we have pre-
sented the figures for stellar object EXO 1785-248 with mass
1.30 M� and radius 9.701 km here. Figures related to objects
4U 1820-30, Cen X-3, LMC X-4, SMC X-1, SAX J1808.4-
3658, 4U 1538-52, Her X-1 show similar profile that is why
not included in this work. The energy density, radial pressure
and speed of sound are decreasing functions while mass,
electric field intensity and tangential pressure are increas-
ing functions with respect to radius. At center of any star
c = 0 the tangential pressure becomes zero. The radial pres-
sure vanishes at boundary of star while tangential pressure
attains its maximum value. Any solution for system of stars
is not acceptable if it is unstable. Various techniques have
been used for analysis of mathematical models. The speed of
sound technique and graphical analysis of model parameters
is used to check its viability. The speed of sound is decreas-
ing and remains positive inside the star and thus the casuality
condition υ2 ≤ 1 is satisfied. The degree of anisotropy was
selected in a way that pressure gradient must be less than zero,
setting r = 0, at the center, � will become zero, which is the
basic requirement for stability. Graphical analysis shows that
all parameters are well behaved and physically acceptable.
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(a) (b)

(c)

(e) (f)

(d)

Fig. 1 EXO 1785-248

4.1 Conclusion and discussion

The models for stars were developed with charged anisotropic
inner fluid distribution using GPEoS. The integration is car-
ried out by considering linear form of gravitational potential.
Since the process of gravitational collapse is highly dissi-
pative, so it contains massless energy particles forming a
radiative field. The main obstacle in astrophysics and gen-
eral relativity is to develop stable mathematical models that
can match with the characteristic of realistic astronomical
objects. In this regard numerical values of parameters for
eight stars are given in Table 1. The mass of eight stars were
regained by varying parameters d, h and αo for given radii

with fixed values of ε = 7.5756 × 10−16 and α1 = 0.931.
The acceptable values for ρ0 and Pr0 are also given in Table 1.

As a test case EXO 1785-248 is chosen to check the vari-
ation of physical model parameters. Table 2 contains differ-
ent values of ρ, Pr , m, E2 and υ2 from center of star to its
boundary. The subfigures (a), (b), (c), (d), (e) and (f) of Fig. 1
shows that energy density, radial pressure and speed of sound
are decreasing functions, have maximum values at center and
vanishing at boundary, while mass, electric field intensity and
tangential pressure are increasing functions, have minimum
values at center and attain maximum values at boundary of
astronomical objects. In the interior of all stars the considered
matter quantities ρ, Pr , Pt , � remain positive. The speed of
sound remains positive inside the star and thus the casuality
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condition υ2 ≤ 1 is satisfied. Graphical analysis shows that
all the physical quantities are well-behaved and developed
models are physically acceptable.

Mardan et al. [11] used GPEoS with anisotropic matter
distributions to get exact solutions of EFE. They considered
quadratic form of gravitational potential “L = ax2 +bx+c”
to get the solutions of EFE. The solutions of their devel-
oped mathematical models contained five parameters. They
plotted graphs for unit radius of developed mathematical
models. Noureen et al. [21] studied the effect of charge and
anisotropy on gravitational interaction of compact objects
using GPEoS. They considered linear form of gravitational
potential “L = a + bx” to get the solutions of EMFE. The
solutions of their developed mathematical models contained
four parameters. They also plotted graphs for unit radius of
mathematical models. Mardan et al. [25] studied anisotropic
matter distribution with radiation density using GPEoS in
isotropic coordinates. They considered quadratic form of
gravitational potential “M = kx2 + gx + h” to get the solu-
tions of EFE. The solutions of mathematical model contained
five parameters. They plotted the graphs of mathematical
models for exact value of radius of PSR J0437-4715.

In comparison of [11,21,25] our developed models are
more general and singularity free. The models presented in
[11,21,25] are subcases of our work as; (i) if we substitute
“E = 0, ε = 0” our models reduces to the case presented by
Mardan et al. [11], (ii) if we put “ε = 0” we obtained the mod-
els developed by Noureen et al. [21], (iii) if we take “E = 0”
the models given by Mardan et al. [25] can be generated.
The linear form of gravitational potential Eq. (3.14) consid-
ered here is more general to get the solutions of EMFE. The
solutions of mathematical models contained four parameters
due to which this was easy to get more approximated val-
ues of matter quantities (mass, radii, electric field intensity,
radial pressure, pressure gradient). The developed models in
this thesis contained graphs (of mass, radial pressure, energy
density, speed of sound, electric field intensity and tangential
pressure) for exact radius of EXO 1785-248.
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5 Appendix

5.1 Polytropic index n = 1
2

For index n = 1
2 in Eq. (26) can be integrated to give

N (r) = K1e
W (a − br2)M (a + br2)X , (A45)

where K1 is constant of integration, here

W = 4d2π2r2(−9ab + 2π(6cπ + dπr2 + 3ε))α1

b2 ,

(A46)

M = − 1

8ab4π2

[
(a(3b2 − 4dπ2) − 2bπ(2cπ + ε))3α1

+b2π2(a(b2 − 16dπ2) + 8bπ(−2cπ + ε)

+4(a(3b2 − 4dπ2) − 2bπ(2cπ + ε))αo)
]
, (A47)

X = 1

8ab4π2

[
(a(3b2 + 4dπ2) − 2bπ(2cπ + ε))3α1

+b2π2(a(3b2 + 16dπ2) + 8bπ(−2cπ + ε)

+4(a × (3b2 + 4dπ2) − 2bπ(2cπ + ε))αo)
]
.

(A48)

For n = 1
2 degree of anisotropy becomes

� = − 1

π2

[
(3ab − 4cπ2 + 3b2r2 − 4dπ2r2

−2πε)3α1 − 4π2(4cπ2 − 3ab − 3b2r2

+4dπ2r2 + 2πε)αo + 4π2

(a − br2)2

×
(

2a3b + a3bM + 4a2cπ2 − 5a2b2r2

−a2b2M2r2 − 8abcπ2r2 + 2ab3M2r4

+4b2cπ2r4 − 8abdπ2r4 − b4r6 + 2b4

×Mr6 − b4M2r6 + 4b2dπ2r6 − a3bX

+4a2b2r2X + 2a2b2r2MX − 5ab3r4X

+2b4r6X − 2b4r6MX − a2b2r2X2

+2ab3r4X2 − b4r6X2 − (a2 − b2r4)

×(a2 + b2r4(1 − 2M − 2X) − 2abr2

×(1 + M − X))W ′ − 2r2(a2 − b2r4)2W ′2

−r2(a2 − b2r4)2W ′′)]
. (A49)

The metric Eq. (1) takes the form

ds2 = −K1e
2W (a + br2)2(X−1)(a − br2)2Mdt2

+ (a + br2)−2[dr2 + r2(dθ2 + sin2dφ2)]. (A50)

5.2 Polytropic index n = 2

For index n = 2 Eq. (26) can be integrated to give

N = K2e
W (a − br2)M (a + br2)X [D]T [V ]C , (A51)
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again K2 is constant of integration, here

W = 4dπ
3
2
√

6ab − 4π(2πc + 2πr2d + ε)α1

b2 , (A52)

M = − 1

8ab2

[
a(b2 − 16dπ2) + 8bπ(−2cπ + ε)

+4(a(3b2 − 4dπ2) − 2bπ(2cπ + ε))αo

]
, (A53)

X = 1

8ab2

[
a(3b2 + 16dπ2) + 8bπ(−2cπ + ε)

+4(a(3b2 + 4dπ2) − 2bπ(2cπ + ε))αo

]
, (A54)

F1 = b(3ab − 2π(2πc + 2πdr2 + ε)), (A55)

D =
√
a(3b2 − 4π2d) + 2bπ(2πc + ε) + √

F1√
a(3b2 − 4π2d) − 2bπ(2πc + ε) − √

F1
, (A56)

T =
[
a(3b2 − 4π2d) − 2bπ(2πc + ε)

3
2

]
α1

2ab
5
2
√

2π
, (A57)

V =
√
a(3b2 + 4π2d) + 2bπ(2πc + ε) + √

F1√
a(3b2 + 4π2d) − 2bπ(2πc + ε) − √

F1
, (A58)

C = −[a(3b2 + 4π2d) − 2bπ(2πc + ε)
3
2 ]α1

2ab
5
2
√

2π
. (A59)

For n = 2 degree of anisotropy becomes

� = 1√
π

(−2
√

2(3ab − 4cπ2 + 3b2r2

− 4dπ2r2 − 2πε)(3/2)α1 + 4
√

π

×(4cπ2 − 3ab − 3b2r2 + 4dπ2r2

+ 2πε)αo + 4
√

π
[
b(−2a + br2)

− 4π2(c + dr2) + [−b(a(M − X)

+ br2(M + X)) + C(a2 − b2r4)T

×(eWW ′) + r2(a + br2)2

×
(
b2 ×

(
M2

(a − br2)2 + (−1 + X)X

(a + br2)2

+ M

(
− 1

(a − br2)2 − 2X

a2 − b2r4

))

+ (C − 1)CTeWW ′ + 1

(a − br2)(a + br2)

×C
(
−2b(a(M − X) + br2(M + X))

×
(
T ×

(
eWW ′ + (a2 − b2r4)

×
(
T eW ×

(
(T − 1)

(
eW + D1−T eWW ′2 + W ′′)))

×D2−T
))))]]

. (A60)

The line element Eq. (1) for n = 2 takes the form

ds2 = −K2e
2W (a − br2)2M (a + br2)2(X−1)[D]T [V ]2Cdt2

+(a + br2)−2[dr2 + r2(dθ2 + sin2dφ2)].
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