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Pion/Kaon Decay in Very Special Relativity
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We consider the charged pion decay process within the framework of Very Special Relativity
(VSR) using an effective Lagrangian approach. We construct an effective Lagrangian for this
process which is invariant under VSR but violates Lorentz symmetry. We find that in the rest
frame of pion, the final state muon distribution is not isotropic due to VSR contributions. In the
laboratory frame, the decay products show azimuthal angle dependence relative to the pion beam
momentum. Furthermore the differential cross section picks up a periodic time dependence with
a period of 1 sidereal day. Although such effects are expected in Lorentz violating (LV) theories,
this is the first illustration that they also arise within the framework of VSR. This is interesting
since VSR effects are most likely to observed at low energies in contrast with all other models of
LV which are expected to be significant only at very high energies. We argue that VSR leads to
such effects in many high energy processes and not just the pion decay.
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1. Introduction

Very Special Relativity (VSR) is based on the idea that the frame independence of the speed
of light does not necessarily require Lorentz invariance. It only demands that a subgroup, such
as T(2), E(2), HOM(2) and SIM(2) remains preserved [1]. Here we shall be interested primarily
in the subgroups HOM(2) and SIM(2). Let J and K represent generators of rotations and boosts
respectively. The generators of HOM(2) are T1 = Kx +Jy, T2 = Ky−Jx and Kz and those of SIM(2)
are T1, T2, Jz and Kz. This possibility is allowed as long as the discrete symmetries P, T, CP (or CT)
are broken. It turns out that the dispersion relations of particles as well as several consequences
of Special relativity, such as time dilation and velocity addition formula, remain unchanged in this
framework [1]. Phenomenological consequences of VSR have been studied in [2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14].

The possibility of violation of Lorentz invariance also arises within the framework of many
quantum gravity models. For example, it is argued that at very high energy scales of order Planck
mass (MPl), space-time coordinates may not commute with one another [15, 16]. Such Lorentz
violations (LV) are expected to contribute dominantly at very high energies. However it has been
argued that these may induce rather large effects through loop corrections which to be cancelled
by fine tuning of parameters [17]. It is interesting that supersymmetry naturally cancels these large
corrections [18, 19] and predicts LV of order M2

SUSY/M2
Pl , at energy scales currently accessible

in laboratory. Here MSUSY is the scale of SUSY breaking. At energy scales exceeding MSUSY we
expect LV of order E2/M2

Pl . In contrast, the LV effects due to VSR may give dominant contribution
at low energies, as we describe below.

2. Effective Lagrangian for pion decay in the VSR framework

The Lorentz violating (LV) terms which respect VSR can be constructed by defining a null
vector

nµ = (1,0,0,1) . (2.1)

This vector is invariant under the T1 and T2 transformations but picks up an overall factor under
Kz. Hence it is not invariant under HOM(2) and SIM(2). Using this vector we can construct
a nonlocal LV term which respects these symmetry groups. Consider a Standard Model (SM)
fermion multiplet ψ which may be left or right handed. We may add the following LV term to the
SM action,

LV SR =
im̃2

2
ψ̄

n · γ
n ·Dψ (2.2)

for each of the SM fermion multiplets. Here D is the gauge covariant derivative. These terms lead
to LV, VSR invariant masses for all the SM fermions and furthermore lead to LV, VSR invariant
interactions of fermions with all the gauge bosons [9, 13, 20]. This introduces additional mass
parameters for each left and right SM fermion multiplets. For the case of leptons this parameter
is limited by the neutrino mass. Furthermore there exist very stringent constraints on the spin
dependent mass term for the case of electron. In order to satisfy this constraint it has been argued
that we should impose C invariance on such mass terms which requires equal mass parameters for
left and right handed multiplets [3]. Since weak interactions break C invariance, loop corrections
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will generate such a mass difference for electron even if we set it equal to zero at the tree level.
Such corrections will arise as long as such LV fermion mass terms are included in the action.
Furthermore if these mass parameters are sufficiently large, we may need to fine tune the left-right
mass difference in order to evade experimental constraints. In our analysis we shall ignore this
fine tuning problem and aim to impose limits on VSR mass parameters for each fermion multiplet
directly from experimental data. We point out that we do not do far have a fundamental theory
based on VSR. Furthermore loop corrections in the presence of such nonlocal terms lead to infrared
divergences, which are not easily handled. A reasonable prescription for handling such divergences
has been suggested in [20] which may allow a detailed phenomenological study of these models.

Here we are interested in the LV, VSR invariant effects for simple processes such as charged
pion decay. Similar effects are expected to arise in many other high energy processes. The pion
decay process proceeds through a W exchange, as shown in Fig. 1. The LV contributions arise due
the VSR corrections to the quark masses and in the W-quark vertex. We ignore the LV contributions
in the lepton sector. Calculation of this amplitude requires the pion wave function, which is not
known. An estimate of this loop can be made by using the linear sigma model for strong interaction
[20]. This leads to an effective coupling between the pion and leptons which can be expressed in
terms of a VSR invariant effective Lagrangian, given by,

L =Vud
G f√

2
fπ∂µΠψ̄γ

µ(1− γ
5)ψ + ḡ

( nµ

n.∂
Π

)
ψ̄γ

µ(1− γ
5)ψ +h.c.. (2.3)

Here Π is the pion field and ḡ is the Lorentz violating coefficient. In Eq. 2.3, the first term produces
the SM decay rate and the second term gives VSR contribution with effective coupling parameter
ḡ.

d(l)

u(l − q)

µ−(p)

ν̄µ(k)

π−(q) W−

Figure 1: The Feynman diagram for the decay of charged pion in a lepton pair.
.

3. Laboratory Signatures of Lorentz Violation

We first consider the decay of pion in its rest frame. We can always go to the rest frame by
making SIM(2) transformation. The decay rate can be directly computed by using the effective
Lagrangian 2.3. We find that the differential decay rate leads to a angular dependence of the final
state muon distribution due to the LV contributions [20]. We also impose an upper limit on the
parameter ḡ by assuming that VSR contributes less than the error in measurement in life time of
pion. The resulting upper limit is found to be ḡ = 2.1×10−12GeV .
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We next consider the decay process in the laboratory frame. We find several interesting ef-
fects which can be tested experimentally. In particular, the final state muon distribution shows an
azimuthal angle dependence. Here the azimuthal angle is defined by choosing the beam axis as
the z-axis. The polar angle distribution of muons also gets modified due to the VSR effects. Fur-
thermore the peak position in the azimuthal distribution shows a periodic dependence on time with
a period of 1 sidereal day. The polar angle distribution also shows a correlated time dependence.
This time dependence of the distribution can be used to effectively test the VSR contributions [20]
in elementary particle experiments.

To conclude, VSR invariant Lorentz violating extension of the Standard Model leads to several
interesting predictions which can be tested in high energy particle colliders. Using an effective field
theory framework we have shown that the final state particles in the case of pion decay process show
anisotropic, time dependent angular distributions. These can be studied experimentally in order to
impose a direct limit on the VSR contributions to the up and down quark masses.
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