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Abstract We consider the initial-boundary value problem for systems of quasilin-
ear wave equations on domains of the form [0,T ]×Σ , where Σ is a compact mani-
fold with smooth boundaries ∂Σ . By using an appropriate reduction to a first order
symmetric hyperbolic system with maximal dissipative boundary conditions, well
posedness of such problems is established for a large class of boundary conditions
on ∂Σ . We show that our class of boundary conditions is sufficiently general to
allow for a well posed formulation for different wave problems in the presence of
constraints and artificial, nonreflecting boundaries, including Maxwell’s equations
in the Lorentz gauge and
Einstein’s gravitational equations in harmonic coordinates. Our results should also
be useful for obtaining stable finite-difference discretizations for such problems.

I Introduction and Main Results

Motivated in part by the numerical computation of spacetimes on a finite domain
with artificial boundaries, the initial-boundary value problem (IBVP) in general
relativity has started to receive a lot of attention during the last few years (see
(1) for a review). A well posed IBVP for Einstein’s vacuum field equations was
formulated for the first time by Friedrich and Nagy (2) based on tetrad fields and
the theory of quasilinear, symmetric hyperbolic systems with maximal dissipative
boundary conditions (3; 4; 5). More recently, Kreiss and Winicour (6) formulated
a well posed IBVP for the harmonic gauge formulation of the Einstein vacuum
equations which casts the field equations into a set of ten coupled quasilinear wave
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equations subject to four constraints. There are two key ideas behind the result of
(6). The first one is the realization that the wave equations, when viewed as first or-
der pseudodifferential equations, have a non-characteristic boundary matrix. This
allows application of the boundary value theory for such systems developed by
Kreiss in the 1970’s (7). The second idea is the formulation of boundary condi-
tions for the frozen coefficient form of the harmonic Einstein equations which
ensures constraint propagation and satisfies the estimates required by the Kreiss
theory. The well posedness of the system and the generalization to the quasilinear
case can then be established using the theory of pseudodifferential operators (see,
for instance, (8)).

In a subsequent paper (9), similar results were obtained via more mundane
energy estimates which follow by integration by parts, without resort to the pseu-
dodifferential calculus. For this, a non-standard energy norm is constructed which
is based upon the choice of a particular time-like direction adapted to the boundary
conditions being imposed. With respect to this energy the Kreiss-Winicour bound-
ary conditions are maximal dissipative and so standard well posedness theorems
apply even in the quasilinear case (5; 10). Besides being a simpler proof, or at least
a proof that can be followed completely by a reader not familiar with the pseudod-
ifferential techniques, it implies similar results for the stability of finite difference
approximations to Einstein’s equations in the harmonic gauge. This follows from
considering the semidiscrete system of ordinary differential equations in time ob-
tained by substituting finite differences for spatial derivatives. If the semidiscrete
system is stable, then for appropriate time discretizations the fully discrete sys-
tem is guaranteed to be stable (11). The stability of the semidiscrete system can
be established by the use of finite difference operators satisfying summation by
parts (12), the counterpart of integration by parts, by mimicking the steps leading
to the continuum energy estimate. A summation by parts algorithm based upon the
standard energy norm for the harmonic Einstein problem was developed in (13)
and verified to be stable in numerical tests (14). The non-standard energy norm
employed here and in (9) provides the basis to formulate a summation by parts
algorithm whose numerical stability follows from established theory.

In this paper we present a more general and geometric version of the forego-
ing results which applies to coupled systems of quasilinear wave equations with
a certain class of boundary conditions. The strong well posedness of the resulting
IBVP is established by reducing the wave system to first order symmetric hyper-
bolic equations subject to maximal dissipative boundary conditions. This allows
us to identify the structure in first order systems which can be used to establish
boundary stability. This structure arises from the non-absolute nature of time in
Lorentzian physics, whereby a Lorentz boost gives rise to a new conserved energy
and so to a different symmetrizer.1 Realizing this, we are able to restate and prove
our earlier results in terms of standard maximal dissipative boundary conditions
for symmetric hyperbolic systems.

As we show, our class of boundary conditions is sufficiently flexible for ob-
taining well posed IBVP formulations for different models of isolated systems in
physics, including the wave equation, Maxwell’s equations and the Einstein field
equations. In what follows, we present the main mathematical result in Sect. I A

1 In theories such as hydrodynamics, the four-velocity determines a preferred time direction
and thereby a unique symmetrizer.
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with two applications in Sects. I B and I C. The corresponding proof of strong well
posedness is given in Sects. II and III. We then show in Sect. IV that these results
can be applied to electromagnetic and gravitational theory to formulate boundary
conditions of practical value for the numerical treatment of isolated systems.

A Main theorem

Let T > 0, and denote by Σ a d-dimensional compact manifold with smooth
boundaries ∂Σ . The type of system our results apply to is a set of quasilinear
wave equations on M = [0,T ]×Σ coupled both by lower order terms and in the
principal part, by a change in the characteristic directions via a metric which can
depend on the local value of the fields involved. More precisely, let π : E →M be
a vector bundle over M with fibre RN , let ∇a be a fixed, given connection on E and
let gab = gab(Φ) be a Lorentz metric on M with inverse gab(Φ) which depends
pointwise and smoothly on a set of fields Φ = {ΦA}A=1,2,...N parameterizing a
local section of E. Our signature convention for gab is (−,+, . . . ,+). We shall
also assume that each time-slice Σt = {t}×Σ is space-like and that the boundary
T = [0,T ]×∂Σ is time-like with respect to gab(Φ). In the following, we will re-
fer to local sections in E as vector-valued functions over M. We will also assume
the existence of a positive-definite fibre metric hAB on E. We consider a system of
quasilinear wave equations of the form

gab(Φ)∇a∇bΦ
A = SA(Φ ,∇Φ), (1)

where SA(Φ ,∇Φ) is a vector-valued function which depends pointwise and smoothly
on its arguments. The wave system (1) is subject to the initial conditions

Φ
A∣∣

Σ0
= Φ

A
0 , nb

∇bΦ
A
∣∣∣
Σ0

= Π
A
0 , (2)

where ΦA
0 and Π A

0 are given vector-valued functions on Σ0, and where nb = nb(Φ)
denotes the future-directed unit normal to Σ0 with respect to gab. In order to de-
scribe the boundary conditions, let T a = T a(p,Φ) be a future-directed vector
field which is tangent to T and which is normalized with respect to gab and let
Na = Na(p,Φ) be the unit outward normal to T with respect to the metric gab.
We consider boundary conditions on T of the following form2:[

T b +αNb
]

∇bΦ
A
∣∣∣
T

= caA
B ∇aΦ

B∣∣
T

+dA
B Φ

B∣∣
T

+GA, (3)

where α = α(p,Φ) > 0 is a strictly positive, smooth function, GA = GA(p) is a
given, vector-valued function on T and the matrix coefficients caA

B = caA
B(p,Φ)

and dA
B = dA

B(p,Φ) are smooth functions of their arguments. Furthermore, we
assume that caA

B can be made arbitrarily small in the following sense: Given a
local trivialization ϕ : U ×RN 7→ π−1(U) of E such that Ū⊂M is compact and
contains a portion U of the boundary T , and given ε >0, there exists a smooth

2 We adopt the Einstein summation convention for the lower case Latin abstract spacetime
indices a, b, c, ... as well as for the Capital indices A, B, C, ... on the fibre of E.
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map J : U → GL(N,R), p 7→ (JA
B(p)) such that the transformed matrix coeffi-

cients

c̃aA
B := JA

CcaC
D
(
J−1)D

B

satisfy the condition

hABc̃aA
C(Φ)c̃bB

D(Φ)Va
CVb

D ≤ εhABeab(Φ)Va
AVb

B, (4)

for all vector-valued one-forms V A
a on U , where here and in the following, eab

refers to the Euclidean metric eab = gab +2TaTb which is defined for points on T .
The main result of this paper is:

Theorem 1 The IBVP (1,2,3) is well posed. Given T > 0 and sufficiently small
and smooth initial and boundary data ΦA

0 , Π A
0 and GA satisfying the usual com-

patibility conditions at ∂Σ0, there exists a unique smooth solution on M satisfying
the evolution equation (1), the initial condition (2) and the boundary condition
(3). Furthermore, the solution depends continuously on the initial and boundary
data.

A common situation in which condition (4) is automatically satisfied is given
in the following:

Lemma 1 Let U ⊂T be an open and bounded subset of T . Assume there exists
a smooth map J : U →GL(N,R), p 7→ (JA

B(p)) over U such that the transformed
matrix coefficients c̃aA

B := JA
CcaC

D
(
J−1
)D

B are in upper triangular form with
zeroes on the diagonal, that is

c̃aA
B = 0, B≤ A.

Then, the condition (4) is satisfied on U .

Proof (cf. The proof of the Liapunov stability theorem). In order to simplify the
notation we use a matrix notation and write c̃a = JcaJ−1. Let δ > 0, and define
Dδ := diag(1,δ ,δ 2, ...,δ N−1) and Jδ := D−1

δ
J. Then, ca

δ
:= Jδ caJ−1

δ
= D−1

δ
c̃aDδ

has the components (ca
δ
)A

B = δ B−Ac̃aA
B, where here, δ B−A refers to the (B−

A)th power of δ . Since c̃aA
B = 0 for B ≤ A we have ca

δ
= O(δ ), and ca

δ
satisfies

condition (4) provided δ > 0 is chosen small enough. ut

The proof of Theorem 1 is given in Sects. II and III. In order to illustrate the
ideas on a simpler example, we start in Sect. II with the wave equation on a fixed
background metric gab, and analyze the general case in Sect. III.

Since many physical systems can be described by systems of wave equations,
Theorem 1 should have many applications. In the following, we mention two such
applications for the initial-boundary value formulation of isolated systems with
constraints. The physical motivation for the choice of nonreflecting boundary con-
ditions in these examples is described in detail in Sect. IV.
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B Maxwell’s equations in the Lorentz gauge

The first application describes an electromagnetic field on the manifold M =
[0,T ]×Σ with a fixed background metric gab and corresponding Levi-Civita con-
nection ∇a. As before, we assume that each time-slice Σt = {t}× Σ is space-
like and that the boundary T = [0,T ]× ∂Σ is time-like. In the Lorentz gauge
C := ∇bAb = 0, where Ab denotes the 4-vector potential, Maxwell’s equations
assume the form of a system of wave equations,

gab
∇a∇bAc = Rc

dAd − Jc, (5)

where Rab denotes the Ricci tensor belonging to the metric gab and Jc is the four-
current. Equation (5) implies that the constraint variable C obeys the following
equation:

gab
∇a∇bC =−∇

cJc. (6)

Therefore, the imposition of the boundary condition C|T = 0 and the satisfaction
of the continuity equation ∇cJc = 0 imply that any smooth enough solution of (5)
with initial data satisfying

C|
Σ0

= 0, na
∇aC|

Σ0
= 0,

satisfies the constraint C = 0 on M since in this case the constraint propagation
system (6) is homogeneous.

Asymptotically nonreflecting boundary conditions at T = [0,T ]×Σ , in the
sense of Sect. IV, can be formulated by first introducing a null tetrad {Ka,La,Qa, Q̄a}
which is adapted to the boundary. Let T a be a future-directed time-like vector field
tangent to T normalized such that gabT aT b = −1. For example, one can define
T a by orthogonal projection of the future-directed normal to the time-slices Σt
onto T . Next, let Na denote the unit outward normal to T with respect to gab
and complete T a and Na to an orthonormal basis {T a,Na,V a,W a} of TpM at each
point p ∈T . Then, we define the null vectors

Ka := T a +Na, La := T a−Na, Qa := V a + iW a, Q̄a := V a− iW a,

where i =
√
−1. Finally, let r denote the areal radius of the cross sections ∂Σt . The

following boundary conditions are motivated from the considerations in Sect. IV B:

KaKb∇aAb +
2
r

KbAb
∣∣∣∣
T

= qK , (7)

(KaQb−QaKb)∇aAb
∣∣∣
T

= qQ, (8)(
KaLb +LaKb−QaQ̄b− Q̄aQb

)
∇aAb

∣∣∣
T

= 0, (9)

where qK and qQ are given real and complex scalars on T . The first condition
is a gauge condition, the second condition controls the electromagnetic radiation
through T and the third condition enforces the constraint C = gab∇aAb = 0 on
T . For the special case of a flat background with a spherical boundary, these
boundary conditions reduce to the ones proposed in Sect. IV B which are shown to
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yield small spurious reflections. Therefore, we expect them to yield small spurious
reflections also in the case of asymptotically flat curved spacetimes as long as the
boundary is nearly spherical and located far into the wave zone.

The evolution equation (5) has the form (1) where E is the tangent bundle over
M, and the boundary conditions (7,8,9) have the form (3) with

α = 1,

cac
d =

1
2

[
2Q(aQ̄c)Kd +LaKcKd −Kc (QaQ̄d + Q̄aQd

)]
, dc

d =
1
r

LcKd ,

Gc =
1
2
[
−LcqK + Q̄cqQ +Qcq̄Q

]
.

Since

cac
dKd = 0,

cac
dQd =−QaKc,

cac
dQ̄d =−Q̄aKc,

cac
dLd =−LaKc− Q̄aQc−QaQ̄c,

the matrix elements cac
d are in upper triangular form with zeroes in the diagonal

when expressed in terms of the basis {Ka,Qa, Q̄a,Ld}. Therefore, the assumptions
of Lemma 1 are satisfied and we obtain a well posed IBVP.

C Einstein’s equations in harmonic coordinates

As a second application of our theorem we consider Einstein’s field equations in
(generalized) harmonic coordinates. For this, we follow (15; 16) and choose a
fixed background metric g̊ab on M = [0,T ]×Σ with the property that each time-
slice Σt = {t}×Σ is space-like and the boundary T = [0,T ]× ∂Σ is time-like
with respect to g̊ab. We impose the following gauge condition on the dynamical
metric gab:

C c := gab
(

Γ
c

ab− Γ̊
c

ab

)
−Hc = 0. (10)

Here, Hc is a given vector field on M and Γ c
ab and Γ̊ c

ab are the Christoffel sym-
bols corresponding to the dynamical and background metrics, respectively. In the
particular case where Hc = 0 and where the background metric is the Minkowski
metric in standard Cartesian coordinates, Γ̊ c

ab vanishes, and the condition C c = 0
reduces to the usual condition for harmonic coordinates �xµ = 0 for µ = t,x,y,z.
However, the advantage of the condition (10) is that it maintains the covariance of
the theory since C c is the difference between the two Christoffel symbols,

Cc
ab ≡ Γ

c
ab− Γ̊

c
ab =

1
2

gcd
(

∇̊ahbd + ∇̊bhad − ∇̊dhab

)
, (11)

where hab = gab− g̊ab denotes the difference between the dynamical and the back-
ground metric.
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With the condition (10), Einstein’s field equations are equivalent to the wave
system

gcd
∇̊c∇̊dhab = 2ge f gcdCe

acC f
bd +4Cc

d(agb)eC
e

c f gd f −2gcdR̊
e

cd(agb)e

+16πG
(

Tab−
1
2

gabgcdTcd

)
+2∇(aHb), (12)

where R̊
a

bcd denotes the curvature tensor with respect to g̊ab, Tab the stress-energy
tensor and G denotes Newton’s constant. Solutions of this equation which are
smooth enough imply that the constraint variable Ca satisfies

gcd
∇c∇dCa =−Ra

bCb−16πG∇
bTab. (13)

Therefore, the imposition of the boundary condition Ca|T = 0 implies that any
smooth enough solution of (12) with initial data satisfying

Ca|Σ0
= 0, na

∇aCb|Σ0
= 0,

satisfies the constraint Ca = 0 on M provided the stress-energy tensor is divergence
free, ∇bTab = 0.

In order to formulate asymptotically nonreflecting boundary conditions we
first construct an adapted local null tetrad {Ka,La,Qa, Q̄a} as in the electromag-
netic case. Notice that here these quantities are defined with respect to the dy-
namical metric gab and not the background metric g̊ab and as a consequence, they
depend on gab. However, it is important to note that these vectors do not depend
on derivatives of gab. A radial function r on T is defined as the areal radius of the
cross sections ∂Σt with respect to the background metric. The boundary condi-
tions which are motivated from the considerations in Sect. IV C are the following:

KaKbKc
∇̊ahbc +

2
r

KbKchbc

∣∣∣∣
T

=−qKK , (14)

KaKbLc
∇̊ahbc +

1
r

KbLchbc +
1
r

QbQ̄chbc

∣∣∣∣
T

=−qQQ̄, (15)

KaKbQc
∇̊ahbc +

2
r

KbQchbc

∣∣∣∣
T

=−qKQ, (16)

KaQbQc
∇̊ahbc−QaQbKc

∇̊ahbc

∣∣∣
T

=−qQQ, (17)(
KaQbQ̄c +LaKbKc−QaKbQ̄c− Q̄aKbQc

)
∇̊ahbc

∣∣∣
T

= −2KaHa|T , (18)(
KaLbQc +LaKbQc−QaKbLc + Q̄aQbQc

)
∇̊ahbc

∣∣∣
T

= −2QaHa|T , (19)(
KaLbLc +LaQbQ̄c−QaQ̄bLc− Q̄aQbLc

)
∇̊ahbc

∣∣∣
T

= −2LaHa|T , (20)

where qKK and qQQ̄ are real-valued given functions on T and qKQ and qQQ are
complex-valued given functions on T . The evolution equation (12) has the form
(1) where E is the vector bundle of symmetric, covariant tensor fields on M and the
boundary conditions (14–20) have the form (3), where α=1 and cabc

de is in upper



8 H.-O. Kreiss, O. Reula, O. Sarbach, J. Winicour

triangular form when
expressed in terms of the basis {KbKc,K(bLc),K(bQc),QbQc,Q(bQ̄c),L(bQc),LbLc}.

For the case where g̊ab is the Minkowski metric and hab is treated as a linear
perturbation thereof, the boundary conditions (14–17) reduce to the ones proposed
in Sect. IV C for a spherical boundary. As in the preceding application to electro-
dynamics, we expect these boundary conditions to yield small spurious reflections
in the case of a nearly spherical boundary in the wave zone of an asymptotically
flat curved spacetime. Their content can be clarified by considering the case of
a wave incident on a plane boundary. The discussion in Sect. IV A shows that
the first three conditions (14),(15) and (16) are related to the gauge freedom; and
the condition (17) controls the gravitational radiation. The remaining conditions
(18),(19) and (20) enforce the constraint Ca = 0 on the boundary.

II The Wave Equation on a Curved Background

In this section we prove Theorem 1 for the case of a single wave equation

gab
∇a∇bφ = S (21)

on M = [0,T ]×Σ . For simplicity, we also assume that gab and S are independent of
φ and that ∇a is the Levi-Civita connection with respect to gab. The IBVP consists
in finding solutions of (21) subject to the initial conditions

φ |
Σ0

= φ0, nb
∇bφ

∣∣∣
Σ0

= π0, (22)

where φ0 and π0 are given functions on Σ0, and the boundary conditions[
T b

∇bφ +αNb
∇bφ

]
T

= G, (23)

where G is a given function on T . Here, nb and Nb denote the future-directed
unit vector field to the time-slices Σt and the outward unit normal vector field to
T , respectively, T b is an arbitrary future-directed time-like vector field which is
tangent to the boundary surface T and α is a strictly positive function on T .
Without loss of generality, we assume that T a is normalized such that gabT aT b =
−1. Furthermore, by redefining φ and S if necessary, we may also assume that the
boundary data G vanishes identically.

In order to show well posedness for this problem, we use a geometric reduction
to a first order symmetric hyperbolic system with maximal dissipative boundary
conditions (3; 4; 17). First, introducing the variables Va = ∇aφ , the wave equation
can be rewritten as the first order system

∇aφ = Va, (24)

gab
∇aVb = S, (25)

∇aVb−∇bVa = 0. (26)
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Next, we specify any future-directed time-like vector field ua and contract the first
and the last equation with it. This yields the evolution system

£uφ = uaVa ≡Π , (27)

gab
∇aVb = S, (28)

£uVb = ∇bΠ , (29)

where £u denotes the Lie derivative with respect to ua. This system is subject to
the initial and boundary conditions

φ |
Σ0

= φ0, nbVb

∣∣∣
Σ0

= π0, ι
∗
0Vb = ι

∗
0 ∇bφ0, (30)[

T bVb +αNbVb

]
T

= 0, (31)

where ι0 : Σ0 →M is the inclusion map, and subject to the constraint Ca = 0, where
the constraint variable Ca is defined as Ca = Va −∇aφ . The evolution equations
(27) and (29) imply that Ca is Lie-dragged by the time evolution vector field ua,

£uCa = 0.

In the following, we assume that ua is pointing away from the domain at the bound-
ary. This implies that a solution of (27,28,29) with constraint-satisfying initial data
automatically satisfies the constraints everywhere on M, and no extra boundary
conditions are needed in order to ensure that the constraint Ca = 0 propagates.

Still, there is a huge freedom in choosing the evolution vector field ua; different
choices lead to first order evolution systems (27,28,29) which are inequivalent
to each other if the solution is off the constraint surface Ca = 0. In this work
we exploit this freedom in order to obtain energy estimates which allow for an
appropriate control of the fields not only in the bulk but also on the boundary of
the domain (see the estimate (37) below). In order to analyze this, following (17)
we rewrite the evolution system (28,29) in the form

A a
bc∇aV c ≡−ua(∇aVb−∇bVa)+ub∇aV a = ubS,

where the symbol is given by A a
bc =−uagbc +2δ a

(buc). Since A a
bc is symmetric

in bc and since uaA a
bc = −uauagbc + 2ubuc is positive definite, the evolution

system is symmetric hyperbolic. In particular, the evolution equations imply that

∇a(A a
bcV bV c) = (∇aA

a
bc)V bV c +2(ubV b)S.

Integrating both sides of this equation over the manifold M = [0,T ]×Σ and using
Gauss’ theorem, one obtains3∫

ΣT

naA
a

bcV bV c =
∫
Σ0

naA
a

bcV bV c +
∫
T

NaA
a

bcV bV c

−
∫
M

[
(∇aA

a
bc)V bV c +2(ubV b)S

]
. (32)

3 Notice that since na is future directed, its flow increases t; hence in coordinates (t,xi), where
t parametrizes [0,T ] and xi are local coordinates on Σ , we have nt > 0 and nt < 0.



10 H.-O. Kreiss, O. Reula, O. Sarbach, J. Winicour

The following two conditions from the theory of symmetric linear operators (see
(4)) guarantee that the first order IBVP (27,28,29,30,31) is well posed:

(i) naA a
bc is positive definite.

(ii) For each p ∈ T , the subspace N−(p) ⊂ TpM consisting of the vectors
V b(p) satisfying the boundary condition (31) at p is maximal non-positive.
This means that NaA a

bc(p)V b(p)V c(p) ≤ 0 for all V b(p) ∈ N−(p) and
that N−(p) does not possess a proper extension with this property.

For the following, we choose the time evolution vector field ua such that ua is
everywhere future-directed and time-like on M and such that ua lies in the plane
spanned by T a and Na at each point of the boundary, more specifically,

ua|T = T a +δNa,

with 0 < δ < 1 a function on T . The following two lemmas imply the satisfaction
of the conditions (i) and (ii) for an appropriate choice of δ .

Lemma 2 naA a
bc(p) is positive definite for all p ∈M.

Proof Let hab = gab +nanb be the induced metric on Σt and expand ua = µ(na +
ūa), where µ =−naua. Since ua is future-directed and time-like, µ > 0 and ūaūa <
1. Therefore,

naA
a

bc = µ
(
hbc +nbnc +2n(būc)

)
is positive definite. ut

Lemma 3 Let 0 < δ ≤ α(1+α2)−1. Then, the boundary spaces N−(p) are max-
imal non-positive for all p ∈T .

Proof (cf. Appendix B in Ref. (9)). Fix a point p∈T , and let V b ∈ TpM. We have

NaA
a

bcV bV c =
[
δ TbTc +δ NbNc +2T(bNc)−δ Hbc

]
V bV c

= −δ

[
(T bVb)2 +(NbVb)2 +HbcV bV c

]
+2
[
δ (T bVb)2 +δ (NbVb)2 +(T bVb)(NcVc)

]
,

where Hbc = gbc + TbTc−NbNc is the induced metric on the orthogonal comple-
ment of the plane spanned by T b and Nb. Eliminating the terms (T bVb) in the
second square bracket on the right-hand side using the boundary condition (31)
we obtain

NaA
a

bcV bV c =−δ

[
(T bVb)2 +(NbVb)2 +HbcV bV c

]
+2
[
δ (α2 +1)−α

]
(NbVb)2.

(33)

The last term on the right-hand side is non-positive by the assumption of the
lemma. Therefore, NaA a

bc is negative-definite on the subspace of vectors V a sat-
isfying the boundary condition. Finally, we observe that N−(p) is maximal since
its dimension is d = dimTpM−1, while the symmetric bilinear form NaA a

bc has
signature (1,d). ut
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If we relax the assumption of homogeneous boundary data and replace the
condition (31) by the condition[

T bVb +αNbVb

]
T

= G, (34)

we obtain, instead of (33),

NaA
a

bcV bV c = −δ

[
(T bVb)2 +(NbVb)2 +HbcV bV c

]
+2
[
δ (α2 +1)−α

]
(NbVb)2

+2(1−2δα)(NbVb)G+2δ G2.

Let 0 < ρ < 1 and set δ = (1−ρ)α(1 + α2)−1. Then, we have (cf. Appendix B
in Ref. (9))

NaA
a

bcV bV c≤−δ

[
(T bVb)2 +(NbVb)2 +HbcV bV c

]
+
[

2δ +
(1−2δα)2

2αρ

]
G2. (35)

This and the positivity of naA a
bc implies the existence of strictly positive con-

stants C1 and C2 (depending on δ and ρ) such that

NaA
a

bcV bV c ≤−C1naA
a

bcV bV c +C2G2. (36)

Using this in the identity (32) we obtain the estimate∫
Σt

naA
a

bcV bV c ≤
∫
Σ0

naA
a

bcV bV c−C1

∫
Tt

naA
a

bcV bV c +C2

∫
Tt

G2

+C3

t∫
0

∫
Σs

naA
a

bcV bV c +
∫
Σs

S2

ds

for all 0 ≤ t ≤ T , where C1, C2 and C3 are strictly positive constants which are
independent of V b, and Tt := [0, t]× ∂Σ . Applying Gronwall’s lemma4 to the

function y(t) :=
t∫

0

∫
Σs

naA a
bcV bV cds we obtain from this

Lemma 4 Let T > 0. There is a constant C = C(T ) ≥ 1 such that all smooth
enough solutions to the IBVP (28,29,30,34) satisfy the inequality∫

Σt

naA
a

bcV bV c +
∫
Tt

naA
a

bcV bV c

≤C

∫
Σ0

naA
a

bcV bV c +
∫
Tt

G2 +
t∫

0

∫
Σs

S2

ds

 , (37)

for all 0≤ t ≤ T , where Tt := [0, t]×∂Σ .

4 See, for instance, Lemma 3.1.1 in Ref. (18).
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Since any solution of this problem also satisfies uaCa = uaVa−£uφ = 0, £uCa =
0 and ι∗0Ca = ι∗0 (Va−∇aφ) = 0, and since ua points outward from the domain at
T , the constraint Ca = 0 is satisfied everywhere on M. From this and the previous
lemma, we have established:

Theorem 2 The second order problem (21,22,23) is strongly well posed: given
smooth initial and boundary data φ0, π0 and G satisfying the usual compatibility
conditions at ∂Σ0, there exists a unique smooth solution satisfying the estimate
(37) with V a replaced by ∇aφ .

Remark 1 The important feature of the estimate (37) is the second term on the
left-hand side which yields a L2 boundary estimate for the gradient of φ . This esti-
mate is obtained by choosing the time evolution vector field ua in such a way that
the boundary matrix NaA a

bc is negative definite on the subspace of vectors satis-
fying the boundary conditions. As we will see (Lemma 6 in the next section), this
property is important for systems of wave equations since it allows the coupling
of the boundary conditions through small enough terms involving first derivatives
of the fields. If, on the other hand, ua is chosen to be tangent to the boundary,
the boundary matrix has a nontrivial kernel and one does not obtain an estimate
for the full gradient of φ on the boundary from the first order system. However,
this does not affect the strong well posedness of the second order system which is
independent of ua.

As an example, consider the wave equation on the half-plane Σ = R+×R2

with the flat metric g =−dt2 +dx2 +dy2 +dz2. In this case, we have

na
∂a = ∂t , Na

∂a =−∂x T a
∂a =

1
p

(∂t −β
y
∂y−β

z
∂z) ,

with (β y)2 +(β z)2 < 1 and p :=
√

1− (β y)2− (β z)2, and the boundary condition
(23) reduces to

[φt + pαφx−β
y
φy−β

z
φz]x=0 = pG, (38)

where φt := ∂tφ etc. Choosing ua = p(T a +δNa) with 0 < δ < 1, the energy norm
for this problem reads

∫
Σt

naA
a

bcV bV c=
∞∫

0

∞∫
−∞

∞∫
−∞

[
φ

2
t +φ

2
x +φ

2
y +φ

2
z +2φt (δ pφx +β

y
φy +β

z
φz)
]

dydzdx.

This is similar to the norm we used in Ref. (9) for obtaining an a priori energy
estimate for the second order wave equation with boundary condition (38).

III Systems of Wave Equations and Proof of Main Theorem

In order to show that the system (1,2,3) yields a well posed IBVP, we follow the
arguments given in Sect. II and reduce it to a first order symmetric hyperbolic



Boundary Conditions for Coupled Quasilinear Wave Equations 13

system with maximal dissipative boundary conditions. Let Va
A := ∇aΦA, and let

ua(p,Φ) denote a future-directed time-like vector field on M such that

ua|T = T a +δNa,

with 0 < δ < 1 a function on T to be determined. Then (1) can be rewritten as
the first order evolution system

ua
∇aΦ

A = uaVa
A, (39)

gab(Φ)∇aVb
A = SA(Φ ,V ), (40)

ua (
∇aVb

A−∇bVa
A)= uaRA

BabΦ
B, (41)

where RA
Bab denotes the curvature belonging to the connection ∇a. At this point,

we stress that the connection ∇a is a fixed background connection on the vector
bundle E, and not the Levi-Civita connection belonging to the metric gab(Φ), so
that RA

Bab does not depend on Φ nor its derivatives. The system (39,40,41) is
subject to the constraint Cb

A = 0, where Cb
A := ∇bΦA −Vb

A. Equations (39,41)
imply that the constraint variable Cb

A is Lie-dragged by ua:

£uCb
A ≡ ua

∇aCb
A +(∇bua)Ca

A = 0.

Therefore, any smooth enough solution of the first order problem (39,40,41) be-
longing to initial data with Cb

A = 0 satisfies the constraint Cb
A = 0 everywhere it

is defined. The initial condition is

Φ
A∣∣

Σ0
= Φ

A
0 , nbV A

b

∣∣∣
Σ0

= Π
A
0 , ι

∗
0V A

b = ι
∗
0 ∇bΦ

A
0 , (42)

and the boundary condition (3) reads[
T bVb +αNbVb

]
T

= caA
B Va

B∣∣
T

+dA
B Φ

B∣∣
T

+GA. (43)

In order to analyze the well posedness of the first order IBVP (39,40,41,42,43)
we first linearize the system by replacing the coefficients gab(Φ), SA(Φ ,∇Φ),
T b(Φ), Nb(Φ), α(Φ), caA

B(Φ), dA
B(Φ) by smooth functions gab, SA, T b, Nb,

α , caA
B, dA

B, respectively. Local in time well posedness for the original quasi-
linear system follows by iteration from the well posedness result for the linear
system with enough differentiability5. Next, we use a partition of unity in or-
der to localize the problem. With this, it is sufficient to consider a local triv-
ialization ϕ : U ×RN 7→ π−1(U) of E such that Ū ⊂ M is compact and con-
tains a portion U of the boundary T . Let ε > 0. According to the assump-
tion there exists a smooth map Jε : U → GL(N,R), p 7→ (Jε(p)) such that the
transformed matrix coefficients c̃a := Jε caJ−1

ε satisfy the condition (4) for all
vector-valued one-forms Va on U . Setting hAB(ε) :=(JT

ε hJε)AB = hCD(Jε)C
A(Jε)D

B,
we can reformulate this condition by stating that

hAB(ε)caA
C(Φ)cbB

D(Φ)Va
CVb

D ≤ εhAB(ε)eab(Φ)Va
AVb

B, (44)

5 See, for instance, (10; 18).
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for all vector-valued one-forms V A
a on U . The system (39,40,41) can be written

in the form(
−ΛhAB(ε)ua∇a 0

0 hAB(ε)A a
bc∇a

)(
ΦB

V cB

)
= S (Φ ,V ), (45)

where Λ > 0 is to be determined, A a
bc =−uagbc +2δ a

(buc) and

S (Φ ,V ) =
(
−ΛhAB(ε)uaVa

B

−hAB(ε)RB
CabΦCua +hAB(ε)ubSB(Φ ,V )

)
.

Let B(na;(Ψ ,W ),(Φ ,V )) denote the bilinear form belonging to the principal sym-
bol of (45), that is, for an arbitrary one-form wa on M define

B(wa;(Ψ ,W ),(Φ ,V )) :=−ΛuawahAB(ε)Ψ A
Φ

B +hAB(ε)waA
a

bcW bAV cB.

We have

Lemma 5 Let Λ > 0. Then, B(na;(Ψ ,W ),(Φ ,V )) is symmetric in (Ψ ,W ),(Φ ,V )
and positive definite for wa = ua and wa = na. Therefore, the system (45) is sym-
metric hyperbolic.

Proof The symmetry property follows immediately from the symmetry of hAB(ε)
and the symmetry of A a

bc in bc. In order to check the positivity statements, let
wa = ua, γ :=

√
−uaua and ûa := γ−1ua. Since A a

bcua = γ2 [gbc +2ûbûc], we find

B(ua;(Φ ,V ),(Φ ,V )) = γ
2
[
ΛhAB(ε)ΦA

Φ
B +(gab +2ûaûb)hAB(ε)VaAV bB

]
which is manifestly positive definite. The proof that B(na;(Φ ,V ),(Φ ,V )) is posi-
tive definite is similar to the proof of Lemma 2. ut

As in the previous section we obtain well posedness of the linearized system
provided we can show that each boundary space

N−(p) := {(Φ ,V ) ∈ RN ×R(d+1)N :
[
T b(p)+α(p)Nb(p)

]
Vb

A

= caA
B(p)Va

B +dA
B(p)ΦB}, p ∈U ,

is maximal non-positive with respect to B(Na;(Φ ,V ),(Φ ,V )). This is the state-
ment of the next lemma.

Lemma 6 Set δ := α(1+α2)−1/2 and κ := 2[2δ +(1−2δα)2/α]2. Choose ε >
0 small enough such that κε < δ and Λ > 0 large enough such that 2κhAB(ε)dA

CdB
DΦCΦD ≤

δΛhAB(ε)ΦAΦB for all Φ ∈ RN . Then, the boundary space N−(p) is maximal
non-positive for all p ∈U .

Proof Let p ∈U . We have, as in the proof of Lemma 3,

B(Na;(Φ ,V ),(Φ ,V )) = −ΛuaNahAB(ε)ΦA
Φ

B +hAB(ε)NaA
a

bcV bAV cB

= −δhAB(ε)
[
(T aT b +NaNb +Hab)Va

AVb
B +ΛΦ

A
Φ

B
]

+2
[
δ T aT b +δ NaNb +T aNb

]
hAB(ε)Va

AVb
B. (46)
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Let (ΦA,Va
A) ∈ N (p). Then, T aVa

A = −αNaVa
A + G̃A with G̃A := caA

BVa
B +

dA
BΦB, and we may use this equation in order to eliminate the terms (T aVa

A) in
the second bracket on the right-hand side of (46). This yields

B(Na;(Φ ,V ),(Φ ,V )) ≤ −δhAB(ε)
[
(T aT b +NaNb +Hab)Va

AVb
B +ΛΦ

A
Φ

B
]

+
[

2δ +
(1−2δα)2

α

]
hAB(ε)G̃AG̃B,

where we have set δ := α(1+α2)−1/2 and used the boundary estimate (35) with
ρ = 1/2. Now,

hAB(ε)G̃AG̃B ≤ 2hAB(ε)caA
CVa

CcbB
DVb

D +2hAB(ε)dA
CΦ

CdB
DΦ

D

≤ 2εhAB(ε)eabVa
AVb

B +2hAB(ε)dA
CdB

DΦ
C

Φ
D, (47)

where we have used the estimate (44) in the last step. Recalling that eab = gab +
2T aT b = T aT b + NaNb + Hab and the definition of κ in the assumption of the
lemma we find

B(Na;(Φ ,V ),(Φ ,V )) ≤ −δhAB(ε)
[
eabVa

AVb
B +ΛΦ

A
Φ

B
]

+κ

[
εhAB(ε)eabVa

AVb
B +hAB(ε)dA

CdB
DΦ

C
Φ

D
]
.

The non-positivity of N−(p) now follows from the assumptions on ε and Λ . Fi-
nally, we observe that an element in N−(p) is characterized by N linear conditions
in a (d+2)N-dimensional vector space which implies that dimN−(p)≥ (d+1)N.
On the other hand, from Eq. (46) we see that the signature of B(Na; ., .) is given by
(N,(d + 1)N). Therefore, dimN−(p) = (d + 1)N and the maximality of N−(p)
follows. ut

IV Boundary Conditions for Isolated Systems

We consider here boundary conditions for an isolated system emitting radiation.
If, for computational purposes, the evolution domain of such a system has a finite
(artificial) boundary, some artificial boundary condition must be imposed. If one
knew the correct boundary data for the analytic problem, then in principle one
could use any boundary condition corresponding to a well posed IBVP. However,
the determination of the correct boundary data is in general a global problem, in
which the boundary data must be determined by extending the solution to infin-
ity either by matching to an exterior (linearized or nonlinear) solution obtained
by some other means. The matching approach has been reviewed elsewhere (19).
Here we consider an alternative approach in which homogeneous boundary data
can be assigned in such a way that the accuracy of the boundary condition becomes
exact in the limit that the boundary is extended to infinity. (Such boundary condi-
tions would also be beneficial to the matching approach because the corresponding
boundary data would be small so that numerical or other error would also have a
small effect.) Artificial boundary conditions for an isolated radiating system for
which homogeneous data is approximately valid are commonly called absorbing
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boundary conditions (see e.g. (20; 21; 22; 23; 24; 25)), or nonreflecting boundary
conditions (see e.g. (26; 27; 28)) or radiation boundary conditions (see e.g. (29)).
Such boundary conditions are advantageous for computational use. However, lo-
cal artificial boundary conditions are not perfectly nonreflecting in general. Here,
to be more precise, we consider nonreflecting boundary conditions in the sense of
boundary conditions for a well posed problem for which homogeneous data pro-
duces no spurious reflection in the limit that the boundary approaches an infinite
sphere. The extensive literature on improved versions of nonreflecting boundary
conditions involves higher order and nonlocal methods. Our interest here is to
investigate the optimal choice of local first order homogeneous boundary condi-
tions on a spherical boundary for the constrained Maxwell and linearized Einstein
problems expressed in terms of the gauge dependent variables Aµ and γµν . See
(30; 31; 32) for the construction of higher-order and higher-accurate boundary
conditions for Einstein’s equations.

We base our discussion on waves from an isolated system satisfying a system
of flat space wave equations. We use Greek indices to denote standard inertial
coordinates xµ = (t,x,y,z) in which the components of the Minkowski metric ηµν

are diag(−1,1,1,1). In the case of a scalar field Φ , we thus consider the wave
equation

η
αβ

∂α ∂β Φ =
(
−∂

2
t +∂

2
x +∂

2
y +∂

2
z
)

Φ = S,

where the source S has compact support. Outside the source, we assume that the
solution has the form

Φ =
f (t− r,θ ,φ)

r
+

g(t− r,θ ,φ)
r2 +

h(t,r,θ ,φ)
r3 , (48)

where (r,θ ,φ) are standard spherical coordinates and f , g and h and their deriva-
tives are smooth bounded functions. These assumptions determine the exterior
retarded field of a system emitting outgoing radiation. The simplest case is the
monopole radiation

Φ =
f (t− r)

r

which satisfies (∂t +∂r)(rΦ) = 0. This motivates the use of a Sommerfeld condi-
tion

1
r
(∂t +∂r)(rΦ)|R = q(t,R,θ ,φ)

on a finite boundary r = R.
The resulting Sommerfeld boundary data q in the general case (48) falls off as

1/R3, so that a homogeneous Sommerfeld condition introduces an error which is
vanishingly small for increasing R. As an example, for the dipole solution

ΦDipole = ∂z
f (t− r)

r
=−

(
f ′(t− r)

r
+

f (t− r)
r2

)
cosθ

we have

q =
f (t− r)cosθ

R3 . (49)
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A homogeneous Sommerfeld condition at r = R would lead to a solution Φ̃Dipole
containing a reflected ingoing wave. For large R,

Φ̃Dipole ∼ΦDipole +κ
F(t + r−2R)cosθ

r
,

where ∂t f (t)=F(t) and the reflection coefficient has asymptotic behavior κ =
O(1/R2). More precisely, the Fourier mode

Φ̃Dipole(ω) = ∂z

(
eiω(t−r)

r
+κω

eiω(t+r−2R)

r

)
,

satisfies the homogeneous boundary condition (∂t +∂r)(rΦ̃Dipole)(ω)|R = 0 with
reflection coefficient

κω =
1

2ω2R2 +2iωR−1
∼ 1

2ω2R2 . (50)

Note that (50) and (49) satisfy

κ ∼ qR. (51)

In the case of a system of equations κ will have N components corresponding to
the number of modes generated in the reflected wave. The boundary conditions
lead to a system of simultaneous equations relating κ to the components of the
Sommerfeld data q. If these equations are nondegenerate then (51) continues to
hold. However, degeneracies could conceivably lead to weaker asymptotic falloff
of κ . (It would be interesting to determine whether such cases exist.) In any case,
(51) gives the optimum allowable behavior of the reflection coefficients so that the
asymptotic behavior of the Sommerfeld data q is a good indicator of the quality of
the boundary condition. This forms the basis of our investigation of the Maxwell
and linearized Einstein equations with a spherical boundary in Sects. IV B and
IV C.

A A plane boundary

The key ideas in the above example are that (i) the Sommerfeld condition is only
satisfied exactly by waves traveling in the radial direction and (ii) in the asymptotic
limit r → ∞ all waves from an isolated system propagate in the radial direction.
This allows us to reformulate our discussion of the Sommerfeld condition by con-
sidering a wave Φ propagating in the domain x < 0, which is incident on a plane
boundary at x = 0 with the boundary condition

Kα
∂α Φ |x=0 = 0,

where Kα ∂α = ∂t + ∂x is the characteristic direction determined by the outward
normal to the boundary ∂x and the time direction ∂t . This homogeneous condition
is satisfied for plane waves Φ = G(t + kxx + kyy + kzz) incident on the boundary
only for the single case (kx,ky,kz) = (1,0,0), i.e. a plane wave propagating in the
outgoing normal direction. Plane waves in the normal direction pass through the
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boundary, whereas plane waves incident in other directions on the boundary give
rise to a reflected wave. We will take advantage of this simplification of the plane
wave case in discussing boundary conditions for electromagnetic and gravitational
waves. The results then suggest how to formulate boundary conditions for an iso-
lated electromagnetic or gravitational system with a spherical boundary of radius
R, where in the limit R→ ∞ all radiation is incident normally.

For the electromagnetic case, we describe the field by means of a vector po-
tential Aµ satisfying the Lorentz gauge condition. Maxwell’s equations in a flat
spacetime with Minkowski metric ηµν then reduce to the wave equations

η
αβ

∂α ∂β Aµ = 0

subject to the constraint

C := ∂µ Aµ = 0

introduced by the Lorentz gauge condition. This constraint keeps us from requir-
ing that each component of Aµ satisfy a homogeneous Sommerfeld condition,
in contrast to the scalar example. The electromagnetic case also differs from the
scalar case because of the remaining gauge freedom allowed by the Lorentz con-
dition.

An electromagnetic plane wave incident in the outgoing normal direction can
be described by the real part of the vector potential

Aµ = F(t− x)Qµ +G(t− x)Kµ ,

where F(t− x) is complex, Qµ = Y µ + iZµ is a complex null polarization vector,
G(t−x) represents gauge freedom and Kµ = T µ +X µ , in terms of the orthonormal
tetrad (T µ ,X µ ,Y µ ,Zµ) aligned with the coordinate axes satisfying

ηµν =−Tµ Tν +Xµ Xν +YµYν +Zµ Zν .

In order to formulate a gauge invariant boundary condition we consider the
corresponding electromagnetic field tensor

Fµν = ∂µ Aν −∂ν Aµ =−F ′(t− x)(Kµ Qν −Qµ Kν).

Here we adopt the notation ∂uF(u) = F ′(u). For this plane wave, all components
of Fµν satisfy

Kµ Fµν = 0.

However, this condition rules out the possibility of a static electric field oriented
normal to the boundary. For the purpose of formulating a boundary condition
which only restricts propagating waves it suffices to consider the weaker condition

Kµ Qν Fµν = 0. (52)

In terms of the electric and magnetic field components tangential to the boundary,
(52) corresponds to the plane wave relations Etan ·Btan = 0 and |Etan| = |Btan|,
with the corresponding Poynting vector in the outward normal direction.
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We can incorporate (52) into the following homogeneous Sommerfeld bound-
ary conditions for the vector potential:

Kν Kµ ∂µ Aν = 0, (53)
Qν Kµ ∂µ Aν = Kν Qµ ∂µ Aν . (54)

The remaining boundary condition can be expressed in Sommerfeld form by rewrit-
ing the constraint as

C =
1
2
(
−Lν Kµ −Kν Lµ +Qν Q̄µ + Q̄ν Qµ

)
∂µ Aν = 0, (55)

where Lµ = T µ −X µ . Here (Kµ ,Lµ ,Qµ) form a null tetrad according to the con-
ventions

ηµν =−K(µ Lν) +Q(µ Q̄ν). (56)

We assume throughout the following that the spin transformation freedom Qµ →
eiα Qµ has been restricted according to Kµ ∂µ α = 0. The Sommerfeld boundary
conditions (53), (54) and (55) have the required hierarchical, upper triangular form
for a well posed IBVP, see Lemma 1.

For the purpose of extending this approach to the gravitational case, we write
the linearized Einstein vacuum equations in the form

η
αβ

∂α ∂β γ
µν = 0 (57)

subject to the harmonic constraints

Cν :=−∂µ γ
µν = 0. (58)

Here, to linearized accuracy, we set
√
−ggµν = ηµν + γµν so that γµν =−hµν +

1
2 ηµν h represents the densitized version of the metric perturbation gµν = ηµν +
hµν . (Indices of linearized objects are raised and lowered with the Minkowski
metric.) The corresponding linearized curvature tensor is

2Rµνρσ = ∂ρ ∂ν hµσ −∂σ ∂ν hµρ −∂ρ ∂µ hνσ +∂σ ∂µ hνρ . (59)

In the linear approximation, the diffeomorphism freedom reduces to the gauge
freedom hµν → hµν +2∂(µ ξν), which leaves Rµνρσ invariant.

A plane wave incident on the boundary in the outgoing normal direction is
given by the real part of

hµν = F(t− x)Qµ Qν +2∂(µ ξν)(t− x) = F(t− x)Qµ Qν −2K(µ ξν)(t− x), (60)

where the ξν(t − x) term describes a pure gauge wave. Similarly, a plane wave
incident on the boundary in the ingoing normal direction is given by

hµν = F(t + x)Qµ Qν −2L(µ ξν)(t + x). (61)

In these plane waves, F describes the gravitational radiation. The curvature tensors
corresponding to (60) and (61) are, respectively,

Rµνρσ = 2F ′′(t− x)K[µ Qν ]Q[ρ Kσ ] (62)
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and

Rµνρσ = 2F ′′(t + x)L[µ Qν ]Q[ρ Lσ ]. (63)

The analogue of the boundary conditions (14),(15),(16) and (17) for a plane
boundary are

Kµ Kρ Kσ
∂µ hρσ = −qKK , (64)

Kµ Kρ Lσ
∂µ hρσ = −qQQ̄, (65)

Kµ Kρ Qσ
∂µ hρσ = −qKQ, (66)

(Kµ Qρ Qσ −Qµ Qρ Kσ )∂µ hρσ = −qQQ. (67)

The outgoing plane wave (60) satisfies the homogeneous boundary conditions
qKK = qQQ̄ = qKQ = qQQ = 0. For the ingoing plane wave (61),

qKK = −8Kσ
ξ
′
σ (t + x),

qQQ̄ = −4Lσ
ξ
′
σ (t + x),

qKQ = −4Qσ
ξ
′
σ (t + x),

qQQ = −4F̄ ′(t + x),

all evaluated on the boundary at x = 0. Thus the boundary conditions (64),(65) and
(66) control the gauge waves entering through the boundary; and the condition
(67) controls the gravitational waves entering.

In order to formulate a boundary condition with gauge invariant meaning anal-
ogous to (52) in the Maxwell case, we consider the linearized curvature ten-
sor. Outgoing wave boundary conditions on the curvature tensor could be im-
posed by requiring that the Newman-Penrose component Ψ0 = Kµ Qν Qρ Kσ Rµνρσ

vanish on the boundary. (See (2) for a discussion of the appropriateness of this
boundary condition.) However, this requirement involves second derivatives in
the normal direction when expressed in terms of γµν . Instead, we require Ψ :=
Kµ Qν Qρ T σ Rµνρσ = 0 on the boundary. The condition Ψ = 0 is equivalent to
Ψ0 = 0 if the Ricci component Rµν Qµ Qν = 0, e.g. if the vacuum Einstein equa-
tions are satisfied.

A straightforward calculation leads to

−2Ψ = Kµ Qν Qρ T σ (∂ρ ∂ν γµσ −∂σ ∂ν γµρ −∂ρ ∂µ γνσ +∂σ ∂µ γνρ)+
1
2

Qν Qρ
∂ν ∂ρ γ

= Kµ Qν Qρ T σ
(
−∂σ ∂ν γµρ −∂ρ ∂µ γνσ +∂σ ∂µ γνρ

)
+

1
2
(
Kµ Kσ +Qµ Q̄σ

)
Qν Qρ

∂ν ∂ρ γµσ

= Qν
∂ν

(
1
2
(
Kµ Kσ +Qµ Q̄σ

)
Qρ

∂ρ γµσ −Kµ Qρ T σ
∂µ γσρ

)
+T σ

∂σ

(
−Kµ Qν Qρ

∂ν γµρ +Kµ Qν Qρ
∂µ γνρ

)
. (68)

Thus, besides containing no second derivatives normal to the boundary, the
condition Ψ = 0 can be reduced to two first order conditions by factoring out the
Qν ∂ν and T σ ∂σ derivatives in (68) which are tangential to the boundary. There
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are many ways this can be done. In order to obtain first order conditions which fit
into a hierarchy of Sommerfeld conditions, we modify (68) according to the steps

−2Ψ = Qν
∂ν

(
1
2
(Kµ Kσ +Qµ Q̄σ )Qρ

∂ρ γµσ −
1
2

Kρ Qµ Lσ
∂ρ γµσ

−1
2

Kµ Qρ Kσ
∂µ γσρ

)
+T σ

∂σ

(
−Kµ Qν Qρ

∂ν γµρ +Kµ Qν Qρ
∂µ γνρ

)
(69)

=
1
2

Qν
∂ν

(
(Kµ Kσ Qρ +Qµ Kσ Lρ −Qµ Qσ Q̄ρ)∂ρ γµσ

−2QµCµ −Kµ Qρ Kσ
∂µ γσρ

)
+T σ

∂σ

(
−Kµ Qν Qρ

∂ν γµρ +Kµ Qν Qρ
∂µ γνρ

)
(70)

=
1
2

Qν
∂ν

(
(Kµ Kσ Qρ −Qµ Qσ Q̄ρ)∂ρ γµσ −2Kµ Qρ Kσ

∂µ γσρ −2QµCµ

)
+T σ

∂σ

(
Kµ Qν Qρ

∂µ γνρ

)
. (71)

Thus since the derivatives Qν ∂ν and T ν ∂ν are tangential to the boundary, we can
enforce Ψ = 0 on the boundary through the first order boundary conditions

Qα Qβ Kµ ∂µ γαβ = 0, (72)

Kα Qβ Kµ ∂µ γαβ − 1
2 Kα Kβ Qµ ∂µ γαβ + 1

2 Qα Qβ Q̄µ ∂µ γαβ = 0. (73)

These two boundary conditions can then be included in a hierarchical set of Som-
merfeld boundary conditions, according to the example

Kα Kβ Kµ ∂µ γαβ = 0, (74)

Qα Qβ Kµ ∂µ γαβ = 0, (75)

Qα Q̄β Kµ ∂µ γαβ = 0, (76)

Kα Qβ Kµ ∂µ γαβ − 1
2 Kα Kβ Qµ ∂µ γαβ + 1

2 Qα Qβ Q̄µ ∂µ γαβ = 0. (77)

The constraints Cρ = 0, which determine the remaining boundary conditions, can
be cast in the Sommerfeld form

Cρ =
1
2
(
Lν Kµ +Kν Lµ − Q̄ν Qµ −Qν Q̄µ

)
∂µ γνρ = 0,

which can also be incorporated into the hierarchy.
However, there are many alternative possibilities to (74)–(77) which preserve

the hierarchical Sommerfeld structure and lead to a well posed IBVP. In the ab-
sence of a clear geometric approach, we next examine the boundary conditions ap-
propriate to an isolated system by considering the resulting reflection off a spher-
ical boundary.
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B Application to Maxwell fields with a spherical boundary

In the case of a general retarded solution for a massless scalar wave equation,
we found that a Sommerfeld boundary condition on a spherical boundary of ra-
dius R required data q = O(1/R3). Homogeneous Sommerfeld data gave rise to
an ingoing wave with reflection coefficient κ = O(1/R2), as in (50). This is the
best that can be achieved with a local first order homogeneous boundary condi-
tion on a spherical boundary. We now investigate the corresponding result for the
constrained Maxwell equations expressed in terms of a vector potential Aµ .

In doing so, we associate spherical coordinates (r,xA), xA = (θ ,φ), in a stan-
dard way with the Cartesian coordinates xi = (x,y,z), e.g. z = r cosθ . As in (56) we
introduce a null tetrad (Kµ ,Lµ ,Qµ) adapted to the boundary, where now Kµ ∂µ =
∂t +∂r, Lµ ∂µ = ∂t −∂r, and we fix the spin-rotation freedom in the complex null
vector Qµ = (0,Qi) by setting

Qi =
∂xi

∂xA QA, (78)

where

QA =
(

Qθ ,Qφ

)
=

1
r

(
1,

i
sinθ

)
.

We describe outgoing waves in terms of the retarded time u = t− r.
In order to investigate the vector potential describing the exterior radiation

field emitted by an isolated system we introduce a Hertz potential with the sym-
metry

Hµν = H [µν ] +
1
4

η
µν H.

Then the vector potential

Aµ = ∂ν Hµν

satisfies the Lorentz gauge condition and generates a solution of Maxwell’s equa-
tions provided the Hertz potential satisfies the wave equation. The trace H repre-
sents pure gauge freedom.

We consider outgoing dipole waves oriented with the z-axis. Other dipole
waves can be generated by a rotation. Higher multipole waves can be generated
by taking spatial derivatives.

The choice H = Zα ∂α
F(u)

r , H [µν ] = 0 gives rise to the dipole gauge wave

Aµ =
(

F ′′(u)
r

+
F ′(u)

r2

)
cosθKµ +

(
2F ′(u)

r2 +
3F(u)

r3

)
×cosθ∂µ r−

(
F ′(u)

r2 +
F(u)

r3

)
Zµ
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with components

Kµ Aµ =
(

F ′(u)
r2 +

2F(u)
r3

)
cosθ ,

Qµ Aµ =
(

F ′(u)
r2 +

F(u)
r3

)
sinθ . (79)

In Appendix V we give some useful formulae underlying the calculation leading
to (79) and the following results.

The choice Hµν = (T µ Zν −Zµ T ν) f (u)
r gives rise to a dipole electromagnetic

wave

Aµ =−
(

f ′(u)
r

+
f (u)
r2

)
Tµ cosθ − f ′(u)

r
Zµ

with components

Aµ Kµ =
f (u)
r2 cosθ ,

Aµ Qµ =
f ′(u)

r
sinθ . (80)

The choice Hµν = (X µY ν −Y µ Xν) f (u)
r gives rise to a dipole electromagnetic

wave with the dual polarization

Aµ =−
(

f ′(u)
r

+
f (u)
r2

)(
yXµ

r
−

xYµ

r

)
with components

Aµ Kµ = 0,

Aµ Qµ = i
(

f ′(u)
r

+
f (u)
r2

)
sinθ . (81)

We wish to formulate boundary conditions which generalize the Sommerfeld
hierarchy (53) and (54) to a spherical boundary of radius R in a way which mini-
mizes reflection. By inspection of (79), (80) and (81), we consider the choice

1
r2 Kµ

∂µ(r2Kν Aν) = qK , (82)

1
r

Kµ
∂µ(rQν Aν)−Qµ

∂µ(Kν Aν) = qQ, (83)

chosen to minimize the asymptotic behavior of the Sommerfeld data. As before,
the constraint determines the remaining boundary condition as part of the Som-
merfeld hierarchy.

For the dipole gauge wave (79),

qK =−2F(u)cosθ

R4 , qQ = 0;
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for the dipole electromagnetic wave (80),

qK = 0, qQ =
f (u)
R3 sinθ ;

and for the dual dipole electromagnetic wave (81)

qK = 0, qQ =
−i f (u)

R3 sinθ .

Overall this implies qK = O(1/R4) and qQ = O(1/R3). We have checked that ho-
mogeneous Sommerfeld data leads to reflection coefficients with overall behavior
κ = O(1/R2) in accordance with (51).

Note that the relations (A1) and (A8) allow us to express (82) and (83) in the
form

1
r2 Kν Kµ

∂µ(r2Aν) = qK , (84)

Qν Kµ
∂µ Aν −Kν Qµ

∂µ Aν = qQ, (85)

which correspond to (7) and (8) when ∂µ is generalized to the connection ∇a in
a curved space background with Ka∇ar = 1. Here (85) is equivalent to the gauge
invariant condition

Qν Kµ Fµν = qQ. (86)

C Application to linearized gravitational fields with a spherical boundary

The gravitational case is more complicated than the electromagnetic case because
the geometry of the boundary is coupled with the boundary condition. Addition-
ally, there are no gauge invariant quantities, analogous to (86) in the electromag-
netic case, on which to base first order boundary conditions. We begin with a
discussion of how to adapt to a curved boundary the first order version of the Ψ

boundary condition given in Sect. IV A for a plane boundary.
In the nonlinear treatment of a curved boundary with unit outer normal Na we

can decompose the metric according to

gab = τab +NaNb,

where τab is the metric intrinsic to the time-like boundary. Let Da denote the co-
variant derivative associated with τab. The extrinsic curvature of the boundary is

Nab = τa
c
∇cNb.

We complete an orthonormal basis by setting

τab =−TaTb +Q(aQ̄b)

in terms of a time-like vector T a and complex null vector Qa tangent to the bound-
ary.
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We decompose Ψ := KaQbQcT dRabcd = ΨT +ΨN and the Weyl component
Ψ0 = KaQbQcKdRabcd = ΨT +ΨN +2ΨT N , where Ka = T a +Na and

ΨT = T aQbQcT dRabcd , (87)

ΨN = NaQbQcT dRabcd , (88)

ΨT N = T aQbQcNdRabcd . (89)

When the vacuum Einstein equations are satisfied the Riemann curvature tensor
may be replaced by the Weyl tensor whose symmetry implies ΨT N = 0. Therefore,
in this case, Ψ = 0 implies the vanishing of the Newman-Penrose Weyl component
Ψ0 = 0.

A short calculation gives the embedding formulae

ΨN = QbQcT d(DdNbc−DbNcd)

and

ΨT = T aQbQcT d
(

(3)Rabcd −NacNbd +NbcNad

)
,

where (3)Rabcd is the intrinsic curvature to the boundary, i.e.

T aQbQcT d (3)Rabcd = QbQcT d(DdDc−DcDd)Tb.

(These are the embedding equations for the Cauchy problem corrected for the
space-like character of the normal to the boundary.)

We now apply these results to a spherical boundary r = R in linearized theory
off a Minkowski background, i.e. gµν = ηµν + εhµν in standard inertial coor-
dinates xµ , where ε is the linearization parameter. We choose Tµ = ∂µ t + O(ε)
and Nµ = ∂µ r + O(ε). Then Dµ Tν = O(ε) and Nµν = R−1Qµν + O(ε), where
Qµν = Q(µ Q̄ν) is the metric of a 2-sphere of radius R. We choose the basis to
satisfy T µ Dµ Tν = 0 and T µ Dµ Qν = 0, so that

ΨT = T µ Qν Qρ T σ (3)Rµνρσ +O(ε2) = T σ Dσ (Qν Qρ Dρ Tν)+O(ε2)

and

ΨN = T σ Dσ (Qν Qρ Nρν)−Qρ Dρ(Qν T σ Nσν)+
1
2

Qρ(Dρ Qµ)Q̄µ Qν T σ Nσν

+
1
R

Qν Qρ Dρ Tν +O(ε2).

Thus the boundary conditions

Qν Qρ(Nρν +Dρ Tν) = 0,

Qν T ρ Nρν = 0, (90)

imply to linearized accuracy that

Ψ =
1
R

Qν Qρ Dρ Tν . (91)
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This gives a geometric formulation of the first differential order version of the
requirement that Ψ → 0 in the asymptotic limit R → ∞. However, Ψ0 = O(1/R5)
in an asymptotically flat space-time, whereas (91) leads to Ψ = O(1/R2). This
is an indication that the boundary conditions (90) might lead to more reflection
than desirable. Can this be remedied by the introduction of, say, lower order terms
in the boundary conditions? We investigate this question in the context of a well
posed IBVP based upon the harmonic version of the linearized Einstein equations
(57) and (58), where γµν =−hµν + 1

2 ηµν h.
For this purpose, we now consider linearized outgoing waves in the harmonic

gauge which are incident on a spherical boundary. We model our discussion on
the Maxwell case by using the gravitational analogue of a Hertz potential Hµανβ

(33; 34), which has the symmetries

Hµανβ = H [µα]νβ = Hµα[νβ ] = Hνβ µα

and satisfies the flat space wave equation

∂
σ

∂σ Hµανβ = 0.

Then the densitized metric perturbation

γ
µν = ∂α ∂β Hµανβ

satisfies the linearized Einstein equations in the harmonic gauge. Outgoing waves
can be generated from the potential

Hµανβ =
f µανβ (u)

r
,

and its spatial derivatives.
The incidence of such an outgoing wave on a boundary r = R leads to reflec-

tion, with the asymptotic falloff of the reflection coefficients depending upon the
choice of boundary conditions. We limit our calculation of reflection coefficients
to the case of outgoing quadrupole waves, which can be obtained from the Hertz
potential

Hµανβ = Kµανβ f (u)
r

, (92)

where Kµανβ is a constant tensor. (All higher multipoles can be constructed by
taking spatial derivatives.) Kµανβ has 21 independent components. However, the
choice Kµανβ = εµανβ leads to γµν = 0 so there are only 20 independent waves.
These can be further reduced to pure gauge waves, corresponding to the trace
terms in Kµανβ , e.g. Kµανβ = ηαν ηβ µ − ηµν ηαβ leads to a monopole gauge
wave. Linearized gravitational waves arise from the trace-free part of Kµανβ .
There are ten independent quadrupole gravitational waves, corresponding to spher-
ical harmonics with (` = 2,−2 ≤ m ≤ 2) in the two independent polarization
states. The other ten independent potentials comprise two monopole gauge waves,
three dipole gauge waves and five quadrupole gauge waves, for which the lin-
earized Riemann tensor vanishes. It suffices to consider the following examples
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of waves with quadrupole dependence aligned with the z-axis. Other quadrupole
waves can be obtained by rotation and have similar asymptotic behavior. Reflec-
tion coefficients from the other monopole and dipole gauge waves are smaller and
provide no further useful information. The Hertz potential (92) gives rise to the
perturbation

γ
µν = Kµανβ

∂α ∂β

f (u)
r

.

Appendix V lists useful formula for the calculations underlying the following re-
sults.

1 Quadrupole-monopole gauge wave.

The Hertz potential

Hµανβ =
(

Zµ
η

αν Zβ +Zν
η

β µ Zα −Zµ
η

αβ Zν −Zβ
η

νµ Zα

) f (u)
r

gives rise to a combination monopole-quadrupole gauge wave with components

Qα Qβ
γαβ = −2

(
f ′(u)
r2 +

f (u)
r3

)
sin2

θ ,

Qα Q̄β
γαβ = −2

(
f ′′(u)

r
+

2 f ′(u)
r2 +

2 f (u)
r3

)
cos2

θ ,

Kα Qβ
γαβ = − f (u)

r3 sinθ cosθ , (93)

Kα Kβ
γαβ = 2

(
f ′(u)
r2 +

2 f (u)
r3

)
cos2

θ ,

γ = −2 f ′′(u)
r

cos2
θ +2

(
f ′(u)
r2 +

f (u)
r3

)
(1−3cos2

θ).

Here the sin2
θ dependence of the spin-weight 2 component Qα Qβ γαβ is a pure

2Y20 spin-weighted spherical harmonic; the sinθ cosθ dependence of the spin-
weight 1 component Kα Qβ γαβ is a pure 1Y20 harmonic; and the remaining spin-
weight 0 components are mixtures of Y00 and Y20.

2 Quadrupole gravitational wave.

The trace-free Hertz potential

Hµανβ =
(
(T µ Zα −Zµ T α)(XνY β −Y ν Xβ )

+(X µY α −Y µ Xα)(T ν Zβ −Zν T β )
) f (u)

r
(94)
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gives rise to a perturbation with γ = 0 and components

Qα Qβ
γαβ = 2isin2

θ

(
f ′′(u)

r
+

f ′(u)
r2

)
,

Qα Q̄β
γαβ = 0, (95)

Kα Qβ
γαβ = icosθ sinθ

(
2 f ′(u)

r2 +
3 f (u)

r3

)
,

Kα Kβ
γαβ = 0,

which have spin-weighted ` = 2, m = 0 dependence.

3 Dual quadrupole gravitational wave

The trace-free Hertz potential

Hµανβ =
(
(T µ Zα −Zµ T α)(T ν Zβ −Zν T β )− (X µY α −Y µ Xα)(XνY β −Y ν Xβ )

+
1
3
(ηµν

η
αβ −η

µβ
η

να)
)

f (u)
r

,

obtained from the dual of (94), gives gives rise to a perturbation with γ = 0 and
components

Qα Qβ
γαβ = 2sin2

θ

(
f ′′(u)

r
+

f ′(u)
r2 +

f (u)
r3

)
,

Qα Q̄β
γαβ = 4(cos2

θ − 1
3
)
(

f ′(u)
r2 +

f (u)
r3

)
, (96)

Kα Qβ
γαβ = cosθ sinθ

(
2 f ′(u)

r2 +
f (u)
r3

)
,

Kα Kβ
γαβ = 2(cos2

θ − 1
3
)

f (u)
r3 ,

which have spin-weighted ` = 2, m = 0 dependence.

4 Sommerfeld-type boundary conditions.

Sommerfeld boundary conditions consistent with a well posed harmonic IBVP
have wide freedom regarding (i) partial derivative terms consistent with the hier-
archical upper triangular structure of the boundary condition and (ii) lower dif-
ferential order terms. Here we consider three choices of boundary conditions and
compare their reflection coefficients. One basic idea common to these choices has
already been used in the scalar and Maxwell cases, i.e by inspecting the asymp-
totic behavior of the waves (93), (95) and (96) we use the property Kα ∂α f (u) = 0
to introduce the appropriate powers of r that lead to the smallest asymptotic be-
havior in the resulting Sommerfeld data.
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Our first choice of boundary conditions is the mathematically simplest choice

1
r2 Kα Kβ Kµ

∂µ(r2
γαβ ) = qKK , (97)

1
r

Qα Qβ Kµ
∂µ(rγαβ ) = qQQ, (98)

1
r

Qα Q̄β Kµ
∂µ(rγαβ ) = qQQ̄, (99)

1
r2 Kα Qβ Kµ

∂µ(r2
γαβ ) = qKQ. (100)

This was the choice adopted in numerical tests verifying the stability of the har-
monic IBVP with a plane boundary (14). The powers of r in (97)-(100) are based
upon the leading asymptotic behavior of the components for the gauge wave (93)
and the gravitational waves (95) and (96). These choices lead to boundary data
with the asymptotic behavior

qKK ∼ f (u)
R4 ,

qQQ ∼ f ′(u)
R3 ,

qQQ̄ ∼ f ′(u)
R3 ,

qKQ ∼ f (u)
R4 .

Thus the behavior of qQQ and qQQ̄ imply that the resulting reflection coefficients
have overall asymptotic dependence no weaker than κ = O(1/R2).

Our second choice, which is partially suggested by the electromagnetic case
(83) and leads to weaker reflection, consists of the modifications

1
r2 Kα Kβ Kµ

∂µ(r2
γαβ ) = qKK , (101)

1
r2 Kα Qβ Kµ

∂µ(r2
γαβ ) = qKQ, (102)

1
r2 Qα Q̄β Kµ

∂µ(r2
γαβ )− γ

r
= qQQ̄, (103)

Qα Qβ Kµ
∂µ γαβ −Qα Kβ Qµ

∂µ γαβ = qQQ. (104)

Now q.. ∼ f (u)/R4 for both gravitational quadrupole waves. For the gauge waves,
qQQ̄ ∼ f ′(u)/R3. Using the Regge-Wheeler-Zerilli perturbative formulation and
the metric reconstruction method described in (35) we have independently checked
that this leads to reflection coefficients κ = O(1/R3) for the gravitational waves
and
κ = O(1/R2) for the gauge waves in accord with (51). After replacing γµν =
−hµν + h

2 ηµν , observing that Kµ ∂µ r = 1 and identifying ∂µ with the connection

∇̊a of the background metric g̊ab, (101)-(104) correspond to the boundary condi-
tions (14)-(17) discussed in Sect. I C.
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Our third choice of boundary conditions, motivated by the first order version
of the Ψ0 boundary condition (77), is

Kµ
∂µ(r2Kα Kβ

γαβ ) = qKK , (105)

Kµ
∂µ(rQα Qβ

γαβ ) = qQQ, (106)

Kµ
∂µ(rQα Q̄β

γαβ ) = qQQ̄, (107)
1
r2 Kµ

∂µ(r2Kα Qβ
γαβ ) − 1

2
Qµ

∂µ Kα Kβ
γαβ +

1
2

Q̄µ Qα Qβ
∂µ γαβ = qKQ. (108)

However, for the gravitational quadrupole wave (95), this leads to qKQ ∼ f ′′(u)/R2

and so it results in much stronger reflection than the first two choices. Thus, as
might have been anticipated by the discussion following (91), the first order ver-
sion of the Ψ boundary condition is not as effective as (104)-(101) in the case of
a spherical boundary.

V Conclusion

We have considered the IBVP for a coupled system of quasilinear wave equations
and established (local in time) well posedness for a large class of boundary condi-
tions. In particular, this allows for the formulation of a well posed IBVP for quasi-
linear wave systems in the presence of constraints on finite domains with artificial,
nonreflecting boundaries. Therefore, we anticipate that our results will have appli-
cation to a wide range of problems in computational physics. Furthermore, since
our proof is based on a reduction to a symmetric hyperbolic system with maximal
dissipative boundary conditions, it also lays the path for constructing stable finite
difference discretizations for such systems.

Our work has been motivated by the importance of the computation of grav-
itational waves from the inspiral and merger of binary black holes, which has
enjoyed some recent success (36; 37; 38; 39; 40). At present, however, none of the
simulations of the binary black hole problem have been based upon a well posed
IBVP. The closest example is the harmonic approach of the Caltech-Cornell group
(41; 42; 43) which incorporates the freezing Ψ0 boundary condition in second or-
der form and has been shown to be well posed in the generalized sense in the high
frequency limit (16).

Our results have potential application to improving the binary black hole sim-
ulations. However, many of these simulations are carried out using the BSSN for-
mulation (44; 45) of Einstein’s equations, which differs appreciably from the har-
monic formulation considered here. Although our results constitute a complete
analytic treatment of the IBVP for the harmonic formulation of Einstein’s equa-
tions, the extension to the BSSN formulation is not immediately evident. For this
purpose, it would be useful to reformulate the boundary data for the harmonic
problem in terms of the intrinsic geometry and extrinsic curvature of the bound-
ary, as has been done for the initial data for the Cauchy problem. Such a geometric
reformulation remains an outstanding problem.
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Appendix A: Some Useful Formulae

Here we give a short summary of the formulae and conventions underlying the calculational
results of Sects. IV B and IV C. We have

∂α f (u) =− f ′(u)Kα , u = t− r, Kα
∂α Kβ = 0, (A1)

so that

∂α ∂β

f (u)
r

=
f ′′(u)

r
Kα Kβ +

f ′(u)
r2 (Kα rβ + rα Kβ )+

2 f (u)
r3 rα rβ

−(
f ′(u)

r
+

f (u)
r2 )rαβ (A2)

and

Kµ
∂µ ∂α ∂β

f (u)
r

= − f ′′(u)
r2 Kα Kβ −

2 f ′(u)
r3 (Kα rβ + rα Kβ )

−6 f (u)
r4 rα rβ +

(
2 f ′(u)

r2 +
3 f (u)

r3

)
rαβ , (A3)

where rα := ∂α r and rαβ := ∂α ∂β r. The spatial components are

ri =
xi

r
= (sinθ cosφ ,sinθ sinφ ,cosθ), ri j =

δi j

r
−

xix j

r3 . (A4)

Our conventions for the polarization dyad give rise to the Cartesian components

(Qx,Qy,Qz) = (cosθ cosφ − isinφ ,cosθ sinφ + icosφ ,−sinθ), (A5)

which satisfy

(Qx)2 +(Qy)2 =−sin2
θ , Qx y

r
−Qy x

r
=−isinθ ,

Qx y
r

+Qy x
r

= sinθ
(
2cosθ cosφ sinφ + i(cos2

φ − sin2
φ)
)

(A6)

and

Q jri j =
Qi

r
, Q j

∂ jQi =
cotθ

r
Qi, Q j

∂ jQ̄i =− cotθ

r
Q̄i− 2r j

r
. (A7)

From these follow the necessary commutation relations such as

[rQµ
∂µ ,Kν

∂ν ] = 0. (A8)
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