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Abstract We consider the initial-boundary value problem for systems of quasilin-
ear wave equations on domains of the form [0, 7] x X, where X is a compact mani-
fold with smooth boundaries dX. By using an appropriate reduction to a first order
symmetric hyperbolic system with maximal dissipative boundary conditions, well
posedness of such problems is established for a large class of boundary conditions
on dX. We show that our class of boundary conditions is sufficiently general to
allow for a well posed formulation for different wave problems in the presence of
constraints and artificial, nonreflecting boundaries, including Maxwell’s equations
in the Lorentz gauge and
Einstein’s gravitational equations in harmonic coordinates. Our results should also
be useful for obtaining stable finite-difference discretizations for such problems.

I Introduction and Main Results

Motivated in part by the numerical computation of spacetimes on a finite domain
with artificial boundaries, the initial-boundary value problem (IBVP) in general
relativity has started to receive a lot of attention during the last few years (see
(1) for a review). A well posed IBVP for Einstein’s vacuum field equations was
formulated for the first time by Friedrich and Nagy (2) based on tetrad fields and
the theory of quasilinear, symmetric hyperbolic systems with maximal dissipative
boundary conditions (3} 145 15). More recently, Kreiss and Winicour (6) formulated
a well posed IBVP for the harmonic gauge formulation of the Einstein vacuum
equations which casts the field equations into a set of ten coupled quasilinear wave
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equations subject to four constraints. There are two key ideas behind the result of
(6). The first one is the realization that the wave equations, when viewed as first or-
der pseudodifferential equations, have a non-characteristic boundary matrix. This
allows application of the boundary value theory for such systems developed by
Kreiss in the 1970’s (7). The second idea is the formulation of boundary condi-
tions for the frozen coefficient form of the harmonic Einstein equations which
ensures constraint propagation and satisfies the estimates required by the Kreiss
theory. The well posedness of the system and the generalization to the quasilinear
case can then be established using the theory of pseudodifferential operators (see,
for instance, (8))).

In a subsequent paper (9), similar results were obtained via more mundane
energy estimates which follow by integration by parts, without resort to the pseu-
dodifferential calculus. For this, a non-standard energy norm is constructed which
is based upon the choice of a particular time-like direction adapted to the boundary
conditions being imposed. With respect to this energy the Kreiss-Winicour bound-
ary conditions are maximal dissipative and so standard well posedness theorems
apply even in the quasilinear case (3;/10). Besides being a simpler proof, or at least
a proof that can be followed completely by a reader not familiar with the pseudod-
ifferential techniques, it implies similar results for the stability of finite difference
approximations to Einstein’s equations in the harmonic gauge. This follows from
considering the semidiscrete system of ordinary differential equations in time ob-
tained by substituting finite differences for spatial derivatives. If the semidiscrete
system is stable, then for appropriate time discretizations the fully discrete sys-
tem is guaranteed to be stable (11). The stability of the semidiscrete system can
be established by the use of finite difference operators satisfying summation by
parts (12)), the counterpart of integration by parts, by mimicking the steps leading
to the continuum energy estimate. A summation by parts algorithm based upon the
standard energy norm for the harmonic Einstein problem was developed in (13)
and verified to be stable in numerical tests (14)). The non-standard energy norm
employed here and in (9) provides the basis to formulate a summation by parts
algorithm whose numerical stability follows from established theory.

In this paper we present a more general and geometric version of the forego-
ing results which applies to coupled systems of quasilinear wave equations with
a certain class of boundary conditions. The strong well posedness of the resulting
IBVP is established by reducing the wave system to first order symmetric hyper-
bolic equations subject to maximal dissipative boundary conditions. This allows
us to identify the structure in first order systems which can be used to establish
boundary stability. This structure arises from the non-absolute nature of time in
Lorentzian physics, whereby a Lorentz boost gives rise to a new conserved energy
and so to a different symmetrizerﬂ Realizing this, we are able to restate and prove
our earlier results in terms of standard maximal dissipative boundary conditions
for symmetric hyperbolic systems.

As we show, our class of boundary conditions is sufficiently flexible for ob-
taining well posed IBVP formulations for different models of isolated systems in
physics, including the wave equation, Maxwell’s equations and the Einstein field
equations. In what follows, we present the main mathematical result in Sect. [[[A]

! In theories such as hydrodynamics, the four-velocity determines a preferred time direction
and thereby a unique symmetrizer.
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with two applications in Sects. [[[B|and[[[C] The corresponding proof of strong well
posedness is given in Sects. [[land [[TI] We then show in Sect. [[V]that these results
can be applied to electromagnetic and gravitational theory to formulate boundary
conditions of practical value for the numerical treatment of isolated systems.

A Main theorem

Let T > 0, and denote by X a d-dimensional compact manifold with smooth
boundaries dX. The type of system our results apply to is a set of quasilinear
wave equations on M = [0,T] x X coupled both by lower order terms and in the
principal part, by a change in the characteristic directions via a metric which can
depend on the local value of the fields involved. More precisely, let 7 : E — M be
a vector bundle over M with fibre RV, let V,, be a fixed, given connection on E and
let gu» = gu»(P) be a Lorentz metric on M with inverse g?(®) which depends
pointwise and smoothly on a set of fields @ = {®P*},_|,  y parameterizing a
local section of E. Our signature convention for g, is (—,+,...,+). We shall
also assume that each time-slice X, = {¢} x X is space-like and that the boundary
T =10,T] x dX is time-like with respect to g,,(®). In the following, we will re-
fer to local sections in E as vector-valued functions over M. We will also assume
the existence of a positive-definite fibre metric si4p on E. We consider a system of
quasilinear wave equations of the form

g (P)V,V, " = A (D, VD), (D)

where §4(®, V@) is a vector-valued function which depends pointwise and smoothly
on its arguments. The wave system (I)) is subject to the initial conditions

4| 5= @, v, =113, )

o

where @ and IT} are given vector-valued functions on Xy, and where n” = n?(®)
denotes the future-directed unit normal to Xy with respect to g,,. In order to de-
scribe the boundary conditions, let 7¢ = T%(p,®) be a future-directed vector
field which is tangent to .7 and which is normalized with respect to g, and let
N = N%(p,®) be the unit outward normal to .7 with respect to the metric g,p.
We consider boundary conditions on .7 of the following for

b b A _ aA B A B A
[T +aN}Vde ‘y_ca 5 Va®P| , +dts 8| 4G, 3)

where @ = o(p, @) > 0 is a strictly positive, smooth function, G* = GA(p) is a
given, vector-valued function on .7 and the matrix coefficients c*4 3 = c*43(p, @)
and d*p = d*(p, P) are smooth functions of their arguments. Furthermore, we
assume that ¢4 can be made arbitrarily small in the following sense: Given a
local trivialization @ : U x RY +— 7~!(U) of E such that U C M is compact and
contains a portion % of the boundary .7, and given € >0, there exists a smooth

2 We adopt the Einstein summation convention for the lower case Latin abstract spacetime
indices a, b, c, ... as well as for the Capital indices A, B, C, ... on the fibre of E.
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map J : U — GL(N,R),p — (JAp(p)) such that the transformed matrix coeffi-
cients

A g = JA € (J—I)DB
satisfy the condition
hapc® (D) B p (P, VP < ehype®(@)V,AV,E, 4)

for all vector-valued one-forms V;‘ on 7/, where here and in the following, e
refers to the Euclidean metric ey, = gqp + 2T, T, which is defined for points on 7.
The main result of this paper is:

Theorem 1 The IBVP is well posed. Given T > 0 and sufficiently small
and smooth initial and boundary data @6‘, Hé‘ and G* satisfying the usual com-
patibility conditions at d Xy, there exists a unique smooth solution on M satisfying
the evolution equation (1)), the initial condition and the boundary condition
@). Furthermore, the solution depends continuously on the initial and boundary
data.

A common situation in which condition (4) is automatically satisfied is given
in the following:

Lemma 1 Let % C 7 be an open and bounded subset of 7. Assume there exists
a smoothmap J : % — GL(N,R), p+— (JAg(p)) over % such that the transformed

. . ~ —1\D . . .
matrix coefficients &g := JAcc*Cp (J 1) B are in upper triangular form with

zeroes on the diagonal, that is
&4 =0, B<A.
Then, the condition is satisfied on U .

Proof (cf. The proof of the Liapunov stability theorem). In order to simplify the
notation we use a matrix notation and write & = Jc¢®J~!. Let § > 0, and define
D; := diag(1,8,8%,...,6""1) and J5 := Dy 'J. Then, ¢% := J5c"J5' = D5'¢“Dys
has the components (c‘g)AB = §8-4¢44p, where here, 8574 refers to the (B —

A)™ power of §. Since &5 = 0 for B < A we have ¢4 = /(§), and ¢4 satisfies
condition (4)) provided § > 0 is chosen small enough. O

The proof of Theorem [T]is given in Sects. [l and [T} In order to illustrate the
ideas on a simpler example, we start in Sect. |lIl with the wave equation on a fixed
background metric g, and analyze the general case in Sect.

Since many physical systems can be described by systems of wave equations,
Theorem|I]should have many applications. In the following, we mention two such
applications for the initial-boundary value formulation of isolated systems with
constraints. The physical motivation for the choice of nonreflecting boundary con-
ditions in these examples is described in detail in Sect.
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B Maxwell’s equations in the Lorentz gauge

The first application describes an electromagnetic field on the manifold M =
[0,T] x X with a fixed background metric g, and corresponding Levi-Civita con-
nection V,. As before, we assume that each time-slice X, = {¢} x X is space-
like and that the boundary 7 = [0,T] X dX is time-like. In the Lorentz gauge
C:= VbAb = 0, where A? denotes the 4-vector potential, Maxwell’s equations
assume the form of a system of wave equations,

gV, V,AC = R AT — J€, 5)

where R, denotes the Ricci tensor belonging to the metric g,;, and J€ is the four-
current. Equation (3 implies that the constraint variable C obeys the following
equation:

gV, V,C = —V°y.. (6)

Therefore, the imposition of the boundary condition C| ; = 0 and the satisfaction
of the continuity equation V¢J, = 0 imply that any smooth enough solution of
with initial data satisfying

Cly, =0,  n'VCls, =0,

satisfies the constraint C = 0 on M since in this case the constraint propagation
system (6] is homogeneous.

Asymptotically nonreflecting boundary conditions at .7 = [0,T] x X, in the
sense of Sect.[IV| can be formulated by first introducing a null tetrad {K¢, L%, 0, 0}
which is adapted to the boundary. Let T“ be a future-directed time-like vector field
tangent to .7 normalized such that g,l;,T“Tb = —1. For example, one can define
T“ by orthogonal projection of the future-directed normal to the time-slices X,
onto 7. Next, let N denote the unit outward normal to .7 with respect to gu
and complete 7¢ and N to an orthonormal basis {7¢, N, V¢, W*} of T,M at each
point p € 7. Then, we define the null vectors

Ka = Ta+Na7 La = ']*a_]va7 Qa::va+iwa7 Qa::va_l-Wa7

where i = +/—1. Finally, let r denote the areal radius of the cross sections dZ;. The
following boundary conditions are motivated from the considerations in Sect. [V|B}

2
KK,V A"+ ZK,AP =gk, (7
r 7
(K°0y— 0"Ky) Ve"| = 4o, ®)
(K“Ly+L"Ky — 00y — 0"Qy) Ver?| _ =0, ©

where g and g¢ are given real and complex scalars on .7. The first condition
is a gauge condition, the second condition controls the electromagnetic radiation
through .7 and the third condition enforces the constraint C = g*’V,A, = 0 on
T . For the special case of a flat background with a spherical boundary, these
boundary conditions reduce to the ones proposed in Sect. [[V|B]which are shown to
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yield small spurious reflections. Therefore, we expect them to yield small spurious
reflections also in the case of asymptotically flat curved spacetimes as long as the
boundary is nearly spherical and located far into the wave zone.

The evolution equation (5) has the form (I)) where E is the tangent bundle over
M, and the boundary conditions have the form (3) with

a=1,
1 _ - - 1
4= 3 [2Q(”QC)Kd +LK°Ky— K (Q“Qu+ Qan)} , da=-LKy,

G = [-Lqx + O°qo+ Q°Go] -

N =

Since

Cachd = 0,

0% = — K¢,

Cach'd — 0K,

cachd — _L9K° — 0°Q° — Q°QF,

the matrix elements ¢““; are in upper triangular form with zeroes in the diagonal
when expressed in terms of the basis {K%, 0%, 04, L4 }. Therefore, the assumptions
of Lemmal|I] are satisfied and we obtain a well posed IBVP.

C Einstein’s equations in harmonic coordinates

As a second application of our theorem we consider Einstein’s field equations in
(generalized) harmonic coordinates. For this, we follow (L5; [16) and choose a
fixed background metric ¢, on M = [0,T] x X with the property that each time-
slice X; = {t} x X is space-like and the boundary .7 = [0,T] X dX is time-like
with respect to ¢ ,,. We impose the following gauge condition on the dynamical
metric gup:

o

GC = g (rca,, -r 'fa,,) —H®=0. (10)

Here, H¢ is a given vector field on M and I, and F €4 are the Christoffel sym-
bols corresponding to the dynamical and background metrics, respectively. In the
particular case where H® = 0 and where the background metric is the Minkowski

metric in standard Cartesian coordinates, I" €, vanishes, and the condition 4’ =0
reduces to the usual condition for harmonic coordinates [Ix* = 0 for u = ¢, x,y,z.
However, the advantage of the condition is that it maintains the covariance of
the theory since €“ is the difference between the two Christoffel symbols,

° 1 o ° °
Cwp=Ip-T 4= Eng (Vahbd +Viphag — thab> , (11)

where h., = g4p — 8 45 denotes the difference between the dynamical and the back-
ground metric.
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With the condition (10), Einstein’s field equations are equivalent to the wave
system

8V YV dhap = 2818 C%acC’ by +4C€ 4(481) e Ccrg™ — 2g6d1§ecd(agb)e

1
+167nG (Tab - zgabngTcd> +2V (o Hp), (12)

where R’ »ea denotes the curvature tensor with respect to g, T the stress-energy
tensor and G denotes Newton’s constant. Solutions of this equation which are
smooth enough imply that the constraint variable %, satisfies

4V V€ = —RL €, — 161GV Ty, (13)

Therefore, the imposition of the boundary condition %,|, = 0 implies that any
smooth enough solution of with initial data satisfying

Culs, =0,  n'VGly, =0,

satisfies the constraint 6, = 0 on M provided the stress-energy tensor is divergence
free, V2T, = 0.

In order to formulate asymptotically nonreflecting boundary conditions we
first construct an adapted local null tetrad {K“, L9, Q% Q} as in the electromag-
netic case. Notice that here these quantities are defined with respect to the dy-
namical metric g, and not the background metric g, and as a consequence, they
depend on g,;. However, it is important to note that these vectors do not depend
on derivatives of g,;. A radial function r on .7 is defined as the areal radius of the
cross sections dX; with respect to the background metric. The boundary condi-
tions which are motivated from the considerations in Sect. [[V]|C|are the following:

KK KV yhye + %K”K"hbc = gk, (14)

T
KKPLEV ghye + %K”thbc + %Qthhbc = 400 (15)
Wﬂ@ﬁmm+%ﬂﬂ%gz—%@ (16)
K'Q"QV ahye = Q' Q"K*V uhse| = —d00. (17)

(KquQ_C‘i‘LuKbKC _ QaKbQC _ QaKch) Voahbc

.= —2KH,| 7, (18)

(K“L°0° +L°KP Q" — Q"KL + 00" Q° ) Vulue| _ = ~20"Ha| 7, (19)

T

(K“L”Lc +L19Q"0° — 0 Q"Le — Q“Qch) V by , = "Mz, (20)

where ggk and g are real-valued given functions on 7 and ggp and gpp are
complex-valued given functions on .7. The evolution equation has the form
where E is the vector bundle of symmetric, covariant tensor fields on M and the
boundary conditions | ) have the form , where a=1 and ¢%*¢,, is in upper
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triangular form when
expressed in terms of the basis {K?K¢, K(*L) K* Q%) 0P 0¢, 0 Q) L) 1PL<Y.

For the case where g, is the Minkowski metric and Ay, is treated as a linear
perturbation thereof, the boundary conditions reduce to the ones proposed
in Sect. for a spherical boundary. As in the preceding application to electro-
dynamics, we expect these boundary conditions to yield small spurious reflections
in the case of a nearly spherical boundary in the wave zone of an asymptotically
flat curved spacetime. Their content can be clarified by considering the case of
a wave incident on a plane boundary. The discussion in Sect. shows that
the first three conditions (14),(I3) and are related to the gauge freedom; and
the condition controls the gravitational radiation. The remaining conditions
(18).,(19) and enforce the constraint %, = 0 on the boundary.

II The Wave Equation on a Curved Background

In this section we prove Theorem [I] for the case of a single wave equation
§'VaVpp = 1)

on M =[0,T] x X. For simplicity, we also assume that g, and S are independent of
¢ and that V, is the Levi-Civita connection with respect to g,;. The IBVP consists
in finding solutions of (ZI)) subject to the initial conditions

¢|ZO = ¢07 nbvb¢‘2 =T, (22)
0
where ¢g and 7y are given functions on Xy, and the boundary conditions
[T”V,,qb n aNbe(b} ,=G. (23)

where G is a given function on 7. Here, n? and N? denote the future-directed
unit vector field to the time-slices X; and the outward unit normal vector field to
T, respectively, T? is an arbitrary future-directed time-like vector field which is
tangent to the boundary surface .7 and « is a strictly positive function on 7.
Without loss of generality, we assume that T¢ is normalized such that g, TT? =
—1. Furthermore, by redefining ¢ and S if necessary, we may also assume that the
boundary data G vanishes identically.

In order to show well posedness for this problem, we use a geometric reduction
to a first order symmetric hyperbolic system with maximal dissipative boundary
conditions (3 4;17). First, introducing the variables V, = V¢, the wave equation
can be rewritten as the first order system

Vo = Vq, (24)
gV, =S, (25)
ViV —VV, =0. (26)
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Next, we specify any future-directed time-like vector field u* and contract the first
and the last equation with it. This yields the evolution system

£,0 =u'V, =11, 27)
gV, =S, (28)
£,V = V,II, (29)

where £, denotes the Lie derivative with respect to #“. This system is subject to
the initial and boundary conditions

¢|20 = ¢0a l’leb

[Tbvb n azvbv,,] =0, 31)

=M, 10V =15 Vo, (30)
X

where 1o : Xy — M is the inclusion map, and subject to the constraint C, = 0, where
the constraint variable C, is defined as C, =V, — V,¢. The evolution equations
and (29) imply that C, is Lie-dragged by the time evolution vector field u,

£,C,=0.

In the following, we assume that u“ is pointing away from the domain at the bound-
ary. This implies that a solution of with constraint-satisfying initial data
automatically satisfies the constraints everywhere on M, and no extra boundary
conditions are needed in order to ensure that the constraint C, = 0 propagates.

Still, there is a huge freedom in choosing the evolution vector field u“; different
choices lead to first order evolution systems which are inequivalent
to each other if the solution is off the constraint surface C, = 0. In this work
we exploit this freedom in order to obtain energy estimates which allow for an
appropriate control of the fields not only in the bulk but also on the boundary of
the domain (see the estimate below). In order to analyze this, following (17)
we rewrite the evolution system (28]29) in the form

AV V= —u(VV — VpVa) +upV, Ve = S,

where the symbol is given by &/“j. = —u’gpe +28 U . Since &7y is symmetric
in bc and since u, /%y = —u u’gp + 2upu, is positive definite, the evolution
system is symmetric hyperbolic. In particular, the evolution equations imply that

V(e VIVE) = (Vo 4 )VEVE +2(up VP)S.
Integrating both sides of this equation over the manifold M = [0, 7] x X and using
Gauss’ theorem, one obtain
/ ngdpVOVE = / na i VOVE + / Nyt VPVE
Zr Xy T

- / [(vaa{“bc)vbvwz(ubV”)S] (32)
M

3 Notice that since n“ is future directed, its flow increases ¢; hence in coordinates (t,xi ), where
t parametrizes [0, 7] and x' are local coordinates on X, we have n’ > 0 and n; < 0.
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The following two conditions from the theory of symmetric linear operators (see
(4)) guarantee that the first order IBVP (27)28][293031) is well posed:
(1) nga9??p is positive definite.
(i) For each p € .7, the subspace .4#_(p) C T,M consisting of the vectors
V?(p) satisfying the boundary condition at p is maximal non-positive.
This means that N,<7%.(p)V?(p)V¢(p) < 0 for all V®(p) € A~ (p) and
that 4 (p) does not possess a proper extension with this property.

For the following, we choose the time evolution vector field 4 such that u? is
everywhere future-directed and time-like on M and such that 4 lies in the plane
spanned by 7¢ and N“ at each point of the boundary, more specifically,

u®| ; =T+ SN,

with 0 < & < 1 a function on .7. The following two lemmas imply the satisfaction
of the conditions (i) and (ii) for an appropriate choice of d.

Lemma 2 n,9/%,.(p) is positive definite for all p € M.

Proof Let hyp = gap +ngnp be the induced metric on X; and expand u, = u(n, +
ii,), where g = —n“u,. Since u” is future-directed and time-like, g > 0 and #“i, <
1. Therefore,

na s *pe = u (hbc +npn, + 2n(bﬁc))
is positive definite. [

Lemma3 Let0< 8§ < a(l+a?)~L. Then, the boundary spaces AN _(p) are max-
imal non-positive for all p € 7.

Proof (cf. Appendix B in Ref. (9)). Fix a point p € .7, and let V? € T,M. We have
N, VPV = [§T,T, + SN,N, + 2T),N,) — & Hp] vhye
=9 [(T”Vb)2 +(N"V)? +H,,vavc}
+2 [5 (TPV) 4+ 8 (NPVy,)* + (T”V,,)(NCVC)} :

where Hp. = gpe + TpT. — NpN, is the induced metric on the orthogonal comple-
ment of the plane spanned by 7% and N®. Eliminating the terms (7”V,) in the
second square bracket on the right-hand side using the boundary condition (31))
we obtain

Nt VPV = =8 {(Tbv,,)2 + (NV;,)? +Hbcvbvc} +2[8(a® +1) — a] (N*V;,).
(33)
The last term on the right-hand side is non-positive by the assumption of the
lemma. Therefore, N,.27“p. is negative-definite on the subspace of vectors V¢ sat-
isfying the boundary condition. Finally, we observe that .4~ (p) is maximal since

its dimension is d = dim7,M — 1, while the symmetric bilinear form N,.7“}. has
signature (1,d). O
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If we relax the assumption of homogeneous boundary data and replace the
condition (3T) by the condition

[T"Vb n ochVh] ,=6, (34)
we obtain, instead of (33)),
Nl VPVE = 8 [(Tbvb)2 +(NPV,)? +H;,CVbV“] +2[8(02+1) — a] (N?V,)?
+2(1-280a)(N*V,)G+28 G*.

Let0 < p < 1andset § = (1 —p)a(l+a?)~!. Then, we have (cf. Appendix B
in Ref. (9))

(1-28a)?

N, % VPve< —§ (T”Vb)2+(N”Vb)2+HbCV”VC}+ [25+ Sap

] G*. (35)

This and the positivity of n,7“y. implies the existence of strictly positive con-
stants C| and C, (depending on & and p) such that

Ny VIVE < —Cing VPV + C,G?. (36)

Using this in the identity (32) we obtain the estimate

/ Ng“p VPVE < / nad“pVIVE —C / Na“pVEVE+Cy / G?

% 2o T G
t
+C; / / na ol VPVE + / S| ds
0 [ P

for all 0 <t < T, where Cy, C; and C3 are strictly positive constants which are
independent of V?, and .7} := [0,t] x dX. Applying Gronwall’s lemmﬂ to the

t
function y(t) := [ [ naa/“,.V°V<ds we obtain from this
0%,

Lemmad4 Let T > 0. There is a constant C = C(T) > 1 such that all smooth
enough solutions to the IBVP (28|29I30U34)) satisfy the inequality

/ Na“pVPVE + / N VOVE
5 b

t
<c / 1yl VPV + / G+ / (C/ 2| as| . 37)
P T 0 s

forall0 <t <T, where 7, :=[0,t] x dX.

4 See, for instance, Lemma 3.1.1 in Ref. (I8).
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Since any solution of this problem also satisfies u’C, = u*V,—£,¢0 =0, £,C, =
0 and 1;C, = 15(Va — V40) = 0, and since u“ points outward from the domain at
T, the constraint C, = 0 is satisfied everywhere on M. From this and the previous
lemma, we have established:

Theorem 2 The second order problem (21122|23)) is strongly well posed: given
smooth initial and boundary data ¢y, Ty and G satisfying the usual compatibility

conditions at dX, there exists a unique smooth solution satisfying the estimate
(37) with V¢ replaced by V*¢.

Remark 1 The important feature of the estimate is the second term on the
left-hand side which yields a L? boundary estimate for the gradient of ¢. This esti-
mate is obtained by choosing the time evolution vector field u¢ in such a way that
the boundary matrix N,<7“y. is negative definite on the subspace of vectors satis-
fying the boundary conditions. As we will see (Lemma [fin the next section), this
property is important for systems of wave equations since it allows the coupling
of the boundary conditions through small enough terms involving first derivatives
of the fields. If, on the other hand, u“ is chosen to be tangent to the boundary,
the boundary matrix has a nontrivial kernel and one does not obtain an estimate
for the full gradient of ¢ on the boundary from the first order system. However,
this does not affect the strong well posedness of the second order system which is
independent of u®.

As an example, consider the wave equation on the half-plane £ = R, x R?
with the flat metric g = —dr? 4+ dx”> 4 dy*> + dz>. In this case, we have

W9, =a, NG, ——d, T9,— i (O — B9y — B7.),

with (8)2+(B%)? < 1 and p := /1 — (B”)% — (B%)2, and the boundary condition
(23)) reduces to

(¢ + pady — ﬁyqby - l3z¢z]x:0 = pG, (38)

where ¢ := ;¢ etc. Choosing u® = p(T*+ 6N) with 0 < § < 1, the energy norm
for this problem reads

I

oo

/ N VOVE= /
0

%

—3

(07 + 072+ 67 + 02 +2¢, (5 + B9y + B*¢.)] dvdzdx.

8

This is similar to the norm we used in Ref. (9) for obtaining an a priori energy
estimate for the second order wave equation with boundary condition (38).

III Systems of Wave Equations and Proof of Main Theorem

In order to show that the system (I]2][3) yields a well posed IBVP, we follow the
arguments given in Sect. [[] and reduce it to a first order symmetric hyperbolic
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system with maximal dissipative boundary conditions. Let V, := V,®4, and let
u’(p, @) denote a future-directed time-like vector field on M such that

W], =T+ 8N,

with 0 < 6 < 1 a function on 7 to be determined. Then (1) can be rewritten as
the first order evolution system

UV, d* = u'v,A, (39)
g (P)V V't =54 (@,V), (40)
u (VaVi* = ViV ) = u'R g @7, (41)

where R*z,;, denotes the curvature belonging to the connection V,. At this point,
we stress that the connection V,, is a fixed background connection on the vector
bundle £, and not the Levi-Civita connection belonging to the metric g,
that R4, does not depend on @ nor its derivatives. The system (39[40[41) is
subject to the constraint C,* = 0, where C* := V,®* — V},A. Equations (39[41)
imply that the constraint variable C," is Lie-dragged by u“:

£,02 = u'V,Cr + (Vpu)CA = 0.

Therefore, any smooth enough solution of the first order problem (39404 T)) be-
longing to initial data with C,4 = 0 satisfies the constraint C,4 = 0 everywhere it
is defined. The initial condition is

|, =, nbv,;“‘ —I, VA=V, 42)
Zo
and the boundary condition (3) reads

[Tbe n ochVb} L=Vl dty P, 4G (43)

In order to analyze the well posedness of the first order IBVP @L@@}@}@
we first linearize the system by replacing the coefficients g.,(P), S*(P, VD),

TP (D), N° (D), a(P), c“Ap(P), d*p(P) by smooth functions gup, S4, T?, N?,
a, c*p, d*p, respectively. Local in time well posedness for the original quasi-
linear system follows by iteration from the well posedness result for the linear
system with enough differentiabilityﬂ Next, we use a partition of unity in or-
der to localize the problem. With this, it is sufficient to consider a local triv-
ialization ¢ : U x RN + 7=!1(U) of E such that U C M is compact and con-
tains a portion % of the boundary 7. Let € > 0. According to the assump-
tion there exists a smooth map Je : U — GL(N,R),p — (Je¢(p)) such that the
transformed matrix coefficients & := Jec?J; ! satisfy the condition for all
vector-valued one-forms V, on % . Setting hap(€) := (JI hJe)ap = hep(Je )€ a(Je)Pp,
we can reformulate this condition by stating that

hag(€)c (@) (@)W, VP < ehpp(€)e® (@)V,AV,E, (44)

5 See, for instance, (10% [I8).
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for all vector-valued one-forms V4 on % . The system (39)40J41) can be written
in the form

~Ahas(e)uV, 0 by
( sale) hAB(g)thv) (ch) (@), (45

where A > 0 is to be determined, &7, = —u®gp. + 25”(bu0) and

[ —Ahap(e)uV,B
V)= (hAB(«S)RBCahd’Cu“ +hap(€)upSE(P.V) )

Let B(ng; (W,W),(®,V)) denote the bilinear form belonging to the principal sym-
bol of [@3), that is, for an arbitrary one-form w, on M define

B(wg; (W, W),(d,V)) := —Au“wahAB(e)‘I’AdDB +hAB(£)wa,Q%“bCWbAV”B.
We have

Lemma 5 Let A > 0. Then, B(ng; (W, W),(P,V)) is symmetric in (P,W),(P,V)
and positive definite for w, = u, and w, = n,. Therefore, the system is sym-
metric hyperbolic.

Proof The symmetry property follows immediately from the symmetry of i145(€)
and the symmetry of .&#“,. in bc. In order to check the positivity statements, let
Wa = Uy, ¥ 1= /—u%ug and ity := Y~ 'u,. Since o/ peuty = ¥ [gpe + 20pilc], we find

Blug; (®,V),(®,V)) = P [AhAB@)cpAan + (b +2ﬁaab)hAB(s)vaAvbB}

which is manifestly positive definite. The proof that B(n,; (®,V),(P,V)) is posi-
tive definite is similar to the proof of Lemmaf[2] 0O

As in the previous section we obtain well posedness of the linearized system
provided we can show that each boundary space

H(p) = {(@.V) €RY xRV [ T(p) + a(p)N'(p) |
= y(pVoP +d'p(p)®%y,  pew,

is maximal non-positive with respect to B(N,; (D,V),(P,V)). This is the state-
ment of the next lemma.

Lemma 6 Set §:=a(1+0a?)~'/2and k :=2[28 +(1—28a)?/a)>. Choose € >

0 small enough such that ke < § and A > 0 large enough such that 2khap(€)d* cd® p®C PP <

SAhsp(€)PADE for all & € RN. Then, the boundary space N _(p) is maximal
non-positive for all p € % .

Proof Let p € % . We have, as in the proof of Lemma 3]
B(Ng: (@,V),(®,V)) = —Au'Nyhap(€) D" O + hpp ()Nt VPAVE
— —Shap(e) [(T“TMN“N”+H“”)vaAv,,B+Aquq>B}

+2 [5 79T + SNON® + T“N”} has(e)VAV,E. (46)
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Let (@4, V,A) € A4 (p). Then, TV,A = —aN?V,A + G* with G* := ¢4V, B +
d*p®P, and we may use this equation in order to eliminate the terms (TV,4) in
the second bracket on the right-hand side of (#6). This yields

B(Na; (®,V),(®,V)) < —Shap(e) {(T“Tb+N“Nb+H“b)VaAV;,B+AchrDB]

_ 2 o
(lzfa)] hAB(S)GAGB,

+ [26 -
where we have set § := a(1 +a?)~! /2 and used the boundary estimate with
p =1/2. Now,

hap(€)GAG? < 2hap(€)c™cV,.CPBpV,P + 2hap(€)d? c DCd® p PP
< 2ehap(€)e™V, AV + 2hpp(€)d” cdB p DC D, (47)

where we have used the estimate (44) in the last step. Recalling that ¢ = g% +
2T4TY = T4T? 4 N*N® + H® and the definition of k in the assumption of the
lemma we find

B(Noi (9,V),(9,V)) < —8hap(e) [?VAV,P + A AP |
tx [ehAB(e)e“bVaAV;,B Fhap(e)dAcdBpdC P .

The non-positivity of .4Z(p) now follows from the assumptions on € and A. Fi-
nally, we observe that an element in .4_ (p) is characterized by N linear conditions
in a (d +2)N-dimensional vector space which implies that dim.A4Z (p) > (d+1)N.
On the other hand, from Eq. we see that the signature of B(N,;.,.) is given by
(N,(d + 1)N). Therefore, dim.A4_(p) = (d + 1)N and the maximality of .4#_(p)
follows. O

IV Boundary Conditions for Isolated Systems

We consider here boundary conditions for an isolated system emitting radiation.
If, for computational purposes, the evolution domain of such a system has a finite
(artificial) boundary, some artificial boundary condition must be imposed. If one
knew the correct boundary data for the analytic problem, then in principle one
could use any boundary condition corresponding to a well posed IBVP. However,
the determination of the correct boundary data is in general a global problem, in
which the boundary data must be determined by extending the solution to infin-
ity either by matching to an exterior (linearized or nonlinear) solution obtained
by some other means. The matching approach has been reviewed elsewhere (19).
Here we consider an alternative approach in which homogeneous boundary data
can be assigned in such a way that the accuracy of the boundary condition becomes
exact in the limit that the boundary is extended to infinity. (Such boundary condi-
tions would also be beneficial to the matching approach because the corresponding
boundary data would be small so that numerical or other error would also have a
small effect.) Artificial boundary conditions for an isolated radiating system for
which homogeneous data is approximately valid are commonly called absorbing
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boundary conditions (see e.g. (20; 215 225 123; 24; 25))), or nonreflecting boundary
conditions (see e.g. (26} 27;[28))) or radiation boundary conditions (see e.g. (29)).
Such boundary conditions are advantageous for computational use. However, lo-
cal artificial boundary conditions are not perfectly nonreflecting in general. Here,
to be more precise, we consider nonreflecting boundary conditions in the sense of
boundary conditions for a well posed problem for which homogeneous data pro-
duces no spurious reflection in the limit that the boundary approaches an infinite
sphere. The extensive literature on improved versions of nonreflecting boundary
conditions involves higher order and nonlocal methods. Our interest here is to
investigate the optimal choice of local first order homogeneous boundary condi-
tions on a spherical boundary for the constrained Maxwell and linearized Einstein
problems expressed in terms of the gauge dependent variables A* and y*V. See
(305 1315 132) for the construction of higher-order and higher-accurate boundary
conditions for Einstein’s equations.

We base our discussion on waves from an isolated system satisfying a system
of flat space wave equations. We use Greek indices to denote standard inertial
coordinates x* = (¢, x,y,z) in which the components of the Minkowski metric n*¥
are diag(—1,1,1,1). In the case of a scalar field @, we thus consider the wave
equation

N0 dp® = (—0} + 07 + 92 +92) @ =S,

where the source S has compact support. Outside the source, we assume that the
solution has the form

f(t_raead)) +g(t—r,6,(])) +h(t,r,6,(]))

@ =
, 2 3

: (48)

where (1,0, ¢) are standard spherical coordinates and f, g and 4 and their deriva-
tives are smooth bounded functions. These assumptions determine the exterior
retarded field of a system emitting outgoing radiation. The simplest case is the
monopole radiation

flt=r)

which satisfies (J; + d,) (r&) = 0. This motivates the use of a Sommerfeld condi-
tion

b =

L0 +2)(rP)k = 4(1.R0,0)

on a finite boundary r = R.

The resulting Sommerfeld boundary data g in the general case falls off as
1/R3, so that a homogeneous Sommerfeld condition introduces an error which is
vanishingly small for increasing R. As an example, for the dipole solution

DPpipole = 8zf(tr_ N__ <f,(t 1) + - r)) cos 6

r }"2

we have
f(t—r)cosO

= (49)

q:
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A homogeneous Sommerfeld condition at r = R would lead to a solution <I3Di,,(,le
containing a reflected ingoing wave. For large R,

. F(t4+r—2R)cos0
(PDipole ~ (PDipole +K ( ’ ) s

where d,f(t)=F(t) and the reflection coefficient has asymptotic behavior k =
O(1/R?). More precisely, the Fourier mode

B l0t=r) £l O +r—2R)
(pDi[mle(a)) = az + Ko 5

r r

satisfies the homogeneous boundary condition (9, + 9, ) (r@pipete) (®)|r = 0 with
reflection coefficient

1 1
20°R*+2i0R— 1 20°R*’
Note that (50) and satisfy

Kw:

(50)

K ~ gR. (51)

In the case of a system of equations k will have N components corresponding to
the number of modes generated in the reflected wave. The boundary conditions
lead to a system of simultaneous equations relating x to the components of the
Sommerfeld data g. If these equations are nondegenerate then (51 continues to
hold. However, degeneracies could conceivably lead to weaker asymptotic falloff
of k. (It would be interesting to determine whether such cases exist.) In any case,
(51) gives the optimum allowable behavior of the reflection coefficients so that the
asymptotic behavior of the Sommerfeld data g is a good indicator of the quality of
the boundary condition. This forms the basis of our investigation of the Maxwell
and linearized Einstein equations with a spherical boundary in Sects. [V|[B] and

VIid

A A plane boundary

The key ideas in the above example are that (i) the Sommerfeld condition is only
satisfied exactly by waves traveling in the radial direction and (ii) in the asymptotic
limit r — oo all waves from an isolated system propagate in the radial direction.
This allows us to reformulate our discussion of the Sommerfeld condition by con-
sidering a wave @ propagating in the domain x < 0, which is incident on a plane
boundary at x = 0 with the boundary condition

Kaaaq)‘x:() - O7

where K%dy = 0; + 0 is the characteristic direction determined by the outward
normal to the boundary J, and the time direction d;. This homogeneous condition
is satisfied for plane waves @ = G(t + kx + kyy + k.z) incident on the boundary
only for the single case (ky,ky,k;) = (1,0,0), i.e. a plane wave propagating in the
outgoing normal direction. Plane waves in the normal direction pass through the
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boundary, whereas plane waves incident in other directions on the boundary give
rise to a reflected wave. We will take advantage of this simplification of the plane
wave case in discussing boundary conditions for electromagnetic and gravitational
waves. The results then suggest how to formulate boundary conditions for an iso-
lated electromagnetic or gravitational system with a spherical boundary of radius
R, where in the limit R — oo all radiation is incident normally.

For the electromagnetic case, we describe the field by means of a vector po-
tential A* satisfying the Lorentz gauge condition. Maxwell’s equations in a flat
spacetime with Minkowski metric n*V then reduce to the wave equations

N 9ydpAt =0
subject to the constraint
C:=dyAt =0

introduced by the Lorentz gauge condition. This constraint keeps us from requir-
ing that each component of A* satisfy a homogeneous Sommerfeld condition,
in contrast to the scalar example. The electromagnetic case also differs from the
scalar case because of the remaining gauge freedom allowed by the Lorentz con-
dition.

An electromagnetic plane wave incident in the outgoing normal direction can
be described by the real part of the vector potential

Ay =F(t—x)Qu+G(t—x)Ky,

where F(t —x) is complex, Q" = Y* +iZH is a complex null polarization vector,
G(t —x) represents gauge freedom and K* = T* + X*, in terms of the orthonormal
tetrad (TH, X", Y* Z") aligned with the coordinate axes satisfying

Nuv = —TuTy + Xy Xy + Yo Yy + ZuZ,.

In order to formulate a gauge invariant boundary condition we consider the
corresponding electromagnetic field tensor

F‘uv - a”AV - avA‘u - 7F/(t 7.X)(K“Qv - Q“Kv).

Here we adopt the notation d,F (u) = F’(u). For this plane wave, all components
of Fyy satisfy

KMF[-LV == 0.

However, this condition rules out the possibility of a static electric field oriented
normal to the boundary. For the purpose of formulating a boundary condition
which only restricts propagating waves it suffices to consider the weaker condition

K"QVFy, =0. (52)

In terms of the electric and magnetic field components tangential to the boundary,
(52) corresponds to the plane wave relations Eyy, - Bign = 0 and |Esg,| = [Byan|,
with the corresponding Poynting vector in the outward normal direction.
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We can incorporate (52)) into the following homogeneous Sommerfeld bound-
ary conditions for the vector potential:

KVKHIA, =0, (53)
QVK“a/JAV = KquauAv. (54)

The remaining boundary condition can be expressed in Sommerfeld form by rewrit-
ing the constraint as

where L# = TH — XH. Here (K*,L*, Q") form a null tetrad according to the con-
ventions

Muv = _K(uLv) + Q(va) (56)

We assume throughout the following that the spin transformation freedom Q* —
¢'®QH has been restricted according to K*dya = 0. The Sommerfeld boundary
conditions (53)), and (55) have the required hierarchical, upper triangular form
for a well posed IBVP, see Lemmal[I]

For the purpose of extending this approach to the gravitational case, we write
the linearized Einstein vacuum equations in the form

N* 9 dp ¥ =0 (57)
subject to the harmonic constraints
CVi=—oyv"' =0. (58)

Here, to linearized accuracy, we set \/—gg"" = n*v 4+ "V so that y,y = —huy +
%nuvh represents the densitized version of the metric perturbation g,y = My +
hyuy. (Indices of linearized objects are raised and lowered with the Minkowski
metric.) The corresponding linearized curvature tensor is

2Ryuvpo = Ipdvhuc — edyvhup — IpOuhve + s duhvp- (59)

In the linear approximation, the diffeomorphism freedom reduces to the gauge
freedom hyy — hyy + 28(# év), which leaves Ry o invariant.

A plane wave incident on the boundary in the outgoing normal direction is
given by the real part of

huv = F<t _X)QI.LQV +28([,L§V) (t —X) = F(t _x)QI.LQV _2K(‘u€v)(t_x)7 (60)

where the &, (f — x) term describes a pure gauge wave. Similarly, a plane wave
incident on the boundary in the ingoing normal direction is given by

huy = F(t +x)Qu0Ov — 2L, 8y (t +x). (61)

In these plane waves, F describes the gravitational radiation. The curvature tensors
corresponding to (60) and (61) are, respectively,

R“vpg = 2F”(l 7X)K[,~LQV]Q[I3KG] (62)
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and

The analogue of the boundary conditions (14)),(I3),(I6) and for a plane
boundary are

K*KPL duhps = —qpp, (65)
K“Kpanuhpc = —4KQ; (66)

(KHQPQ? — Q" QPK®)duhps = —q00- (67)

The outgoing plane wave (60) satisfies the homogeneous boundary conditions
dkk = 4o = qko = qoo = 0. For the ingoing plane wave qE_TP,

qkx = —8K° &g (1 +x),
dog = —4L%Eg (1 +x),
grko = —40°EL(t+x),
qo0 = —4F’(t+x),

all evaluated on the boundary at x = 0. Thus the boundary conditions (64),(65) and
(66) control the gauge waves entering through the boundary; and the condition
(67) controls the gravitational waves entering.

In order to formulate a boundary condition with gauge invariant meaning anal-
ogous to @]) in the Maxwell case, we consider the linearized curvature ten-
sor. Outgoing wave boundary conditions on the curvature tensor could be im-
posed by requiring that the Newman-Penrose component ¥ = K* QY QP K°Ry;vpo
vanish on the boundary. (See (2) for a discussion of the appropriateness of this
boundary condition.) However, this requirement involves second derivatives in
the normal direction when expressed in terms of ¥,y. Instead, we require ¥ :=
K*QYOPT Ry vps = 0 on the boundary. The condition ¥ = 0 is equivalent to
¥, = 0 if the Ricci component R,y Q* Q" = 0, e.g. if the vacuum Einstein equa-
tions are satisfied.

A straightforward calculation leads to

1
—2¥ = KuQVQpTG(apaquc — 6y Yup — OpuYvo + IsuVp) + EQvaavapY
= K'uQvaTO- (_agavyup — 8})8,1’)4/0 + agaupr)
1 _
LR 1007) 00
1 _

=00y <2 (K#KG +Q“QG) Qpap'}’uc —K“QPTGau70p>

+T°05 (—K* Q" 0P dyyup + K Q" 0P dup) - (68)

Thus, besides containing no second derivatives normal to the boundary, the
condition ¥ = 0 can be reduced to two first order conditions by factoring out the
09y and T, derivatives in which are tangential to the boundary. There
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are many ways this can be done. In order to obtain first order conditions which fit
into a hierarchy of Sommerfeld conditions, we modify (68) according to the steps

1 _ 1
—2¥ = Q%9 <2(KHKG+Q”QG)QpapYuo - EKPQ“LG@)}/”G

1
,EK# QPKGau }’cp)
+T°0s (_K“Qvaav?’up +K“Qvaau7vp) (69)
1 -
= 50"y ((K*K°Q" + Q"KL — 0"Q°0°)0p Yuo
—20"Cy — K*QPK° 0y Yop)

+T%05 (—K* Q" 0P 9y Yup + K* QY0P duip) (70)
= 20"3, ((K"K° 0 ~ 010" 0°)dy Yo — 2K QP K dyop —20°C)
+T%05 (K* QY0P duvp) - (71)

Thus since the derivatives QVd, and TV, are tangential to the boundary, we can
enforce ¥ = 0 on the boundary through the first order boundary conditions

QP KM 9y Yyp =0, (72)
K*QPKH Oy Yop — 5KOKP Q"0 Yop + 307 0P QFuYap = 0. (73)

These two boundary conditions can then be included in a hierarchical set of Som-
merfeld boundary conditions, according to the example

K*KPKH 3, vqp =0, (74)
Q*QPKH 97,5 =0, (75)
Q*QPK 9y y,p =0, (76)

K*QP K"y Yap — 3 K“KP Q" OuYup +30°0P OH duYop =0.  (77)

The constraints C, = 0, which determine the remaining boundary conditions, can
be cast in the Sommerfeld form

1

Cp =5 (L'K* +K"LF — 0" Q" — 0"0") dup = O,

which can also be incorporated into the hierarchy.

However, there are many alternative possibilities to (74)—(77) which preserve
the hierarchical Sommerfeld structure and lead to a well posed IBVP. In the ab-
sence of a clear geometric approach, we next examine the boundary conditions ap-
propriate to an isolated system by considering the resulting reflection off a spher-
ical boundary.
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B Application to Maxwell fields with a spherical boundary

In the case of a general retarded solution for a massless scalar wave equation,
we found that a Sommerfeld boundary condition on a spherical boundary of ra-
dius R required data ¢ = O(1/R?). Homogeneous Sommerfeld data gave rise to
an ingoing wave with reflection coefficient k = O(1/R?), as in . This is the
best that can be achieved with a local first order homogeneous boundary condi-
tion on a spherical boundary. We now investigate the corresponding result for the
constrained Maxwell equations expressed in terms of a vector potential A*.

In doing so, we associate spherical coordinates (r,x*), x* = (8, ¢), in a stan-
dard way with the Cartesian coordinates x' = (x,y,z), e.g. z=rcos 0. Asin we
introduce a null tetrad (K*,L*, Q") adapted to the boundary, where now K*d,, =
0, + 9y, L*dy = J; — 0, and we fix the spin-rotation freedom in the complex null
vector Q" = (0, Q') by setting

o
oA

0 o4, (78)

where

o~ (@0) (k)

We describe outgoing waves in terms of the retarded time u =t — r.

In order to investigate the vector potential describing the exterior radiation
field emitted by an isolated system we introduce a Hertz potential with the sym-
metry

H*Y = gl ln”VH.
4
Then the vector potential

A” == ale“w

satisfies the Lorentz gauge condition and generates a solution of Maxwell’s equa-
tions provided the Hertz potential satisfies the wave equation. The trace H repre-
sents pure gauge freedom.

We consider outgoing dipole waves oriented with the z-axis. Other dipole
waves can be generated by a rotation. Higher multipole waves can be generated
by taking spatial derivatives.

The choice H = Z"‘Balr”), H1V] = 0 gives rise to the dipole gauge wave

Ay — <F”(u) N F’(u)> cos 0K, + <2F’(u) N 3F(u)>

, 2 2 3

X 08 01 — <F/(”) + F<”>>Zu

72 73
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with components

K¥A, = <F ) | 2F (”)> cos,

}’2 r3
Q1A = (Frg”) + Fr(f )> sin 6. (79)

In Appendix [V|we give some useful formulae underlying the calculation leading
to (79) and the following results.

The choice H*Y = (TH*ZV —ZH T")@ gives rise to a dipole electromagnetic
wave

Ay =— (f(u) +f£;t)> Tucose—fiu)zﬂ

r

with components

AFK, = @cos@,
ARQ, = @ sin 6. (80)

The choice H*V = (X*YY —YHXY) Lr“) gives rise to a dipole electromagnetic
wave with the dual polarization

with components
AMK, =0,
AR Q#:i<f/£u)+fg)> sin . (81)

We wish to formulate boundary conditions which generalize the Sommerfeld
hierarchy (53) and (54) to a spherical boundary of radius R in a way which mini-
mizes reflection. By inspection of (79), (80) and (8T)), we consider the choice

1
K"y (rPKYAy) = gk, (82)

1
—KH0u(rQ"Av) = 0" 9u(K"Av) = g0, (83)

chosen to minimize the asymptotic behavior of the Sommerfeld data. As before,
the constraint determines the remaining boundary condition as part of the Som-
merfeld hierarchy.

For the dipole gauge wave (79),

2F (u)cos @
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for the dipole electromagnetic wave (80)),

fu) .
qx =0, qo = %sme;

and for the dual dipole electromagnetic wave (81))

—if(u) .
gk =0, qo = R3()sm9.

Overall this implies gk = O(1/R*) and g = O(1/R?). We have checked that ho-
mogeneous Sommerfeld data leads to reflection coefficients with overall behavior
k = O(1/R?) in accordance with .

Note that the relations and allow us to express and in the

form

1
SK'K* Iu(r*Ay) = gk, (84)
QVK“(?“AV — KVQ“(?“AV =qg, (85)

which correspond to and (8) when dy, is generalized to the connection V,, in
a curved space background with KV ,r = 1. Here (85)) is equivalent to the gauge
invariant condition

QVK'uFuv =490- (86)

C Application to linearized gravitational fields with a spherical boundary

The gravitational case is more complicated than the electromagnetic case because
the geometry of the boundary is coupled with the boundary condition. Addition-
ally, there are no gauge invariant quantities, analogous to (86) in the electromag-
netic case, on which to base first order boundary conditions. We begin with a
discussion of how to adapt to a curved boundary the first order version of the ¥
boundary condition given in Sect.[[V][A]for a plane boundary.

In the nonlinear treatment of a curved boundary with unit outer normal N* we
can decompose the metric according to

8ab = Tab + NalNp,

where T, is the metric intrinsic to the time-like boundary. Let D, denote the co-
variant derivative associated with 7,;,. The extrinsic curvature of the boundary is

Nap = TaCVcNZr
We complete an orthonormal basis by setting
Tab = =TTy + Q(uOp)

in terms of a time-like vector 7¢ and complex null vector O tangent to the bound-
ary.
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We decompose ¥ := K?QPO° TR jpeq = ¥r + Wy and the Weyl component
¥ = K°QPO°KR ypeq = Wr + Wy + 2%n, where K¢ = T% + N and

Y = T°0°Q°TRupea, (87)
Wy = N“Q°Q°TRupea, (88)
Yy = TQ°Q°NRupea- (89)

When the vacuum Einstein equations are satisfied the Riemann curvature tensor
may be replaced by the Weyl tensor whose symmetry implies ¥ = 0. Therefore,
in this case, ¥ = 0 implies the vanishing of the Newman-Penrose Weyl component
¥% =0.

A short calculation gives the embedding formulae

¥y = Q"QT*(DyNpe — DpNea)
and
¥ =T°0" QT ((3)Rabcd — NacNpa +Nchad> ;
where ()R 4 is the intrinsic curvature to the boundary, i.e.
T°Q* QT ® Rupeq = Q" Q°T*(DaD = DeDa) Ty

(These are the embedding equations for the Cauchy problem corrected for the
space-like character of the normal to the boundary.)

We now apply these results to a spherical boundary » = R in linearized theory
off a Minkowski background, i.e. gy = Nyuv + €hyy in standard inertial coor-
dinates x*, where € is the linearization parameter. We choose 7, = dut + O(€)

and Ny, = dyr+ O(e). Then DT, = O(¢) and Nyy = R™'Qyy + O(€), where
Ouv = Qu Qv) is the metric of a 2-sphere of radius R. We choose the basis to
satisfy T#D, Ty = 0 and T*D,,Qy = 0, so that
¥ =THQYOPTO PRy po + O(€2) = T° Dy (0¥ 0P D, Ty) + O(€2)
and
1 _
Yy = TUDc(Qvava) - Qpr(QvTGNov) + EQP (DpQu)Qu QVTGNGV
1
+72" DTy +0(e7).
Thus the boundary conditions

QVQP(va +DpTv) =0,
Q"TPN,y =0, (90)

imply to linearized accuracy that

- Il—eQ"QprTv. 1)
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This gives a geometric formulation of the first differential order version of the
requirement that ¥ — 0 in the asymptotic limit R — oo. However, ¥ = O(1/R®)
in an asymptotically flat space-time, whereas (91) leads to ¥ = O(1/R?). This
is an indication that the boundary conditions (90) might lead to more reflection
than desirable. Can this be remedied by the introduction of, say, lower order terms
in the boundary conditions? We investigate this question in the context of a well
posed IBVP based upon the harmonic version of the linearized Einstein equations
and , where Y4V = —hHV + InHVh,

For this purpose, we now consider linearized outgoing waves in the harmonic
gauge which are incident on a spherical boundary. We model our discussion on
the Maxwell case by using the gravitational analogue of a Hertz potential H**VB
(33 134), which has the symmetries

ghovB _ glualvB _ gualvBl _ gvBua
and satisfies the flat space wave equation
9% dsH" P = 0.
Then the densitized metric perturbation
PV = 0o dgH***P

satisfies the linearized Einstein equations in the harmonic gauge. Outgoing waves
can be generated from the potential

FHP ()

)

HLHZVB —
r

and its spatial derivatives.

The incidence of such an outgoing wave on a boundary r = R leads to reflec-
tion, with the asymptotic falloff of the reflection coefficients depending upon the
choice of boundary conditions. We limit our calculation of reflection coefficients
to the case of outgoing quadrupole waves, which can be obtained from the Hertz
potential

HtovB — guovp @ (92)

where K*VB is a constant tensor. (All higher multipoles can be constructed by
taking spatial derivatives.) KHovB has 21 independent components. However, the
choice KHVB = ¢haVB Jeads to YV = 0 so there are only 20 independent waves.
These can be further reduced to pure gauge waves, corresponding to the trace
terms in KHoVB g KHOVP — noavpBu _ nivnaB jeads to a monopole gauge
wave. Linearized gravitational waves arise from the trace-free part of KHovB,
There are ten independent quadrupole gravitational waves, corresponding to spher-
ical harmonics with (£ =2,—2 < m < 2) in the two independent polarization
states. The other ten independent potentials comprise two monopole gauge waves,
three dipole gauge waves and five quadrupole gauge waves, for which the lin-
earized Riemann tensor vanishes. It suffices to consider the following examples
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of waves with quadrupole dependence aligned with the z-axis. Other quadrupole
waves can be obtained by rotation and have similar asymptotic behavior. Reflec-
tion coefficients from the other monopole and dipole gauge waves are smaller and
provide no further useful information. The Hertz potential gives rise to the
perturbation

AR G A
Appendix [V]lists useful formula for the calculations underlying the following re-

sults.

1 Quadrupole-monopole gauge wave.

The Hertz potential

H[.LOCVﬂ — <ZHnO!VZﬁ +Zvnﬁuza _ZunaBZv _ZﬁnV[.LZa) f(u)
r

gives rise to a combination monopole-quadrupole gauge wave with components

QaQﬁVaﬁ =2 (flr(zu) + ff?) sin® 6,

00 yus = —2 (f”r(u) N 2fr’§u) N 2{(3u)> 0520,
K*QPyyp = —@ sin @ cos 6, 93)
KOKPypp =2 <f’r(2u) N 2{(314)) cos? 6.

y= —zfﬁr(”)cos29+2<flr(2”> +f£§‘)> (1-3cos2).

Here the sin? @ dependence of the spin-weight 2 component Q*QP Yap 1s a pure
2Y>0 spin-weighted spherical harmonic; the sin 0 cos 6 dependence of the spin-
weight 1 component K*QF Yap is @ pure ;Y29 harmonic; and the remaining spin-
weight O components are mixtures of Yoo and Yag.

2 Quadrupole gravitational wave.
The trace-free Hertz potential

HEovB — ((T’"‘Z“ — 7T (xVYP —yVxP)
f(u)

r

+(XRY® - YHXY)(TVZP - szﬁ)) 94)
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gives rise to a perturbation with ¥ = 0 and components

0%0P v, = 2isin® 0 (f"(“) n f’(;)) ’
r r
QaQBYOcﬁ =0, ©5)
K%QPyyp = icosOsin6 <2f’2(u) N 3f(3u)>7
r r

K*KP o5 =0,

which have spin-weighted ¢ = 2, m = 0 dependence.

3 Dual quadrupole gravitational wave

The trace-free Hertz potential
HHOVB — ((T“Z“ —ZHFTNTVZP — 2V TP) — (XY * —yHX*)(XVYP —yVXP)

1
+§(n”vn"‘ﬁ —~ n“%“")) i)

r

obtained from the dual of (94), gives gives rise to a perturbation with y = 0 and
components

0“0Pyyp = 25in’ 6 (f ") | £, f(:)) |
r r r
*0 Lo f'(w)  flu)
0%0Py,p = 4(cos? 6 — 3)( p +r3>’ 06
K0Py, = cosOsin® <2f'§”) +f(;t)) ’
r r
(04 1 f u)
KKPryyp = 2(cos29—§) 5

which have spin-weighted ¢ = 2, m = 0 dependence.

4 Sommerfeld-type boundary conditions.

Sommerfeld boundary conditions consistent with a well posed harmonic IBVP
have wide freedom regarding (i) partial derivative terms consistent with the hier-
archical upper triangular structure of the boundary condition and (ii) lower dif-
ferential order terms. Here we consider three choices of boundary conditions and
compare their reflection coefficients. One basic idea common to these choices has
already been used in the scalar and Maxwell cases, i.e by inspecting the asymp-
totic behavior of the waves (93)), and we use the property K%dg f(u) =0
to introduce the appropriate powers of r that lead to the smallest asymptotic be-
havior in the resulting Sommerfeld data.
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Our first choice of boundary conditions is the mathematically simplest choice

1

SKKPKH (P Yap) = axx (97)
%QaQBK'ugﬂ("Yaﬁ) = 490, (98)
%Q“Qﬁ K*9u(rYap) = 900, (99)

%K“QﬁK“au(rz}’aﬁ) = gko- (100)

This was the choice adopted in numerical tests verifying the stability of the har-
monic IBVP with a plane boundary (14). The powers of r in (97)-(I00) are based
upon the leading asymptotic behavior of the components for the gauge wave (93))
and the gravitational waves (93) and (96). These choices lead to boundary data
with the asymptotic behavior

f(u)
qKK ~ Fa
W
4900 R3
FWw)
900 ~ R3¢
 flw
R*
Thus the behavior of ggg and g imply that the resulting reflection coefficients
have overall asymptotic dependence no weaker than k = O(1/R?).
Our second choice, which is partially suggested by the electromagnetic case
(83) and leads to weaker reflection, consists of the modifications

1

qK

r—zKaKBK“8u(r2yaﬁ) = gkk. (101)
1
KO K194 () = axo, (102)
1 _
0 0PKH 9y (Pyap) — L = agg, (103)
0% QP K" 9y Yup — Q“KP 0" 9u¥ap = 900 (104)

Now g¢.. ~ f(u)/R* for both gravitational quadrupole waves. For the gauge waves,
qo5 ~ [f'(u) /R?. Using the Regge-Wheeler-Zerilli perturbative formulation and
the metric reconstruction method described in (35) we have independently checked
that this leads to reflection coefficients k = O(1/R?) for the gravitational waves
and

(1 /R?) for the gauge waves in accord with . After replacing Y,y =

h,w + zn#v, observing that K" 8yr =1 and identifying d,, with the connection

V of the background metric ga,,, correspond to the boundary condi-
tions (T4)-(I7) discussed in Sect. E]Q
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Our third choice of boundary conditions, motivated by the first order version
of the ¥ boundary condition (77), is

K" 0, (rPK*KPyup) = qxx, (105)
K9, (r0“ 0P yup) = a0, (106)
K9, (rQ* 0P up) = a0 (107)

1 1 1~
5K 9u(PK* QP rap) — 50" K KPyup + 50" 0" 0P duvap = gio- (108)

However, for the gravitational quadrupole wave , this leads to gk ~ f" (u)/R?
and so it results in much stronger reflection than the first two choices. Thus, as
might have been anticipated by the discussion following (91), the first order ver-
sion of the ¥ boundary condition is not as effective as (I04)-(I0I) in the case of
a spherical boundary.

V Conclusion

We have considered the IBVP for a coupled system of quasilinear wave equations
and established (local in time) well posedness for a large class of boundary condi-
tions. In particular, this allows for the formulation of a well posed IBVP for quasi-
linear wave systems in the presence of constraints on finite domains with artificial,
nonreflecting boundaries. Therefore, we anticipate that our results will have appli-
cation to a wide range of problems in computational physics. Furthermore, since
our proof is based on a reduction to a symmetric hyperbolic system with maximal
dissipative boundary conditions, it also lays the path for constructing stable finite
difference discretizations for such systems.

Our work has been motivated by the importance of the computation of grav-
itational waves from the inspiral and merger of binary black holes, which has
enjoyed some recent success (36;137;138;39;40). At present, however, none of the
simulations of the binary black hole problem have been based upon a well posed
IBVP. The closest example is the harmonic approach of the Caltech-Cornell group
(4151425 143)) which incorporates the freezing ¥ boundary condition in second or-
der form and has been shown to be well posed in the generalized sense in the high
frequency limit (16)).

Our results have potential application to improving the binary black hole sim-
ulations. However, many of these simulations are carried out using the BSSN for-
mulation (44;45) of Einstein’s equations, which differs appreciably from the har-
monic formulation considered here. Although our results constitute a complete
analytic treatment of the IBVP for the harmonic formulation of Einstein’s equa-
tions, the extension to the BSSN formulation is not immediately evident. For this
purpose, it would be useful to reformulate the boundary data for the harmonic
problem in terms of the intrinsic geometry and extrinsic curvature of the bound-
ary, as has been done for the initial data for the Cauchy problem. Such a geometric
reformulation remains an outstanding problem.
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Appendix A: Some Useful Formulae

Here we give a short summary of the formulae and conventions underlying the calculational

results of Sects. [[VIBland IVI[Cl We have

Ouf (W) =~ (WKa, w=t—r. K%Ky =0,

so that
%%gﬁ:Z%Qm@+f¥%mm+mgﬂf%@mm
LW W,
and
K“auaaaﬁffru) = *f”,(zu)KaK;s Y :3(") (Karp +raKp)

6 2f 3
_ }:gu)rarﬁ+< frgu) N fr(3u))raﬁ’

where rq 1= dgr and ryg 1= dydgr. The spatial components are

X ) o S xixs
1=~ = (sin@cos ,sinHsin @, cosh), r;j:—’—'—;.
r r r

Our conventions for the polarization dyad give rise to the Cartesian components
(0",0%,0%) = (cosOcos ¢ —ising,cosOsing +icos @, —sinh),

which satisfy

(0%)*+(")* = —sin @, QfoQy);C = —isin#,

r

Q");) +Qy);c = sin® (2cos 6 cos ¢ sin ¢ +i(cos? ¢ — sin2¢))

and

Oy, gag=-0y 2

r r r '

. 0; L
O'rij = 71, 0/0;0' =
From these follow the necessary commutation relations such as

[r0"dy, K" dy] = 0.

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(AB)
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