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Preface

The goal here is to provide an introduction to the physical and mathematical foun-
dations of quantum mechanics. It is addressed to those who have been trained in
modern mathematics and whose background in physics may not extend much be-
yond F = mA, but for whom the following sorts of questions require more than
a perfunctory response. What are the physical phenomena that forced physicists
into such a radical reevaluation of the very beautiful and quite successful ideas be-
queathed to them by the founding fathers of classical physics? Why did this reeval-
uation culminate in a view of the world that is probabilistic and formulated in terms
of Hilbert spaces and self-adjoint operators? Where did the Planck constant come
from? What are the basic assumptions of quantum mechanics? Are they consistent?
What motivated them? What objections might be raised to them? Where did the
Heisenberg algebra come from? What motivated Feynman to introduce his path in-
tegral? Is it really an “integral”? Does it admit a rigorous mathematical definition?
Why does one distinguish two “types” of particles in quantum mechanics (bosons
and fermions)? Why and how are they treated differently? In what sense does su-
persymmetry provide a more unified picture of the two types? One need not know
the answers to all of these questions in order to study the mathematical formalism
of quantum mechanics, but for those who would like to know we will try to provide
some answers or, at least, some food for thought. As to the mathematical formalism
itself, we will provide careful, detailed and rigorous treatments of just a few of the
simplest and most fundamental systems with which quantum mechanics deals in the
hope that this will lay the foundation for a deeper study of the physical applications
to be found in the literature.

In a sense, the harmonic oscillator is to physics what the set of natural numbers
is to mathematics. It is a simple, almost “trivial” system, but one which conceals
much subtlety and beauty and from which a great deal of what is of interest in the
subject evolves. We will follow some of this evolution from the simple classical
problem through its canonical quantization and path integral to its fermionic and
supersymmetric versions and will pause along the way to consider the tools and
thought processes employed by physicists to construct their theoretical models. We
will make a concerted effort to rephrase, whenever possible, these tools and thought
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x Preface

processes in a form more congenial to those trained in modern mathematics, for
this is our intended audience. However, we will also make a concerted effort to
discourage the view that physics can simply be translated into mathematics. We
take seriously Einstein’s dictum that “... as far as the propositions of mathematics
refer to reality, they are not certain; and, as far as they are certain, they do not refer to
reality.” Our very modest goal is to alleviate, in some small measure, the stress that
generally accompanies the mathematically inclined when they stray into the very
foreign world of bosons and fermions, Lagrangians and path integrals, nonexistent
measures on infinite-dimensional spaces and supersymmetry. The best we can offer
to the mathematician interested in dipping his or her toes into the murky waters
of physics is an honest attempt, at each stage, to clearly distinguish those items
that are accessible to mathematical definition and proof from those that are not,
and an honest admission that the rigor we so earnestly strive for can do violence
to the intentions of the physicists. Elegance and brevity, while admirable traits, will
play very little role here; the goal is communication and if we feel that this is best
accomplished by an ugly argument in coordinates, or a treatment that is perversely
elementary, then so be it.

In broad strokes, here is the plan. We begin by briefly reviewing the part of the
story we all learn as undergraduates (masses oscillating on springs and simple har-
monic motion) and then say a few words about why this rather special and seemingly
uninteresting problem is so important (Chapter 1). We will see how the problem and
its solution can be rephrased in both Lagrangian and Hamiltonian form and argue
that each of these has its advantages and that both provide a conceptually more sat-
isfactory framework for our problem and for physics in general (Chapter 2). This
last point is brought home with particular force when the length scale of the har-
monic oscillator is sufficiently small that classical mechanics fails entirely and one
must treat the problem quantum mechanically. To see how this is done we begin
with some motivation for the formalism of quantum mechanics (Chapter 3). This
formalism is quite unlike anything in classical physics and evolved historically over
many years in a highly nonlinear fashion from the brilliant insights and inspired
guesswork of its creators. In the end we are forced to concede that the conceptual
apparatus that has evolved in our species over eons in response to the macroscopic
world in which we live is simply not adequate for the description of the microscopic,
quantum world, which operates according to entirely different rules. For example,
the intuitively all too familiar distinction between a particle and a wave disappears
and we are required to regard these as simply dual aspects of the same underlying
physical object. But if familiar, classical concepts fail us, there is still mathemat-
ics, which does not require that the objects with which it deals correspond to any
ready-made, familiar concepts. The formalism of quantum mechanics provides a
mathematical, not a conceptual model of what goes on in the world, but the model
has proven to be remarkably successful. In this world the state of a physical system
is represented by elements of a Hilbert space and the things we observe (measure)
are represented by self-adjoint operators on this Hilbert space. We will not pretend
that this formalism can be “deduced” logically from a few simple physical prin-
ciples, for it cannot. However, by taking a very general view of what constitutes a
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mathematical model for a physical system, it is possible to argue that, in hindsight at
least, the formalism has a certain element of “naturalness” to it and we will attempt
to make this argument.

Even so, to do justice to the formalism, both physically and mathematically, re-
quires considerable preparation. Section 3.2 presents a very general view of what
constitutes a mathematical model of a physical system in the hope that the model
we will eventually propose for quantum mechanics might appear somewhat less
outrageous. Section 3.3 continues this theme by briefly describing a mathematical
model of classical statistical mechanics due to Koopman [Koop] in which Hilbert
spaces and self-adjoint operators arise naturally. We then examine some of the ex-
perimental facts of life which suggest that mechanics at the atomic and subatomic
levels is more akin to classical statistical mechanics than to classical particle me-
chanics. Specifically, a brief tutorial on electromagnetic radiation (Section 4.2) is
followed by discussions of blackbody radiation and the photoelectric effect (Section
4.3), and 2-slit experiments (Section 4.4); in particular, we go to some lengths in
Section 4.3 to track down the origin of the ubiquitous “Planck constant”. Following
this there is a rather lengthy synopsis (Chapter 5) of the required functional anal-
ysis (unbounded self-adjoint operators, spectral theory and Stone’s Theorem); here
the definitions and theorems are all stated precisely, but in lieu of proofs we gener-
ally offer only a few detailed examples relevant to quantum mechanics and plentiful
references. With this we are in a position to describe the mathematical skeleton of
quantum mechanics. In Chapter 6 we follow the usual procedure of describing this
skeleton in the form of a set of Postulates, but we devote considerably more time
than is customary to discussions of what these Postulates are supposed to mean,
where they came from and what one might find questionable about them. Chapter
6 includes also a discussion of various uncertainty relations (Section 6.3) and the
so-called Heisenberg picture of quantum mechanics (Section 6.4). The path that led
Heisenberg to his formulation of quantum mechanics is elaborated more fully in
Section 7.1, not only because it is a fascinating story, but also because it is here that
one sees most clearly the emergence of the algebraic underpinnings of “canonical
quantization”. Section 7.2 describes these algebraic structures in more detail as well
as the problem of representing them as self-adjoint operators on a Hilbert space.
The famous Groenewold-Van Hove Theorem, which restricts the extent to which
this can be done, is also discussed.

With the formalism of quantum mechanics in hand one can consider the problem
of “quantizing” a classical mechanical system such as the harmonic oscillator, that
is, constructing a quantum mechanical model that reflects the essential features of
the classical system. For instance, a diatomic molecule is very much like a mass on
a spring, but, because of its size, it behaves very differently and requires a quantum
mechanical treatment. Just what these essential features are, how they are to be de-
scribed classically and how they are to be reflected in the quantum model are issues
that we will have to discuss. Many schemes for arriving at such a quantum model
for a classical system have been proposed. We will consider only two and will apply
them only to the free particle and the harmonic oscillator. Canonical quantization
(Chapter 7) is based on the Hamiltonian picture of the classical system, while the
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Feynman path integral (Chapter 8) evolves from the Lagrangian picture. We will
work out both of these in detail for the free particle (Sections 7.3 and 8.2) and the
harmonic oscillator (Sections 7.4 and 8.3). Both of these approaches raise serious
mathematical issues and in Section 8.4 we will survey a few of the rigorous theo-
rems that have been proved in order to address some of these. Included are some
self-adjointness theorems for quantum Hamiltonians (Section 8.4.2), Brownian mo-
tion and the Wiener measure (Section 8.4.3) and a rigorous approach to the Feynman
integral via analytic continuation (Section 8.4.4).

Canonical quantization leads to a rather algebraic view of the quantization pro-
cess and suggests certain variants of the quantum harmonic oscillator which, al-
though they are legitimate and meaningful quantum systems, cannot be regarded as
the quantization of any classical system. These are the so-called fermionic harmonic
oscillator and supersymmetric harmonic oscillator and we will take a look at each
in Chapter 9, beginning with a discussion of the Stern-Gerlach experiment and the
quantum mechanical notion of spin in Section 9.1. In Section 9.2 we briefly discuss
the Spin-Statistics Theorem and the Pauli Exclusion Principle in the hope of mo-
tivating Pascual Jordan’s extraordinary idea of replacing commutation relations by
anticommutation relations for the description of fermionic systems. It is this idea
that gives rise a fermionic analogue of the quantum harmonic oscillator and to the
anticommuting or Grassmann variables with which one can build a “quasi-classical”
system corresponding to it. Finally, in Section 9.3 we make a few (very few) gen-
eral remarks on the notion of supersymmetry and then describe the simplest possible
system in which this symmetry is exhibited. This is the so-called supersymmetric
harmonic oscillator. We will then abstract the essential features of this example to
define what is called N = 2 supersymmetry. We will see how the notion of a Lie
superalgebra arises naturally in this context and also how old and venerable parts
of mathematics (such as Hodge theory) offer additional examples.
Remark 0.0.1. In deference to the existence of these two variants we will some-
times be specific and refer to the quantization of the classical harmonic oscillator
as the bosonic harmonic oscillator. The physical origin of the terminology will be
explained in due course.

At this point it would be best to make some simple declarative statement about
the prerequisites required to read and understand this material. That would be best,
but it’s not going to happen. The reason is simply that these prerequisites vary wildly
from section to section, ranging from almost nothing at all in Chapter 1 to various
aspects of analysis and functional analysis that one could reasonably expect only
a specialist to know. Supplying all of this background here would not only result
in a manuscript with essentially unbounded pagination, but would also be pointless
since there are available many excellent sources for the material that we could not
hope to improve upon. We will try to handle this problem in the following way. Be-
yond F = mA any basic physics that needs to be explained will be explained; for
the not-so-basic physics we will do our best to provide readable references. On the
mathematical side, we will make judgement calls concerning what it is reasonable
to assume that a graduate student in mathematics will know. Basic measure theory
and functional analysis through the spectral theorem for compact, self-adjoint oper-
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ators certainly qualify, but perhaps not the unbounded case of the spectral theorem; 
Banach spaces, but not Fréchet spaces; differentiable manifolds, but not symplectic 
manifolds; basic partial differential equations, but not heat kernels or elliptic regu-
larity. For those items we need that have been judged not to be in everyone’s cache 
we will spend some time introducing them precisely and illustrating them with rel-
evant examples. Then we will go to some lengths to provide detailed, explicit and 
accessible references in which the specific material we require is treated in a similar 
spirit and at a comparable level. This approach will be particularly apparent in the 
sections on functional analysis. The hope is that rigorous statements and carefully 
worked out examples will clarify the concepts, but then pursuing the subject in more 
depth can be left to the reader’s discretion. Some topics, such as Fourier analysis and 
Stieltjes integrals that probably could have been taken for granted play such pivotal 
roles in the subject that we digressed to review these as well. When it seemed that 
such a digression might become a distraction from the main development we have 
tried to clearly demarcate where it begins and where it ends so that the reader can 
decide whether or not to take the detour. All of this is entirely subjective, of course, 
and will probably fail to meet the needs of anyone except the author, but something 
had to be done. Because of their particular significance in the subject and uncertain 
place in the curriculum we made an exception by including appendices on Gaussian 
integrals, the Morse Lemma and Stationary Phase Approximation. The Exercises 
interspersed throughout the text are generally fairly routine opportunities for the 
reader to get involved and solidify the new ideas; these are not collected at the end 
of each section, but are placed at precisely the point at which they can be solved 
with optimal benefit.

It goes without saying that, beyond a few minor issues of expository style, there 
is nothing original in anything that follows. The manuscript arose simply from an 
attempt on the part of the author to explain some things to himself in a language he 
could understand and the hope that what emerged might be of use to someone else 
as well. Except for those items that are, by now, completely standard, we have tried 
to be clear on the sources from which the material was appropriated. One of these 
sources, however, requires special attention at the outset. At many points along the 
road I found myself needing to understand mathematics that I either should have 
understood decades ago or, perhaps, did understand decades ago, but forgot. At all 
of these points I was patiently instructed by my son, Aaron, who always knew the 
mathematics and very often grasped its significance for physics long before I did.





Chapter 1
The Classical Harmonic Oscillator

The “trivial” side of the harmonic oscillator is known to every calculus student.
One considers a mass m attached to one end of a spring with the other end held
fixed. When set in motion the mass is free to oscillate along a straight line about its
equilibrium position (where it sat, at rest, when the spring was unstretched). Making
our first concession to the conventions of the physicists, we call the line along which
the oscillations take place the q-axis and fix the origin at the equilibrium position of
m. Figure 1.1 shows a few snapshots of the system at some typical instants after it
has been set in motion.

Fig. 1.1 Mass on a Spring

At this point one borrows a few “laws” (that is, assumptions) from classical
physics. The first is called Hooke’s Law and asserts that the spring exerts a force
F on m that tends to restore it to its equilibrium position and has a magnitude that
is (under a certain range of conditions) proportional to the distance from the mass
to the equilibrium position. Thus, for some positive constant k (called the spring
constant and determined by the material the spring is made of and how tightly it is
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2 1 The Classical Harmonic Oscillator

wound),

F = −kqi,

where we use i for the unit vector in the positive q-direction. Next, Newton’s Sec-
ond Law asserts that the total force F acting on a mass m is proportional to the
acceleration A it will experience as a result of the force and that the constant of
proportionality is just m.

F = mA (1.1)

Assuming that no force other than that exerted by the spring is acting on m (no
friction along the q-axis, no gravity, no one blowing on it), we conclude that, at
each instant t of time, mq̈(t) = −kq(t) (q̈ is the second t-derivative of q). We will
write this as

q̈(t) + ω2q(t) = 0, (1.2)

where ω =
√

k/m.
Remark 1.0.1. We should say at the outset that t is to be thought of as Newton
thought of it and as you have been thinking of it all of your life, as a universal time
coordinate with the property that everyone agrees on the time lapse t2 − t1 between
two events. There is no operational definition, for it does not exist, but this will not
matter as long as we choose not to take relativistic effects into account.

Equation (1.2) is called the harmonic oscillator equation. It is a simple homoge-
neous, second order, linear equation with constant coefficients, the general solution
to which can be written

q(t) = A cos (ωt + ϕ). (1.3)

A is the amplitude, ω is the natural frequency and ϕ is the phase of the motion. One
can spice the problem up a bit by including the effects of additional forces (damping
or driving forces) and some interesting phenomena emerge, but basically this is the
whole story. That being the case it would seem incumbent upon us to offer just a few
words on why we intend to make such a fuss about such a simple problem. In truth,
this is really the issue we would like to address in the remainder of the manuscript,
but a brief prologue would not be amiss. We will begin by thinking about just a few
more simple problems and for this it is best to forget where the harmonic oscillator
equation (1.2) came from and remember only that q is, in some sense, a position
coordinate and ω is a positive constant.

Let’s consider first a pendulum consisting of a string of length l and negligible
mass with one end attached to the ceiling and a mass m attached to the other end (see
Figure 1.2). Suppose the mass is displaced from its equilibrium position (hanging
straight down) and released, or perhaps given some initial velocity that lies in the
plane of the string and its original, vertical position. Then the pendulum will move
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in this vertical plane. Let φ(t) denote the angle between the string and the vertical at
time t.

Fig. 1.2 Pendulum

The forces acting on the mass are the vertical gravitational force with a magni-
tude of mg (g is the acceleration due to gravity near the surface of the earth, which is
about 9.8 m/sec2) and the tension in the string. The component of the gravitational
force parallel to the string cancels the tension, while the component perpendicu-
lar to the string provides the tangential restoring force which causes the pendulum
to oscillate. The magnitude of the tangential force at time t is mg sin φ(t) and the
magnitude of the velocity is l φ̇(t) so Newton’s Second Law gives

φ̈(t) + ω2sin φ(t) = 0, (1.4)

where ω =
√

g/l. Now, the pendulum equation (1.4) is, of course, not the harmonic
oscillator equation. However, if we assume the oscillations (that is, the values of φ)
are small, the Taylor series expansion for sin φ at φ = 0 gives the approximation
sin φ ≈ φ and we may consider instead

φ̈(t) + ω2φ(t) = 0, (1.5)

which is precisely equation (1.2). Of course, the solutions to (1.5) only approximate
the motion of the pendulum for small displacements.
Remark 1.0.2. There is something quite general going on in this last example that
we would like to discuss before moving on to a few more examples. This is most
efficiently done if we recall a bit of vector calculus. We consider a single particle of
mass m moving in Rn under the influence of some time-independent force F(x) =

F(x1, . . . , xn); generally, n will be 1, 2 or 3.. We assume that F is conservative in
the sense that it is the gradient of some smooth real-valued function −V on Rn (the
minus sign is conventional). Note that V is determined only up to the addition of a
real constant a since ∇(−V + a) = ∇(−V). Then Newton’s Second Law asserts that
the motion of the particle, represented by the curve x(t) = (x1(t), . . . , xn(t)) in Rn, is
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determined by

m
d2x(t)

dt2 = −∇V(x(t)).

V(x(t)) (without the minus sign) is called the potential energy at time t. One also
defines the kinetic energy at time t to be

1
2

m
∥∥∥∥∥dx(t)

dt

∥∥∥∥∥2
=

1
2

m
dx(t)

dt
·

dx(t)
dt

,

where the · indicates the usual inner product on Rn. The total energy at time t is then

E(x(t)) =
1
2

m
∥∥∥∥∥dx(t)

dt

∥∥∥∥∥2
+ V(x(t)).

The rationale behind the word “conservative” is that, although the kinetic and po-
tential energies change along the trajectory x(t), E does not because

dE(x(t))
dt

=
d
dt

(1
2

m
dx(t)

dt
·

dx(t)
dt

+ V(x(t))
)

= m
dx(t)

dt
·

d2x(t)
dt2 + ∇V(x(t)) ·

dx(t)
dt

=
dx(t)

dt
·

(
m

d2x(t)
dt2 + ∇V(x(t))

)
=

dx(t)
dt
· 0 = 0.

For conservative forces the total energy E is conserved during the motion. The fact
that physical systems that evolve in time can nevertheless leave certain “observable
quantities” unchanged is of profound significance to physics and will recur again
and again in the course of our discussions here.

When n = 1 it is customary to assume everything is written in terms of the
standard basis for R, drop all of the vectorial notation and write, for example, F(x) =

− dV
dx for a conservative force, mẍ(t) = − dV

dx (x(t)) for Newton’s Second Law, and so
on. For the mass on a spring example, x = q and the potential can be taken to be
V(q) = 1

2 kq2 since F(q) = −kq = − d
dq ( 1

2 kq2). The total energy of the mass at time t
is therefore 1

2 mq̇(t)2 + 1
2 kq(t)2. Notice that, using primes to denote derivatives with

respect to q,

V(0) = V ′(0) = 0 and V ′′(0) > 0.

The potential has a relative minimum value of 0 at q = 0 and so the restoring
force F(q) = −V ′(q) vanishes at q = 0 with a negative derivative there and this
accounts for the stable equilibrium point of the mass-spring system at q = 0. For the
pendulum, x = φ and one can take V(φ) = −

mg
l (cos φ−1) since F(φ) = −

mg
l sin φ =

− d
dφ (−mg

l (cos φ − 1)); the −1 is not necessary, but ensures that the zero potential
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level occurs at the equilibrium position. Once again using a prime for differentiation
with respect to φ we obtain

V(0) = V ′(0) = 0 and V ′′(0) > 0

and, again, this is a reflection of the fact that the pendulum has a stable equilibrium
point at φ = 0. Moreover, this is precisely what gives rise to the fact that small
oscillations of the pendulum are modeled by the harmonic oscillator equation. We
began this Remark by claiming that there is something quite general going on and
this is it, as we now show.

Suppose we have a 1-dimensional system on which a force F(x) = − dV
dx acts and

that V(x) has a relative minimum value of 0 at x = 0 so that

V(0) = V ′(0) = 0 and V ′′(0) > 0.

The Taylor series for V(x) at x = 0 then has the form

V(x) =
1
2

V ′′(0)x2 + · · · .

Thus, for small x, V(x) ≈ 1
2 kx2, where k = V ′′(0) > 0 and so the potential is

approximately that of a harmonic oscillator and the system behaves, for small x,
like a harmonic oscillator. Notice that there is no reason for the equilibrium point
to be at x = 0 since the same argument using the Taylor series at x = x0 yields
the same result. Moreover, since the potential function is determined only up to an
additive constant, it can always be chosen to vanish at any given point. Thus, any x0
at which V ′(x0) = 0 and V ′′(x0) > 0 is a stable equilibrium point for the system and,
near x0, the potential is approximately that of a harmonic oscillator.

The essential reason for the significance of the harmonic oscillator is that any
conservative 1-dimensional system with a stable point of equilibrium behaves like a
harmonic oscillator near the equilibrium point.

Remark 1.0.3. We have been rather cavalier in our use of the term energy and should
offer something in the way of an apology, or, at least, an explanation. There is noth-
ing at all ambiguous in our notions of kinetic energy or potential energy; these are
defined by the formulas we recorded in the previous Remark. One might ask, how-
ever, why they are defined by these formulas. Why, for example, is kinetic energy
1
2 m

∥∥∥ dx(t)
dt

∥∥∥2
and not, say, m

∥∥∥ dx(t)
dt

∥∥∥2
? The answer is quite simple; without the 1

2 in
the definition of kinetic energy, the total energy (kinetic plus potential) would not
be conserved. Energy is arguably the most fundamental concept in physics and it
appears in many guises, but it is a subtle one and the unmodified word itself is never
defined (except in high school where it is intuitively identified with “the ability to
do work”). Various types of energy are defined in various contexts, but always with
the sole objective of isolating a number that does not change as the (isolated) phys-
ical system evolves. The existence of such numbers is an extraordinarily powerful
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thing in physics. With them one can make statements about how a system evolves
without any real understanding of the detailed interactions that occur during the
evolution; we don’t need to know what really goes on inside two billiard balls when
they collide in order to compute how they will move.

It is important to realize that in physics today, we have no knowledge of what
energy is.

-Richard Feynman (Section 4-1, Volume I, [FLS])

The last two examples we would like to look at are intended to give a brief sug-
gestion of a few of the things to come. For the first we will consider what are called
diatomic molecules. As the name suggests, these are molecules in which precisely
two atoms are bound together. The atoms may be the same, for example, oxygen
in O2, or nitrogen in N2, or they may be different, for example, carbon and oxygen
in carbon monoxide CO. Such molecules are extremely common in nature. Indeed,
O2 and N2 together comprise 99% of the earth’s atmosphere (fortunately, CO is not
so prevalent). The bond between the atoms in such a molecule is not rigid. Rather,
the distance between the nuclei of the atoms (the internuclear distance) varies peri-
odically around some equilibrium value and the potential energy of the molecule is
proportional to the square of the displacement from equilibrium (at least for small
displacements). Because of this quadratic dependence, if we view the molecule from
the perspective of one of the atoms, the other appears to be very much like a mass on
a spring (again, for small displacements). It may seem then that we have not really
described a new example at all. The reason that the example is, in fact, new is that
diatomic molecules are small; indeed, they are so small that one cannot expect them
to behave according to the rules of classical Newtonian physics and they do not. The
behavior of such a system falls within the purview of quantum mechanics.

Eventually, we will describe procedures for quantizing the classical harmonic
oscillator and this quantum system does, in fact, accurately describe the small vi-
brations of diatomic molecules. For the present we would simply like to point out
that the classical and quantum descriptions are very different. Here is one particu-
larly striking instance. Notice that the potential energy for the classical harmonic
oscillator can be written

V(q) =
1
2

kq2 =
1
2

m(
√

k/m)2q2 =
1
2

mω2q2, (1.6)

where ω is the natural frequency of vibration of the oscillator. Observe that, as q
varies over the interval [−A, A], where A is the amplitude, V(q) takes every value
between 0 and 1

2 mω2A2 (twice, in fact). In particular, the energy can take on contin-
uously many values. By contrast, we will find that, in the corresponding quantum
system, the energy of the oscillator can assume only the values

1
2
~ω,

3
2
~ω,

5
2
~ω, . . . , (n +

1
2

)~ω, . . . , (1.7)
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where ~ is a certain positive constant that we will discuss later. In the quantum
system the energy is quantized so any transition from one energy level to another
cannot occur continuously and must be the result of a quantum jump. Perhaps even
more interesting is the fact that 0 is not in this list. A quantum harmonic oscillator
cannot have zero energy. The smallest possible value of the energy is 1

2~ω, which is
called the ground state energy.
Remark 1.0.4. We will eventually derive the energy spectrum (1.7) from the ba-
sic postulates of quantum mechanics, but it is worth pointing out that, historically,
the order was reversed. The fundamental idea that underlies quantum mechanics
was discovered by Max Planck in his study of what is called blackbody radiation.
Here the predictions of classical physics do not correspond at all to what is actu-
ally observed in the laboratory and Planck found that he could construct a model
that yielded very accurate predictions under the hypothesis that harmonic oscillators
exist only at discrete energy levels. This hypothesis was totally inconsistent with
classical physics, but it worked and, as we shall see, led to an entirely new way of
thinking about the world. In Section 4.3 we will describe all of this in much more
detail.

Now, our final example. Thinking of a complex system as being built out of sim-
ple, well-understood systems can be quite useful and we would like to conclude this
section with a rather extreme example. We intend to reinterpret the classical vibrat-
ing string problem in terms of a countably infinite family of harmonic oscillators.
This interpretation provided the physicists with a means of quantizing the vibrat-
ing string and the result was essentially the first example of a quantum field. The
same ideas will be put to more serious use in Section 4.3 where we study blackbody
radiation.

In the vibrating string problem one is asked to describe the small transverse dis-
placements u(t, x) of an elastic string, tightly stretched along the x-axis between
x = 0 and x = l assuming that no external forces act on it.

Fig. 1.3 Vibrating String

A bit of physics, which one sees in any elementary course on partial differential
equations (for example, Section 25 of [BC], or Chapter 8 of [Sp3]), shows that u(t, x)
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satisfies the 1-dimensional wave equation

a2 ∂
2u
∂x2 =

∂2u
∂t2 , 0 < x < l, t > 0, (1.8)

where a is a positive constant determined by the material the string is made of and
how tightly it is stretched (more precisely, a =

√
τ/ρ, where ρ is the mass per unit

length and τ is the tension, both of which will be assumed constant). For the moment
let’s focus on solutions u(t, x) that are continuous on the boundary of [0, l] × [0,∞).
Then, since the string is fixed at x = 0 and x = l, u(t, x) must satisfy the boundary
conditions

u(t, 0) = u(t, l) = 0, t ≥ 0. (1.9)

Since we do not need them at the moment we will not be explicit about the initial
displacement u(0, x) and initial velocity ∂u

∂t (0, x) that would be required to produce
a well-posed problem. The usual procedure (Section 32 of [BC]) is to separate vari-
ables u(t, x) = T (t)X(x) and obtain a Sturm-Liouville problem

X′′(x) + λX(x) = 0 (1.10)
X(0) = X(l) = 0 (1.11)

for X(x) and an ordinary differential equation

T̈ (t) + λa2T (t) = 0 (1.12)

for T (t). The Sturm-Liouville problem has eigenvalues λn = n2π2

l2 , n = 1, 2, 3, . . .

and corresponding orthonormal eigenfunctions Xn(x) =

√
2
l sin nπx

l .

Remark 1.0.5. We recall what this means. Think of (1.10) as the eigenvalue equa-

tion
(

d2

dx2 + λ
)

X(x) = 0 for the 1-dimensional Laplacian d2

dx2 on [0, l] subject to the

boundary conditions X(0) = X(l) = 0. Then the λn are the only values of λ for
which nontrivial solutions exist and the Xn(x) are corresponding solutions, that is,(

d2

dx2 + λn

)
Xn(x) = 0, n = 1, 2, 3, . . .. “Orthonormal” means in the L2-sense, that is,

∫ l

0
Xn(x)Xm(x)dx =

1, if m = n
0, if m , n.

Exercise 1.0.1. If you have never verified all of this before, do so now.
For each n = 1, 2, 3, . . ., we let

ωn =
nπa

l
,

so that (1.12) becomes
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T̈ (t) + ω2
n T (t) = 0, (1.13)

which is, for each n = 1, 2, 3, . . ., an instance of the harmonic oscillator equation.
Standard operating procedure would now have us write down the general solution

to (1.13), multiply by Xn(x) =

√
2
l sin nπx

l , and then superimpose (sum over n =

1, 2, 3, . . .) to obtain a general expression for u(t, x). Instead, let us denote by qn(t)
any nontrivial solution to (1.13) and write

u(t, x) =

∞∑
n=1

qn(t)

√
2
l

sin
nπx

l
(1.14)

(since our purpose here is purely motivational we will skirt all of the obvious con-

vergence issues). Now look at some fixed term un(t, x) = qn(t)
√

2
l sin nπx

l in (1.14).
qn(t), being a solution to (1.13), represents a simple harmonic motion with natural
frequency ωn and some amplitude. But the harmonic oscillator equation is linear
so, if we fix some x0 ∈ (0, l) with sin nπx0

l , 0, un(t, x0) also represents a simple
harmonic motion with natural frequency ωn, but with a different amplitude. Conse-
quently, un(t, x) represents a motion of the string in which each non-stationary point
along the length of the string is executing simple harmonic motion with the same
frequency. If a1, a2, . . . are constants, then the solution u(t, x) =

∑∞
n=1 anun(t, x) is a

superposition of these harmonics. What is essential from our point of view is that,

since the eigenfunctions Xn(x) =

√
2
l sin nπx

l are fixed, all of the information about a
solution u(t, x) to the vibrating string problem is contained in a countable sequence
of classical harmonic oscillators qn(t) as opposed to a continuum of oscillators, one
for each point along the length of the string. Here, briefly, is a simple, concrete
illustration of this.
Exercise 1.0.2. Classical physics provides the following expression for the total
energy (kinetic plus potential) of our vibrating string at time t.

E(t) =

∫ l

0

1
2

[
ρ
(∂u
∂t

)2
+ τ

(∂u
∂x

)2
]

dx

(recall that ρ is the mass density and τ is the tension). Take this for granted. Then
substitute (1.14), and use the orthonormality relations for the functions Xn(x) =√

2
l sin nπx

l to show that

E(t) =

∞∑
n=1

ρ

2
[
q̇n(t)2 + ω2

nqn(t)2 ]
.

Notice that this is just the sum of the energies of the harmonic oscillators {qn(t)}∞n=1
if they are all taken to have mass ρ.

A vibrating string is therefore essentially a sequence of classical harmonic oscil-
lators. These same ideas can be applied in much more significant contexts and we
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will see some of them later. In particular, we will see in Section 4.3 how they can
be used to study blackbody radiation and trace the ideas that led Max Planck to the
quantum hypothesis that eventually evolved into our topic here.

Although we are interested primarily in the harmonic oscillator and therefore in
the linearized pendulum, taking a moment to become more familiar with the full
pendulum equation (1.4) will provide an opportunity to gently introduce a few ideas
that will play an important role in our discussions.
Exercise 1.0.3. The pendulum equation φ̈(t)+ω2sin φ(t) = 0 is not solvable in terms
of elementary functions. Even so one can uncover a great deal of information about
its solutions and you will do a little bit of that now.

1. Show that the pendulum equation can be written

d
dφ

(1
2
φ̇2

)
+ ω2sin φ = 0,

integrate with respect to φ and multiply through by ml2 to obtain

(
1
2

ml2) φ̇2 − mgl cos φ = E, (1.15)

where E is a constant.
2. Convince yourself that (1.15) expresses the conservation of energy (kinetic plus

potential) for the pendulum.
3. The state of the pendulum at time t is described by the pair (φ(t), φ̇(t)), that is, by

its position and angular velocity at time t. Write (1.4) as a system of first order
equations by introducing variables x = φ and y = φ̇ so that

ẋ = y

ẏ = −ω2sin x.

The xy-plane is then called the state space of the pendulum (also called the
“phase space” or “phase plane”, but we will have another use for this termi-
nology). Sketch (or ask your laptop to sketch) a number of trajectories (x(t), y(t))
in the xy-plane corresponding to different choices of the energy E. You should
get something like Figure 1.4.

4. Place an arrowhead on each of the trajectories in Figure 1.4 to indicate the di-
rection in which the system evolves at t increases and describe the motion of the
pendulum for each type of curve in Figure 1.4.

5. Identify all of the equilibrium points (that is, constant solutions) in Figure 1.4.
Observe that the equilibrium points are of two different types, called stable and
unstable, and characterize the two types geometrically and physically.

6. Carry out a similar analysis for the linearized pendulum equation (1.5) and com-
pare the behavior of the two systems.
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Fig. 1.4 Trajectories of the Pendulum





Chapter 2
Lagrangian and Hamiltonian Formulations

2.1 Introduction

Our entire discussion of the classical harmonic oscillator in the previous section was
“Newtonian” (basically, just F = mA). While this Newtonian picture is perfectly ad-
equate for a great many purposes, there are certain aspects of the picture that limit its
usefulness to us. Fields, such as the electromagnetic field, do not fit into the picture
at all, for example. More significantly, there are no natural techniques for quantiz-
ing a classical mechanical system described in Newtonian terms. In this section we
will introduce two alternative pictures, each of which encompasses both mechanics
and field theory and for each of which there are procedures for producing quantum
analogues of classical systems. Our objectives here are, as always, quite modest; we
hope only to introduce the fundamental ideas required to understand what is to come
later on. For a thorough grounding in Lagrangian and Hamiltonian mechanics we
direct the reader to [Arn2], [Sp3], [CM] [GS1], or the standard physics text [Gold].

2.2 State Space and Lagrangians

Let’s return to the situation described in Remark 1.0.2. Thus, we consider a particle
of mass m moving in Rn. We denote its position at time t by α(t) = (q1(t), . . . , qn(t)).
We assume that the particle is moving under the influence of a time-independent
force F(q) = F(q1, . . . , qn) and that the force is conservative, that is, F(q) = −∇V(q)
for some smooth, real-valued function V(q) on Rn. The basic assumption of New-
tonian mechanics is that, along the trajectory α(t) of the particle, Newton’s Second
Law m d2α(t)

dt2 = −∇V(α(t)) is satisfied. For the moment, all we want to do is find
an equivalent way of saying “Newton’s Second Law is satisfied”. We’ll do this by
introducing a few definitions and performing a little calculation. When this is done
we will describe the much more general context in which these ideas live and that
will eventually allow us to leave the confines of Newtonian mechanics.

13
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Fix two points a, b ∈ Rn and an interval [t0, t1] in R. We consider the set
C∞a,b([t0, t1],Rn) of all smooth (infinitely differentiable) curves α(t) in Rn from
α(t0) = a to α(t1) = b; this has the structure of an infinite-dimensional affine space.
For each element α of C∞a,b([t0, t1],Rn) we define the kinetic energy function Kα(t)
and potential energy function Vα(t) by

Kα(t) =
1
2

m ‖ α̇(t) ‖2,

where α̇(t) denotes the velocity (tangent) vector to α at t and ‖ ‖ is the usual norm
on Rn, and

Vα(t) = V(α(t)).

The kinetic energy plus the potential energy is the total energy Eα(t) and we have
seen that Newton’s Second Law implies that this is constant along the actual trajec-
tory of the particle. Instead of the sum, we would now like to consider the difference
of the kinetic and potential energies (we will have a few words to say about the phys-
ical interpretation of this in Remark 2.2.1). Specifically, we define

Lα(t) = Kα(t) − Vα(t) =
1
2

m ‖ α̇(t) ‖2 − V(α(t)).

Next we define the action functional to be the real-valued function

S : C∞a,b([t0, t1],Rn)→ R (2.1)

given by

S (α) =

∫ t1

t0
Lα(t)dt =

∫ t1

t0

1
2

m ‖α̇(t)‖2 − V(α(t)) dt. (2.2)

We propose to characterize the trajectory α of a particle moving under the influ-
ence of F(q) = −∇V(q) from α(t0) = a to α(t1) = b as a “critical point” of this action
functional S , that is, a point where the “derivative” of S vanishes. First, of course,
we must isolate the appropriate notion of “derivative”. For any α ∈ C∞a,b([t0, t1],Rn)
we define a (fixed endpoint) variation of α to be a smooth map

Γ : [t0, t1] × (−ε, ε)→ Rn

for some ε > 0 such that

Γ(t, 0) = α(t), t0 ≤ t ≤ t1
Γ(t0, s) = α(t0) = a, −ε < s < ε

Γ(t1, s) = α(t1) = b, −ε < s < ε.

For any fixed s ∈ (−ε, ε) the map
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Fig. 2.1 Variation

γs : [t0, t1]→ Rn

defined by

γs(t) = Γ(t, s)

is an element of C∞a,b([t0, t1],Rn) so the action S (γs) is defined. Moreover, γ0 = α
so S (γ0) = S (α). Intuitively, we think of Γ as giving rise to a 1-parameter family
of curves γs in C∞a,b([t0, t1],Rn) near α and, for this family of curves, the action
functional becomes a real-valued function of the real variable s and so is something
whose rate of change we can compute. Specifically, we will say that a curve α ∈
C∞a,b([t0, t1],Rn) is a stationary, or critical point of the action functional S if

d
ds

S (γs)|s=0 = 0 (2.3)

for every variation Γ of α. In particular, this must be true for variations of the form

Γ(t, s) = α(t) + sh(t), (2.4)

where h : [t0, t1]→ Rn is an arbitrary smooth function satisfying h(t0) = h(t1) = 0 ∈
Rn (physicists would be inclined to write h as δα). What we propose to prove now
is that Newton’s Second Law is satisfied along α(t) if and only if (2.3) is satisfied
for all variations of α of the form (2.4). The procedure will be to prove

d
ds

S (γs)|s=0 =

∫ t1

t0

[
− mα̈(t) − ∇V(α(t))

]
· h(t) dt (2.5)

and then appeal to

Lemma 2.2.1. (Basic Lemma of the Calculus of Variations): Let t0 < t1 be real
numbers and let f : [t0, t1]→ Rn be a continuous function that satisfies
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t0
f (t) · h(t) dt = 0

for every smooth function h : [t0, t1] → Rn with h(t0) = h(t1) = 0 ∈ Rn. Then
f (t) = 0 ∈ Rn for every t ∈ [t0, t1].

Proof. The general result follows easily from the n = 1 case so we will prove only
this. Thus, we assume f : [t0, t1]→ R is continuous and satisfies∫ t1

t0
f (t)h(t) dt = 0

for all smooth functions h : [t0, t1] → R with h(t0) = h(t1) = 0. Assume that f
is nonzero at some point in [t0, t1] and, without loss of generality, that it is pos-
itive there. Then, by continuity, f is positive on some relatively open interval in
[t0, t1] and therefore on some open interval (α, β) in R contained in [t0, t1]. Now
one can select a smooth real-valued function h on R that is positive on (α, β) and
zero elsewhere (see, for example, Exercise 2-26 of [Sp1]). But then

∫ t1
t0

f (t)h(t) dt =∫ β

α
f (t)h(t) dt > 0 and this is a contradiction. Consequently, f (t) = 0∀t ∈ [t0, t1]. ut

Now we turn to the proof of (2.5). For this we compute

d
ds

S (γs)
∣∣∣
s=0 =

d
ds

∫ t1

t0

1
2

m γ̇s(t) · γ̇s(t) − V(γs(t)) dt
∣∣∣
s=0

=

∫ t1

t0

d
ds

[1
2

mγ̇s(t) · γ̇s(t) − V(γs(t))
] ∣∣∣∣∣

s=0
dt

=

∫ t1

t0

[
mγ̇s(t) ·

d
ds
γ̇s(t) − ∇V(γs(t)) ·

d
ds
γs(t)

] ∣∣∣∣∣
s=0

dt

=

∫ t1

t0

[
mγ̇s(t) ·

d
ds
γ̇s(t) − ∇V(γs(t)) · h(t)

] ∣∣∣∣∣
s=0

dt (2.6)

Now, note that

d
ds
γ̇s(t) =

d
ds

d
dt
γs(t) =

d
dt

d
ds
γs(t) =

d
dt

h(t)

so (2.6) becomes
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d
ds

S (γs)
∣∣∣
s=0 =

∫ t1

t0

[
mγ̇s(t) ·

d
dt

h(t) − ∇V(γs(t)) · h(t)
] ∣∣∣∣∣

s=0
dt

=

∫ t1

t0

[
mα̇(t) ·

d
dt

h(t) − ∇V(α(t)) · h(t)
]

dt

=

∫ t1

t0

[
− mα̈(t) · h(t) − ∇V(α(t)) · h(t)

]
dt + mα̇(t) · h(t)

∣∣∣∣∣t1
t0

=

∫ t1

t0

[
− mα̈(t) − ∇V(α(t))

]
· h(t) dt (since h(t0) = h(t1) = 0)

and this is (2.5). Now we apply Lemma 2.2.1 to conclude that mα̈(t) = −∇V(α(t))
exactly when α is a stationary point for the action S .
Remark 2.2.1. Generally, although not always (see Example 2.2.4), a stationary
point α for an action functional S will correspond to a relative minimum value of S .
In this case one can think of our result intuitively as saying that Newton’s Second
Law dictates that the trajectory of our particle is that particular curve that minimizes
the average kinetic minus the average potential energy, that is, the energy of motion
minus the energy available for motion; in some sense, nature wants to see as little
energy expended on motion as possible. For a much more illuminating discussion
of this interpretation of our result, a few instances of how such ideas appear in other
parts of physics, and just a fun read, see Chapter 19, Volume II, of [FLS]. This,
incidentally, is our first exposure to what is often called in physics the Principle of
Least Action, although it would more properly be called the Principle of Stationary
Action. We will see more before we are through.

The point to this calculation is that Newton’s Second Law has been rephrased as a
variational principle and this suggests the possibility that other basic laws of physics
might be similarly rephrased (the actual evolution of the system is that which “min-
imizes” something). If this is the case, then the calculus of variations might provide
a general perspective for viewing a wider swath of physics than does Newtonian
mechanics. This is, in fact, true and we would now like to describe this perspective.
Remark 2.2.2. The mathematical formalism of Lagrangian mechanics, which we
now begin to describe, requires a basic knowledge of differentiable manifolds and
Lie groups. While we assume that, at some point in the past, this material was famil-
iar to all of our readers, the occasional reminder may not be amiss. These reminders
will necessarily be rather brief, often nothing more than a quick statement of a def-
inition and/or an example to illustrate the concept and a reference to an appropriate
place to look for more information. The sources for these references will vary ac-
cording to the topic, but we will endeavor to use only those that are accessible and
in roughly the same spirit as our discussion here; [Sp2] is popular, of course, as
is [Warner]; [CM] contains a very detailed and readable account of all the geome-
try we will need as well as many more applications to mechanics; [Lang3] is more
concise, but has the advantage of discussing infinite-dimensional Banach manifolds
from the outset; [BG] is a popular choice among physicists; in general, however,
we will tend to favor [Nab3] and [Nab4]. Soon we will also need the basic theory
of differential forms on manifolds; for this one might consult Chapter 7, Volume I,
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of [Sp2], Chapter 9 of [CM], or Section 5.7 of [Nab3] for 1-forms, Section 5.11 of
[Nab3] for 2-forms, and Chapter 4 of [Nab4] for forms of arbitrary degree.

To ease the transition to our new abstract setting, let us first rephrase a bit of what
we have just done in order to see how the main player in the drama, the Lagrangian,
enters the picture.The particle we have been discussing moves in

M = Rn

and we will refer to this as the configuration space of the particle (space of possible
positions). We will let q1, . . . , qn denote standard coordinate functions on the man-
ifold M = Rn. The potential V can then be thought of as a function of q1, . . . , qn.
The coordinate velocity vector fields ∂q1 , . . . , ∂qn corresponding to q1, . . . , qn (also
often written ∂

∂q1 , . . . ,
∂
∂qn , or simply ∂1, . . . , ∂n) provide a basis ∂q1 |p, . . . , ∂qn |p for

the tangent space Tp(M) at each p ∈ M. Bowing once again to the conventions of
the physicists we will denote the corresponding component functions on Tp(M) by
q̇1, . . . , q̇n so that vp ∈ Tp(M) is written vp =

∑n
i=1 q̇i(vp)∂qi |p or, better yet, with

the Einstein summation convention, vp = q̇i(vp)∂qi |p. Thus, q1, . . . , qn, q̇1, . . . , q̇n are
coordinate functions for the tangent bundle

T M = Rn ×Rn

of Rn (Remark 2.2.5 below reviews the definition of the tangent bundle for an ar-
bitrary manifold); this we refer to as the state space of the particle (space of pairs
consisting of a possible position and a possible velocity).
Remark 2.2.3. One must take care not to interpret the dot in q̇i as signifying a
derivative with respect to t. There is no t here; q̇i is simply a name for a coordinate in
the tangent bundle. The reason for this rather odd notational convention will become
clear in a moment when we lift curves in the configuration space to curves in the
state space.
In terms of these coordinates we define a function,

L : T M → R

called the Lagrangian by

L(q, q̇) = L(q1, . . . , qn, q̇1, . . . , q̇n) =

n∑
i=1

1
2

m(q̇i)2 − V(q1, . . . , qn). (2.7)

For t0 < t1 in R and a, b ∈ M = Rn the path space C∞a,b([t0, t1],M) is the space
of all smooth curves α : [t0, t1] → M with α(t0) = a and α(t1) = b. Every α in
C∞a,b([t0, t1],M) has a unique lift to a smooth curve

α̃ : [t0, t1]→ T M

in the tangent bundle defined by
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α̃(t) = (α(t), α̇(t)),

where α̇(t) denotes the velocity (tangent) vector to α at t. In coordinates we will
simplify the notation a bit and write qi(α̃(t)) = qi(α(t)) as qi(t) and q̇i(α̃(t)) = q̇i(α̇(t))
as q̇i(t). Thus,

α̃(t) = (q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)).

Remark 2.2.4. Now you can think of the dot in q̇i(t) as signifying the derivative with
respect to t of qi(α(t)).

Consequently, the functions Lα(t) representing the kinetic minus potential energy
along α(t) and whose t-integral is the action S (α) can be described as

Lα = L ◦ α̃,

where L is the Lagrangian defined on T M = Rn × Rn by (2.7). The essential in-
formation is contained in the function L defined on the state space (tangent bundle)
and, as we move now to the general setting, our focus will shift to it.

We begin with a smooth (C∞) manifold M of dimension n which we will refer to
as the configuration space (space of positions). This might be, for example, Rn, n =

1, 2, 3, for a single particle moving along a line, in a plane, or in 3-space. For k
particles moving in 3-space one would take M = R3k (three position coordinates
for each of the k particles). For a particle constrained to move on the surface of the
earth one might take M = S 2. One can imagine many more exotic possibilities.
Exercise 2.2.1. Conjure up a physical system whose configuration space is the torus
S 1 × S 1.
The tangent bundle of M (see Remark 2.2.5 below) is denoted T M and called the
state space (space of pairs consisting of a possible configuration and a possible rate
of change).
Remark 2.2.5. We will view T M in the following way. As a set, T M consists of all
pairs (p, vp), where p ∈ M and vp is in the tangent space Tp(M) to M at p. There
is a natural projection π : T M → M of T M onto M defined by π(p, vp) = p. The
topology and manifold structure of T M are defined as follows. Let (U, φ) be a chart
on M, where U ⊆ M is an open set and φ is a homeomorphism of U onto the open
set φ(U) in Rn. Denote the coordinate functions of (U, φ) by q1, . . . , qn and their
coordinate velocity vector fields by ∂q1 , . . . , ∂qn . Then, for p ∈ U and vp ∈ Tp(M),

vp = vp(q1)∂q1 |p + · · · + vp(qn)∂qn |p

(see Section 5.5 of [Nab3]). Now let Ũ = π−1(U) ⊆ T M and define φ̃ : Ũ →

φ(U) ×Rn ⊆ Rn ×Rn = R2n by

φ̃(p, vp) = ( q1(p), . . . , qn(p), q̇1(vp), . . . , q̇n(vp) )

where
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q̇i(vp) = vp(qi), i = 1, . . . , n.

Now, a subset U of T M is said to be open in T M if, for every chart (U, φ) on
M, φ̃(Ũ ∩ U) is open in R2n. This determines a topology on T M and, relative to
this topology, the (Ũ, φ̃) are charts with coordinate functions (q1, . . . , qn, q̇1, . . . , q̇n).
These overlap smoothly and so determine a differentiable structure for T M. Co-
ordinates of this type that arise from charts on M are called natural coordinates
on T M (physicists also call them generalized coordinates). The tangent bundle of
M = Rn is, as a topological space and as a differentiable manifold, just the product
M × Rn = Rn × Rn, but generally tangent bundles are not topological products.
For example, the tangent bundle TS 2 of the 2-sphere S 2 cannot be the topological
product S 2 ×R2 since, if it were, then S 2 would admit a continuous, non-vanishing
vector field and this would violate a classical (and rather deep) theorem in topol-
ogy (see Theorem 16.5 of [Gre]). Any tangent bundle is, however, locally a product
since φ̃ : Ũ → φ(U)×Rn ⊆ Rn ×Rn is a homeomorphism. A section of the tangent
bundle T M is a smooth map s : M → T M for which π ◦ s = idM . Such a section
therefore picks out a tangent vector s(p) ∈ Tp(M) at each p ∈ M and these tangent
vectors vary smoothly from point to point in M. One can therefore identify a section
of T M with a smooth vector field on M.

Any smooth real-valued function L : T M → R on the state space T M is called a
Lagrangian on M. Such a function can be described locally in natural coordinates.
We adopt the usual custom of writing

L(q1, . . . , qn, q̇1, . . . , q̇n) = L(q, q̇)

rather than the more precise L ◦ φ̃−1(q1, . . . , qn, q̇1, . . . , q̇n).
For t0 < t1 in R and a, b ∈ M the path space C∞a,b([t0, t1],M) is the space of

all smooth curves α : [t0, t1] → M with α(t0) = a and α(t1) = b. Every α in
C∞a,b([t0, t1],M) has a unique lift to a smooth curve

α̃ : [t0, t1]→ T M

in the tangent bundle defined by

α̃(t) = (α(t), α̇(t)),

where α̇(t) denotes the velocity (tangent) vector to α at t. The action functional
associated with the Lagrangian L is the real-valued function

S L : C∞a,b([t0, t1],M)→ R (2.8)

defined by

S L(α) =

∫ t1

t0
L(α̃(t))dt =

∫ t1

t0
L(α(t), α̇(t))dt. (2.9)
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Remark 2.2.6. Since M is now an arbitrary smooth manifold rather than Rn,
C∞a,b([t0, t1],M) no longer has the algebraic structure of an affine space. It does,
however, have the structure of an infinite-dimensional Fréchet manifold. This sort
of structure is thoroughly discussed in the first four sections of [Ham], but we will
make no use of it just yet, except to intuitively relate some of the following defini-
tions to familiar objects in the finite-dimensional situation. For example, thinking
of the curves in C∞a,b([t0, t1],M) as points in some sort of manifold, one can imagine
smooth curves in this manifold (that is, “curves of curves”), tangent vectors to such
curves of curves, and so on. For instance, a smooth curve in C∞a,b([t0, t1],M) through
some point α ∈ C∞a,b([t0, t1],M) is what we will now call a “variation” of α.

For any α ∈ C∞a,b([t0, t1],M) we define a (fixed endpoint) variation of α to be a
smooth map

Γ : [t0, t1] × (−ε, ε)→ M

for some ε > 0 such that

Γ(t, 0) = α(t), t0 ≤ t ≤ t1
Γ(t0, s) = α(t0) = a, −ε < s < ε

Γ(t1, s) = α(t1) = b, −ε < s < ε.

For any fixed s ∈ (−ε, ε) the map

γs : [t0, t1]→ M

defined by

γs(t) = Γ(t, s)

is an element of C∞a,b([t0, t1],M); γs is a “point” along the “curve of curves” repre-
sented by the variation Γ. Then S L(γs) is a real-valued function of the real variable
s whose value at s = 0 is S L(α). We say that α ∈ C∞a,b([t0, t1],M) is a stationary, or
critical point of the action functional S L if

d
ds

S L(γs)
∣∣∣
s=0 = 0

for every variation Γ of α. Intuitively, the rate of change of S L along every curve in
C∞a,b([t0, t1],M) through the point α is zero at α or, better yet, if S L is thought of as a
real-valued function on the manifold C∞a,b([t0, t1],M), its derivative is zero in every
direction at α.

For curves α that lie in some coordinate neighborhood in M one can write down
explicit equations that are necessary conditions for α to be a stationary point of
S L. We will derive these now and then look at some examples. Thus, we suppose
(U, φ) is a chart on M and denote its coordinate functions q1 . . . , qn. The corre-
sponding natural coordinates on Ũ ⊆ T M are denoted q1 . . . , qn, q̇1, . . . , q̇n. We
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consider a smooth curve α : [t0, t1] → U ⊆ M in C∞a,b([t0, t1],M) whose image
lies in U. The lift of α to TU ⊆ T M is written in these natural coordinates as
α̃(t) = (q1(t) . . . , qn(t), q̇1(t), . . . , q̇n(t)), where we recall that qi(t) is a notational
shorthand for qi(α(t)) and similarly q̇i(t) means q̇i(α̇(t)). Now we construct some
specific variations of α.
Remark 2.2.7. We are looking for necessary conditions for stationary points so we
are free to select any particular variations we choose.

Let h : [t0, t1] → Rn be any smooth map which satisfies h(t0) = h(t1) = 0 and
write the coordinate functions of h as h(t) = (h1(t), . . . , hn(t)). For ε > 0 sufficiently
small and −ε < s < ε, (q1(t) + sh1(t), . . . , qn(t) + shn(t)) will be in the open set φ(U)
and this gives a variation of α whose lift is given in natural coordinates by (q1(t) +

sh1(t), . . . , qn(t) + shn(t), q̇1(t) + sḣ1(t), . . . , q̇n(t) + sḣn(t)). To ease the typography a
bit we will write this as (α(t) + sh(t), α̇(t) + sḣ(t)). Thus,

d
ds

S L(γs)
∣∣∣
s=0 =

d
ds

∫ t1

t0
L(α(t) + sh(t), α̇(t) + sḣ(t)) dt

∣∣∣
s=0

=

∫ t1

t0

d
ds

L(α(t) + sh(t), α̇(t) + sḣ(t))
∣∣∣
s=0 dt

=

∫ t1

t0

(
∂L
∂qk

(
α(t), α̇(t)

)
hk(t) +

∂L
∂q̇k

(
α(t), α̇(t)

)
ḣk(t)

)
dt

=

∫ t1

t0

[
∂L
∂qk

(
α(t), α̇(t)

)
−

d
dt

(
∂L
∂q̇k

(
α(t), α̇(t)

))]
hk(t) dt

so, appealing to Lemma 2.2.1, we conclude that if α is a stationary point of S L, then

∂L
∂qk

(
α(t), α̇(t)

)
−

d
dt

(
∂L
∂q̇k

(
α(t), α̇(t)

))
= 0, 1 ≤ k ≤ n. (2.10)

These are the famous Euler-Lagrange equations which one often sees written sim-
ply as

∂L
∂qk −

d
dt

(
∂L
∂q̇k

)
= 0, 1 ≤ k ≤ n. (2.11)

These equations are necessarily satisfied along any stationary curve for S L whose
image lies in any local coordinate neighborhood U. By compactness, we can cover
the image of any stationary curve α(t), t0 ≤ t ≤ t1, by finitely many coordinate neigh-
borhoods and the Euler-Lagrange equations are satisfied on each so it is customary
to say simply that they are satisfied “on α”.

Notice that the derivation of the Euler-Lagrange equations was carried out for
an arbitrary local coordinate system (q1, . . . , qn) on M so, unlike Newton’s Second
Law, these equations take exactly the same form in every coordinate system. This
coordinate independence is one of their great advantages. It is instructive to check
this with a direct computation.
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Exercise 2.2.2. Let (Q1, . . . ,Qn) be another local coordinate system on M defined on
an open set that intersects the domain of (q1, . . . , qn). On this intersection transform
the Euler-Lagrange equations (2.11) to the new local coordinates (Q1, . . . ,Qn) and
show that the resulting equations are equivalent to

∂L
∂Qk −

d
dt

(
∂L
∂Q̇k

)
= 0, 1 ≤ k ≤ n.

Notice that we have not asserted that stationary curves joining any two points in
M must exist, nor that they are unique even when they do exist and, indeed, neither
of these is true in general, as we will see in Example 2.2.4.

Remark 2.2.8. We have defined a Lagrangian to be a function on the tangent bundle
T M, but it is sometimes convenient to allow it to depend explicitly on t as well, that
is, to define a Lagrangian to be a smooth map L : R×T M → R. Then, for any path in
the domain of a coordinate neighborhood on M, one would write L = L(t, α(t), α̇(t))
in natural coordinates. The action associated with this path is defined in the same
way as the integral of L(t, α(t), α̇(t)) over [t0, t1]. Stationary points for the action
are also defined in precisely the same way and a glance back at the calculations
leading to the Euler-Lagrange equations shows that the additional t-dependence has
no effect at all on the end result, that is, stationary curves satisfy

∂L
∂qk

(
t, α(t), α̇(t)

)
−

d
dt

(
∂L
∂q̇k

(
t, α(t), α̇(t)

))
= 0, 1 ≤ k ≤ n.

Notice that one can draw a rather remarkable conclusion just from the form
in which the Euler-Lagrange equations (2.11) are written, namely, that if the La-
grangian L happens not to depend on one of the coordinates, say qk0 , then ∂L

∂qk0
= 0

everywhere and (2.11) implies that, along any stationary curve, ∂L
∂q̇k0

is constant. In

more colloquial terms, ∂L
∂q̇k0

is conserved as the system evolves.

∂L
∂qk0

= 0 =⇒ ∂L
∂q̇k0

is conserved along any stationary path.

This is the simplest instance of one of the most important features of the La-
grangian formalism, that is, the deep connection between the symmetries of a La-
grangian (in this case, its invariance under translation of qk0 ) and the existence of
quantities that are conserved during the evolution of the system. This feature is
entirely absent from the Newtonian picture and we will have more to say about
it shortly when we discuss what is called “Noether’s Theorem”. For the moment,
however, we would just like to look at a few examples.
Example 2.2.1. Let’s have another look at the example that motivated all of this in
the first place. For our configuration space we take M = Rn and choose global stan-
dard coordinates on Rn; to emphasize this special choice we will revert to x1, . . . , xn
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for the coordinate functions. The state space is then TRn = Rn ×Rn and the corre-
sponding natural coordinates are x1, . . . , xn, ẋ1, . . . , ẋn. Letting V(x1, . . . , xn) denote
an arbitrary smooth, real-valued function on Rn and m a positive constant, we take
our Lagrangian to be

L(x1, . . . , xn, ẋ1, . . . , ẋn) =
1
2

m
n∑

i=1

(ẋi)2 − V(x1, . . . , xn).

To write down the Euler-Lagrange equations we note that

∂L
∂xi = −

∂V
∂xi , i = 1, . . . , n

and

∂L
∂ẋi = mẋi, i = 1, . . . , n.

Thus, (2.11) becomes

−
∂V
∂xi −

d
dt

(mẋi) = 0, i = 1, . . . , n,

that is,

m
d2xi

dt2 = −
∂V
∂xi , i = 1, . . . , n

and these are, as expected, Newton’s Second Law.
Remark 2.2.9. Although it is merely a very special case of what we have just done,
we will record, for future reference, what this looks like for the harmonic oscillator.
For this we take the configuration space to be M = R with standard coordinate
q. The state space is therefore T M = R × R with natural coordinates (q, q̇). The
potential is V(q) = 1

2 kq2, where k > 0 is a constant and the Lagrangian is

L(q, q̇) =
1
2

mq̇2 −
1
2

kq2.

The Euler-Lagrange equation is therefore

∂L
∂q
−

d
dt

(
∂L
∂q̇

)
= 0

−kq − mq̈ = 0

q̈ + ω2q = 0 (ω =
√

k/m )

and we are right back where we started in Chapter 1.
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For future reference (Sections 7.3 and 7.4) we would like to write out the action
for the free particle and the harmonic oscillator along a solution curve.
Exercise 2.2.3. Write the solution to the 1-dimensional free particle equation mq̈ =

0 as α(t) = at + b.

1. Suppose t0 < t1. Show that the solution α(t) to mq̈ = 0 satisfying the boundary
conditions α(t0) = q0 and α(t1) = q1 is

α(t) =
q1 − q0

t1 − t0
(t − t0) + q0.

2. Show that the action S (α) is given by

S (α) =
m

2(t1 − t0)
(q1 − q0)2.

3. Show that, with p = mα̇(t), the action can be written

S (α) = p(q1 − q0) −
t1 − t0

2m
p2.

Remark 2.2.10. The function p(q1 − q0) − t−t0
2m p2 will put in another appearance

in Section 7.3 when we compute the propagator for a free quantum particle (see
(7.44)).
Exercise 2.2.4. Write the solution to the harmonic oscillator equation q̈ + ω2q = 0
as α(t) = A cosωt + B sinωt.

1. Suppose T > 0 and assume ωT is not an integer multiple of π. Show that, for the
solution α(t) to q̈ + ω2q = 0 satisfying the boundary conditions α(0) = q0 and
α(T ) = qT ,

A = q0

and

B =
qT − q0 cosωT

sinωT
.

2. Show that the action S (α) can be written as

S (α) =

∫ T

0

[ 1
2

mα̇(t)2 −
1
2

mω2α(t)2
]

dt

=
mω
2

[
(B2 − A2) sinωT cosωT − 2AB sin2ωT

]
=

mω
2 sinωT

[
(q2

0 + q2
T ) cosωT − 2q0qT

]
.

Remark 2.2.11. We will see the function mω
2 sinωT

[
(q2

0 +q2
T ) cosωT −2q0qT

]
again in

Section 7.4 when we compute the propagator for the quantum harmonic oscillator
(see (7.61)).
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Before leaving Example 2.2.1, let’s suppose, for example, that the potential
V(x1, . . . , xn) happens not to depend on, say, the ith-coordinate xi so that ∂L

∂xi = 0
everywhere. Since ∂L

∂ẋi = mẋi, we conclude that mẋi is constant along the trajectory
of the particle. Now, mẋi is what physicists call the ith-component of the particle’s
(linear) momentum. Thus, if the potential V is independent of the ith-coordinate,
then the ith-component of momentum is conserved during the motion.

Spatial Translation Symmetry implies Conservation of (Linear) Momentum

In particular, for a particle that is not subject to any forces (a free particle), all of
mẋ1, . . . ,mẋn remain unchanged during the motion. This, naturally enough, is called
the conservation of (linear) momentum.
Remark 2.2.12. Motivated by the last example we introduce some terminology that
will turn out to be more significant that it might appear at first. Let M be any man-
ifold and L : T M → R a Lagrangian on it. If qi, i = 1, . . . , n, is a local coordinate
system on M and if we write L in natural coordinates as L(q1, . . . , qn, q̇1, . . . , q̇n),
then

pi =
∂L
∂q̇i

is called the momentum conjugate to qi, even though it need not correspond to “mo-
mentum” in the usual sense at all. We have shown that pi is conserved along sta-
tionary paths if L is independent of qi and we will soon see that such pairs (qi, pi) of
so-called conjugate coordinates play an essential role in the Hamiltonian formula-
tion of classical mechanics as well as in quantum mechanics; we will also see why
the superscript was turned into a subscript (Remark 2.3.4).

Next we would like to write out at least one physically interesting example for
which the configuration space is a nontrivial manifold so that local coordinates are
actually required.
Example 2.2.2. We will describe what is called the spherical pendulum. This is
basically the same as the pendulum we discussed in Section 1 except that there is no
ceiling and the motion is not restricted to a plane (picture a wreaking ball suspended
from a crane as in Figure 2.2).

Specifically, we consider a pendulum with a bob of mass m suspended from a
fixed point by a massless string of length l that is set in motion and free to move on
a sphere of radius l about this fixed point under the influence of the earth’s gravi-
tational field (acceleration g). We will arrange Cartesian coordinate axes x1, x2, x3

with x3 vertical and the pendulum bob moving on the sphere (x1)2+(x2)2+(x3)2 = l2,
which is therefore the configuration space M. M is topologically the 2-sphere S 2.
The state space T M can be identified with the set of pairs (x, v) in R3 × R3 with
x ∈ M and x1v1 + x2v2 + x3v3 = 0 (the velocity vector of the mass is tangent to the
sphere). On M we introduce spherical coordinates denoted
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Fig. 2.2 Spherical Pendulum

q1 = φ

q2 = θ

and defined by

x1 = l sin φ cos θ

x2 = l sin φ sin θ (2.12)

x3 = −l cos φ

(so φ is measured up from the negative x3-axis and θ is measured in the x1x2-
plane from the positive x1-axis). By restricting (φ, θ) to (0, π) × (0, 2π) and then
to (0, π) × (−π, π) one obtains two charts that cover all of M except the north and
south poles and these points can be covered by defining analogous coordinates mea-
sured from some other coordinate axis. The associated natural coordinates on T M
will be denoted (φ, θ, φ̇, θ̇). The Lagrangian L is taken to be the kinetic minus the
potential energy associated with any state. In rectangular coordinates, the kinetic
energy is just 1

2 m ((ẋ1)2 + (ẋ2)2 + (ẋ3)2). The potential is taken to be mgx3 (keep in
mind that the potential is defined only up to an additive constant). Using (2.12) to
convert the Lagrangian to spherical coordinates gives

L =
1
2

m
(
(ẋ1)2 + (ẋ2)2 + (ẋ3)2) − mgx3

=
1
2

ml2 (φ̇2 + θ̇2sin2φ) + mgl cos φ.

Notice that the Cartesian coordinate version is independent of x1 and x2 so we al-
ready know that the x1- and x2-components of the linear momentum are conserved.
In spherical coordinates we have
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∂L
∂q1 =

∂L
∂φ

= ml2θ̇2sin φ cos φ − mglsin φ

∂L
∂q2 =

∂L
∂θ

= 0

∂L
∂q̇1 =

∂L
∂φ̇

= ml2φ̇

∂L
∂q̇2 =

∂L
∂θ̇

= ml2θ̇sin2φ.

The k = 1 Euler-Lagrange equation (2.11) therefore becomes

φ̈ + ω2sin φ = θ̇2sin φ cos φ, (2.13)

where, as we did for the simple pendulum in Chapter 1, we have written ω2 for g/l.
Notice, incidentally, that when θ̇ = 0, this reduces to the simple pendulum equation
(1.4), as it should.

Since L is independent of θ and ∂L
∂θ̇

= ml2θ̇sin2φ we conclude that

ml2θ̇sin2φ

is conserved during the motion and therefore so is θ̇sin2φ.
Remark 2.2.13. One might (indeed, should) wonder about the physical interpreta-
tion of any quantity that is conserved during the evolution of a physical system.
What exactly is ml2θ̇sin2φ and why should it remain constant during the motion?
We will answer this question soon (see (2.21)), but for the moment we would like to
simply record two remarks. First note that a bit of playing around with (2.12) shows
that

θ̇ sin2φ = x1 ẋ2 − x2 ẋ1.

Next observe that, since L is independent of θ, the Lagrangian is invariant under
rotations in the x1x2-plane. We will see soon that this “symmetry” of the Lagrangian
and the fact that x1 ẋ2 − x2 ẋ1 is conserved during the motion are intimately related
by what is called “Noether’s Theorem”.

Particles moving in space that are constrained to remain on some surface (for
example, the spherical pendulum bob) are so constrained by various forces acting
on them (for example, string tension). Such constraints can be imposed in a variety
of ways and their precise physical nature can be quite complicated. One of the beau-
ties of the Lagrangian (and Hamiltonian) formalism is that, whatever their physical
nature, such constraints can often be incorporated directly by simply decreeing that
the configuration space is the surface to which the particles are constrained. This as-
sertion is generally known as d’Alembert’s Principle and is assumed by physicists
to hold whenever the constraint forces are holonomic, which means that they do no
work (for example, when they are normal to the constraint surface, as in the case
of string tension). As a reality check, one should perhaps compute the equations of
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motion for the spherical pendulum the “old fashioned” way (F = mA) to see that
two of the three components reduce to our Euler-Lagrange equations and the third
simply says what the constraint force must be to keep the bob on the sphere (how-
ever this is accomplished physically). This is actually a pretty routine (albeit messy)
exercise so we will simply sketch the procedure in the next example and leave the
calculus and algebra to those who feel morally obligated to supply it.
Exercise 2.2.5. Fill in the details of the following Example.
Example 2.2.3. We will not specify what the constraint force is, but only that it is
normal to the sphere. We would like to keep this as close to a calculus experience as
possible so, for this example, we will write (x, y, z) for the Cartesian coordinates in
R3, while the usual spherical coordinates in space will be denoted (ρ, φ, θ); they are
related by

x = ρ sin φ cos θ

y = ρ sin φ sin θ

z = ρ cos φ.

We will use êx, êy, êz and êρ, êφ, êθ for the unit vector fields in the x, y, z and ρ, φ, θ
directions, respectively, at each point. These are related at each point by

êρ = (sin φ cos θ) êx + (sin φ sin θ) êy + (cos φ) êz

êφ = (cos φ cos θ) êx + (cos φ sin θ) êy − (sin φ) êz

êθ = (−sin θ) êx + (cos θ) êy

and

êx = (sin φ cos θ) êρ + (cos φ cos θ) êφ − (sin θ) êθ
êy = (sin φ sin θ) êρ + (cos φ sin θ) êφ + (cos θ) êθ
êz = (cos φ) êρ − (sin φ) êφ.

Write the Cartesian components of acceleration as A = ẍêx + ÿêy + z̈êz. With ρ = l
so that ρ̇ = ρ̈ = 0 these components are given in spherical coordinates by

ẍ = −2l cos φ sin θ φ̇ θ̇ − lsin φ sin θ θ̈ + l cos φ cos θ φ̈ − l sin φ cos θ (φ̇2 + θ̇2)

ÿ = 2l cos φ cos θ φ̇ θ̇ + lsin φ cos θ θ̈ + l cos φ sin θ φ̈ − l sin φ sin θ (φ̇2 + θ̇2)

z̈ = −l sin φ φ̈ − l cos φ φ̇2

Now, for any force F acting on m, the ρ, φ, θ-components of F = mA are

F · êρ = mA · êρ = (m sin φ cos θ)ẍ + (m sin φ sin θ)ÿ + (m cos φ)z̈
F · êφ = mA · êφ = (m cos φ cos θ)ẍ + (m cos φ sin θ)ÿ − (m sin φ)z̈
F · êθ = mA · êθ = −(m sin θ)ẍ + (m cos θ)ÿ.
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Now assume that F = Fρêρ−mgêz, where Fρêρ is the radial constraint force holding
m on the sphere. Then

F = (Fρ − mg cos φ)êρ − (mg sin φ)êφ

Writing out the φ-component of F = mA and simplifying gives

φ̈ + ω2sin φ = θ̇2sin φ cos φ,

where ω2 = g/l and this is (2.13). Similarly, the θ-component of F = mA gives

(sin φ) θ̈ + (2 cos φ) φ̇ θ̇ = 0,

which is equivalent to our conservation law

d
dt

(
ml2 θ̇ sin2φ

)
= 0.

Finally, the ρ-component of F = mA is the only one that involves Fρ and can simply
be solved for Fρ and therefore regarded as a specification of what Fρêρ must be in
order that m remain on the sphere.

Since (holonomic) constraints are built into Lagrangian mechanics through the
choice of the configuration space, the notion of a “constraining force” (like string
tension) essentially disappears from the picture. As a result, it makes sense to dis-
cuss particle motion that is “free” except for whatever is constraining the particle to
remain in the configuration space. The Lagrangian is simply the kinetic energy, that
is, 1

2 m times the squared magnitude of the velocity vector. Notice that the velocity
vectors are now tangent vectors to the configuration manifold so one can generalize
this scenario from constraint surfaces in space to any manifold in which each tan-
gent space is provided with an inner product with which to compute these squared
magnitudes, that is, to Riemannian manifolds. Although it is not our practice here to
strive for optimal generality, this particular example is worth doing generally since
it brings us face-to-face with a reinterpretation of a very fundamental notion in dif-
ferential geometry and provides insight into the nature of stationary curves.
Remark 2.2.14. A Riemannian metric on a manifold M is just an assignment to each
tangent space Tp(M) of a positive definite inner product 〈 , 〉p that varies smoothly
with p in the sense that, if X is a smooth vector field on M, then 〈X(p), X(p)〉p is
a smooth real-valued function on M. This then gives rise to a smooth, real-valued
function on the tangent bundle which assigns to every (p, vp) the squared magnitude
〈vp, vp〉p of vp. Riemannian metrics are introduced in Section 5.11 of [Nab3]. A
much more detailed introduction to Riemannian geometry can be found in Chapter
9 of [Sp2]. In the following example we will view Riemannian metrics simply as
particular types of Lagrangians and will require no information about them except
that they exist on every smooth manifold (Theorem 4, Chapter 9, of [Sp2]).
Example 2.2.4. Here we will discuss free motion on a Riemannian manifold, that
is, free motion with constraints. Specifically, our configuration space is an arbitrary
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smooth, n-dimensional manifold M equipped with a Riemannian metric 〈 , 〉p. The
Lagrangian L : T M → R is defined by L(p, vp) = 1

2 m〈vp, vp〉p for each (p, vp) ∈
T M, where m is some positive constant; this is often called the kinetic energy metric
on M. If q1, . . . , qn are local coordinates on M, then, in the corresponding natural
coordinates on T M,

L(q, q̇) =
1
2

mgi j(q)q̇iq̇ j (Summation Convention) (2.14)

for some positive definite, symmetric matrix (gi j(q)) of smooth functions on the
open subset of M on which q1, . . . , qn are defined. From this we compute

∂L
∂q̇i = mgi jq̇ j,

∂L
∂qi =

1
2

m
∂gk j

∂qi q̇kq̇ j,

and, along any smooth curve in M,

d
dt

(
∂L
∂q̇i

)
= mgi jq̈ j + m

∂gi j

∂qk q̇kq̇ j.

Thus, the Euler-Lagrange equations become

gi jq̈ j +
∂gi j

∂qk q̇kq̇ j −
1
2
∂gk j

∂qi q̇kq̇ j = 0 , i = 1, . . . , n.

Interchange k and j in this last equation to get

gi jq̈ j +
∂gik

∂q j q̇kq̇ j −
1
2
∂gk j

∂qi q̇kq̇ j = 0 , i = 1, . . . , n.

Now add the last two equations and divide by 2 to get

gi jq̈ j +
1
2

(
∂gik

∂q j +
∂gi j

∂qk −
∂gk j

∂qi

)
q̇kq̇ j = 0, i = 1, . . . , n.

The matrix (gi j) is invertible and we will denote its inverse by (gi j). Thus, if we
multiply the last equation by gli and sum over i = 1, . . . , n the result is

q̈l +
1
2

gli
(
∂gik

∂q j +
∂gi j

∂qk −
∂gk j

∂qi

)
q̇kq̇ j = 0, l = 1, . . . , n.

The coefficient of q̇kq̇ j is generally denoted Γl
k j and called a Christoffel symbol for

the given Riemannian metric. With this the Euler-Lagrange equations assume the
form
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q̈l + Γl
k jq̇

kq̇ j = 0, l = 1, . . . , n. (2.15)

These are the familiar geodesic equations of Riemannian geometry. Their solutions,
that is, the stationary curves for the Lagrangian L, are called the geodesics of the
Riemannian manifold M. For certain Riemannian manifolds the equations can be
solved explicitly. The geodesics of Rn with its standard Riemannian metric, for
example, are the arc length parametrizations of straight lines so, in particular, there
is a unique stationary curve joining any two points and, moreover, this curve has
minimal length among all curves joining these two points. For the sphere S n with
the metric it inherits from Rn+1 the geodesics are the arc length parametrizations of
the great circles so any two points are joined by two stationary curves and, unless the
points are diametrically opposite, only one of them minimizes length. On the other
hand, the geodesics of the punctured plane R2 − {(0, 0)} with the metric inherited
from R2 are still unit speed straight lines so, for example, (−1, 0) and (1, 0) cannot
be joined by any stationary curve.
Remark 2.2.15. All of the calculations in the preceding example are equally valid
if 〈 , 〉p is only assumed to be a nondegenerate, symmetric, bilinear form on Tp(M),
but not necessarily positive definite. A manifold equipped with such a 〈 , 〉p at each
p ∈ M, varying smoothly with p, is called a semi-Riemannian manifold and these are
of fundamental importance in many aspects of mathematical physics, particularly
general relativity. They also have geodesics, but the analysis and interpretation of
these is much more subtle (see [Nab1] for a brief encounter with this and [O’N] for
a more thorough treatment).
Exercise 2.2.6. Let M be an arbitrary manifold. Another type of geometrical object
on M that can be thought of as a Lagrangian is a 1-form θ. These are simply smooth
real-valued functions on T M that are linear on each fiber π−1(p) � {p} × Tp(M) so
that, in any local coordinate system, θ(q, q̇) = θi(q)q̇i for some smooth real-valued
functions θi(q) = θi(q1, . . . , qn), i = 1, . . . , n.

1. Show that the Euler-Lagrange equations for the Lagrangian θ can be written in
the form

ια̇(t) dθ = 0,

where dθ is the exterior derivative of θ and ια̇(t) dθ is the interior product (con-
traction) of the 2-form dθ with α̇(t), that is, (ια̇(t) dθ) (v(t)) = dθ (α̇(t), v(t)) for any
tangent vector v(t) to M at α(t).

2. Let L : T M → R be an arbitrary Lagrangian on M and θ a 1-form. Define a new
Lagrangian L′ : T M → R on M by L′ = L+θ+c, where c is a real constant. Show
that L and L′ have the same Euler-Lagrange equations if and only if θ is a closed
1-form (that is, if and only if dθ = 0). In particular, if g : M → R is any smooth,
real-valued function on M, then L and L + dg have the same Euler-Lagrange
equations.

Next we would like to look at an example of a slightly different sort.
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Example 2.2.5. We mentioned in Remark 2.2.8 that the Euler-Lagrange equations
are still satisfied even if one allows the Lagrangian to depend explicitly on time t.
We have chosen not to do this; our Lagrangians are all functions on T M. Thought of
somewhat differently, we are really considering only “time-dependent” Lagrangians
L(t, q1, . . . , qn, q̇1, . . . , q̇n) possessing the time translation symmetry ∂L

∂t = 0. We
show now that this symmetry also gives rise to a quantity that is conserved along
stationary paths and, indeed, to one that we have already seen in a special case.
Remark 2.2.16. Notice that there is no ṫ floating around so we cannot arrive at this
conserved quantity as we did in the previous examples by computing “∂L/∂ṫ ”.

Write the stationary curve in local coordinates on M as q1(t), . . . , qn(t) and the La-
grangian evaluated on (the lift of) this curve as L(t, q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)).
Now compute the rate of change of L along the curve.

dL
dt

=
∂L
∂qi

dqi

dt
+
∂L
∂q̇i

dq̇i

dt
+
∂L
∂t

=
d
dt

(
∂L
∂q̇i

)dqi

dt
+
∂L
∂q̇i

d
dt

(dqi

dt

)
+ 0

=
d
dt

(
∂L
∂q̇i

dqi

dt

)
=

d
dt

(piq̇i)

In other words,

d
dt

(
piq̇i − L

)
= 0

so piq̇i−L is conserved along a stationary path for any time-independent Lagrangian.
To see how one should interpret this conserved quantity, let’s write it out in the case
of the Lagrangian (2.7). For L(q1, . . . , qn, q̇1, . . . , q̇n) =

∑n
i=1

1
2 m(q̇i)2 −V(q1, . . . , qn)

we have

piq̇i − L =
∂L
∂q̇i q̇i − L =

n∑
i=1

m(q̇i)2 − L =

n∑
i=1

1
2

m(q̇i)2 + V(q1, . . . , qn)

and this is just the total energy (kinetic plus potential). For any time-independent
Lagrangian L we define the total energy EL by

EL = piq̇i − L =
∂L
∂q̇i q̇i − L (2.16)

and we summarize what we have just shown by saying that

Time Translation Symmetry implies Conservation of Energy.
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Remark 2.2.17. The energy function EL is defined in terms of natural coordinates
on T M, but one can check that the definitions agree on the intersection of any two
coordinate neighborhoods so EL is a well-defined real-valued function on T M. An-
other way of seeing the same thing is to check that the following invariant definition
agrees with the coordinate definition. Let R be the vector field on T M that is “radial”
on each Tp(M). More explicitly, for each (p, vp) ∈ T (M), let R(p, vp) = d

dt (p, tvp)|t=0;
in local coordinates, R = q̇i∂q̇i . Then EL = dL(R) − L.

One could continue this list of examples indefinitely, but this is not really our
business here (many more are available in, for example, [Arn2], [Sp3] and [Gold]).
Next we would like to look into the relation to which we alluded in Remark 2.2.13
between “symmetries” and conserved quantities. We will define first a “symmetry”
of a Lagrangian L and then an “infinitesimal symmetry” of L; it is the latter notion
that is related to conservation laws by Noether’s Theorem. To motivate the defini-
tions we first consider a few simple examples.
Example 2.2.6. We consider a free particle moving in Rn. Thus, the configuration
space is M = Rn, on which we choose standard coordinates x1, . . . , xn. The state
space is TRn = Rn × Rn with natural coordinates x1, . . . , xn, ẋ1, . . . , ẋn, and the
Lagrangian is just L(x, ẋ) = 1

2 m ((ẋ1)2 + · · · + (ẋn)2) = 1
2 m‖ẋ‖2 because the particle

is free. Now fix an a = (a1, . . . , an) in Rn and define a map

Fa : Rn → Rn

by

Fa(x) = x + a

for every x ∈ Rn (translation by a). Then Fa is a diffeomorphism (smooth bijection
with a smooth inverse) and its derivative (Fa)∗x : Tx(Rn) → Tx+a(Rn) at any x is
just the identity map when both tangent spaces are canonically identified with Rn

(see Exercise 5.5.9 of [Nab3]).
Remark 2.2.18. Derivatives of smooth maps between manifolds are discussed in
Section 5.5 of [Nab3].

Thus, we have an induced map on the state space

T Fa : T M = Rn ×Rn → T M = Rn ×Rn

given by

(T Fa)(x, ẋ) = (Fa(x), (Fa)∗x(ẋ)) = (x + a, ẋ).

This is a diffeomorphism of T M onto T M that clearly satisfies

L ◦ T Fa = L
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and it is this property that will qualify Fa as a symmetry of L once we have for-
mulated the precise definition. One says simply that L is invariant under spatial
translation.
Example 2.2.7. Next we will consider a particle moving in a spherically symmetric
potential in R3. More precisely, our configuration space is M = R3 on which we
again choose standard coordinates x1, x2, x3, the state space is T M = R3 ×R3 with
natural coordinates x1, x2, x3, ẋ1, ẋ2, ẋ3, and we take as our Lagrangian

L(x, ẋ) =
1
2

m‖ẋ‖2 − V(‖x‖), (2.17)

where V is a smooth function on R3 that depends only on ‖x‖. Now fix an element
g of the rotation group SO(3), that is, a 3× 3 matrix that is orthogonal (gT g = id3×3)
and has det (g) = 1. Define a map

Fg : R3 → R3

by

Fg(x) = g · x

(here g · x means matrix multiplication with x thought of as a column vector). Since
g is invertible, Fg is a diffeomorphism of M onto M. Moreover, since Fg is linear, its
derivative at each point is the same linear map (multiplication by g) once the tangent
spaces are canonically identified with R3. Thus, the induced map on state space

T Fg : T M = R3 ×R3 → T M = R3 ×R3

is given by

(T Fg)(x, ẋ) = (Fg(x), (Fg)∗x(ẋ)) = (g · x, g · ẋ).

This is again a diffeomorphism of T M onto T M. Moreover, since g is orthogonal,
‖g · x‖ = ‖x‖ and ‖g · ẋ‖ = ‖ẋ‖ so, once again,

L ◦ T Fg = L

and we will say that L is invariant under rotation and that Fg is a symmetry of L for
every g ∈ SO(3).

The general definition is as follows. If L : T M → R is a Lagrangian on a smooth
manifold M, then a symmetry of L is a diffeomorphism

F : M → M

of M onto itself for which the induced map

T F : T M → T M
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given by

T F(p, vp) = (F(p), F∗p(vp))

satisfies

L ◦ T F = L.

Remark 2.2.19. Symmetries often arise from the action of a Lie group G on the
configuration space M. Recall that a (left) action of G on M is a smooth map σ :
G × M → M, usually written σ(g, p) = g · p, that satisfies e · p = p∀p ∈ M, where
e is the identity element of G, and g1 · (g2 · p) = (g1g2) · p for all g1, g2 ∈ G and
all p ∈ M. Given such an action one can define, for each g ∈ G, a diffeomorphism
σg : M → M by σg(p) = g·p. If a Lagrangian is given on M, then it may be possible
to find a Lie group G and an action σ of G on M for which these diffeomorphisms
are symmetries. This was the case for both of the previous examples; in the first,
G was the additive group R3, thought of as the translation group of R3, while in
the second it was SO(3). Topological groups, groups actions and Lie groups are
discussed in Sections 1.6 and 5.8 of [Nab3].

The theorem of Noether to which we have alluded several times refers not to
symmetries of the Lagrangian, but rather to “infinitesimal” symmetries. Again, we
precede the precise definition with a simple, but very important example.
Example 2.2.8. We will continue the discussion of a particle moving in a spherically
symmetric potential in R3 and will use the notation established in Example 2.2.7.
We will also need a more explicit description of the elements of the rotation group
SO(3). The following result, which essentially says that the exponential map on
the Lie algebra of SO(3) is surjective, is proved on pages 393-395 of [Nab3]. We
will denote by so(3) the Lie algebra of SO(3), that is, the set of all 3 × 3, skew-
symmetric, real matrices with entrywise linear operations and matrix commutator
as bracket (see Section 5.8 of [Nab3] for Lie algebras).

Theorem 2.2.2. Let A be an element of so(3). Then the matrix exponential eA is in
SO(3). Conversely, if g is any element of SO(3), then there is a unique t ∈ [0, π] and
a unit vector n̂ = (n1, n2, n3) in R3 for which

g = etN = id3×3 + (sin t)N + (1 − cos t)N2,

where N is the element of so(3) given by

N =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 .
Geometrically, one thinks of g = etN as the rotation of R3 through t radians about

an axis along n̂ in a sense determined by the right-hand rule from the direction of n̂.
Now fix an n̂ and the corresponding N in so(3). For any x ∈ R3,
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t → etN · x

is a curve in R3 passing through x at t = 0 with velocity vector

d
dt

(etN · x)
∣∣∣
t=0 = N · x.

Doing this for each x ∈ R3 gives a smooth vector field XN on R3 defined by

XN(x) =
d
dt

(etN · x)
∣∣∣
t=0 = N · x.

Like any (complete) vector field on R3, XN determines a 1-parameter group of dif-
feomorphisms

ϕt : R3 → R3, −∞ < t < ∞,

where ϕt pushes each point of R3 t units along the integral curve of XN that starts
there (this 1-parameter group of diffeomorphisms is also called the flow of the vector
field). In this case,

ϕt(x) = etN · x.

Remark 2.2.20. Integral curves and 1-parameter groups of diffeomorphisms are dis-
cussed on pages 270-275 of [Nab3].

Notice that each ϕt, being multiplication by some element of SO(3) is a symmetry
of L by Example 2.2.7. This, according to the definition we will formulate in a
moment, makes the vector field XN an “infinitesimal symmetry” of L. One can think
of it intuitively as an object that determines, not a single symmetry of L, but rather
a 1-parameter family of symmetries. We’ll conclude this example by writing a few
of these vector fields out explicitly. Choose, for example, n̂ = (0, 0, 1) ∈ R3. Then

N =

 0 −1 0
1 0 0
0 0 0


so

XN(x) = N · x =

−x2

x1

0

 .
We conclude then that the vector field XN is just

X12 = x1∂x2 − x2∂x1

which is generally referred to as the infinitesimal generator for rotations in the x1x2-
plane. Taking n̂ to be (1, 0, 0) and (0, 1, 0) one obtains, in the same way, vector fields
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Xi j = xi∂x j − x j∂xi , i, j = 1, 2, 3, i , j.

Xi j is called the infinitesimal generator for rotations in the xix j-plane.
The general definition of an infinitesimal symmetry is complicated just a bit by

the fact that, unlike the examples we have discussed thus far, not every vector field
on a smooth manifold is complete, that is, has integral curves defined for all t ∈ R.
For such vector fields one has only a local 1-parameter group of diffeomorphisms
(see pages 272-273 of [Nab3]). In order not to cloud the essential issues we will give
the definition twice, once for vector fields that are complete and once for those that
need not be complete (naturally, the first definition is a special case of the second).

Let L be a Lagrangian on a smooth manifold M. A complete vector field X on
M is said to be an infinitesimal symmetry of L if each ϕt in its 1-parameter group
of diffeomorphisms is a symmetry of L. Now we drop the assumption that X is
complete. For each p ∈ M, let αp be the maximal integral curve of X through p (see
Theorem 5.7.2 of [Nab3]). For each t ∈ R, let Dt be the set of all p ∈ M for which
αp is defined at t and define ϕt : Dt → M by ϕt(p) = αp(t). By Theorem 5.7.4
of [Nab3], each Dt is an open set (perhaps empty) and ϕt is a diffeomorphism of
Dt onto D−t with inverse ϕ−t. Now we will say that X is an infinitesimal symmetry
of L if, for each t with Dt , ∅, the induced map Tϕt : TDt → TD−t, defined by
(Tϕt)(p, vp) =

(
ϕt(p), (ϕt)∗p(vp)

)
, satisfies L ◦ Tϕt = L on TDt.

Our objective is to show that every infinitesimal symmetry X of L on M gives rise
to a “conserved quantity”, that is, a function that is constant along every stationary
curve. For this we need to write out a bit more explicitly what it means for X to be an
infinitesimal symmetry. Let q1, . . . , qn be local coordinates on the open set U ⊆ M
and q1, . . . , qn, q̇1, . . . , q̇n the corresponding natural coordinates on TU ⊆ T M. In
these coordinates we write the vector field X as

X = Xi∂qi ,

where Xi = Xi(q1, . . . , qn), i = 1, . . . , n, are the local component functions of
X. Each local diffeomorphism ϕt lifts to the tangent bundle by (Tϕt)(p, vp) =(
ϕt(p), (ϕt)∗p(vp)

)
. For each fixed (p, vp), the curve t → (Tϕt)(p, vp) lifts the in-

tegral curves of X through p. These curves determine a vector field X̃ on the tangent
bundle whose value at any point (p, vp) is the tangent vector to t → (Tϕt)(p, vp) at
(p, vp) .
Exercise 2.2.7. Show that, in natural coordinates q1, . . . , qn, q̇1, . . . , q̇n, this vector
field is

X̃ = Xi∂qi +

(
∂Xi

∂q j q̇ j
)
∂q̇i .

Now, by definition, X is an infinitesimal symmetry of L if and only if the rate of
change of L along each integral curve of this lifted vector field is zero, that is,

X̃L =

(
Xi∂qi +

(
∂Xi

∂q j q̇ j
)
∂q̇i

)
L = 0,
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or

Xi ∂L
∂qi +

∂Xi

∂q j q̇ j ∂L
∂q̇i = 0.

Now notice that, along the lift of a solution t → (q1(t), . . . , qn(t)) to the Euler-
Lagrange equations ( ∂L

∂qi = d
dt (

∂L
∂q̇i )), this can be written

Xi d
dt

(
∂L
∂q̇i

)
+
∂L
∂q̇i

(
∂Xi

∂q j q̇ j
)

= 0

or, better yet,

d
dt

(
Xi ∂L
∂q̇i

)
= 0.

We summarize all of this as follows.

Theorem 2.2.3. Let L : T M → R be a Lagrangian on a smooth manifold M and
suppose X is an infinitesimal symmetry of L. Let q1, . . . , qn be any local coordinate
system for M with corresponding natural coordinates q1, . . . , qn, q̇1, . . . , q̇n. Write
X = Xi∂qi . Then

Xi ∂L
∂q̇i = Xi pi (2.18)

is constant along every stationary curve in the coordinate neighborhood on which
q1, . . . , qn are defined.

This is (the simplest version of) Noether’s Theorem. In a nutshell, it says that
every infinitesimal symmetry gives rise to a conserved quantity. Let’s see now how
all of this works out for a few examples.
Example 2.2.9. Suppose we have a Lagrangian L that is independent of one of the
coordinates in M, say, qi. Then certainly X = ∂qi is an infinitesimal symmetry. Since
the only component of X relative to ∂q1 , . . . , ∂qn is the ith and this is 1 we find that the
corresponding Noether conserved quantity is the same as the one we found earlier,
namely, the conjugate momentum pi = ∂L

∂q̇i .
Example 2.2.10. Here we will continue the discussion in Example 2.2.8 and will
use the notation established there. Specifically, we will consider, for each i, j =

1, 2, 3, i , j, the vector field on R3 given by

Xi j = xi∂x j − x j∂xi .

Each of these is an infinitesimal symmetry for the Lagrangian L(x, ẋ) = 1
2 m‖ẋ‖2 −

V(‖x‖) on R3. To find the corresponding Noether conserved quantity in standard
coordinates we compute
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Xα
i j
∂L
∂ẋα

= X1
i j
∂L
∂ẋ1 + X2

i j
∂L
∂ẋ2 + X3

i j
∂L
∂ẋ3 = −x j(mẋi) + xi(mẋ j) = m(xi ẋ j − x j ẋi).

Thus, on any stationary curve,

m[x1(t)ẋ2(t) − x2(t)ẋ1(t)]

m[x3(t)ẋ1(t) − x1(t)ẋ3(t)] (2.19)

m[x2(t)ẋ3(t) − x3(t)ẋ2(t)]

are all constant. Notice that these are precisely the components of the cross product

L(t) = r(t) × (mv(t)) = r(t) × p(t) (2.20)

of the position and momentum vectors of the particle and this is what physicists call
its angular momentum (with respect to the origin). Notice also that the constancy
of this vector along the trajectory of the particle implies that the motion takes place
entirely in a 2-dimensional plane in R3, namely, the plane with this normal vector.

The existence of these three conserved quantities arose from the infinitesimal
symmetries of the our spherically symmetric Lagrangian corresponding to rotations
about the various coordinate axes so we may summarize all of this as follows.

Rotational Symmetry implies Conservation of Angular Momentum

Remark 2.2.21. It is important to understand what is really going on in this example.
We have a Lagrangian L : T M → R on a smooth manifold M and a (matrix) Lie
group G which acts on M in such a way that each diffeomorphism σg : M → M, g ∈
G, is a symmetry of the Lagrangian; under such circumstances we refer to G as a
symmetry group of L. G has a Lie algebra g and each generator (basis element) Ni

of g gives rise to an infinitesimal symmetry XNi defined by

XNi (p) =
d
dt

(etNi · p)
∣∣∣
t=0

and each of these in turn gives rise, via Noether’s Theorem, to a conserved quantity.
The Lie algebra of the symmetry group is where the conservation laws come from.

Notice, incidentally, that it is entirely possible for a Lagrangian to have an in-
finitesimal symmetry that requires the conservation of one of the components of
angular momentum, but not the others. Indeed, we can now see that this is precisely
what occurred in our discussion of the spherical pendulum in Example 2.2.2 where
we found that the θ-independence of the Lagrangian gave rise to the conserved quan-
tity

mθ̇ sin2φ = m[x1 ẋ2 − x2 ẋ1], (2.21)
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which we now recognize as the x3-component of the angular momentum. The moral
of this example is that the proper choice of coordinates can uncover symmetries, and
therefore conservation laws, that are not otherwise apparent.

Linear and angular momentum conservation in R3 both arise from a certain sym-
metry group; in the first case this is the spatial translation group R3 and in the
second it is the rotation group SO(3). We would now like to show these two can be
combined into a single group.
Example 2.2.11. Fix an element R of SO(3) and an a in R3. Define a mapping
(a,R) : R3 → R3 by

x ∈ R3 → (a,R)(x) = R · x + a ∈ R3.

Thus, (a,R) rotates by R and then translates by a so it is an isometry of R3. The
composition of two such mappings is given by

x→ R1 · x + a1 → R2 · (R1 · x + a1) + a2 = (R2R1) · x + (R2 · a1 + a2).

Since R2R1 ∈ SO(3) and R2 · a1 + a2 ∈ R
3, this composition is just

(a2,R2) ◦ (a1,R1) = (R2 · a1 + a2,R2R1)

so this set of mappings is closed under composition. Moreover, (0, id3×3) is clearly
an identity element and every (a,R) has an inverse given by

(a,R)−1 = (−R−1a,R−1)

so this collection of maps forms a group under composition. This group is the semi-
direct product of R3 and SO(3). We will denote it ISO(3) and refer to it as the
inhomogeneous rotation group. Its elements are diffeomorphisms of R3 onto itself
and we can think of it as defining a group action on R3.

(a,R) · x = R · x + a

Notice that the maps a → (a, id3×3) and R → (0,R) identify R3 and SO(3) with
subgroups of ISO(3) and that R3 is a normal subgroup since it is the kernel of the
projection (a,R) → (0,R) and this is a homomorphism (the projection onto R3 is
not a homomorphism).

We would like to find an explicit matrix model for ISO(3). For this we identify
R3 with the subset of R4 consisting of (column) vectors of the form

x1

x2

x3

1

 =

(
x
1

)

where x = (x1 x2 x3)T ∈ R3. Now consider the set G of 4 × 4 matrices of the form
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(
R a
0 1

)
=


R1

1 R1
2 R1

3 a1

R2
1 R2

2 R2
3 a2

R3
1 R3

2 R3
3 a3

0 0 0 1

 ,
where R ∈ SO(3) and a ∈ R3. Notice that(

R a
0 1

) (
x
1

)
=

(
Rx + a

1

)
and (

R2 a2
0 1

) (
R1 a1
0 1

)
=

(
R2R1 R2a1 + a2

0 1

)
so we can identify ISO(3) with G and its action on R3 with matrix multiplication.

G is a matrix Lie group of dimension 6. Its Lie algebra can be identified with the
set of 4 × 4 real matrices that arise as velocity vectors to curves in G through the
identity with matrix commutator as bracket (see Section 5.8 of [Nab3]). We find a
basis for this Lie algebra (otherwise called a set of generators) by noting that if

αa(t) =

(
id3×3 ta

0 1

)
,

then

α′a(0) =

(
0 a
0 0

)
and if

αN(t) =

(
etN 0
0 1

)
,

then

α′N(0) =

(
N 0
0 0

)
.

(see Theorem 2.2.2 for N). Taking a = (1, 0, 0), (0, 1, 0), (0, 0, 1) and n̂ =

(1, 0, 0), (0, 1, 0), (0, 0, 1) (again, see Theorem 2.2.2 for n̂) we obtain a set of six
generators for the Lie algebra iso(3) of ISO(3) that we will write as follows.

N1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,

N2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,
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N3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,

P1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

P2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

P3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
N1,N2, and N3 are called the generators of rotations, while P1, P2, and P3 are called
the generators of translations. Their significance for us is that, if M is a configura-
tion space on which a Lagrangian L : T M → R is defined and on which ISO(3)
acts, then each Ni and each Pi determines a vector field on M and, depending on the
Lagrangian, these may (or may not) be infinitesimal symmetries of L.

We will write [A, B]− = AB − BA for the matrix commutator (the reason for
the apparently unnecessary subscript is that later we will need the anticommutator
[A, B]+ = AB + BA as well). Using εi jk for the Levi-Civita symbol (1 if i j k is an
even permutation of 1 2 3, −1 if i j k is an odd permutation of 1 2 3 and 0 other-
wise) we record, for future reference, the following commutation relations for these
generators, all of which can be verified by simply computing the matrix products.

[Ni,N j]− =

3∑
k=1

εi jkNk, i, j = 1, 2, 3 (2.22)

[Pi, P j]− = 0, i, j = 1, 2, 3 (2.23)

[Ni, P j]− =

3∑
k=1

εi jkPk, i, j = 1, 2, 3 (2.24)

Remark 2.2.22. Every element of ISO(3) can be written as e
∑3

i=1(αiNi+βiPi) for some
real number αi and βi, but one should keep in mind that, for matrices A and B,
eA+B = eAeB if and only if A and B commute. When [A, B]− , 0 the situation is not
so simple. Indeed, the Baker-Campbell-Hausdorff Formula gives a series expansion
of the form

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]− 1
12 [B,[A,B]]+··· (2.25)
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for eAeB (see Chapter 3 of [Hall]). An analogous result for certain self-adjoint oper-
ators on a Hilbert space, called the Lie-Trotter-Kato Product Formula, will play an
essential role in Section 8 when we introduce the Feynman path integral.
Next we will look at an example that has ISO(3) as a symmetry group.
Example 2.2.12. We consider the classical 2-body problem. Thus, we have two
masses m1 and m2 moving in space under a conservative force that depends only
on the distance between them and is directed along the line joining them (for ex-
ample, two planets, each of which exerts a gravitational force on the other). The
configuration space is taken to be M = R3 × R3 = R6 so the state space is
T M = (R3×R3)× (R3×R3) = R12. Let x1 and x2 denote the position vectors of m1
and m2, respectively, and write their Cartesian components x j = (x1

j , x
2
j , x

3
j ), j = 1, 2.

We take the Lagrangian L to be

L =
1
2

m1

3∑
i=1

(ẋi
1)2 +

1
2

m2

3∑
i=1

(ẋi
2)2 − V

( ( 3∑
i=1

(xi
1 − xi

2)2
)1/2 )

=
1
2

m1‖ẋ1‖
2 +

1
2

m2‖ẋ2‖
2 − V( ‖x1 − x2‖ ), (2.26)

where V is any smooth function of the distance ‖x1− x2‖ between m1 and m2. ISO(3)
acts on R3 ×R3 by acting on each factor separately and it is clear from (2.26) that L
is invariant under this action. In particular, this is true for the translation and rotation
subgroups so we expect some sort of “momentum” and “angular momentum” con-
servation (the quotation marks are due to the fact that we are no longer talking about
a single particle moving in space so these terms are being used in some new sense
that we have not yet made explicit). We’ll begin with invariance under the SO(3)
subgroup. Specifically, for any g ∈ SO(3), L(g·x1, g·x2, g· ẋ1, g· ẋ2) = L(x1, x2, ẋ1, ẋ2)
so, in particular, for any N ∈ so(3),

XN(x1, x2) =
d
dt

(etN · (x1, x2))
∣∣∣
t=0 = (Nx1,Nx2)

is an infinitesimal symmetry of L. Now, any vector field on R3 × R3 is a linear
combination of

∂x1
1
, ∂x2

1
, ∂x3

1
, ∂x1

2
, ∂x2

2
, ∂x3

2

and if we take N to be one of the infinitesimal generators of rotations (N =

N1,N2,N3), then, just as in Example 2.2.8 , we obtain the vector fields

(xi
1∂x j

1
− x j

1∂xi
1
) + (xi

2∂x j
2
− x j

2∂xi
2
)

from which we can read off the components of the infinitesimal symmetries. To
write down the corresponding Noether conserved quantities (2.18) we note that
∂L/∂ẋi

1 = m1 ẋi
1 and ∂L/∂ẋi

2 = m2 ẋi
2. Thus, (2.18) gives
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m1(xi
1 ẋ j

1 − x j
1 ẋi

1) + m2(xi
2 ẋ j

2 − x j
2 ẋi

2)

for the conserved quantities. Consequently, rotational invariance for the 2-body
problem implies conservation of the total angular momentum of the system.

One can deal with translational invariance in the same way, but for the sake of
variety and because we will need the ideas when we discuss the quantum 2-body
problem, that is, the hydrogen atom (Example 8.4.1), we’ll describe instead the
traditional approach in physics. The idea is to replace the Cartesian coordinates
with the so-called center of mass coordinates. For this we replace x1 and x2 with the
displacement vector

x = x1 − x2

and the center of mass vector

R =
m1x1 + m2x2

m1 + m2
.

Then

x1 = R +
m2x

m1 + m2

and

x2 = R −
m1x

m1 + m2
.

Computing derivatives and substituting into (2.26) gives

L =
1
2

(m1 + m2) ‖Ṙ‖2 +
1
2

m1m2

m1 + m2
‖ẋ‖2 − V(‖x‖). (2.27)

Now notice that this expression for L depends on x1, x2, x3, ẋ1, ẋ2, ẋ3, Ṙ1, Ṙ2, Ṙ3, but
not on R1,R2,R3. Since

∂L
∂Ṙi

= (m1 + m2) Ṙi = m1 ẋi
1 + m2 ẋi

2, i = 1, 2, 3,

and these must be constant along a stationary curve we conclude that the total mo-
mentum

P = (m1 + m2)Ṙ = m1 ẋ1 + m2 ẋ2

of the system is conserved.
Finally, we come to an example that is quite important to physicists and also to

us, but for rather different reasons. Rigid body dynamics is an old and venerable
part of physics. We will begin to set up the formalism for the subject, but will find
ourselves immediately distracted by a rather curious possibility that this formalism
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suggests. Curious or not, we will find before we are through that this possibility is
directly relevant to the behavior of certain elementary particles called “fermions”
(see Section 9.1). The example (or, rather, the distraction) requires a bit of standard
topology, specifically, fundamental groups. Everything we need is available in a
great many sources (for example, Sections 2.1-2.4 of [Nab3], or Part I of [Gre]).
Example 2.2.13. Intuitively, a rigid body is a physical system consisting of a finite
number of point masses each one of which maintains a constant distance from all of
the rest as the system evolves in time, that is, as it moves in space. Such things can
exist only as idealizations, of course, and, indeed, special relativity prohibits their
existence even as idealizations, but we are now ignoring relativistic effects and so
we won’t worry about that. We will be interested in the motion of such a rigid body
that is constrained to pivot about some fixed point.

Fig. 2.3 Rigid Body

Thus, we begin with n + 1 positive real numbers m0,m1, . . . ,mn (the masses) and
n + 1 distinct points x0

0, x
0
1, . . . , x

0
n in R3 (the positions of the masses m0,m1, . . . ,mn,

respectively, at time t = 0). We will assume that n ≥ 3 and that not all of the masses
lie in a single plane in R3. Furthermore, we will take the fixed point about which the
rigid body is to pivot to be x0

0 and choose coordinate axes so that x0
0 = (0, 0, 0) ∈ R3.

For i, j = 0, 1, . . . , n, i , j, we let ‖x0
i − x0

j‖ = ci j > 0.
We refer to

{
x0

0 = (0, 0, 0), x0
1, . . . , x0

n
}

as the initial configuration of the rigid
body. By assumption, any other configuration {x0 = (0, 0, 0), x1, . . . , xn} of the
masses m0,m1, . . . ,mn must satisfy ‖xi − x j‖ = ci j, i, j = 0, 1, . . . , n, i , j,. Al-
though one could define the configuration space of our rigid body in these terms,
a much clearer picture emerges in the following way. Since there are at least four
masses and not all of them lie in a single plane, some three of x0

1, . . . , x
0
n must be

linearly independent. We can assume the masses are labeled so that x0
1, x

0
2, x

0
3 are

linearly independent and therefore form a basis for R3. Now let A be the unique
linear transformation of R3 that carries x0

i onto xi for i = 1, 2, 3.
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Exercise 2.2.8. Show that A is an orthogonal transformation of R3 and that Ax0
i = xi

for i = 4, . . . , n.
Consequently, we can identify any configuration of the rigid body with an or-

thogonal transformation A of R3 that carries the initial configuration onto it. Every
such A is in the orthogonal group O(3) and therefore has determinant ±1. We would
like to conclude that det A = 1 so that, in fact, A is in the rotation group SO(3). This
does not follow mathematically from the assumptions we have made, but rests on
additional physical input. The reasoning by which we arrive at this additional phys-
ical input lies at the heart of the point we wish to make in this example so we will
try to explain carefully. Pick up a rigid body (a Rubik’s cube, for example), hold it
in some initial configuration (Figure 2.4) and then, keeping one of its points fixed,
move it (in any way you like) to a new configuration.

Fig. 2.4 Initial Configuration

This is, of course, a physical process. The rigid body proceeds through a “contin-
uous” sequence of physical configurations (parametrized by some interval of time
values, for example) beginning with the initial configuration and ending with the
final one. At each instant t the configuration of the rigid body corresponds to an ele-
ment A(t) of O(3) that carries the initial configuration onto the configuration at time
t with, of course, A(0) = id3×3 ∈ O(3). Thus, we have a curve t → A(t) in O(3) that
models our physical process. Now, O(3) is a Lie group (see Section 5.8 of [Nab3])
and therefore a topological space and the curve t → A(t) is continuous with respect
to this topology (and the usual topology on the real line) if and only if the entries
in A(t) relative to any basis are continuous real-valued functions of the real variable
t. Let us now assume that this is the appropriate interpretation of a “continuous”
sequence of physical configurations.
Remark 2.2.23. If you are saying to yourself that this is patently obvious and unwor-
thy of being singled out as a “physical assumption” we would ask that you reserve
judgement until you have seen some of the consequences.

Then t → det A(t) is a continuous real-valued function of a real-variable, de-
fined on an interval and taking only the values 1 and -1. The Intermediate Value
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Theorem implies that det A(t) must take exactly one of these values for all t. Since
det A(0) = 1, we find that det A(t) = 1 for every t, that is, A(t) ∈ SO(3) for all t.
Every configuration of the rigid body can therefore be identified with an element of
SO(3). Let’s summarize the conclusions to which this discussion has led us.

The configuration space of a rigid body constrained to pivot about some fixed
point is SO(3) and any such motion of the rigid body is represented by a continuous
curve t ∈ R→ A(t) ∈ SO(3) in SO(3).

Exercise 2.2.9. Describe the configuration space of a rigid body that is not con-
strained to pivot about some fixed point.

The state space for a rigid body with one point fixed is therefore the tangent
bundle T(SO(3)) which happens to be the product SO(3)×so(3) of SO(3) and its Lie
algebra so(3) because any Lie group is parallelizable (Exercise 5.8.17 of [Nab3]). If
one now wishes to understand the dynamics of rigid body motion one must specify
a Lagrangian L :SO(3)×so(3) → R and study the Euler-Lagrange equations. For
free motion the Lagrangian is simply the total kinetic energy of the point masses
and it can be shown that one can reduce the problem of calculating trajectories and
conserved quantities to that of computing geodesics and symmetries of a kinetic
energy metric on SO(3) (compare Example 2.2.4). This is quite a beautiful story,
but not the one we wish to tell here (see Chapter 6 of [Arn2], or Chapter 13 of
[CM]). Instead we would like to focus our attention on what might appear to be a
rather odd question that arises in the following way.

We have seen that the physical process of rotating a rigid body from one config-
uration to another is modeled mathematically by a continuous curve in SO(3). Let’s
consider the special case of a motion that begins and ends at the initial configuration.
The corresponding curve in SO(3) is then a loop in SO(3) at the identity element
id3×3, that is, a continuous curve A : [0, β]→ SO(3) with A(0) = A(β) = id3×3. Here
are two examples. The loop A1 : [0, 2π]→ SO(3) defined by

A1(t) =

 cos t −sin t 0
sin t cos t 0

0 0 1


corresponds to rotating our rigid body 360◦ about the z-axis, whereas A2 : [0, 4π]→
SO(3), defined by the same formula

A2(t) =

 cos t −sin t 0
sin t cos t 0

0 0 1


corresponds to a 720◦ rotation about the z-axis (“A1 traversed twice”). Both of these
motions leave the rigid body in precisely the same state since (A1(2π), Ȧ1(2π)) =

(A2(4π), Ȧ2(4π)). Taking into account only their end results and not “how they got
there” one would be inclined to regard these two motions as “equivalent” in some
physical sense. Mathematically, however, the two loops A1 and A2 in SO(3) are not
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at all equivalent. The fundamental group π1(SO(3)) of the topological space SO(3)
classifies the continuous loops at id3×3 according to (path) homotopy type. As it
happens, π1(SO(3)) is isomorphic to the additive group Z2 =

{
[0], [1]

}
of integers

mod 2 (there are two proofs of this in Appendix A of [Nab3]). There are precisely
two homotopy classes of loops, [0] and [1], the first consisting of those that are
homotopically trivial (can be “continuously deformed to a point” in SO(3)) and the
second consisting of those that are not. A1 is not homotopically trivial (Exercise
2.4.14 of [Nab3]) so A1 ∈ [1], but, since [1]+ [1] = [0] in Z2, A2 ∈ [0]. In particular,
A1 and A2 are not homotopically equivalent; neither can be continuously deformed
into the other in SO(3). From a topological point of view, A1 and A2 are certainly
not equivalent.

Now for the “rather odd” question we would like to pose. Is it possible that, when
thought of as physical motions of a rigid body, two non-homotopic loops such as A1
and A2 exhibit different physical effects? Stated otherwise, is it possible that the
rigid body is somehow physically different at the end of the two motions? This may
seem silly. Really, just look at it! At the end of either motion the Rubik’s cube is in
exactly the same configuration in space with the same angular velocity so its state
is the same; what could possibly be different?

Nevertheless, there are physical systems in nature that behave in just this sort of
bizarre way. Indeed, this is the case for any of the elementary particles classified by
the physicists as fermions. We will have much to say about this in Section 9.1 (for
informative, non-technical previews by very authoritative sources one might have
a look at [AS] and/or [’t Ho1]). For the present we cannot resist the temptation to
briefly describe an ingenious demonstration, devised by Paul Dirac, of a perfectly
mundane macroscopic physical system in which “something” appears to be altered
by a rotation through 360◦, but returned to its original status by a 720◦ rotation. It is
called the Dirac scissors.

The demonstration involves a pair of scissors, a piece of elastic string and a chair.
Pass the string through one finger hole of the scissors, then around one leg of the
chair, then through the other finger hole and around the other leg of the chair and
then tie the two ends of the string together (see the picture at the top of Figure 2.5).

Now rotate the scissors about its axis of symmetry through one complete rev-
olution (360◦). The string becomes entangled and the problem is to disentangle it
by moving only the string, holding the scissors and chair fixed (the string needs to
be elastic so it can be moved around the objects if desired). Try it! No amount of
maneuvering, simple or intricate, will return the string to its original, disentangled
state. This, in itself, is not particularly surprising perhaps, but now repeat the ex-
ercise, this time rotating the scissors through two complete revolutions (720◦). The
string now appears even more hopelessly tangled, but looping the string just once
over the pointed end of the scissors (counterclockwise if that’s the way you turned
the scissors) will return it to its original condition. There is clearly “something dif-
ferent” about the state of the system when it has undergone a rotation of 360◦ and
when it has been rotated by 720◦. Notice, however, that now the “system” is some-
how more than just an isolated rigid body, but includes, in some sense, the way
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Fig. 2.5 Dirac Scissors

in which the object is “entangled” with its environment. We will return to this in
Section 9.1 where we will also see what it has to do with fermions.

Before leaving this behind for a while, we should reap one more dividend from
Dirac’s remarkable little game. As with any good magic trick, some of the parapher-
nalia are present only to divert the attention of the audience. Notice that none of the
essential features are altered if we imagine the string glued (in an arbitrary manner)
to the surface of an elastic belt so that we may discard the string altogether in fa-
vor of a belt connecting the scissors and the chair (see the bottom picture in Figure
2.5). Rotate the scissors through 360◦ and the belt acquires one twist that cannot
be untwisted by moving the belt alone. Rotate through 720◦ and the belt has two
twists that can be removed by looping the belt once around the scissors. In either
case imagine the scissors free to slide along the belt toward the chair and, at the end
of the trip, translate the scissors (without rotation) back to its original position. In
the first case the scissors will have accomplished a 360◦-rotation and, in the sec-
ond, a 720◦-rotation. In both cases, the belt itself is a physical model of the loop in
SO(3) representing the rotation (with no twists the belt represents the trivial loop).
Now imagine yourself manipulating the belt (without moving the scissors or chair),
trying to undo the twists. At each instant the position of the belt represents a loop
in SO(3) so your manipulations represent a continuous sequence of loops in SO(3)
parametrized by time. In the second case you will succeed in creating a continuous
sequence of loops (that is, a homotopy) from the loop representing a 720◦-rotation
to the trivial loop (no rotation, that is, no twists, at all). In the first case you will not
succeed in doing this because no such homotopy exists. Dirac has given us a physi-



2.3 Phase Space and Hamiltonians 51

cal picture of the two homotopy classes of loops in SO(3). Needless to say, tireless
manipulation of a belt does not constitute a proof. For those who would like to see
this discussion carried out rigorously we recommend [Bolker] and then [Fadell].

We will leave the reader with an example to work out from scratch. It is still
a relatively simple physical system, but one that exhibits an extraordinary range
of motions, from the expected to the chaotic. Here we will ask you simply to
write out the Lagrangian and the Euler-Lagrange equations. In the next section
you will continue the analysis by writing out the Hamiltonian formulation of the
same system (Exercise 2.3.5) and then we will say a few words about the sort of
motions one can observe by supplying various initial conditions. Before doing any
of this, however, you should either visit an undergraduate physics lab and watch
the system in action or, better yet, you should build one yourself (instructions are
available at http://makezine.com/projects/double-pendulum/). At very least, have
a look at http://gizmodo.com/5869648/spend-the-next-22-minutes-mesmerized-by-
this-near+perpetual-motion-double-pendulum.
Exercise 2.2.10. The double pendulum consists of two pendulums (pendula, if you
prefer) with the first suspended from a point in space and the second suspended
from the end of the first . We will assume that the initial conditions are such that the
motion remains in a plane (see Figure 2.6).

1. Show that the Lagrangian is given by

L(θ1, θ2, θ̇1, θ̇2) =
1
2

(m1 + m2)l21θ̇
2
1 +

1
2

m2l22θ̇
2
2 + m2l1l2θ̇1θ̇2cos (θ1 − θ2)

+ (m1 + m2)gl1cos θ1 + m2gl2cos θ2. (2.28)

2. Show that the Euler-Lagrange equations are

(m1 + m2)l21θ̈1 + m2l1l2θ̈2cos (θ1 − θ2)

+m2l1l2θ̇2
1 sin (θ1 − θ2) + l1(m1 + m2)gsin θ1 = 0 (2.29)

and

m2l22θ̈2 + m2l1l2θ̈1cos (θ1 − θ2) − m2l1l2θ̇2
1 sin (θ1 − θ2) + l2m2gsin θ2 = 0.

(2.30)

2.3 Phase Space and Hamiltonians

The Lagrangian approach to mechanics clearly affords insights that are not readily
uncovered in the Newtonian picture. Moreover this approach generalizes to include
classical field theory and forms the basis for Feynman’s path integral approach to
quantization. Nevertheless, there is another approach that affords at least as much
insight into mechanics, also generalizes to classical field theory and is the basis for

http://makezine.com/projects/double-pendulum/
http://gizmodo.com/5869648/spend-the-next-22-minutes-mesmerized-by-this-near+perpetual-motion-double-pendulum
http://gizmodo.com/5869648/spend-the-next-22-minutes-mesmerized-by-this-near+perpetual-motion-double-pendulum
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Fig. 2.6 Double Pendulum

canonical quantization. It is to this Hamiltonian picture of mechanics that we now
turn (a more concise and no doubt more elegant synopsis of Hamiltonian mechanics
in geometrical terms is available in the classic paper [MacL]).

The view of classical mechanics that we would now like to describe evolves from
what would appear to be an innocuous attempt to change coordinates in the state
space. Suppose that we are given a Lagrangian L : T M → R and a local coordinate
system q1, . . . , qn on M with associated natural coordinates q1, . . . , qn, q̇1, . . . , q̇n on
T M. We have defined the corresponding conjugate momenta p1 = ∂L

∂q̇1 , . . . , pn = ∂L
∂q̇n

and now ask if one can use q1, . . . , qn, p1, . . . , pn as local coordinates on T M.
Remark 2.3.1. One might take as motivation here the simple fact that some things
would look nicer in such coordinates, for example, the Noether conserved quanti-
ties would be Xi pi rather than Xi ∂L

∂q̇i . As it happens, the dividends are substantially
greater than just this.

At least one condition must clearly be imposed on the Lagrangian if

(q1, . . . , qn, q̇1, . . . , q̇n)→ (q1, . . . , qn, p1, . . . , pn)

is to be a legitimate change of coordinates on T M. Specifically, we must be able to
solve (at least locally) the system of equations
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p1 =
∂L
∂q̇1 (q1, . . . , qn, q̇1, . . . , q̇n)

... (2.31)

pn =
∂L
∂q̇n (q1, . . . , qn, q̇1, . . . , q̇n)

for the q̇i in terms of q1, . . . , qn, p1, . . . , pn. By the Implicit Function Theorem, this
will be possible if the matrix

HL(q, q̇) =

(
∂2L
∂q̇i∂q̇ j (q, q̇)

)
i, j=1,...,n

is nonsingular at each point in the domain of the natural coordinates. We will say
that a Lagrangian L is nondegenerate if, for every chart on an open set U ⊆ M with
coordinate functions q1, . . . , qn, the matrix HL(q, q̇) is nonsingular at each point of
TU ⊆ T M.
Example 2.3.1. For M = Rn we have a global coordinate system q1, . . . , qn =

x1, . . . , xn so it clearly suffices to check the nondegeneracy condition for these. For
example, if L = 1

2 m
(
(ẋ1)2 + · · · + (ẋn)2) − V(x1, . . . , xn) with m > 0, then(

∂2L
∂ẋi∂ẋ j

)
i, j=1,...,n

= m
(
id3×3

)
so L is certainly nondegenerate. Notice that, in this case, pi = ∂L

∂ẋi = mẋi so inverting
the equations (2.31) isn’t so hard.

ẋi =
1
m

pi, i = 1, . . . , n (2.32)

Consequently, for nondegenerate Lagrangians, we have the state space T M cov-
ered by coordinate systems (q1, . . . , qn, p1, . . . , pn) of the desired type. These are
not natural coordinates on T M, of course. In fact, we would like to argue that it is
somehow wrongheaded to think of them as coordinates on T M at all. The key to
understanding what is behind this rather obscure comment is to look at two such
coordinate systems and see how they are related.

Suppose then that we have two charts on M with coordinate functions q1, . . . , qn

and Q1, . . . ,Qn, respectively, and suppose that their coordinate neighborhoods in-
tersect. On this intersection we will write the coordinate transformation functions
as

Qi = Qi(q1, . . . , qn) , i = 1, . . . , n,

and
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qi = qi(Q1, . . . ,Qn), i = 1, . . . , n.

Each of these coordinate systems gives rise to natural coordinates

q1, . . . , qn, q̇1, . . . , q̇n

and

Q1, . . . ,Qn, Q̇1, . . . , Q̇n

on T M. The chain rule implies that

q̇i =
∂qi

∂Q j Q̇ j, i = 1, . . . , n, (2.33)

and

Q̇i =
∂Qi

∂q j q̇ j, i = 1, . . . , n. (2.34)

These are, of course, just the standard transformation laws for the components of
tangent vectors (contravariant vectors, as the physicists would say). Now suppose
we have a nondegenerate Lagrangian L : T M → R. The relationship between the
coordinate expressions for L in our two natural coordinate systems can be written

L(Q1, . . . ,Qn, Q̇1, . . . , Q̇n) =

L
(
q1(Q1, . . . ,Qn), . . . , qn(Q1, . . . ,Qn),

∂q1

∂Q j Q̇ j, . . . ,
∂qn

∂Q j Q̇ j
)
.

From this we compute the relationship between the conjugate momenta pi and Pi.

Pi =
∂L
∂Q̇i

=
∂L
∂q j

∂q j

∂Q̇i
+
∂L
∂q̇ j

∂q̇ j

∂Q̇i

=
∂L
∂q j · 0 +

∂L
∂q̇ j

∂q̇ j

∂Q̇i

=
∂q j

∂Qi

∂L
∂q̇ j (by (2.33))

=
∂q j

∂Qi p j.

Consequently, the conjugate momenta transform under the transposed inverse of the
(Jacobian) matrix that transforms the Q̇i (see (2.34)). As a result, it is more natural to
regard them as components of, not an element of the tangent space Tp(M), but rather
an element of its dual T ∗p(M), the so-called cotangent space. The elements of T ∗M
are called covectors or covariant vectors. We intend to view (q1, . . . , qn, p1, . . . , pn)
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as coordinate functions on the cotangent bundle T ∗M. Precisely how to do this will
be described after a brief review of what the cotangent bundle looks like.
Remark 2.3.2. The definition of T ∗M is very much like the definition of T M in
Remark 2.2.5. As a set, T ∗M consists of all pairs (p, ηp), where p ∈ M and ηp is
an element of the dual T ∗p(M) of the tangent space Tp(M) at p, that is, ηp is a real-
valued, linear function on Tp(M). There is a natural projection π : T ∗M → M of
T ∗M onto M defined by π(p, ηp) = p (unless it is likely to cause confusion we will
use the same symbol for the projection on both T M and T ∗M) . If (U, φ) is a chart
on M with coordinate functions q1, . . . , qn, then the basis for T ∗p(M) dual to the basis
∂q1 |p, . . . , ∂qn |p for Tp(M) is given by the coordinate differentials dq1|p, . . . , dqn|p at
p. Thus, for p ∈ M and ηp ∈ T ∗p(M),

ηp = ηp(∂q1 |p)dq1|p + . . . + ηp(∂qn |p)dqn|p

which we will be inclined to write simply as

η = η(∂q1 )dq1 + . . . + η(∂qn )dqn = η(∂qi )dqi,

where the summation convention is used in the last equality. Define (Ũ, φ̃) by Ũ =

π−1(U) ⊆ T ∗M and φ̃ : Ũ → φ(U) ×Rn, where

φ̃(p, ηp) = (q1(p), . . . , qn(p), ηp(∂q1 |p), . . . , ηp(∂qn |p)).

Now a subset U of T ∗M is said to be open in T ∗M if, for every chart (U, φ) on M,
φ̃(Ũ ∩ U) is open in φ(U) × Rn. This determines a topology on T ∗M and, relative
to this topology, the (Ũ, φ̃) are charts on T ∗M. These overlap smoothly and so de-
termine a differentiable structure for T ∗M. Coordinates associated with these charts
are called natural coordinates on T ∗M and are denoted

(q1, . . . , qn, ξ1, . . . , ξn).

Thus, the coordinate function ξi on T ∗M is given by ξi(p, ηp) = ηp(∂qi |p). The cotan-
gent bundle T ∗Rn of Rn is just the product manifold Rn × Rn, but, as for tangent
bundles, T ∗M is generally not just a topological product space. A section of the
cotangent bundle T ∗M is a smooth map s : M → T ∗M for which π ◦ s = idM . Such
a section therefore picks out a covector s(p) ∈ T ∗p(M) at each p ∈ M and these cov-
ectors vary smoothly from point to point in M. One can therefore identify a section
of T ∗M with a smooth 1-form on M.

Since conjugate momenta transform under a change of coordinates in M in the
same way as cotangent vectors, it seems more natural to regard them as coordi-
nates on T ∗M and we now describe how to do this. We assume that we are given a
nondegenerate Lagrangian L : T M → R on M and will use it to construct a map

L = LL : T M → T ∗M.
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For each p ∈ M, the fiber π−1
T M(p) of T M above p is a submanifold of T M that

is naturally identified with Tp(M). Thus, we can restrict L to this submanifold and
compute the differential of this restriction at any point vp ∈ Tp(M). Furthermore,
since Tp(M) is a vector space, the tangent space to Tp(M) at any vp ∈ Tp(M) is also
naturally identified with Tp(M). Then d( L|Tp(M) )vp can be regarded as a real-valued,
linear function on Tp(M). In other words, it is an element of T ∗p(M), whose value at
any wp ∈ Tp(M) is given by

d( L|Tp(M) )vp (wp) =
d
dt

L(p, vp + twp)
∣∣∣
t=0.

If q1, . . . , qn are local coordinates on M and L is expressed in terms of the corre-
sponding natural coordinates on T M, then this can be written

d( L|Tp(M) )vp (wp) =
d
dt

L(p, vp + twp)
∣∣∣
t=0 =

∂L
∂q̇1 (p, vp) dq1(wp) + · · ·

+
∂L
∂q̇n (p, vp) dqn(wp). (2.35)

We define the Legendre transformation L = LL : T M → T ∗M associated with L by

L(p, vp) = LL(p, vp) =
(
p, d( L|Tp(M) )vp

)
. (2.36)

Remark 2.3.3. The Legendre transformation can be introduced in a much more
general context. This is thoroughly discussed in Chapter 16 of [Sp3].

If q1, . . . , qn are local coordinates on M then, in terms of natural coordinates on
T M and T ∗M, (2.35) implies that

LL(q, q̇) = LL(q1, . . . , qn, q̇1, . . . , q̇n) =

(
q1, . . . , qn,

∂L
∂q̇1 , . . . ,

∂L
∂q̇n

)
= (q1, . . . , qn, p1, . . . , pn). (2.37)

Thus, LL is defined by

πT ∗M ◦ LL = πT M (2.38)

and

ξi ◦ LL = pi =
∂L
∂q̇i , i = 1, . . . , n. (2.39)

Our nondegeneracy assumption therefore implies that the derivative (LL)∗ of LL is
nonsingular at each point so LL is a local diffeomorphism. Consequently, (q, p) =

(q1, . . . , qn, p1, . . . , pn) are local coordinates on a neighborhood of each point in the
image of LL. We will refer to these as canonical coordinates on T ∗M determined
by the Lagrangian L.
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Remark 2.3.4. Notice, incidentally, that thinking of the conjugate momenta as com-
ponents of a cotangent vector explains why we chose to label them with subscripts
rather than superscripts when we first introduced them in Remark 2.2.12.
Remark 2.3.5. The Legendre transformation LL : T M → T ∗M is generally not
surjective. For a nondegenerate Lagrangian it is a local diffeomorphism and so the
image is an open set O in T ∗M. If one assumes a bit more of the Lagrangian one can
say a bit more. If, for example, the matrices(

∂2L
∂q̇i∂q̇ j (q, q̇)

)
i, j=1,...,n

(2.40)

are not only nonsingular, but are positive definite at each point, then one can prove
that LL is a diffeomorphism of T ∗M onto O. This is, in fact, the common state of
affairs so, in order to prune away some inessential technical issues in the devel-
opment, we will restrict our attention to Lagrangians for which the corresponding
Legendre transformation is a diffeomorphism. More precisely, let us say that a La-
grangian L : T M → R is regular if the Legendre transformation LL : T M → T ∗M
is a diffeomorphism onto its image O ⊆ T ∗M.

Henceforth we assume that all Lagrangians are regular.

Of course, we’ll need to verify regularity for any particular example.
Example 2.3.2. We will compute the Legendre transformation corresponding to the
kinetic energy Lagrangian on a Riemannian manifold M (Example 2.2.4), taking
m = 1 for convenience. Thus,

L(p, vp) =
1
2
〈vp, vp〉p ∀(p, vp) ∈ T M.

For any (p, vp) ∈ T M,

L(p, vp) = LL(p, vp) =
(
p, d( L|Tp(M) )vp

)
and, for any wp ∈ Tp(M),

d( L|Tp(M) )vp (wp) =
d
dt

L(p, vp + twp) |t=0

=
d
dt

(1
2
〈vp + twp, vp + twp〉p

)∣∣∣
t=0

=
d
dt

( 1
2
〈vp, vp〉p + t〈vp,wp〉p +

1
2

t2〈wp,wp〉p
) ∣∣∣

t=0

= 〈vp,wp〉p.

We conclude that d( L|Tp(M) )vp = 〈vp, · 〉p so

LL(p, vp) = (p, 〈vp, · 〉p).
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Thus, for each p ∈ M the Legendre transformation is just the canonical isomorphism
of Tp(M) onto T ∗p(M) determined by the inner product 〈 , 〉p. In particular, LL is a
bijection from T M onto T ∗M. Since it is also a local diffeomorphism, LL is a global
diffeomorphism of T M onto T ∗M.
Exercise 2.3.1. Show that any Lagrangian L : TRn → R of the form

L(q1, . . . , qn, q̇1, . . . , q̇n) =

n∑
i=1

1
2

m(q̇i)2 − V(q1, . . . , qn),

where V is smooth, is regular.
Lagrangian mechanics takes place on the state space T M. The cotangent bundle

T ∗M is called the phase space and this is where Hamiltonian mechanics takes place.
Our objective now is to move what we know about mechanics from state space
to phase space. “Why?”, you may ask. The most compelling reason we can offer
is that, somewhat miraculously, T ∗M has more mathematical structure than T M
and this additional structure greatly clarifies the geometrical picture of mechanics
in particular and physics in general. Let’s see how this additional structure comes
about.

If M is an n-dimensional smooth manifold, then its cotangent bundle T ∗M is
a 2n-dimensional smooth manifold and the projection π : T ∗M → M is a smooth
surjection (in fact, a submersion). Consequently, one may speak of 1-forms on T ∗M.
We now define what is called the natural 1-form θ on T ∗M. The idea is very simple.
A 1-form θ on T ∗M should assign to each point (p, ηp) ∈ T ∗M a real-valued linear
function on T(p,ηp)(T ∗M). But the derivative π∗(p,ηp) carries T(p,ηp)(T ∗M) linearly onto
Tp(M) and ηp is a real-valued, linear function on Tp(M) so we’ll just compose them,
that is, we define

θ(p,ηp) = ηp ◦ π∗(p,ηp).

This assigns to each (p, ηp) in T ∗M a real-valued, linear function on T(p,ηp)(T ∗M) so
one need only check that it is smooth. The best way to do this is to write it in natural
coordinates (q1, . . . , qn, ξ1, . . . , ξn) on T ∗M. We claim that, on an open set on which
these coordinates are defined,

θ = ξ1dq1 + · · · + ξndqn = ξidqi (2.41)

and, from this, smoothness is clear. To prove (2.41) we note that, since
π(q1, . . . , qn, ξ1, . . . , ξn) = (q1, . . . , qn), the matrix of π∗(p,ηp) in these coordinates is

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
...

...
0 · · · 1 0 · · · 0

 .
Thus, π∗(p,ηp)(∂qi |(p,ηp)) = ∂qi |p and π∗(p,ηp)(∂ξi |(p,ηp)) = 0. Consequently,
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θ(p,ηp)(∂qi |(p,ηp)) = ηp ◦ π∗(p,ηp)(∂qi |(p,ηp))
= ηp(∂qi |p)
= ξi(p, ηp)

so θ(∂qi ) = ξi. Similarly, θ(p,ηp)(∂ξi |(p,ηp)) = 0 so θ(∂ξi ) = 0. This proves (2.41) so
we have a well-defined, smooth 1-form θ on T ∗M which, in natural coordinates, is
given by (2.41).

The exterior derivative dθ of θ is a 2-form on T ∗M given locally in natural coor-
dinates by

dθ = d(ξidqi) = dξi ∧ dqi.

The 2-form ω = −dθ is called the natural symplectic form on T ∗M (the minus sign
is a convention and not a universally accepted one so be careful about signs if you
read elsewhere). In coordinates,

ω = −dθ = dqi ∧ dξi.

Remark 2.3.6. Since θ is invariantly defined, so is ω. In natural coordinates on T ∗M,
ω takes on the particularly simple form dqi ∧ dξi. In an arbitrary coordinate system
(Qi, Pi) on T ∗M, ω will generally be some linear combination of dQi ∧ dQ j, dQi ∧

dP j, and dPi ∧ dP j. However, it may happen that, for some particular coordinate
systems, ω = dQi ∧ dPi. In this case, (Qi, Pi) are called canonical coordinates on
T ∗M. In particular, natural coordinates are canonical coordinates.
Exercise 2.3.2. Show that if L is a regular Lagrangian, then the canonical co-
ordinates (qi, pi) defined from the corresponding Legendre transformation LL by
pi = ξi ◦ LL = ∂L

∂q̇i , deserve the name, that is,

ω = dqi ∧ dpi.

Remark 2.3.7. A symplectic form on a smooth manifold X is a 2-form ω on X that
is closed (dω = 0) and nondegenerate (ιVω = 0 ⇒ V = 0); the pair (X, ω) is then
called a symplectic manifold. Both of these conditions are clearly satisfied by the ω
we have defined on T ∗M so this is, indeed, a symplectic form. The formalism we
will describe for Hamiltonian mechanics is based almost entirely on the existence
of this natural symplectic form on T ∗M together with the Legendre transform H :
T ∗M → R of the energy function EL : T M → R on T M (which we will introduce
shortly). It turns out that the entire formalism extends to an arbitrary symplectic
manifold (X, ω) together with a choice of some distinguished real-valued function
H : X → R on X. We will not require this much generality, but we will nevertheless
endeavor to phrase our discussions in terms that will ease the transition to symplectic
geometry and Hamiltonian mechanics (some standard references for this material
are [Abra], [Arn2], [CM], [Gold], [GS1], and [Sp3]).

Let’s be explicit about the context in which we will make our move from state
space to phase space. We are given a smooth n-dimensional manifold M, called the
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configuration space. The tangent bundle T M is called the state space and we as-
sume that we are given a regular Lagrangian L : T M → R on M. The cotangent
bundle T ∗M is called the phase space and the corresponding Legendre transforma-
tion LL : T M → T ∗M is a diffeomorphism of T M onto an open subset O of T ∗M.
The natural 1-form on T ∗M is denoted θ and the natural symplectic form on T ∗M
is ω = −dθ. Local coordinates on M are written q1, . . . , qn and these give rise to
natural coordinates q1, . . . , qn, q̇1, . . . , q̇n on T M and q1, . . . , qn, ξ1, . . . , ξn on T ∗M.
In such natural coordinates, the energy function on T M is given by

EL(q, q̇) =
∂L
∂q̇i q̇i − L(q, q̇),

the natural 1-form on T ∗M is

θ = ξidqi,

and the natural symplectic form on T ∗M is

ω = dqi ∧ dξi.

We begin by moving the energy function EL : T M → R to T ∗M. Notice that,
since LL is a diffeomorphism of T M onto its image O ⊆ T ∗M, there is clearly a
function H : O→ R whose pullback to T M under LL is EL, that is, which satisfies

L∗L(H) = H ◦ LL = EL =
∂L
∂q̇i q̇i − L(q, q̇).

We will describe H in canonical coordinates (q1, . . . , qn, p1, . . . , pn) on T ∗M. Since
LL is a diffeomorphism,

H = EL ◦ L
−1
L = (L−1

L )∗ EL = (L−1
L )∗ (

∂L
∂q̇i q̇i − L(q, q̇) ) = pi (q̇i ◦ L−1

L ) − L ◦ L−1
L .

(2.42)

One often sees H = pi (q̇i ◦ L−1
L ) − L ◦ L−1

L written as

H(q1, . . . , qn, p1, . . . , pn) = piq̇i − L(q1, . . . , qn, q̇1, . . . , q̇n), (2.43)

where it is understood that, on the right-hand side, each q̇i is expressed as a function
of q1, . . . , qn, p1, . . . , pn (by solving the system (2.31)). The energy function H on
T ∗M is called the Hamiltonian.

Every curve in M has a natural lift to the state space T M. If the local coordinate
functions of the curve are q1(t), . . . , qn(t), then the natural coordinates of the lift are
q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t) and, for a stationary curve, these satisfy the Euler-
Lagrange equations
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∂L
∂qk −

d
dt

(
∂L
∂q̇k

)
= 0, 1 ≤ k ≤ n.

These stationary curves describe the evolution in state space of the physical sys-
tem whose Lagrangian is L. The Legendre transformation, being a diffeomorphism,
moves lifted curves in T M to curves in phase space T ∗M by simply composing with
LL. The image of a stationary curve can be thought of as describing the evolution of
the physical system in phase space rather than in state space. We would like to show
now that, in terms of canonical coordinates on T ∗M, the differential equations that
describe such curves assume a particularly simple and symmetrical form. Begin by
computing the differential dH. By definition, of course,

dH =
∂H
∂qi dqi +

∂H
∂pi

dpi. (2.44)

But also we compute from H = pi (q̇i ◦ L−1
L ) − L ◦ L−1

L that

dH = d
(
pi ( q̇i ◦ L−1

L ) − L ◦ L−1
L

)
= (q̇i ◦ L−1

L ) dpi + pi d(q̇i ◦ L−1
L ) − d(L ◦ L−1

L )

= (q̇i ◦ L−1
L ) dpi + pi d((L−1

L )∗(q̇i)) − d ((L−1
L )∗(L))

= (q̇i ◦ L−1
L ) dpi + pi (L−1

L )∗(dq̇i) − (L−1
L )∗(dL)

= (q̇i ◦ L−1
L ) dpi + pi (L−1

L )∗(dq̇i) − (L−1
L )∗

(
∂L
∂qi dqi +

∂L
∂q̇i dq̇i

)
= (q̇i ◦ L−1

L ) dpi + pi (L−1
L )∗(dq̇i) −

(
∂L
∂qi ◦ L

−1
L

)
dqi − pi (L−1

L )∗(dq̇i)

= (q̇i ◦ L−1
L ) dpi −

(
∂L
∂qi ◦ L

−1
L

)
dqi (2.45)

Comparing (2.44) and (2.45) we find that

∂H
∂qi = −

∂L
∂qi ◦ L

−1
L and

∂H
∂pi

= q̇i ◦ L−1
L , i = 1, . . . , n. (2.46)

Now, suppose α(t) = (q1(t), . . . , qn(t)) is a stationary curve in M. Then the lift α̃(t) =

(q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)) of α to T M satisfies the Euler-Lagrange equations.
Its image LL ◦ α̃ in T ∗M under the Legendre transformation is written

LL ◦ α̃(t) = (q1(t), . . . , qn(t), p1(t), . . . , pn(t)).

From (2.46) we find that ∂H
∂pi

(LL ◦ α̃(t)) = q̇i(t) and
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−
∂H
∂qi (LL ◦ α̃(t)) =

∂L
∂qi (α̃(t))

=
d
dt

(
∂L
∂q̇i (α̃(t))

)
(Euler-Lagrange)

=
d
dt

(pi(t))

= ṗi(t). (2.47)

We conclude that the differential equations that determine the evolution of the sys-
tem in phase space are

dqi

dt
=
∂H
∂pi

and
dpi

dt
= −

∂H
∂qi , i = 1, . . . , n. (2.48)

These are called Hamilton’s equations. We will write out a few examples mo-
mentarily, but first we would like to observe that, even though Hamilton’s equations
do the same job as the Euler-Lagrange equations, they are geometrically much nicer,
even aside from their obvious symmetry. Euler-Lagrange is a system of second or-
der ordinary differential equations with no really apparent geometrical interpreta-
tion. On the other hand, Hamilton’s equations form a system of first order ordinary
differential equations in the coordinates on phase space and so the solutions can
be viewed as integral curves of a vector field on T ∗M, specifically, the so-called
Hamiltonian vector field

XH =
∂H
∂pi

∂qi −
∂H
∂qi ∂pi . (2.49)

The time evolution of the system can be viewed as the flow of this vector field on
phase space; this is very pretty and, as we will see, very useful.
Example 2.3.3. As a consistency check, let’s look once more at a single particle
moving in Rn. As usual, we choose standard coordinates x1, . . . , xn on Rn and take
the Lagrangian to be

L(x, ẋ) = L(x1, . . . , xn, ẋ1, . . . , ẋn) =
1
2

m
n∑

i=1

(ẋi)2 − V(x1, . . . , xn),

where V is an arbitrary smooth function on Rn. Then pi = ∂L
∂ẋi = mẋi so ẋi =

pi
m . The

energy function on the tangent bundle is therefore

EL(x, ẋ) =
1
2

m‖ẋ‖2 + V(x)

=
1
2

m
(
(ẋ1)2 + · · · (ẋn)2) + V(x1, . . . , xn)

and so the Hamiltonian on phase space is
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H(x, p) =
1
2

m
(( p1

m

)2
+ · · · +

( pn

m

)2)
+ V(x1, . . . , xn)

=
1

2m
‖p‖2 + V(x).

Hamilton’s equations therefore give ẋi = ∂H
∂pi

=
pi
m and ṗi = − ∂H

∂xi = − ∂V
∂xi . Combining

these two gives

mẍi = −
∂V
∂xi , i = 1, . . . , n,

and this is just Newton’s Second Law in components.
Let’s also write out the special case of most interest to us and have a look at its
Hamiltonian vector field.
Example 2.3.4. For the harmonic oscillator the Hamiltonian on T ∗R is given by

H(q, p) =
1

2m
p2 +

mω2

2
q2, (2.50)

where, as usual, we have used q as the standard coordinate on R and ω =
√

k/m.
Thus, ∂H

∂p =
p
m and ∂H

∂q = mω2q so the Hamiltonian vector field is

XH =
p
m
∂q − mω2q ∂p. (2.51)

In this case, of course, Hamilton’s equations are easy to solve explicitly (they are
equivalent to Newton’s Second Law q̈(t) +ω2q(t) = 0 and we solved this long ago).
However, this is generally not the case and one would like to retrieve at least some
of the qualitative behavior of the system from XH itself, that is, from qualitative
information about the integral curves of XH in the qp-phase plane. This is an old
and venerable part of mathematics, but one that we will not make use of here (a nice
introduction is available in [Arn1]). Suffice it to say that one can read off directly
from p

m ∂q − mω2q ∂p the existence of one stable point of equilibrium (at (q, p) =

(0, 0)), and the fact that the integral curves are ellipses about the equilibrium point
so that, in particular, they do not approach equilibrium and the periodicity of the
system’s behavior is manifest.
Exercise 2.3.3. The Lagrangian for the spherical pendulum (Example 2.2.2) is

L(φ, θ, φ̇, θ̇) =
1
2

ml2( φ̇2 + θ̇2sin2φ ) + mgl cos φ.

Denote by pφ and pθ the conjugate momenta of φ and θ, respectively. Show that the
Hamiltonian is given by

H(φ, θ, pφ, pθ) =
1

2ml2
( p2

φ + p2
θ csc2φ ) − mgl cos φ

and that Hamilton’s equations are
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φ̇ =
1

ml2
pφ

θ̇ =
1

ml2
(csc2φ) pθ

ṗφ =
1

ml2
(cos φ) (csc2φ) p2

θ − mgl sin φ

ṗθ = 0

Remark 2.3.8. Our objective in the remainder of this section is to describe what has
proven to be the essential mathematical structure of classical Hamiltonian mechan-
ics. This structure is much more general than the context in which we currently find
ourselves (see Remark 2.3.7) and it is the structure that is generalized to produce the
standard formalism of quantum mechanics in Chapters 3 and 7. We will, whenever
feasible, provide arguments that exhibit this generality, even if they are not the most
elementary possible.

An inner product 〈 , 〉 on a vector space V determines a natural isomorphism of
V onto its dual V∗ given by v ∈ V → 〈v, ·〉 ∈ V∗ and this depends only on the
bilinearity and nondegeneracy of 〈 , 〉. At each point (p, ηp) of T ∗M the canonical
symplectic form ω on T ∗M is a nondegenerate, bilinear form ω(p,ηp) : T(p,ηp)(T ∗M)×
T(p,ηp)(T ∗M)→ R on T(p,ηp)(T ∗M) so it induces an isomorphism

x ∈ T(p,ηp)(T ∗M)→ ω(p,ηp)(x, ·) ∈ T ∗(p,ηp)(T
∗M)

of T(p,ηp)(T ∗M) onto T ∗(p,ηp)(T
∗M). This then extends to an isomorphism of the

infinite-dimensional vector space of smooth vector fields on T ∗M onto the space
of 1-forms on T ∗M given by

X → ιXω,

where ιXω is the contraction of ωwith X, that is, (ιXω)(V) = ω(X,V) for any smooth
vector field V .
Example 2.3.5. Let’s compute the image of the Hamiltonian vector field XH under
this isomorphism. In canonical coordinates, ω = dqi ∧ dpi and XH = ∂H

∂pi
∂qi − ∂H

∂qi ∂pi

so
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ιXHω = ιXH (dqi ∧ dpi)

= ιXH (dqi ⊗ dpi − dpi ⊗ dqi)

= dqi(XH)dpi − dpi(XH)dqi

= −XH[pi]dqi + XH[qi]dpi

=
∂H
∂qi dqi +

∂H
∂pi

dpi

and therefore

ιXHω = dH.

We generalize this last example in the following way. The Hamiltonian H is, in
particular, a smooth real-valued function on T ∗M. For any f ∈ C∞(T ∗M), d f is a
1-form on T ∗M so there exists a smooth vector field X f on T ∗M satisfying

ιX fω = d f .

Exercise 2.3.4. Show that

X f =
∂ f
∂pi

∂qi −
∂ f
∂qi ∂pi . (2.52)

We will refer to the vector field X f in (2.52) as the symplectic gradient of f ; X f is
often called the Hamiltonian vector field of f , but we will reserve this terminology
for the symplectic gradient XH of the Hamiltonian. Now notice that if g is another
smooth, real-valued function on T ∗M, then

X f [g] =
∂ f
∂pi

∂g
∂qi −

∂ f
∂qi

∂g
∂pi

= −Xg[ f ].

Moreover,

ω(X f , Xg) = ιXg ◦ ιX fω

= −ιX f ◦ ιXgω

= −ιX f (dg) = −dg(X f ) = −X f [g]

=
∂ f
∂qi

∂g
∂pi
−
∂ f
∂pi

∂g
∂qi .

Now we will consolidate this information by defining, for all f , g ∈ C∞(T ∗M), the
Poisson bracket

{
f , g

}
of f and g by

{ f , g} = ω(X f , Xg) = −X f [g] = Xg[ f ] =
∂ f
∂qi

∂g
∂pi
−
∂ f
∂pi

∂g
∂qi . (2.53)

The Poisson bracket
{
,
}

: C∞(T ∗M) × C∞(T ∗M) → C∞(T ∗M) provides
C∞(T ∗M) with a certain mathematical structure that is central to everything we
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will say about Hamiltonian mechanics as well as to the formulation of quantum
mechanics that we will describe in Chapters 3 and 7 so we would now like to spell
out this structure in detail. We will refer to the elements of C∞(T ∗M) as classical
observables.
Remark 2.3.9. Here’s the idea behind this last definition. Intuitively, an observable
is something we can measure and the value we actually do measure depends on the
state of the system at the time we do the measuring. The result of the measurement
is a real number such as an energy, a component of linear or angular momentum,
a coordinate of the position of some particle, etc. If we represent the states of the
system as points in phase space, each of these is a real-valued function on T ∗M. One
can assume, at least provisionally, that these functions vary smoothly with the state
and are therefore elements of C∞(T ∗M). Now, it is certainly not the case that every
element of C∞(T ∗M) can be naturally identified with something we might actually
set up an experiment to measure. Nevertheless, every such function in C∞(T ∗M)
is, locally at least, expressible in terms of position coordinates qi and momentum
coordinates pi, which certainly should qualify as physical observables; measuring
these, in effect, measures everything in C∞(T ∗M).

C∞(T ∗M) has the structure of a unital algebra over R with pointwise addition
(( f + g)(x) = f (x) + g(x)), scalar multiplication ((α f )(x) = α f (x)) and multipli-
cation (( f g)(x) = f (x)g(x)) and for which the multiplicative unit element is the
constant function on T ∗M whose value is 1 ∈ R. The following three properties
of the Poisson bracket show that it provides C∞(T ∗M) with the structure of a Lie
algebra.

{ , } : C∞(T ∗M) ×C∞(T ∗M)→ C∞(T ∗M) is R-bilinear. (2.54)

{g, f } = −{ f , g} ∀ f , g ∈ C∞(T ∗M) (2.55)

{ f , {g, h}} + {h, { f , g}} + {g, {h, f }} = 0 ∀ f , g, h ∈ C∞(T ∗M) (2.56)

The first two of these are obvious from the fact that { f , g} = ω(X f , Xg) and ω is a
2-form and therefore bilinear and skew-symmetric. The proof of the Jacobi identity
(2.56) takes a bit more work. One could, of course, compute everything in local
coordinates to produce a great mass of partial derivatives and then watch everything
cancel, but this is not particularly enlightening. We prefer to give an argument that
involves a bit more machinery, but indicates clearly that the result depends only on
the fact that ω is a nondegenerate, closed 2-form and the definition of the symplectic
gradient.

Since ω is closed, the 3-form dω is identically zero so, in particular,
dω(X f , Xg, Xh) = 0. We begin by writing this out in coordinate free fashion in terms
of the Lie bracket (see Exercise 4.4.1 of [Nab4]).
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0 = X f [ω(Xg, Xh)] − Xg[ω(X f , Xh)] + Xh[ω(X f , Xg)]
− ω([X f , Xg], Xh) + ω([X f , Xh], Xg) − ω([Xg, Xh], X f ) (2.57)

Next notice that

X f [ω(Xg, Xh)] = X f ({g, h}) = −{ f , {g, h}}

and similarly for the second and third terms in (2.57). From this we conclude that

X f [ω(Xg,Xh)] − Xg[ω(X f , Xh)] + Xh[ω(X f , Xg)]
= −{ f , {g, h}} + {g, { f , h}} − {h, { f , g}}

= −{ f , {g, h}} − {h, { f , g}} − {g, {h, f }}. (2.58)

In order to handle the remaining three terms in (2.57) we require a preliminary result
that we will see is of independent interest. Specifically, we will show that

[X f , Xg] = X{g, f }. (2.59)

Remark 2.3.10. The next few arguments will require some basic facts about the Lie
derivative. Recall that, if X is a vector field, then the Lie derivative LX computes
rates of change along the integral curves of X. If f is a smooth real-valued function,
then LX f = X[ f ]; if Y is a vector field, then LXY = [X,Y], the Lie bracket of X and
Y; if η is a differential form, then LX η can be computed from the Cartan formula
LX η = (ιX ◦ d) η + (d ◦ ιX) η. All of this can be found in Volume I of [Sp2]; most of
it is in Chapter 5, but the Cartan formula is Exercise 18(e).

We begin by noting that

LX fω = 0

because LX fω = ιX f (dω) + d(ιX fω) = ιX f (0) + d(d f ) = 0 + d2 f = 0. This, together
with the identity

LX(ιY η) − ιY (LX η) = ι[X,Y] η,

which is satisfied by all vector fields X and Y and all differential forms η, gives

ι[X f ,Xg]ω = LX f (ιXgω) = (d ◦ ιX f + ιX f ◦ d)(ιXgω)
= d(ιX f ◦ ιXgω) + ιX f (d(ιXgω))

= d(ω(Xg, X f )) + ιX f (d
2g)

= d(ω(Xg, X f )) + 0

so that

ι[X f ,Xg]ω = d({g, f })
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and this is precisely the statement (2.59). With this we can finish off the proof of the
Jacobi identity (2.56). Notice that we can now write

−ω([X f , Xg], Xh) = −ω(X{g, f }, Xh) = −{{g, f }, h} = {h, {g, f }} = −{h, { f , g}} (2.60)

and similarly for the fifth and sixth terms in (2.57). Thus, we find that

−ω([X f , Xg], Xh) + ω([X f , Xh], Xg) − ω([Xg, Xh], X f )
= −{ f , {g, h}} − {h, { f , g}} − {g, {h, f }}. (2.61)

Inserting (2.58) and (2.61) into (2.57) gives (2.56).
We have proved (2.54), (2.55), and (2.56) and therefore that the Poisson bracket

provides the algebra C∞(T ∗M) of classical observables with the structure of a Lie
algebra. It does even more, however. In general, a Lie algebra is a vector space, but
it has no multiplicative structure other than that provided by the bracket. However,
C∞(T ∗M) is itself an algebra under pointwise multiplication and we now show that
this algebra structure is consistent with the Lie algebra structure in that they are
related by the following Leibniz Rule.

{ f , gh} = { f , g}h + g{ f , h} ∀ f , g, h ∈ C∞(T ∗M). (2.62)

The proof of this is easy.

{ f , gh} = ιXgh ◦ ιX fω = −ιX f (ιXghω) = −ιX f (d(gh))
= −ιX f ((dg)h + gdh) = −ιX f ((dg)h) − ιX f (gdh)
= −(ιX f (dg))h − g(ιX f (dh)) = −(dg(X f ))h − g(dh(X f ))
= −X f [g]h − gX f [h]
= { f , g}h + g{ f , h}.

This provides C∞(T ∗M) with the structure of what is called a Poisson algebra and
this makes T ∗M itself a Poisson manifold.
Remark 2.3.11. Before returning to mechanics to see what all of this is good for
we pause to make a few observations and introduce a little terminology. We have
shown that, for any classical observable f ∈ C∞(T ∗M), the vector field X f satisfies
LX fω = 0. In general, a vector field X on T ∗M is said to be symplectic if the Lie
derivative of the canonical symplectic form ω with respect to X is zero (LXω = 0)
and this is equivalent to ϕ∗tω = ω for every ϕt in the (local) 1-parameter group of
diffeomorphisms of X. A diffeomorphism ϕ of T ∗M onto itself satisfying ϕ∗ω = ω
is called a symplectomorphism (by mathematicians), or a canonical transformation
(by physicists). Consequently, any symplectic gradient is a symplectic vector field.
In particular, the Hamiltonian vector field XH is symplectic and in this case we think
of ϕ∗tω = ω as saying that ω is constant along the integral curves of the Hamiltonian,
that is, along the trajectories of the system. Finally, we notice that, since

LXω = d(ιXω) + ιX(dω) = d(ιXω).
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the vector field X is symplectic if and only if the 1-form ιXω is closed.
To get back to the physics let’s note first that, even if they served no other useful

purpose, Poisson brackets make Hamilton’s equations (2.48) very pretty.

dqi

dt
= {qi,H} and

dpi

dt
= {pi,H}, i = 1, . . . , n (2.63)

There is more, however. In the Hamiltonian picture the state of a physical system
is described by a point in phase space T ∗M and the system evolves along the in-
tegral curves of the Hamiltonian vector field XH . We will say that an observable
f ∈ C∞(T ∗M) is conserved if it is constant along each of these integral curves, that
is, if XH[ f ] = 0 which we now know is equivalent to

{ f ,H} = 0. (2.64)

Consequently, conserved quantities are precisely those observables that (Poisson)
commute with the Hamiltonian. In particular, the Hamiltonian itself (that is, the
total energy) is clearly conserved since {H,H} = 0 follows from the skew-symmetry
(2.55) of the Poisson bracket. Moreover, it follows from the Jacobi identity (2.56)
that the Poisson bracket of two conserved quantities is also conserved. Indeed,

{ f ,H} = {g,H} = 0⇒ {{ f , g},H} = {g, {H, f }} + { f , {g,H}} = {g, 0} + { f , 0} = 0.

More generally, even if f is not conserved, the Poisson bracket keeps track of how
it evolves with the system in the sense that, along an integral curve of XH ,

d f
dt

= { f ,H} (2.65)

(because XH[ f ] = −{H, f } = { f ,H}). Still more generally, if f and g are two observ-
ables, then the rates of change of f along the integral curves of g and of g along the
integral curves of f are, according to (2.53), both encoded in the bracket { f , g}. The
point here is that the Poisson structure of the algebra of classical observables con-
tains a great deal of information about the dynamics of the system. As we will see in
Chapter 7, it also provides the key to a process known as “canonical quantization”.
If you will grant the importance of the Poisson bracket { f , g} and recall that, locally
at least, any observable can be written as a function of canonical coordinates, then it
may come as no great surprise to learn that a particular significance attaches to the
brackets of the observables q1, . . . , qn, p1, . . . , pn : T ∗M → R. These are called the
canonical commutation relations (for classical mechanics) and are simply

{qi, q j} = {pi, p j} = 0 and {qi, p j} = δi
j, i, j = 1, . . . , n, (2.66)

where δi
j is the Kronecker delta. We will have much more to say about these later.

Exercise 2.3.5. In Exercise 2.2.10 you derived the Langrangian and Euler-Lagrange
equations for the double pendulum. The objective now is to write out the Hamil-
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tonian formulation. We will denote the conjugate momenta by p1 = ∂L/∂θ̇1 and
p2 = ∂L/∂θ̇2.

1. Show that

p1 = (m1 + m2)l21θ̇1 + m2l1l2θ̇2cos (θ1 − θ2)

and

p2 = m2l22θ̇2 + m2l1l2θ̇1cos (θ1 − θ2).

2. Compute the Hamiltonian and show that

H(θ1, θ2, p1, p2) =
l22m2 p2

2 + l21(m1 + m2)p2
2 − 2m2l1l2 p1 p2cos (θ1 − θ2)

2l21l22m2[m1 + m2sin2 (θ1 − θ2)]

− (m1 + m2)gl1cos θ1 − m2gl2cos θ2

3. Show that Hamilton’s equations are as follows.

θ̇1 =
l2 p1 − l1 p2cos (θ1 − θ2)

l21l2[m1 + m2sin2(θ1 − θ2)]

θ̇2 =
l1(m1 + m2)p2 − l2m2 p1cos (θ1 − θ2)

l1l22m2[m1 + m2sin2(θ1 − θ2)]

ṗ1 = − (m1 + m2)gl1sin θ1 −
p1 p2sin (θ1 − θ2)

l1l2[m1 + m2sin2(θ1 − θ2)]

+
l22m2 p2

1 + l21(m1 + m2)p2
2 − l1l2m2 p1 p2cos (θ1 − θ2)

2l21l22[m1 + m2sin2(θ1 − θ2)]2
sin 2(θ1 − θ2)

ṗ2 = − m2gl2sin θ2 +
p1 p2sin (θ1 − θ2)

l1l2[m1 + m2sin2(θ1 − θ2)]

−
l22m2 p2

1 + l21(m1 + m2)p2
2 − l1l2m2 p1 p2cos (θ1 − θ2)

2l21l22[m1 + m2sin2(θ1 − θ2)]2
sin 2(θ1 − θ2)

Needless to say, Hamilton’s equations are generally solvable only numerically.
When this is done one discovers a great variety of possible motions depend-
ing on the initial conditions. This motion might be periodic, nearly periodic or
even chaotic. Chaotic motion is illustrated in Figure 2.7; the curve shown is the
path of the lower mass m2 in Figure 2.6 (once again we recommend a visit to
http://gizmodo.com/5869648/spend-the-next-22-minutes-mesmerized-by-this-near
+perpetual-motion-double-pendulum).

http://gizmodo.com/5869648/spend-the-next-22-minutes-mesmerized-by-this-near+perpetual-motion-double-pendulum
http://gizmodo.com/5869648/spend-the-next-22-minutes-mesmerized-by-this-near+perpetual-motion-double-pendulum
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Fig. 2.7 Chaotic Motion of a Double Pendulum

Remark 2.3.12. There is an important aspect of Hamiltonian mechanics, called
Hamilton-Jacobi theory, that we will not discuss here. There is a brief introduction
to the idea in Section 11 of [MacL] and an elementary, but more detailed treatment
in Chapter 18 of [Sp3]; the latter also contains a few remarks on the relevance of
Hamilton-Jacobi theory to Schrödinger’s derivation of his wave equation for quan-
tum mechanics. For a more sophisticated, mathematically rigorous treatment one
might consult, for example, [Abra].

2.4 Segue

Before leaving classical particle mechanics behind we would like describe one more
example that may ease the transition into our next topic in Chapter 3.
Example 2.4.1. One liter of the earth’s atmosphere at standard temperature (0◦C)
and standard pressure (approximately the average atmospheric pressure at sea level)
contains about k = 2.68× 1022 molecules. Suppose the system that interests us con-
sists of these molecules and that they are free to roam without interference wherever
they please in space. Then we have k particles with masses m1, . . . ,mk and posi-
tions specified by q1 = (q1, q2, q3), q2 = (q4, q5, q6), . . . , qk = (q3k−2, q3k−1, q3k). The
configuration space is M = R3k and the phase space is T ∗M = R3k × R3k. Canon-
ical coordinates on T ∗M are q1, . . . , q3k, p1, . . . , p3k and the interaction among the
molecules is specified by some Hamiltonian H(q1, . . . , q3k, p1, . . . , p3k). The evolu-
tion of the system in phase space is then determined by Hamilton’s equations (2.48).
All we need to do is supply this system of first order equations with some initial
conditions and it will tell us how the system evolves. That’s all! We simply need to
determine the positions and momenta for 2.68 × 1022 molecules at some instant.
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This is absurd, of course. While everything we said in the last example is quite
true, it simply provides no effective means of actually studying such large systems.
Here we get a glimpse into the subject of statistical mechanics which, as the name
suggests, concedes that we may have access to only statistical information about the
state of such a system and therefore can reasonably expect to make only statistical
statements about the observables we measure. Such a scenario must be modeled
mathematically in a rather different way. The “state” of such a system is no longer
identified with an experimentally meaningless point in phase space, but rather with a
Borel probability measure ν on T ∗M (see Remark 2.4.1). The ν-measure of a subset
of phase space is thought of as the probability that the “actual state” is in that subset
(see Remark 2.4.2).
Remark 2.4.1. Recall that, in any topological space X, a Borel set is an element of
the σ-algebra generated by the open sets in X. A Borel probability measure on X is
a measure ν on the σ-algebra of Borel sets for which ν(X) = 1.
Remark 2.4.2. The “actual state” is something of a Platonic ideal. One imagines,
for example, that each molecule in our sample of the atmosphere really does have a
well-defined position and momentum at each instant so that “in principle” the state
of the system really is described by a point in R5.36×1022

, even though we have no
chance at all of determining what it actually is. It is easy to be persuaded by such
“in principle” arguments, but it is wise to exercise just a bit of caution. If two fire-
crackers explode nearby one might reasonably ask whether or not the explosions
were simultaneous. If two supernovae occur at distant points in the galaxy, special
relativity asserts that it makes no sense at all, even “in principle”, to ask if the explo-
sions were or were not simultaneous (see Section 1.3 of [Nab5]). More to the point,
we shall see that, when the rules of quantum mechanics take effect, the assertion
that even a single particle has a well-defined position and momentum at each instant
has no meaning and so its classical phase space has no meaning. The moral here is
that extrapolation beyond our immediate range of experience can be dangerous; one
should be aware of the assumptions one is making and open to the possibility that
they may eventually need to be abandoned.

Given such a state/measure ν and an observable f (like the total energy, for ex-
ample) one obtains a Borel probability measure µν, f on R by defining

µν, f (S ) = ν( f −1(S ))

for any Borel set S ⊆ R. One then interprets µν, f (S ) as the probability that we
will measure the value of f to lie in the set S if the system is known to be in the
state ν. Such probabilistic statements are generally the best one can hope for in
statistical mechanics. For example, one can compute the expectation value of a given
observable in a given state, but one has no information about the precise value of
any given measurement of the observable.

At first glance this scheme may strike one as excessively abstract and rather ex-
otic, but we will argue in Chapter 3 that, in fact, it presents a rather natural way of
viewing the general problem of describing physical systems mathematically. Even
the classical particle mechanics that we have been discussing can be phrased in these
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terms, although in this case there is no particular reason to do so. Such probabilis-
tic models are appropriate for statistical mechanics and, more significantly for us,
for quantum mechanics as well since, in the quantum world, we will see that phe-
nomena are inherently statistical and probabilistic and not simply because of our
technological inability to deal with 2.68 × 1022 particles. We will see, for example,
that the more you know about an electron’s position, the less it is possible to know
about its momentum so it is, in principle, impossible to represent the state of an
electron by a point in T ∗M.

In anticipation of our move toward probabilistic models in Chapter 3 we will
conclude by noting that the structure of phase space determines a naturally associ-
ated volume form and therefore a measure. Indeed, the natural symplectic form ω is
a nondegenerate 2-form on the 2n-dimensional manifold T ∗M so 1

n!ω
n = 1

n!ω∧
n
· · ·

∧ω is a 2n-form on T ∗M. Nondegeneracy of ω implies that 1
n!ω

n is nonvanishing
and therefore is a volume form on T ∗M. In particular, T ∗M is orientable (Theorem
4.3.1 of [Nab4]). Notice that, since pullback commutes with the wedge product and
ϕ∗tω = ω for every ϕt in the (local) 1-parameter group of diffeomorphisms of the
Hamiltonian vector field XH , ϕ∗t ( 1

n!ω
n) = 1

n!ω
n as well so LXH ( 1

n!ω
n) = 0 and this

volume form is, like ω, invariant under the flow of XH . On the space of continuous
functions with compact support on T ∗M the integral

f →
∫

T ∗M
f
( 1
n!
ωn

)
defines a positive linear functional and so there is a Borel measure µ on T ∗M such
that, for every such function f ,∫

T ∗M
f dµ =

∫
T ∗M

f
( 1
n!
ωn

)
(see Theorem D, Section 56, of [Hal1]). µ is called the Liouville measure on T ∗M.
In canonical coordinates on T ∗M, 1

n!ω
n = dq1 ∧ dp1 ∧ dq2 ∧ dp2 ∧ · · · ∧ dqn ∧ dpn

and

dµ = dq1dp1 · · · dqndpn,

by which we mean simply Lebesgue measure on the image in R2n of the canonical
coordinate neighborhood in T ∗M. Liouville’s Theorem asserts that this measure is
also invariant under the Hamiltonian flow in the sense that, for any Borel set B in
T ∗M, µ(ϕt(B)) = µ(B) for every ϕt in the 1-parameter group of diffeomorphisms of
XH (for a proof of Liouville’s Theorem for M = R2n see pages 69-70 of [Arn2]).
Remark 2.4.3. We will have more to say about this measure shortly, but we should
point out that the objects of particular interest in statistical mechanics are certain
measures obtained from it. We will simply sketch the idea. The Hamiltonian is a
smooth real-valued function H : T ∗M → R on phase space thought of as the total
energy function. Let E ∈ R be a regular value of H (see Section 5.6 of [Nab3]).
Then ΩE = H−1(E) is (either empty or) a smooth submanifold of T ∗M of dimension
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2n−1 (Corollary 5.6.7 of [Nab3]). Since H is conserved, the evolution of the system
always takes place in such a constant energy hypersurface ΩE in phase space. Since
E is a regular value of H, dH is a nonzero 1-form on a neighborhood of ΩE and it
can be shown that locally one can write

1
n!
ωn = η ∧ dH

for some (non-unique) (2n − 1)-form η on T ∗M. Moreover, the restriction of η to
ΩE is independent of the choice of η and is a volume form on ΩE . This volume
form on ΩE defines a measure on ΩE called the Liouville measure on ΩE . Since the
Hamiltonian flow preserves ω, dH, and ΩE , it preserves the Liouville measure on
ΩE as well.



Chapter 3
The Formalism of Quantum Mechanics:
Motivation

3.1 Introduction

Classical mechanics is remarkably successful in describing a certain limited range
of phenomena, but there is no doubt that this range is limited. We have spoken often
about “particles”, but a precise, or even imprecise definition of just what the word
means was conspicuously absent. Depending on the circumstances, a particle might
be a planet, or a baseball, or a grain of sand. One cannot, however, continue to di-
minish the size of these objects indefinitely for it has been found (experimentally)
that one reaches a point where the rules change and the predictions of classical me-
chanics do not even remotely resemble what actually happens. In the late years of
the 19th and early years of the 20th centuries the technology available to experimen-
tal physicists led to the discovery that matter is composed of atoms and that these
atoms, in turn, are composed of still smaller, electrically charged objects that came
to be known as protons and electrons. The experiments strongly suggested a picture
of the atom that resembled the solar system with a positively charged nucleus play-
ing the role of the sun and the negatively charged electrons orbiting like planets.
Unfortunately, this picture is completely incompatible with classical physics which
predicts that the charged, orbiting electrons must radiate energy and, as a result, spi-
ral into the nucleus in short order. According to the rules of classical physics, such
atoms could not be stable and the world as we perceive it could not exist. Clinging
to the presumption that the world as we perceive it does exist, some adjustments to
the classical picture would appear to be in order. It is to these adjustments that we
now turn our attention.
Remark 3.1.1. Still other adjustments are necessitated by quite different experi-
mental discoveries of the late 19th century. These two independent adjustments to
classical physics are known as quantum mechanics and the special theory of rela-
tivity. Attempts to reconcile these to produce a more unified picture of the physical
world led to what is called quantum field theory. Incidentally, we say “more unified”
rather than simply “unified” because all of this fails to take any account of gravi-
tational fields, which are described by the general theory of relativity (for a brief

75
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glimpse into what general relativity looks like we might suggest [Nab1] or Chapter
4 of [Nab5], but for a serious study of the subject one should proceed to [Wald]).
Attempts to include general relativity in the picture, that is, to build a quantum the-
ory of gravity, are ongoing, but concerning these we will maintain a discreet and
humble silence.

Quantum mechanics is not a modest tweaking of classical mechanics, but a sub-
tle and profoundly new view of how the physical universe works. It did not spring
full blown into the world, but evolved over many years in fits and starts. Eventually,
however, the underlying structure emerged and crystalized into a set of “postulates”
that capture at least the formal aspects of the subject. It is entirely possible to simply
write down the axioms and start proving theorems, but here we will operate under
the assumption that manipulating axioms for their own sake without any apprecia-
tion of where they came from or what they mean is rather sterile. We will therefore
spend a bit of time discussing some of the experimental background in the hope of
motivating certain aspects of the model which might otherwise give the impression
of being something of a deus ex machina. We will not discuss these experiments in
anything like historical order, nor will we try to provide the sort of detailed analysis
one would expect to find in a physics text. Most importantly, it must be understood
that one cannot derive the axioms of quantum mechanics any more than one can
derive the axioms of group theory. One can only hope to provide something in the
way of motivation.

Finally, we would like to have some mathematical context in which to carry out
these discussions. Ideally, this would be a mathematical structure general enough
to encompass anything that might reasonably be viewed as a model of some phys-
ical system, or at least those physical systems of interest to us at the moment. The
choice we have made, which was briefly suggested at the end of Section 2.3, was
introduced and studied by Mackey in [Mack2] which, together with [ChM2], or
Lecture 7 in [Mar2], contains everything we will say here and much more. A more
concise outline of Mackey’s view of quantum mechanics is available in [Mack1].

3.2 States, Observables and Dynamics

We take the point of view that a mathematical model of a physical system consists
of (at least) the following items.

1. A set S, the elements of which are called states.
2. A set O, the elements of which are called observables.
3. A mapping from S × O to the set of Borel probability measures on R

(ψ, A)→ µψ,A

with the following physical interpretation. For any Borel set S in R, µψ,A(S ) is
the probability that we will measure the value of A to lie in the set S if the system
is known to be in the state ψ.
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4. A 1-parameter family {Ut}t∈R of mappings

Ut : S→ S,

called evolution operators, satisfying

U0 = idS

Ut+s = Ut ◦ Us

and having the following physical interpretation. For any state ψ and any t ∈ R,
Ut(ψ) is the state of the system at time t if its state at time 0 is ψ. Notice that each
Ut is necessarily a bijection of S with inverse U−t. {Ut}t∈R is called a 1-parameter
group of transformations of S and it describes the dynamics of the system (how
the states change with time). The physical meaning of U0 = idS is clear, whereas
Ut+s = Ut ◦ Us is a causality statement (the state of the system at any time s
uniquely determines its state at any other time t since Ut(ψ) = Ut−s(Us(ψ))).

Remark 3.2.1. One can also formulate local versions of (4) in which t is restricted
to some interval about 0 in R, but for the sake of clarity we will, at least for the time
being, restrict our attention to systems for which an evolution operator is defined for
every t ∈ R.

This model is extremely general, of course, and one cannot expect that a random
specification of items (1)-(4) will represent a physically reasonable system. It is pos-
sible to formulate a rigorous set of axioms that the states, observables and measures
should satisfy in order to be deemed “reasonable” (see [Mack2]) and this is a useful
thing to do, but may give the wrong impression of our objective here, which is to
motivate, not axiomatize. For this reason we will be a bit more lighthearted about the
additional assumptions we make, introducing them as needed. Here, for example, is
one. We will assume that two states that have the same probability distributions for
all observables are, in fact, the same state. More precisely, if ψ1, ψ2 ∈ S have the
property that µψ1,A(S ) = µψ2,A(S ) for all A ∈ O and all Borel sets S ⊆ R, then
ψ1 = ψ2. Similarly, two observables that have the same probability distributions
for all states are the same observable, that is, if A1, A2 ∈ O have the property that
µψ,A1 (S ) = µψ,A2 (S ) for all ψ ∈ S and all Borel sets S ⊆ R, then A1 = A2. Hav-
ing made these assumptions we can now think of a state as an injective mapping
from the set O of observables to the probability measures on R. From this point of
view one could even suppress the ψ altogether and think of a state as a family of
probability measures

µA, A ∈ O,

on R parametrized by the set O of observables. Alternatively, one can think of an ob-
servable as an injective mapping from states to probability measures, or as a family
µψ, ψ ∈ S, of probability measures on R parametrized by the set S of states.
Example 3.2.1. Let us see that Hamiltonian mechanics, as we described it in Section
2.3, can be viewed in these terms, although perhaps a bit artificially. We begin with a
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smooth, n-dimensional manifold M (configuration space), its cotangent bundle T ∗M
(phase space), and a Hamiltonian H : T ∗M → R. Previously, we identified a state
of the corresponding classical mechanical system with a point x ∈ T ∗M, but now
we observe that the points of T ∗M are in one-to-one correspondence with the point
measures νx on T ∗M defined, for every Borel set B ⊆ T ∗M, by

νx(B) =

{
1 if x ∈ B
0 if x < B.

Thus, we could take S to be the set of all point measures νx, for x ∈ T ∗M. One
can transfer, via the natural bijection x ↔ νx, all of the structure of T ∗M to S.
In particular, S is now a differentiable manifold. In Section 2.3 we provisionally
identified classical observables with smooth real-valued functions on phase space,
but in our present context it is not necessary to assume so much regularity and
we will not. Specifically, we will take the set O of observables to consist of all
real-valued Borel measurable functions A on S. Of course, any smooth real-valued
function on S is Borel measurable and so still qualifies as an observable. If A is
any observable, then, by definition, A−1(S ) is Borel measurable in S for any Borel
set S in R. Thus, we can define, for every state νx and every observable A, a Borel
measure µνx,A on R by

µνx,A(S ) = νx(A−1(S )) =

{
1 if νx ∈ A−1(S )
0 if νx < A−1(E)

for any Borel set S ⊆ R. This is, of course, just the point measure on S concentrated
at νx. According to the physical interpretation described in (3), one thinks of this as
saying that every observable is sharp in every state, that is, the measured value of
observable A in state νx is A(νx) with probability 1, which is just what one would
expect in classical particle mechanics (and, of course, also makes it clear that the
introduction of measures in this context is gratuitous).

Turning now to the dynamics of this example, we must specify a 1-parameter
family Ut : S → S, t ∈ R, of evolution operators on the states. As in Section 2.3
these operators are determined by the Hamiltonian H : T ∗M → R. We continue to
assume that H is smooth (or, at least, sufficiently differentiable that we can define
the corresponding Hamiltonian vector field XH on T ∗M) and that XH is complete
so that one has a corresponding 1-parameter group {ϕt}t∈R of diffeomorphisms of
T ∗M. Then one simply takes

Ut(νx) = νϕt(x), t ∈ R, x ∈ T ∗M,

so that the properties required of the Ut in (4) are just restatements of known prop-
erties of the flow.
Remark 3.2.2. You will argue that the introduction of probability measures in this
last example served only to obscure a very simple and appealing picture of classical
mechanics and we will concede the point. However, we will try to show in our next
Example 3.2.2 that an analogous discussion of statistical mechanics and an idea
due to Koopman [Koop] will provide a bit of motivation for what has become the
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standard approach to the formalism of quantum mechanics (Hilbert spaces and self-
adjoint operators).
Example 3.2.2. Regardless of the number of classical particles in the system of
interest one begins the construction of a statistical model with a configuration space
M, which is a smooth manifold of (potentially huge) dimension n, its phase space
T ∗M, a Hamiltonian H : T ∗M → R and the corresponding flow {ϕt}t∈R of the
Hamiltonian vector field XH . Remark 2.4.2 notwithstanding, we persist in the notion
that the “actual state” of the system at any instant has some meaning and can be
identified with a point in T ∗M, despite the fact that all we can say about it is that it
has a certain probability of lying in any given Borel subset of T ∗M. Thus, we take
S to be the set of all Borel probability measures on T ∗M.

The set O of observables consists of all real-valued, Borel measurable functions
on T ∗M. If ν ∈ S and f ∈ O, then we define a Borel probability measure µν, f on R

by

µν, f (S ) = ν( f −1(S ))

for every Borel set S ⊆ R. The interpretation is that µν, f (S ) is the probability that a
measurement of the observable f when the system is in state ν will yield a value in
S .
Remark 3.2.3. If B ⊆ T ∗M is a Borel set, then its characteristic function χB :
T ∗M → R is Borel measurable and is therefore an observable; Mackey [Mack2]
refers to these observables as questions. Since any observable f : T ∗M → R is
uniquely determined by its level sets f −1(a), a ∈ R, and these, in turn, are uniquely
determined by their characteristic functions, there is a sense in which questions are
the most fundamental observables. Questions will re-emerge in quantum mechanics
as projection operators and describing arbitrary observables in terms of them is what
the spectral theorem does.

Next we must specify, for each t ∈ R, an evolution operator Ut : S → S that
carries an initial state ν0 ∈ S to the corresponding state νt = Ut(ν0) at time t. The
reasoning is as follows. For any Borel set B in T ∗M, the probability that the actual
state of the system at time t lies in B is exactly the same as the probability that the
actual state of the system at time 0 lies in ϕ−1

t (B) = ϕ−t(B) and this is ν0(ϕ−t(B)).
Thus, we define

Ut(ν0) = (φt)∗ν0,

where (φt)∗ν0 is the pushforward measure ((φt)∗ν0)(B) = ν0(φ−t(B)). This clearly
defines a 1-parameter group {Ut}t∈R of transformations of S and therefore completes
Example 3.2.2.

Except for one more brief encounter in Remark 4.3.12, we do not intend to pursue
statistical mechanics beyond the description of the model in Example 3.2.2. Never-
theless, there are things that remain to be said about the model itself (Section 1-5 of
[Mack2] contains a bit more information on how statistical mechanics works). First,
however, we recall a few basic notions from probability theory.
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Remark 3.2.4. Let X be a topological space and ν a Borel probability measure on
X (see Remark 2.4.1). A real-valued Borel measurable function f : X → R on
X is called a random variable (so the observables in Example 3.2.2 are random
variables). The expectation value (or expected value, or mean value) of f is defined
by

E( f ) =

∫
X

f dν.

The variance (or dispersion) of f is defined by

σ2( f ) = E( [ f − E( f ) ]2 ) = E( f 2) − E( f )2

and is regarded as a measure of the extent to which the values of f cluster around its
expected value (the smaller it is, the more clustered they are). The same interpreta-
tion is ascribed to the non-negative square root of the dispersion, denoted σ( f ) and
called the standard deviation of f . The distribution function of f is the real-valued
function F of a real-variable λ defined by

F(λ) = ν ( f −1(−∞, λ] ).

F is of bounded variation and both E( f ) and σ2( f ) can be computed as Stieltjes in-
tegrals with respect to F (see Remark 5.5.6 for a quick review of these if necessary).
Specifically,

E( f ) =

∫
R

λ dF(λ) (3.1)

and

σ2( f ) =

∫
R

(λ − E( f ))2dF(λ). (3.2)

Finally, if µ is an arbitrary Borel measure on X, then a probability density function
for µ is an integrable, real-valued function ρ that is non-negative and satisfies∫

X
ρ dµ = 1.

Given a probability density function ρ for µ one defines, for any Borel set B ⊆ X,

νρ(B) =

∫
B
ρ dµ.

Then νρ is a probability measure on X and∫
X

g dνρ =

∫
X

gρ dµ
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for every non-negative measurable function g.
Now let’s return to Example 3.2.2. Suppose ν0 is the initial state of our statistical

mechanical system. Then ν0 is intended to be a probability measure representing
the extent of our knowledge of the “actual initial state” in T ∗M. Physically, this
knowledge would generally be expressed in terms of some sort of density function.
Remark 3.2.5. Here, and on occasion in the future, we will rely on various analogies
with fluid flow. Fluids consist of a huge (but finite) number of particles of various
masses. Nevertheless, one generally idealizes and describes the density of a fluid
with a continuous real-valued function ρwhose integral over any region B contained
in the fluid is taken to be the mass of fluid in B.
This leads us to assume that the initial states of physical interest are of a particular
form. Specifically, we let µ denote the Liouville measure on T ∗M. Then, for any
probability density function ρ0 for µ we obtain a probability measure νρ0 on T ∗M as
described in Remark 3.2.4, that is,

νρ0 (B) =

∫
B
ρ0 dµ

for every Borel set B in T ∗M. Aside from the fact that it is the most natural mea-
sure on T ∗M, the reason for choosing the Liouville measure µ is that, if the initial
state has a probability density function for µ, then the same is true of every state
throughout the evolution of the system. Specifically, if

ν0 = νρ0 ,

then we claim that

Ut(ν0) = Ut(νρ0 ) = νρt , (3.3)

where

ρt = ρ0 ◦ ϕ−t. (3.4)

To see this we recall that, for any Borel set B ⊆ T ∗M,

Ut(νρ0 )(B) = ((φt)∗ν0)(B) = νρ0 (ϕ−t(B)) =

∫
ϕ−t(B)

ρ0 dµ =

∫
B
(ρ0 ◦ ϕ−t) dµ,

where the last equality follows from the change of variables formula and the fact
that ϕ−t preserves the Liouville measure. Since∫

B
(ρ0 ◦ ϕ−t) dµ =

∫
B
ρt dµ = νρt (B),

the proof of (3.3) is complete. We conclude from this that probability measures of
the form
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νρ(B) =

∫
B
ρ dµ (3.5)

where ρ is a probability density function for the Liouville measure µ, are preserved
by the Hamiltonian flow. According to the Radon-Nikodym Theorem (Theorem B,
Section 31, page 128, of [Hal1]), these are just the probability measures that are
absolutely continuous with respect to the Liouville measure. Of course, there are
probability measures, such as the point measures associated with Dirac deltas and
convex combinations of them, that are not included among these. Nevertheless, we
will, from this point on, focus our attention on measures of the form (3.5). We have
several reasons for this, most of which are essentially physical. We have seen that
point measures on T ∗M represent absolute certainty regarding the actual state of
the system and that this is unattainable for systems that are “genuinely statistical”,
that is, very large. More significantly, we will soon describe some of the experi-
mental evidence that led physicists to the conclusion that, in the quantum world, all
systems, even those containing a single particle, are “genuinely statistical”. Further-
more, from a practical point of view restricting attention to measures of the form
(3.5) will permit us to shift the focus from probability measures (νρ) to probability
densities (ρ) and these are much simpler objects, that is, just functions.

The model of statistical mechanics we have described has the advantage of be-
ing quite intuitive, but also the disadvantages of being technically rather difficult to
deal with and still seemingly far removed from the generally accepted formalism of
quantum mechanics that we are trying to motivate (Hilbert spaces and self-adjoint
operators). We propose now to overcome both of these disadvantages by rephras-
ing the model in the more familiar and much more powerful language of functional
analysis.

3.3 Mechanics and Hilbert Spaces

The theory of Hilbert spaces has its roots deep in classical analysis and mathemat-
ical physics, but its birth as an independent discipline is to be found in the work of
Hilbert on integral equations and von Neumann on quantum mechanics. By 1930,
the theory was highly evolved and making its presence felt throughout analysis and
theoretical physics. We will have a great deal more to say about its impact on quan-
tum mechanics as we proceed, but for the moment we would like to focus our at-
tention on the rather brief and not altogether well-known paper [Koop] of Koopman
in 1931 where our probabilistic model of statistical mechanics is rephrased in func-
tional analytic terms. This done we will try to show in the next chapter that, at the
quantum level, even the mechanics of a single particle is more akin to classical sta-
tistical mechanics than to classical particle mechanics and so, we hope, minimize
the shock of introducing massive amounts of functional analysis to describe it.
Remark 3.3.1. We must assume a basic familiarity with Banach and Hilbert spaces
and bounded operators on them. This information is readily available in essentially
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any functional analysis text such as, for example, [Fried], [RiSz.N], [TaylA], or
[Rud1]; other good sources are [Prug], [RS1], or [vonNeu], which are specifically
focused on the needs of quantum theory. For this material we will provide only a
synopsis of the notation and terminology we intend to employ. We will, however,
also require some rather detailed information about unbounded operators on Hilbert
spaces and, on occasion, certain results that one cannot expect to find just anywhere.
For this material we will provide some background, a few illustrative examples,
precise statements of the results and either an accessible reference to a proof of what
we need or, if such a reference does not seem to be readily available, a proof. To
avoid sensory overload, we will try to introduce all of this material only as needed,
although our initial foray into unbounded operators in Chapter 5 is necessarily rather
lengthy.

H will always denote a separable Hilbert space and we will write its inner prod-
uct as 〈 , 〉H or simply 〈 , 〉 if there is no likelihood of confusion. Generally, H will
be complex. Lest there be any confusion, we point out that we intend to adopt the
physicist’s convention of taking 〈 , 〉 to be complex linear in the second slot and con-
jugate linear in the first rather than the other way around. Specifically, if φ, ψ ∈ H
and a, b ∈ C, then

〈aφ, ψ〉 = ā〈φ, ψ〉

and

〈φ, bψ〉 = b〈φ, ψ〉.

The norm of ψ ∈ H is denoted ‖ψ‖H or simply ‖ψ‖ and defined by ‖ψ‖ =
√
〈ψ, ψ〉.

The algebra of bounded linear operators on H will be denoted B(H). This is a
Banach space (in fact, a Banach algebra) if the norm of any T ∈ B(H) is defined by

‖T‖ = sup
ψ,0

‖Tψ‖
‖ψ‖

= sup
‖ψ‖=1

‖Tψ‖.

The topology induced on B(H) by this norm is called the uniform operator topol-
ogy, or the norm topology and convergence in this topology is called uniform, or
norm convergence. We will have occasion to consider various other notions of op-
erator convergence as we proceed.

If H1 and H2 are two complex Hilbert spaces with inner products 〈 , 〉1 and 〈 , 〉2,
respectively, then a linear map T : H1 → H2 that satisfies 〈Tφ,Tψ〉2 = 〈φ, ψ〉1
for all φ, ψ ∈ H1 is said to be an isometry; an isometry is necessarily bounded
with norm 1. If T maps into H2, then it is called an isometric embedding of H1
into H2; if T maps onto H2, then it is called a unitary equivalence, or an isometric
isomorphism between H1 and H2. In particular, an operator U ∈ B(H) that is a
unitary equivalence of H onto itself is called a unitary operator. Unitary operators
are characterized by the fact that UU∗ = U∗U = idH, that is, their inverses are the
same as their adjoints so 〈Uφ, ψ〉 = 〈φ,U−1ψ〉 for all φ, ψ ∈ H (recall that, for any
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bounded operator T : H → H, there exists a unique bounded operator T ∗ : H → H,
called the adjoint of T , satisfying 〈Tφ, ψ〉 = 〈φ,T ∗ψ〉 for all φ, ψ ∈ H).

Now let’s begin Koopman’s translation. Here are the essential features of the
model that we wish to translate. We have a manifold that we choose to denote Ω
since it might be either T ∗M or one of the constant energy hypersurfaces ΩE intro-
duced in Remark 2.4.3. On Ω we have a Liouville measure that we will denote by
µ and a 1-parameter group {ϕt}t∈R of diffeomorphisms of Ω that leave µ invariant.
The states of the system are probability measures on Ω of the form (3.5) and the
observables are the real-valued, Borel measurable functions on Ω.

Let L2(Ω, µ) denote the Hilbert space of (equivalence classes of) complex-valued,
Borel measurable functions on Ω that are square integrable with respect to µ. The
inner product on L2(Ω, µ) is given by

〈φ, ψ〉 =

∫
Ω

φ̄ψ dµ

so

‖ψ‖2 =

∫
Ω

|ψ|2 dµ.

Notice that any element ψ ∈ L2(Ω, µ) with ‖ψ‖ = 1 gives rise to a probability
measure νψ on Ω by taking ρ = |ψ|2 as the probability density in (3.5). Conversely,
for any measure of the form (3.5), one can find a ψ ∈ L2(Ω, µ) for which ρ = |ψ|2.
Notice, however, that the ψ corresponding to a given ρ is not unique since, for any
θ ∈ R, |eiθψ|2 = |ψ|2. Thus, we can identify a state with what is called a “unit ray”
in L2(Ω, µ), that is a set of unit vectors of the form

{
eiθψ : θ ∈ R and ‖ψ‖ = 1

}
.

Remark 3.3.2. This identification of probability density functions with unit vec-
tors in L2(Ω, µ) clearly does not depend on having chosen complex, as opposed to
real, square integrable functions on Ω. The choice of the complex Hilbert space
L2(Ω, µ) is motivated primarily by things that are yet to come. On the mathematical
side, we will make heavy use of certain results such as the Spectral Theorem and
Stone’s Theorem that live much more naturally in the complex world. Physically,
we will find that, in quantum mechanics, interference effects such as one encounters
in wave motion in fluids are fundamental and that such effects are much more con-
veniently described in terms of complex numbers. One should also consult Lecture
2 of [Mar2] for additional motivation. In short, it is not at all clear that one could not
get by with real-valued functions here, but it is fairly clear that it would probably be
silly to try.

Next we observe that the dynamics ϕt : Ω→ Ω, t ∈ R, on Ω induces a dynamics
Ut : L2(Ω, µ) → L2(Ω, µ), t ∈ R, on L2(Ω, µ). Indeed, according to (3.4) we should
define

Ut(ψ) = ψ ◦ ϕ−t.
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We will discuss the observables shortly, but would like to pause for a moment to
point out that our new perspective already promises to yield some dividends. Each
Ut in the 1-parameter group {Ut}t∈R is, of course, a bijection of L2(Ω, µ) onto itself,
but it is, in fact, much more. Ut is clearly a linear map on L2(Ω, µ) since

Ut(a1ψ1 + a2ψ2) = (a1ψ1 + a2ψ2) ◦ ϕ−t = a1(ψ1 ◦ ϕ−t) + a2(ψ2 ◦ ϕ−t)
= a1Ut(ψ1) + a2Ut(ψ2).

But, in fact, each Ut is actually a unitary operator on L2(Ω, µ). To see this we let
φ, ψ ∈ L2(Ω, µ) and compute

〈Utφ,Utψ〉 = 〈φ ◦ ϕ−t, ψ ◦ ϕ−t〉

=

∫
Ω

φ(ϕ−t(x))ψ(ϕ−t(x)) dµ(x)

=

∫
ϕt(Ω)

φ(y)ψ(y) dµ(ϕt(y)) (Change of Variables Formula)

=

∫
Ω

φ(y)ψ(y) dµ(y)

= 〈φ, ψ〉,

where we have used the invariance of Ω and µ under ϕt. We have then what is called
a “1-parameter group of unitary operators on L2(Ω, µ)” (see Remark 3.3.3).
Remark 3.3.3. Let’s recall a few notions from functional analysis. Let H be a com-
plex, separable Hilbert space and suppose that {Ut}t∈R is a family of unitary oper-
ators Ut : H → H on H satisfying Ut+s = UtUs for all t, s ∈ R and U0 = idH.
Then {Ut}t∈R is called a 1-parameter group of unitary operators on H. {Ut}t∈R is
said to be strongly continuous if, for every ψ ∈ H, t → t0 in R ⇒ Utψ → Ut0ψ
in H. Notice that, by the group property of {Ut}t∈R, this is equivalent to t → 0 in
R ⇒ Utψ → ψ in H. {Ut}t∈R is said to be weakly continuous if, for all φ, ψ ∈ H,
t → t0 in R⇒ 〈φ,Utψ〉 → 〈φ,Ut0ψ〉 in C. Again, this is equivalent to t → 0 in R⇒

〈φ,Utψ〉 → 〈φ, ψ〉 in C. Certainly, strong continuity implies weak continuity, but,
despite the terminology, the converse is also true (this depends heavily on the fact
that each Ut is unitary). To see this suppose {Ut}t∈R is weakly continuous and t → 0
in R. Then

‖Utψ − ψ‖
2 = 〈Utψ − ψ,Utψ − ψ〉 = ‖Utψ‖

2 − 〈Utψ, ψ〉 − 〈ψ,Utψ〉 + ‖ψ‖
2

= ‖ψ‖2 − 2Re〈ψ,Utψ〉 + ‖ψ‖
2

→ 2‖ψ‖2 − 2‖ψ‖2 = 0,

as t → 0. There is also a much stronger result due to von Neumann. Let us say that
{Ut}t∈R is weakly measurable if, for all φ, ψ ∈ H, the complex-valued function of the
real variable t given by t → 〈φ,Utψ〉 is Lebesgue measurable. von Neumann showed
that a weakly measurable 1-parameter group of unitary operators on a separable,
complex Hilbert space is strongly continuous. We will not prove this here, but will
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simply refer to Theorem VIII.9 of [RS1]. Finally, we should also point out that,
because of the Polarization Identity

〈α, β〉 =
1
4

[
〈α + β, α + β〉 − 〈α − β, α − β〉

− i〈α + iβ, α + iβ〉 + i〈α − iβ, α − iβ〉
]
, (3.6)

it is enough to prove weak continuity and weak measurability in the case φ = ψ. As
it turns out, one can explicitly describe all of the strongly continuous 1-parameter
groups of unitary operators on H. This is Stone’s Theorem, which we will discuss
in Section 5.5.
Example 3.3.1. We will show that the 1-parameter group we have defined on
L2(Ω, µ) by Ut(ψ) = ψ◦ϕ−t is strongly continuous. To see this we fix a ψ ∈ L2(Ω, µ)
and suppose t → 0 in R. We must show that Utψ → ψ in L2(Ω, µ). The proof is
based on two observations. First, L2(Ω, µ) contains a dense set of continuous func-
tions (those with compact support, for example). Thus, given an ε > 0 we can select
a continuous ψε ∈ L2(Ω, µ) with ‖ψε − ψ‖ < ε/3. Next, we appeal to a standard
result from the theory of ordinary differential equations on continuous dependence
on initial conditions (Theorem 4.26 of [CM]) which implies that, for any continuous
φ ∈ L2(Ω, µ), t → U−tφ = φ ◦ ϕ−t is a continuous map of R into L2(Ω, µ). Thus, we
can select δ > 0 such that |t| < δ implies ‖Utψε − ψε‖ < ε/3. Now write

Utψ − ψ = Ut(ψ − ψε) + (Utψε − ψε) + (ψε − ψ).

Since each Ut is unitary, ‖Ut(ψ−ψε)‖ = ‖ψ−ψε‖ and so the triangle inequality gives
‖Utψ − ψ‖ < ε as required.

Finally, let’s see how the observables fit into our new picture. Let A be a real-
valued, Borel measurable function on Ω, that is, an observable in the old picture.
For any state, thought of now as a unit vector ψ in L2(Ω, µ), A is just a random
variable for the probability measure νψ and, assuming it is integrable, its expected
value is

E(A) =

∫
Ω

A dνψ =

∫
Ω

A |ψ|2dµ =

∫
Ω

Aψψdµ =

∫
Ω

ψ Aψdµ

= 〈Aψ, ψ〉 = 〈ψ, Aψ〉.

This suggests thinking of A as a multiplication operator on L2(Ω, µ). Thought of in
this way the operator would appear to be self-adjoint ( 〈Aψ, ψ〉 = 〈ψ, Aψ〉 ). There
is an issue, however. As a multiplication operator, A will be defined only for those
ψ ∈ L2(Ω, µ) for which Aψ is also in L2(Ω, µ), that is, for which Aψ is square inte-
grable on Ω. As a result, A is not defined everywhere and therefore is not a bounded
operator on L2(Ω, µ), even though it is clearly linear on its domain. It is, in fact, what
is known as an “unbounded, self-adjoint operator on L2(Ω, µ)”. We will provide a
synopsis of what we need to know about such unbounded operators in Chapter 5.
The bottom line of this section, however, is that Koopman has rephrased classical
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statistical mechanics in such a way that the states are represented by unit vectors in
a complex Hilbert space and the observables are unbounded, self-adjoint operators
on that Hilbert space. As it happens, this is precisely how quantum mechanics is
generally formulated. We will spend quite a bit of time describing this formalism,
but first we should try to come to some understanding of why quantum mechanics
is like this. Why, in other words, is the quantum mechanics of even a single particle
more akin to classical statistical mechanics, where we can follow Koopman’s lead
to construct a mathematical model, than to classical particle mechanics? This is the
subject of the next chapter.





Chapter 4
Physical Background

4.1 Introduction

By the end of the 19th century classical particle mechanics, statistical mechanics
and electromagnetic theory were very finely tuned instruments capable of treating
an enormous variety of physical problems with remarkable success. Some even be-
lieved that there was little left to do.

”The more important fundamental laws and facts of physical science have all
been discovered, and these are now so firmly established that the possibility of their
ever being supplanted in consequence of new discoveries is exceedingly remote ...
Our future discoveries must be looked for in the sixth place of decimals.”

- Albert. A. Michelson, speech at the dedication of Ryerson Physics Lab,
University of Chicago, 1894

”When I began my physical studies [in Munich in 1874] and sought advice from
my venerable teacher Philipp von Jolly ... he portrayed to me physics as a highly
developed, almost fully matured science ... Possibly in one or another nook there
would perhaps be a dust particle or a small bubble to be examined and classified, but
the system as a whole stood there fairly secured, and theoretical physics approached
visibly that degree of perfection which, for example, geometry has had already for
centuries.”

- from a 1924 lecture by Max Planck

Needless to say, this optimism regarding the then current state of physics was
somewhat premature. Michelson himself had, in 1887, unearthed something of a
conundrum for classical physics that was only resolved 18 years later by Einstein
who pointed out that classical physics had the concepts of space and time entirely

89
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wrong. Planck struggled for many years with the problem of the equilibrium distri-
bution of electromagnetic radiation for which classical physics provided a perfectly
explicit, and quite incorrect, solution. In the end he obtained a solution that was
in complete accord with the experimental data, but only at the expense of what he
himself called an “act of desperation”. He postulated, in flat contradiction to the
requirements of classical physics, that harmonic oscillators can exist only at certain
discrete energy levels determined by their frequency (see Remark 1.0.4). Planck did
not use the term, but today we would credit this as the birth of the quantum hy-
pothesis, although one can argue that there are precursors in the work of Boltzmann
on statistical mechanics (for some references, see [Flamm]). It was left to Einstein,
however, in his analysis of what is called the “photoelectric effect”, to transform this
provisional hypothesis into a revolutionary new view of physics.

One can find this story, both its history and the physics behind it, told concisely
and elegantly in Chapters II and VI of [Pais] and we will not offer a pale imita-
tion here. Nevertheless, it seems disingenuous to introduce the ubiquitous Planck
constant without providing some sense of what it is and where it came from, or to
simply insist that atoms are so unlike baseballs that one must abandon long cher-
ished notions of causality just to say something reliable about how they behave. We
will therefore devote this chapter to an attempt to come to a rudimentary understand-
ing of some of the physical facts of life that necessitate this profound revision of the
physicist’s Weltanschauung. We will begin at the historical beginning with Planck
and Einstein, but will then abandon chronology to describe a number of experimen-
tal facts that may not have been available to the founding fathers of the subject, but
seem to express most clearly the essential nature of the quantum world. Our discus-
sions will necessarily be rather brief and certainly not at the level one would expect
to find in a physics text, but we will try to provide sufficient references for those
who wish to pursue these matters more seriously.

The phenomena we would like to discuss first are those of blackbody radiation
and the photoelectric effect. Both of these deal with the interaction of electromag-
netic radiation with matter (what really goes on when the rays of the summer sun
burn your skin). A necessary prerequisite then is to come to terms with electromag-
netic radiation.

4.2 Electromagnetic Radiation

We will accept the view that matter, at least all matter within the current range of our
experience, is composed of atoms and that these atoms can be visualized, somewhat
naively perhaps, as something of a mini-solar system with a nucleus composed of
objects called protons and neutrons playing the role of the sun and a collection of
electrons orbiting the nucleus like planets. The essential difference is that, whereas
we think we know what holds the solar system together (gravity does that), we will
not pretend, at this stage, to have any idea what holds an atom together. This has
something to do with the fact that protons and electrons possess a physical char-
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acteristic called electric charge which comes in two flavors, positive and negative.
Two positive charges, or two negative charges, brought near each other will exert
a force, each on the other, that pushes the charges apart, whereas a positive and a
negative charge will attract each other. Physics offers no explanation for this behav-
ior in terms of some more fundamental phenomenon. Some things are charged and
some things aren’t (like the neutron); just deal with it. What physics does offer is
a very detailed understanding of how these electric forces act and how they can be
used. In the course of acquiring this understanding it was discovered that electric
force is very closely related to the analogous, but seemingly distinct phenomenon
of magnetic force. Every child knows that, if you bring a magnet near a compass,
the arrow on the compass will spin, but may not know that the same thing happens
if the magnet is brought near a stream of electrons flowing through a wire. On the
other hand, a charged particle placed at rest between the poles of a horseshoe mag-
net will just sit there unaware of the magnet’s presence, but, if it is thrown between
the poles, its path will be deflected.
Remark 4.2.1. Electric and magnetic forces are more than just analogous; there
is a very real sense in which they are the same thing, but viewed from different
perspectives. The appropriate context within which to understand this is the special
theory of relativity (see, for example, [Nab5]).

The part of classical physics that deals with all of this is called electrodynamics
and the best place to go to understand it is Volume II of [FLS]. It is fortunate for
us that physicists understand this subject so well that they (or rather, one of them,
named James Clerk Maxwell) were able to encode essentially all of the relevant
information in just a few equations and that, for our purposes, only a very special
case of these equations will be required. One should keep the following picture in
mind. We have a collection of charges, some stationary, some moving willy-nilly
through space. We are interested in the cumulative effect these will have on some
other “test charge” moving around in a “charge-free” region of space.
Remark 4.2.2. A few remarks are in order. Physicists will choose some favored sys-
tem of units in which to describe all of the relevant quantities, but which system
is favored depends heavily on the context. On rare occasions we will be forced to
be explicit about the choice of units (for example, when trying to make sense of
statements like “Planck’s constant is small”, or “the speed of light is large”). Gen-
erally, we will be inclined to use what are called SI units (Le Système international
d’unités) in which length is in meters (m), time is in seconds (s), mass is in kilo-
grams (kg), force is in newtons (N = (kg)ms−2), frequency is in hertz (Hz = s−1),
energy is in joules (J = Nm = m2(kg)s−2), current is in amperes (A), charge is in
coulombs (C = sA), und so weiter und so fort. Whatever system of units is chosen,
a “test charge” is, by definition, one that is sufficiently small that it has a negligi-
ble effect on the other charges. The seemingly contradictory assertion that the test
charge moves in a “charge-free” region simply means that it is, at each instant, in
the complement of the region occupied by the original distribution of charges at that
instant; such a region is generally assumed to have nothing at all in it except the test
charge and is then referred to as a charge-free vacuum.
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Physicists describe the effect we are after with two (generally time-dependent)
vector fields on some region in R3. The electric field E and the magnetic field B
are both functions of (t, x, y, z), where t is time and (x, y, z) are Cartesian coordi-
nates in space. Denoting the spatial gradient operator by ∇, the spatial divergence
operator by ∇· and the spatial curl by ∇× and writing ∂B

∂t and ∂E
∂t for the componen-

twise derivatives of B and E with respect to t, Maxwell’s equations in a charge-free
vacuum are

∇ · E = 0 (4.1)

∇ × E = −
∂B
∂t

(4.2)

∇ · B = 0 (4.3)

∇ × B = µ0ε0
∂E
∂t

(4.4)

where µ0 and ε0 are two universal constants called, respectively, the vacuum per-
meability and vacuum permittivity. We will not go into the rather convoluted story
of how these two constants are defined (see Volume II of [FLS]), but will point out
only that their product in SI units is approximately

µ0ε0 ≈ 1.1126499 × 10−17s2/m2. (4.5)

One more equation, called the Lorentz Force Law, gives the force F experienced by
a test charge q moving with velocity V in the presence of the electric field E and
magnetic field B. Using × to denote the vector (cross) product in R3 this can be
written

F = q
[
E + (V × B)

]
. (4.6)

There are a great many things to be said about this set of equations, but we will
mention only the few items we specifically need later on. We begin with a few
simple observations. Equation (4.1) says that our region contains no sources for the
electric field and this simply reflects our decision to work in a charge-free region.
In the general form of Maxwell’s equations the zero on the right-hand side of (4.1)
is replaced by a function describing the charge density of the region. Equation (4.3)
says the same thing about the magnetic field, but this equation remains the same
in the general form of Maxwell’s equations; there are no magnetic charges in the
electromagnetic theory of Maxwell.
Remark 4.2.3. That is not to say that magnetic charges (more commonly called
magnetic monopoles) cannot exist. Dirac considered the possibility that they might
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and drew some rather remarkable conclusions from the assumption that they do (see
Chapter 0 of [Nab3]).

Equations (4.2) and (4.4) imply, among other things, that a time-varying mag-
netic field is always accompanied by a nonzero electric field and a time-varying
electric field is always accompanied by a nonzero magnetic field. One can therefore
envision the following scenario. An electric charge setting at rest in space gives rise
to a static (that is, time-independent) electric field in its vicinity (this is described by
Coulomb’s Law which is no doubt familiar from calculus). But suppose we wiggle
the charge. Now the electric field nearby is varying with time and so must give rise
to a magnetic field. The magnetic field also varies with time so it, in turn, must give
rise to an electric field, which varies in time giving rise to a magnetic field, and so
on and so on. Intuitively, at least, one sees the effects of wiggling (that is, acceler-
ating) the charge as propagating away from the charge through space in some sort
of wave disturbance. We will make this more precise momentarily by showing that
any solutions E and B to (4.1)-(4.4) have components that satisfy a wave equation.

Next we mention that the Lorentz Force Law (4.6) has, as the equations of
physics often do, a dual character. If you know what E and B are, you can cal-
culate the force F on a charge. On the other hand, if you measure forces you can
determine E and B. This latter point of view provides an operational definition of
the electric and magnetic fields. For example, E(t, x, y, z) is the force experienced
by a unit charge setting at rest at (x, y, z) at the instant t. If this dual character seems
circular to you, that’s because it is; definitions in physics are generally not at all like
definitions in mathematics.

Now we will show that the components of any solutions E and B to Maxwell’s
equations (4.1)-(4.4) in a charge-free vacuum satisfy the same wave equation. Since
all of the components are treated in exactly the same way we will lump them all
together and write ∂E

∂t and ∂B
∂t for the componentwise partial derivatives of E and B

with respect to t, ∇E and ∇B for the componentwise spatial gradients of E and B
and ∆E, and ∆B for the componentwise spatial Laplacians (∆ is also denoted ∇ · ∇
and ∇2). For example, if E = (Ex, Ey, Ez), then

∆E = ∇ · ∇E = (∇ · ∇Ex,∇ · ∇Ey,∇ · ∇Ez) = (∆Ex, ∆Ey, ∆Ez).

Begin by taking the curl of ∇ × E = − ∂B
∂t to obtain

∇ × (∇ × E) = −∇ ×

(
∂B
∂t

)
= −

∂

∂t
(∇ × B) = −

∂

∂t

(
µ0ε0

∂E
∂t

)
= −µ0ε0

∂2E
∂t2 .

Now use the vector identity ∇× (∇×A) = ∇(∇ ·A)− ∆A and the fact that ∇ ·E = 0
to write this as

∆E = µ0ε0
∂2E
∂t2 . (4.7)

The same argument, starting with (4.4) rather than (4.2) shows that
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∆B = µ0ε0
∂2B
∂t2 . (4.8)

What we have then are six copies of the same wave equation , one for each compo-
nent of E and B, all of which describe a wave propagating with speed

1
√
µ0ε0

.

Note that, from (4.5),

1
√
µ0ε0

≈ 2.99792 × 108m/s.

Now for the really good part. Maxwell published his famous paper A Dynamical
Theory of the Electromagnetic Field in 1865. At that time, physicists had no reason
to suspect that electromagnetic effects might propagate as waves, but, as we have
just seen, Maxwell’s equations seemed to suggest that they can. It was not until
1886 that Hertz verified this prediction of Maxwell by detecting what we would to-
day call radio waves. But there is much more. Three years prior to the appearance
of Maxwell’s paper, in 1862, Foucault had made the most accurate measurement to
date of the speed of light in vacuo. His value was 2.99796 × 108m/s and it did not
escape Maxwell’s attention that, modulo experimental errors, this is precisely the
predicted propagation speed of his electromagnetic waves. This raised the possibil-
ity, never before imagined, that light itself is an electromagnetic phenomenon.
Remark 4.2.4. Because of the way light behaves, it was generally accepted at the
time that light represents some sort of wave propagation (we will have a bit more to
say about this in Section 4.4), but it was certainly not viewed as the sort of electro-
magnetic wave that we have just seen emerge from Maxwell’s equations.

But, of course, not all light is the same. It comes in different colors that can be
separated out of the “white light” we generally encounter by sending it through a
prism; this, of course, was known long before Maxwell. But if all of these colors are
really electromagnetic waves, then they can differ from each other only in various
wave characteristics, such as wavelength λ (or, equivalently, frequency ν). Carrying
this speculation just a bit further, it is not difficult to imagine that the ocular sense
that has evolved in our species is sensitive only to those wavelengths that we must
be sensitive to in order to survive (and so Hertz could not “see” his radio waves).
One would then imagine electromagnetic waves of every possible frequency, some
of which our eyes can see and some of which we can perceive only by doing more
than just looking, despite the fact that they are all really the same phenomenon. All
of this is, in fact, true and physicists now display the range of possibilities for elec-
tromagnetic waves in a continuous electromagnetic spectrum labeled by wavelength
and /or frequency (see Figure 4.1). The visible (to humans) part of this spectrum is
quite small, but it had been the object of study by physicists ever since Newton.
Remark 4.2.5. Newton, however, believed that light was composed of particles of
different colors and that different colored particles moved at different speeds through
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Fig. 4.1 Electromagnetic Spectrum

the glass of the prism resulting in different angles of refraction, thus creating the
spectrum of colors. Classically, the wave and particle pictures of light are quite
inconsistent, but in 1905 Einstein [Ein1] proposed that, for a proper understanding
of the properties of light, both were necessary (see Section 4.3). This was the birth
of the wave /particle duality that became the hallmark of modern quantum theory.

In 1814, Fraunhofer had made a particularly interesting discovery when he no-
ticed that, in the spectrum of light coming from the sun, certain frequencies were
missing (there were dark lines where one would expect to see a color); see Figure
4.2.

Fig. 4.2 Fraunhofer Lines

Somewhat later it was observed that, in a sense, the opposite can occur. For example,
when hydrogen gas is heated it gives off light which, when sent through a prism,
exhibits just a few bright lines on an otherwise dark background (see Figure 4.3).

Fig. 4.3 Hydrogen Emission Spectrum

Other elements behave in the same way, but the visible lines are different; each has
a characteristic emission spectrum. Furthermore, certain elements (such as sodium)
were found to have emission spectra that exactly matched certain of the dark Fraun-
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hofer lines in the solar spectrum. The conclusion drawn was that every element both
emits and absorbs light (electromagnetic waves) of certain characteristic frequen-
cies and that, for example, sodium is either entirely absent from the sun (unlikely),
or whatever sodium is present in the hot interior regions is emitting its frequencies
only to have them reabsorbed (and probably emitted again, but in different direc-
tions, that is, scattered) by sodium in the cooler exterior regions so that they never
reach us and appear as Fraunhofer lines. The question that was left unanswered and
had to await the advent of quantum theory was why atoms can emit and absorb only
a discrete set of frequencies.

We will take all of these experimental facts for granted without further comment,
but there are still issues we need to address. Begin by introducing the usual symbol

c ≈ 2.99792 × 108m/s (4.9)

for the speed of light in vacuo and rewriting our wave equations as

∆E =
1
c2

∂2E
∂t2 (4.10)

and

∆B =
1
c2

∂2B
∂t2 . (4.11)

Now, (4.10) and (4.11) are really six independent copies of the wave equation
so producing solutions to them is easy; just select your six favorite solutions to the
wave equation and make them the components in anyway you like. It is unlikely that
you will produce solutions to Maxwell’s equations this way, however. We need to
see what additional constraints are imposed by the full set of Maxwell’s equations
and the best way to do this is to look at some very simple solutions from which the
rest can be obtained by superposition.
Remark 4.2.6. Just to establish some notation, let’s review a bit of the 1-dimensional
situation from calculus. The 1-dimensional wave equation for u(t, x) is 1

a2
∂2u
∂t2 = ∂2u

∂x2 ,
where a is a positive constant. Looking for some simple solutions one considers the
family of sinusoidal waves of the form

u(t, x) = A0 cos (kx − ωt + ϕ) = Re( A0ei(kx−ωt+ϕ) ),

where A0, k, ω are positive real constants and ϕ is an arbitrary real constant. A0 is
the amplitude of the wave and ϕ is the phase. ω and k are related to the period T ,
wavelength λ and frequency ν = 1

T of the wave by ω = 2πν = 2π
T and k = 2π

λ
. ω

is called the (angular) frequency and k is the (angular) wavenumber (the adjective
angular simply means that we are counting the number of cycles /wavelengths per
2π units of time /distance and it is very often dropped). The speed of propagation
of the wave is ω

k = λ
T . Substituting into the wave equation, one finds that u(t, x) is



4.2 Electromagnetic Radiation 97

a solution if and only if ω
k = a so a is the speed of propagation of the wave. One

could, of course, replace cos by sin, but this simply amounts to shifting the phase
by π

2 . Since it’s easier, algebraically and analytically, to deal with exponentials, one
generally focuses on the complex solution A0ei(kx−ωt+ϕ), keeping in mind that it is
the real (or imaginary) part that is of interest. Going a step farther, one can split off

the phase A0ei(kx−ωt+ϕ) = A0eiϕei(kx−ωt), absorb it into the coefficient and deal with
the complex solution

U(t, x) = U0 ei (kx−ωt),

where the constant U0 = A0eiϕ is also complex. To keep track of the direction of
propagation and the direction in which the oscillations take place one can introduce
the standard Euclidean basis vectors in the plane and define vectors k = (k, 0), x =

(x, 0),U0 = (0,U0), and U(t, x) = (0,U(t, x)) and write

U(t, x) = U0 ei (k·x−ωt),

where k · x is the usual Euclidean inner product of k and x.
The appropriate generalization to the 3-dimensional wave equation is now clear.

We fix an arbitrary nonzero vector k = (k1, k2, k3) in R3 and a positive real number
ω and write k = ‖k‖. Let x = (x, y, z) denote an arbitrary vector in R3. For any
U0 = (A1eiϕ1 , A2eiϕ2 , A3eiϕ3 ), where A1, A2, A3 are fixed positive real numbers and
ϕ1, ϕ2, ϕ3 are fixed real numbers, define

U(t, x) = U0 ei (k·x−ωt).

A little calculus proves the divergence and curl formulas

∇ · U(t, x) = i k · U(t, x) (4.12)

and

∇ × U(t, x) = i k × U(t, x). (4.13)

Remark 4.2.7. Although we have taken U to be complex it will do no harm, and
will aid the intuition, if we treat it formally as if it were a vector in R3. Thus, the ·
and × in k ·U(t, x) and k ×U(t, x) here are the usual R3-dot and cross-products, but
with complex components.

Substituting into the 3-dimensional wave equation

∆U =
1
a2

∂2U
∂t2

one finds that U is a solution if and only if

ω

k
= a.
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For such a solution, k is called the wavevector and k is the wavenumber. Choosing
ω
k = c we can therefore write down lots of solutions

E(t, x) = E0 ei (k·x−ωt)

and

B(t, x) = B0 ei (k·x−ωt)

to (4.10) and (4.11). We will now see what additional constraints are imposed by
the full set of Maxwell equations (4.1)-(4.4) which, for these particular functions E
and B, become

k · E = 0, (4.14)

k × E = ωB, (4.15)

k · B = 0, (4.16)

k × B = −
ω

c2 E. (4.17)

Exercise 4.2.1. Notice that a priori the phase factors in E0 = (E1eiϕE
1 , E2eiϕE

2 , E3eiϕE
3 )

and B0 = (B1eiϕB
1 , B2eiϕB

2 , B3eiϕB
3 ) could be different. Show that (4.17) and the fact

that k is real imply ϕE
j ≡ ϕ

B
j mod 2π, j = 1, 2, 3.

By (4.14) and (4.16), both E and B are orthogonal to k for each (t, x) and, by
(4.15), they are orthogonal to each other. Looking just at the real part of (4.15) we
conclude from this that ‖k‖ ‖E‖ = ω‖B‖, or

‖E‖ = c ‖B‖.

Notice also that, by (4.15), B · (k × E) = ω‖B‖2 > 0 so k × E is in the direction of
B and we can visualize {k,E,B} as a right-handed orthogonal basis at each point.
Next let φ be some real constant and consider all of the (t, x) for which the phase
k · x − ωt takes this constant value, that is,

k1x + k2y + +k3z = ωt + φ.

For each fixed t this is a plane orthogonal to k on which E and B are both constant.
As t varies over −∞ < t < ∞ these planes move in the direction of k with speed ω

k =

c. The planes of constant phase are called wavefronts and the electromagnetic wave
itself is called a plane electromagnetic wave or a linearly polarized electromagnetic
wave (see Figure 4.4).
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Fig. 4.4 Plane Electromagnetic Wave

Remark 4.2.8. The term linearly polarized refers to the fact that the electric field
vector oscillates in a single direction (that is, along a single line). If one imagines
oneself situated at some fixed point along a line on which the wave is propagating
and if one could see the tip of the electric field vector, then, as the wavefronts pass
through this point, the tip would look just like a mass on a spring. This is true of the
magnetic field vector as well, but, since E and B are always orthogonal to k and to
each other, it is conventional to mention only the electric component. The direction
of the electric field vector E is called the direction of polarization.

These are, of course, very special electromagnetic waves and much more compli-
cated behavior results when the wave is a superposition (sum) of two or more plane
waves. For example, the superposition of two orthogonal plane waves propagating
in the same direction, of equal magnitude, but differing in phase by π/2 is circularly
polarized (see Figure 4.5). For these the tip of the electric vector approaching you
along the direction of propagation would appear to rotate (either clockwise or coun-
terclockwise) around a circle. Similarly, the sum of two orthogonal plane waves
propagating in the same direction, of different magnitude and which differ in phase
by π/2 is elliptically polarized . More complicated superpositions of plane waves
need not have any of these characteristics. Indeed, the electric vectors approaching
you along the direction of propagation can be randomly distributed and, in this case,
the light is said to be unpolarized. This is true, for example, of the light coming from
the sun, or from a light bulb. However, Fourier analysis guarantees that any electro-
magnetic wave can be viewed as a superposition of (perhaps infinitely many) plane
waves, each with its own polarization direction. We will write out a concrete exam-
ple in Section 4.3 when we attempt to track down what was behind Max Planck’s
quantum hypothesis.

Next we introduce a notion that simplifies many computations and, moreover,
provides the prototypical example of what is called a gauge field. We begin by re-
turning to Maxwell’s equations

∇ · E = 0 (4.18)
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Fig. 4.5 Circular Polarization

∇ × E = −
∂B
∂t

(4.19)

∇ · B = 0 (4.20)

∇ × B =
1
c2

∂E
∂t

(4.21)

and considering solutions defined and smooth for all (t, x, y, z) ∈ R × R3. Sup-
pose that there exists a smooth, time-dependent vector field A(t, x, y, z) on R3 and a
smooth real-valued function φ(t, x, y, z) for which

B = ∇ × A (4.22)

and

E = −∇φ −
∂A
∂t

(4.23)

(keep in mind that ∇ denotes the spatial gradient operator). Then, since the curl
of a gradient is zero and the divergence of a curl is zero, (4.19) and (4.20) are
satisfied automatically. In this case, A and φ are called, respectively, vector and
scalar potentials for B and E. Furthermore, (4.18) and (4.21) become

∆φ +
∂

∂t
(
∇ · A

)
= 0 (4.24)

and

∇

(
∇ · A +

1
c2

∂φ

∂t

)
−

(
∆A −

1
c2

∂2A
∂t2

)
= 0, (4.25)

respectively (for (4.25) we have used ∇ × (∇ × A) = ∇(∇ · A) − ∆A).
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Remark 4.2.9. The existence of A and φ is not at all obvious and depends crucially
on the topology of the region on which the solutions are assumed to exist (which
we are here taking to be all of R × R3). This is best viewed from the relativistic
point of view where one can prove the existence of A and φ at the same time. Here
we will offer a less elegant argument based on the relationship between the usual
vector calculus on R3 and the exterior calculus of differential forms on R3; this
relationship is spelled out in detail in Exercise 4.4.8 of [Nab4]. Thus, we fix a t ∈ R
and let β denote the 1-form on R3 corresponding to the vector field B at time t. Then
∇ · B = 0 implies ∗d∗β = 0, where ∗ is the Hodge star operator on R3 determined
by the standard metric on R3. Thus, d∗β = 0 so ∗β is a closed 2-form on R3. By
the Poincaré Lemma, ∗β is exact on R3, that is, there exists a smooth 1-form α on
R3 with ∗β = dα. Consequently, β = ∗∗β = ∗dα and, if A is the vector field on R3

corresponding to the 1-form α, we have B = ∇ × A, as required. Now, to obtain φ
we notice that

∇ ×

(
− E −

∂A
∂t

)
= −∇ × E −

∂

∂t
(
∇ × A

)
=
∂B
∂t
−
∂B
∂t

= 0.

Thus, if ε is the 1-form on R3 corresponding to the vector field −E− ∂A
∂t , then ∗dε = 0

and so dε = 0. The Poincaré Lemma then implies that ε = dφ for some 0-form (real-
valued function) on R3 and this translates into −E − ∂A

∂t = ∇φ, which is what we
wanted.

We should also point out that there are physically interesting magnetic fields B
on open regions U ⊆ R3 to which the Poincaré Lemma does not apply and for
which there is no vector potential A defined on all of U. As it turns out, this leads to
interesting things (see pages 2-3 of [Nab3]).

We now know that A and φ exist, but they are certainly not unique since, if
λ(t, x, y, z) is any smooth function on R ×R3, then, for each t,

A′ = A − ∇λ and φ′ = φ +
∂λ

∂t
(4.26)

also satisfy

∇ × A′ = ∇ × A − ∇ × (∇λ) = ∇ × A = B

because the curl of a gradient is zero, and

−∇φ′ −
∂A′

∂t
= −∇φ +

∂

∂t
(∇λ) −

∂A
∂t
−
∂

∂t
(∇λ) = −∇φ −

∂A
∂t

= E.

A transformation (A, φ)→ (A′, φ′) of the form (4.26) is called a gauge transfor-
mation and the freedom to make such a transformation of potentials is called gauge
freedom. Notice, in particular, that one can add an arbitrary constant vector to any
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vector potential and an arbitrary real constant to any scalar potential and the results
will still be potentials for E and B. We would now like to show that one can use this
freedom to make some particularly convenient choices for the potentials. In the pro-
cess we will need to be sure that certain partial differential equations have smooth
solutions, but we will save the discussion of the theorems that ensure the existence
of these solutions for Remark 4.2.12.

We will begin by selecting arbitrary potentials A and φ. For any smooth function
λ, the gauge transformation (4.26) yields new potentials (A′, φ′) that satisfy

∇ · A′ +
1
c2

∂φ′

∂t
=

(
∇ · A +

1
c2

∂φ

∂t

)
−

(
∆λ −

1
c2

∂2λ

∂t2

)
which will be zero if λ satisfies

∆λ −
1
c2

∂2λ

∂t2 = ∇ · A +
1
c2

∂φ

∂t
. (4.27)

The right-hand side of (4.27) is a known, smooth function so (4.27) is just the inho-
mogeneous wave equation and the existence of a smooth solution λ is assured (see
Remark 4.2.12). With such a choice of λwe have potentials that satisfy the so-called
Lorenz condition

∇ · A′ +
1
c2

∂φ′

∂t
= 0. (4.28)

Physicists refer to a set of potentials (A′, φ′) satisfying (4.28) as a Lorenz gauge.
Remark 4.2.10. One might also see this called a Lorentz gauge, but these are two
different guys. The gauge condition is named for Ludwig Lorenz who introduced it,
but its most important property is that it happens to be “Lorentz invariant” and this
is named for Hendrik Lorentz. Take your pick.

Notice that if we add on to λ any solution λ′ to the homogeneous wave equation

∆λ′ −
1
c2

∂2λ′

∂t2 = 0,

of which there are many (see Remark 4.2.12), then the resulting potentials clearly
still satisfy the Lorenz condition. Consequently, there is a great deal of freedom in
choosing a Lorenz gauge. Also notice that, in a Lorenz gauge, both the vector and
scalar potentials satisfy homogeneous wave equations. Indeed, the coupled equa-
tions (4.24) and (4.25) decouple in a Lorenz gauge and become

∆φ′ −
1
c2

∂2φ′

∂t2 = 0

and

∆A′ −
1
c2

∂2A′

∂t2 = 0.
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Now, let’s begin again with some arbitrary potentials A and φ. For any gauge
transformation (4.26) we have, from A′ = A − ∇λ,

∇ · A′ = ∇ · A − ∆λ.

Since ∇ · A is known, we can ensure that

∇ · A′ = 0 (4.29)

by taking λ to be any smooth solution to the Poisson equation

∆λ = ∇ · A,

and, again, there are many of these (see Remark 4.2.12). Potentials satisfying (4.29)
are said to be a Coulomb gauge and, for these, (4.24) and (4.25) become

∆φ′ = 0

and

∆A′ −
1
c2

∂2A′

∂t2 =
1
c2∇

(
∂φ′

∂t

)
.

In particular, in a Coulomb gauge, the scalar potential must be a solution to the
Laplace equation, that is, it must be harmonic on R3 for each t.

In the physics literature one might find the Coulomb gauge defined by ∇ ·A′ = 0
and φ′ = 0. Now, it does not follow from what we have said that the scalar potential
φ′ must be zero. It is, however, harmonic on R3 for each t and if one imposes the
additional physical assumption that it should be bounded on R3 for each t, then,
in fact, it must be constant. This follows from Liouville’s Theorem which says that
any bounded, harmonic function on any Rn is constant (if this version of Liouville’s
Theorem is unfamiliar to you consult [Nel2] for the shortest paper you are ever
likely to see). Since potentials are determined only up to additive constants, one can
then take it to be zero. This physical assumption is satisfied in the case of particular
interest to us in Section 4.3 (electromagnetic radiation in a black box) so we will
say that a pair of potentials A and φ satisfying

∇ · A = 0 and φ = 0 (4.30)

is a radiation gauge. In such a gauge,

B = ∇ × A and E = −
∂A
∂t
, (4.31)

and A is determined by

∆A −
1
c2

∂2A
∂t2 = 0 and ∇ · A = 0. (4.32)
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Such an A is simply a divergence-free solution to the wave equation.
Remark 4.2.11. The electric and magnetic fields can be computed directly from any
pair of potentials and, as we have seen, a clever choice of potentials can significantly
simplify Maxwell’s equations. Classical electrodynamics makes considerable use of
these potentials as computational tools, but no physical significance was ascribed to
A and φ themselves (essentially because they are highly non-unique). The situation
is dramatically different in quantum mechanics. We will see some of the reasons for
this as we proceed, but a more complete picture, described in elementary terms, is
available in Chapter 0 of [Nab3].
Remark 4.2.12. In our derivations of the Lorenz and Coulomb gauges we required
the existence of smooth solutions to the Poisson equation

∆u = g

and the wave equation

∆u −
1
c2

∂2u
∂t2 = g

on R3 when the right-hand side g is smooth. These existence and regularity results
are classical and can be deduced from various general theorems on linear partial
differential equations; standard sources for this are [Evans] and [TaylM]. We will
briefly describe the results available in two other sources that lead directly to the
specific theorems we need and which may be somewhat more accessible.

The paper [Ros] contains an elementary proof of the following existence theorem
for (in particular) the Poisson equation (and, as a bonus, the Malgrange-Ehrenpreis
Theorem on the existence of fundamental solutions for arbitrary constant coefficient
linear partial differential equations). We begin by simply stating the result and will
then try to clarify with a few remarks. Recall that L2

loc(Rn) consists of all Lebesgue
measurable functions on Rn that are square integrable on every compact subset of
Rn.

Theorem 4.2.1. Let P(D) be a (nonzero) constant coefficient linear differential op-
erator on Rn. Then for every g ∈ L2

loc(Rn) there exists a u ∈ L2
loc(Rn) such that

P(D)u = g.

A few remarks are in order. For the Poisson equation, P(D) is just the Laplacian
on Rn. Since the elements of L2

loc(Rn) need not be differentiable, the sense in which
u ∈ L2

loc(Rn) is a solution to P(D)u = g cannot be the usual, classical one (“compute
the derivatives, plug into the equation and get an identity”). What is meant here is
that u is a weak solution to P(D)u = g. We will have much more to say about this
when the need arises, but just to be clear we will state explicitly what is intended
here. As motivation notice that, if u were a smooth, classical solution to P(D)u =

g with g smooth, then it would certainly be the case that 〈 P(D)u, ϕ 〉 = 〈 g, ϕ 〉
for any smooth function ϕ with compact support on Rn, where 〈 , 〉 is the L2(Rn)
inner product. A few integrations by parts using the fact that ϕ has compact support
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then gives 〈 u, P(D)∗ϕ 〉 = 〈 g, ϕ 〉 for any such ϕ, where P(D)∗ is the adjoint of the
differential operator P(D); for the Poisson equation, P(D)∗ is also the Laplacian (it’s
worth doing the integrations by parts in this case just to see this). Having shifted
all of the differentiations to ϕ we can now define a weak solution of P(D)u = g
to be an element of L2

loc(Rn) that satisfies 〈 u, P(D)∗ϕ 〉 = 〈 g, ϕ 〉 for any smooth
function ϕ with compact support on Rn. Certainly, any smooth g is in L2

loc(Rn) so
we are guaranteed the existence of an L2

loc(Rn) solution u. For a general P(D) one
can do no better than this, but for the Poisson equation there are available elliptic
regularity results which imply that a weak solution u is necessarily smooth (that
part of elliptic regularity that is directly relevant to the Poisson equation is covered
concisely in Chapter 10 of [LL]). Consequently, we get the result we need for the
Poisson equation.

For the wave equation, which is hyperbolic rather than elliptic, we will state an
existence and regularity result for a broader class of equations and for which there
is a self-contained proof available at

https : //workspace.imperial.ac.uk/people/Public/Holzegel/week10.pd f .

The following is Theorem 5.1 from this source. Here � is used to denote the
d’Alembertian, or wave operator

� = ∆ −
1
c2

∂2

∂t2 ,

where c is a positive constant and we write x = (x1, . . . , xn) ∈ Rn and (t, x) ∈ Rn+1.

Theorem 4.2.2. Let u0, u1 be in C∞(Rn) and let b1, . . . , bn, c, and g all be in
C∞(Rn+1). Then there exists a unique u ∈ C∞(Rn+1) satisfying

� u +

n∑
k=1

bk(t, x)
∂u
∂xk + c(t, x)u + g(t, x) = 0

u(0, x) = u0(x)

∂u
∂t

(0, x) = u1(x).

In particular, the wave equation

∆u −
1
c2

∂2u
∂t2 = g

has lots of smooth solutions if g is smooth.

The final topic we need to address in this section is, physically at least, rather
subtle because it deals with the rather elusive notion of energy (see Remark 1.0.3).

https://workspace.imperial.ac.uk/people/Public /Holzegel/week10.pdf
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Intuitively, it seems clear that electromagnetic radiation must, in some sense, contain
energy since it can warm you on a sunny day, give life to plants through photosyn-
thesis and even air condition your home.

Fig. 4.6 Energy in Electromagnetic Radiation

How is the energy associated with an electromagnetic field to be defined? The
objective of any definition of energy is a conservation law (see Remark 1.0.3). In
classical mechanics this conservation law takes the form of an assertion that a certain
number (the sum of the kinetic and potential energies) remains constant along the
trajectory of the particle (see Remark 1.0.2). In other contexts, conservation laws
take the form of what are called continuity equations. A familiar example from
calculus concerns the flow of a fluid. If the mass density of the fluid is ρ and its
velocity vector field is V, then the continuity equation is

∂ρ

∂t
+ ∇ · ( ρV) = 0. (4.33)

To understand why this qualifies as a conservation law, suppose U is any bounded,
open region in R3 with smooth boundary ∂U. Integrating (4.33) over the closure
clR3 U of U in R3 and using the Divergence Theorem gives

∂

∂t

∫ ∫ ∫
cl

R3 U
ρ dV = −

∫ ∫
∂U

ρV · dS,

which says that the rate at which mass enters or leaves clR3 U is equal to the flux
of mass through the boundary of U and so, since U is arbitrary, mass is conserved
(neither created nor destroyed anywhere).

To find an analogue of (4.33) for electromagnetic radiation we return to the vac-
uum Maxwell equations (4.18)-(4.21), but now we will write 1

c2 = µ0ε0, where µ0
is the vacuum permeability and ε0 is the vacuum permittivity (see (4.4)). Dot both
sides of (4.19) with B and both sides of (4.21) with E and add to obtain
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E · (∇ × B) + B · (∇ × E) = −

(
µ0ε0 E ·

∂E
∂t

+ B ·
∂B
∂t

)
.

The identities V · (∇×W) + W · (∇×V) = ∇ · (V×W) and ∂
∂t ‖V‖

2 = 2V · ∂V
∂t and a

little algebra reduce this to

∇ ·

( 1
µ0

E × B
)

= −
∂

∂t

(
ε0

2
‖E‖2 +

1
2µ0
‖B‖2

)
.

Now, defining

S =
1
µ0

E × B

and

E =
ε0

2
‖E‖2 +

1
2µ0
‖B‖2, (4.34)

this becomes

∂E

∂t
+ ∇ · S = 0. (4.35)

We find then that Maxwell’s equations determine a very natural continuity equation
and therefore a conservation law. By analogy with (4.33), one would be inclined
to identify E with the thing being conserved and S with a vector describing the
direction and rate at which this thing is being transported by the field. In physics, E
is called the energy density of the electromagnetic field and S is the Poynting vector;
(4.35) is a special case of what is called Poynting’s Theorem.
Remark 4.2.13. Not every “thing” that is conserved can reasonably be interpreted as
an energy (one has, for example, momentum, angular momentum, etc.) and simply
calling E the energy density of the field does not justify the use of the term. The
intuition we were asked to accept in high school is at least morally correct; energy
should somehow be associated with the ability to do work. That the terminology we
have introduced really is appropriate should be checked by relating E and S to the
work the field is capable of doing. The full Maxwell equations contain the electric
charge ρ and current J densities responsible for creating the field and with these
and the Lorentz Force Law (4.6) one can compute the work done by the field on
the charges and in this way motivate our interpretations of E and S. Since this is all
done carefully and clearly in Sections 27-1 through 27-3, Volume II, of [FLS] we
will simply refer those interested in the details to the exposition by one of the great
physicists of the 20th century.

In addition to carrying energy, electromagnetic radiation exerts pressure on any
surface it falls upon and therefore should also carry momentum. This is rather con-
vincingly demonstrated by a device called a Nichols Radiometer which you can now
buy in almost any toy store (see Figure 4.7). It is simply a very delicate pinwheel in
a vacuum that will spin if you shine light on it.
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Fig. 4.7 Nichols Radiometer

The momentum density of an electromagnetic field is, of course, a vector at each
point in space and at each instant of time and is identified by the physicists with a
multiple of the Poynting vector

1
c2 S = ε0E × B

(the rationale for this is discussed in Section 27-6, Volume II, of [FLS]). By analogy
with classical particle mechanics (see (2.20)) one then defines the angular momen-
tum density (with respect to the origin) of the electromagnetic field by

r × (ε0E × B),

where r is the position vector in R3.
Exercise 4.2.2. Write out the energy density, Poynting vector, momentum density
and angular momentum density for a plane electromagnetic wave.

We should conclude this section by saying that quite soon we will be forced by
circumstances (in Section 4.3) to adopt quite a different view of electromagnetic
radiation and the energy and momentum it contains and that this different view of
electromagnetic radiation will lead us inexorably to a different view of everything.

4.3 Blackbody Radiation and the Photoelectric Effect

Place a bar of iron in the summer sun for a few hours. When you return to retrieve
your iron bar and reach to pick it up you find to your chagrin that it is emitting
thermal energy (it’s hot). The electromagnetic radiation coming from the sun, which
contains energy, has communicated some of this energy to the iron and “heated” it.
But what is this “heat” that we perceive? Here is a hint. Suppose we could move
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the iron bar off the surface of the earth and closer and closer to the sun. Of course,
it would get hotter and hotter, but it would do something else as well; it would
change color. Close enough to the sun it would glow red hot, closer still, orange,
then yellow and finally blue (see Figure 4.8). But what our eyes perceive as color
is simply a particular frequency of light so it would seem that the heat we sense
coming from the iron bar is again just electromagnetic radiation.

Fig. 4.8 Heat is Electromagnetic Radiation

The rays from the sun supply energy to the molecules and atoms of the iron
which vibrate in response thus causing the electrons in the atoms near the surface to
vibrate and these, as all accelerating charges do, generate electromagnetic radiation.
This, in turn, supplies energy to the molecules and atoms of our skin which we sense
as thermal energy, that is, heat. It is important to notice that we sense this heat long
before the iron has started to glow red hot. For these more moderate temperatures the
frequency of the electromagnetic radiation being emitted by the bar is not in the (to
us) visible range, but rather in the infrared (see Figure 4.1). It is a fact of nature that
every body at a temperature above absolute zero emits electromagnetic radiation.
Mercifully, the human eye perceives only a minute portion of this radiation.
Remark 4.3.1. A precise physical definition of absolute zero or, indeed, even of
temperature, would involve a rather lengthy digression into thermodynamics and
we have neither the time nor the competence to do this properly here (there are
many introductory texts available if this interests you, or you may prefer the concise
exposition [Fermi] by a Nobel Laureate). Fortunately, the physicists have relieved
some of this burden by agreeing to define absolute zero to be −273.15◦C (or, equiv-
alently, −459.67◦ F) and we will take this as our definition as well (of course, this
presumes that you know what temperature means when measured on the Celsius or
Fahrenheit scales and it completely evades the issue of the physical significance of
this particular value). This value is also taken to be zero on the Kelvin scale so that
absolute zero is 0 K (physicists have apparently also agreed that writing 0◦ K is not
to be tolerated (see http://en.wikipedia.org/wiki/Kelvin)).

We will often be confronted in this section with physical statements the theoreti-
cal justification of which requires sophisticated ideas and techniques from, not only

http://en.wikipedia.org/wiki/Kelvin
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thermodynamics, but statistical mechanics and electromagnetic theory as well. In
these cases we will not presume to offer sound bites that pretend to be explanations,
but will try to provide ample references for those who would like to really under-
stand. A good place to begin is Chapter 1 of [Bohm] which contains a detailed and
very readable account of everything we will have to say in this section and much
more together with a number of (admittedly rather old) references to discussions of
the thermodynamics and statistical mechanics.

All objects absorb and emit electromagnetic radiation, but they do not all do it
in the same way or at the same rate. A red fire truck is red because the paint on its
surface absorbs every frequency of light except those that we perceive as red (around
4.3 × 1014 Hz), which it reflects back to our eyes. A substance that is very black,
like graphite or soot, absorbs essentially all of the electromagnetic radiation falling
on it. On the other hand, it is the case that, at a given temperature, a body always
emits radiation of a given frequency exactly as well as it absorbs radiation of that
frequency (this is an experimental fact, but also a consequence of the Second Law
of Thermodynamics). Consequently, graphite is not only a nearly perfect absorber
of electromagnetic radiation, but a nearly perfect emitter as well. A blackbody is an
(idealized) physical object that absorbs all incident electromagnetic radiation. In this
section we are interested in the spectrum of radiation emitted by such a blackbody
(we will define more precisely what this means in just a moment).

An object with very special and interesting thermodynamic properties that has
been investigated since the 19th century is what we will call a black box. This is
essentially an oven with black walls and with a tiny hole drilled in one of the walls
(Figure 4.9). Turn the oven on. The temperature of the walls increases and so they
emit radiation of every possible frequency at a rate that depends on the temperature.
These same walls, in turn, absorb this radiation at a rate that depends on the intensity
of the radiation in the interior of the oven. Eventually the emission and absorption
balance and a state of thermal equilibrium is achieved in which the temperature T
is constant (in this section T will always be measured in Kelvin). The object we
are interested in is the function ρT (λ) or, equivalently, ρT (ν) that gives the energy
density of the equilibrium radiation of wavelength λ, or of frequency ν = c/λ.
Remark 4.3.2. Physicists often consider instead the intensity IT of the radiation as
a function of λ or ν. The intensity is defined to be the energy which the radiation
carries per second across a 1 m2 area normal to the direction of propagation. As it
happens, the intensity and energy density are proportional with a constant of pro-
portionality that does not depend on the wavelength /frequency or T .

The function IT (λ) can be measured experimentally. The radiation escaping from
the small hole is passed through a diffraction grating (high tech prism) sending
the different wavelengths in different directions, all toward a screen. A detector is
moved along the screen to determine the intensity emitted at each wavelength. It
has been found that, for a given wavelength, the intensity depends only on T and
not on the details of the oven’s construction (size, shape, material, etc.). Figure
4.10 shows the graphs of IT (λ) for T = 3000 K, 4000 K, 5000 K, and 6000 K. At
any given temperature T the intensity of the radiation increases rather rapidly with
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Fig. 4.9 Black Box

the wavelength λ until it reaches a maximum value at some wavelength λmax that
depends on T and at this point it begins to decrease with λ. The integral

IT =

∫ ∞

0
IT (λ) dλ

represents the total intensity of the radiation emitted over all wavelengths at temper-
ature T . In 1879, Jožef Stefan deduced from the empirical data that IT is proportional
to the fourth power of T

IT = σT 4,

where σ = 5.670400×10−8Jm−2s−1K−4 is the so-called Stefan-Boltzmann constant;
this was later derived on theoretical grounds by Ludwig Boltzmann.

In 1893, Wilhelm Wien showed using thermodynamic arguments that there is a
universal function f for which

ρT (λ) =
f (λT )
λ5 . (4.36)

Thermodynamics alone, however, cannot determine the function f . This is essen-
tially because thermodynamic arguments are based on very general principles that
apply to all physical systems and often do not take into account the specific details
of any particular system. Nevertheless, plotting λ5ρT (λ) versus λT for the empiri-
cal data one finds that the points lie on the same curve for any T so there is solid
experimental evidence to support Wien’s Law (4.36).

Although thermodynamics cannot identify the function f , electrodynamics and
classical statistical mechanics combine to give the completely explicit prediction

f (λT ) = 8πκB (λT ), (Rayleigh-Jeans) (4.37)

where κB = 1.3806488 × 10−23JK−1 is the Boltzmann constant. Thus,
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Fig. 4.10 Blackbody Radiation Curves

ρT (λ) =
8πκBT
λ4 . (Rayleigh-Jeans) (4.38)

This result was derived by Lord Rayleigh and Sir James Jeans in 1905 (except for
the precise value of the constant of proportionality (8πκB) the result was actually
established by Rayleigh in 1900). The argument involved quite nontrivial aspects of
classical physics and we will briefly describe how it was done later in this section.

Fig. 4.11 Rayleigh-Jeans

The only issue one might want to take with the Rayleigh-Jeans argument is that
its conclusion is totally incorrect. One can see this by simply comparing its predic-
tions with the empirical data (see Figure 4.11). Even without any delicate experi-
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mental data, however, one can see that the result cannot be correct since it implies
that the total energy contained in the black box is, by Wien’s Law (4.36),∫ ∞

0
ρT (λ) dλ = 8πκBT

∫ ∞

0

dλ
λ4 =

8π
3
κBT lim

λ→0+

1
λ3

and this is infinite unless T = 0 (Paul Ehrenfest referred to this as the ultraviolet
catastrophe). Since the logic of the Rayleigh-Jeans argument was considered unas-
sailable, one is forced to question the premises on which the argument is based. But
these premises were believed to be among the most firmly established principles of
classical physics. One can see a storm on the horizon.

Max Planck set himself the task of deriving a formula for the energy spectrum
that agreed with the experimental data. Eventually, he succeeded, but only by stray-
ing outside the confines of classical physics with an ad hoc assumption that he him-
self regarded as an “act of desperation”. We would like to have a look, admittedly
a rather cursory and informal one, at a path one can follow that leads to Planck’s
formula since it is along such a path that one finds for the first time the ubiqui-
tous “Planck constant” and we really should have some idea of where this comes
from. First, however, let’s simply record the formula to see where we are headed.
Planck determined that the function f (λT ) in Wien’s Law (4.36) is given, not by the
Rayleigh-Jeans Law (4.37), but rather by

f (λT ) =
8πhc

ehc/κBλT − 1
, (4.39)

where c is the speed of light and h is a positive constant that must be determined to
fit the data. Thus,

ρT (λ) =
8πhc
λ5

1
ehc/κBλT − 1

, (4.40)

or, in terms of the frequency ν,

ρT (ν) =
8πhν3

c3

1
ehν/κBT − 1

. (4.41)

This is known as Planck’s Law.
Remark 4.3.3. We will see that these are to be regarded as density functions. For
example, the amount of electromagnetic energy per unit volume accounted for by
radiation with wavelengths in [λ0, λ1] is∫ λ1

λ0

ρT (λ)dλ =

∫ λ1

λ0

8πhc
λ5

1
ehc/κBλT − 1

dλ. (4.42)

Exercise 4.3.1. Show that the change of variable λ = c/ν then gives (4.41).
Exercise 4.3.2. Show that, when λT is large, Planck’s formula (4.40) is approxi-
mately given by the Rayliegh-Jeans formula (4.37).
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Remark 4.3.4. h is, of course, the famous Planck constant. Its currently accepted
value is 6.62606957 × 10−34m2(kg)/s; because it occurs so frequently, one also de-
fines the normalized Planck constant ~ = h/2π. Note that h has the same units as the
action in classical mechanics (see (2.1)) so one often sees Planck’s constant referred
to as the quantum of action. What we would like to do now is try to understand
where h comes from.

The physics behind Planck’s formula is deep and we will not pretend to offer
more than a rather pedestrian synopsis. We begin by setting up the problem we need
to solve. The basic object of interest is a black box (oven) filled with electromagnetic
radiation in thermal equilibrium (that is, at some constant temperature T ). We have
already mentioned that it has been shown both experimentally and theoretically that
the energy spectrum is independent of the shape and material construction of the
box so we are free to choose this as we please. For the black box we will choose a
cube R = [0, L]3 = [0, L] × [0, L] × [0, L] ⊆ R3 of side length L > 0 in R3. Here is
what we must do.

1. Prescribe appropriate boundary conditions and solve Maxwell’s equations for
fields E and B that represent electromagnetic waves in thermal equilibrium with
the boundary at temperature T .
Remark 4.3.5. We will be assuming that the black box contains nothing but elec-
tromagnetic radiation so by “Maxwell’s equations” we mean the empty space
version (4.1) - (4.4).

2. Compute the total electromagnetic energy (see (4.34))

E =

∫
R
E dV =

∫
R

(
ε0

2
‖E‖2 +

1
2µ0
‖B‖2

)
dV (4.43)

contained in R. Assuming, as we shall, that the system is isolated, this total energy
is constant.

3. Determine how this total electromagnetic energy is distributed among the various
frequencies of radiation present in R.

The question of appropriate boundary conditions can be a subtle one, depending
on the specific physical circumstances of the problem. However, if we once again
appeal the fact that the energy spectrum at thermal equilibrium is generally indepen-
dent of these specifics we are able to choose boundary conditions that will confine
the radiation within the box and simplify the calculations. To this end physicists
generally adopt “periodic boundary conditions” according to which the unknown
fields take the same values at corresponding points on opposite faces of the cube
(we will describe this a bit more precisely in a moment).

By translation in the directions of the coordinate axes we can partition all of R3

into a countable family of copies of R intersecting only along their common bound-
aries. Because the boundary conditions are periodic the sought-after fields can then
be thought of as defined on all of R3 and on R3 we have shown that we can work in
a Coulomb gauge (see page 103) with potentials A and φ. Moreover, φ is harmonic
and, in particular, continuous and therefore bounded on R. As a result, it is bounded
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everywhere on R3 and so we can actually work in a radiation gauge (see page 103)
with φ = 0. Thus, the only field we need to find is the vector potential A and this is
determined by (4.32). The electric and magnetic fields are then given by (4.31) and
the total energy by (4.43). However, to carry out Step (3) in the program described
above we will need all of this expressed in terms of the radiation frequencies and
this means Fourier analysis.
Remark 4.3.6. Because of the periodic boundary conditions the proper context for
this Fourier analysis is not really R3, but rather a certain 3-dimensional “flat torus”.
Although our intention in this section is physical motivation and not strict mathe-
matical rigor, some of what we say may be more palatable if this picture is kept in
mind. We will therefore digress for a moment to state the facts (for the details we
refer to Chapter 3 of [Graf]). Let {v1, . . . , vN} be a basis for RN . Associated with
this basis is a lattice Γ defined by

Γ =

{
v =

N∑
i=1

nivi : ni ∈ Z, i = 1, . . . ,N
}
.

Identify Γ with a (discrete, Abelian) group of translations of RN .

x =

N∑
i=1

xivi → x + v =

N∑
i=1

xivi +

N∑
i=1

nivi =

N∑
i=1

(xi + ni)vi

Then Γ acts properly and freely on RN by isometries. It follows that the orbit space
RN/Γ admits a unique differentiable manifold structure for which the canonical
projection π : RN → RN/Γ is a smooth submersion. Now let TN = S 1×

N
· · · ×S 1

denote the N-dimensional torus. The map ϕ : RN → TN defined by

ϕ(x) = ϕ
( N∑

i=1

xivi

)
=

(
e2πix1

, . . . , e2πixN
)

is constant on each orbit [x] = x + Γ so it descends to a map ϕ̃ : RN/Γ → TN and
one can show that this is a diffeomorphism. Furthermore, since Γ is discrete, RN is
a covering manifold for RN/Γ and so the natural (flat) Riemannian metric g on RN

induces a Riemannian metric gΓ on RN/Γ � TN that is locally isometric to g (and
therefore flat). With this Riemannian metric RN/Γ is called the flat torus determined
by Γ.

The closed convex hull D(Γ) of {v1, . . . , vN} in RN is called the fundamental
domain of RN/Γ. This is an interval when N = 1, a parallelogram when N = 2, a
parallelepiped when N = 3, and so on. Translates by elements of Γ of the interior
of D(Γ) are pairwise disjoint in RN , but the translates of D(Γ) itself cover RN .
The torus RN/Γ can be viewed as the fundamental domain D(Γ) with points on its
boundary identified if they differ by an element of Γ.

The standard Lebesgue measure µ on D(Γ) induces a pushforward measure (see
page 423) µ̃ = π∗(µ) on the torus RN/Γ which has the following property. Any real-
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or complex-valued function φ on RN that is Γ-periodic (φ(x + v) = φ(x) ∀v ∈ Γ)
descends to a unique function φ̃ on RN/Γ and∫

D(Γ)
φ dµ =

∫
RN/Γ

φ̃ dµ̃. (4.44)

Conversely, any real- or complex-valued function φ̃ on RN/Γ lifts uniquely to a Γ-
periodic function φ on RN and (4.44) is satisfied. As long as the lattice Γ is fixed
(as it will be shortly) it does no real harm to adopt the usual custom and blur the
distinction between the Γ-periodic functions on RN and the functions to which they
descend on RN/Γ and even to identify µ̃ with µ and write simply TN for RN/Γ . We
will therefore tend to drop the tildes and write such things as

∫
RN/Γ

φ dµ,
∫
TN φ dµ,

and
∫

D(Γ) φ dµ interchangeably. Finally, notice that, since the faces of D(Γ) have
measure zero in RN , we can identify Lp(TN) with Lp(D(Γ)) for any 1 ≤ p ≤ ∞.

Now let’s adapt this last remark to our black box [0, L]3. Let {e1, e2, e3} be the
standard basis for R3 and define a new (orthogonal, but not orthonormal) basis
{v1, v2, v3} by vi = Lei for i = 1, 2, 3. The corresponding lattice

Γ =

{
v = n1v1 + n2v2 + n3v3 = L(n1, n2, n3) : n1, n2, n3 ∈ Z

}
determines a flat torus T3 = R3/Γ and the fundamental domain D(Γ) is just the cube
[0, L]3. A function φ on T3 is identified with a function on R3 that is Γ-periodic,
that is, one that satisfies

φ(x + v) = φ(x)

for all v ∈ Γ. In more detail,

φ(x1 + n1L, x2 + n2L, x3 + n3L) = φ(x1, x2, x3)

for all (x1, x2, x3) ∈ R3 and all (n1, n2, n3) ∈ Z3. We will write out some particularly
important examples. For this we consider another lattice

[ 2π
L Z

]3 in R3 consisting of
all

k = (k1, k2, k3) =
2π
L

(m1,m2,m3),

where (m1,m2,m3) ∈ Z3. For each such k we define

φk(x) = L−3/2ei k·x = L−3/2ei (k1 x1+k2 x2+k3 x3).

Exercise 4.3.3. Show that, for each k ∈
[ 2π

L Z
]3,

1. φk is Γ-periodic,
2. φk is in L2(T3) and, in fact, ‖ φk ‖

2
L2 = 1,

3. φk1 and φk2 are orthogonal in L2(T3) if k1 , k2, and
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4. −∆φk(x) = ‖k‖2φk(x).
Remark 4.3.7. In (4), ∆ is the Laplacian on T3 which, locally, is the same as
the Laplacian on R3 because T3 is locally isometric to R3. Thus, each φk is an
eigenfunction for −∆ on L2(T3) with eigenvalue ‖k‖2.

According to (2) and (3) of the previous exercise,
{
φk : k ∈

[ 2π
L Z

]3} is an or-
thonormal set in L2(T3), but one can show that it is, in fact, an orthonormal basis
for L2(T3); this follows from the Stone-Weierstrass Theorem (see Proposition 3.1.16
of [Graf]). It follows from this that

{
‖k‖2 : k ∈

[ 2π
L Z

]3} contains all of the eigenval-
ues of −∆ on L2(T3). We will explain this in more detail in Section 5.2, but briefly
the reason is that −∆ defines a self-adjoint operator on L2(T3) so that eigenfunctions
corresponding to distinct eigenvalues are orthogonal. Thus, any eigenfunction cor-
responding to some other eigenvalue would have to be orthogonal to everything in
an orthonormal basis for L2(T3) and this would force it to be zero.

We find then that any f ∈ L2(T3) can be written as

f (x) =
∑

k∈
[

2π
L Z

]3

ak ei k·x, (4.45)

where

ak = L−3
∫

T 3
f (x)e−i k·xdµ(x) = L−3

∫
[0,L]3

f (x)e−i k·xd3x (4.46)

and the convergence of the series is in L2(T3). The series (4.45) is called the Fourier
series for f (x) in L2(T3) and the ak are the Fourier coefficients of f (x) (notice that
ak = L−3/2〈φk, f 〉L2 ).
Remark 4.3.8. One might wonder about the definition of the partial sums of the
Fourier series since there is no unique natural ordering of the elements of

[ 2π
L Z

]3.
In the general theory of Fourier series this is, indeed, an issue with which one must
deal (see Definition 3.1.12 of [Graf] for some of the options). However, for an L2

function f , Parseval’s Theorem (see, for example, Theorem 6.4.5 of [Fried]) asserts
that the sum of the squares of the Fourier coefficients converges to (L−3 times) the
square of the L2 norm of f . Absolute convergence then implies that the same is true
of any rearrangement so the order in which one defines the partial sums is irrelevant.

The rate at which the Fourier coefficients of f converge to zero with ‖k‖ is di-
rectly related to the degree of regularity of f (see Section 3.2 of [Graf]). The only
result of this sort that we will appeal to states that, if f is smooth (C∞), then the
Fourier coefficients ak decay at a rate sufficient to ensure that the convergence of
the Fourier series is uniform and that the same is true after differentiating any num-
ber of times with respect to x1, x2 and x3. In our discussion of blackbody radiation
(to which we now return) we will restrict our attention to smooth functions so that
we can perform all of the calculations one generally sees in the physics literature
(for example, Chapter 1 of [Bohm]) with impunity.
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Example 4.3.1. Let’s try to get some orientation for what is to come next by using
these ideas to search for smooth solutions A(t, x) to the wave equation

∆A −
1
c2

∂2A
∂t2 = 0

on T3. Separating variables A(t, x) = T (t)X(x) in the usual way leads to two eigen-
value problems ∆X = λX and T̈ = λc2T . For the first of these we now know the
eigenvalues. For each

k =
2π
L

(m1,m2,m3) ∈
[2π

L
Z
]3

we have the eigenvalue

λk = −‖k‖2 = −
4π2

L2 ( (m1)2 + (m2)2 + (m3)2 )

and a corresponding eigenfunction

Xk(x) = ei k·x.

Letting

ω2
k = ‖k‖2c2

the T -equation is therefore T̈ = −ω2
kT for which we have the solution

Tk(t) = e−iωkt.

The corresponding (complex) solution to the wave equation is therefore

Ak(t, x) = Tk(t)Xk(x) = ei(k·x−ωkt).

Superimposing these gives

A(t, x) =
∑

k∈
[

2π
L Z

]3

akei(k·x−ωkt),

where ak must be the kth Fourier coefficient of the initial wave A(0, x). We find then
that our solution to the wave equation is a superposition of plane waves; it might be
useful at this point to review our earlier discussion of plane electromagnetic waves
(see page 98).

Now we would like to apply these same ideas to the vector potential A for the
electromagnetic radiation in our black box [0, L]3, which we recall is determined by

∆A −
1
c2

∂2A
∂t2 = 0 and ∇ · A = 0.
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There are two minor complications. The wave equation is, in this case, a vector
equation and the physical interpretation requires that the solutions be real. We han-
dle these issues in the following way. Motivated by our experience in the previous
Example, we will begin by looking for complex solutions that are superpositions of
plane waves, that is, of the form

Ac(t, x) =
∑

k∈
[

2π
L Z

]3

Akei(k·x−ωkt),

where Ak is some constant vector with three complex components for each k and
ωk = ‖k‖ c. Generally it will be more convenient to write this as

Ac(t, x) =
∑

k∈
[

2π
L Z

]3

Ak(t)ei k·x,

where

Ak(t) = Ake−iωkt.

Remark 4.3.9. We are not aiming for rigorous theorems in this section, but only for
some appreciation of what led Planck to his “quantum hypothesis”. As a result we
will be somewhat cavalier in the following computations, basically doing everything
we need to do term-by-term in the series.
Computing the divergence term-by-term we find that the condition ∇ · Ac = 0 be-
comes

0 = ∇ · Ac(t, x) =
∑

k∈
[

2π
L Z

]3

i k · Ak ei(k·x−ωkt) =
∑

k∈
[

2π
L Z

]3

i k · Ak(t) ei k·x

so the uniqueness of Fourier expansions implies that

k · Ak(t) = 0

for every k ∈
[ 2π

L Z
]3 and every t ∈ R. Thus, each of the coefficients Ak(t) is or-

thogonal to the corresponding wavevector k, that is, to the direction of propagation
of the corresponding plane wave, for every t. We therefore choose, for each k, two
orthogonal unit vectors ε1

k and ε2
k in the plane perpendicular to k in R3 such that{

ε1
k, ε

2
k,k

}
is an orthogonal basis for R3 consistent with the usual orientation for R3

(that is, “right-handed”). Now we can write

Ak(t) = ak1(t)ε1
k + ak2(t)ε2

k =

2∑
α=1

akα(t)εαk .

where the akα(t) are generally complex. Recall from Section 4.2 that the electric
and magnetic field vectors of an electromagnetic plane wave are also orthogonal to
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each other and to the wavevector and that the direction of the electric field is called
the direction of polarization. For this reason ε1

k and ε2
k are also called polarization

directions. Notice that

Ȧk(t) = −iωkAk(t)

and so

Äk(t) = −ω2
k Ak(t).

Consequently,

äkα(t) + ω2
k akα(t) = 0

for every k and each α = 1, 2. Thus, each akα(t) satisfies the harmonic oscillator
equation with angular frequency ωk = ‖k‖c.

With this the complex solution becomes

Ac(t, x) =
∑

k∈
[

2π
L Z

]3

2∑
α=1

εαk akα(t)ei k·x.

Finally, to get a real solution we take the real parts.

A(t, x) =
1
2

∑
k∈

[
2π
L Z

]3

[
Ak(t)eik·x + Ak(t)e−ik·x]

=
1
2

∑
k∈

[
2π
L Z

]3

2∑
α=1

εαk
[
akα(t)ei k·x + akα(t)e−i k·x]

From (4.31) we obtain the electric field

E(t, x) = −
∂A
∂t

= −
1
2

∑
k∈

[
2π
L Z

]3

[
Ȧk(t)eik·x + Ȧk(t)e−ik·x]

=
i
2

∑
k∈

[
2π
L Z

]3

ωk
[
Ak(t)eik·x − Ak(t)e−ik·x]

=
i
2

∑
k∈

[
2π
L Z

]3

2∑
α=1

ωk ε
α
k
[
akα(t)ei k·x − akα(t)e−i k·x].

For the total electromagnetic energy contained in the black box (see (4.43)) we need
to compute
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R

ε0

2
‖E(t, x)‖2 d3x =

ε0

2

∫
R

E(t, x) · E(t, x) d3x =

−
ε0

8

∫
R

(∑
k

ωk
[
Ak(t)eik·x − Ak(t)e−ik·x]) · (∑

k′
ωk′

[
Ak′ (t)eik′·x − Ak′ (t)e−ik′·x]) d3x

= −
ε0

8

∑
k

∑
k′
ωkωk′

∫
R

[
Ak(t)eik·x − Ak(t)e−ik·x] · [Ak′ (t)eik′·x − Ak′ (t)e−ik′·x] d3x.

Now, fix a k ∈
[ 2π

L Z
]3. By the L2 orthogonality of the exponentials eik·x, all of these

integrals will be zero except when either k′ = k or k′ = −k. Consider k′ = k. Then

−
ε0

8
ω2

k

∫
R

[
Ak(t)eik·x − Ak(t)e−ik·x] · [Ak(t)eik·x − Ak(t)e−ik·x] d3x =

−
ε0

8
ω2

k

[
Ak(t) · Ak(t)

∫
R

e2ik·xd3x − 2Ak(t) · Ak(t)
∫

R
1 d3x + Ak(t) · Ak(t)

∫
R

e−2ik·xd3x
]
.

The first integral on the right-hand side is zero since it is the L2 inner product of
ei(3k)·x and eik·x and similarly for the third integral. The second integral is just the
volume of R, that is, L3. Furthermore, Ak(t) · Ak(t) = ‖Ak(t)‖2 = |ak1(t)|2 + |ak2(t)|2

so we obtain

−
ε0

8
ω2

k

∫
R

[
Ak(t)eik·x − Ak(t)e−ik·x] · [Ak(t)eik·x − Ak(t)e−ik·x] d3x

=
ε0L3ω2

k

4
‖Ak(t) ‖2

=
ε0L3ω2

k

4
(
| ak1(t) |2 + | ak2(t) |2

)
.

The same term arises from k′ = −k so, adding them and summing over k, we obtain∫
R

ε0

2
‖E(t, x)‖2d3x =

L3

2

∑
k∈

[
2π
L Z

]3

ε0 ω
2
k ‖Ak(t) ‖2.

Similar, but algebraically a bit more labor intensive computations give∫
R

1
2µ0
‖B(t, x)‖2d3x =

L3

2

∑
k∈

[
2π
L Z

]3

‖k‖2

µ0
‖Ak(t) ‖2.

However,

‖k‖2

µ0
=

ω2
k

c2µ0

=
ε0µ0ω

2
k

µ0
= ε0 ω

2
k
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so ∫
R

1
2µ0
‖B(t, x)‖2d3x =

L3

2

∑
k∈

[
2π
L Z

]3

ε0 ω
2
k ‖Ak(t) ‖2.

The energies contributed by the electric and magnetic fields are therefore the same.
From (4.43) we then obtain the total electromagnetic energy within the black box.

E =

∫
R

(
ε0

2
‖E(t, x)‖2 +

1
2µ0
‖B(t, x)‖2

)
d3x =

∑
k∈

[
2π
L Z

]3

L3ε0 ω
2
k ‖Ak(t) ‖2

=
∑

k∈
[

2π
L Z

]3

2∑
α=1

L3ε0 ω
2
k | akα(t) |2

Now recall that each akα satisfies the harmonic oscillator equation äkα +ω2
kakα =

0 and therefore the same is true of their real parts. We will now make a change of
variable to exhibit these real parts more explicitly. Specifically, for each k ∈

[ 2π
L Z

]3

and each α = 1, 2, we let

Qkα = akα + akα and Pkα =
L3ε0ωk

2i
(
akα − akα

)
.

Then

akα =
1
2

Qkα +
i

L3ε0ωk
Pkα and akα =

1
2

Qkα −
i

L3ε0ωk
Pkα

so

L3ε0 ω
2
k | akα |

2 = L3ε0 ω
2
k akα akα =

L3ε0ω
2
k

4
Q2

kα +
1

L3ε0
P2

kα.

Now let

M =
L3ε0

2
.

Then

L3ε0 ω
2
k | akα |

2 =
1

2M
P2

kα +
Mω2

k

2
Q2

kα

and we can write the total electromagnetic energy in the box as

E =
∑

k∈
[

2π
L Z

]3

2∑
α=1

( 1
2M

P2
kα +

Mω2
k

2
Q2

kα

)
. (4.47)
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From Example 2.3.4 we recall that the total energy of the classical harmonic os-
cillator of mass m and angular frequency ω is given in conjugate coordinates (q, p)
by 1

2m p2 + mω2

2 q2. This leads us to the following interpretation of (4.47). For each
k ∈

[ 2π
L Z

]3 and each α = 1, 2 we have a real-valued function Qkα of t satisfying the
harmonic oscillator equation. If we interpret this as a classical harmonic oscillator
with mass M = L3ε0/2 and angular frequency ωk and interpret Pkα as the momen-
tum conjugate to Qkα, then the energy of the oscillator is 1

2M P2
kα+

Mω2
k

2 Q2
kα. The sum

of the energies of this countable family of harmonic oscillators is precisely the total
electromagnetic energy contained in the box. Since the akα completely determine
the electromagnetic potential A and therefore also the electric E and magnetic B
fields, one can, at least for our purposes at the moment, identify the electromagnetic
field with a countable family of harmonic oscillators; this is what Fourier analysis
does for you.
Remark 4.3.10. These harmonic oscillators are generally called radiation oscilla-
tors and it is important to observe that they are independent in the sense that the
potential energy Mω2

k
2 Q2

kα of each contains no “interaction term” coupling it to any
of the others. Soon we will see that these oscillators can profitably be viewed as
analogous to the molecules of an ideal gas in thermal equilibrium.

Aside from the physical input provided by Maxwell’s equations the development
to this point has been entirely mathematical. We have resolved the relevant fields
into superpositions of plane waves ei(k·x−ωkt), calculated the total electromagnetic
energy in R and expressed it as the sum of the energies of a countable family of ra-
diation oscillators. What remains is to determine how the total energy is distributed
among the various frequencies of radiation present in R and for this the physics
becomes rather more serious and dominates the discussion.

We will begin with a few remarks on the sort of radiation one would typically
expect to find in a black box. When you turn on your oven and set it at the desired
temperature it will heat up and eventually reach thermal equilibrium and maintain
that temperature. What it will generally not do, however, is visibly glow as did the
iron bar in Figure 4.8. At the relatively moderate temperatures the oven can produce
the electromagnetic radiation within the box is in the infrared and not in the visible
range of the spectrum (see Figure 4.1). Infrared radiation has wavelengths on the
order of 10−6m to 10−4m. For an oven of typical size, L is a great deal larger than
this so the number of waves one can “fit in the box” is correspondingly very large.
This suggests adopting a procedure analogous to the usual one in the study of fluids
(see Remark 3.2.5) by regarding the number of oscillators as “virtually continuous”
(as a function of the wavelength or frequency) and representing it in terms of a
density function. The next step in our program is to determine this density function.

Each plane wave ei(k·x−ωkt) is uniquely determined by its wavevector k ∈
[ 2π

L Z
]3.

Its angular frequency ωk is uniquely determined by k = ‖k‖ (ωk = kc). The fre-
quency, however, does not uniquely determine the wavevector since distinct ele-
ments of

[ 2π
L Z

]3 can have the same k. Consequently, there are, in general, many
plane waves with the same frequency (but different directions of propagation). We
construct a geometrical picture of this in the following way. View

[ 2π
L Z

]3 as a lattice



124 4 Physical Background

in a copy of R3 (generally referred to as k space in the physics literature). Any point
in the lattice then corresponds to a plane wave whose angular frequency is just (c
times) its distance to the origin. Consequently, the problem of counting all of the
plane waves of a given frequency amounts to counting the number of lattice points
on a sphere of some radius about the origin. Generically, the answer is zero since
any radius k for which the sphere contains a lattice point must have a square k2 for
which L2k2/4π2 is an integer that is expressible as a sum of three squares. Even in
this case one must then know the number of ways in which L2k2/4π2 can be rep-
resented as a sum of three squares in order to count lattice points. For the purpose
of finding our density function we are more interested in the counting the number
S (k) of lattice points in a solid ball of radius k about the origin. Needless to say, one
cannot simply write down an explicit formula, but there are asymptotic results for
large k of the form

S (k) =
4
3
πk3 + O(kθ),

where θ is a positive real number (there is a review of the Landau Big O notation
in Remark 8.3.4). For example, this is known when θ = 29

22 and it is conjectured to
be true when θ = 1. These are deep number-theoretic results and we will have to
content ourselves with a reference to [CI] for those who are interested in learning
more about them. For our purposes we will need only a very crude estimate. Notice
that one can establish a one-to-one correspondence between the plane waves and the
cubes in the partition of R3 determined by the lattice points (for example, each such
cube is uniquely determined by the vertex (2π/L)(m1,m2,m3) with smallest m1, m2,
and m3). Consequently, we can count cubes instead of lattice points and the number
of cubes can be measured by the volume they take up. Now, let k be the radius of
some ball centered at the origin. Since the side length of each cube is 2π/L we will
define

N(k) =

4
3πk3

( 2π
L )3

=
L3

6π2 k3

and regard this as an approximate measure of the number of lattice cubes that fit
inside the ball (it’s generally not an integer, of course).
Exercise 4.3.4. Show that N(k) = 4

3πk3 + O(k2). Hint: Notice that

N(k − ε) <
4
3
πk3 < N(k + ε)

for any ε > 0 and consider N(k + ε) − N(k − ε).
Regarding N(k) as the integral of a continuous density function we find that this
density function is given by

V
2π2 k2,
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where we now write V for the volume L3 of the box. One often sees this density
expressed as a measure

V
2π2 k2dk

and, still more often, as a measure expressed in terms of ν = ω
2π = kc

2π , that is,

4πV
c3 ν2dν.

Finally, we notice that each of the plane waves, determined by k, actually determines
two radiation oscillators corresponding to the two independent polarization states
(α = 1, 2) so the number of oscillators in a given frequency range is determined by

8πV
c3 ν2dν. (4.48)

If you are keeping track, this is (29) in Chapter 1 of [Bohm], where it is described, in
the fashion of the physicists, as “the total number of oscillators [in the box] between
ν and ν + dν”.
Remark 4.3.11. A given choice of k ∈

[ 2π
L Z

]3 and of α ∈ {1, 2} corresponds to what
is called a mode of oscillation so the process we have just gone through is called
counting modes.

It will not have escaped your attention that, although we have had quite a bit
to say about electromagnetic radiation confined to a box, we have yet to mention
the characteristic feature of the radiation we are particularly interested in, that is,
the fact that it is in thermal equilibrium at some constant temperature T . This is
what we must contend with now as we try to understand how the total energy of
the electromagnetic radiation contained in the box is distributed among the various
radiation oscillators (that is, among the various modes). It would be disingenuous
to pretend that the tools we require for this are as elementary as those we have
needed so far. The main player in the remainder of the story is a result from classical
statistical mechanics due to Ludwig Boltzmann. This is not a mathematical theorem
so we can offer no proof, nor is it a consequence of anything we have said to this
point. It is the result of a deep analysis of the statistical behavior of certain very
special types of physical systems. We will try to explain where this result (called
the Boltzmann distribution) came from, what it is intended to describe, how it can
be used to get the wrong answer (4.37) and how it, together with Planck’s “act of
desperation”, can be used to get the right answer (4.41).
Remark 4.3.12. To get some idea of where the Boltzmann distribution comes from
and what it means it is probably best to put aside electromagnetic radiation for a
moment and consider instead the somewhat more familiar system that Boltzmann
himself studied. Let’s suppose then that our box R = [0, L]3 contains, not radia-
tion, but a gas consisting of N particles (molecules of oxygen, for example). N will
generally be huge (on the order of 1023). The so-called macrostate of this system is



126 4 Physical Background

specified by such quantities as the number N of molecules, the volume V , pressure
P, temperature T , and total energy E of the gas. These are not all independent, of
course (you may remember, for example, the ideal gas law PV = nRT from chem-
istry). This macrostate is determined by the states of the individual molecules (their
positions and momenta), but the size of N makes these inaccessible to us. Moreover,
many different configurations of the particle states (many different microstates) can
give rise to the same macrostate. The basic operating principle of statistical mechan-
ics is that, even though one cannot know the microstates, one can sometimes know
their statistical distribution (their probabilities) and this is often enough to compute
useful information. We will try to illustrate how this comes about.
Example 4.3.2. We begin with an oversimplified, but nevertheless instructive ex-
ample. Consider a container of volume V in which there is a gas consisting of N
independent, noninteracting point particles. We assume that the system is isolated
so that the total energy E is constant and that it has settled down into thermal equilib-
rium at temperature T . Although the amount of energy associated to a given particle
cannot be determined we will investigate how the energy is distributed among the
particles on average. Now for the oversimplification. We will, for the moment, as-
sume that each particle can assume only one of finitely many, evenly spaced energy
levels

ε0 = 0, ε1 = ε0 + ∆ε, ε2 = ε1 + ∆ε, . . . , εK = εK−1 + ∆ε.

A typical microstate will have n0 particles of energy ε0, n1 particles of energy ε1,
. . . , and nK particles of energy εK , where

K∑
i=0

ni = N (4.49)

and

K∑
i=0

niεi = E. (4.50)

Collisions between the particles will generally change the so-called occupation
numbers n0, n1, . . . , nK (or they could remain the same, but with different particles
occupying the energy levels ε0, ε2 . . . , εK). We assume that all possible divisions of
the total energy among the particles occur with the same probability and we seek
the configuration of particle energies that is most likely to occur, that is, the config-
uration that can be achieved in the largest number of ways. Here is an example that
you can work out by hand.
Exercise 4.3.5. Suppose N = 3 and K = 4 so that there are three particles P1, P2
and P3 and five possible energy states

ε0 = 0, ε1 = ε0 + ∆ε, ε2 = ε1 + ∆ε, ε3 = ε2 + ∆ε, ε4 = ε3 + ∆ε
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for the particles. Assume, however, that the total energy E of the system is 3∆ε.
Find all possible configurations of the particle energies and the number of ways
each can occur. What configuration is most likely and what is the probability that it
will occur? Hint: The columns below represent three possible configurations of the
particle energies.

ε4 : ∅ ∅ ∅

ε3 : ∅ ∅ P2

ε2 : P1 P2 ∅

ε1 : P2 P3 ∅

ε0 : P3 P1 {P1, P3}

Answer: The most likely configuration has one particle of energy ε0, one particle of
energy ε1 and one particle of energy ε2; its probability is 0.6.

The number of ways to take N particles and choose n0 of them to assign to the
energy level ε0 (without regard to the order in which they are chosen) is given by

the binomial coefficient
(
N
n0

)
= N!

n0!(N−n0)! . Then the number of ways to take the

remaining N − n0 particles and choose n1 of them to assign to the energy level ε1 is(
N − n0

n1

)
=

(N−n0)!
n1!(N−(n0+n1))! . Thus, the number of ways to do both of these is

(
N
n0

) (
N − n0

n1

)
=

N!
n0!n1!(N − (n0 + n1))!

.

Continuing inductively one finds that the number of configurations of the particle
energies that give rise to a microstate with n0 particles of energy ε0, n1 particles of
energy ε1, . . . , and nK particles of energy εK is

N!
n0!n1! · · · nK!

(4.51)

and this is called the weight of the configuration and denoted W = W(n0, n1, . . . , nK).
The most probable configuration is the one with maximal weight and so we want to
determine the values of n0, n1, . . . , nK for which (4.51) is as large as possible, subject
to the constraints (4.49) and (4.50). Needless to say, with integers on the order of
1023 the explicit expression (4.51) for W is hopeless so we will need to approximate.
The usual procedure is to take logarithms and apply Sterling’s Formula

ln(n!) = n ln n − n + O(ln n) as n→ ∞.

Crudely put, ln(n!) ≈ n ln n − n. From this we obtain
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ln W = ln(N!) −
K∑

i=0

ln(ni!)

≈ N ln N − N −
K∑

i=0

(ni ln ni − ni) = N ln N −
K∑

i=0

ni ln ni.

The bottom line then is that the most probable configuration of particle energies is
the one for which the occupation numbers n0, n1, . . . , nK maximize

ln W ≈ N ln N −
K∑

i=0

ni ln ni

subject to the constraints

K∑
i=0

ni = N

and

K∑
i=0

niεi = E.

This has all the earmarks of a problem in Lagrange multipliers except, of course,
for the fact that the variables take only integer values. One possibility is simply to
proceed formally, regarding n0, n1, . . . , nK as real variables, and applying the usual
Lagrange multiplier procedure; this is fairly straightforward and is done in consid-
erable detail on pages 582-583 of [AdeP] (although certainly not written for mathe-
maticians, Chapter 16 of this book contains a lot of interesting and easy reading on
the topics that we are breezing through rather quickly). In this way one obtains the
following (approximate) formulas for the occupation numbers of the most probable
configuration.

ni = N
e−βεi∑K

j=0 e−βε j
, i = 1, 2, . . . ,K,

where β is a constant. For systems in thermal equilibrium at temperature T (mea-
sured in Kelvin), thermodynamic considerations (Section 16.3(b) of [AdeP]) iden-
tify β as

β =
1
κBT

where κB is the Boltzmann constant (see page 111). The probability that a particle
has energy εi is therefore
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pi =
ni

N
=

e−εi/κBT∑K
j=0 e−ε j/κBT

=
e−εi/κBT

Z
, i = 1, 2, . . . ,K, (4.52)

where Z is the so-called partition function

Z =

K∑
j=0

e−ε j/κBT .

The utility of these computations resides in the fact that, for the extremely large
values of N that typically occur, this most probable configuration is much more
than most probable; statistically, it is essentially inevitable so that one can study an
equilibrium gas by studying this configuration.

The objection that classical physics would make to our last Example is that the
particle energies are not restricted to finitely many evenly spaced values ε0, ε1, . . . , εK ,
but rather can take on continuously many values so ε should be regarded as a real
variable in [0,∞). In this view the probabilities pi, i = 1, . . . ,K, would be replaced
by a probability distribution p = p(ε) given by the continuous analogue of (4.52),
that is,

p = p(ε) =
e−ε/κBT∫ ∞

0 e−ε/κBT dε
=

1
κBT

e−ε/κBT . (4.53)

This is the so-called Boltzmann distribution. From it one can compute the mean
energy E of the particles by weighting each energy ε with its probability p(ε) and
integrating over [0,∞). The resulting integral is completely elementary and one
obtains

E =
1
κBT

∫ ∞

0
εe−ε/κBT dε =

(κBT )2

κBT
= κBT.

Now it’s time to get back to the task at hand. We have been discussing gases in
thermal equilibrium, but only because they are rather familiar and intuitively acces-
sible. The arguments we have sketched are quite general and apply to any isolated
physical system in thermal equilibrium which can be thought of as consisting of a
very large number of independent subsystems. The system we have in mind is the
electromagnetic radiation in a black box in thermal equilibrium at temperature T .
We have seen that this can be regarded as a family of independent harmonic oscilla-
tors with total energy given by (4.47). If we assume that these radiation oscillators
behave in the way we would expect from our experience with masses on springs and
pendulums, that is, that their energies can take on continuously many values, then
the mean energy of the radiation is determined entirely by the temperature accord-
ing to E = κBT . Now recall the density function (4.48) for the number of radiation
oscillators in the box in a given frequency range. Dividing out the volume V we
obtain the density of oscillators per unit volume
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8π
c3 ν

2.

Approximating the energy of each oscillator by the mean energy E = κBT we arrive
at the density function

8πκBT
c3 ν2

for the energy per unit volume contained in a given frequency range. In terms of the
wavelength this becomes

8πκBT
λ4

which is precisely the Rayleigh-Jeans Law (4.38).
Well, this is lovely. We now know how to get the wrong answer (see Figure 4.11).

This is basically the conundrum that faced Max Planck in the last years of the 19th

century. The argument leading to the Rayleigh-Jeans Law seemed watertight and
yet the formula to which it led was quite wrong. What to do?
Remark 4.3.13. We should preface the remainder of our discussion by saying that
the path we will follow is not precisely the same as the path followed by Planck who
focused his attention not on radiation oscillators, but rather on material oscillators
in the walls of the box and how they interact with the radiation. Those who would
prefer to see Planck’s arguments are referred to his paper [Planck] of 1900 or the En-
glish translation available at http://web.ihep.su/dbserv/compas/src/planck00b/eng.
pdf. Also highly recommended are Chapters 18 and 19 of the wonderful book [Pais]
by Abraham Pais.

The argument we have given leads directly to the Rayleigh-Jeans formula, which
works quite nicely for large wavelengths / small frequencies, but fails miserably for
small wavelengths / large frequencies, where it seriously overestimates the energy
contribution of the modes. One needs to modify the argument in such a way as to
reduce this contribution at high frequencies. Planck’s idea (or rather, his “act of des-
peration”) was to assume that the oscillator energies did not vary continuously as
classical physics would demand, but were restricted to be integral multiples of some
basic unit of energy that is proportional to their frequencies. The constant of pro-
portionality is denoted h and its value would need to be determined by comparison
with the experimental results (Figure 4.10). Thus, we formulae Planck’s Hypothesis
in the following way.

The energy of a radiation oscillator of frequency ν can assume only one of the
following values.

εn = nhν, n = 0, 1, 2, . . .

Planck’s Hypothesis places us in a situation not unlike that of Example 4.3.2.
We have a discrete, albeit infinite, set of equally spaced (∆ε = hν) allowed energy

http://web.ihep.su/dbserv/compas/src/planck00b/eng.pdf
http://web.ihep.su/dbserv/compas/src/planck00b/eng.pdf
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levels. A countable version of the Boltzmann distribution gives the probability that
an oscillator is in the energy level εn as

pn =
e−εn/κBT∑∞
j=0 e−ε j/κBT =

e−nhν/κBT∑∞
j=0 e− jhν/κBT = e−nhν/κBT (1 − e−hν/κBT ),

where the last equality follows from the fact that the sum in the denominator is
geometric. As before, the mean energy E is obtained by weighting each energy
level εn with its probability pn and summing over all of the allowed energy levels.

E =

∞∑
n=0

εn pn = hν(1 − e−hν/κBT )
∞∑

n=0

ne−nhν/κBT .

We sum this series as follows. The function

∞∑
n=0

e−nx =

∞∑
n=0

(e−x)n =
1

1 − e−x

is real analytic for x > 0 so

d
dx

∞∑
n=0

e−nx = −

∞∑
n=0

ne−nx = −
e−x

(1 − e−x)2

for x > 0. In particular,

∞∑
n=0

ne−nhν/κBT =
e−hν/κBT

(1 − e−hν/κBT )2 .

From this we obtain

E =
hνe−hν/κBT

1 − e−hν/κBT =
hν

ehν/κBT − 1
.

Approximating, as we did before, the energy of each radiation oscillator by the mean
energy E we obtain the density function

ρT (ν) =

( 8π
c3 ν

2
) ( hν

ehν/κBT − 1

)
=

8πhν3

c3

1
ehν/κBT − 1

for the energy per unit volume at frequency ν and this is precisely Planck’s Law
(4.41). Notice that the mean energy is no longer constant, but decreases with in-
creasing frequency, thus reducing the contribution at high frequencies as we had
hoped to do. Comparing this ρT (ν) with the experimental results one finds that, by
taking the value of h to be 6.62606957 × 10−34m2(kg)/s, the fit is, within the limits
of experimental error, extremely precise for all T . So, now we understand where
Planck’s constant came from.
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When Planck presented his formula in 1900 no one doubted that it was correct.
His derivation of the formula, however, was regarded by the community of physi-
cists (and by Planck himself) as nothing more than a mathematical artifice for arriv-
ing at the correct relation and, so everyone thought, would inevitably be superseded
by an argument consistent with the cherished principles of classical physics.

“ The general attitude toward Planck’s theory was to state that ‘everything behaves
as if’ the energy exchanges between radiation and the black body occur by quanta,

and to try to reconcile this ad hoc hypothesis with the wave theory [of light].”

-Albert Messiah [Mess1]

With one exception, no one took Planck’s Hypothesis to be the harbinger of a new
perspective on physics. The exception, of course, was Einstein.

In 1905, Albert Einstein published four extraordinary papers in the Annalen der
Physik. All of these papers were revolutionary, but one of them [Ein1], entitled On
a Heuristic Point of View about the Creation and Conversion of Light, bordered on
the heretical (there is an English translation available in [ter H]). At a time when
Maxwell’s theory of electromagnetic radiation (and therefore of light) was virtually
sacrosanct one reads the following proposal that is in flat contradiction to Maxwell
equations and the myriad phenomena (diffraction, reflection, dispersion, ...) that they
so beautifully describe.

“According to the assumption considered here, when a light ray starting from a
point is propagated, the energy is not continuously distributed over an ever

increasing volume, but it consists of a finite number of energy quanta, localized in
space, which move without being divided and which can be absorbed or emitted

only as a whole.”

-Albert Einstein [Ein1]

Einstein postulated that a beam of monochromatic light could be treated as a
stream of particles (today we call them photons) moving with speed c in vacuo and
with an energy that depended only on the frequency and was given by the Planck
relation E = hν.
Remark 4.3.14. In hindsight, it is perhaps a little surprising that Einstein who, in
that same year, also introduced the Special Theory of Relativity, did not at that time
also associate a momentum to the photon since relativity specifies an essentially
unique way to define this. Nevertheless, Einstein did eventually do this (in 1916).
Specifically, the momentum of a photon is a vector p in the direction of its motion
with magnitude

p = ‖p‖ = hν/c.
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The reaction to Einstein’s proposal was immediate, universal and decidedly nega-
tive and the reason for this is not at all difficult to discern. Then, as now, the concepts
of “particle” and “wave” seemed irreconcilably distinct. One “thing” cannot be both
and, considering the success of Maxwell’s theory, light is a wave; end of story. But,
of course, that is not the end of the story. If there is a single, underlying, philosophi-
cal lesson that quantum theory requires us to learn it is that the conceptual apparatus
that has evolved in our species over eons of experience with the macroscopic world
around us is simply not up to the task of describing what goes on at the atomic and
subatomic levels. Among the concepts that we come to the game equipped with are
“particle” and “wave” and, as we shall see, they just won’t do.

None of this was clear yet in 1905. It was clear, however, that certain electromag-
netic phenomena seemed to resist inclusion into Maxwell’s theory. Einstein applied
his “Heuristic Point of View” to a number of these and we will briefly describe the
one that is best known. This is the so-called photoelectric effect. This phenomenon
was first observed by Hertz in 1887 and was subsequently studied by Hallwachs,
J.J. Thomson, and Lenard (brief descriptions of these experiments can be found
on pages 379-380 of [Pais]). The experiments themselves are delicate, but the con-
clusions to which they led are easy to describe. A metal surface is illuminated by
visible light or ultraviolet radiation. The radiation communicates energy to electrons
in the atoms of the metal and, if the amount of energy is sufficient, the electrons are
ejected and can be detected outside the metal. This, in itself, is easy to understand
on the basis of the wave theory of electromagnetic radiation, but there is more. It
was found that the speed of the ejected electrons (that is, their kinetic energy) did
not depend at all on the intensity of the radiation, but only on its frequency. Moving
the light source far from the metal (that is, decreasing the intensity of the radiation)
decreased only the number of electrons detected per second, but not their energies.
This would suggest that an electron must absorb a certain critical amount of energy
in order to be freed from the metal surface. Viewing the radiation as a wave, which
conveys energy continuously, one would be forced to conclude that, for a very low
intensity beam, the electrons would not be observed immediately since it would
take some time to store the necessary energy. However, this simply did not occur.
An extremely low intensity beam of the proper frequency produced the so-called
photoelectrons instantaneously. Despite many ingenious attempts, no one has ever
succeeded in reconciling this behavior with a wave theory of light. From Einstein’s
heuristic point of view, however, the explanation is simple. When a photon of en-
ergy hν collides with an electron in the metal it is entirely absorbed and the electron
acquires the energy hν regardless of how far the photon traveled. If the frequency
ν is sufficiently large (how large depends on the metal) the collision will eject the
electron.

Einstein, of course, did much more than offer this sort of qualitative explanation
of the photoelectric effect. His assumptions made very strong, testable predictions
about the behavior of the photoelectrons. Robert A. Millikan, one of the greatest
experimental physicists of the 20th century, devoted a decade of his life to testing
these predictions and, in the end and despite his firm conviction that Einstein must
be wrong, validated them all.
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What emerges from all of this is rather disconcerting. Light would appear to resist
classification as either “wave” or “particle”. Rather, it seems to have a dual charac-
ter, behaving in some circumstances as though it fit very nicely into our classical
conception of a wave and yet, in other circumstances, looking for all the world like
a particle.

4.4 2-Slit Experiments

In the previous section we saw how, in 1900, Max Planck, confronted with the ex-
perimental data on the spectrum of electromagnetic energy in thermal equilibrium,
was forced into what he regarded as the ad hoc assumption that harmonic oscillators
can emit and absorb energy only in discrete amounts nhν determined by their fre-
quency of oscillation. We saw also how Einstein, in 1905, elevated this hypothesis
to a general principle to account for the dual nature of electromagnetic radiation,
which behaves sometimes like a wave and sometimes like a particle. Then, in his
1924 Ph.D. thesis, Louis de Broglie suggested that this duality may be a character-
istic feature of nature at the quantum level so that even a presumed “particle” like
an electron would, under certain circumstances, exhibit “wave-like” behavior. He
postulated that the energy E of such a particle would be related to the frequency
ν of an “associated” wave (now called its de Broglie wave) by the Planck-Einstein
relation E = hν and that the wavelength λ of the wave was related to the magnitude
p of the linear momentum of the particle by p = h/λ. Shortly thereafter this wave-
like behavior of electrons was confirmed in experiments performed by Davisson and
Germer who found that a beam of electrons fired at a crystalline target experienced
the same sort of diffraction as would a beam of X-rays scattered from a crystal. It
may not, indeed, should not be clear at the moment what sort of “thing” this de
Broglie wave is, that is, what exactly is “waving”. We hope that this will appear
somewhat less obscure soon and then quite clear in Section 6.2, but for the present
we would like to examine another very beautiful experiment that not only exhibits
this wave-like behavior, but

“ ... has in it the heart of quantum mechanics. In reality, it contains the only
mystery.”

- Richard Feynman (Volume III, page 1-1, of [FLS])

Remark 4.4.1. Like the quotation above, much of our discussion in this section has
been shamelessly appropriated from the remarkable Feynman Lectures (specifically,
from Chapter 1, Volume III, of [FLS]) which one should certainly not pass up the
opportunity to read.
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Fig. 4.12 1-Slit Experiment with Water Waves

Let’s begin with something familiar (you may want to watch the video at
http://video.mit.edu/watch/ripple-tank-single-and-double-slit-diffraction-and-
interference-4276/ before we get started). Imagine plane water waves approaching a
barrier in which there is a small gap (see Figure 4.12). Emerging on the other side of
the gap one sees not plane, but rather circular waves (this is the phenomenon known
as diffraction).

Now imagine that the barrier has two small gaps. Circular waves of the same
amplitude emerge from each and, when they meet, they do what waves do, that is,
they interfere with each other, constructively when they meet in phase and destruc-
tively when they meet out of phase (see Figure 4.13 or, if you would like to try it
yourself, Figure 4.14). Notice, in particular, the radial lines where the two circular
waves meet with the same amplitude, but with a phase difference of π and therefore
cancel (a cork placed anywhere else would bob up and down, but not here).

Now let’s station a team of graduate students along a straight line parallel to the
barrier and instruct them to measure the intensity of the wave that arrives at their
location.
Remark 4.4.2. The intensity of a wave can be defined as the energy per unit volume
times the speed of the wave. Now, in general, a water wave is a very complicated
thing, in which the combination of both longitudinal and transverse waves can pro-
duce quite complicated motions of the water molecules (circles, for example); there
are some nice pictures at http://www.acs.psu.edu/drussell/Demos/waves/wavemotion
.html. Things are a bit simpler if the waves occur in a shallow body of water where,
as a first approximation, one can assume that the molecules exhibit the same simple
harmonic vertical motion as a cork placed nearby. In this case the energy is propor-
tional to the square of the maximum displacement, that is, to the square of the height

http://video.mit.edu/watch/ripple-tank-single-and-double-slit-diffraction-and-interference-4276/
http://video.mit.edu/watch/ripple-tank-single-and-double-slit-diffraction-and-interference-4276/
http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html
http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html
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Fig. 4.13 2-Slit Experiment with Water Waves

Fig. 4.14 Interference of Two Circular Waves

of the wave. The intensity is therefore also proportional to the square of the wave’s
amplitude and, for simplicity, we will make this assumption.

What sort of data would we expect our graduate students to collect? For a single
gap one would probably expect to get essentially a bell curve with a maximum
directly opposite the gap. Now, this is not entirely accurate. Even in the case of a
single slit (gap) there may be some interference effects present. These depend on the
width of the slit. One can understand this in the following way. As the wave enters
the slit we can regard each point within the slit as the source of a circular wave
leaving from there (this is essentially a consequence of what is called Huygens’
Principle). Such waves leaving from different points within the slit travel different
distances to arrive at the same point and so may meet in phase or out of phase
and this is just what interference means. One can compute the first points at which
the waves cancel to give zero intensity and push these off to infinity by taking the
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width of the slit equal to the wavelength of the impinging plane waves and then
one really does see something like a bell curve (there is a nice, brief discussion
of this at http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html). To keep
our discussion as simple as possible we will assume this has been done. Figure
4.15 shows such a bell-shaped intensity curve for each of the two gaps individually,
assuming that the other is covered up, as well as their pointwise sum.

Fig. 4.15 Sum of 2-Slit Intensities

With both gaps uncovered the circular waves leaving them interfere and as a
result the intensities certainly do not add. That is to say, the red curve in Figure 4.15
does not represent the data our students would record in this case. What we would
actually get is a curve of the sort shown in Figure 4.16 with a maximum opposite
the midpoint between the two gaps and local maxima decreasing as we recede from
this point and alternating with points of zero intensity corresponding to the radial
lines in Figures 4.13 and 4.14. Since the intensities for the two gaps individually
do not simply add to give the intensity corresponding to the situation in which both
gaps are open, one wonders if there is some other mathematical device that takes the
interference into account and “predicts” Figure 4.16. Indeed, there is, but we will
save this until we have looked at a few variants of this experiment with water waves.

Now let’s replace the water waves rushing toward a barrier with a light source
aimed at a wall with two small slits. The best choice for the light source is a laser
since it can produce light that is monochromatic (of essentially one frequency) and
coherent (constant phase difference over long intervals of space and time). We can
also replace our conscripted students measuring intensities with a screen that regis-
ters the arrival of the light (a high resolution camera, for example). We will gauge
the intensity of the light at the screen by its brightness.
Remark 4.4.3. We have already mentioned that the intensity of a wave is a well-
defined, physically measurable quantity. Brightness, however, is not since it is really
a function of how the light is perceived (by you, or by me, or by an owl). Never-
theless, for the sort of qualitative considerations you will find here we only need to
“gauge” the intensity, not measure it and brightness is a reasonable and very intu-
itive way of doing this. In particular, we don’t need to graph a brightness function;
we only need to look at the screen.

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html
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Fig. 4.16 2-Slit Intensity

What you actually see on the screen is shown in Figure 4.17, but we should point
out that you don’t really need to take anyone’s word for this. Surprisingly, it is quite
a simple matter to perform this experiment for yourself at home. If you would like
to try it you might, for example, have a look at the video instructions at
https://www.youtube.com/watch?v=kKdaRJ3vAmA. Notice that the result is pre-
cisely the same as for water waves: a region of maximal intensity/brightness in the
center with regions of decreasing brightness as one recedes from the center sepa-
rated by dark regions where the intensity/brightness is zero.

This should not come as a surprise if you are thinking of the light as electro-
magnetic waves; waves are waves, after all, whether water or light. However, in
Section 4.3 we saw that the light source can equally well be regarded as a emitting
a stream of particles (photons) and this would seem to present us with a problem.
To our classically conditioned minds, a particle approaching the wall will either hit
the wall or go through one of the two slits so that one would expect to see an image
on the screen quite unlike Figure 4.17. How does one reconcile this classical picture
with what actually happens without giving up photons altogether (an unacceptable
option in view of the success of Einstein’s analysis of the photoelectric effect)? One
can speculate and philosophize until the cows come home, but we will take the view
that the only honest way through this impasse (if there is one) is more careful obser-
vation, that is, more refined experiments. Fortunately, experimental physicists are
very clever and they have given us a few remarkable experiments to think about.

We would now like to describe the results of two experiments, both of which
were envisioned by Feynman, but neither of which was performed exactly as Feyn-
man saw it until much later. We describe them at the same time because, although

https://www.youtube.com/watch?v=kKdaRJ3vAmA
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Fig. 4.17 2-Slit Experiment with Light

the specifics of the experimental apparatus in the two experiments are quite differ-
ent, the results are precisely the same. In one of the experiments the “particles” are
photons while in the other they are electrons. In particular, electrons will be seen to
behave in exactly the same way as photons, thus confirming de Broglie’s hypoth-
esis concerning the wave/particle duality of even massive particles at the quantum
level. We will not be concerned with the details of the experimental apparatus or
procedure, but only with the results. For those who would like to learn more about
the hardware and the techniques involved, the photon experiment is described at
http://www.sps.ch/en/articles/progresses/wave particle duality of light for the class-
room 13/ and, for the electron experiment, one should consult [BPLB].

In each of the experiments the source (of photons or electrons) is attenuated
(weakened) to such an extent that the particles leave the source, and therefore arrive
at the wall, essentially one at a time. Such a particle might well run into the wall
and disappear, of course, but if it does not then what is observed in the experiment
is the appearance of a dot on the screen (just the sort of thing one would expect of a
classical particle). However, the dot is not necessarily where we would expect it to
be classically (near a point directly opposite some point in a slit). Indeed, allowing
another, and then another, and then another particle to emerge from the source one
obtains dots on the screen that, at first, appear to be almost randomly distributed on
the screen. But if we continue, allowing more and more particles to emerge over
longer and longer periods of time, a remarkable pattern begins to appear on the
screen (see Figure 4.18).
What we witness is the gradual build-up, point by point, of the same pattern of light
and dark strips that we would have obtained had we not bothered to send the parti-
cles one at a time. Certainly, some sort of interference is taking place, but how does

http://www.sps.ch/en/articles/progresses/wave_particle_duality_of_light_for_the_classroom_13/
http://www.sps.ch/en/articles/progresses/wave_particle_duality_of_light_for_the_classroom_13/
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Fig. 4.18 Single Particle 2-Slit Experiment

one account for it? This is quite mysterious, and it gets worse. Suppose we place
some sort of detector near each slit that will flash, or beep, or something when a
particle passes through that slit. Then we can keep track of where the corresponding
dot appears on the screen and maybe figure out how this strange interference pat-
tern is coming about; we’ll just watch the particles. This sounds like a great idea,
but if you actually do it you may walk away from your experiment with the feeling
that nature is thumbing her nose at you because the interference pattern disappears
altogether and the image on the screen is exactly what classical mechanics would
predict (this is described by Feynman in Section 1-6, Volume III, of [FLS] which is
so much fun that it should be on everyone’s “must read” list).

So, how do you explain all of this rather bizarre behavior? If by “explain” you
mean string together some elegant and imaginative combination of classical con-
cepts like “particle” and “wave”, then the answer is quite simple: You don’t! Every-
one has given up trying.

It is all quite mysterious. And the more you look at it the more mysterious it seems.

- Richard Feynman (Volume III, page 1-6, of [FLS])

An electron is not a particle and it is not a wave. To say that it behaves sometimes
like a particle (for example, when you detect it) and sometimes like a wave (when
you don’t) is a little better, but rather difficult to take seriously as an “explanation”.

It’s the way nature works. If you wanna know the way nature works, we looked at it
carefully, that’s the way it looks. If you don’t like it, go somewhere else.

- Richard Feynman, Lectures on Quantum Electrodynamics, University of
Auckland (available at http://vega.org.uk/video/subseries/8)

http://vega.org.uk/video/subseries/8
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Like it or not, the rules that govern the quantum world are entirely different than
those that govern the world in which our conceptual apparatus and our languages
evolved. We have no built-in concepts (“wavicle”?) that will come to our aid since
we are encountering these behaviors for the first time in our long, and not altogether
illustrious, evolutionary history. In lieu of a conceptual model that “explains” these
behaviors in terms of some more fundamental physical principles we will have to be
content with a mathematical model that accounts for the behaviors we have seen and
predicts an enormous number that we have not yet seen. This mathematical model is
really the subject of the rest of this manuscript, but we will take the first baby steps
toward its construction now.
Remark 4.4.4. Since it carries along with it so much classical baggage we would
like to avoid using the term “particle” as much as possible. The following discussion
is based on our rather limited experience with photons and electrons and everything
we say is equally true of either, but for the sake of having a single word to use we
will focus on electrons. A word of caution is in order, however. A proper discussion
of electrons must take into account another very important quantum mechanical
property they possess and that we have not seen and will not see until Section 9.1.
This is called “spin” and one cannot fully understand the behavior of electrons with-
out it. Even so, a detour at this point to introduce the notion of spin would only serve
to muddy the already rather murky waters so until further notice we will ignore the
effects of spin and, in Section 9.1, we will make any adjustments required to include
these effects.

What have we learned from the 2-slit experiment with electrons? Sending a single
electron from the source and assuming it makes it past the wall we obtain a dot at
the point where it is detected on the screen. Ideally, we would like to be able to
predict where this dot will appear. As we have seen, however, this does not seem to
be in the cards. Sending a few more electrons from the source we obtain dots that
seem almost randomly distributed on the screen. But if we let the experiment run
full course we find that the distribution of dots is not entirely random (Figure 4.19).

Fig. 4.19 2-Slit Electron Distribution
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The electrons seem most likely to land in the vertical strip in the center, not at
all likely to land in the dark vertical strips and progressively less likely to land
in the bright strips receding from the center. This suggests that we might want to
lower our expectations somewhat and try to predict only the probability that an
electron will be detected at some given point on the screen. The usual procedure in
classical probability theory would go something like this. Fix some point X on the
screen. An electron leaving the source can arrive at X either by passing through the
first slit S 1 or by passing through the second slit S 2. If P1 is the probability that
it arrives at X via S 1 and P2 is the probability that it arrives at X via S 2, then the
probability P12 that it arrives at X at all is P12 = P1 + P2. But we know already
that this cannot be the case (identify the intensity graphs in Figure 4.15 and Figure
4.16 with probability distributions). The problem, of course, is that these classical
probabilities take no account of the very interference effects that we are trying to
describe. How can we do this? For a hint let’s return for a moment to water waves
where the interference is simple and clear. This interference comes about because
of the phase difference of the two waves meeting at a point. If the phase difference
is zero (that is, if they are in phase), then the the resulting intensity is a maximum.
If the phase difference is π, then the resulting intensity is a minimum. For any other
phase difference there will be some, but not complete canceling and the resultant
intensity will be something between the minimum and the maximum intensities.
Now, complex numbers z = |z| eiϕ have an amplitude/modulus |z| and a phase ϕ and
have the property that

| z1 + z2 |
2 = |z1|

2 + |z2|
2 + 2|z1| |z2| cos (ϕ1 − ϕ2).

Consequently, | z1 + z2 |
2 achieves a maximum when ϕ1 − ϕ2 = 0, a minimum when

ϕ1 − ϕ2 = π and is otherwise something between the minimum and the maximum.
The idea then is to represent the probabilities P1 and P2 as the squared moduli of
complex numbers ψ1 = |ψ1| eiϕ1 and ψ2 = |ψ2| eiϕ2 , that is,

P1 = |ψ1|
2 and P2 = |ψ2|

2.

ψi, i = 1, 2, is called the probability amplitude for the electron to reach P via S i. One
then assumes that, unlike the probabilities themselves, the probability amplitudes
add so that the probability amplitude that the electron arrives at P at all is ψ1 + ψ2
and the so probability is

|ψ1 + ψ2|
2 = |ψ1|

2 + |ψ2|
2 + 2|ψ1| |ψ2| cos (ϕ1 − ϕ2).

How one assigns probability amplitudes to events is, of course, what quantum me-
chanics is all about so this will have to wait for a while, but we are at least in a
position to record what Feynman calls the First Principles of Quantum Mechanics.

First Principles of Quantum Mechanics

- Richard Feynman (Volume III, page 1-10, of [FLS])
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1. Because of the wave-like attributes of particles in quantum mechanics (de Broglie
waves) and the resultant interference effects, the probability P that a particular
event (such as the arrival of an electron at some location on a screen) will occur
is represented as the squared modulus P = |ψ|2 of a complex number ψ called the
probability amplitude of the event.

2. When there are several classical alternatives for the way in which the event can
occur and no measurements are made on the system, the probability amplitude of
the event is the sum of the probability amplitudes for each alternative considered
separately. In particular, if there are two possibilities with amplitudes ψ1 and ψ2
and probabilities P1 = |ψ1|

2 and P2 = |ψ2|
2, then the probability amplitude of the

event is ψ1 + ψ2 and the probability of the event is

P12 = |ψ1 + ψ2|
2 = |ψ1|

2 + |ψ2|
2 + 2 Re(ψ1ψ2).

The last term represents the effect of interference.
3. When a measurement is made to determine whether one or another of the classi-

cal alternatives in (2) is actually taken the interference is lost and the probability
P of the event is the sum of the probabilities for each alternative taken separately.
In particular, when there are just two alternatives, P12 = P1 + P2.

We begin to see then that what is “waving” in the case of an electron is a proba-
bility amplitude. This will be made precise in Chapter 6 with Schrödinger’s notion
of a “wave function”.
Remark 4.4.5. We will see in Section 8.1 how Feynman envisioned a generalization
of the 2-slit experiment in which there are many walls, each with many slits and
applied these First Principles to arrive at his notion of a path integral.





Chapter 5
Synopsis of Self-Adjoint Operators, Spectral
Theory and Stone’s Theorem

5.1 Introduction

Now that we have some modest appreciation of the sort of physical phenomena with
which quantum mechanics deals and why these necessitate a shift away from the
paradigm of classical particle mechanics, it is time to confront the rather substantial
mathematical background required for this paradigm shift. In this admittedly rather
lengthy section we will begin the process by providing a synopsis of the three pil-
lars of this mathematical structure: unbounded self-adjoint operators, the Spectral
Theorem and Stone’s Theorem. Despite its length, however, it is only a synopsis.
The definitions are given precisely and the theorems are stated precisely, but in lieu
of proofs we generally offer only a few detailed examples relevant to quantum me-
chanics and plentiful references. Those who are comfortable with these topics might
do well to proceed directly to Chapter 6 and refer back as the need arises.

Throughout Chapter 5 all Hilbert spaces are complex and separable.

Everyone is familiar with the Spectral Theorem for self-adjoint operators on a
finite-dimensional, complex inner product space H (a particularly nice treatment,
with an eye on the infinite-dimensional generalizations, is available in Chapter
Eleven of [Simm1]). In a nutshell, the theorem says simply that any such opera-
tor A is a finite linear combination

A =

n∑
i=1

λiPi

of orthogonal projections P1, P2, . . . , Pn, where the coefficients λ1, λ2, · · · , λn are
just the (necessarily real) eigenvalues of A. There is a relatively straightforward
generalization of the finite-dimensional theorem to operators A on a complex, sep-
arable, infinite-dimensional Hilbert space H that are self-adjoint and compact (see

145
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Remark 5.5.3 for the definitions). Here one simply replaces the finite sum with an
infinite series

A =

∞∑
i=1

λiPi, (5.1)

where P1, P2, . . . are still orthogonal projections, λ1, λ2, · · · are still the (necessarily
real) eigenvalues of A and the convergence is understood to be strong convergence
in H, that is,

∥∥∥ n∑
i=1

λiPiψ − Aψ
∥∥∥→ 0 as n→ ∞ ∀ψ ∈ H.

We will go through this version of the theorem a bit more carefully soon (a direct
proof is available in Section 93 of [RiSz.N]). There is also a generalization to arbi-
trary bounded, self-adjoint operators on H, but this is less straightforward. In this
case there need not be any eigenvalues at all and the sum is replaced by an integral
over the spectrum of the operator, but the integration is with respect to a “measure”
taking values in the set of projection operators on H. One can get some rough sense
of how these funny integrals arise by rewriting (5.1). Introduce projections

Eλ0 = 0
Eλ1 = P1

Eλ2 = P1 + P2

...

Eλn = P1 + P2 + · · · + Pn

...

Then (5.1) becomes

A =

∞∑
i=1

λi(Eλi − Eλi−1 ) = lim
n→∞

n∑
i=1

λi ∆Eλi

and one obtains something that at least looks like a Riemann-Stieltjes integral (these
are reviewed briefly in Remark 5.5.6). One might be tempted to write this as

A =

∫
λ dEλ

(this too we will go through a bit more slowly and more carefully soon). As it
happens, one can make rigorous sense of such Stieltjes integrals with respect to
“projection-valued measures” and thereby justify this sort of integral representation
for bounded, self-adjoint operators. We will sketch the procedure soon, but all of the
details are available in Section 6.7 of [Fried], Section 107 of [RiSz.N], Chapters 5-6
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of [TaylA], Chapter VII of [RS1], Chapter 12 of [Rud1], Section 3, Chapter XI, of
[Yosida], and a great many other places as well.

Regrettably, even this result is not adequate for our purposes since, as we indi-
cated at the close of Section 3.3, identifying observables in statistical mechanics
with operators on L2(Ω, µ) requires us to consider maps that are linear only on cer-
tain subspaces of L2(Ω, µ) and none of the results described above apply to these.
von Neumann faced the same problem in his study of the mathematical foundations
of quantum mechanics where essentially all of the relevant operators are of this type.
He solved the problem by developing yet another generalization of the spectral the-
orem that very closely resembled the result for bounded, self-adjoint operators, but
applied also to just the sort of operator we now have in mind. von Neumann’s “Spec-
tral Theorem for Unbounded Self-Adjoint Operators” is a bit technical, but it also
lies at the heart of quantum mechanics and we must try to provide some sense of
what it says and what it means. In the following synopsis we will try to provide
enough narrative to instill a reasonable level of comfort with the ideas, a number
of examples relevant to quantum mechanics to illustrate these ideas, and enough
references to facilitate access to the proofs we do not supply. Here are the sources
from which we will draw these references. Chapter III of [Prug] is very detailed
and readable and contains everything we will need. [RiSz.N] is a classic, also very
readable and contains a great deal more than we will need. Chapter 13 of [Rud1]
contains an elegant and very clear discussion, but one that will require a bit of back-
tracking that ultimately leads to the Gelfand-Naimark Theorem from the theory of
Banach algebras (a detour well worth taking, by the way). Chapter VIII, Sections
1-3, of [RS1] contains a number of different formulations of the spectral theorem,
many interesting examples and is specifically geared to the needs of quantum field
theory (which is discussed in [RS2]). but is also a bit more condensed. Also rather
condensed is the treatment in Sections 5-6, Chapter XI, of [Yosida], but the book
itself is very authoritative and contains a wealth of important material.

5.2 Unbounded Self-Adjoint Operators

As always, H will denote a separable, complex Hilbert space and we will write its
inner product as 〈 , 〉, assumed to be complex linear in the second slot and conjugate
linear in the first. Recall that a bounded operator on H is a linear map T : H → H

for which there is a constant K such that ‖Tψ‖ ≤ K‖ψ‖ ∀ψ ∈ H and that these are
precisely the linear maps from H to H that are continuous in the norm topology of
H. We will use the unmodified term operator to stand for a map

A : D(A)→ H,

where D(A) is a dense, linear subspace of H and A is linear on D(A). Two such
operators A and B are considered equal only if D(B) = D(A) and Bψ = Aψ for all ψ
in this common domain.
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Example 5.2.1. For any bounded operator T : H → H and any dense, linear sub-
space D of H, the restriction A = T |D of T to D is an operator in this sense. These,
of course, have bounded extensions to all of H, but this is generally not the case, as
we will now see.
Example 5.2.2. Let H = L2(R) be the space of (equivalence classes of) complex-
valued functions on R that are square integrable with respect to Lebesgue measure.
Let D = C∞0 (R) be the dense linear subspace of L2(R) consisting of smooth func-
tions with compact support (if density is not clear to you, this is proved in Theorem
5.6, Chapter II, of [Prug]). Define X : C∞0 (R)→ L2(R) by

(Xψ)(x) = xψ(x)∀x ∈ R.

Then X is clearly linear and therefore an operator on C∞0 (R). To see that it does not
have a bounded extension to L2(R) we will exhibit a sequence ψn, n = 0, 1, . . ., in
C∞0 (R) for which ‖ψn‖ = 1, but ‖Xψn‖ → ∞ as n→ ∞. Let ψ0 be any smooth, real-
valued, nonnegative function on R that has support contained in [0, 1] and ‖ψ0‖ = 1.
Exercise 5.2.1. If you have not constructed such a function before, do so now. Hint:
Exercise 2-26 of [Sp1].

For any n = 1, 2, . . . , define ψn by ψn(x) = ψ0(x − n). Then ψn is in C∞0 (R) and
has its support in [n, n + 1]. Moreover, in L2(R), ‖ψn‖ = ‖ψ0‖ = 1 ∀n ≥ 1 and

‖Xψn‖
2 =

∫
R

x2ψ2
0(x − n)dx =

∫
[n,n+1]

x2ψ2
0(x − n)dx

≥ n2
∫
R

ψ2
n(x)dx = n2‖ψn‖

2 = n2 → ∞

as n→ ∞.
Example 5.2.3. Notice that there was no particularly compelling reason to choose
C∞0 (R) as the domain in Example 5.2.2. Indeed, it might have been even more
natural to take the domain to be the set of all ψ in L2(R) for which the function
x→ xψ(x) is also in L2(R). This is certainly a linear subspace and, since it contains
C∞0 (R), it is also dense. With this domain the operator will play a particularly im-
portant role in our discussion of quantum mechanics so we will introduce a special
name for it and will revert to the custom in physics of using q rather than x for the
independent variable in R. Thus, we define an operator Q on

D(Q) =

{
ψ ∈ L2(R) :

∫
R

q2|ψ(q)|2dq < ∞
}

by (Qψ)(q) = qψ(q). The argument given in Example 5.2.2 again shows that Q has
no bounded extension to L2(R).
Remark 5.2.1. Although the reason may not be clear just yet we will refer to the
operator in Example 5.2.3 as the position operator on R. We will try to clarify
the origin of the name as we gain some understanding of quantum mechanics (see
Remark 6.2.8).
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It turns out that many issues that need to be resolved concerning an operator A
are very sensitive to the choice of domain and that the proper choice is very often
dictated by the problem (or the physics) with which one is coping at the moment.
We will write out some simple examples, all of which will figure heavily in our
subsequent discussion of quantum mechanics.
Example 5.2.4. Let H = L2(R). The operator P that we wish to consider is given
by

(Pψ)(q) = −i ~
dψ
dq
∀q ∈ R

(the reason for the factor −i will become clear shortly (see Remark 5.2.5) and the
reason for introducing the Planck constant ~ will emerge in Chapter 7) . Of course,
the derivative is not defined for all ψ in L2(R). Before specifying the domain we have
in mind for P we’ll review a few facts from real analysis (available, for example, in
Sections 25 and 26 of [RiSz.N]).
Remark 5.2.2. Let a < b be real numbers and consider a complex-valued function
f : [a, b]→ C on [a, b]. Then f is said to be absolutely continuous on [a, b] if ∀ε >
0∃ δ > 0 such that, for any finite family

{
[a1, b1], . . . , [an, bn]

}
of nonoverlapping

intervals in [a, b],
∑n

i=1(bi − ai) < δ implies
∑n

i=1 | f (bi)− f (ai)| < ε (nonoverlapping
means that the open intervals (ai, bi) are pairwise disjoint). Any such function is
uniformly continuous and of bounded variation on [a, b]. The set of all absolutely
continuous functions on [a, b] is denoted AC[a, b] and it is a complex vector space.
For our purposes the two most important facts about AC[a, b] are the following.

1. f ∈ AC[a, b]⇔ f is differentiable a.e., f ′ ∈ L1[a, b], and f (q)− f (a) =
∫ q

a f ′(t)dt
for all q ∈ [a, b].

2. For all f , g ∈ AC[a, b],∫ b

a
f (q)

dg
dq

dq = f (b)g(b) − f (a)g(a) −
∫ b

a

d f
dq

g(q)dq (Integration by Parts)

Now, as our domain for P we take

D(P) =

{
ψ ∈ L2(R) : ψ ∈ AC[a, b]∀a < b inR and

dψ
dq
∈ L2(R)

}
(motivation for this choice is to be found in Example 5.2.7). D(P) is clearly a linear
subspace of L2(R) and it is dense because it contains C∞0 (R). To see that P does not
have a bounded extension to L2(R) we will exhibit a sequence ψn, n = 1, 2, . . ., in
D(P) for which ‖ψn‖

2 =
√
π and ‖Pψn‖

2 → ∞ as n→ ∞. One possible choice is as
follows. Let

ψn(q) = einqe−q2/2, n = 1, 2, . . . .

Then, from the Gaussian integral (A.1) in Appendix A,
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‖ψn‖
2 =

∫
R

ψn(q)ψn(q)dq =

∫
R

e−q2
dq =

√
π,

so each ψn is a smooth element of L2(R).
Exercise 5.2.2. Show that ψn ∈ D(P) for each n = 1, 2, . . ..
Moreover,

(Pψn)(q) = ~ nψn(q) + i~ qψn(q) = ~(n + qi)ψn(q).

By Exercise A.0.3 (2) in Appendix A,∫
R

q2e−q2
dq =

√
π

2
,

so

‖Pψn‖
2 = ~2 √π (n2 +

1
2

)

and therefore Pψn is in L2(R), but ‖Pψn‖
2 → ∞ as n→ ∞.

Remark 5.2.3. The operator in Example 5.2.4 is called the momentum operator on
R. As for the position operator Q we will try to explain the reason for the name as
we develop some understanding of quantum mechanics (see Remark 6.2.15).

An operator A : D(A)→ H, such as X, Q or P in the last three examples, defined
on a dense linear subspace of H that does not have a bounded extension to all of H
is called an unbounded operator. Next we must try to make sense of “self-adjoint”
for such operators.

Recall that, for any bounded operator T : H → H, there exists a unique bounded
operator T ∗ : H → H, called the adjoint of T , satisfying 〈Tφ, ψ〉 = 〈φ,T ∗ψ〉 for
all φ, ψ ∈ H. For unbounded operators the situation is a bit more delicate. We will
define the adjoint for an unbounded operator A : D(A) → H by first specifying its
domain. Specifically, we let D(A∗) be the set of all φ ∈ H for which there exists an
η ∈ H such that 〈Aψ, φ〉 = 〈ψ, η〉 for every ψ ∈ D(A). Notice that D(A∗) contains
at least 0 and is a linear subspace. For each φ ∈ D(A∗), η is uniquely determined
because D(A) is dense. Thus, we can define the adjoint A∗ of A by

A∗φ = η ∀φ ∈ D(A∗)

so that

〈Aψ, φ〉 = 〈ψ, A∗φ〉 ∀ψ ∈ D(A) ∀φ ∈ D(A∗).

A∗ is linear on D(A∗), but D(A∗) need not be dense in H so A∗ need not be densely
defined. Next we introduce a condition on A that ensures the density of D(A∗) and
therefore ensures that A∗ is an “operator” in our sense of the term.

An operator A : D(A) → H is said to be closed if, whenever ψ1, ψ2, . . . ∈ D(A)
converges to a vector ψ in H and Aψ1, Aψ2, . . . converges to some vector φ in H, then
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ψ is in D(A) and φ = Aψ. This can be phrased more picturesquely in the following
way. Recall that the algebraic direct sum H ⊕H of the vector space H with itself
has a natural Hilbert space structure with the inner product defined by〈

(φ1, ψ1), (φ2, ψ2)
〉

= 〈φ1, φ2〉 + 〈ψ1, ψ2〉.

The graph Gr(A) of the operator A : D(A) → H is the linear subspace of H ⊕H

defined by

Gr(A) =

{
(φ, Aφ) : φ ∈ D(A)

}
.

Then A is a closed operator if and only if Gr(A) is a closed linear subspace of H⊕H.
The Closed Graph Theorem from functional analysis (see, for example, Theorem
4.64 of [Fried]) implies

Theorem 5.2.1. A closed operator A : H → H defined on the entire Hilbert space
H is bounded.

An operator A : D(A) → H that is not closed may nevertheless have a closed
extension, that is, there may be a closed operator Ã : D(Ã)→ H with D(A) ⊆ D(Ã)
and Ã

∣∣∣D(A) = A. In this case we say that A is closable. Any closable operator has
a minimal closed extension A : D(A) → H, that is, one for which any other closed
extension Ã : D(Ã)→ H of A is also an extension of A. A is called the closure of A
and, in fact, the graph of A is just the closure in H ⊕H of the graph of A

Gr( A ) = Gr(A)

(this is the Proposition on page 250 of [RS1]). The following is Theorem VIII.1 of
[RS1].

Theorem 5.2.2. Let A : D(A)→ H be an operator on a Hilbert space H. Then

1. A∗ is closed.
2. A is closable if and only if D(A∗) is dense in which case A = A∗∗.
3. If A is closable, then ( A )∗ = A∗.

In particular, it is precisely for closable operators A that the adjoint A∗ qualifies
as an “operator” according to our definition. An operator A : D(A) → H is said
to be self-adjoint if it equals its adjoint in the sense that D(A∗) = D(A) and A∗ψ =

Aψ∀ψ ∈ D(A).
Remark 5.2.4. In the formalism of quantum mechanics (Chapter 6) self-adjoint op-
erators will play the role of the observables. We will write out some important ex-
amples shortly.

A self-adjoint operator A is a closed operator and it satisfies

〈Aψ, φ〉 = 〈ψ, Aφ〉 ∀ψ, φ ∈ D(A). (5.2)
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Note, however, that (5.2) is not equivalent to self-adjointness. An operator A that
satisfies (5.2) is said to be symmetric (or formally self-adjoint). For any symmetric
operator A it is clear that D(A) ⊆ D(A∗). However, it is possible for the containment
to be proper, in which case A is not self-adjoint. The details of the following example
appear on pages 257-259 of [RS1].
Example 5.2.5. We let H = L2[0, 1] and consider the operator A = −i~ d

dx on the
following subspace of the space AC[0, 1] of complex-valued, absolutely continuous
functions on [0, 1].

D(A) =

{
ψ ∈ AC[0, 1] :

dψ
dx
∈ L2[0, 1], ψ(0) = ψ(1) = 0

}
Now, for φ, ψ ∈ D(A) we compute, from the Integration by Parts formula (Remark
5.2.2),

〈Aψ, φ〉 =

∫ 1

0

(
− i~

dψ
dx

)
φ(x)dx = i~

∫ 1

0
φ(x)

d ψ
dx

dx

= i~
[
φ(1)ψ(1) − φ(0)ψ(0)

]
− i~

∫ 1

0

dφ
dx

ψ(x)dx

=

∫ 1

0
ψ(x)

(
− i~

dφ
dx

)
dx

= 〈ψ, Aφ〉

and conclude that A : D(A)→ L2[0, 1] is symmetric.
Remark 5.2.5. Notice that we needed the factor of i in A for this to work; the minus
sign is conventional.

In [RS1] it is shown that the adjoint A∗ of A is the operator A∗ = −i~ d
dx on

D(A∗) =

{
ψ ∈ AC[0, 1] : dψ

dx ∈ L2[0, 1]
}
. Since D(A∗) properly contains D(A), A is

not self-adjoint despite the fact that A and A∗ agree where they are both defined. It is
also shown in [RS1] that A is closed and has (lots of) self-adjoint extensions. By way
of contrast, Problem 5, Chapter VIII, of [RS1] gives a densely defined, symmetric
operator with no self-adjoint extensions.

There are some useful criteria for determining when a symmetric operator is
self-adjoint. The following is Theorem VIII.3 of [RS1]; here, and henceforth, we
will use Kernel (A) to denote the kernel of an operator A, Image (A) to denote its
image (range), and will write simply “k” for the operator that is multiplication by
the constant k ∈ C.

Theorem 5.2.3. Let A : D(A) → H be a symmetric operator. Then the following
are equivalent.

1. A is self-adjoint.
2. A is closed and Kernel (A∗ ± i) = {0}.
3. Image (A ± i) = H.
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Since the proof uses only ideas that we have already described, you may like to try
it yourself with a few hints.
Exercise 5.2.3. Prove Theorem 5.2.3. Hints:

1. For (1) ⇒ (2), assume A is self-adjoint and show that A∗ψ = iψ implies
−i〈ψ, ψ〉 = i〈ψ, ψ〉. Similarly for A∗ψ = −iψ.

2. For (2) ⇒ (3), show, for example, that if A∗ψ = −iψ has no nonzero solutions,
then Image (A− i)⊥ = 0 so Image (A− i) is dense. Then show that since A closed
and ‖(A− i)ψ‖2 = ‖Aψ‖2 +‖ψ‖2, Image (A− i) is closed so that Image (A− i) = H.

3. For (3)⇒ (1), let φ ∈ D(A∗). Select η ∈ D(A) such that (A − i)η = (A∗ − i)φ and
show that (A∗ − i)(φ − η) = 0 so φ = η and therefore D(A∗) = D(A).

For a symmetric operator A : D(A) → H, D(A) ⊆ D(A∗) and D(A) is dense so
D(A∗) is also dense. Consequently, a symmetric operator is always closable since
A∗ is always closed. If the closure A : D(A)→ H of A is self-adjoint, then A is said
to be essentially self-adjoint. In this case, A is the unique self-adjoint extension of
A and, in fact, the converse is also true, that is, a symmetric operator is essentially
self-adjoint if and only if it has a unique self-adjoint extension (see page 256 of
[RS1]). From the previous theorem one obtains the following criteria for essential
self-adjointness.

Corollary 5.2.4. Let A : D(A) → H be a symmetric operator. Then the following
are equivalent.

1. A is essentially self-adjoint.
2. Kernel (A∗ ± i) = {0}.
3. Image (A ± i) are both dense in H.

Exercise 5.2.4. Prove Corollary 5.2.4 from Theorem 5.2.3.
Exercise 5.2.5. Show that a self-adjoint operator is maximally symmetric, that is,
has no proper symmetric extensions.
Example 5.2.6. We consider the operator Q : D(Q) → L2(R) of Example 5.2.3. Q
is symmetric since ψ, φ ∈ D(Q) implies

〈Qψ, φ〉 =

∫
R

Qψ(q)φ(q)dq =

∫
R

qψ(q)φ(q)dq

=

∫
R

ψ(q)(qφ(q))dq = 〈ψ,Qφ〉.

We will give two proofs that Q is self-adjoint. For the first we will appeal directly to
the definition and for the second we will show that Image (Q ± i) = L2(R) and use
Theorem 5.2.3 (3). For the first proof we note that, by symmetry, D(Q) ⊆ D(Q∗)
so it will suffice to show that D(Q∗) ⊆ D(Q). By definition, D(Q∗) consists of all
φ ∈ L2(R) for which there is an η ∈ L2(R) with∫

R

( qψ(q) ) φ(q)dq =

∫
R

ψ(q)η(q)dq ∀ψ ∈ D(Q),
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that is, ∫
R

ψ(q) [qφ(q) − η(q)] dq = 0 ∀ψ ∈ D(Q).

Since this last equation must be satisfied for all ψ in the dense set D(Q), we must
have η(q) = q φ(q) almost everywhere. In particular, q φ(q) is in L2(R) and this puts
φ in D(Q) so D(Q∗) ⊆ D(Q), as required.

Now for the second proof we notice that

(Q ± i)ψ(q) = (q ± i)ψ(q)

and that q ± i , 0 since q ∈ R. Now, for any ϕ ∈ L2(R), 1
q±i ϕ(q) is in D(Q) since

q2
∣∣∣∣∣ 1
q ± i

ϕ(q)
∣∣∣∣∣2 =

q2

q2 + 1
|ϕ(q)|2 ≤ |ϕ(q)|2.

Since (Q ± i)
( 1

q±i ϕ(q)
)

= ϕ(q), Image (Q ± i) = L2(R) as required.
Exercise 5.2.6. Show similarly that, if g : R → R is a real-valued measur-
able function, then the multiplication operator Qg : D(Qg) → L2(R) defined by
(Qgψ)(q) = g(q)ψ(q) on D(Qg) = {ψ ∈ L2(R) :

∫
R

g(q)2|ψ(q)|2dq < ∞} is self-
adjoint.
Exercise 5.2.7. Show that Q is essentially self-adjoint on S(R).
Somewhat later (Theorem 5.3.1) we will also need the following analogous result.
Exercise 5.2.8. Let N = {1, 2, . . .} denote the set of natural numbers and consider
the Hilbert space `2(N) of square summable sequences of complex numbers, that is,

`2(N) =

{
x = (x1, x2, . . .) : xi ∈ C, i = 1, 2, . . . , and

∞∑
i=1

|xi|
2 < ∞

}
with coordinatewise algebraic operations and 〈x, y〉 =

∑∞
i=1 xiyi. Note that this is

just L2(N, µ), where µ is the point measure (also called the counting measure) on
N. Let λ = (λ1, λ2, . . .) be a sequence of real numbers and define a multiplication
operator Qλ on D(Qλ) =

{
x = (x1, x2, . . .) ∈ `2(N) :

∑∞
i=1 λ

2
i |xi|

2 < ∞
}

by Qλ(x) =

Q(λ1,λ2,...)(x1, x2, . . .) = (λ1x1, λ2x2, . . .). Show that Qλ is self-adjoint.
Example 5.2.7. Now we wish to consider the operator P in Example 5.2.4. One
can find a direct proof that P is self-adjoint on D(P) in Example 3, page 198, of
[Yosida], but we would like to follow a different route. Essentially, we would like to
turn Example 5.2.4 into Example 5.2.3 by applying the Fourier transform. Before
long we will see that this is standard operating procedure in quantum mechanics
for switching back and forth between “position space” and “momentum space” so it
will be nice to get a taste of it early on. First, however, this would seem to be the ap-
propriate place to record the information we need concerning the Fourier transform
in dimension one.
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Remark 5.2.6. Eventually, we will need to review, and even generalize, the basic
properties of the Fourier transform on Rn, but for the moment we need only the
n = 1 case so we will be content with that. We will provide a fairly extensive syn-
opsis, but, again, only a synopsis. All of this material is accessible in many sources,
for example, Chapter IX of [RS2] or Sections 1-3, Chapter VI, of [Yosida]; there is
also a nice, concise discussion in Sections 2-1 and 2-2 of [SW].

The following digression on Fourier transforms and tempered distributions on R

is rather lengthy so if this material is familiar you may want to proceed directly to
page 165 and refer back as the need arises.

The Schwartz space S(R) of rapidly decreasing smooth, complex-valued func-
tions on R is defined by

S(R) =

{
f ∈ C∞(R) : ∀k, n = 0, 1, 2, . . . , sup

q∈R

∣∣∣ qk f (n)(q)
∣∣∣ < ∞}

,

where f (n)(q) denotes the nth derivative of f (q) and f (0)(q) = f (q). Thus, the ele-
ments of S(R) are smooth, complex-valued functions on R which, together with all
of their derivatives, decrease in absolute value more rapidly than the reciprocal of
any polynomial as q → ±∞. Examples include such things as f (q) = qme−q2/2 for
any integer m. S(R) is an infinite-dimensional complex vector space. It also has the
topological structure of a Fréchet space. What this means is the following (one can
find a useful discussion of Fréchet spaces with lots of examples in [Ham]). For each
k, n = 0, 1, 2, . . . we define a semi-norm on S(R) by

‖ f ‖k,n = sup
q∈R

∣∣∣ qk f (n)(q)
∣∣∣.

These are semi-norms and not norms because ‖ f ‖k,n = 0 does not, in general,
imply f = 0; for example, if f is a constant function and n > 0. These determine a
complete metric ρ on S(R) defined by

ρ( f , g) =

∞∑
k,n=0

2−k−n ‖ f − g‖k,n
1 + ‖ f − g‖k,n

and with the property that, for any sequence { f j}
∞
j=1 in S(R), ρ( f , f j)→ 0 if and only

if ‖ f − f j ‖k,n → 0 for all k and n. The Fréchet topology on S(R) is the metric topol-
ogy determined by ρ. Notice that convergence in this topology is very restrictive.
For example, the sequence { 1j e

−q2/ j2 }∞j=1 converges uniformly to zero on all of R, but
does not converge in S(R) because, for example,∥∥∥∥∥ 1

j
e−q2/ j2

∥∥∥∥∥
1,0

= sup
q∈R

∣∣∣∣∣ q
j
e−q2/ j2

∣∣∣∣∣ = max
x∈R

∣∣∣∣∣ xe−x2
∣∣∣∣∣ =

1
√

2e
.
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Notice that C∞0 (R) is contained in S(R); relative to the Fréchet space topology it is,
in fact, dense in S(R).
Exercise 5.2.9. Show that the position operator Q (Example 5.2.3) and momentum
operator P (Example 5.2.4) are both essentially self-adjoint on the Schwartz space
S(R).

On S(R) we define the Fourier transform

F : S(R)→ S(R)

as follows. For f ∈ S(R), F f = f̂ is the complex-valued function of a real variable
p defined by

(F f )(p) = f̂ (p) =
1
√

2π

∫
R

e−ipq f (q)dq. (5.3)

Remark 5.2.7. We should point out that there are numerous alternative conven-
tions in the literature for the definition of the Fourier transform most of which
differ from ours only in the choice of various constants (we have adopted the
convention of [RS2]). In harmonic analysis, for example, it is common to define
f̂ (p) =

∫
R

e−2πipq f (q)dq, whereas in quantum mechanics one often sees f̂ (p) =
1
√

2π~

∫
R

e−ipq/~ f (q)dq. We will, in fact, use this last convention when it seems pru-
dent to arrive at the formulas one encounters in the physics literature (in which case
we will write F~ for F). The essential features of the transform are the same for all
of these variants and one need only make a change of variable to keep track of where
the constants appear or disappear. The crucial property of all of these definitions is
that the Fourier transform of a Schwartz function of q is a Schwartz function of p
(the reason this is crucial will become clear when we extend the Fourier transform,
first to L2(R) and then to tempered distributions).

In fact, F is a linear bijection of S(R) onto S(R); it is also continuous with respect
to the Fréchet topology. We’ll compute just one simple example that we will need
later.
Example 5.2.8. For any positive real number αwe define f ∈ S(R) by f (q) = e−αq2/2

Then

(F f )(p) = f̂ (p) =
1
√

2π

∫
R

e−ipqe−αq2/2dq =
1
√

2π

∫
R

e−αq2/2−ipqdq.

Making the change of variable t =
√
α
2 q and then completing the square in the

exponent gives

f̂ (p) =
1
√

2π

√
2
α

∫
R

e−(t+ip/
√

2α)2
e−p2/2αdt

=
e−p2/2α

√
απ

∫
R

e−(t+ip/
√

2α)2
dt.



5.2 Unbounded Self-Adjoint Operators 157

To evaluate this last integral we will appeal to the Cauchy Integral Theorem to con-
clude that, for every R > 0,

∫
CR

e−z2
dz = 0, where CR is the closed rectangular

contour of length 2R and width p/
√

2α shown in Figure 5.1.

Fig. 5.1 Contour Integral

Thus,

0 =

∫ R

−R
e−t2

dt + i
∫ p/

√
2α

0
e−(R+iτ)2

dτ −
∫ R

−R
e−(t+ip/

√
2α)2

dt − i
∫ p/

√
2α

0
e−(−R+iτ)2

dτ.

As R→ ∞ the second and fourth integrals clearly go to zero so this reduces to∫
R

e−(t+ip/
√

2α)2
dt =

∫
R

e−t2
dt =

√
π

(for the last equality see (A.1) in Appendix A). Consequently,

f̂ (p) =
e−p2/2α

√
α

Remark 5.2.8. With a bit more work one can show in a similar way that this formula
is also true when α is complex with positive real part, provided

√
α is taken to be

the branch of the square root with branch cut along the negative real axis. There is
another argument giving this same result that we will describe in Example 5.2.9.

Since F : S(R)→ S(R) is a bijection, it has an inverse

F−1 : S(R)→ S(R)

and this turns out to be easy to describe. For g ∈ S(R), F−1g = ǧ is given by

(F−1g)(q) = ǧ(q) =
1
√

2π

∫
R

eipqg(p)dp. (5.4)

F−1 is also Fréchet continuous.
Remark 5.2.9. It is worth taking a moment to write out the equality f = F−1(F f )
for f ∈ S(R) explicitly in terms of (5.3) and (5.4)



158 5 Synopsis of Self-Adjoint Operators, Spectral Theory and Stone’s Theorem

f (q) =
1
√

2π

∫
R

eipq f̂ (p)dp =

∫
R

( 1
2π

∫
R

e−ipq f (q)dq
)

eipq dp (5.5)

and notice its similarity to the Fourier series expansion

f (θ) =
∑
n∈Z

( 1
2π

∫
S 1

e−inφ f (φ)dφ
)

einθ

of a 2π-periodic function on R or, equivalently, a function on the circle S 1. Both
of these are, in fact, instances of the same phenomenon, one discrete and one con-
tinuous. One thinks of the value f̂ (p) of the Fourier transform of f at p ∈ R as
the pth-component of f (q) in the integral (“continuous sum”) decomposition of f
given by (5.5). Motivated by many of the common applications (such as vibrating
strings), one often views q intuitively as a coordinate in physical space, while p is a
frequency. Then (5.5) is a frequency decomposition of f with f̂ (p) quantifying the
“amount” of the frequency p contained in f (q).

Every element of S(R) is also an element of L2(R) so we can identify S(R) with
a linear subspace (not a topological subspace) of L2(R); it is, in fact, dense in L2(R).
The Plancherel Theorem then gives 〈 f̂ , ĝ〉 = 〈 f , g〉 ∀ f , g ∈ S(R) so F extends to a
unique unitary map, also denoted F, of L2(R) onto itself.

F : L2(R)→ L2(R)

This extension is also referred to as the Fourier transform, or sometimes the Fourier-
Plancherel transform, and its inverse

F−1 = F∗ : L2(R)→ L2(R)

will still be called the inverse Fourier transform. For f ∈ L1(R) ∩ L2(R), f̂ can
be computed from the same formula (5.3) as for S(R), but for a general element of
L2(R) this integral need not exist. One way to describe f̂ for an arbitrary element of
L2(R) is as an L2-limit of Fourier transforms of functions in L1(R)∩ L2(R). Specif-
ically, for every n ≥ 1 we define fn(q) = f (q) χn(q), where χn is the characteristic
function of the interval [−n, n]. Then fn ∈ L1(R) ∩ L2(R) and the Monotone Con-
vergence Theorem implies that, in L2(R), fn → f as n → ∞. In particular, { fn}∞n=1
is Cauchy in L2(R) so, by Parseval’s Theorem, { f̂n}∞n=1 is also Cauchy in L2(R) and
therefore it converges in L2(R). Computing f̂n from (5.3) one has the following
L2-limit for F f = f̂

F f = f̂ = lim
n→∞

f̂n.

Remark 5.2.10. We should point out that, although the (Lebesgue) integral that
defines the Fourier transform on S(R) and L1(R) generally does not exist for f ∈
L2(R), it is nevertheless the case that the Fourier transform of such an f can be
computed as an improper integral. Indeed,
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(F f )(p) = f̂ (p) = lim
M→∞

1
√

2π

∫
[−M,M]

e−ipq f (q)dq, (5.6)

where the limit is in L2(R). In light of this it is not uncommon hear it said that the
Fourier transform of an L2(R) function can be written in the form (5.3), provided
the integral is interpreted in the sense of (5.6). We will bow to the tradition of using
the same (Lebesgue) integral symbol to denote the function defined by this L2-limit.
However, since we will face this same issue at several points in the sequel we would
like to at least have some terminology to distinguish this new notion of “integral”.
We will define it here just for functions on R and will generalize when the need
arises. Let g be an element of L2(R) and let k : R ×R → C be a function with the
following properties. For any M > 0,

1. k( · , p) ∈ L1([−M,M]) for almost every p ∈ R.
2.

∫
[−M,M] k(q, p) dq is in L2(R) as a function of p.

Then we say that g is the integral in the mean, or the mean-square integral of k if

lim
M→∞

∫
[−M,M]

k(q, · ) dq = g( · ),

where the limit is in L2(R), that is, if

lim
M→∞

∥∥∥∥∥ g( · ) −
∫

[−M,M]
k(q, · ) dq

∥∥∥∥∥
L2

= 0.

In this case we will abuse notation a bit and still write

g(p) =

∫
R

k(q, p) dq.

Much of the significance F and F−1 resides in the fact that, on the differentiable
elements of L2(R), they convert differentiation into multiplication and multiplica-
tion into differentiation. Specifically, for f ∈ S(R), integration by parts gives all of
the following. (d f

dq

)∧
(p) = ip f̂ (p), (5.7)

(
q f (q)

)∧(p) = i
d f̂
dp
, (5.8)

(
p f̂ (p)

)∨(q) = −i
d f
dq
, (5.9)
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dp

)∨
(q) = −i q f (q). (5.10)

Exercise 5.2.10. Prove (5.7), (5.8), (5.9), and (5.10).
We will see many examples of how these are used, but here is a simple one.
Example 5.2.9. We will give another derivation of the Fourier transform of f (q) =

e−αq2/2 (see Example 5.2.8), but this time we will allow α to be complex with posi-
tive real part. Compute the derivative of f (q) to obtain f ′(q) + αq f (q) = 0. Taking
the Fourier transform then gives ip f̂ (p) + iα f̂ ′(p) = 0. Solving the first order equa-
tion for f̂ (p) gives f̂ (p) = f̂ (0)e−p2/2α. Now, by definition, f̂ (0) = 1

√
2π

∫
R

e−αq2/2dq

and, if α is real and positive, this is just 1
√
α

. However, the integral is an analytic

function of α provided Re(α) > 0 (see Remark 5.2.11 below) and so is 1
√
α

provided
we take the branch cut along the negative real axis. Since these two analytic func-
tions agree on the positive real axis they agree whenever Re(α) > 0. We therefore
obtain the same formula in this case as we obtained in Example 5.2.8 when α was a
positive real number.
Remark 5.2.11. The assertion that the integral

∫
R

e−αq2/2dq defines an analytic func-
tion of the complex variable α if Re(α) > 0 is certainly not obvious so we will offer
some justification. For this we will appeal to a theorem from complex analysis. We
consider the improper Riemann integral

∫ ∞
a f (x, z) dx, where a ∈ R and f (x, z) is a

function of the real variable x in [a,∞) and z is a complex number in some domain
D of the complex plane C. We will assume that

1. The integral converges for each fixed value of z ∈ D.
2. For each fixed x ∈ [a,∞), f (x, z) is an analytic function of z on D.
3. ∂ f (x,z)

∂z is a continuous function of (x, z) ∈ [a,∞) × D.
4.

∫ ∞
a

∂ f (x,z)
∂z dx converges uniformly on D.

Remark 5.2.12. Uniform convergence means that there exists a function M(x)
such that

∣∣∣ ∂ f (x,z)
∂z

∣∣∣ ≤ M(x) for all z ∈ D and
∫ ∞

a M(x) dx converges.

It follows from these assumptions that
∫ ∞

a f (x, z) dx is an analytic function of z on D
(see 5.32 of [WW]). There is an analogous theorem for

∫ a
−∞

f (x, z) dx and therefore
also for

∫ ∞
−∞

f (x, z) dx. For f (x, z) = e−zx2/2, conditions (2) and (3) are clear. The
convergence of the integrals in (1) and (4) is not difficult, but belongs more properly
to our discussion of Gaussian integrals so we will defer this to Appendix A.

We will also need to know what the Fourier transform does to a product of two
functions in S(R). What it does is surprisingly simple. If f , g ∈ S(R), then f g is also
in S(R) and the convolution of f and g is the function f ∗ g ∈ S(R) defined by

( f ∗ g)(t) =

∫
R

f (t − τ)g(τ)dτ =

∫
R

f (τ)g(t − τ)dτ = (g ∗ f )(t).

Then one can show that
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( f g)∧ =
1
√

2π
f̂ ∗ ĝ (5.11)

and

( f ∗ g)∧ =
√

2π f̂ ĝ. (5.12)

Exercise 5.2.11. Prove the following Shift Properties of the Fourier transform. For
any a in R,

F( f (q − a)) = e−iap f̂ (p)

and

F(eiaq f (q)) = f̂ (p − a).

Exercise 5.2.12. Prove the following Scaling Property of the Fourier transform. For
any a , 0 in R,

F( f (aq)) =
1
|a|

f̂
(1
a

p
)

The Fourier transform also extends to a class of objects much more general than
functions in L2(R) and we will need to deal with this. The topological dual of S(R)
is the linear space S′(R) of all complex-valued linear functionals on S(R) that are
continuous with respect to the Fréchet topology. An element T of S′(R) is called
a tempered distribution on R; the Schwartz functions on which they operate to
produce complex numbers are then called test functions. Every ψ in L1

loc(R) (the
complex-valued measurable functions on R that are integrable on compact subsets
of R) gives rise to a tempered distribution Tψ by defining

Tψ[ f ] =

∫
R

f (q)ψ(q)dq

for every f ∈ S(R). Notice that the integral exists due to the fact that ψ is locally
integrable and f decays rapidly as q→ ±∞. Distributions of this type are said to be
regular, whereas all other tempered distributions are called singular. One generally
does not bother to distinguish between the function ψ ∈ L1

loc(R) and the tempered
distribution Tψ. In particular, since L2(R) ⊆ L1

loc(R), every element of L2(R) gives
rise to a tempered distribution so we can identify L2(R) with a subset of S′(R).

S(R) ⊆ L2(R) ⊆ S′(R)

With this in mind one often allows oneself such abuses of terminology as the phrase
“distributions in L2(R)”. We should point out that the dual of a Fréchet space is
generally not a Fréchet space so S′(R) does not come equipped with a ready made
topology. However, if one defines sequential convergence in S′(R) pointwise on
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S(R), that is, T j → T if and only if T j[ f ] → T [ f ] in C for every f ∈ S(R), then
every element of S′(R) is the limit of a sequence in L2(R). Here’s an example.
Example 5.2.10. Fix a ∈ R and define the Dirac delta at a, denoted

δa : S(R)→ C

by

δa[ f ] = f (a)

for every f ∈ S(R). Then δa is clearly linear on S(R). To show that δa is continuous
on S(R) we suppose that f j → f in S(R), that is, ‖ f − f j‖k,n → 0 for all k, n =

0, 1, 2, . . .. We must show that δa[ f j] → δa[ f ] in C, that is, f j(a) → f (a). But this
is precisely the statement that ‖ f − f j‖0,0 → 0. Consequently, δa is a tempered
distribution.

Next we show that δa is the limit of a sequence of distributions in L2(R). For this
we must find a sequence of elements ψ j of L2(R) with Tψ j [ f ] → δa[ f ]∀ f ∈ S(R).
There are many ways to do this, but the simplest choice is to let ψ j be j/2 times the
characteristic function of the interval [a − 1

j , a + 1
j ].

ψ j =
j
2
χ [a− 1

j , a+ 1
j ]

Now let ε > 0 be given and choose j so that | f (q)− f (a)| < ε for all q ∈ [a− 1
j , a+ 1

j ].
Then ∣∣∣∣∣ ∫

R

f (q)ψ j(q)dq − f (a)
∣∣∣∣∣ =

∣∣∣∣∣ j
2

∫ a+ 1
j

a− 1
j

f (q)dq −
j
2

∫ a+ 1
j

a− 1
j

f (a)dq
∣∣∣∣∣

=

∣∣∣∣∣ j
2

∫ a+ 1
j

a− 1
j

( f (q) − f (a))dq
∣∣∣∣∣

≤
j
2

∫ a+ 1
j

a− 1
j

| f (q) − f (a)| dq

<
j
2
ε
(

(a +
1
j
) − (a −

1
j
)
)

= ε,

as required. As we mentioned above, this is by no means the only way to represent
the Dirac delta as a limit in S′(R) of a family of functions (thought of as distribu-
tions). For future reference we will record just one more. Specifically, one can show
that, in S′(R),

lim
t→0+

1
√

2πit
ei(q−a)2/2t = δa. (5.13)

One final remark on the Dirac delta is in order. δa is an element of S′(R), but is
not Tψ for any ψ in L1

loc(R). Nevertheless, it is common, particularly in the physics
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literature, to write it as if it were by introducing a fictional object called the Dirac
delta “function” δ(q − a) and writing∫

R

f (q)δ(q − a)dq = f (a)

rather than δa[ f ] = f (a). One should understand, however, that this is just notation
and should not to be mistaken for what it looks like, that is, the integral of f (q)δ(q−
a) with respect to Lebesgue measure. Alternatively, one can regard δ(q − a)dq as a
name for the point measure at a on R, in which case

∫
R

f (q)δ(q−a)dq is the integral
of f (q) with respect to this measure.

Although tempered distributions are, from the point of view of ordinary calcu-
lus, rather singular objects, one can extend the notions of derivative and Fourier
transform to them by shifting these operations to the test functions. Specifically, we
define the distributional derivative of T ∈ S′(R) to be the tempered distribution T ′

defined by

T ′[ f ] = −T [ f ′].

Remark 5.2.13. If T = Tψ, where ψ is a Schwartz function, then ψ ′ ∈ L1
loc(R) and,

for any f ∈ S(R), integration by parts gives

Tψ[ f ′] =

∫
R

f ′(q)ψ(q)dq = −

∫
R

f (q)ψ ′(q)dq = −Tψ ′ [ f ]

so the minus sign in the definition is to ensure that T ′ψ[ f ] = Tψ ′ [ f ] when ψ is in
S(R).

In the case of regular distributions for which the distributional derivative is also
regular we would like to rephrase this slightly. Suppose then that ψ ∈ L1

loc(R) and
Tψ is the corresponding regular distribution. Assume that T ′ψ is also regular so that
T ′ψ = Tϕ for some ϕ ∈ L1

loc(R). Then, for every f ∈ S(R),∫
R

f ′(q)ψ(q) dq = −

∫
R

f (q)ϕ(q) dq.

Notice the resemblance to the integration by parts formula with ϕ playing the role
of the derivative of ψ. It’s not hard to see that a ϕ ∈ L1

loc(R) with this property (if it
exists) must be unique and we will call it the weak derivative of ψ ∈ L1

loc(R). This
provides a natural generalization of the usual notion of derivative that applies to
functions that need not have derivatives in the usual sense. To see how things work
out in practice we’ll compute a simple example.
Example 5.2.11. Define ψ : R→ R by
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ψ(x) =


0 if x ≤ 0 :
2x if 0 ≤ x ≤ 1

2 ;
2 − 2x if 1

2 ≤ x ≤ 1;
0 if x ≥ 1.

ψ(x) is certainly in L1
loc(R) and, in the usual sense, it is not differentiable at x =

0, 1
2 , 1. We will show that ψ(x) has a weak derivative ϕ(x) and that ϕ(x) is exactly

what one would expect a derivative of ψ(x) to be, that is,

ϕ(x) =


0 if x < 0 :
2 if 0 < x < 1

2 ;
−2 if 1

2 < x < 1;
0 if x > 1.

Notice that, as an element of L1
loc(R), ϕ(x) can be defined arbitrarily, or not at all,

at x = 0, 1
2 , 1. Now we must show that, for every φ ∈ S(R),

∫
R
ψ(x)φ ′(x) dx =

−
∫
R
ϕ(x)φ(x) dx. For this we just compute∫

R

ϕ(x)φ(x) dx = 2
∫ 1/2

0
φ(x) dx − 2

∫ 1

1/2
φ(x) dx

= 2
{
−

∫ 1/2

0
xφ ′(x) dx + xφ(x)

∣∣∣1/2
0

}
− 2

{
−

∫ 1

1/2
(x − 1)φ ′(x) dx + (x − 1)φ(x)

∣∣∣1
1/2

}
= −

∫ 1/2

0
2xφ ′(x) dx −

∫ 1

1/2
(2 − 2x)φ ′(x) dx

= −

∫
R

ψ(x)φ ′(x) dx.

Higher order derivatives are defined inductively so that T (n)[ f ] = (−1)nT [ f (n)].
Similarly, we define the Fourier transform and inverse Fourier transform of T to be
the distributions FT = T̂ and F−1T = Ť given by

(FT )[ f ] = T [F f ]

and

(F−1T )[ f ] = T [F−1 f ].

F and F−1 are still inverse bijections of S′(R) onto itself.
Notice that, if ψ ∈ S(R) ⊆ L2(R), then its derivative ψ ′ can be written as ψ ′ =

(F−1 ◦ Qip ◦ F )ψ, where Qip is the operator that multiplies by ip, and this is also
in S(R). If ψ is in L2(R), but not in S(R), then we can regard ψ as a tempered
distribution and its distributional derivative is still obtained by applying F−1◦Qip◦F.
This is a distribution, but need not be an L2-distribution. Indeed, this will be the
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case if and only if ψ satisfies ipψ̂(p) ∈ L2(R). For such ψ ∈ L2(R) the distributional
derivative is again an element of L2(R) and we will call it the L2-derivative of ψ.

Similar remarks apply to higher order derivatives. In particular, as an operator on
L2(R), the second derivative, or 1-dimensional Laplacian

∆ =
d2

dq2 = F−1 ◦ Q−p2 ◦ F

is defined on

D(∆) = {ψ ∈ L2(R) : Q−p2 ψ̂ ∈ L2(R)}.

It will follow from Lemma 5.2.5 below that ∆ is self-adjoint on this domain.
Example 5.2.12. From the definition of the Dirac delta it is clear that

δ(n)
a [ f ] = (−1)n f (n)(a)

for any n = 0, 1, 2, . . .. Furthermore,

(Fδa)[ f ] = δa[F f ] = δa[ f̂ ] = f̂ (a) =

∫
R

f (q)
e−iaq

√
2π

dq.

Remark 5.2.14. As we mentioned earlier, when a distribution, such as Fδa, takes
values that are given by integration next to some L1

loc(R) function it is common to
identify the distribution with the function so that one is likely to see the result of
this example written

Fδa =
e−iap

√
2π
.

Similarly, regarding eiaq as a distribution,

F(eiaq) =
√

2π δa.

To prove this one simply computes from (5.5) that

F(eiaq)[ f ] = (eiaq)[F f ] = (eiaq)[ f̂ ] =

∫
R

f̂ (p)eiapdp =
√

2π f (a) =
√

2π δa[ f ].

This is the end of the digression on Fourier transforms and tempered distributions.

We would like to illustrate the role played by Fourier transforms and distribu-
tions in partial differential equations. This will be a recurring theme for us, but for
the moment we will be content with a very important example that exhibits all of the
essential features and to which we will return when we discuss such things as “prop-
agators” and “path integrals”. What we intend to do is compute the 1-dimensional
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heat kernel and then, through a sequence of exercises, describe a number of its most
important properties. This will serve as a warm-up for the somewhat more involved
case of the Schrödinger kernel and will also lay the foundation for our discussion of
the path integral formulation of quantum mechanics which we take up in Chapter 8.
Example 5.2.13. We let D denote a positive real number and consider the follow-
ing initial value problem for the 1-dimensional heat equation (also called the 1-
dimensional diffusion equation).

∂ψ(t, x)
∂t

− D
∂2ψ(t, x)
∂x2 = 0, (t, x) ∈ (0,∞) ×R (5.14)

lim
t→0+

ψ(t, x) = ψ0(x), x ∈ R (5.15)

We will begin by assuming that the initial data ψ0(x) is in the Schwartz space S(R)
and will look for a solution that is also in S(R) for each t ∈ (0,∞) and for which
ψ(t, x) and ∂ψ(t, x)/∂t are continuous. The procedure will be to apply the Fourier
transform F (with respect to x) to both sides of the heat equation, solve the resulting
equation for ψ̂(t, p) and then apply the inverse transform F−1 to get ψ(t, x). Our
assumptions ensure that one can differentiate under the integral sign to obtain(

∂ψ(t, x)
∂t

)∧
=
∂ψ̂(t, p)
∂t

and so applying F to (5.14) gives

∂ψ̂(t, p)
∂t

+ Dp2ψ̂(t, p) = 0.

The initial condition becomes

lim
t→0+

ψ̂(t, p) = ψ̂0(p).

The solution to this simple first order initial value problem is

ψ̂(t, p) = ψ̂0(p)e−Dtp2
.

ψ(t, x) is therefore the inverse Fourier transform of the product of ψ̂0(p) and e−Dtp2

and this, by (5.12), is 1
√

2π
times the convolution of ψ0(x) and the inverse transform

of e−Dtp2
. We have already computed the latter so we obtain the following explicit

formula for a solution to our initial value problem for the heat equation.

ψ(t, x) =
1

√
4πDt

∫
R

e−(x−y)2/4Dtψ0(y) dy. (5.16)

Remark 5.2.15. Notice that we have used the indefinite article a rather than the
definite article the. Solutions to the heat equation on R with given initial data need
not be unique.This phenomenon was first investigated by Tychonoff [Tych].
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Now define a map HD : (0,∞) ×R ×R→ R by

HD(t, x, y) = Ht
D(x, y) =

1
√

4πDt
e−(x−y)2/4Dt. (5.17)

Then

ψ(t, x) =

∫
R

HD(t, x, y)ψ0(y) dy. (5.18)

Remark 5.2.16. Notice that ψ(t, x) is just the convolution product of ψ0 and Kt
D(x) =

1
√

4πDt
e−x2/4Dt.

ψ(t, x) = (Kt
D ∗ ψ0)(x)

Also notice that, since the Gaussian (or normal) distribution with mean µ and stan-
dard deviation σ is defined by

1

σ
√

2π
e−(x−µ)2/2σ2

,

the function H(t, x, y) can be regarded, for each fixed t > 0 and y ∈ R, as the normal
distribution with mean y and standard distribution

√
2Dt. As t → 0+, σ→ 0 and the

distribution peeks more and more sharply at the mean (see Figure 5.2). Intuitively,
one would say that HD(t, x, y) approaches the Dirac delta at y as t → 0+. You will
prove this shortly.

Fig. 5.2 Gaussian Distribution

In physics the positive constant D is called the diffusion constant and knowing
how it is determined by the basic parameters of a physical system is an important
problem. For most mathematical purposes, however, it does not play a significant
role and one can take D = 1. For any fixed value of D > 0 we will call (5.17)
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the (1-dimensional) heat kernel. The study of the heat kernel and its generalizations
to higher dimensional manifolds and manifolds with boundary plays a significant
role in partial differential equations, geometry and mathematical physics (see, for
example, [RosenS]). Much of what we will have to say about it and its analogue for
the Schrödinger equation rests on the properties we explore now in a sequence of
exercises.
Exercise 5.2.13. Hold y ∈ R fixed. Show that HD(t, x, y) is a solution to the heat
equation

∂

∂t
HD(t, x, y) − D

∂2

∂x2 HD(t, x, y) = 0.

Since HD(t, x, y) is symmetric in x and y, it is also true that

∂

∂t
HD(t, x, y) − D

∂2

∂y2 HD(t, x, y) = 0

when x ∈ R is held fixed.
Exercise 5.2.14. Hold y ∈ R and t > 0 fixed. Show that∫

R

HD(t, x, y) dx = 1.

Conclude that HD(t, x, y) determines a family of probability measures µt,y
D on R

parametrized by (t, y) ∈ (0,∞) ×R and defined by

µ
t,y
D (M) =

∫
M

HD(t, x, y) dx

for any Lebesgue measurable set M in R.
Remark 5.2.17. We will have very little to say about heat flow here. However, the
heat/diffusion equation arises also in the context of Brownian motion and this will
play an important role in our discussion of Feynman’s path integral in Section 8.4.3.
We will reserve a more detailed discussion for later, but will mention at this point
that the probability measures µt,y

D that we have just introduced have the following
physical interpretation. Suppose that a particle undergoing Brownian motion in R

is to be found at y ∈ R when t = 0. Then, for any measurable set M in R, µt,y
D (M) is

the probability that the particle will be found in M at some later time t. In this case
the constant D is determined in a very specific way by the particles and the fluid in
which the motion is taking place.
Exercise 5.2.15. Fix y ∈ R and regard t > 0 as a parameter. Then Exercise 5.2.14
gives a 1-parameter family of probability measures {µt,y

D : t > 0}. Each of these can
be regarded as a tempered distribution whose value at any f ∈ S(R) is

µ
t,y
D [ f ] =

∫
R

f (x) dµt,y
D (x) =

∫
R

f (x) HD(t, x, y) dx.
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Show that, as t → 0+, these distributions converge in S′(R) to the Dirac delta δy at
y, that is, for any f ∈ S(R),

lim
t→0+

∫
R

f (x) HD(t, x, y) dx = δy[ f ] = f (y).

Hint: For any ε > 0,∫
R

f (x) HD(t, x, y) dx − f (y) =

∫
[y−ε,y+ε]

( f (x) − f (y)) HD(t, x, y) dx

+

∫
R−[y−ε,y+ε]

( f (x) − f (y)) HD(t, x, y) dx.

Remark 5.2.18. One can express the content of Exercises 5.2.13 and 5.2.15 by
saying that, for a fixed y, the heat kernel HD(t, x, y) is the fundamental solution
to the heat equation, that is, it is a solution to ∂

∂t HD(t, x, y)−D ∂2

∂x2 HD(t, x, y) = 0 on
(0,∞) ×R satisfying the initial condition HD(0, x, y) = δy, where this last statement
is understood in the sense that, for each fixed y, the µt,y

D converge as distributions
to δy as t → 0+; equivalently, the L2(R) functions HD(t, x, y) of x, regarded as dis-
tributions, converge to δy as t → 0+. Somewhat more generally, for any t0 ∈ R,
HD(t − t0, x, y) satisfies

∂HD(t − t0, x, y)
∂t

− D
∂2HD(t − t0, x, y)

∂x2 = 0, (t, x) ∈ (t0,∞) ×R

lim
t→t+0

HD(t − t0, x, y) = δy, x ∈ R

Exercise 5.2.16. Show that the solution (5.16) to the heat equation (5.14) satisfies
the initial condition ψ(0, x) = ψ0(x) in the sense that limt→0+ ψ(t, x) = ψ0(x) for
every x ∈ R.
Exercise 5.2.17. Let x, y, z ∈ R, s > 0 and t > 0. Show that

HD(t + s, x, y) =

∫
R

HD(t, x, z) HD(s, z, y) dz.

Hint:

(x − z)2

4t
+

(z − y)2

4s
=

s + t
4st

(
z −

sx + ty
s + t

)2
+

(x − y)2

4(s + t)

Now use the Gaussian integral∫
R

eiax2/2dx = esgn(a)πi/4

√
2π
|a|
,

where a is a nonzero real number and sgn(a) is its sign (see (A.4) in Appendix A).
Exercise 5.2.18. For each t > 0 define a map Tt on L2(R) by
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(Ttu)(x) =

∫
R

HD(t, x, y) u(y) dy

for every u ∈ L2(R). Take T0 to be the identity map on L2(R). Show that each Tt is
a bounded linear operator on L2(R) and conclude from Exercise 5.2.17 that

Tt+s = TtTs, ∀t, s ≥ 0.

This qualifies {Tt}t≥0 as a semigroup of operators on L2(R). Show that {Tt}t≥0 is
strongly continuous in the sense that

t → 0+ in R implies Ttu→ u in L2(R) ∀u ∈ L2(R).

Show also that the semigroup {Tt}t≥0 is contractive in the sense that the operator
norm ‖Tt‖ of each Tt satisfies

‖Tt‖ ≤ 1.

Hint: For this last part you will need Young’s Inequality which we will state in the
following form. Suppose p, q, and r are integers that satisfy 1 ≤ p, q, r < ∞ and

1
p

+
1
q

=
1
r

+ 1.

If f ∈ Lp(R) and g ∈ Lq(R), then

‖ f ∗ g‖Lr ≤ ‖ f ‖Lp‖g‖Lq ,

where f ∗ g is the convolution product of f and g.
Remark 5.2.19. We will have much more to say about strongly continuous semi-
groups of operators in the sequel. For the moment we would simply like to introduce
a bit of traditional notation that will not be explained until Remark 8.4.45. We will
call {Tt}t≥0 the heat semigroup and write Tt symbolically as

Tt = etD∆,

where ∆ is the 1-dimensional Laplacian. This exponential notation can sometimes be
identified with an actual exponential function of an operator, but for the time being
it is best to think of it simply as notation. With it we can write (5.18) as

ψ(t, x) = etD∆ψ0(x).

Exercise 5.2.19. Let k ≥ 2 be an integer, x, y, z1, . . . , zk−1 ∈ R and t1, . . . , tk > 0.
Show that

HD(t1 + · · · + tk, x, y) =

∫
R

∫
R

· · ·

∫
R

HD(t1, x, z1)HD(t2, z1, z2)

· · ·HD(tk, zk−1, y) dz1 dz2 · · · dzk−1.
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Now we will apply what we have learned about the Fourier transform to the
position Q and momentum P operators on R.. Fix some φ ∈ S(R). Then Fφ = φ̂ is
in S(R) and so it is in D(Q). Moreover, (Qφ̂)(p) = pφ̂(p) = −iF(dφ/dq). Applying
F−1 we find that [ (F−1QF) φ ](q) = −idφ/dq. We conclude that

φ ∈ S(R)⇒ (F−1(~Q)F )φ = Pφ

so P agrees with F−1(~Q)F on S(R). Now, F and F−1 are unitary operators on L2(R)
and ~Q is a self-adjoint operator on D(Q) so the following Lemma implies the
F−1(~Q)F is self-adjoint on F−1(D(Q)). Consequently, F−1(~Q)F is a self-adjoint
extension of P | S(R).

Lemma 5.2.5. Let H be a complex, separable Hilbert space, A : D(A)→ H a self-
adjoint operator, and U : H → H a unitary operator on H. Then B = UAU−1 is a
self-adjoint operator on D(B) = U(D(A)).

Proof. Since D(A) is dense in H by assumption and U is unitary (and therefore a
homeomorphism of H onto itself), D(B) is also dense. Since A is self-adjoint on
D(A), B = UAU−1 = UA∗U−1 on D(B). Now, let φ, ψ ∈ D(B). Then

〈φ, Bψ〉 = 〈φ,UA∗U−1ψ〉 = 〈U−1φ, A∗U−1ψ〉

= 〈AU−1φ,U−1ψ〉 = 〈UAU−1φ, ψ〉 = 〈Bφ, ψ〉

so B is symmetric. Consequently, D(B) ⊆ D(B∗) and B∗ |D(B) = B. Thus, it will
suffice to show that D(B∗) ⊆ D(B).

Notice that ψ ∈ D(A) ⇒ Uψ ∈ D(B) ⇒ BUψ = UAU−1(Uψ) = UAψ so, on
D(A), BU = UA. Now, let φ, ψ ∈ D(A). Then

〈φ,U−1B∗Uψ〉 = 〈φ,U−1BUψ〉 = 〈Uφ, BUψ〉 = 〈Uφ,UAψ〉 = 〈φ, Aψ〉 = 〈Aφ, ψ〉

and therefore, A∗ is an extension of U−1B∗U. Consequently, UA∗U−1 is an extension
of B∗. But, on D(B), UA∗U−1 = UAU−1 = B so B is an extension of B∗ and, in
particular, D(B∗) ⊆ D(B), as required. ut

Exercise 5.2.20. Show that the same argument establishes the following seemingly
more general result. Let U : H1 → H2 be a unitary equivalence and A : D(A)→ H1
a self-adjoint operator on the dense linear subspace D(A) of H1. Then D(B) =

U(D(A)) is dense in H2 and B = UAU−1 is self-adjoint on D(B). Two operators
A and B related in this way by a unitary equivalence U are said to be unitarily
equivalent. Thus, self-adjointness is preserved by unitary equivalence.

As mentioned above, we now have that F−1(~Q)F is a self-adjoint extension
of P | S(R). However, we claim that P | S(R) is essentially self-adjoint and therefore
has a unique self-adjoint extension, namely, its closure. Having already noted the
direct proof in [Yosida] that P : D(P) → H is self-adjoint, we find ourselves with
two self-adjoint extensions of P | S(R) and conclude that these must be the same so
F−1(~Q)F = P.
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To prove essential self-adjointness of P | S(R) we will apply Corollary 5.2.4 (3),
that is, we show that P | S(R) is symmetric and that the images of P | S(R) + i and
P | S(R) − i are both dense in L2(R).
Exercise 5.2.21. Prove that P | S(R) is symmetric.

For the rest it is enough to show that the images of P | S(R) + i and P | S(R) − i
contain S(R) since this is dense. But this simply amounts to the statement that, for
any ψ0 ∈ S(R), the first order linear differential equations

−i~
dψ
dq
± iψ = ψ0

have solutions in S(R).
Exercise 5.2.22. Prove this.
One often sees the momentum operator P defined by P = F−1(~Q)F in which case
case its self-adjointness follows immediately from that of Q and Lemma 5.2.5.

We will work through another example that is quite analogous to what we have
just done, but is worth doing carefully not only because it plays an important role in
quantum mechanics, but also because it presents us with the opportunity to make a
few observations that are important in the general scheme of things.
Example 5.2.14. Introduce another positive constant m and define an operator H0
on L2(R) by specifying that, on S(R), it is given by

H0 = −
~2

2m
d2

dq2 = −
~2

2m
∆,

where we use ∆ for the 1-dimensional Laplacian d2

dq2 . We begin with a few general
remarks on H0. First notice that two integrations by parts together with the fact that
elements of S(R) approach zero as q → ±∞ show that H0 is symmetric on S(R).
Specifically, since it clearly suffices to prove that ∆ is symmetric on S(R), we let
ψ, φ ∈ S(R) and compute

〈∆ψ, φ〉 = 〈ψ′′, φ〉 =

∫
R

ψ
′′

(q)φ(q)dq

= −

∫
R

ψ
′
(q)φ′(q)dq =

∫
R

ψ(q)φ′′(q)dq = 〈ψ, ∆φ〉.

On the other hand, a single integration by parts shows that H0 is a positive operator
on S(R), that is, 〈H0ψ, ψ〉 ≥ 0 for any ψ ∈ S(R). Indeed, it is enough to prove this
for −∆ and

〈−∆ψ, ψ〉 = 〈−ψ ′′, ψ〉 =

∫
R

−ψ
′′

(q)ψ(q)dq = −

∫
R

−ψ
′
(q)ψ ′(q)dq = ‖ψ ′‖2 ≥ 0.

Remark 5.2.20. We point out these two properties of H0 because they provide an
excuse to mention a theorem of Friedrichs according to which any densely defined,
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positive, symmetric operator on a Hilbert space has a positive, self-adjoint exten-
sion, called the Friedrichs extension (this is Theorem X.23 of [RS2]). This is not
quite enough for our purposes since we need to know that H0 has a unique self-
adjoint extension and Friedrichs’ theorem does not guarantee uniqueness. However,
once we have proved that H0 has a unique self-adjoint extension we will be assured
that this extension is a positive operator and this is important for the role H0 will
play in quantum mechanics.

We begin with the fact that the Fourier transform F is a unitary operator on L2(R)
and compute, for any ψ ∈ S(R),

(FH0F
−1)(ψ)(p) = (FH0)(ψ̌)(p) = F

(
−
~2

2m
ψ̌ ′′

)
(p) =

~2

2m
F(−ψ̌ ′′)(p) =

~2

2m
p2ψ(p).

(5.19)

We conclude that, on S(R), FH0F
−1 agrees with the multiplication operator Qg,

where g(p) = ~2

2m p2. We know, by Exercise 5.2.6, that this multiplication operator
is self-adjoint on

D(Qg) = {ψ ∈ L2(R) : gψ ∈ L2(R)} = {ψ ∈ L2(R) :
∫
R

p4|ψ(p)|2dp < ∞}.

Consequently, F−1QgF is a self-adjoint extension of H0 defined on

F−1(D(Qg)) = {ψ ∈ L2(R) : ∆ψ ∈ L2(R)},

where ∆ψ means the second derivative of ψ thought of as a tempered distribution in
L2(R). Thus, H0 does, indeed, have a self-adjoint extension and we will now prove
that it has only one (which must therefore be the Friedrichs extension). For this it
will suffice to show that ∆ is essentially self-adjoint on S(R) and we will do this by
showing that Image (∆|S(R) ± i) are both dense in L2(R) (Corollary 5.2.4 (3)), that
is, that the orthogonal complements Image (∆|S(R) ± i)⊥ are both zero. Let z denote
either i or −i and suppose φ ∈ Image (∆|S(R) + z)⊥. Then, for every ψ ∈ S(R),

0 = 〈φ, (∆ + z)ψ〉 = 〈F(φ),F((∆ + z)ψ)〉 = 〈φ̌, (−p2 + z)ψ̌〉

= (−p2 + z)〈φ̌, ψ̌〉 = (−p2 + z)〈φ, ψ〉.

But p2 is real-valued so −p2 + z is never zero and we conclude that 〈φ, ψ〉 = 0 for
every ψ ∈ S(R). Since S(R) is dense in L2(R), 〈φ, ψ〉 = 0 for every ψ in L2(R) and
therefore φ = 0 ∈ L2(R), as required.

We conclude that H0 is essentially self-adjoint on S(R) and so has a unique self-
adjoint extension to {ψ ∈ L2(R) : ∆ψ ∈ L2(R)}. This self-adjoint extension is
also denoted H0 and, for reasons that are yet to come, is called the free particle
Hamiltonian.
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5.3 HB = 1
2m P2 + mω2

2 Q2

The operators we have considered thus far all play a particularly prominent role
in quantum mechanics, as we will soon see. We would like to include another such
example that will eventually bring us back to the harmonic oscillator. In this case the
idea we employ to prove self-adjointness is different, but it is an idea that will lead
us naturally into our next topic (spectral theory). We begin with a few definitions.
An eigenvalue of an operator A : D(A)→ H is a complex number λ for which there
exists a nonzero vector ψ ∈ D(A) which satisfies Aψ = λψ; such a nonzero vector ψ
is called an eigenvector corresponding to the eigenvalue λ. Operators need not have
eigenvalues at all, of course. Consider, for example, the operator Q : D(Q)→ L2(R)
of Example 5.2.3. For any fixed λ ∈ C, the equation Qψ = λψ would imply that
(q − λ)ψ(q) = 0 a.e. and therefore ψ(q) = 0 a.e. so ψ = 0 in L2(R). For the operator
P : D(P)→ L2(R) of Example 5.2.5 the equation −i ~ dψ

dq = λψ does have solutions,
even nice smooth solutions such as ψ(q) = eiλq/~, but, alas, they are not in L2(R)
and therefore certainly not in D(P) so they do not count as eigenvectors. If it should
happen that A : D(A) → H does have an eigenvalue λ, then the corresponding
eigenspace is Kernel (λ − A) = {ψ ∈ D(A) : Aψ = λψ}, which is clearly a linear
subspace of D(A). If A is a symmetric (in particular, self-adjoint) operator, then any
eigenvalue is necessarily real and eigenvectors corresponding to distinct eigenvalues
are orthogonal in H. The proofs are exactly as in the finite-dimensional case. To
wit, if Aψ = λψ with ψ , 0, then 〈ψ, Aψ〉 = 〈ψ, λψ〉 = λ〈ψ, ψ〉, but also 〈ψ, Aψ〉 =

〈Aψ, ψ〉 = 〈λψ, ψ〉 = λ〈ψ, ψ〉, so λ = λ. Next, if Aψ1 = λ1ψ1 and Aψ2 = λ2ψ2 with
λ2 , λ1 and neither ψ1 nor ψ2 is zero, then, since λ1 and λ2 are real, 〈Aψ1, ψ2〉 =

〈ψ1, Aψ2〉 ⇒ λ1〈ψ1, ψ2〉 = λ2〈ψ1, ψ2〉 ⇒ (λ2−λ1)〈ψ1, ψ2〉 = 0⇒ 〈ψ1, ψ2〉 = 0. Now,
here is the point. A symmetric, operator with a large enough supply of eigenvectors
must be essentially self-adjoint. More precisely, we have

Theorem 5.3.1. Let H be a separable, complex Hilbert space and A : D(A) → H

a symmetric, unbounded operator on H. Assume that there exists an orthonormal
basis {e1, e2, . . .} for H consisting of eigenvectors for A, that is, such that each ei

is in D(A) and Aei = λiei for some λi ∈ R and for each i = 1, 2, . . .. Then A is
essentially self-adjoint on D(A).

Proof. Let N = {1, 2, . . .} denote the set of natural numbers and consider the Hilbert
space `2(N) of square summable sequences of complex numbers, that is,

`2(N) =

{
x = (x1, x2, . . .) : xi ∈ C, i = 1, 2, . . . , and

∞∑
i=1

|xi|
2 < ∞

}
with coordinatewise algebraic operations and 〈x, y〉 =

∑∞
i=1 xiyi. The orthonormal

basis {e1, e2, . . .} for H consisting of eigenvectors for A determines a unitary equiv-
alence T : `2(N)→ H given by
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T (x) = T ((x1, x2, . . .)) =

∞∑
i=1

xiei,

where convergence of the series is in H. The eigenvalues of A determine a (real-
valued) function λ : N→ C defined by

λ(i) = λi, i = 1, 2, . . . ,

that is,

λ = (λ1, λ2, . . .).

Thus, the multiplication operator Qλ defined by Qλ(x) = Qλ(x1, x2, . . .) =

(λ1x1, λ2x2, . . .) on D(Qλ) =
{
x = (x1, x2, . . .) ∈ `2(N) :

∑∞
i=1 λ

2
i |xi|

2 < ∞
}

is self-
adjoint (see Exercise 5.2.8). According to Exercise 5.2.20, T QλT−1 is self-adjoint
on T (D(Qλ)) ⊆ H. To prove that A is essentially self-adjoint it will suffice to show
that its closure A is T QλT−1 (Exercise 5.2.5).

Let (v,w) = (v, Av) be a point in the graph Gr(A) of A. Since A is symmetric (in
particular, D(A) ⊆ D(A∗)) and each ei is in D(A),

〈ei,w〉 = 〈ei, Av〉 = 〈Aei, v〉 = λi 〈ei, v〉, i = 1, 2, . . . .

Since {ei} is an orthonormal basis for H,

w =

∞∑
i=1

〈ei,w〉 ei =

∞∑
i=1

λi〈ei, v〉 ei,

and, in particular,

∞∑
i=1

λ2
i |〈ei, v〉|2 = ‖w‖2 < ∞.

Thus, for any v =
∑∞

i=1〈ei, v〉 ei in D(A), T−1v = (〈e1, v〉, 〈e2, v〉, . . .) is in D(Qλ) and
T QλT−1v = w = Av. In other words, T QλT−1 is a self-adjoint extension of A.

All that remains is to show that Gr(A) is dense in Gr(T QλT−1). For this we let
(V,W) be a point in Gr(T QλT−1). Then

V =

∞∑
i=1

〈ei,V〉 ei

and

W =

∞∑
i=1

λi 〈ei,V〉 ei.

Now, define, for each n = 1, 2, . . .
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vn =

n∑
i=1

〈ei,V〉 ei.

Then each vn is in D(A) and, since the sum is finite and A is linear,

Avn =

n∑
i=1

〈ei,V〉 Aei =

n∑
i=1

λi〈ei,V〉 ei.

Now, in the norm on H ×H,

‖(V,W) − (vn, Avn)‖2 = ‖V − vn‖
2 + ‖W − Avn‖

2

and, as n → ∞, both terms approach zero so (vn, Avn) → (V,W) in H × H, as
required.

ut

Remark 5.3.1. An essentially self-adjoint operator has a unique self-adjoint exten-
sion, namely, its closure, but this closure is not always easy to determine. In the
case covered by Theorem 5.3.1, however, one has an explicit representation for A as
T QλT−1.

Now we will begin our application of Theorem 5.3.1 to an operator that will
soon emerge as the central character in our drama. Its significance may not yet be
apparent, but it is real and for this reason we intend to carry out this discussion in
excruciating detail.
Example 5.3.1. The operator of interest contains three positive constants m, ω and
~. Each of these has some physical significance, but we will worry about that later.
We define an unbounded operator HB : D(HB)→ L2(R) by first specifying that, on
the Schwartz space S(R), it is given by

HB =
1

2m
P2 +

mω2

2
Q2 = −

~2

2m
d2

dq2 +
mω2

2
q2. (5.20)

The subscript B is there for a reason, but this reason will not be apparent for some
time (if you must know, it stands for “bosonic”). Before moving on you may also
want to glance back at Example 2.3.4. The objective now is to show that HB is
essentially self-adjoint on S(R) (then D(HB) will be the domain of its unique self-
adjoint extension). To apply Theorem 5.3.1 we must show that HB is symmetric on
S(R) and then exhibit an orthonormal basis for L2(R) consisting of eigenvectors
for HB living in S(R). For symmetry it is clear that we can consider each of the
summands individually since 〈HBψ, φ〉 = 〈− ~

2

2m
d2ψ
dq2 , φ〉 + 〈mω2

2 q2ψ, φ〉. The the first
operator is just H0 which we already know is symmetric and the second is clearly
symmetric since mω2

2 q2 is just a real-valued multiplication operator (see Exercise
5.2.6).

Theorem 5.3.1 now requires that we find an orthonormal basis {ψ0, ψ1, . . .} for
L2(R) with each ψi an eigenvector for HB in S(R). A priori there is no reason to
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suppose that such an orthonormal basis exists, but it does and we now set about
finding it. There are two ways to do this. We are looking for nonzero elements ψ of
S(R) that satisfy

HB ψ = −
~2

2m
d2ψ

dq2 +
mω2

2
q2ψ = Eψ (5.21)

for some real constant E (I know, you were expecting a λ, but the eigenvalues will
eventually turn out to be energy levels so E seemed a better choice). The obvi-
ous thing to do is simply try to solve the differential equation. As it happens, this is
relatively straightforward, albeit rather tedious. It is, however, not particularly infor-
mative in that it sheds no real light on the general structure of this sort of eigenvalue
problem. We will see that every application of quantum mechanics begins with a
problem of this sort (Hψ = Eψ) so we would like to do better than this. There is a
much more enlightening “algebraic” approach, due to Dirac, that we will work out
in considerable generality and detail. First, however, we will sketch the straightfor-
ward solution to (5.21) in enough detail that anyone interested in doing so should
be able to fill in the gaps; if you would prefer to read it rather than do it, Appendix
B, Chapter 5, of [Simm2] contains most of the details.

Rather than carry around all of the constants in (5.21) we begin by making the
change of variable

x =

√
mω
~

q

which converts (5.21) into

d2ψ

dx2 +

( 2E
~ω
− x2

)
ψ = 0. (5.22)

To simplify just a bit more we will let p + 1 = 2E
~ω

and write the (5.22) as

d2ψ

dx2 +
(
p + 1 − x2)ψ = 0. (5.23)

Motivated by the fact that we need solutions in the Schwartz space S(R) we will
seek ψ(x) of the form

ψ(x) = φ(x)e−x2/2, (5.24)

where φ(x) is to be determined. Substituting this into (5.23) gives

d2φ

dx2 − 2x
dφ
dx

+ pφ = 0 (5.25)

which is the famous Hermite equation. One notices that x = 0 is an ordinary point
for the equation and so seeks analytic solutions of the form φ(x) =

∑∞
n=0 anxn. Sub-
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stituting this into (5.25) and equating the coefficients of the resulting power series
to zero gives the recurrence relation

an+2 =
2n − p

(n + 2)(n + 1)
an, n ≥ 0.

One solves for the coefficients in the usual way and arrives at the following formal
solution.

φ(x) =a0

[
1 −

p
2!

x2 −
(4 − p)p

4!
x4 −

(8 − p)(4 − p)p
6!

x6 − · · ·

]
+ a1

[
x +

2 − p
3!

x3 +
(6 − p)(2 − p)

5!
x5 +

(10 − p)(6 − p)(2 − p)
7!

x7 + · · ·

]
= a0 φ0(x) + a1 φ1(x)

These series, in fact, are easily seen to converge for all x (Ratio Test) and, since
the Wronskian of φ0 and φ1 is clearly nonzero (evaluate it at x = 0), we have
found the general solution to the Hermite equation on (−∞,∞). By comparing
the series expansions of φ0(x) and φ1(x) with ex2/2 =

∑∞
n=0

1
2nn! x2n one finds that

φ0(x)e−x2/2 and φ1(x)e−x2/2 do not approach zero as |x| → ±∞ and so cannot be in
S(R) unless the series for φ0(x) and φ1(x) terminate and are therefore polynomi-
als. Since we seek two independent solutions in S(R) we must take either a1 = 0
and p = 0, 4, 8, . . ., or a0 = 0 and p = 2, 6, 10 . . .. In each case, one chooses the
nonzero coefficient ai in such a way as to ensure that the resulting polynomials
H0(x),H1(x),H2(x), . . . ,Hn(x), . . . satisfy∫

R

[Hm(x)e−x2/2][Hn(x)e−x2/2] dx =

∫
R

Hm(x)Hn(x)e−x2
dx =

√
π 2n n! δmn

(here the subscript indicates the degree of the polynomial). The reason for this rather
strange normalization will emerge soon. These Hn(x), n = 0, 1, 2, . . ., are called the
Hermite polynomials. These have all sorts of wonderful properties of which we will
need just a few (these are all proved in, for example, [AAR]). One can show that
every polynomial is a linear combination of Hermite polynomials, that each Hn is
given by

Hn(x) = (−1)nex2 dn

dxn (e−x2
)

and that e2xz−z2/2 is a generating function for the sequence H0(x),H1(x),H2(x), . . . ,
that is,

e2xz−z2/2 =

∞∑
n=0

Hn(x)
zn

n!
. (5.26)
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More to the point for us is that we can now build solutions to (5.21) from Hn(x)e−x2/2

that are in S(R). We revert to the original variable q, related to x by x =
√

mω
~

q, and
again renormalize to obtain the solutions ψn(q) to (5.21) we were after. Specifically,
we have one solution for each pn = 2n, n = 0, 1, 2, . . ., that is, for each eigenvalue

En = (n +
1
2

)~ω, n = 0, 1, 2, . . .

(recall that p + 1 = 2E
~ω

and have another look at (1.7)). These solutions are given by

ψn(q) =
1

√
2n n!

(mω
~π

)1/4
e−mωq2/2~ Hn

(√mω
~

q
)

(5.27)

and they satisfy

HBψn = Enψn = (n +
1
2

)~ωψn, n = 0, 1, 2, . . . . (5.28)

Being eigenvectors of a symmetric operator corresponding to distinct eigenvalues,
ψm and ψn are orthogonal in L2(R) whenever n , m. The odd looking normalizations
are intended to ensure that each ψn is a unit vector in L2(R) so that

〈ψm, ψn〉 =

∫
R

ψm(q)ψn(q) dq = δmn.

One must still show that the orthonormal set {ψn}
∞
n=0 in L2(R) is a basis and for this

it is enough to show that the orthogonal complement of its closed span in L2(R)
consists of the zero element alone. The argument is not so difficult, but we will save
it until we have given a complete and very different derivation of the eigenfunctions
ψn.

This concludes our sketch of the traditional solution to the eigenvalue problem
(5.21) in S(R). It produces an orthonormal basis for L2(R) consisting of eigenvec-
tors for HB in S(R) and so allows one to conclude from Theorem 5.3.1 that HB is
essentially self-adjoint on S(R). It does not, however, uncover the underlying alge-
braic structure that lies hidden here and it is precisely this algebraic structure that
we need to understand since it plays a fundamental role in quantum mechanics.
Remark 5.3.2. Before getting under way we must sound a cautionary note, not only
for this example, but for the remainder of our work. The algebraic structure we
have in mind is determined by commutation relations for the operators of interest
and these, as the name suggests, involve the commutator and, later on, the anti-
commutator of a pair of operators. These are defined by [A, B]− = AB − BA and
[A, B]+ = AB + BA, respectively. For bounded operators, which are defined on all of
H, these definitions present no problem, but for unbounded operators defined only
on dense subspaces of H the sum or difference of two operators is defined only on
the intersection of their domains and the product (composition) AB is defined only
on the subset of D(B) that B maps into D(A). All of these might very well consist
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only of the zero element in H. These and many other such domain issues cannot
be regarded as simply a minor technical inconvenience, but are often crucial to the
mathematics and even to the physics (see Section X.1 of [RS2]). The moral is that
we must be careful about domains. For the remainder of this example, all of our
calculations will be carried out in the Schwartz space S(R).

Now we begin our new derivation of the eigenvalues and eigenvectors for the
operator

HB =
1

2m
P2 +

mω2

2
Q2 = −

~2

2m
d2

dq2 +
mω2

2
q2

of (5.20). First notice that Q : S(R) → S(R) and P : S(R) → S(R) so their
commutators are well-defined on S(R) and, moreover,

[Q,Q]− = 0
[P, P]− = 0 (5.29)
[P,Q]− = −i~.

The first two are obvious and the third follows by computing, for any ψ ∈ S(R),

([P,Q]−ψ)(q) = (P(Qψ) − Q(Pψ))(q) = −i~
d
dq

(qψ(q)) − q(−i~
dψ
dq

)

= −i~ q
dψ
dq
− i~ψ(q) + i~ q

dψ
dq

= −i~ψ(q)

so

[P,Q]−ψ = −i~ψ.

It might be worthwhile at this point to compare (5.29) and (2.66).
Remark 5.3.3. For the remainder of this discussion it will be very important to
notice that, with one exception that we will point out explicitly, the analysis depends
only on the fact that the operators Q and P are symmetric on S(R) and satisfy the
commutation relations (5.29) there and not on their definitions as multiplication by q
and −i~ d

dq , respectively. In Chapter 7 we will describe the abstract algebraic setting
in which all of this lives most naturally.

Now we define two new operators b and b† on S(R) by

b =
1

√
2mω~

(mωQ + iP) (5.30)

and

b† =
1

√
2mω~

(mωQ − iP). (5.31)
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Many sources use a and a†, or a− and a+, respectively, rather than our b and b†, but
our choice is intended to distinguish this “bosonic” example from the “fermionic”
and “supersymmetric” generalizations that are yet to come. The dagger † is used to
indicate that b and b† are formal adjoints of each other in the sense that, on S(R),
they satisfy

〈b†ψ, φ〉 =
1

√
2mω~

〈mωQψ − iPψ, φ〉

=
1

√
2mω~

[
〈mωQψ, φ〉 − 〈iPψ, φ〉

]
=

1
√

2mω~

[
mω〈ψ,Qφ〉 + i〈ψ, Pφ〉

]
= 〈ψ, bφ〉

and 〈bφ, ψ〉 = 〈φ, b†ψ〉, which follows by taking conjugates. Now, let’s compute bb†

on S(R).

bb† =
1

2mω~

[
m2ω2Q2 + imω[PQ − QP] + P2

]
=

mω
2~

Q2 +
1
2

+
1

2mω~
P2

since [P,Q]− = −i~. Similarly,

b†b =
mω
2~

Q2 −
1
2

+
1

2mω~
P2

so that [b, b†]− = bb†−b†b = 1. Adding to this a few more relations that are obvious
we have

[b, b]− = 0

[b†, b†]− = 0 (5.32)

[b, b†]− = 1.

Now, notice that, if we define an operator NB on S(R) by

NB = b†b,

then

HB =
1
2
~ω[b†, b]+ = ~ω(NB +

1
2

).

For reasons that will emerge quite soon NB is called the (bosonic) number operator.
Furthermore, [NB, b†]− = NBb† − b†NB = b†bb† − b†b†b = b†[b, b†]− = b† so
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[NB, b†]− = b†

and, similarly,

[NB, b]− = −b.

What, you may ask, is the point of all this arithmetic? Recall that the objective
here is to derive (again) all of the eigenvalues and eigenvectors for HB on S(R).
From HB = ~ω(NB + 1

2 ) it is clear that, on S(R),

NBψ = λψ⇔ HBψ = (λ +
1
2

)~ωψ

so this is equivalent to finding the eigenvalues and eigenvectors of NB on S(R) and
this we can now do with ease. First notice that any nonzero ψ ∈ S(R) satisfying
bψ = 0 also satisfies NBψ = 0 and so is an eigenvector of NB with eigenvalue λ = 0
and consequently an eigenvector of HB with eigenvalue 1

2~ω.
Remark 5.3.4. But how do we know that there is such a ψ in S(R)? This is the
only point at which we require some information about the operators Q and P be-
yond their commutation relations which, by themselves, cannot answer the question.
However, if we write bψ = 0 as

1
√

2mω~
(mωQψ + iPψ) = 0

and then recall that (Qψ)(q) = qψ(q) and (Pψ)(q) = −i~ dψ
dq we obtain

dψ
dq

+

(mω
~

)
qψ(q) = 0.

This is a simple first order, linear equation whose general solution is ψ(q) =

Ce−mωq2/2~, where C is an arbitrary constant. Computing the L2(R) norm of ψ(q) =

Ce−mωq2/2~ we can choose C in such a way as to ensure that the solution has norm
one. Specifically, one obtains

ψ0(q) =

(mω
~π

)1/4
e−mωq2/2~ (5.33)

which is clearly in S(R) and is the unique L2-normalized eigenvector of HB with
eigenvalue 1

2~ω.

HBψ0 =
1
2
~ωψ0

We will see now that all the rest follows from the commutation relations alone.
First notice that 1

2~ω is the smallest eigenvalue of HB on S(R). Indeed, suppose
HBψ = λψ with ψ , 0. Then
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λ ‖ψ‖2 = λ〈ψ, ψ〉 = 〈ψ, λψ〉 = 〈ψ,HBψ〉 = 〈ψ, ~ωNBψ +
1
2
~ωψ〉

= ~ω〈ψ,NBψ〉 +
1
2
~ω〈ψ, ψ〉 = ~ω〈ψ, b†bψ〉 +

1
2
~ω‖ψ‖2

= ~ω〈bψ, bψ〉 +
1
2
~ω‖ψ‖2

= ~ω‖bψ‖2 +
1
2
~ω‖ψ‖2.

Consequently,

λ =
1
2
~ω + ~ω

(
‖bψ‖2/‖ψ‖2

)
≥

1
2
~ω,

with equality holding if and only if bψ = 0.
Next, let’s consider the vector

ψ1 = b†ψ0.

Then

NBψ1 = NB(b†ψ0) = (NBb†ψ0 − b†NBψ0) + b†NBψ0

= ([NB, b†]− + b†NB)ψ0 = (b† + b†NB)ψ0 = b†ψ0 + 0
= ψ1

so ψ1 is an eigenvector of NB in S(R) with eigenvalue λ = 1. As a result, ψ1 is an
eigenvector of HB in S(R) with eigenvalue (1 + 1

2 )~ω.

HBψ1 =
3
2
~ωψ1

The operator b† carries a λ = 0 eigenvector of NB to a λ = 1 eigenvector of NB. Also
notice that ψ1 has norm 1 since

‖ψ1‖
2 = 〈ψ1, ψ1〉 = 〈b†ψ0, b†ψ0〉 = 〈bb†ψ0, ψ0〉

= 〈[b, b†]−ψ0 + b†bψ0, ψ0〉 = 〈ψ0 + 0, ψ0〉 = ‖ψ0‖
2

= 1.

Let’s try this again. Let

φ2 = b†ψ1 = (b†)2ψ0.

Then
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NBφ2 = NB(b†ψ1) = ([NB, b†]− + b†NB)ψ1 = (b† + b†NB)ψ1

= b†ψ1 + b†NBψ1 = b†ψ1 + b†ψ1

= 2φ2

so φ2 is an eigenvector of NB with eigenvalue λ = 2 and therefore it is an eigenvector
of HB with eigenvalue (2 + 1

2 )~ω. Unfortunately, we lose the normalization this time
since

‖φ2‖
2 = 〈φ2, φ2〉 = 〈b†ψ1, b†ψ1〉 = 〈bb†ψ1, ψ1〉 = 〈[b, b†]−ψ1 + b†bψ1, ψ1〉

= 〈ψ1 + ψ1, ψ1〉 = 2‖ψ1‖
2 = 2.

Consequently,

ψ2 =
1
√

2
b†ψ1 =

1
√

2
(b†)2ψ0

is a normalized eigenvector of HB with eigenvalue (2 + 1
2 )~ω.

HBψ2 =
5
2
~ωψ2

Exercise 5.3.1. Show in the same way that if NBφ = λφ, then NB(b†φ) = (λ + 1)b†φ
for any λ. Thus, b† carries eigenvectors of NB to eigenvectors of NB, increasing the
eigenvalue by one. Equivalently, b† carries eigenvectors of HB to eigenvectors of
HB, increasing the eigenvalue by ~ω. Replace b† by b and show that, if NBφ = λφ,
then NB(bφ) = (λ − 1)bφ.
Remark 5.3.5. For this reason, b† and b are called raising and lowering operators,
respectively; together they are called ladder operators. We will find that, in quantum
mechanics, they are viewed as raising and lowering the energy level of a harmonic
oscillator. Analogous operators exist in quantum field theory where they are called
creation and annihilation operators because there they are viewed as creating and
annihilating particles (more precisely, quanta) of a specific energy. The eigenvalues
of the number operator NB count the number of such quanta; hence the name.

Continuing inductively we find that, for each n = 0, 1, 2, . . .,

ψn =
1
√

n!
(b†)nψ0 (5.34)

is a normalized eigenvector of NB with eigenvalue λ = n and so is also a normalized
eigenvector of HB with eigenvalues (n + 1

2 )~ω.

HBψn = (n +
1
2

)~ωψn, n = 0, 1, 2, . . . (5.35)

Notice that (n + 1
2 )~ω, n = 0, 1, 2, . . . , are the only eigenvalues of HB on S(R).

Indeed, we have already seen that 1
2~ω is the smallest eigenvalue so, in particular,
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all eigenvalues are positive. But if λ were some positive eigenvalue that was not of
the form (n+ 1

2 )~ω, n = 0, 1, 2, . . . , , then repeated application of b would eventually
produce a negative eigenvalue (see Exercise 5.3.1) so such a λ cannot exist.
Remark 5.3.6. The rather remarkable conclusion is that if we happen to know just
one eigenvector for HB in S(R), then we can produce all of the rest simply by suc-
cessively applying the ladder operators. For instance, if we identify Q and P with
multiplication by q and −i~ d

dq , then ψ0 is given by (5.33) and we can proceed to grind
out all of the remaining eigenvectors by repeatedly applying 1

√
2mω~

(mωq−~ d
dq ). The

result, of course, will be (5.27), which can be proved using induction and the prop-
erties of the Hermite polynomials.

It is useful to observe that, since ψn = 1
√

n!
(b†)nψ0,

b†ψn =
√

n + 1ψn+1, n = 0, 1, 2, . . .

and similarly,

bψn =
√

nψn−1, n = 1, 2, . . . .

Exercise 5.3.2. Prove these.
With this we can show that all of the eigenspaces of HB are 1-dimensional, that

is, all of the eigenvalues are simple. Suppose this is not the case. Then there is a
least non-negative integer n with two independent normalized eigenvectors ψn and
ψ′n. Then n ≥ 1 since we have seen that ψ0 is the unique normalized eigenvector of
HB with eigenvalue 1

2~ω. Now,

nψ′n = NBψ
′
n = b†bψ′n

so

n(bψ′n) = bb†(bψ′n) = (1 + NB)(bψ′n)

and bψ′n is an eigenvector of NB with eigenvalue n−1. Since n is minimal, bψ′n must
be a nonzero multiple of ψn−1, say, bψ′n = kψn−1. Then

nψ′n = b†(bψ′n) = kb†ψn−1 = k
√

nψn

so

ψ′n =
k
√

n
ψn

and this is a contradiction so the proof is complete. These 1-dimensional eigenspaces
are, of course, orthogonal.

There is just one loose end that remains to be tied up. We must show that our
orthonormal sequence of eigenfunctions for HB is actually complete, that is, forms
a basis for L2(R). To ease the typography a bit we will temporarily revert to our
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original variable x =
√

mω
~

q and show that the so-called Hermite functions φn(x) =

1√
2nn!

√
π

e−x2/2Hn(x), n = 0, 1, 2, . . ., form a basis for L2(R).

Remark 5.3.7. Notice that the Hermite functions φn(x), n = 0, 1, 2, . . . are in S(R).
Figure 5.3 shows the first six of them.

Fig. 5.3 Hermite Functions: n=0(black), 1(red), 2(blue), 3(yellow), 4(green), 5(magenta)

To prove this it is clearly sufficient to show that the orthogonal complement of the
closed linear span of {φn}

∞
n=0 consists of the zero vector in L2(R) alone. This, in turn,

will follow if we show that any f ∈ L2(R) satisfying 〈φn, f 〉 = 0∀n = 0, 1, 2, . . .
must be the zero element of L2(R). Suppose then that 〈φn, f 〉 = 0∀n = 0, 1, 2, . . ..
Since every polynomial is a (finite) linear combination of Hermite polynomials, it
follows that f is orthogonal to every function of the form P(x)e−x2/2, where P(x) is
a polynomial. Consequently,∫

R

[
f (x)e−x2/2] e−iξxdx =

∞∑
k=0

∫
R

f (x)
[ (−iξx)k

k!
e−x2/2

]
dx = 0,

where the interchange of summation and integration is justified because the product
of two L2 functions is an L1 function (Theorem 3.2.1 of [Fried]). But this shows that
the Fourier transform of f (x)e−x2/2 is zero. Since the Fourier transform F : L2(R)→
L2(R) is an isometry, f (x)e−x2/2 = 0 a.e. and it follows that f (x) = 0 a.e., that is,
f = 0 in L2(R), as required.
Exercise 5.3.3. Show that the Hermite function φn(x) = 1√

2nn!
√
π

e−x2/2Hn(x) is an

eigenvector of the Fourier transform operator F : L2(R) → L2(R) with eigenvalue
(−i)n, that is,

F

(
e−x2/2Hn(x)

)
= (−i)ne−ξ

2/2Hn(ξ).

Hint: Begin with the generating function (5.26) for the Hermite polynomials, mul-
tiply through by e−x2/2, compute the Fourier transform of both sides, use the gener-
ating function again, and equate the coefficients of zn in the two series.
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Finally, it is instructive to use the orthonormal basis {ψ0, ψ1, . . .} for L2(R) to
write out matrix representations for the operators b, b†,NB, and HB. Somewhat more
precisely, we use the basis to establish an isometric isomorphism ψ =

∑∞
n=0 cnψn ∈

L2(R) → (cn)∞n=0 ∈ `
2(N) of L2(R) onto `2(N) and regard them as operators on

`2(N). One need only read off the coefficients in the expressions we have derived
above to obtain

b† =



0 0 0 0 · · ·
√

1 0 0 0 · · ·
0
√

2 0 0 · · ·
0 0

√
3 0 · · ·

...
...

...
...



b =


0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
...

...
...

...



NB =



0 0 0 0 · · ·
0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...
...
...
...



HB =



1
2~ω 0 0 0 · · ·

0 3
2~ω 0 0 · · ·

0 0 5
2~ω 0 · · ·

0 0 0 7
2~ω · · ·

...
...

...
...


Remark 5.3.8. This brings to a close our rather extended introduction of the operator
HB = 1

2m P2 + mω2

2 Q2, but do not despair; we will have a great deal more to say about
HB in Examples 5.4.5, 5.5.4, and then again in Chapters 7 and 8, where its unique
self-adjoint extension, also denoted HB : D(HB) → L2(R), will be known as the
Hamiltonian for the (bosonic) quantum harmonic oscillator. For a description of
D(HB), see Example 5.4.5.

5.4 The Spectrum

Now it is time to return to our synopsis of spectral theory. Although our interest at
the moment is in operators on a Hilbert space we should point out that all of the
basic definitions in this section apply equally well to operators on a Banach space,
or even a linear topological space (see Section VIII.1 of [Yosida]). Now note that, if
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λ is an eigenvalue of the operator A : D(A)→ H, then λ − A has a nontrivial kernel
and so λ − A is not injective and therefore not invertible. As it happens, λ − A can
fail to have a bounded inverse for a variety of reasons even if λ is not an eigenvalue
of A and this is what we need to discuss now. For this we need a few definitions.
We will say that a λ ∈ C is in the resolvent set ρ(A) of A if λ − A is injective on
D(A), its range Image (λ− A) is dense in H and Rλ(A) = (λ− A)−1 is continuous on
Image (λ − A). The operator Rλ(A) = (λ − A)−1 is called the resolvent of A at λ.
Remark 5.4.1. If A happens to be closed (in particular, self-adjoint), then, for any
λ ∈ ρ(A), Rλ(A) = (λ−A)−1 is actually defined on all of H (Theorem, Section VIII.1,
of [Yosida]) and so is necessarily bounded by the Closed Graph Theorem (Theorem
4.6.4 of [Fried]). Conversely, if (λ − A)−1 is bounded and defined on all of H, then
(λ− A)−1 is closed and it follows that λ− A is closed (Proposition 3, Section II.6, of
[Yosida]) and therefore A is closed.

The complement σ(A) = C−ρ(A) of the resolvent set of A is called the spectrum
of A. The spectrum certainly contains any eigenvalues that A might have, but, in
general, it contains more. Indeed, we will decompose σ(A) into three disjoint sets

σ(A) = Pσ(A) tCσ(A) t Rσ(A)

defined as follows. Pσ(A) is called the point spectrum of A and consists of all λ ∈ C
for which λ − A is not injective on D(A) and therefore has no inverse at all; thus,
Pσ(A) consists precisely of the eigenvalues of A. Cσ(A) is called the continuous
spectrum of A and consists of all λ ∈ C for which (λ − A)−1 exists and has a dense
domain Image (λ − A), but is not continuous on Image (λ − A). Rσ(A) is called the
residual spectrum of A and consists of all λ ∈ C for which (λ−A)−1 exists, but whose
domain Image (λ − A) is not dense in H. For self-adjoint operators, Rσ(A) = ∅

(Theorem 1, part (iv), Section XI.8, of [Yosida]; note that the proof of part (iv)
does not depend on the Spectral Theorem, although the rest of Theorem 1 does).
According to Theorem 1, Section VIII.2, of [Yosida], the resolvent set ρ(A) of a
closed operator A is an open subset of the complex plane C and, consequently,
the spectrum σ(A) is closed. For self-adjoint operators one can say even more. In
this case, the spectrum is a (closed) subset of the real line R; this is Example 4,
Chapter VIII, Section 1 of [Yosida], but this fact is of such fundamental importance
to quantum mechanics that we will include a proof.
Remark 5.4.2. In quantum mechanics, a self-adjoint operator A represents an ob-
servable and the possible measured values of the observable are the points in the
operator’s spectrum. Since the result of a measurement is always a real number it is
essential that σ(A) ⊆ R.

Theorem 5.4.1. Let A : D(A) → H be a self-adjoint operator on a separable,
complex Hilbert space H. Then the resolvent set ρ(A) contains all complex numbers
λ with nonzero imaginary part so the spectrum σ(A) is a subset of the real line R.

Proof. Note first that for ψ ∈ D(A), 〈Aψ, ψ〉 is real since 〈Aψ, ψ〉 = 〈ψ, Aψ〉 =

〈Aψ, ψ〉; indeed, this is clearly true for any symmetric operator. Consequently,
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Im 〈(λ − A)ψ, ψ〉 = Im 〈λψ, ψ〉 − Im 〈Aψ, ψ〉 = Im (λ) ‖ψ‖2 = −Im (λ) ‖ψ‖2.

From this and the Schwarz Inequality we obtain

‖(λ − A)ψ‖ ‖ψ‖ ≥ | 〈(λ − A)ψ, ψ〉 | ≥ |Im(λ)| ‖ψ‖2

and so

‖(λ − A)ψ‖ ≥ |Im(λ)| ‖ψ‖. (5.36)

From this we conclude that λ − A is injective and therefore invertible if Im(λ) , 0.
Moreover, we claim that, in this case, D((λ − A)−1) = Image (λ − A) must be dense
in H. To see this we suppose not. Then Image (λ − A) would have a nontrivial
orthogonal complement so we could select a φ , 0 in H with 〈(λ − A)ψ, φ〉 = 0 for
all ψ ∈ D(A) = D(λ−A). This, by definition, forces φ into the domain of the adjoint
(λ − A)∗ of λ − A. Since the adjoint of λ − A is λ − A on D(A∗) = D(A) we find that
〈ψ, (λ − A)φ〉 = 0∀ψ ∈ D(A). But D(A) is assumed dense in H so 〈ψ, (λ − A)φ〉 =

0∀ψ ∈ H and the nondegeneracy of 〈 , 〉 implies that (λ− A)φ = 0, that is, Aφ = λφ.
But then 〈Aφ, φ〉 = 〈λφ, φ〉 = λ‖φ‖2 which is not real since Im(λ) , 0 and φ , 0 and
this is a contradiction. Thus, we have shown that, if Im(λ) , 0, (λ − A)−1 exists and
is densely defined on Image (λ − A). To conclude the proof that λ ∈ ρ(A) we need
only show that (λ−A)−1 is bounded on Image (λ−A). But, for any ξ ∈ Image (λ−A),
(5.36) gives

‖ξ‖ = ‖(λ − A)(λ − A)−1ξ‖ ≥ |Im(λ)| ‖(λ − A)−1ξ‖

so

‖(λ − A)−1ξ‖ ≤
1

|Im(λ)|
‖ξ‖,

as required. ut

Remark 5.4.3. von Neumann showed that, if A is a closed, symmetric operator, then
the spectrum σ(A) must be one of the following.

1. The closed upper half-plane {z ∈ C : Im z ≥ 0}.
2. The closed lower half-plane {z ∈ C : Im z ≤ 0}.
3. The entire complex plane C.
4. A closed subset of the real line R (in which case, A is self-adjoint).

This is Theorem X.1 in [RS2].
Remark 5.4.4. Having just noted at the beginning of the proof of Theorem 5.4.1 that
〈ψ, Aψ〉 is real for any symmetric operator this would seem an appropriate moment
to introduce a little notation that will play a role in our discussion of the Spectral
Theorem. We define, for any symmetric operator A,

m(A) = inf 〈ψ, Aψ〉,
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and

M(A) = sup 〈ψ, Aψ〉,

where the infimum and supremum are taken over all ψ ∈ D(A) with ‖ψ‖ = 1. If A
is defined on all of H, then these are both finite if and only if A is bounded and, in
this case, ‖A‖ = max ( |m(A)|, |M(A)| ); this is Theorem 6.11-C of [TaylA].

We will see in just a moment that the spectrum of an unbounded operator might
well be empty, but this cannot happen for a bounded operator; this is the first Corol-
lary in Section VIII.2 of [Yosida] and also the Corollary in Section VI.3 of [RS1],
but one should also look at Theorem A, Section 67, of [Simm1] which proves the
same result for the spectrum of an element in any Banach algebra. The essential
ingredient in all of the proofs is Liouville’s Theorem from complex analysis and
a byproduct of the proof is that the spectrum of a bounded operator is a bounded
(and therefore compact) subset of C. Finally, we remark that unitarily equivalent
operators (Remark 5.2.20) have the same point, continuous and residual spectra.

We will now look at a few examples. The first is Example 5, Section VIII.1, of
[RS1]. Its moral is that the spectrum (and almost everything else) is very sensitive
to the choice of domain.
Example 5.4.1. We define two operators A1 and A2 on L2[0, 1]. Their domains are

D(A1) =

{
ψ ∈ L2[0, 1] : ψ ∈ AC[0, 1] and

dψ
dq
∈ L2[0, 1]

}
and

D(A2) =

{
ψ ∈ D(A1) : ψ(0) = 0

}
.

Each of these contains the smooth functions with compact support contained in
(0, 1] and so each is dense in L2[0, 1]. A1 and A2 are both defined on their respective
domains by A j = −i~ d

dq , j = 1, 2. We claim that

σ(A1) = C, (5.37)

but

σ(A2) = ∅. (5.38)

To prove (5.37) we need only observe that, for any λ ∈ C, eiλq/~ ∈ D(A1) and
(λ − A1)eiλq/~ = 0 so λ − A1 fails to be invertible and λ ∈ σ(A1). For the proof of
(5.38), we must show that, for every λ ∈ C, λ − A2 is invertible with a bounded
inverse. We will do this by exhibiting the inverse explicitly and then showing that it
is bounded. For this we define S λ : L2[0, 1]→ D(A2) by

(S λg)(q) =
−i
~

∫ q

0
eiλ(q−s)/~g(s)ds
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for every g ∈ L2[0, 1] and every q ∈ [0, 1]. Now we compute (λ − A2)S λ and
S λ(λ − A2). For the record, we will use the following formula from calculus for
differentiating integrals. If f (q, s) and its q-derivative are continuous and u(q) and
v(q) are continuously differentiable, then

d
dq

∫ v(q)

u(q)
f (q, s)ds = f (q, v(q))

dv
dq
− f (q, u(q))

du
dq

+

∫ v(q)

u(q)

∂ f
∂q

(q, s)ds.

Since both L2[0, 1] and D(A2) contain a dense set of smooth functions, it will suffice
to show (λ − A2)S λg = g and S λ(λ − A2)g = g for any smooth function g in L2[0, 1]
and D(A2), respectively. For (λ − A2)S λ we note that

(λS λg)(q) = −
iλ
~

∫ q

0
eiλ(q−s)/~g(s)ds

and

(A2S λg)(q) = (−i~)(
−i
~

)
d
dq

( ∫ q

0
eiλ(q−s)/~g(s)ds

)
= −

[
g(q) − 0 +

iλ
~

∫ q

0
eiλ(q−s)/~g(s)ds

]
= −g(q) −

iλ
~

∫ q

0
eiλ(q−s)/~g(s)ds

so (λ − A2)S λ is the identity on L2[0, 1], as required. To show that S λ(λ − A2) is
the identity on D(A2) we will need the fact that a g ∈ D(A2) satisfies g(0) = 0. Of
course, (S λλg)(q) is the same as (λS λg)(q), but integrating by parts gives

(S λA2g)(q) = (
−i
~

)(−i~)
∫ q

0
eiλ(q−s)/~ dg

ds
ds

= −

[
eiλ(q−s)/~g(s)

∣∣∣q
0 −
−iλ
~

∫ q

0
eiλ(q−s)/~g(s)ds

]
= −g(q) + 0 −

iλ
~

∫ q

0
eiλ(q−s)/~g(s)ds.

Thus, we find that S λ(λ − A2) is the identity on D(A2), as required.
Having shown that S λ is the inverse of λ−A2 we can finish the proof by showing

that S λ is bounded for any fixed λ ∈ C. But, for any g ∈ L2[0, 1],
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‖S λg‖2L2 =

∫ 1

0

∣∣∣ ( S λg)(q)
∣∣∣2dq

≤

(
sup

0≤q≤1

∣∣∣ (S λg)(q)
∣∣∣)2

≤

(
sup

0≤q≤1

∫ q

0

∣∣∣ eiλ(q−s)/~g(s)
∣∣∣ ds

)2

≤

(
sup

0≤q≤1

∫ q

0

∣∣∣ eiλ(q−s)/~
∣∣∣2ds

) (
sup

0≤q≤1

∫ q

0

∣∣∣ g(s)
∣∣∣2ds

)
≤ C(λ) ‖g‖2L2 ,

where C(λ) is a constant that depends only on λ. Consequently, S λ is bounded.
Example 5.4.2. Next we will consider the operator Q defined on D(Q) =

{
ψ ∈

L2(R) :
∫
R

q2|ψ(q)|2dq < ∞
}

by (Qψ)(q) = qψ(q). Here is what we know so far (see
Example 5.2.6). Q is unbounded and self-adjoint (and therefore closed). Moreover,
for any λ ∈ C, (λ − Q)ψ = 0 ⇒ ψ = 0 ∈ L2(R) so λ − Q is invertible. In particular,
the point spectrum Pσ(Q) is empty. Moreover, since Q is self-adjoint, the residual
spectrum Rσ(Q) is also empty (we will prove this directly in a moment). All that
remains is the continuous spectrum Cσ(Q) and, since Q is self-adjoint, this must be
a closed (possibly empty) subset of R (Theorem 5.4.1). What we will now show is
that, in fact, Cσ(Q) is all of R, that is, for every λ ∈ R, (λ − Q)−1, which we know
exists (Pσ(Q) = ∅) and will show is densely defined, is an unbounded operator on
Image (λ − Q).

Notice that, with λ ∈ R fixed, any ψ ∈ L2(R) that vanishes on some in-
terval Uψ(λ) about λ is in Image (λ − Q) because we can solve the equation
(λ − q)φ(q) = ψ(q) by taking φ(q) = 0 on Uψ(λ) and φ(q) = ψ(q)/(λ − q) out-
side of Uψ(λ). The resulting function φ is in D(Q) since ψ is in L2(R). In particular,
for each n = 1, 2, . . . , and each ψ ∈ L2(R), Image (λ − Q) contains χ(Jn)ψ, where
χ(Jn) is the characteristic function of the set Jn = (−∞,− 1

n ]∪ [ 1
n ,∞). But the χ(Jn)ψ

converge pointwise almost everywhere to ψ as n → ∞ and so, by the Dominated
Convergence Theorem (Theorem 2.9.1 of [Fried]), χ(Jn)ψ → ψ in L2(R). Conse-
quently, Image (λ−Q) is dense in L2(R). In particular, the residual spectrum Rσ(A)
is empty.

Finally, we show that (λ − Q)−1 is unbounded on Image (λ − Q). Suppose to the
contrary that (λ − Q)−1 is bounded. Then there exists a positive constant M such
that ‖(λ − Q)−1ψ‖ ≤ M‖ψ‖ for all ψ ∈ Image (λ − Q). In particular, for any φ in
D(λ − Q) = D(Q) we have

‖φ‖ = ‖(λ − Q)−1(λ − Q)φ‖ ≤ M‖(λ − Q)φ‖. (5.39)

We arrive at a contradiction by constructing, for each n = 1, 2, . . ., an element φn of
D(λ − Q) = D(Q) satisfying ‖φn‖ = 1 and ‖(λ − Q)φn‖ <

1
n so that, for sufficiently

large n, (5.39) cannot be satisfied. For this we let In = [λ − 1
2n , λ + 1

2n ] and take
φn =

√
n χ(In) so that φn takes the constant value

√
n on [λ − 1

2n , λ + 1
2n ] and is
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zero outside [λ − 1
2n , λ + 1

2n ]. Then φn is clearly in D(Q) and satisfies ‖φn‖ = 1.
Furthermore, [(λ − Q)φn](q) is the linear function (λ − q)

√
n on [λ − 1

2n , λ + 1
2n ] and

is zero outside [λ− 1
2n , λ+ 1

2n ]. The maximum value of
∣∣∣ (λ−q)

√
n
∣∣∣ on [λ− 1

2n , λ+ 1
2n ]

is
√

n
2n = 1

2
√

n so

‖(λ − Q)φn‖
2 =

∫
R

∣∣∣[(λ − q)φn](q)
∣∣∣2dq ≤

∫ λ+ 1
2n

λ− 1
2n

( 1
2
√

n
)2dq =

1
4n

(1
n

)
<

1
n2

as required. The conclusion is that

σ(Q) = Cσ(Q) = R.

Remark 5.4.5. The ideas in this last example can be employed to yield a more
general result. Let g : R → R be a real-valued, measurable function on R that
is finite almost everywhere with respect to Lebesgue measure µ and consider the
self-adjoint multiplication operator Qg : D(Qg) → L2(R) defined on D(Qg) =

{ψ ∈ L2(R) : gψ ∈ L2(R)} by (Qgψ)(q) = g(q)ψ(q)∀ψ ∈ D(Qg)∀q ∈ R. By
self-adjointness, the residual spectrum Rσ(Qg) is always empty. The point spectrum
Pσ(Qg) is nonempty if and only if g differs from a constant function only on a set of
measure zero, in which case σ(Qg) consists of this constant value alone. In general,
the spectrum σ(Qg) is just the essential range of g (recall that a real number λ is in
the essential range of g if and only if µ

{
q ∈ R : λ − ε < g(q) < λ + ε

}
is positive for

every ε > 0; in particular, if g is continuous, this is just the range of g).
Example 5.4.3. We consider the momentum operator P defined on

D(P) =

{
ψ ∈ L2(R) : ψ ∈ AC[a, b]∀a < b inR and

dψ
dq
∈ L2(R)

}
by

P = −i~
d

dq
.

We have seen (Example 5.2.7) that P is unitarily equivalent, via the Fourier trans-
form F, to the operator Q in the previous example so its spectrum is precisely the
same. Specifically, the point spectrum Pσ(P) and the residual spectrum Rσ(P) are
both empty and the continuous spectrum Cσ(P) is all of R.

σ(P) = Cσ(P) = R

Example 5.4.4. The free particle Hamiltonian H0 (Example 5.2.14) defined on
D(H0) =

{
ψ ∈ L2(R) : ∆ψ ∈ L2(R)

}
is unitarily equivalent to the self-adjoint multi-

plication operator Qg, where g(p) = ~2

2m p2 and so they both have the same spectrum.
From Remark 5.4.5 we conclude that the point and residual spectra of H0 are both
empty and the continuous spectrum is the range of g, that is, Cσ(H0) = [0,∞) so
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σ(H0) = Cσ(H0) = [0,∞).

For the record we note that this implies, in particular, that

σ(−∆) = Cσ(−∆) = [0,∞).

Remark 5.4.6. We showed earlier (Example 5.2.14) that 〈ψ,−∆ψ〉 ≥ 0 for all ψ ∈
S(R). In fact, this is true for all ψ ∈ D(∆) and this is related to the result we have
just proved. A symmetric operator A on a Hilbert space H is said to be positive if
〈ψ, Aψ〉 ≥ 0 for all ψ ∈ D(A). The following is Lemma 2, Section XII.7.2, of [DSII].

Theorem 5.4.2. Let A : D(A) → H be a self-adjoint operator on a complex, sepa-
rable Hilbert space H. Then A is positive if and only if σ(A) ⊆ [0,∞).

Example 5.4.5. Finally, we return to the operator HB defined on S(R) by

HB =
1

2m
P2 +

mω2

2
Q2 = −

~2

2m
d2

dq2 +
mω2

2
q2.

We have seen (Example 5.3.1) that HB is essentially self-adjoint on the Schwartz
space S(R) and so it has a unique self-adjoint extension which we will also denote
HB. This was proved by finding an orthonormal basis {ψ0, ψ1, . . .} for L2(R) consist-
ing of eigenvectors for HB in S(R) and appealing to Theorem 5.3.1. In particular, all
of the corresponding eigenvalues

En = (n +
1
2

)~ω, n = 0, 1, 2, . . .

are elements of the point spectrum Pσ(HB). We claim that, because the eigenvectors
of HB are complete in L2(R), this is the entire spectrum of HB, that is, for any λ
not equal to one of these En, the operator (λ − HB)−1 exists, is densely defined and
bounded on its domain. By Theorem 5.4.1 we know this already for any λ with
nonzero imaginary part so we can restrict our attention to real λ.

We begin with a few remarks on HB itself. Since {ψn}
∞
n=0 is an orthonormal basis

for L2(R) we can write any ψ in D(HB) as ψ =
∑∞

n=0〈ψn, ψ〉ψn and, since HB is
self-adjoint,

HBψ =

∞∑
n=0

〈ψn,HBψ〉ψn =

∞∑
n=0

〈HBψn, ψ〉ψn =

∞∑
n=0

〈Enψn, ψ〉ψn =

∞∑
n=0

En〈ψn, ψ〉ψn,

Thus, the domain D(HB) of HB consists precisely of those ψ ∈ L2(R) for which
the series

∑∞
n=0 En〈ψn, ψ〉ψn converges in L2(R). Moreover, by Parseval’s Theorem

(Theorem 6.4.5 of [Fried])

‖HBψ‖
2 =

∞∑
n=0

E2
n |〈ψn, ψ〉 |

2.

for any such ψ.
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HB is injective and therefore invertible on its domain because 0 is not an eigen-
value. We will find an explicit series representation for H−1

B . Let φ ∈ Image (HB)
and write φ =

∑∞
n=0〈ψn, φ〉ψn. Then

H−1
B φ = ψ⇔ φ = HBψ⇔ 〈ψn, φ〉 = En〈ψn, ψ〉 ⇔ 〈ψn, ψ〉 =

1
En
〈ψn, φ〉

for every n = 0, 1, 2, . . .. Thus,

H−1
B φ =

∞∑
n=0

1
En
〈ψn, φ〉ψn. (5.40)

This series also converges in L2(R) since φ =
∑∞

n=0〈ψn, φ〉ψn converges and 0 <
E0 < E1 < E2 · · · → ∞. Indeed, this series converges for any φ in L2(R) and the
element of L2(R) it represents satisfies

HB

( ∞∑
n=0

1
En
〈ψn, φ〉ψn

)
=

∞∑
n=0

En
1
En
〈ψn, φ〉ψn =

∞∑
n=0

〈ψn, φ〉ψn = φ.

We conclude that the image of HB is not only dense in L2(R), but is, in fact, all of
L2(R). Moreover, H−1

B is bounded on L2(R) since, for any φ ∈ L2(R),

‖H−1
B φ‖2 =

∞∑
n=0

1
E2

n
| 〈ψn, φ〉 |

2 ≤
1
E2

0

‖φ‖2.

Let’s summarize all of this.We have shown that HB is an unbounded, self-adjoint,
invertible operator whose inverse H−1

B is a bounded operator defined everywhere on
L2(R); we will show in Example 5.5.4 that it is also a compact operator (see Remark
5.5.3 for the definition). Since all of this is equally true of −HB, what we have just
shown is that (0 − HB)−1 is a bounded operator defined on all of L2(R). In other
words, λ = 0 is in the resolvent set ρ(HB) of HB. Now, let’s deal with all of the
remaining λ , En, n = 0, 1, 2, . . . in R.

Thus, we assume λ ∈ R, λ , 0 and λ , En, n = 0, 1, 2, . . ., and we must show
that (λ − HB)−1 exists, is densely defined and is bounded on its domain. We’ll begin
by just computing (λ − HB)−1 formally to get a putative formula to work with and
then deal with convergence issues and proving what needs to be proved. Thus, we
observe that

(λ − HB)−1φ = ψ⇔ φ = (λ − HB)ψ
⇔ λψ − HBψ = φ

⇔ 〈ψn, λψ〉 − En〈ψn, ψ〉 = 〈ψn, φ〉 ∀n = 0, 1, 2, . . .

⇔ 〈ψn, ψ〉 =
〈ψn, φ〉

λ − En
∀n = 0, 1, 2, . . . .

Thus, assuming for the moment that the series converges, we have
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HBψ =

∞∑
n=0

En
〈ψn, φ〉

λ − En
ψn.

From this and λψ = φ + HBψ we arrive at the following potential formula for (λ −
HB)−1.

ψ = (λ − HB)−1φ =
1
λ
φ +

1
λ

∞∑
n=0

En
〈ψn, φ〉

λ − En
ψn. (5.41)

To clean this business up we first show that the series in (5.41) does, indeed, con-
verge in L2(R) for any φ. For this we notice first that, since En → ∞ as n → ∞,∣∣∣∣∣ En
λ−En

∣∣∣∣∣ is bounded and we can let

α = sup
n≥0

∣∣∣∣∣ En

λ − En

∣∣∣∣∣.
Also let

ϕk =

k∑
n=0

En
〈ψn, φ〉

λ − En
ψn

for each k ≥ 0. Then for k1 < k2,

‖ϕk2 − ϕk1‖
2 =

k2∑
n=k1+1

∣∣∣∣∣ En

λ − En

∣∣∣∣∣2∣∣∣〈ψn, φ〉
∣∣∣2 ≤ α2

k2∑
n=k1+1

∣∣∣〈ψn, φ〉
∣∣∣2.

Since
∑∞

n=0

∣∣∣〈ψn, φ〉
∣∣∣2 = ‖φ‖2, the sequence {ϕk}

∞
k=0 of partial sums is Cauchy and

therefore convergent in L2(R). Thus, the series in (5.41) converges in L2(R). Con-
sequently,

ψ =
1
λ
φ +

1
λ

∞∑
n=0

En
〈ψn, φ〉

λ − En
ψn

is a well-defined element of L2(R) and it certainly satisfies (λ−HB)ψ = φ. We have
therefore shown that (λ − HB)−1 is defined for every φ in L2(R) and is given by
(5.41). All that remains is to show that (λ − HB)−1 is bounded on L2(R). But, from
(5.41) we find that

‖(λ − HB)−1φ‖ ≤
1
|λ|
‖φ‖ +

1
|λ|
α‖φ‖ =

1
|λ|

(1 + α)‖φ‖

so the result follows. In Example 5.5.1 we will show that (λ−HB)−1 is also a compact
operator.
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5.5 The Spectral Theorem and Stone’s Theorem

Now we turn to the spectral theorem. We have shown that multiplication by q
defines a self-adjoint operator Q : D(Q) → L2(R) on D(Q) =

{
ψ ∈ L2(R) :∫

R
q2|ψ(q)|2dq < ∞

}
and we noted that an analogous statement is true if q is re-

placed by any measurable, real-valued function g(q) (Exercise 5.2.6). We have also
shown that the operator P : D(P) =

{
ψ ∈ L2(R) : ψ ∈ AC[a, b]∀a < b inR and dψ

dq ∈

L2(R)
}
→ L2(R) defined by P = −i ~ d

dq is self-adjoint because it is unitarily equiv-
alent to Q. There is a sense in which these examples are generic. One version of
the Spectral Theorem says roughly that real-valued multiplication operators on an
L2 space are always self-adjoint and that, conversely, any self-adjoint operator is
unitarily equivalent to a real-valued multiplication operator on some L2 space. The
following more precise statements are, respectively, Proposition 1, Section VIII.3,
and Theorem VIII.4 of [RS1].
Remark 5.5.1. Recall that, if g is a real-valued function on a measure space (M, µ),
then g is essentially bounded if there is a positive constant C for which |g(m)| ≤ C
almost everywhere and a real number λ is in the essential range of g if and only if
µ
{
m ∈ M : λ − ε < g(m) < λ + ε

}
is positive for every ε > 0.

Theorem 5.5.1. Let (M, µ) be a σ-finite measure space and g : M → R a mea-
surable, real-valued function on M that is finite almost everywhere. Define the mul-
tiplication operator Qg : D(Qg) → L2(M, µ) on D(Qg) =

{
ψ ∈ L2(M, µ) : gψ ∈

L2(M, µ)
}

by (Qgψ)(m) = g(m)ψ(m)∀m ∈ M. Then Qg is self-adjoint and its spec-
trum σ(Qg) is the essential range of g. Qg is a bounded operator if and only if g is
essentially bounded.

Theorem 5.5.2. Let A : D(A) → H be a self-adjoint operator on a separable,
complex Hilbert space H. Then there exists a σ-finite measure space (M, µ) and a
real-valued measurable function g : M → R on M that is finite almost everywhere
such that A is unitarily equivalent to the multiplication operator Qg : D(Qg) →
L2(M, µ); that is, there exists a unitary equivalence U : H → L2(M, µ) for which

1. ϕ ∈ D(A)⇔ Uϕ ∈ D(Qg), and
2. ψ ∈ U[D(A)]⇒ [(UAU−1)ψ](m) = g(m)ψ(m)∀m ∈ M.

Remark 5.5.2. Dropping the requirement that g be real-valued one obtains the spec-
tral theorem for normal operators, that is, operators that commute with their ad-
joints. Since unitary operators are certainly normal (U∗U = UU∗ = id) one obtains
such a representation for any unitary operator, but in this case UU∗ = id implies that
|g(m)| = 1 almost everywhere. Consequently, the essential range of g is contained in
the unit circle {z ∈ C : |z| = 1} and therefore so is the spectrum. We will see another
version of the spectral theorem for unitary operators a bit later (Theorem 5.5.7).

Theorem 5.5.2 is an elegant way of viewing the essential content of the Spectral
Theorem (see [Hal3] for more on this point of view), but it is not particularly well
suited to the physical interpretation of observables in quantum mechanics and this
is really our principal objective here. What we need is something more akin to the
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version of the finite-dimensional spectral theorem that we described in Section 5.1,
that is, an explicit representation of any self-adjoint operator in terms of projection
operators. What this representation looks like depends on the type of self-adjoint
operator at hand. The simplest such result deals with self-adjoint operators that are
also compact.
Remark 5.5.3. Recall that a bounded operator T : H → H on a separable, com-
plex Hilbert space H is said to be compact (or completely continuous) if, for each
bounded sequence {ϕn}

∞
n=1 in H, the sequence {Tϕn}

∞
n=1 has a subsequence that con-

verges in H (in other words, T maps bounded sets in H onto sets with compact
closure in H). Finite linear combinations of compact operators are compact, as
are products and adjoints of compact operators. Recall also that a bounded oper-
ator P : H → H on a separable, complex Hilbert space H is called a projec-
tion (more accurately, an orthogonal projection) if P is self-adjoint and satisfies
P2 = P. Then M = Image (P) is a closed subspace of H so H is the orthogonal
direct sum M ⊕ M⊥ of M and its orthogonal complement M⊥. P is the orthogonal
projection of H onto M in the sense that every ψ ∈ H can be written uniquely as
ψ = φ + φ⊥, with φ = Pψ ∈ M and φ⊥ ∈ M⊥. One often writes P = PM for empha-
sis. If P , 0, then ‖P‖ = 1. All of this is discussed in any functional analysis text
but, in particular, in Sections 5.1-5.3 and 6.2-6.3 of [Fried]; also see Chapter VI of
[RiSz.N] for some nice applications.

The spectral theorem for compact self-adjoint operators is particularly simple
and easy to relate to so, although it is probably already familiar, we intend to linger
over it a bit longer than is absolutely necessary for our purposes because it also
provides some nice motivation for the more general result that is, perhaps, not so
easy to relate to. Probably the best places to find the details that we omit here are
Chapter 6 of [TaylA], or Chapter VI of [RiSz.N]; see Remark 5.4.4 for the notation
used in part (2) of the following theorem.

Theorem 5.5.3. Let T be a nonzero, compact, self-adjoint operator on the separa-
ble, complex Hilbert space H. Then

1. T has at least one nonzero (necessarily real) eigenvalue λ with |λ| = ‖T‖.
2. The spectrum σ(T ) is contained in the interval [m(T ),M(T )] ⊆ R and is at most

countably infinite.
3. Every nonzero element λ of the spectrum σ(T ) is an eigenvalue of T with a finite-

dimensional eigenspace Mλ.
4. The eigenvalues of T can accumulate only at 0 and, if H is infinite-dimensional,

then 0 must be in σ(T ), but it need not be an eigenvalue of T .
5. If λ1, λ2, . . . is the (possibly finite) sequence of distinct nonzero eigenvalues of T ,

then

H � Kernel (T ) ⊕ Mλ1 ⊕ Mλ2 ⊕ · · · .

6. If Pλn : H → Mλn is the orthogonal projection of H onto Mλn , then
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Tψ =
∑
n≥1

λn Pλnψ

for all ψ ∈ H; if the sum is infinite, then the convergence is in the norm topology
of H.

Remark 5.5.4. It is sometimes convenient to arrange the distinct nonzero eigenval-
ues λ1, λ2, . . . in a sequence in which their absolute values are nonincreasing and
each eigenvalue is repeated a number of times equal to its multiplicity. If this is the
way we want them listed we will use µ rather than λ to label the eigenvalues. Thus,

| µ1 | ≥ | µ2 | ≥ · · · ,

where each µk is equal to some λn(k) and appears in the sequence dim (Mλn(k) ) times.
Once this is done one can clearly choose an orthonormal basis for each Mλn and
arrange the elements of these bases in a sequence ψ1, ψ2, . . .. Then

Tψ =
∑
k≥1

〈ψk,Tψ〉ψk =
∑
k≥1

〈Tψk, ψ〉ψk =
∑
k≥1

µk〈ψk, ψ〉ψk

for any ψ ∈ H (see the Theorem on page 233 of [RiSz.N]). Notice, however, that,
unless Kernel (T ) = {0}, ψ1, ψ2, . . . will only be an orthonormal sequence in H and
not an orthonormal basis. Even so, when phrased in these terms one can formulate a
useful converse of Theorem 5.5.3. The following result is proved on pages 234-235
of [RiSz.N].

Theorem 5.5.4. Let T : H → H be a linear map on a separable, complex Hilbert
space H. Suppose there exists an orthonormal sequence {ψk}

∞
k=1 in H and a se-

quence {µk}
∞
k=1 of real numbers converging to 0 for which

Tψ =
∑
k≥1

µk〈ψk, ψ〉ψk

for every ψ ∈ H. Then T is a compact, self-adjoint operator on H.

Example 5.5.1. Let’s return once again to the operator HB of Example 5.4.5. HB

is, of course, not compact (in fact, not even bounded), but it is invertible with a
globally defined, bounded inverse H−1

B and we claim that this is compact. Indeed,
this follows directly from the previous Theorem if we recall the expression (5.40)
for H−1

B and the fact that the eigenvalues En of HB are nonzero and satisfy En → ∞

as n → ∞. In fact, if λ is any point in the resolvent set ρ(HB), then the resolvent
operator (λ − HB)−1 is compact. This follows in exactly the same way from the fact
that (5.41) can be written

(λ − HB)−1φ =
1
λ

∞∑
n=0

(
1 +

En

λ − En

)
〈ψn, φ〉ψn.

Compact, self-adjoint operators have important applications, for example, to the
Hilbert-Schmidt theory of linear integral equations (where they first arose), but they
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do not play a major role in the foundations of quantum mechanics. Nevertheless,
we would like to spend a little more time with the compact case in order to see how
it can be rephrased in a way that admits a generalization to arbitrary bounded and
even unbounded self-adjoint operators. Specifically, we would like to turn the sum
in Theorem 5.5.3 (5) into an integral.

Thus, we consider a nonzero, compact, self-adjoint operator T on a separable,
complex Hilbert space H, denote by λ1, λ2, . . . the distinct nonzero (necessarily real)
eigenvalues of T and by µ1, µ2, . . . these same nonzero eigenvalues arranged in such
a way that each λn appears dim (Mλn ) times and | µ1 | ≥ | µ2 | ≥ · · · . As above, we
denote by

{
ψ1, ψ2, . . .

}
the orthonormal sequence of eigenvectors of T satisfying

Tψ =
∑∞

k=1 µk〈ψk, ψ〉ψk for every ψ ∈ H. Now we will define a 1-parameter family
of operators Eλ, λ ∈ R, as follows.

1. For λ < 0 and any ψ ∈ H,

Eλψ =
∑
µk≤λ

〈ψk, ψ〉ψk,

where the sum is taken to be 0 if there are no µk ≤ λ. Notice that this is a finite
sum since λk → 0 as k → ∞.

2. For λ = 0 and any ψ ∈ H,

E0ψ = ψ −
∑
µk>0

〈ψk, ψ〉ψk,

where the sum is taken to be 0 if there are no µk > 0. Here the sum need not be
finite, but converges in H by Bessel’s Inequality.

3. For λ > 0 and any ψ ∈ H,

Eλψ = ψ −
∑
µk>λ

〈ψk, ψ〉ψk,

where the sum is taken to be 0 if there are no µk > λ. Again, the sum is finite
since λk → 0 as k → ∞.

Now one must check a few things. Specifically, one can show that each Eλ, λ ∈ R,
is a projection and, moreover, the family {Eλ}λ∈R of projections satisfies

1. EλEκ = Emin(λ,κ),
2. Eλ = 0 if λ < m(T ) and Eλ = idH if λ ≥ M(T ), and
3. limκ→λ+ Eκψ = Eλψ∀ψ ∈ H.

Part (2) is clear from the definition since σ(T ) ⊆ [m(T ),M(T )]. Since, as a func-
tion of λ, Eλ is constant between any two consecutive eigenvalues of T , part (3) is
clear for λ < 0 and for λ > 0, while, for λ = 0, it is simply a restatement of the
definition of E0. Part (1) is proved by considering the various possibilities for the
relative ordering of λ, κ and 0 in R. If you would like to see how this goes you might
write out at least the following case.
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Exercise 5.5.1. Suppose λ ≤ κ < 0 and show that EλEκ = Eλ.
Remark 5.5.5. It is customary to write limκ→λ+ Eκψ as Eλ+0ψ so that (3) simply
says Eλ+0ψ = Eλψ; this is often abbreviated as Eλ+0 = Eλ. Similarly, one writes
limκ→λ− Eκψ = Eλ−0ψ, but this, in general, is not equal to Eλψ.

Although we will formulate the general definition in a moment we mention now
that this family

{
Eλ

}
λ∈R of projections is called a resolution of the identity for the

operator T . With it one can produce the integral representation of T to which we
have alluded several times. This depends on the general notion of a Stieltjes integral.
Remark 5.5.6. One can find a thorough discussion to the Riemann-Stieltjes integral
in Chapter 7 of [Apos] and Chapter III of [RiSz.N], but we will record a few of the
basic definitions. There is a generalization called the Lebesgue-Stieltjes integral that
we will encounter briefly in Section 8.4.4 (see Remark 8.4.54). Begin with a closed,
bounded interval [a, b] in R and a real-valued function α : [a, b] → R of bounded
variation; recall that α is of bounded variation if and only if it is the difference of two
nondecreasing functions (see Section 4 of [RiSz.N] or Section 3.5 of [Fol2]). Then,
for any continuous, real-valued function f on [a, b], the Riemann-Stieltjes integral
of f with respect to α is denoted ∫ b

a
f (τ)dα(τ)

and is defined to be the limit of the sums

n∑
k=1

f (τ∗k)
[
α(τk) − α(τk−1)

]
=

n∑
k=1

f (τ∗k)∆α(τk), (5.42)

as max(τk − τk−1)→ 0, where

a = τ0 < τ1 < · · · < τn = b

and

τk−1 < τ
∗
k ≤ τk

(that the limit exists and is independent of the choice of the partitions and the τ∗k is
Theorem 7.27 of [Apos]). If α(τ) = τ this is simply the ordinary Riemann integral.
Moreover, one can often evaluate Riemann-Stieltjes integrals by converting them to
ordinary Riemann integrals. For example, if α is strictly increasing on [a, b] and α′

exists and is Riemann integrable on [a, b], then f is integrable with respect to α on
[a, b] if and only if fα′ is Riemann integrable on [a, b] and, in this case,∫ b

a
f (τ)dα(τ) =

∫ b

a
f (τ)α′(τ)dτ. (5.43)

In many cases of interest,
∫ b

a f (τ)dα(τ) can also be regarded as the Lebesgue integral
of f with respect to a certain measure µα on R determined by α. For example, if
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α is continuous and increasing, µα is determined by the requirement that, for any
a ≤ t1 < t2 ≤ b, the measure of any of the intervals [t1, t2], [t1, t2), (t1, t2], or (t1, t2) is
α(t2) − α(t1). This is quite convenient since it makes available for use with Stieltjes
integrals such things as the Dominated Convergence Theorem. See Remark 8.4.54
for more on this.

If α and f are complex-valued functions on [a, b], the first of bounded variation
and the second continuous, then the definition is exactly the same, but the products
in (5.42) are interpreted as products of complex numbers. Doing the arithmetic, one
finds that, if α = α1 + iα2 and f = f1 + i f2, then∫ b

a
f (τ)dα(τ) =

( ∫ b

a
f1(τ)dα1(τ) −

∫ b

a
f2(τ)dα2(τ)

)
+ i

( ∫ b

a
f2(τ)dα1(τ) +

∫ b

a
f1(τ)dα2(τ)

)
.

Various methods of extending these definitions to a wider class of functions f on
[a, b], but with α still of bounded variation are discussed in Sections 56 and 57 of
[RiSz.N]. Clearly, one can try to define improper Riemann-Stieltjes integrals by the
same limits that are used to define improper Riemann integrals, but, just as clearly,
these limits need not exist.

Now let’s return to our compact, self-adjoint operator T . We begin by noting
that T is completely determined by the values of 〈ψ,Tφ〉 = 〈Tψ, φ〉 for ψ, φ ∈ H.
Next we appeal to Proposition 1, Section XI.5, of [Yosida], according to which the
properties of the resolution of the identity {Eλ}λ∈R we listed above as (1), (2) and
(3) imply that, for any fixed ψ, φ ∈ H,

〈ψ, Eλφ〉

is, as a complex-valued function of λ, of bounded variation. Now choose real num-
bers a < m(T ) and b ≥ M(T ). Then, for any complex-valued, continuous function
f (λ) on [a, b], the Riemann-Stieltjes integral∫ b

a
f (λ)d〈ψ, Eλφ〉

exists and assigns to the pair (ψ, φ) of elements of H a complex number. This is, in
particular, true for the identity function f (λ) = λ on [a, b] and in this case one finds
that ∫ b

a
λ d〈ψ, Eλφ〉 = 〈ψ,Tφ〉. (5.44)

Consequently, T is is completely determined by the values of these integrals for
ψ, φ ∈ H. In fact, because of the following version of the polarization identity,
satisfied by any operator A on its domain D(A),



5.5 The Spectral Theorem and Stone’s Theorem 203

〈ψ, Aφ〉 =
1
2i

〈
ψ + iφ, A(ψ + iφ)

〉
+

1
2

〈
ψ + φ, A(ψ + φ)

〉
−

1 − i
2

[
〈ψ, Aψ〉 + 〈φ, Aφ〉

]
(5.45)

T is actually determined by the integrals∫ b

a
λ d〈ψ, Eλψ〉 = 〈ψ,Tψ〉, ψ ∈ H. (5.46)

The integral in (5.44) is a limit of Riemann-Stieltjes sums of the form

n∑
k=1

τ∗k
[
〈ψ, Eτkφ〉 − 〈ψ, Eτk−1φ〉

]
=

〈
ψ,

n∑
k=1

τ∗k(Eτk − Eτk−1 )φ
〉

so the proof of (5.44) amounts to showing that the operators
∑n

k=1 τ
∗
k(Eτk − Eτk−1 ) =∑n

k=1 τ
∗
k∆Eλk converge weakly to T as max(τk − τk−1)→ 0 and independently of the

choice of τ∗k.
Remark 5.5.7. For the record we recall that

∑n
k=1 τ

∗
k∆Eλk converges weakly to T if

〈ψ,
∑n

k=1 τ
∗
k∆Eλkφ〉 → 〈ψ,Tφ〉 in C for all ψ, φ ∈ H;

∑n
k=1 τ

∗
k∆Eλk converges strongly

to T if
∑n

k=1 τ
∗
k∆Eλkψ → Tψ in H for all ψ ∈ H;

∑n
k=1 τ

∗
k∆Eλk converges uniformly

to T if
∑n

k=1 τ
∗
k∆Eλk → T in the operator norm topology of B(H). Each of these

implies the preceding one in the list.
This is true and not so hard to show because the Eλ are relatively simple for

a compact, self-adjoint operator. However, much more is true. It can be shown
that these operators actually converge uniformly to T and therefore also converge
strongly to T . For this reason one often writes

T =

∫ b

a
λ dEλ (5.47)

where the integral is the limit in the operator norm of the Riemann-Stieltjes-like
sums

∑n
k=1 τ

∗
k∆Eλk (Riemann-Stieltjes-like because the ∆Eλk are now projection op-

erators rather than real or complex numbers).
The Spectral Theorem for compact, self-adjoint operators, when written in the

integral forms (5.44) or (5.47) is virtually identical in appearance to the Spectral
Theorem for arbitrary bounded, self-adjoint operators; one need only determine how
to associate with such an operator something like {Eλ}λ∈R with which to define the
integrals (however, in the bounded case the convergence in (5.47) will generally not
be uniform, but only strong convergence). The same is true of the Spectral Theorem
for unbounded, self-adjoint operators except that the integral is over all of R rather
than a compact interval containing the spectrum since the spectrum of an unbounded
operator is not a bounded set.

We trust that this long digression on the compact case will make somewhat more
palatable the ensuing barrage of definitions, formulas and theorems we require to
formulate the result we really need. General references for the following material
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are Chapter XI, Sections 4, 5, and 6, of [Yosida], Chapter III, Sections 5, 6, of
[Prug], and Chapter VIII, Sections 119, 120, and 121, of [RiSz.N]. As always, H
will denote a separable, complex Hilbert space and B(H) is its algebra of bounded
operators. We formulate our first definition in rather general terms because it is just
as easy to do as the special case we need at the moment and because we will require
the additional generality later on.

Let (M,A) denote a measurable space, that is, a pair consisting of a set M to-
gether with aσ-algebra A of subsets of M. A spectral measure, or projection-valued
measure on (M,A) is a function E : A → B(H) assigning to each measurable set
S ∈ A a bounded operator E(S ) ∈ B(H) and satisfying each of the following.

1. For each measurable set S ∈ A, E(S ) is an orthogonal projection, that is, it is
idempotent E(S )2 = E(S ) and self-adjoint E(S )∗ = E(S ).

2. E(∅) = 0 and E(M) = idH.
3. If S 1, S 2, . . . is a countable family of pairwise disjoint measurable sets in A and

S =
⊔∞

n=1 S n is their union, then

E(S ) =

∞∑
n=1

E(S n),

where the infinite series converges in the strong sense, that is,

E(S )ψ = lim
N→∞

N∑
n=1

E(S n)ψ

for each ψ ∈ H.

It follows directly from the definition that

S 1, S 2 ∈ A⇒ E(S 1 ∩ S 2) = E(S 1)E(S 2)

so, in particular, if S 1 ∩ S 2 = ∅, then E(S 1) and E(S 2) project onto orthogonal sub-
spaces of H. We will be interested primarily in the special case in which the measure
space consists of M = R and its σ-algebra A of Borel sets; spectral measures on
this measure space will be called simply spectral measures on R.

Now suppose E is a spectral measure on the measure space (M,A) and ψ is an
element in H. Since each E(S ) is idempotent and self-adjoint,

〈ψ, E(S )ψ〉 = 〈ψ, E(S )2ψ〉 = 〈E(S )ψ, E(S )ψ〉 = ‖E(S )ψ‖2.

As a function of S ∈ A, 〈ψ, E(S )ψ〉 is therefore a finite measure on (M,A) for each
fixed ψ ∈ H which we will denote

〈ψ, Eψ〉,

that is,
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〈ψ, Eψ〉(S ) = 〈ψ, E(S )ψ〉 = ‖E(S )ψ‖2.

Remark 5.5.8. Notice that, if ψ is a unit vector in H, then 〈ψ, Eψ〉 is a probability
measure on M since 〈ψ, E(M)ψ〉 = 〈ψ, ψ〉 = 1.

It follows from (5.45) that, for any two elements ψ and φ in H, S → 〈ψ, E(S )φ〉
is a complex measure on M which we will denote

〈ψ, Eφ〉.

Okay, that’s enough generality for the moment.

Until further notice we will restrict our attention to spectral measures on R.

If E is a spectral measure on R and λ is any real number, then (−∞, λ] is a Borel
set so E(−∞, λ] is a projection on H. We can therefore define a 1-parameter family
{Eλ}λ∈R of projections by

Eλ = E(−∞, λ]

for every λ ∈ R. The defining properties of a spectral measure translate into the
following properties of {Eλ}λ∈R, where all of the limits are in the strong sense.

1. EλEκ = Emin(λ,κ) ∀λ, κ ∈ R.
2. limλ→−∞ Eλ = 0 and limλ→∞ Eλ = idH.
3. limκ→λ+ Eκ = Eλ ∀λ ∈ R.

Any 1-parameter family {Eλ}λ∈R of projections on H satisfying these three prop-
erties is called a resolution of the identity, or spectral family for H. Thus, any
spectral measure on R gives rise to a resolution of the identity. Conversely, since
intervals of the form (−∞, λ] generate the σ-algebra of Borel sets in R, any reso-
lution of the identity extends to a unique spectral measure on R. As in the special
case we considered earlier, properties (1)-(3) in the definition of a resolution of
the identity imply (by Proposition 1, Section XI.5, of [Yosida]) that, for any fixed
ψ, φ ∈ H, 〈ψ, Eλφ〉 is, as a function of λ, of bounded variation and so it can be used
to define a Stieltjes integral. One can also check that

λi < λ j ⇒ Eλ j − Eλi = E(λi, λ j],

where E(λi, λ j] is the projection associated to (λi, λ j] by the corresponding spectral
measure on R; in particular, Eλ j − Eλi is a projection.

Now, let [a, b] be a nondegenerate, closed, bounded interval in R and suppose
f : R → C is a continuous, complex-valued function on R. For any partition a =

λ0 < λ1 < · · · < λn = b of [a, b] and any choice of λ∗k ∈ (λk−1, λk], k = 1, 2, . . . , n,
we consider the operator
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n∑
k=1

f (λ∗k)(Eλk − Eλk−1 ) =

n∑
k=1

f (λ∗k)∆Eλk .

By Proposition 2, Section XI.5, of [Yosida], these Riemann-Stieltjes sums have a
strong limit as max(λk − λk−1) → 0, independent of the choice of λ∗k. Thus, we can
define an operator, denoted ∫ b

a
f (λ)dEλ,

whose value at any ψ ∈ H is( ∫ b

a
f (λ)dEλ

)
ψ = lim

n∑
k=1

f (λ∗k)(∆Eλkψ),

where the limit is taken over finer and finer partitions of [a, b] just as for the Riemann
integral. We would also like to define the corresponding improper integral over all
of R in the usual way as( ∫

R

f (λ)dEλ

)
ψ =

( ∫ ∞

−∞

f (λ)dEλ

)
ψ

=

( ∫ 0

−∞

f (λ)dEλ

)
ψ +

( ∫ ∞

0
f (λ)dEλ

)
ψ

= lim
a→−∞

( ∫ 0

a
f (λ)dEλ

)
ψ + lim

b→∞

( ∫ b

0
f (λ)dEλ

)
ψ,

but, of course, this will only make sense if both of these limits in H exist. According
to Theorem 1, Section XI.5, of [Yosida], this is the case if and only if∫

R

| f (λ)|2d〈ψ, Eλψ〉 =

∫ ∞

−∞

| f (λ)|2d〈ψ, Eλψ〉 =

∫ ∞

−∞

| f (λ)|2d ‖Eλψ‖
2 < ∞. (5.48)

Consequently,
∫
R

f (λ)dEλ defines an operator on the set of all ψ ∈ H satisfying
(5.48). If the function f is real-valued, then this operator is self-adjoint. Since this
is the case of interest to us we will put all of the information together in form of a
theorem (Theorem 2, Section XI.5, of [Yosida]).

Theorem 5.5.5. Let H be a separable, complex Hilbert space and E : A → B(H)
a spectral measure on R with associated resolution of the identity {Eλ}λ∈R. Let f :
R → R be a continuous, real-valued function on R. Then

∫
R

f (λ)dEλ defines a
self-adjoint operator A f on

D(A f ) =

{
ψ ∈ H :

∫
R

| f (λ)|2d〈ψ, Eλψ〉 < ∞
}

whose value at any ψ ∈ D(A f ) is
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A fψ =

( ∫
R

f (λ)dEλ

)
ψ.

A f is uniquely determined by the condition that

〈ψ, A fψ〉 =

∫
R

f (λ) d〈ψ, Eλψ〉

for every ψ ∈ D(A f ) which is equivalent to

〈φ, A fψ〉 =

∫
R

f (λ) d〈φ, Eλψ〉

for all ψ ∈ D(A f ) and all φ ∈ H.

If f is the identity function f (λ) = λ we will write the corresponding operator
simply as A so

Aψ =

( ∫
R

λ dEλ

)
ψ

is defined on

D(A) =

{
ψ ∈ H :

∫
R

λ2d〈ψ, Eλψ〉 < ∞
}
,

and is characterized by

〈ψ, Aψ〉 =

∫
R

λ d〈ψ, Eλψ〉 ∀ψ ∈ D(A),

which is equivalent to

〈φ, Aψ〉 =

∫
R

λ d〈φ, Eλψ〉 ∀ψ ∈ D(A)∀φ ∈ H.

It is not uncommon to see this abbreviated as

A =

∫
R

λ dEλ,

where the integral on the right-hand side is understood to be the strong limit of the
Riemann-Stieltjes sums

∑n
k=1 λ

∗
k∆Eλk .

Example 5.5.2. We will define a resolution of the identity {Eλ}λ∈R on the Hilbert
space H = L2(R) and then determine the operator

∫
R
λ dEλ to which it gives rise.

For each λ ∈ R we define Eλ : L2(R)→ L2(R) to be the map that carries ψ ∈ L2(R)
to Eλψ ∈ L2(R) given by
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(Eλψ)(q) =

ψ(q), if q ≤ λ
0, if q > λ.

(5.49)

Each Eλ is a projection since boundedness and E2
λ = Eλ are clear and self-

adjointness follows from

〈Eλψ, φ〉 =

∫ ∞

−∞

Eλψ(q)φ(q)dq =

∫ λ

−∞

ψ(q)φ(q)dq =

∫ ∞

−∞

ψ(q)Eλφ(q)dq = 〈ψ, Eλφ〉.

Exercise 5.5.2. Verify properties (1), (2), and (3) in the definition of a resolution of
the identity for {Eλ}λ∈R.

To compute the relevant integrals, we fix a ψ ∈ H and consider the bounded
variation function

α(λ) = 〈ψ, Eλψ〉 =

∫ λ

−∞

ψ(q)ψ(q)dq =

∫ λ

−∞

|ψ(q)|2dq.

According to (5.43),∫
R

λ d〈ψ, Eλψ〉 =

∫ ∞

−∞

λ dα(λ) =

∫ ∞

−∞

λα′(λ)dλ =

∫ ∞

−∞

λ |ψ(λ)|2dλ

=

∫ ∞

−∞

ψ(λ) [λψ(λ)] dλ = 〈ψ,Qψ〉,

where Q is multiplication by q, that is, (Qψ)(q) = qψ(q). Thus, for every ψ in its
domain, the operator

∫
R
λ dEλ agrees with the position operator of Example 5.4.2.

But their domains are the same because∫
R

λ2 d〈ψ, Eλψ〉 =

∫ ∞

−∞

λ2 dα(λ) =

∫ ∞

−∞

λ2α′(λ)dλ =

∫ ∞

−∞

λ2 |ψ(λ)|2dλ

=

∫ ∞

−∞

|λψ(λ)|2dλ = ‖Qψ‖2.

Thus,

Q =

∫
R

λ dEλ,

where E is determined by (5.49). We have therefore found a spectral decomposition
of the position operator Q on L2(R).

The Spectral Theorem asserts that every self-adjoint operator can be written in
this way. In a moment we will write this out precisely, but first we should have a
look at a few more examples. Let’s begin with a general observation.
Exercise 5.5.3. Suppose U : H1 → H2 is a unitary equivalence. We have al-
ready seen that, if A : D(A) → H1 is a self-adjoint operator on H1, then
UAU−1 : U(D(A))→ H2 is a self-adjoint operator on H2. Show that, if {Eλ}λ∈R is a
resolution of the identity on H1, then

{
UEλU−1}

λ∈R is a resolution of the identity on
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H2. Moreover, if {Eλ}λ∈R gives rise to the operator A =
∫
R
λ dEλ, then {UEλU−1}λ∈R

gives rise to UAU−1.
Example 5.5.3. We know that the Fourier transform F : L2(R)→ L2(R) is a unitary
equivalence so, if we let

{
EQ
λ

}
λ∈R denote the resolution of the identity constructed

in Example 5.5.2, then
{
F EQ

λ F−1}
λ∈R is also a resolution of the identity on L2(R).

The corresponding operator is F QF−1 and this we know to be the operator 1
~
P from

Example 5.4.3.
Example 5.5.4. For this example we will begin with a self-adjoint operator and
find the resolution of the identity that gives rise to it as

∫
R
λdEλ. Specifically, we

will consider the operator HB of Example 5.4.5 for which we know there exists
an orthonormal basis {ψn}

∞
n=0 for L2(R) consisting of eigenfunctions of HB with

eigenvalues En = (n + 1
2 )~ω, n = 0, 1, 2, . . ..

HBψn = Enψn = (n +
1
2

)~ωψn

Notice that, for ψ ∈ D(HB),

HBψ =

∞∑
n=0

〈ψn,HBψ〉ψn =

∞∑
n=0

〈HBψn, ψ〉ψn =

∞∑
n=0

〈Enψn, ψ〉ψn =

∞∑
n=0

En〈ψn, ψ〉ψn

and so

〈ψ,HBψ〉 =

∞∑
n=0

En

∣∣∣〈ψn, ψ〉
∣∣∣2.

What we need then is a resolution of the identity {Eλ}λ∈R for which the value of∫
R
λ d〈ψ, Eλψ〉 is

∑∞
n=0 En

∣∣∣〈ψn, ψ〉
∣∣∣2. For each λ in R we define Eλ : L2(R)→ L2(R)

by

Eλψ =
∑
En≤λ

〈ψn, ψ〉ψn,

where the sum is taken to be zero if there are no En ≤ λ. Thus, Eλ = 0 for λ < E0
and, for λ ≥ E0, Eλ is the projection onto the subspace spanned by the finite number
of ψn for which En ≤ λ.
Exercise 5.5.4. Show that the projections Eλ, λ ∈ R, satisfy the conditions required
of a resolution of the identity.

For any fixed ψ ∈ L2(R),

〈ψ, Eλψ〉 =
∑
En≤λ

| 〈ψn, ψ〉 |
2

which is zero for λ < E0 and a nondecreasing step function for λ ≥ E0, stepping up
at each eigenvalue En; these occur at intervals of length ~ω. Fix a ψ ∈ D(HB). Since
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〈ψ, Eλψ〉 = 0 for λ < E0 = 1
2~ω,∫

R

λ d〈ψ, Eλψ〉 =

∫ ∞

0
λ d〈ψ, Eλψ〉 = lim

b→∞

∫ b

0
λ d〈ψ, Eλψ〉.

For the Riemann-Stieltjes sums defining
∫ b

0 λ d〈ψ, Eλψ〉 we may consider only par-
titions 0 = λ0 < λ1 < · · · < λk = b with max |λi − λi−1| < ~ω so that each interval
(λi−1, λi] contains at most one eigenvalue En. For those that contain no eigenvalue,
∆Eλ = 0 so 〈ψ, ∆Eλψ〉 = 0 and there is no contribution to the integral. If (λi−1, λi]
contains an eigenvalue, say, En, then ∆Eλ is the projection onto the subspace spanned
by ψn and we may select λ∗i = En for the corresponding term in the Riemann-
Stieltjes sum (the integral is independent of this choice). This term in the sum is
therefore En

∣∣∣〈ψn, ψ〉
∣∣∣2 and the Riemann-Stieltjes approximation to

∫ b
0 λ d〈ψ, Eλψ〉 is∑

En≤b

En

∣∣∣〈ψn, ψ〉
∣∣∣2.

Since this is true for any sufficiently fine partition,∫ b

0
λ d〈ψ, Eλψ〉 =

∑
En≤b

En

∣∣∣〈ψn, ψ〉
∣∣∣2.

Taking the limit as b→ ∞ gives∫
R

λ d〈ψ, Eλψ〉 =

∞∑
n=0

En

∣∣∣〈ψn, ψ〉
∣∣∣2

as required.
Now it’s time to state the general form of the Spectral Theorem for self-adjoint

operators.

Theorem 5.5.6. Let H be a separable, complex Hilbert space and A a self-adjoint
operator on H with dense domain D(A), perhaps all of H. Then there exists a unique
spectral measure EA on R with corresponding resolution of the identity {EA

λ }λ∈R for
which D(A) is given by

D(A) =

{
ψ ∈ H :

∫
R

λ2d〈ψ, EA
λψ〉 < ∞

}
and, for every ψ ∈ D(A),

Aψ =

( ∫
R

λ dEA
λ

)
ψ.

A is characterized by
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〈ψ, Aψ〉 =

∫
R

λ d〈ψ, EA
λψ〉 ∀ψ ∈ D(A),

which is equivalent to

〈φ, Aψ〉 =

∫
R

λ d〈φ, Eλψ〉 ∀ψ ∈ D(A)∀φ ∈ H.

Remark 5.5.9. In the formalism of quantum mechanics (Section 6) a self-adjoint
operator A will represent an observable, a unit vector ψwill represent a state, and the
probability measure µψ,A = 〈ψ, EAψ〉 on R is interpreted as assigning to each Borel
set S in R the probability that a measurement of A in the state ψ will yield a value
in S (see Sections 3.2 and 6.2). The non-negative real number 〈ψ, Aψ〉 = ‖Aψ‖2 will
be interpreted as the expected value of the observable A in the state ψ (see Remark
3.2.4).
Remark 5.5.10. One proof of Theorem 5.5.6 proceeds along the following lines.
One first proves an analogous spectral decomposition for unitary operators and then
appeals to a correspondence between unitary and self-adjoint operators called the
Cayley transform. This is carried out in great detail in Chapter III, Section 6, of
[Prug] and we will simply describe the underlying idea. The following is Theorem
6.1 of [Prug].

Theorem 5.5.7. Let H be a separable, complex Hilbert space and U a unitary op-
erator on H. Then there exists a unique spectral measure EU on [0, 2π] with cor-
responding resolution of the identity

{
EU
λ

}
λ∈[0,2π] for which EU

0 = 0, EU
2π = idH and

with the property that U is the uniform limit of the sums

n∑
k=1

eiλ∗k (EU
λk
− EU

λk−1
) =

n∑
k=1

eiλ∗k∆EU
λk
,

where the limit is taken over partitions

0 = λ0 < λ1 < · · · < λn = 2π

of [0, 2π] as max (λk −λk−1)→ 0 and is independent of the choice of λ∗k ∈ (λk−1, λk].

Notice that the convergence is actually uniform this time. As usual, one writes
the assertion of the theorem symbolically as

U =

∫ 2π

0
eiλdEU

λ .

The next step is to show that, for any self-adjoint operator A on H, its Cayley trans-
form UA, defined by

UA = (A − i)(A + i)−1
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is a unitary operator on H (this is Theorem 4.9 of Chapter III in [Prug]). One then
uses the spectral decomposition of UA to produce one for A (the details are on pages
250-252 of [Prug]). We should point out also that, if A happens to be a bounded,
self-adjoint operator, then the convergence asserted in Theorem 5.5.6 is also uniform
(Chapter III, Section 6.6, of [Prug]).

The construction of EA shows also that the support of EA coincides with the
spectrum σ(A) of A, that is,

λ ∈ σ(A)⇔ EA(λ − ε, λ + ε) , 0 ∀ε > 0

(see Section 132 of [RiSz.N]). Consequently, if S ⊆ R is a Borel set, then

S ∩ σ(A) = ∅ ⇒ EA(S ) = 0. (5.50)

It follows that the integrals over R in Theorem 5.5.6 can be replaced by the cor-
responding integrals over σ(A). Moreover, since σ(A) is a closed subset of R, the
Tietze Extension Theorem (Theorem C, Section 28, of [Simm1]) implies that any
continuous, complex-valued function on σ(A) extends to R. Consequently, one can
regard the following analogue of Theorem 5.5.5 as an assignment of an operator
f (A) to each element f of the algebra C0(σ(A)) of continuous, complex-valued func-
tions on the spectrum σ(A) of A. We include in the statement of the next result some
basic properties of the assignment f → f (A) which collectively are referred to as
the (continuous) functional calculus (see Sections XI.5 and XI.12 of [Yosida] or
Chapter IX of [RiSz.N]).

Theorem 5.5.8. Let H be a separable, complex Hilbert space and A a self-adjoint
operator on H with dense domain D(A), perhaps all of H. Let EA be the unique
spectral measure on R associated with A and {EA

λ }λ∈R the corresponding resolution
of the identity. For every continuous, complex-valued function f on R, an operator
f (A) is densely defined on

D( f (A)) =

{
ψ ∈ H :

∫
R

| f (λ) |2d〈ψ, EA
λψ〉 < ∞

}
by

f (A)ψ =

( ∫
R

f (λ)dEA
λ

)
ψ

for every ψ ∈ D( f (A)). Moreover, f (A) is characterized by

〈ψ, f (A)ψ〉 =

∫
R

f (λ) d〈ψ, EA
λψ〉 ∀ψ ∈ D( f (A)),

which is equivalent to

〈φ, f (A)ψ〉 =

∫
R

f (λ) d〈φ, Eλψ〉 ∀ψ ∈ D( f (A)) ∀φ ∈ H.
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If ΦA is the map from continuous, complex-valued functions on σ(A) to operators
on H given by ΦA( f ) = f (A), then ΦA has the following properties.

1. ΦA is an algebraic *-homomorphism, that is, for α ∈ C and f and g continuous,
complex-valued functions on σ(A),

a. ΦA(α f ) = αΦA( f ), that is, (α f )(A)ψ = α f (A)ψ for ψ ∈ D( f (A)) =

D((α f )(A)).
b. ΦA( f + g) = ΦA( f ) + ΦA(g), that is, ( f + g)(A)ψ = f (A)ψ + g(A)ψ for ψ ∈

D( f (A)) ∩D(g(A)).
c. ΦA( f g) = ΦA( f )ΦA(g), that is, for ψ ∈ D( f (A)), f (A)ψ ∈ D(g(A)) is equiv-

alent to ψ ∈ D(( f g)(A)) and, in this case, ( f g)(A)ψ = f (A)g(A)ψ, where
f (A)g(A) means f (A) ◦ g(A) .

d. ΦA(1) = idH, that is, 1(A)ψ = ψ∀ψ ∈ H, where 1 is the constant function on
σ(A) whose value is 1 ∈ R.

e. ΦA( f ) = ΦA( f )∗, that is, for ψ, φ ∈ D( f (A)) = D( f (A)), 〈 f (A)ψ, φ〉 =

〈ψ, f (A)φ〉. In particular, f (A) is self-adjoint if and only if f is real-valued.

2. f (A) is a bounded operator on H if and only if f is a bounded function on σ(A).

3. σ( f (A)) = f (σ(A)) and Aψ = λψ ⇒ f (A)ψ = f (λ)ψ; here f (σ(A)) means the
closure of f (σ(A)) in C.

4. f ≥ 0 on σ(A)⇒ 〈ψ, f (A)ψ〉 ≥ 0 for all ψ ∈ D( f (A)).

5. Let { fn}∞n=1 be a sequence of continuous, complex-valued functions on σ(A) that
converges pointwise on σ(A) to the continuous function f and suppose that
{ ‖ fn‖∞ }∞n=1 is bounded, where ‖ fn‖∞ = supq∈σ(A)| fn(q)|. Then { fn(A) }∞n=1 con-
verges strongly to f (A), that is, for every ψ ∈ H, fn(A)ψ → f (A)ψ in H as
n→ ∞.

6. Let B be a bounded operator on H. Then the following are equivalent.

a. B commutes with A in the sense that B(D(A)) ⊆ D(A) and ABψ = BAψ∀ψ ∈
D(A).

b. B commutes with every projection EA
λ in the resolution of the identity associ-

ated with A.
c. B commutes with f (A) for every continuous, complex-valued function f on
σ(A).

7. For every ψ ∈ D( f (A)),

‖ f (A)ψ ‖2 =

∫
R

| f (λ) |2d〈ψ, EA
λψ〉.

Remark 5.5.11. For a bounded self-adjoint operator A there is a more direct ap-
proach to the definition of f (A) for continuous functions f . This is discussed in de-
tail on pages 222-224 of [RS1], but the basic idea is simple. For bounded A, the spec-
trum σ(A) is a compact subset of R and, since there are no domain issues, one can
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define p(A) for any polynomial p(λ) =
∑N

n=0 anλ
n to be simply p(A) =

∑N
n=0 anAn.

One shows then that σ(p(A)) = p(σ(A)) and ‖p(A)‖ = supλ∈σ(A) |p(λ)| (Lemmas 1
and 2, Section VII.1, of [RS1]). From this it follows that the function that carries
the polynomial p to p(A) ∈ B(H) has a unique linear extension to the closure in
C0(σ(A)) (with the sup norm) of the polynomials which, by the Stone-Weierstrass
Theorem (Theorem B, Section 36, of [Simm1]) is all of C0(σ(A)). In particular, if f
is real analytic and given by f (λ) =

∑∞
n=0 anλ

n for |λ| < R, then f (A) =
∑∞

n=0 anAn for
those A with ‖A‖ < R and the convergence is uniform. As long as A is bounded, this
definition of f (A) for continuous functions f agrees with the definition in Theorem
5.5.8. This approach fails for unbounded A not only because of the usual domain
issues, but also because σ(A) is not compact.

We point out also that much of the functional calculus described in Theorem
5.5.8 can be extended from continuous to bounded Borel measurable functions on
R (see Section XI.12 of [Yosida] or Theorem VIII.5 of [RS1]) . This is a useful and
instructive thing to do. For example, it provides a direct link between the functional
calculus and the representation of A in terms of spectral measures. Specifically, for
any Borel set S in R, one finds that the projection EA(S ) is just the operator χS (A),
where χS is the characteristic function of S . With a bit more work the functional
calculus for A can be extended to Borel measurable functions on R that are finite
and defined almost everywhere with respect to {EA

λ }λ∈R, that is, with respect to all of
the measures 〈EA

λψ, ψ〉 for ψ ∈ H (see Sections 127-128 of [RiSz.N]). If f is such
a function, then the operator f (A) is bounded if and only if f is bounded almost
everywhere with respect to {EA

λ }λ∈R (see page 349 of [RiSz.N]). We will make use
of this extension to Borel functions only for the statement of a theorem of von
Neumann on commuting families of self-adjoint operators (Theorem 5.5.12) so we
will say no more about it here. The continuous case will provide our most important
application of the functional calculus; in Example 5.5.6 we will define the operator
exponentials that will describe the time evolution of quantum states.
Example 5.5.5. The arguments given in Example 5.5.4 can be repeated essentially
verbatim to establish a useful generalization. Let A be a nonzero self-adjoint oper-
ator with a discrete spectrum σ(A) consisting entirely of eigenvalues of A (discrete
means in the topological sense that, as a subspace of R, σ(A) contains only isolated
points). Then σ(A) is countable and we claim first that there exists an orthonormal
basis for H consisting of eigenvectors for A. To see this we choose an orthonormal
basis for each eigenspace. Together these form an orthonormal basis for the closed
linear span Hp of the eigenvectors of A. Now, H = Hp ⊕H⊥p and each summand
is invariant under A. Since σ(A) is the entire spectrum of A, the restriction of A to
H⊥p is a self-adjoint operator with empty spectrum and, by (5.50), this cannot oc-
cur for a nonzero self-adjoint operator. Thus, H⊥p = 0 (otherwise, every nonzero
element of H⊥p would be an eigenvector for A with eigenvalue zero, whereas all of
the eigenvectors of A are in Hp) so H = Hp and the result follows. Denote the
elements of this orthonormal basis {ψ0, ψ1, . . .} and write Aψn = λnψn (since we
are not assuming that the eigenvalues are simple, we must allow repetitions in the
λn, that is, ψn and ψm can be eigenvectors for the same eigenvalue). Denote by Pλn

the orthogonal projection of H onto the eigenspace Mλn of λn. Then, as for HB,
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the resolution of the identity corresponding to A is defined by EA
λ =

∑
λn≤λ Pλn so

〈ψ, EA
λψ〉 =

∑
λn≤λ |〈ψn, ψ〉|

2, and∫
R

λ d〈ψ, EA
λψ〉 =

∞∑
n=0

λn|〈ψn, ψ〉|
2 = 〈ψ, Aψ〉.

The spectral measure associated with A is the unique projection-valued measure on
R determined by EA

λ = EA(−∞, λ] so, in particular, if λ j < λi, then EA
λi
− EA

λ j
=

EA(λ j, λi]. Since we have assumed that the spectrum is discrete, this implies that,
for the Borel set S = {λi},

EA({λi}) = Pλi .

For any Borel set S , EA(S ) =
∑
λi∈S Pλi which is the projection onto

⊕
λi∈S

Mλi .
Example 5.5.6. Fix an arbitrary real number t and consider the complex-valued,
continuous function ft(λ) = eitλ. For any self-adjoint operator A : D(A) → H on
H, the functional calculus in Theorem 5.5.8 provides an operator UA

t = eitA on H.
Since eitλ is bounded (by 1), eitA is a bounded operator by Theorem 5.5.8 (2) and its
domain is all of H because, for any ψ ∈ H,∫

R

|eitλ|2d〈ψ, EA
λψ〉 =

∫ ∞

−∞

d〈ψ, EA
λψ〉 = 〈ψ, ψ〉.

Exercise 5.5.5. Show that the last equality follows from the fact that the Riemann-
Stieltjes sums for

∫ ∞
−∞

d〈ψ, EA
λψ〉 telescope.

Example 5.5.6 is just the beginning of a very important story. We claim the
{UA

t }t∈R is a strongly continuous 1-parameter group of unitary operators on H (see
Remark 3.3.3). Specifically, we record the following four properties.

1. UA
0 = idH.

2. UA
t is a unitary operator on H for every t ∈ R.

3. UA
t UA

s = UA
t+s for all t, s ∈ R.

4. If t → 0 in R, then, for each ψ ∈ H, UA
t ψ→ ψ in H.

Although these are all proved in each of our basic references (for example, pages
288-289 of [Prug]), they are so fundamental to the mathematical model of quan-
tum mechanics toward which we are headed that we will pause to give the simple
arguments. Note first that UA

t is uniquely determined by the condition that

〈φ,UA
t ψ〉 =

∫
R

eitλ d〈φ, EA
λψ〉 ∀φ, ψ ∈ H.

Setting t = 0 gives

〈φ,UA
0 ψ〉 =

∫
R

d〈φ, EA
λψ〉 = 〈φ, ψ〉
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for all φ, ψ ∈ H, which proves UA
0 = idH.

To prove that each UA
t is unitary we must show that UA

t (UA
t )∗ = (UA

t )∗UA
t = idH.

But this follows immediately from eitλeitλ = eitλeitλ = 1 and Theorem 5.5.8, parts
1(c), 1(d), and 1(e).

To prove UA
t UA

s = UA
t+s we use Theorem 5.5.8, part 1(c), to compute

〈φ,UA
t UA

s ψ〉 =

∫
R

eitλeisλd〈φ, EA
λψ〉 =

∫
R

ei(t+s)λd〈φ, EA
λψ〉 = 〈φ,UA

t+sψ〉

for all φ, ψ ∈ H, which proves UA
t UA

s = UA
t+s.

We claim next that the 1-parameter group {UA
t }t∈R = {eitA}t∈R of unitary operators

on H is strongly continuous (Remark 3.3.3). For this we must show that, if t → 0 in
R, then, for each ψ ∈ H, UA

t ψ→ ψ in H. Thus, we consider

‖eitAψ − ψ‖2 = ‖(eitA − idH)ψ‖2 = ‖(eitλ − 1)(A)ψ‖2

Now, let g(t) = eitλ − 1 and note that

‖g(A)ψ‖2 = 〈g(A)ψ, g(A)ψ〉 = 〈ψ, g(A)∗g(A)ψ〉 = 〈ψ, g(A)g(A)ψ〉 = 〈ψ, |g|2(A)ψ〉

=

∫
R

|g|2(λ)d〈ψ, EA
λψ〉

so

‖eitAψ − ψ‖2 =

∫
R

|eitλ − 1|2d〈ψ, EA
λψ〉.

Now, |eitλ − 1|2 ≤ 4∀t, λ ∈ R and the constant function 4 is integrable since∫
R

4 d〈ψ, EA
λψ〉 = 4〈ψ, ψ〉.

Moreover,

|eitλ − 1|2 → 0

pointwise for each λ ∈ R as t → 0 so the Lebesgue Dominated Convergence Theo-
rem (Theorem 2.9.1 of [Fried]) implies that ‖eitAψ − ψ‖2 → 0 as t → 0, as required.

We will record one more important property of {eitA}t∈R that can be proved in
much the same way (details are available on pages 289-290 of [Prug]).

Lemma 5.5.9. Let A : D(A)→ H be a self-adjoint operator on the separable, com-
plex Hilbert space H and UA

t = eitA, t ∈ R, the corresponding strongly continuous
1-parameter group of unitary operators on H. Then ψ is in D(A) if and only if the
limit

lim
t→0

UA
t ψ − ψ

t



5.5 The Spectral Theorem and Stone’s Theorem 217

exists and, in this case,

lim
t→0

UA
t ψ − ψ

t
= iAψ.

Remark 5.5.12. One can think of this geometrically in the following way. The 1-
parameter group defines a curve t → eitA in B(H) starting at idH at t = 0. For any
ψ ∈ D(A), t → eitAψ is a curve in H starting at ψ at t = 0. H is a Hilbert space (in
particular, a vector space) and so can be regarded as an (infinite-dimensional) man-
ifold in which every tangent space can be identified with H. The limit limt→0

UA
t ψ−ψ

t
is the tangent vector to the curve t → eitAψ at t = 0 which, as an element of H, is
iAψ. One might write this more succinctly as

d
dt

(eitAψ) | t=0 = iAψ. (5.51)

Notice that, if it were permitted to expand eitA in a power series (which, when A is
unbounded, it is not) this is just what we would get by differentiating term by term
with respect to t. One can check that eitA(D(A)) ⊆ D(A) and then use the group
property of {eitA}t∈R to show more generally that, for any ψ ∈ D(A),

d
dt

(eitAψ) = iA(eitAψ) (5.52)

for any t so iA gives the tangent vector at each point along the curve t → eitAψ. In
this way one can think of iA as a vector field on D(A) ⊆ H whose integral curves
are t → eitAψ.

We have shown that any self-adjoint operator A gives rise to a strongly continuous
1-parameter group {eitA}t∈R of unitary operators. The much deeper converse is due
to Marshall Stone.

Theorem 5.5.10. (Stone’s Theorem) Let {Ut}t∈R be a strongly continuous
1-parameter group of unitary operators on the separable, complex Hilbert space
H. Then there exists a unique self-adjoint operator A : D(A) → H on H such that
Ut = eitA for every t ∈ R. Moreover, Ut(D(A)) ⊆ D(A) and AUt = UtA on D(A) for
all t ∈ R.

Remark 5.5.13. Recall (Remark 3.3.3) that, for 1-parameter groups of unitary op-
erators, strong continuity is equivalent to weak continuity and even to weak mea-
surability. For a proof of Theorem 5.5.10 one can consult Theorem 6.1, Chapter IV,
of [Prug], Theorem 1, Section XI.13, of [Yosida], Sections 137-138 of [RiSz.N], or
Theorem VIII.8 of [RS1].

The self-adjoint operator A whose existence is asserted by Stone’s Theorem will
play a prominent role in the mathematical formalism of quantum mechanics. The
(skew-adjoint) operator iA is called the infinitesimal generator of {Ut}t∈R (some
sources refer to A itself as the infinitesimal generator). Next we will try to illus-
trate these ideas by finding the infinitesimal generator for a particularly important
strongly continuous 1-parameter group of unitary operators.
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Example 5.5.7. For this example our Hilbert space is H = L2(R) and we define, for
every t ∈ R, the translation operator

Ut : L2(R)→ L2(R)

by

(Utψ)(q) = ψ(q + t)∀ψ ∈ L2(R)∀q ∈ R.

Each Ut is clearly linear and invertible (U−1
t = U−t) and is an isometry because

the Lebesgue measure on R is translation invariant. Also clear is the fact that
UtUs = Ut+s so {Ut}t∈R is a 1-parameter group of unitary operators on L2(R). Strong
continuity may not be quite so clear so we will prove it. We show that, if t → 0 in
R, then Utψ→ ψ in L2(R) for any ψ ∈ L2(R). Notice that, since each Ut is unitary,

‖Utψ − ψ‖ ≤ ‖Ut(ψ − φ)‖ + ‖Utφ − φ‖ + ‖φ − ψ‖ = ‖Utφ − φ‖ + 2‖ψ − φ‖ (5.53)

for any ψ, φ ∈ L2(R). From this it follows that it will suffice to prove strong conti-
nuity for φ in any dense subset of L2(R). Let’s suppose then that φ ∈ C∞0 (R). Let
ε > 0 be given. We can find a compact set K in R for which the support of each
Utφ with |t| ≤ 1 is contained in K. Let d(K) denote the diameter of K in R. Since φ
is uniformly continuous, there is a δ satisfying 0 < δ ≤ 1 such that |t| < δ implies
‖Utφ−φ‖∞ < ε/d(K)1/2 (here ‖ ‖∞ is just the sup norm). Since the support of Utφ−φ
is contained in K,

‖Utφ − φ‖ ≤ d(K)1/2‖Utφ − φ‖∞ < ε.

Thus, {Ut}t∈R is strongly continuous at any φ ∈ C∞0 (R) and therefore strongly con-
tinuous at any ψ ∈ L2(R) by (5.53) and the fact that C∞0 (R) is dense in L2(R).

To find the infinitesimal generator iA of {Ut}t∈R we will use Lemma 5.5.9, ac-
cording to which the domain of A is precisely the set of ψ ∈ L2(R) for which the
limit limt→0

UA
t ψ−ψ

t exists and, for these, iA is given by

iAψ = lim
t→0

Utψ − ψ

t
,

where the limit is in L2(R). Notice that the domain of A certainly includes all ψ in
the Schwartz space S(R) and for these the right-hand side converges pointwise to

lim
t→0

ψ(q + t) − ψ(q)
t

=
dψ
dq
.

Now, recall that, if a sequence converges in L2(R), then a subsequence converges
pointwise almost everywhere. Thus, on S(R), A agrees with −i d

dq . But we have
already shown that −i~ d

dq is essentially self-adjoint on S(R) and so it has a unique
self-adjoint extension which we have denoted P (Example 5.5.3). Thus, −i d

dq is
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essentially self-adjoint on S(R) and its unique self-adjoint extension is 1
~
P. But A is

also self-adjoint by Theorem 5.5.10 and extends −i d
dq so we conclude that A = 1

~
P,

that is,

(Utψ)(q) = ψ(q + t)∀ψ ∈ L2(R)∀q ∈ R⇒ Ut = eitP/~,

where P is the momentum operator on R. We will say simply that the momentum
operator generates spatial translations.
Remark 5.5.14. For every t ∈ R define Vt : L2(R)→ L2(R) by

(Vtψ)(q) = eitqψ(q) ∀ψ ∈ L2(R) ∀q ∈ R.

Arguments similar to those in the previous example show that {Vt}t∈R is a strongly
continuous 1-parameter group of unitary operators on L2(R) and that

Vt = eitQ,

where Q is the position operator on R.
Proceeding in the other direction, that is, finding Ut = eitA for a given self-adjoint

operator A generally requires information about the spectrum of A. In at least one
case it is easy to do.
Example 5.5.8. For an operator A, such as HB of Example 5.5.4, with the property
that H has an orthonormal basis ψ0, ψ1, . . . of eigenvectors for A (Aψn = λnψn, n =

0, 1, . . .) one can proceed as follows. For any ψ ∈ D(A), write ψ =
∑∞

n=0〈ψn, ψ〉ψn,
where the convergence is in H (L2(R) for HB). By the second part of Theorem 5.5.8
(3), Utψn = eitAψn = eitλnψn and, since Ut = eitA is unitary and therefore bounded
(continuous),

Utψ = eitAψ =

∞∑
n=0

〈ψn, ψ〉eitλnψn. (5.54)

This handles eitHB .

eitHBψ =

∞∑
n=0

〈ψn, ψ〉eitEnψn (5.55)

We will also need eitH0 , where H0 is the free particle Hamiltonian in Example
5.2.14. This is most easily done by recalling that H0 is unitarily equivalent, via the
Fourier transform F, to the multiplication operator Q(~2/2m)p2 (see (5.19)).
Exercise 5.5.6. Use the functional calculus to show that

eitH0 = F−1 Qg(p) F, (5.56)

where g(p) = ei (~2/2m) t p2
.
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Remark 5.5.15. As we have mentioned before, in the formalism of quantum me-
chanics (Chapter 6) a self-adjoint operator A will represent an observable, a unit
vector ψ will represent a state, and the probability measure µψ,A = 〈ψ, EAψ〉 on R is
interpreted as assigning to each Borel set S in R the probability that a measurement
of A in the state ψ will yield a value in S . The non-negative real number 〈ψ, Aψ〉 will
be interpreted as the expected value of the observable A in the state ψ. One more
of the basic postulates of quantum mechanics is that the time evolution of the state
ψ(t) of an isolated quantum system from some initial state ψ(0) is described by a
1-parameter group {Ut}t∈R of unitary operators (ψ(t) = Utψ(0)). Stone’s Theorem
then provides us with a self-adjoint operator (that is, observable) H that generates
this time evolution in the sense that

ψ(t) = eitH/~ψ(0).

With A = 1
~
H, (5.52) becomes

i~
dψ(t)

dt
= H(ψ(t)) (5.57)

which will be the fundamental equation of nonrelativistic quantum mechanics (the
abstract Schrödinger equation). We will explain the reason for the 1/~ in Section
6.2.

We consider next another application of the Spectral Theorem that will play a
prominent role in our discussion of “compatible observables” in quantum mechanics
(Section 6.2). Recall that if A and B are two bounded operators on H, then both are
defined on all of H and therefore so are the products (compositions) AB and BA. One
then says that A and B commute if AB = BA, that is, if A(Bψ) = B(Aψ) for all ψ ∈ H.
The same definition for unbounded operators does not lead to a useful notion since
these are only densely defined and therefore D(AB) = {ψ ∈ D(B) : Bψ ∈ D(A)} and
D(BA) = {ψ ∈ D(A) : Aψ ∈ D(B)} may intersect in nothing more that the zero vec-
tor in H. For self-adjoint operators, however, one can formulate a useful notion in
the following way. Note that if A and B are bounded and self-adjoint, then it follows
from Theorem 5.5.8 (5) that they commute if and only if their spectral resolutions
pairwise commute, that is, if and only if EA

λ EB
µ = EB

µEA
λ for all λ, µ ∈ R. Since this

latter condition makes sense even for unbounded, self-adjoint operators (because
the spectral projections are bounded) we shall adopt the following definition. Let
A and B be self-adjoint operators (either bounded or unbounded) on the separable,
complex Hilbert space H and denote by EA

λ and EB
µ , λ, µ ∈ R, their corresponding

resolutions of the identity. We will say that A and B commute if EA
λ EB

µ = EB
µEA

λ for
all λ, µ ∈ R. One reason for the usefulness of this definition is to be found in the
fact that two self-adjoint operators commute in this sense if and only if their corre-
sponding 1-parameter groups of unitary operators commute (in the usual sense of
bounded operators); the following is Theorem VIII.13 of [RS1] and Theorem 6.2,
Chapter IV, of [Prug].
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Theorem 5.5.11. Let A and B be self-adjoint operators on the separable, complex
Hilbert space H. Then A and B commute if and only if eitAeisB = eisBeitA for all
s, t ∈ R.

Remark 5.5.16. This definition is natural enough and is, as we shall see, the appro-
priate one for our applications to quantum mechanics, but its intuitive meaning is
more elusive than it might seem. For example, one might suppose that if A and B are
self-adjoint, D is a dense subspace in the intersection of their domains, A : D→ D,
B : D → D and A(Bψ) = B(Aψ) for all ψ ∈ D, then A and B should commute in
the sense we have defined. However, this is not the case (see Example 1, Section
VIII.5, of [RS1]). The converse, however, is true, that is, if A and B commute, then
A(Bψ) = B(Aψ) for all ψ in any dense subspace contained in the intersection of their
domains that is invariant under both A and B. This follows from the Spectral The-
orem and can provide a useful means of showing that two unbounded, self-adjoint
operators do not commute.
Example 5.5.9. We will consider the position Q : D(Q) → L2(R) and mo-
mentum P : D(P) → L2(R) operators on R. We have seen that both are un-
bounded, self-adjoint operators on L2(R) and that the Schwartz space S(R) is a
dense, invariant, linear subspace of both D(Q) and D(P). Let ψ ∈ S(R). Then
(P(Qψ))(q) = −i~[qψ′(q) + ψ(q)] and (Q(Pψ))(q) = −i~qψ′(q) and these are gener-
ally not the same so Q and P do not commute.
Example 5.5.10. It follows from the functional calculus that, if B is a self-adjoint
operator on H and f and g are two real-valued continuous, or merely Borel functions
on σ(B), then f (B) and g(B) are self-adjoint and commute. Consequently, one can
build arbitrarily large families of self-adjoint operators that commute in pairs by
selecting a family

{
fα
}
α∈A of such real-valued functions on σ(B) and building the

operators fα(B).
The principal application of these ideas to quantum mechanics rests on a theorem

of von Neumann to the effect that every commuting family of self-adjoint operators
is of the type described in the previous example. The following result is proved in
Sections 130-131 of [RiSz.N].

Theorem 5.5.12. Let H be a separable, complex Hilbert space and
{
Aα

}
α∈A a fam-

ily of pairwise commuting self-adjoint operators on H (Aα1 and Aα2 commute for all
α1, α2 ∈ A). Then there exists a self-adjoint operator B on H and real-valued Borel
functions fα, α ∈ A, such that Aα = fα(B) for every α ∈ A.

We will conclude with a result that will be essential when we discuss canonical
quantization in Chapter 7. Recall that if A and B are bounded operators on H, then
one defines their commutator by [A, B]− = AB − BA and this is a bounded operator
defined on all of H that is the zero operator if and only if A and B commute. If
A and B are unbounded operators, we have already noted that one can still define
[A, B]− = AB − BA, but only on D([A, B]−) = D(AB) ∩ D(BA) and this might
well consist of the zero vector alone. However, this generally does not occur for the
operators of interest in quantum mechanics. Here is an example.
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Example 5.5.11. For the position Q and momentum P operators on R, the domain
of [Q, P]− contains at least S(R). The computations in Example 5.5.9 show that, on
S(R),

[Q, P]− = i~,

where, as usual, i~ means (i~) idS(R).
If A and B are unbounded operators that commute, then their commutator is zero

wherever it is defined, but the converse is certainly not true, that is, [A, B]− = 0
on D([A, B]) does not imply that A and B commute. The following result (which is
Theorem 6.3, Chapter IV, of [Prug]) will allow us to circumvent many such domain
issues associated with commutators when discussing the canonical commutation
relations in quantum mechanics (Chapter 7).

Theorem 5.5.13. Let A and B be self-adjoint operators on the separable, complex
Hilbert space H that satisfy

eitAeisB = e−isteisBeitA

for all s, t ∈ R. Then

[A, B]−ψ = iψ

for all ψ ∈ D([A, B]−).



Chapter 6
The Postulates of Quantum Mechanics

6.1 Introduction

Physical theories are expressed in the language of mathematics, but these mathe-
matical models are not the same as the physical theories and they are not unique.
Here we will build on the physical and mathematical background assembled in the
previous chapters to construct one possible mathematical framework in which to
do quantum mechanics. The particular model we formulate goes back to von Neu-
mann [vonNeu], but there are others and we will have a look at quite a different
idea due to Feynman [Brown] in Chapter 8. We will describe the basic ingredients
of the model in a sequence of postulates, each of which will be accompanied by a
brief commentary on where it came from, what it means and what issues it raises.
You will notice that the term quantum system is used repeatedly, but never defined;
the same is true of the term measurement. We will attempt some clarification of
these terms as we proceed, but it is not possible, nor would it be profitable, to try
to define them precisely; they are defined by the assumptions we make about them
in the postulates. With the postulates in place we will derive some consequences
with important physical implications. Concrete examples of such quantum theories
are obtained by making specific choices for the items described in the postulates.
Some of these are obtained by “quantizing” classical physical systems; our princi-
pal examples are the canonical quantizations of the free particle and the harmonic
oscillator, both discussed in Chapter 7. Some, on the other hand, have no classical
counterpart; the fermionic and supersymmetric harmonic oscillators are of this type
and will be described in Chapter 9.

6.2 The Postulates

Postulate QM1
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To every quantum system is associated a separable, complex Hilbert space H.
The (pure) states of the system are represented by vectors ψ ∈ H with ‖ψ‖ = 1 and,
for any c ∈ C with |c| = 1, ψ and cψ represent the same state.

We have already spent a fair amount of time trying to prepare the way for this
first postulate. We have seen in Chapter 4 that the physical systems for which clas-
sical mechanics fails to provide an accurate model are fundamentally probabilistic
in nature and so should be regarded as more analogous to the systems treated in
classical statistical mechanics. Here states of the system are identified with proba-
bility distributions and Koopman showed how to identify these with unit vectors in
a Hilbert space; moreover, two such unit vectors that differ only in phase (that is, by
a complex multiple of modulus one) give rise to the same probability distribution
and therefore the same state. There is, however, a bit more to say about Postulate
QM1.

All n-dimensional complex Hilbert spaces are isometrically isomorphic, as are all
separable, complex, infinite-dimensional Hilbert spaces (Theorem 6.4.8 of [Fried])
so the choice of H is very often a matter of convenience. Often H will be L2 of
some appropriate measure space (such as a classical configuration space), in which
case a unit vector ψ representing a state is called a wave function for that state. In
Koopman’s translation of statistical mechanics, the wave functions ψ were auxiliary
devices for producing probability distributions |ψ|2, but in quantum theory they play
the much more fundamental role of what are called probability amplitudes . Being
complex-valued, one can incorporate the wave-like interference effects of quantum
systems pointed out in Section 4.4 directly into the algebraic operations on the wave
functions via

|ψ1 + ψ2|
2 = |ψ1|

2 + |ψ2|
2 + 2Re〈ψ1, ψ2〉. (6.1)

Here the final term 2Re〈ψ1, ψ2〉 can be viewed as an interference term that appears
when ψ1 and ψ2 interact (like the waves emerging from two slits in Section 4.4) .

We should also say something about the parenthetical adjective pure in Postulate
QM1. In certain contexts, notably quantum statistical mechanics, there is an addi-
tional probabilistic element that we have not yet encountered. If ψ1, ψ2, . . . are unit
vectors in the Hilbert space H of some quantum system, then a convex combination

t1ψ1 + t2ψ2 + · · · ,

with

tn ≥ 0∀n ≥ 1 and t1 + t2 · · · = 1

is called a mixed state for the system and is interpreted as describing a situation
in which it is known only that the state of the system is ψn with probability tn for
n = 1, 2, . . .. The unmodified term state will, for us, always mean pure state.
Remark 6.2.1. Notice that Postulate QM1 does not assert that every unit vector in
H represents a possible state of the system, but only that every state is represented
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by some unit vector. This has to do with what are known in physics as superselec-
tion rules. Section 1-1 of [SW] contains a brief discussion of this, but roughly the
idea is as follows. There are certain conservation laws in physics (of charge, for
example) that appear to prohibit the mingling of states for which the value of the
conserved quantity is different. For instance, a superposition (sum) of states with
different charges is believed not to be physically realizable. This has the conse-
quence of splitting H up into a direct sum of so-called coherent subspaces with
the property that only unit vectors in these subspaces represent physically realizable
states. However, these superselection rules are generally significant only when the
number and type of particles in the system can vary. This is a fundamental feature
of quantum field theory (particle creation and annihilation), but will play no role in
our lives here. As a result, we will allow ourselves to assume that any unit vector in
H is a possible state of our system.

Finally, we point out that, because unit vectors in H that differ only by a phase
factor describe the same state, one can identify the state space S of a quantum sys-
tem with the complex projective space CP(H) of H, that is, the quotient of the unit
sphere in H by the equivalence relation that identifies two points if they differ by
a complex factor of modulus one (equivalently, the quotient of the set of nonzero
elements of H by the equivalence relation that identifies two points if they differ by
a nonzero complex factor). When we have occasion to do this we will write Ψ for
the equivalence class containing ψ and refer to it as a unit ray in H. It will some-
times also be convenient to identify the state represented by the unit vector ψ with
the operator Pψ that projects H onto the 1-dimensional subspace of H spanned by ψ
(which clearly depends only on the state and not on the unit vector representing it).
In all candor, however, it is customary to be somewhat loose with the terminology
and speak of “the state ψ” when one really means “the state Ψ”, or “the state Pψ”.
Since this is almost always harmless, we will generally adhere to the custom.
Remark 6.2.2. Although we will make no use of it, we should mention that there
is one other way to view the states (both pure and mixed). Each Pψ is a projec-
tion operator and so, in particular, it is a positive, self-adjoint, trace class operator
with trace one. A mixed state, as defined above, can be identified with

∑∞
n=1 tnPψn ,

where tn ≥ 0∀n = 1, 2, . . . and
∑∞

n=1 tn = 1, and this is also a positive, self-adjoint,
trace class operator with trace one; the spectrum consists precisely of the eigenval-
ues t1, t2, . . .. Conversely, every positive, self-adjoint, trace class operator with trace
one is a pure or mixed state because it is compact so the spectral theorem gives a
decomposition of this form. One can therefore identify the collection of all pure and
mixed states with the positive, self-adjoint, trace class operators with trace one (this
is the approach taken in [Takh], for example).

We have seen that in Koopman’s model of classical statistical mechanics the
observables are identified with unbounded, real multiplication operators on some
L2 (Section 3.3). We take this, together with the fact that self-adjoint operators on
a Hilbert space can all be identified with real multiplication operators on some L2

(Theorems 5.5.1 and 5.5.2), as motivation for the first half of our next postulate.
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Postulate QM2

For a quantum system with Hilbert space H, every observable is identified with
a self-adjoint operator A : D(A) → H on H and any possible outcome of a mea-
surement of the observable is a real number that lies in the spectrum σ(A) of A.

Remark 6.2.3. We will use the same symbol for the self-adjoint operator and the
physical observable it represents. If A is such an observable and f is a real-valued
Borel function on σ(A), then f (A) is self-adjoint and we will identify it with the
physical observable defined in the following way. A measurement of f (A) is ac-
complished by first measuring A. If the measured value of A is a ∈ σ(A), then the
measured value of f (A) is defined to be f (a) (notice that f (a) ∈ σ( f (A)) by Theorem
5.5.8 (3)).

The problem of measurement in quantum mechanics is very subtle and, after
nearly a century, still controversial. One generally knows what should qualify, phys-
ically, as an “observable”. For a single particle, for example, the total energy, a co-
ordinate of the position, or a component of the momentum should be things that one
can measure. The result of a measurement is a real number. Whatever the specifics
of the measurement process, it must involve allowing the quantum system to inter-
act with some external and generally macroscopic system (the “measuring device”).
We have seen (Section 4.4) that such an interaction has inevitable and unpredictable
effects on the quantum system so that repeated measurements on identical systems
generally do not give the same results. One can only hope to know the probability
that some specific measurement on a system in some specific state will yield a value
in some given interval of the real line.

The most significant aspect of Postulate QM2 is its assertion that these mea-
sured values, although they appear random in the measurement process, are gener-
ally not arbitrary, but are constrained to lie in some fixed subset of the real line. This
subset was described as the spectrum of some self-adjoint operator A on H. One
should probably think of A just as a convenient bookkeeping device. It is the pos-
sible measured values of an observable and their probability distributions that are
physically significant and not the particular way we choose to keep track of them.
Heisenberg’s Matrix Mechanics and Schrödinger’s Wave Mechanics, which were the
original formulations of quantum mechanics, accomplished the same purpose with
infinite matrices and differential operators, respectively, and von Neumann’s choice
of self-adjoint operators on H was essentially a general, mathematically rigorous
way of doing both at once (the first when H = `2 and the second when H = L2). We
should also point out that the assertion about the spectrum of A in Postulate QM2 is,
in some sense, redundant. It follows from our next Postulate QM3 and the fact that
the spectral measure of A is concentrated on σ(A) that the probability of measuring
a value outside the spectrum is zero.

We should also emphasize that Postulate QM2 asserts that every physical ob-
servable corresponds to some self-adjoint operator, but not that every self-adjoint
operator corresponds to some physical observable. This is again related to the exis-
tence of superselection rules (Remark 6.2.1) and so, for the reasons we have already
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discussed, we will, for the time being at least, allow ourselves to regard any self-
adjoint operator as corresponding to some physical observable. Also notice that the
procedures by which one chooses operators to represent specific observables are
not addressed by Postulate QM2. These procedures are collectively referred to as
quantization and physicists have laid down certain rules of the game. We will dis-
cuss some of the generally agreed upon principles of the quantization procedure in
Chapter 7, but any real understanding of what is involved and how it is done must
come from the physicists (see [Sak]).
Example 6.2.1. In order to ground this discussion in something a bit more concrete,
let’s get ahead of ourselves just a bit and anticipate something we will discover in
Chapter 7. We will consider a quantum system, such as a diatomic molecule (Chap-
ter 1), whose behavior would classically be approximated by a harmonic oscillator.
Assuming that any translational or rotational energy is negligible, the total energy of
the system is just the vibrational part that we described classically by the Hamilto-
nian (2.50). Applying the “generally agreed upon principles” of quantization to the
total energy observable of this harmonic oscillator leads one to the operator HB on
L2(R) that we have discussed in some considerable detail in Chapter 5 (see Exam-
ples 5.3.1, 5.4.5, 5.5.1, and 5.5.4). We know, in particular, that the spectrum of HB

consists precisely of the eigenvalues En = (n + 1
2 )~ω, n = 0, 1, 2, . . ., where ω is the

natural frequency of the classical oscillator. These then should be (approximately)
the possible measured energy levels of the molecule. Whether or not this is true,
of course, is something that must be determined in the laboratory. The fact that it
actually is true is one of the many circumstances that encourages confidence in this
seemingly exotic structure we are building.

Postulate QM3

Let H be the Hilbert space of a quantum system, ψ ∈ H a unit vector representing
a state of the system and A : D(A) → H a self-adjoint operator on H representing
an observable. Let EA be the unique spectral measure on R associated with A and
{EA

λ }λ∈R the corresponding resolution of the identity. Denote by µψ,A the probability
measure on R that assigns to every Borel set S ⊆ R the probability that a measure-
ment of A when the state is ψ will yield a value in S . Then, for every Borel set S in
R,

µψ,A(S ) = 〈ψ, EA(S )ψ〉 = ‖EA(S )ψ‖2. (6.2)

If the state ψ is in the domain of A, then the expected value of A in state ψ is

〈A〉ψ =

∫
R

λ d〈ψ, EA
λψ〉 = 〈ψ, Aψ〉 (6.3)

and its dispersion (variance) is
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σ2
ψ(A) =

∫
R

(λ − 〈A〉ψ)2 d〈ψ, EA
λψ〉 = ‖ (A − 〈A〉ψ)ψ ‖2 = ‖Aψ‖2 − 〈A〉2ψ. (6.4)

Remark 6.2.4. The first equality for the dispersion is the definition, the second is
proved below and the third follows from

‖ (A − 〈A〉ψ)ψ ‖2 = ‖Aψ‖2 − 〈Aψ, 〈A〉ψψ〉 − 〈〈A〉ψψ, Aψ〉 + ‖〈A〉ψψ‖2

= ‖Aψ‖2 − 2〈A〉ψ〈ψ, Aψ〉 + 〈A〉2ψ‖ψ‖
2

= ‖Aψ‖2 − 2〈A〉2ψ + 〈A〉2ψ
= ‖Aψ‖2 − 〈A〉2ψ.

We should first be clear on how we will interpret the sort of probabilistic state-
ment made in Postulate QM3. Given a quantum system in state ψ and an observable
A, quantum mechanics generally makes no predictions about the result of a single
measurement of A. For example, one cannot predict the location of the dot on the
screen when a single electron is sent toward it in the 2-slit experiment (Section 4.4).
Rather, it is assumed that the state ψ can be replicated over and over again and the
measurement performed many times on these identical systems. The probability of
a given outcome might then be thought of intuitively as the relative frequency of
the outcome for a “large” number of repetitions. More precisely, the probability of a
given outcome for a measurement of some observable in some state is the limit of the
relative frequencies of this outcome as the number of repetitions of the measurement
in this state approaches infinity.
Remark 6.2.5. Precisely how one replicates (prepares) the state ψ over and over
again is a delicate issue that depends a great deal on the particular system under
consideration. The preparation of a state is really a particular type of measurement;
these are called preparatory measurements in [Prug], where one can find a more
detailed discussion in Chapter IV, Section 1.4.

Next we point out that, if one accepts the interpretation of the probability measure
〈ψ, EAψ〉 in Postulate QM3, then 〈ψ, EA

λψ〉 is its distribution function so (6.3) is
just the Stieltjes integral formula (3.1) for the expected value of a random variable
and (6.4) is the analogous formula for the variance. As usual, σ2

ψ(A) measures the
dispersion (spread) of the measured values around 〈A〉ψ. The dispersion is often
identified with a measure of the limitations on the accuracy of the measurements.
Notice, however, that Postulate QM3 makes no reference to any specific procedure
for making the measurements so σ2

ψ(A) does not in any sense describe the frailties of
our instrumentation. Rather, it represents an intrinsic limitation on our knowledge
of A even when the state ψ of the system is known. It is zero precisely when the
probability that the measurement will result in the expected value is 1 (meaning that
the relative frequency of the outcome 〈A〉ψ can be made arbitrarily close to 1 with
a sufficient number of repetitions of the measurement of A in state ψ). We claim
that σ2

ψ(A) = 0 if and only if ψ is an eigenvector of A with eigenvalue 〈A〉ψ. To
see this one simply applies part (6) of Theorem 5.5.8 to the continuous function
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f (λ) = λ − 〈A〉ψ, thereby obtaining

‖(A − 〈A〉ψ)ψ‖2 =

∫
R

(λ − 〈A〉ψ)2d〈ψ, EA
λψ〉 = σ2

ψ(A)

(which, incidentally, gives the second equality in (6.4)) so that

σ2
ψ(A) = 0⇔ Aψ = 〈A〉ψψ.

For a fixed observable A we think of the measurement process itself as defining
a random variable on the state space; in each state ψ a measurement of A results in
a real number. The probability measure µψ,A that assigns to a Borel set S in R the
probability that a measurement of A in the state ψwill be in S depends, of course, on
the specifics of the quantum system, the observable and the state. The assertion of
Postulate QM3 that µψ,A(S ) = 〈ψ, EA(S )ψ〉 is called the Born-von Neumann formula
and is the foundation of the generally accepted statistical interpretation of quantum
mechanics, called the Copenhagen interpretation.
Remark 6.2.6. To say that this interpretation is generally accepted is, perhaps, too
strong. Such men as Planck, Einstein and Schrödinger never subscribed to the views
that we have just described as “generally accepted”.

We have made a point of stressing that conceptually quantum mechanics should
be more akin to classical statistical mechanics than to classical particle mechanics
so that one is not surprised to see the measurement process described in terms of
probability measures. Postulate QM3, however, is quite explicit about how these
probability measures are determined by A and ψ. The idea is due to Max Born and
von Neumann phrased the idea in the functional analytic terms we have used. To
properly understand what led Born to Postulate QM3 one must really follow the
struggles of the physicists in 1925, 1926, and 1927 who sought some conceptual
basis for the new and very successful, but rather mysterious mechanics of Heisen-
berg and Schrödinger. In these early years physics was in a rather odd position.
Heisenberg formulated his matrix mechanics without knowing what a matrix is and
without having a precise idea of what the entries in his rectangular arrays of num-
bers should mean physically (see Section 7.1 for a bit more on this). Nevertheless,
the rules of the game as he laid them down predicted precisely the spectrum of the
hydrogen atom. Schrödinger formulated a differential equation for his wave func-
tion that yielded the same predictions, but no one had any real idea what the wave
function was supposed to represent (Schrödinger himself initially viewed it as a sort
of “charge distribution”). It was left to Born, and then Niels Bohr and his school in
Copenhagen, to supply the missing conceptual basis for quantum mechanics. It is
our good fortune that Born himself, in his Nobel Prize Lecture in 1954, has provided
us with a brief and very lucid account of the evolution of his idea and we will sim-
ply refer those interested in pursuing this to [Born1]. Interestingly, Born attributes
to Einstein the inspiration for the idea, although Einstein never acquiesced to its
implications.
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Remark 6.2.7. We have already mentioned that there are various approaches to the
foundations of quantum mechanics other than the one we are describing here. One
such approach, which has a much more algebraic flavor, is formulated in the lan-
guage of Banach algebras or, more specifically, C∗-algebras and von Neumann al-
gebras (we will not provide the definitions, but if these ideas are unfamiliar we can
refer to a very nice introduction in Part Three of [Simm1]). Here each quantum
system has an associated C∗-algebra A and the self-adjoint elements of A (those
satisfying a∗ = a) represent the observables. Now, there is a very famous result
of Gelfand and Naimark [GN] which asserts that any C∗-algebra is isomorphic to
a norm closed, self-adjoint subalgebra of the algebra B(H) of bounded operators
on some Hilbert space H. Consequently, one of the advantages to this approach
is that unbounded, self-adjoint operators do not arise. Physically, this is possible
because all of the relevant physical information is contained in the probability mea-
sures µψ,A(S ) which, according to Postulate QM3, are given by 〈ψ, EA(S )ψ〉 and
these are determined by the (bounded) projections EA(S ) corresponding to our un-
bounded, self-adjoint operators A. However, the bounded operators associated with
the elements of the C∗-algebra A by the Gelfand-Naimark Theorem are not canoni-
cally determined and so one loses the direct relations to the physics that we will be
exploring.

We have offered nothing in the way of motivation for the Born-von Neumann
formula except a reference to [Born1]. By way of compensation, we will write out
a number of concrete examples.
Example 6.2.2. Let’s once again anticipate one simple, but particularly important
special case that we will discuss in more detail in Chapter 7 and that may already be
familiar to those who have read anything at all about quantum mechanics elsewhere.
We consider the Hilbert space H = L2(R) and the operator Q : D(Q) → L2(R)
defined by (Qψ)(q) = qψ(q) for all ψ ∈ D(Q) (see Example 5.5.2). We have referred
to Q as the position operator on R. We found the spectral resolution of Q in Example
5.5.2 and conclude from this that EQ(S )ψ = χS · ψ for any Borel set S ⊆ R, where
χS is the characteristic function of S . Thus,

(EQ(S )ψ)(q) =

ψ(q), if q ∈ S
0, if q < S .

Consequently, if ψ is a state (unit vector) Postulate QM3 gives

µψ,Q(S ) = 〈ψ, EQ(S )ψ〉 = ‖EQ(S )ψ‖2

=

∫
R

( χ(S ) · ψ)(q)( χ(S ) · ψ)(q) dq

=

∫
S
ψ(q)ψ(q) dq

and so
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µψ,Q(S ) =

∫
S
|ψ(q)|2 dq.

With this we arrive at the oft-repeated interpretation of the wave function ψ of a
single particle moving in one dimension as the probability amplitude for position,
meaning that the probability of finding the particle in some Borel subset S of R is∫

S |ψ(q)|2 dq. Stated differently, |ψ(q)|2 is the probability density for position mea-
surements. In particular, the probability of finding the particle somewhere in R is
‖ψ‖L2 = 1.
Remark 6.2.8. In a sense we have reversed the historical logic here. The wave func-
tion ψ of a particle is often thought to be defined as the probability amplitude for
the particle’s position. Thought of in these terms our example demonstrates that
(Qψ)(q) = qψ(q) is the “right” choice for an operator to represent position in quan-
tum mechanics.
Example 6.2.3. For any real constant αwe define a unit vector in L2(R) representing
a state by

φ(q) =
1
π1/4 e−q2/2eiαq.

Notice that φ is in the domain of Q since
∫
R

q2|φ(q)|2dq = 1
π1/2

∫ ∞
−∞

q2e−q2
dq = 1

2 < ∞
(see Example 5.2.3 and Exercise A.0.3 (2)). Consequently,

〈Q〉φ = 〈φ,Qφ〉 =

∫
R

φ(q)(qφ(q)) dq =
1
π1/2

∫ 0

−∞

qe−q2
dq +

1
π1/2

∫ ∞

0
qe−q2

dq = 0.

In the state φ, the expected value of a position measurement is 0. Nevertheless, by
Example 6.2.2, the probability that a measurement of position will yield a value in
some Borel set S ⊆ R is

µφ,Q(S ) =

∫
S
|φ(q)|2 dq =

1
π1/2

∫
S

e−q2
dq,

which, if S does not have measure zero, is nonzero, although small if S is far from
0. The dispersion is

σ2
φ(Q) =

∫
R

(λ − 〈Q〉φ)2 d〈φ, EQ
λ φ〉 =

∫
R

λ2 d〈φ, EQ
λ φ〉 = ‖Qφ‖2 (see (6.4))

=

∫
R

qφ(q) qφ(q) dq =
1
π1/2

∫ ∞

−∞

q2e−q2
dq =

1
2

(see Exercise A.0.3 (2)).

Notice, by the way, that, since Q has no eigenvalues, the dispersion cannot be zero
in any state; we will see this again in our discussion of the Uncertainty Relation in
Section 6.3.
Example 6.2.4. Notice that the state φ in the previous example is, except for a few
constants, the ground state ψ0 of the Hamiltonian HB for the bosonic harmonic os-
cillator (Example 5.3.1). We would now like to compute the expected value and
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dispersion of Q in all of the eigenstates ψn, n = 0, 1, 2, . . . of HB. Our approach this
time will be quite different, however. In particular, we will avoid doing any inte-
grals by exploiting properties of the raising and lowering operators introduced in
Example 5.3.1. Recall that these are defined by

b =
1

√
2mω~

(mωQ + iP)

and

b† =
1

√
2mω~

(mωQ − iP).

Solving for Q and P gives

Q =

√
~

2mω
(b + b†)

and

P = −i

√
mω~

2
(b − b†).

Thus, for any n = 0, 1, . . . ,

〈Q〉ψn = 〈ψn,Qψn〉 =

√
~

2mω
〈ψn, (b + b†)ψn〉 =

√
~

2mω

[
〈ψn, bψn〉 + 〈ψn, b†ψn〉

]
.

For n ≥ 1 this becomes

〈Q〉ψn =

√
~

2mω

[
〈ψn,

√
nψn−1〉 + 〈ψn,

√
n + 1ψn+1〉

]
which is zero because {ψn}

∞
n=0 is an orthonormal basis for L2(R), whereas, for n = 0,

we obtain

〈Q〉ψ0 =

√
~

2mω

[
〈ψ0, 0〉 + 〈ψ0, ψ1〉

]
which is again zero. Consequently, the expected value of the position operator is
zero in every eigenstate.

〈Q〉ψn = 0, n = 0, 1, . . .

For the dispersion we have
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σ2
ψn

(Q) = ‖Qψn‖
2 − 〈Q〉ψn = ‖Qψn‖

2 = 〈Qψn,Qψn〉 = 〈ψn,Q2ψn〉

=
~

2mω
〈ψn, (b + b†)2ψn〉

=
~

2mω

[
〈ψn, b2ψn〉 + 〈ψn, (b†)2ψn〉 + 〈ψn, bb†ψn〉 + 〈ψn, b†bψn〉

]
.

The first and second terms are zero for exactly the same reason as in the argument
for 〈Q〉ψn above. For the third and fourth terms we note that, on S(R),

b†b + bb† = 2b†b + (bb† − b†b) = 2b†b + [b, b†]− = 2b†b + 1 = 2(NB +
1
2

) =
2
~ω

HB.

Consequently,

σ2
ψn

(Q) =
~

2mω
2
~ω

[
〈ψn,HBψn〉

]
=
~

mω
En

~ω
〈ψn, ψn〉

so

σ2
ψn

(Q) =
~

mω
(
n +

1
2
)
, (6.5)

which becomes arbitrarily large as n increases, that is, as the energy increases.
Example 6.2.5. Notice that everything is much easier for the energy HB itself.

〈HB〉ψn = 〈ψn,HBψn〉 = En〈ψn, ψn〉 = En = (n +
1
2

)~ω

σ2
ψn

(HB) = ‖HBψn‖
2 − 〈HB〉

2
ψn

= E2
n − E

2
n = 0

Example 6.2.6. Having interpreted |ψ(q)|2 as the probability density for position
measurements in R we would like to do something similar for momentum. For this
we recall that we have already shown that Q and P are unitarily equivalent via the
Fourier transform (Example 5.2.7). The idea is to use the Fourier transform F to
move our entire picture from one copy of L2(R), which physicists call the position
representation, to another, called the momentum representation. The process will
perhaps be a bit clearer if we distinguish these two copies of L2(R) by writing
L2(R, dq) for the copy in which ψ lives (position representation) and L2(R, dp) for
the copy in which Fψ = ψ̂ lives (momentum representation).
Remark 6.2.9. The word representation is actually being used here in a technical,
mathematical sense. When we turn to quantization in Chapter 7 we will see that
each of these pictures arises from an “irreducible, unitary, integrable representation
of the Heisenberg algebra”.

The Fourier transform is therefore regarded as an isometric isomorphism

F : L2(R, dq)→ L2(R, dp)
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of L2 of position space onto L2 of momentum space. Any state ψ ∈ L2(R, dq) can
then be identified with its image Fψ = ψ̂ ∈ L2(R, dp) and any self-adjoint operator
A : D(A) → L2(R, dq) on L2(R, dq) can be identified with a self-adjoint operator
Â = FAF−1 : F(D(A)) → L2(R, dp) on L2(R, dp). In particular, the momentum
operator P on L2(R, dq) is identified with the operator P̂ on L2(R, dp) defined by

(P̂ψ̂)(p) = [ (FPF−1)ψ̂ ](p) = F(−i~
dψ
dq

) = ~pψ̂(p)

which is just ~ times multiplication by the coordinate in R for L2(R, dp). From
Example 6.2.2 we know the spectral measure of this operator and we conclude, just
as we did there, that

µψ̂,P̂(S ) = ‖E P̂(S )ψ̂‖2 =

∫
S
|~ψ̂(p)|2dp

for any Borel set S ⊆ R. But notice also that

P̂ = FPF−1 ⇒ E P̂(S ) = FEP(S )F−1

⇒ ‖E P̂(S )ψ̂‖2 = ‖FEP(S )ψ‖2 = ‖EP(S )ψ‖2 = µψ,P(S )

so

µψ,P(S ) =

∫
S
| ~ψ̂(p) |2dp.

Thus, | ~ψ̂(p) |2 is the probability density for momentum measurements in R and ~ψ̂
is the probability amplitude for momentum.
Example 6.2.7. The arguments from Example 6.2.4 can be repeated essentially ver-
batim to compute the expected value and dispersion of the momentum operator P
in all of the eigenstates ψn, n = 0, 1, . . . , of HB so we will simply record the results.
For each n = 0, 1, . . . ,

〈P〉ψn = 0

and

σ2
ψn

(P) = mω~ (n +
1
2

).

For future reference (in Section 6.3) we record a few formulas for the dispersions
of the position and momentum observables on R. For Q it follows directly from the
second equality in (6.4) that

σ2
ψ(Q) = ‖(Q − 〈Q〉ψ)ψ‖2 =

∫
R

|(Qψ)(q) − 〈Q〉ψψ(q)|2dq =

∫
R

(q − 〈Q〉ψ)2|ψ(q)|2dq.

(6.6)
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For P we claim that

σ2
ψ(P) = σ2

ψ̂
(P̂) = ~2

∫
R

(
p −
〈P̂〉ψ̂
~

)2
|ψ̂(p)|2dp. (6.7)

The first equality in (6.7) follows from

σ2
ψ̂
(P̂) = ‖P̂ψ̂‖2 − 〈P̂〉2ψ = ‖FPF−1ψ̂‖2 − 〈ψ̂, P̂ψ̂〉2

= ‖F(Pψ)‖2 − 〈Fψ,F(Pψ)〉2 = ‖Pψ‖2 − 〈ψ, Pψ〉2

= σ2
ψ(P).

The second equality in (6.7) then follows from

σ2
ψ̂
(P̂) =

∫
R

∣∣∣ (P̂ψ̂)(p) − 〈P̂〉ψ̂ψ̂(p)
∣∣∣2dp

=

∫
R

∣∣∣ ~pψ̂(p) − 〈P̂〉ψ̂ψ̂(p)
∣∣∣2dp

= ~2
∫
R

(
p −
〈P̂〉ψ̂
~

)2
|ψ̂(p)|2dp.

We will conclude our initial remarks on Postulate QM3 with a particularly signif-
icant special case. Again, we will let ψ denote a unit vector in H representing some
state. Now, let φ be another unit vector in H representing another state. We have
already observed that this second state can be identified with the projection operator
Pφ that carries H onto the 1-dimensional subspace of H spanned by φ. But Pφ is, in
particular, a self-adjoint operator and we will identify it with an observable. Since
it is not just a self-adjoint operator, but a projection, it corresponds to an observable
with exactly two possible (eigen) values (1 if a measurement determines the sys-
tem to be in state φ and 0 otherwise). Since Pφ is its own spectral decomposition,
the probability that a measurement to determine if the state is φ when it is known
that the state is ψ before the measurement is the same as the expected value of the
observable and this is

〈ψ, Pφψ〉 = 〈ψ, 〈φ, ψ〉 φ〉 = 〈φ, ψ〉 〈ψ, φ〉 = 〈ψ, φ〉 〈ψ, φ〉 = | 〈ψ, φ〉 |2.

Thus, | 〈ψ, φ〉 |2 is the probability of finding the system in state φ if it is known to be
in state ψ before the measurement; it is called the transition probability from state
ψ to state φ. The complex number 〈ψ, φ〉 is called the transition amplitude from ψ
to φ. A case of particular importance to us arises in the following way. Suppose
A is an observable with the property that H has an orthonormal basis {ψ0, ψ1, . . .}
of eigenvectors for A (Aψn = λnψn, n = 0, 1, . . .); for example, this is true for the
operator HB of Example 5.5.4. Let ψ be some state and write it ψ =

∑∞
n=0〈ψn, ψ〉ψn

in terms of the eigenbasis for A. Then the transition probability from ψ to one of the
eigenstates ψn of A is just the squared modulus |〈ψn, ψ〉|

2 of the ψn-component of ψ.
Soon we will phrase this in the following way. |〈ψn, ψ〉|

2 is the probability that the
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state ψ will “collapse” to the eigenstate ψn of A when a measurement of A is made.
Notice that

∑∞
n=0 |〈ψn, ψ〉|

2 = ‖ψ‖2 = 1.

Our next two postulates deal with the dynamics of a quantum system, that is,
the time evolution of the state. There are two of them (actually, three since we give
two versions of QM5) because there appear to be two quite different ways in which
the state of the system can change. If you leave the system alone, in particular do
not make measurements on it, the state will evolve smoothly in a manner entirely
analogous to the state of a classical system. The first of our two postulates (QM4)
deals with this scenario. It is probably just what you expect and is, if anything in
physics is, universally accepted. The second postulate (QM5) is quite a different
matter. It purports to describe the response of the state to a measurement, that is, to
an encounter with an external system. It has been colorfully designated the collapse
of the wave function and has been a source of controversy since the very early days
of quantum mechanics. For this reason we will preface the statement of Postulate
QM5 with somewhat more extensive remarks on what motivated it, what it is sup-
posed to mean, some of the attitudes that have been taken toward it, and how we
will interpret it here.

For the statement of the first of these two postulates we will introduce, somewhat
reluctantly, a bit of terminology that is not entirely standard (the reason for our
reluctance will be explained shortly; see page 244). A classical physical system is
generally said to be isolated if it is not influenced by anything outside itself in the
sense that neither matter nor energy can either enter or leave the system. These
exist only as idealizations, of course, but the ideal can be achieved to a very high
degree of approximation by real physical systems such as, for example, the solar
system. It is implicit in this classical notion that the effect of measurements made
on the system can always be assumed negligible (bouncing a laser beam off of the
moon to ascertain its position has negligible effect on the state of the solar system).
This is, of course, precisely what one cannot assume of a quantum system. We
will use the term isolated quantum system for a quantum system that is isolated in
the classical sense and on which no measurements are made. Naturally, this raises
the question of just what counts as a measurement and, as we have pointed out
already, this is not a question that, even to this day, has been resolved to everyone’s
satisfaction. Rather than attempting to describe what a measurement is we will adopt
our Postulate QM4 below as a definition of what it means to say that measurements
are not being performed.
Remark 6.2.10. We should make just one technical comment before recording Pos-
tulate QM4. The state ψ of the system will evolve with time t and we will write
the evolving states as ψ(t) or sometimes ψt. When the Hilbert space is L2(R), the
wave function ψ is a function of the spatial coordinate q and one writes it as ψ(q).
It is common then to write the evolving states as ψ(q, t). This done, it seems natural
to write t-derivatives as partial derivatives, but we will see that this requires some
care (see Remark 6.2.14) . One must also take care not to get the wrong impres-
sion; q and t are not at all on an equal footing here. The time coordinate t enters
only as a parameter labeling the states, not as an observable like q. In particular,
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there is no operator representing t in the formalism of quantum mechanics. This
is not consistent with the spirit of special relativity which requires that space and
time coordinates be treated on an essentially equal footing. This creates some issues
for quantum field theory which is an attempt to reconcile quantum mechanics and
special relativity, but this is not our concern at the moment.

Postulate QM4

Let H be the Hilbert space of an isolated quantum system. Then there exists a
strongly continuous 1-parameter group {Ut}t∈R of unitary operators on H, called
evolution operators, with the property that, if the state of the system at time t = 0 is
ψ(0), then the state at time t is given by

ψ(t) = Ut(ψ(0))

for every t ∈ R. By Stone’s Theorem 5.5.10 there is a unique self-adjoint operator
H : D(H) → H, called the Hamiltonian of the system, such that Ut = e−itH/~ and
therefore

ψ(t) = e−itH/~(ψ(0)).

Physically, the Hamiltonian H is identified with the operator representing the total
energy of the system.

Remark 6.2.11. The ~ is introduced to keep the units consistent with the physical
interpretation. Wave functions carry no units (because they are not measurable) so
the same must be true of the evolution operators. If H is to represent the energy of
the system, then, in our SI units, it would be measured in joules (J = m2(kg)s−2).
The Planck constant has the units of m2(kg)s−1 so H/~ has units s−1 and, since t is
measured in seconds (s), all is well. The minus sign is conventional.

The 1-parameter group {Ut}t∈R of unitary operators is the analogue for an isolated
quantum system of the classical 1-parameter group {φt}t∈R of diffeomorphisms de-
scribing the flow of the Hamiltonian vector field in classical mechanics (see (2.49)).
That the appropriate analogue of the diffeomorphism φt is a unitary operator Ut de-
serves some comment. On the surface, the motivation seems clear. A state of the
system is represented by a ψ ∈ H with ‖ψ‖2 = 1 so the same must be true of the
evolved states ψ(t), that is, we must have 〈ψ(t), ψ(t)〉 = 1 for all t ∈ R. Certainly,
this will be the case if ψ(t) is obtained from ψ(0) by applying a unitary operator U
since 〈U(ψ(0)),U(ψ(0)) 〉 = 〈ψ(0), ψ(0) 〉 = 1. Notice, however, that this is also true
if U is anti-unitary since then 〈U(ψ(0)),U(ψ(0)) 〉 = 〈ψ(0), ψ(0) 〉 = 1. Physically,
one would probably also wish to assume that the time evolution preserves all transi-
tion probabilities | 〈ψ, φ〉 |2, but this is also the case for both unitary and anti-unitary
operators. Since unitary and anti-unitary operators differ only by composition with
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the bijection K : H → H that sends ψ to Kψ = ψ, one might be tempted to con-
clude that one choice is as good as the other. Physically, however, matters are not
quite so simple (see [Wig3]). Furthermore, it is not so clear that there might not be
other possibilities as well. That, in fact, there are no other possibilities is a conse-
quence of a nontrivial result of Wigner ([Wig2]) that we will describe briefly now.
For this we consider the state space CP(H) of unit rays in H (see page 225). Notice
that if Ψ ,Φ ∈ CP(H), then one can define | 〈Ψ,Φ〉 |2 = | 〈ψ, φ〉 |2 for any ψ ∈ Ψ
and any φ ∈ Φ. Then | 〈Ψ,Φ〉 |2 is the transition probability from state Ψ to state
Φ. Wigner defined a symmetry of the quantum system whose Hilbert space is H to
be a bijection T : CP(H) → CP(H) that preserves transition probabilities in the
sense that | 〈T (Ψ ),T (Φ)〉 |2 = | 〈Ψ,Φ〉 |2 for all Ψ ,Φ ∈ CP(H); notice that no linear-
ity or continuity assumptions are made. Any unitary or anti-unitary operator U on
H induces a symmetry TU that carries any representative ψ of Ψ to the representa-
tive Uψ of TU(Ψ ). What Wigner proved was that every symmetry is induced in this
way by a unitary or anti-unitary operator and that anti-unitary operators correspond
to discrete symmetries such as time reversal (they are the analogue of reflections in
Euclidean geometry). Now we can argue as follows. Suppose that the time evolution
is described by an assignment to each t ∈ R of a symmetry αt : CP(H) → CP(H)
and suppose that t → αt satisfies αt+s = αt ◦ αs for all t, s ∈ R. Then, for any t ∈ R,
αt = α2

t/2. By Wigner’s Theorem, αt/2 is represented by an operator Ut/2 that is ei-
ther unitary or anti-unitary. Since the square of an operator that is either unitary or
anti-unitary is necessarily unitary, every Ut must be unitary.
Remark 6.2.12. In the physics literature Wigner’s definition of a symmetry is gen-
erally supplemented with the requirement that the operator must commute with the
Hamiltonian of the system so that, in particular, it preserves energy levels. There is
quite a thorough discussion, from the physicist’s point of view, of the applications
of such symmetries to concrete quantum mechanical problems in Chapter 4 of [Sak]

Notice that there is nothing special about t = 0 in Postulate QM4. If t0 is any
real number, then ψ(t0) = Ut0 (ψ(0)) so ψ(t + t0) = Ut+t0 (ψ(0)) = Ut(Ut0 (ψ(0))) =

Ut(ψ(t0)) and therefore

ψ(t) = ψ((t − t0) + t0) = Ut−t0 (ψ(t0)) = e−i(t−t0)H/~(ψ(t0)).

Thus,

Ut−t0 = e−i(t−t0)H/~

propagates the state at time t0 to the state at time t for any t0, t ∈ R.
Next let’s apply Lemma 5.5.9 to ψ(t0), which we assume is in the domain of the

Hamiltonian H. Then, for any t ∈ R, ψ(t) = Ut−t0 (ψ(t0)) is also in the domain of H
by Theorem 5.5.10. Consequently,
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−(i/~)H(ψ(t0)) = lim
t→0

Ut(ψ(t0)) − ψ(t0)
t

= lim
t→t0

Ut−t0 (ψ(t0)) − ψ(t0)
t − t0

= lim
t→t0

ψ(t) − ψ(t0)
t − t0

,

where the limit is in H. We will write this as dψ(t)
dt

∣∣∣
t=t0

= −(i/~)H(ψ(t0)) or, since t0
is arbitrary, simply as

i~
dψ(t)

dt
= H(ψ(t)). (6.8)

Equation (6.8) is called the abstract Schrödinger equation . We will find that the
Hamiltonian operator of a system is generally a differential operator (such as HB

for the harmonic oscillator, or H0 for the free particle) so that (6.8) is a differential
equation that describes the time evolution ψ(t) of the state of an isolated quantum
system with Hamiltonian H.

Just to have a few examples to look at let’s once again anticipate the physical
interpretations to come in Chapter 7 and have a look at the Schrödinger equation
for HB and H0. This will also give us the opportunity to introduce the all-important
notion of a propagator about which we will have a great deal more to say in Chap-
ter 8. Since both examples are of the same type and this type recurs repeatedly in
quantum mechanics we will begin by setting a more general stage.

Our Hilbert space will be H = L2(R) so ψ(q, t) is a map from R2 to C. We will
be given a Hamiltonian H that is self-adjoint on some dense linear subspace D(H)
of L2(R) and we will assume that D(H) contains S(R) and that, on S(R), H is of the
form

H = H0 + V(q) = −
~2

2m
∆ + V(q) = −

~2

2m
∂2

∂q2 + V(q), (6.9)

where V(q) is a real-valued function on R which acts on L2(R) as a multiplication
operator (thus, for H0, V(q) = 0 and, for HB, V(q) = (mω2/2)q2). Note that we have
chosen to write ∆ as ∂2/∂q2 rather that d2/dq2 because we are now viewing ψ as a
function of (q, t) rather than as a function of q alone.
Remark 6.2.13. The sum of two unbounded, self-adjoint operators need not be self-
adjoint and it is quite a difficult matter to decide what sort of potentials V(q) will
give rise to an H = H0 + V(q) that is self-adjoint. We will have a bit more to say
about this in Section 8.4.2, but for the time being we will simply assume that V(q)
is one of them.

Denoting the initial value ψ(q, 0) of the wave function simply ψ(q) the Cauchy
problem for the Schrödinger equation (6.9) as it generally appears in treatments of
quantum mechanics is
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i~
∂ψ(q, t)
∂t

= −
~2

2m
∂2ψ(q, t)
∂q2 + V(q)ψ(q, t)

(6.10)
ψ(q, 0) = ψ(q).

Remark 6.2.14. The best way to deflect attention from a subtle point about which
you are not quite so sure is to say what you have to say quickly and with convic-
tion (the technique is called proof by intimidation). We would not like to be accused
of this so we should point out that something just went by a bit too quickly. The
abstract Schrödinger equation (6.9) contains in it the t-derivative dψ(t)/dt which is
defined as the limit in H = L2(R) of the familiar difference quotient. The partial
derivative ∂ψ(q, t)/∂t that appears in the traditional physicist’s form (6.10) of the
Schrödinger equation is, on the other hand, defined as a limit in C of an equally
familiar difference quotient. It is not so clear that these should be the same. Indeed,
as a classical partial differential equation (6.10) generally does not make sense in
L2(R) since the elements of L2(R) need not be differentiable. The best we can hope
for is that, in the context of classical solutions to (6.10), the two derivatives coin-
cide so that, in this restricted context, the two versions of the Schrödinger equation
describe the same evolution. The following is Exercise 3.1, Chapter IV, of [Prug].
Exercise 6.2.1. Assume that ψ(q, t) is continuously differentiable with respect to t
and square integrable with respect to q for every t and that the L2(R)-limit

lim
∆t→0

ψ(q, t + ∆t) − ψ(q, t)
∆t

exists. Show that the partial derivative ∂ψ(q, t)/∂t is in L2(R) for every t and

lim
∆t→0

ψ(q, t + ∆t) − ψ(q, t)
∆t

=
∂ψ(q, t)
∂t

.

Hints: Temporarily denote by ϕ(q, t) the L2-limit on the left-hand side. Choose a
sequence ∆t1, ∆t2, . . . converging to zero. Then, as n→ ∞, the sequence

ψ(q, t + ∆tn) − ψ(q, t)
∆tn

converges in L2(R) to ϕ(q, t). Consequently, some subsequence converges pointwise
almost everywhere to ϕ(q, t). Conclude from the assumed t-continuity of ∂ψ(q, t)/∂t
that, as elements of L2(R), ϕ(q, t) = ∂ψ(q, t)/∂t.
Remark 6.2.15. At this point we have assembled enough information to offer some-
thing in the way of motivation for calling P = −i~ d

dq the “momentum operator” on
R. Classically, the momentum of a particle moving in one dimension is the prod-
uct of its mass m and its velocity. Since a quantum particle has no trajectory in the
classical sense one cannot attach any meaning to its classical position or classical
velocity at each instant. What one can attach a meaning to are the expected values of
position and velocity. We have already argued (Remark 6.2.8) that (Qψ)(q) = qψ(q)
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is the “right” choice for the position operator. Its expected value in any state ψ is
given by

〈Q 〉ψ = 〈ψ,Qψ〉 =

∫
R

ψ(q)qψ(q) dq.

Now we allow the state ψ = ψ0 to evolve in time according to the Schrödinger
equation. Writing the state at time t as ψt so that ψt(q) = ψ(q, t) we inquire as to the
time rate of change of the expected value

〈Q 〉ψt = 〈ψt,Qψt〉 =

∫
R

ψ(q, t)qψ(q, t)dq

of position at t = 0. Then d
dt 〈Q 〉ψt

∣∣∣
t=0 is taken to be the expected value of the

particle’s velocity in state ψ and

m
d
dt
〈Q 〉ψt

∣∣∣
t=0 = m

d
dt

∫
R

ψ(q, t)qψ(q, t) dq
∣∣∣
t=0

is taken to be the expected value of the particle’s momentum in state ψ. The idea
is to show that this is precisely 〈ψ, Pψ〉 and thereby conclude that P = −i~ d

dq is the
“right” choice for the momentum operator in quantum mechanics. Since our purpose
here is motivation we will sweep some technical issues under the rug and assume
that ψ(q, t) is continuously differentiable with respect to t and a Schwartz function
of q for each t and that we can replace dψt/dt with ∂ψ(q, t)/∂t in the Schrödinger
equation (see Exercise 6.2.1). Now we just compute

d
dt
〈Q 〉ψt =

d
dt

∫
R

ψ(q, t)qψ(q, t) dq

=

∫
R

q
∂

∂t
[ψ(q, t)ψ(q, t)] dq

=

∫
R

q
[
∂ψ(q, t)
∂t

ψ(q, t) + ψ(q, t)
∂ψ(q, t)
∂t

]
dq

=
i~
2m

∫
R

q
[
−
∂2ψ(q, t)
∂q2 ψ(q, t) + ψ(q, t)

∂2ψ(q, t)
∂q2

]
dq,

where the last equality follows from the Schrödinger equation and its conjugate;
note that the potential terms cancel.
Exercise 6.2.2. Integrate by parts to show that this can be written

d
dt
〈Q 〉ψt =

−i~
2m

∫
R

[
−
∂ψ(q, t)
∂q

ψ(q, t) + ψ(q, t)
∂ψ(q, t)
∂q

]
dq.

Another integration by parts on the first term gives
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d
dt
〈Q 〉ψt =

−i~
2m

∫
R

2ψ(q, t)
∂ψ(q, t)
∂q

dq

=
1
m

∫
R

ψ(q, t)
[
− i~

∂

∂q
ψ(q, t)

]
dq.

At t = 0 this gives

m
d
dt
〈Q 〉ψt

∣∣∣
t=0 = 〈ψ, Pψ〉 = 〈P〉ψ

and this is what we wanted to show. The general problem of deciding which opera-
tors are to represent which observables is a nontrivial one and we will return to it in
Chapter 7.
Example 6.2.8. We consider HB : D(HB) → L2(R) as in Example 5.4.5 and the
Cauchy problem (6.10) for HB

i~
∂ψ(q, t)
∂t

= −
~2

2m
∂2ψ(q, t)
∂q2 + (mω2/2)q2ψ(q, t)

(6.11)
ψ(q, 0) = ψ(q),

where ψ(q) is assumed to be in D(HB). We know that the solution can be described
in terms of the evolution operators by

ψ(q, t) = Ut(ψ(q)) = e−itHB/~(ψ(q)).

But L2(R) has an orthonormal basis {ψn(q)}∞n=0 consisting of eigenfunctions of HB

with simple eigenvalues En (HBψn = Enψn) so we conclude from (5.55) that this can
be written

ψ(q, t) =

∞∑
n=0

〈ψn, ψ〉e−itEn/~ψn(q) =

∞∑
n=0

( ∫
R

ψn(x)ψ(x)dx
)

e−itEn/~ψn(q), (6.12)

where the convergence is in L2(R) for each t.
Remark 6.2.16. Notice that we could omit the conjugation symbol here since,
for HB, the eigenfunctions ψn(x) are real-valued. We leave it there because the
only property of HB that played a role in any of this was the fact that L2(R)
has an orthonormal basis consisting of eigenfunctions with simple eigenvalues.
This is not as uncommon as one might suppose, but generally the eigenfunc-
tions will be complex-valued. There are various theorems that assert the exis-
tence of such an eigenbasis for Hamiltonians of the form H = H0 + V(q) un-
der various conditions on V(q). This is the case, for example, if V ∈ L∞loc(R) and
limq→∞ V(q) = ∞; this can be found, for example, in Theorems 7.3 and 7.6 of
http://www.math.nsysu.edu.tw/ amen/posters/pankov.pdf.

The evolution of the wave function for HB with initial data ψ(q) is completely
and explicitly described by (6.12), but even so we would like to play with this just a

http://www.math.nsysu.edu.tw/~amen/posters/pankov.pdf
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bit more to motivate an important idea. First let’s make the initial time more visible
by writing ψ(x) explicitly as ψ(x, 0) so that

ψ(q, t) =

∞∑
n=0

( ∫
R

ψn(x)ψ(x, 0)dx
)

e−itEn/~ψn(q).

Because of the group property of Ut we can replace t = 0 by any t = t0 to obtain

ψ(q, t) =

∞∑
n=0

( ∫
R

ψn(x)ψ(x, t0)dx
)

e−i(t−t0)En/~ψn(q).

For motivational purposes, let’s be a bit sloppy here and just assume that we can
interchange the summation and integration so that this can be written

ψ(q, t) =

∫
R

K(q, t; x, t0)ψ(x, t0)dx, (6.13)

where

K(q, t; x, t0) =

∞∑
n=0

e−iEn(t−t0)/~ψn(q)ψn(x) =

∞∑
n=0

e−i(n+ 1
2 )ω(t−t0)ψn(q)ψn(x). (6.14)

K(q, t; x, t0) is called the propagator for HB, or the integral kernel for HB, or simply
the Schrödinger kernel for HB and we will have a great deal more to say about it in
Section 7.4 and Chapter 8; in particular, we will exhibit a closed form expression
for K(q, t; x, t0). Moreover, in Chapter 8 we will introduce a precise definition of the
propagator for any Hamiltonian and describe Feynman’s remarkable representation
of it as a path integral. For the moment we will content ourselves with a few, ad-
mittedly rather vague and unproven hints as to how one should think about it. Let’s
regard |ψ(q, t) |2 as the probability of locating some particle at position q at time t;
in reality, |ψ(q, t) |2 is just a probability density, of course (Example 6.2.2). ψ(q, t)
itself will be thought of as the probability amplitude for detecting the particle at
location q at time t; similarly for ψ(x, t0) for any x in R. For q, t, and t0 held fixed,
the integral

∫
R

K(q, t; x, t0)ψ(x, t0)dx expresses the amplitude ψ(q, t) as a “sum” over
all x ∈ R of the products K(q, t; x, t0)ψ(x, t0). One thinks of |K(q, t; x, t0) |2 as the
conditional probability that the particle will be detected at q at time t given that it is
detected at x at time t0 so K(q, t; x, t0) itself is the amplitude for getting from (x, t0)
to (q, t).
Remark 6.2.17. We would like to do the same sort of thing for the free particle
Hamiltonian H0. In this case we do not have access to an orthonormal eigenbasis
for L2(R) (there are no eigenfunctions of H0 in L2(R)) so the procedure is not as
straightforward as in Example 6.2.8. Indeed, it seems best to save this for Section
7.3 where we focus entirely on the free particle (see Example 7.3.2).

Moving on to our next “dynamical” postulate, we need to consider the effect of
an encounter with some external system. A measurement performed on a classical



244 6 The Postulates of Quantum Mechanics

mechanical system is a relatively unambiguous notion. It is an interaction between
the system on which the measurement is to be made and some external system
(“measuring device”) that yields, in one way or another, a value of some classical
observable, but has negligible effect on the state of the measured system. The dis-
tinguishing feature of quantum mechanics is the impossibility of satisfying this last
condition. Indeed, it has been argued, particularly in recent years with the increas-
ing prominence of such notions as entanglement and decoherence, that the very
notion of an isolated quantum system upon which measurements are to be made is
not meaningful; every physical system is inextricably entangled with and cannot be
disentangled from its physical environment (hence our reluctance to introduce the
notion of an isolated quantum system in the first place ). Taking this notion seriously
has led to a new perspective on the foundations of quantum mechanics and could
potentially resolve many of the conceptual issues associated with the measurement
problem that we will soon be discussing.
Remark 6.2.18. We will not be so bold as to offer what could only be a shal-
low synopsis of either entanglement or the decoherence program. For those in-
terested in pursuing these matters further we will only offer the following sug-
gestions. The seminal papers on entanglement are by Einstein, Podolsky, and
Rosen [EPR], Bell [Bell], and Aspect, Dalibard and Roger [ADR]. For decoher-
ence one might consult the survey article [Schl] and then proceed to the web site
http://www.decoherence.de/.

Much of what we need to discuss now is rather problematic, but one thing at
least is clear. Whatever reasonable notion of measurement one adopts, there are
some things that surely should count as measurements and these have rather startling
effects of the state of the system being measured. In our discussion of the 2-slit
experiments in Section 4.4 we found that any attempt to detect an electron coming
through one of the slits obliterates the interference pattern altogether, transforming
a state characterized by interference into one in which there is no interference at
all. This change in the state is abrupt and discontinuous, occurring at the instant
the measurement is made, and cannot be accounted for by the smooth evolution of
states described in Postulate QM4. Something new is required and von Neumann
formulated what is often called the Projection Postulate or Reduction Postulate or
Collapse Postulate to account for this sort of collapse of the state vector. In order
to emphasize some of the issues involved we will actually formulate two versions
of this collapse hypothesis. The first (Postulate QM5) is the version proposed by
von Neumann in [vonNeu]. The second (Postulate QM5′) is an extension of this
due to Lüder that includes the first as a special case, but does not follow from the
arguments of von Neumann that we will now describe.

Consider first an observable A whose spectrum consists of a discrete set σ(A) =

{λ0, λ1, . . .} of simple eigenvalues (recall that discrete means in the topological sense
that each point of the spectrum is isolated in the subspace σ(A) of R and simple
means that the dimension of each eigenspace is one). A good example to keep
in mind is the operator HB of Example 5.5.4. Then H has an orthonormal basis
{ψ0, ψ1, . . .} consisting of eigenvectors of A with, say, Aψn = λnψn, n = 0, 1, . . .
(see Example 5.5.5). Let us suppose that the system is in some state ψ and write

http://www.decoherence.de/
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ψ in terms of the eigenbasis for A as ψ =
∑∞

n=0〈ψn, ψ〉ψn. Now suppose that a
measurement of A is made on the system. According to Postulate QM2, the only
possible outcome of the measurement is one of the eigenvalues λk and this will oc-
cur with (transition) probability |〈ψk, ψ〉|

2. At this point, von Neumann (page 215
of [vonNeu]) makes a physical assumption that is the source of much of the con-
troversy surrounding our upcoming Postulate QM5. The assumption is that if this
measurement of A on the system yields the value λk and is followed “immediately”
by another measurement of A on the same system, then the result of the second mea-
surement of A must give the same result λk “with certainty”. Since the eigenvalues
are simple, the only state for which the outcome of a measurement of A is λk with
probability one is ψk. Consequently, the effect of the measurement must be to change
the state of the system from

∑∞
n=0〈ψn, ψ〉ψn to ψk. Prior to the measurement the state

of the system is some superposition of eigenstates of A which then collapses to a
single eigenstate when the measurement is performed.
Remark 6.2.19. It is not altogether clear whether this collapse of the state vector,
should you choose to accept it, is to be regarded as a statement about physics or
epistemology. Does the measurement result in a physical change in the quantum
system, and therefore in its state, or simply in our knowledge of the system? Each
position has its advocates and we are certainly not so presumptuous as to take a
stand, but offer the question only as food for thought.

Before opting to accept some variant of this collapse scenario as our Postulate
QM5 we need to discuss some of the issues it raises. The most obvious, of course,
is that making a measurement on a quantum system is very likely to destroy the
system, in which case there is no sense trying to discuss its subsequent state. This is
what happens, for example, when we measure the position of an electron in the 2-slit
experiment by letting it collide with a screen (see Remark 6.2.21 for a bit more on
this). Henceforth we will bar such destructive measurements from consideration and
try to unearth some of the more subtle issues posed by von Neumann’s argument.

It is, for example, not entirely clear what is meant by the word “immediately”
for the second measurement. Assuming that the measurement is made at time t0
and the state really does collapse to ψk at that instant, then, until another mea-
surement is made, Postulate QM4 requires that the new state evolve according to
ψ(t) = e−i(t−t0)H/~(ψk). In particular, there is generally no time interval following t0
during which the state remains ψk so it would seem that a second measurement need
not result in λk “with certainty”. A physicist would respond that what is intended
here is a second measurement made after an “infinitesimal” time interval. We will
try to make sense of this as a limit statement. We will assume that by “with cer-
tainty” von Neumann meant “with probability one” and, as a result, his assumption
is that repeated second measurements of A when the system is initially in state ψ
and the first measurement gives λk will yield λk with a relative frequency that ap-
proaches 1 as the number of repetitions approaches infinity. Now, as the collapsed
state evolves smoothly away from ψk for t > t0, the probability that the second mea-
surement of A will yield λk is, by Postulate QM3, µψ(t),A( {λk} ) = ‖ EA( {λk} )ψ(t) ‖2

which varies continuously with t and therefore approaches 1 as t → t0. Conse-
quently, the probability that the second measurement of A results in the value λk can



246 6 The Postulates of Quantum Mechanics

be made arbitrarily close to 1 by making the measurement sufficiently soon after the
collapse. Taking the matter one step further, repeating the second measurement of
A sufficiently often and sufficiently soon after the collapse, the relative frequency of
the outcome λk can be made as close to 1 as desired. If we are willing to concede,
as we must, that nothing in physics is ever measured exactly, then this would seem
to be a reasonable interpretation of von Neumann’s assumption.
Remark 6.2.20. Notice that there is one case in which this difficulty associated with
the evolution of the collapsed state does not arise. Suppose the observable A we have
been considering happens to be the Hamiltonian H itself, that is, the total energy.
Then Hψk = λkψk so, by Theorem 5.5.8 (3),

e−i(t−t0)H/~(ψk) = e−i(t−t0)λk/~ψk,

which differs from ψk only in the phase factor e−i(t−t0)λk/~ and so represents the same
state. Normalized eigenvectors for the Hamiltonian are called stationary states be-
cause they represent states of the system that do not change with time. For these, a
second measurement of H on the system should, indeed, yield the same energy as
the first with probability one. Of course, for a general Hamiltonian such stationary
states (eigenstates) need not exist.

For observables other than the Hamiltonian, however, there is at least the hint of
some tension between the underlying rationale for the collapse hypothesis and the
smooth evolution of the state governed by the Schrödinger equation. As evidence
that the debate over the collapse of the wave function is still alive and well we offer
[CL], the recent paper [’t Ho2] by a Nobel laureate, and this:

The dynamics and the postulate of collapse are flatly in contradiction with one
another ... the postulate of collapse seems to be right about what happens when
we make measurements, and the dynamics seems to be bizarrely wrong about what
happens when we make measurements, and yet the dynamics seems to be right about
what happens whenever we aren’t making measurements.

-D. Albert [Albert]

Having sounded the appropriate cautionary notes we now throw caution to the
winds and record our first version of the Collapse Postulate.

Postulate QM5

Let H be the Hilbert space of a quantum system with Hamiltonian H and A an
observable with a discrete spectrumσ(A) = {λ0, λ1, . . .} consisting entirely of simple
eigenvalues. Let ψ0, ψ1, . . . be an orthonormal basis for H with Aψn = λnψn, n =

0, 1, . . .. Suppose the system is isolated for 0 ≤ t < t0 so that its state evolves from
some initial state ψ(0) according to ψ(t) = e−itH/~(ψ(0)). At t = t0 a measurement of
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A on the system is made. If the result of the measurement is the eigenvalue λk, then
the state of the system at time t0 is ψk. For t > t0 the state of the now isolated system
evolves according to ψ(t) = e−i(t−t0)H/~(ψk).

Had the measurement not been made the state of the system at time t0 would have
been represented by e−it0H/~(ψ(0)). The act of measuring results in a discontinuous
jump in the state and the result of the measurement determines what the state jumps
to.
Remark 6.2.21. One might also wonder about the physical, that is, experimental
evidence that supports the collapse hypothesis. Needless to say, making measure-
ments on a quantum system is a delicate business and making measurements that
do not destroy the system in the process is considerably more delicate. von Neu-
mann (pages 212-214 of [vonNeu]) deduces his hypothesis from a discussion of
experiments performed by Compton and Simons on the scattering of photons by
electrons. It was not until the 1980s, however, that the technology began to evolve
for making successive measurements on a single quantum system. A thorough dis-
cussion of the experimental situation through 1992 is available in [BK]. Indicative
of the level to which these experimental techniques have evolved is the fact that
the 2012 Nobel Prize in Physics was awarded “for ground-breaking experimental
methods that enable measuring and manipulation of individual quantum systems”
(see http://www.nobelprize.org). At present one can say only that the experimental
evidence appears to weigh in on the side of the collapse hypothesis, at least for ob-
servables of the type we have been considering. In the end, however, one cannot say
that the issue of the collapse of the wave function has been resolved to everyone’s
satisfaction.

Naturally, not all observables have a discrete spectrum consisting of simple
eigenvalues and for these the situation is more tenuous. Begin by considering an
observable A that has a discrete spectrum σ(A) = {λ0, λ1, . . .} consisting entirely of
eigenvalues, but for which the eigenvalues need not be simple. Thus, each λn has an
eigenspace Mλn of dimension greater than or equal to one (perhaps countably infi-
nite). As we mentioned earlier (Example 5.5.5), one can still find an orthornormal
basis {ψ0, ψ1, . . .} for H consisting of eigenvectors of A. Thus, any state ψ can be
written as ψ =

∑∞
n=0〈ψn, ψ〉ψn. It is still true (by Postulate QM2) that a measure-

ment of A in state ψ can only result in one of the eigenvalues of A. Suppose that a
measurement is made and the result is λk. Invoking von Neumann’s argument that a
second measurement of A performed “immediately” after the first must also result
in λk “with certainty”, we conclude again that the measurement must collapse the
state ψ to a unit eigenvector of A with eigenvalue λk. But, if dim Mλk > 1, this does
not uniquely determine the collapsed state and von Neumann leaves the matter at
this.

... if the eigenvalue ... is multiple, then the state ... after the measurement is not
uniquely determined by the knowledge of the result of the measurement.

-von Neumann ([vonNeu], page 218)

http://www.nobelprize.org
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von Neuman did, in fact, have more to say about the case of degenerate eigenvalues,
but the end result was not a uniquely determined post-measurement collapsed state.

One can, of course, make a choice of some element in the eigenspace Mλk to
serve as the collapsed state, but no such choice would follow from von Neumann’s
measurement repeatability assumption alone. Since there appears to be a generally
accepted choice in the literature (at least among those who accept the collapse hy-
pothesis at all) we will record a version of this as our Postulate QM5′; it is generally
called Lüder’s Postulate.

Postulate QM5′

Let H be the Hilbert space of a quantum system with Hamiltonian H and A an
observable with a discrete spectrum σ(A) = {λ0, λ1, . . .} consisting entirely of (not
necessarily simple) eigenvalues. Let ψ0, ψ1, . . . be an orthonormal basis for H with
Aψn = λnψn, n = 0, 1, . . .. Suppose the system is isolated for 0 ≤ t < t0 so that
its state evolves from some initial state ψ(0) according to ψ(t) = e−itH/~(ψ(0)). Let
φ = e−it0H/~(ψ(0)). At t = t0 a measurement of A on the system is made. If the result
of the measurement is the eigenvalue λk, then the projection Pλkφ = EA({λk})φ of
φ into the eigenspace Mλk of λk is nonzero and the state of the system at time t0 is
represented by the normalized projection of φ into Mλk , that is, by

ψ(t0) =
Pλkφ

‖Pλkφ‖
.

For t > t0 the state of the now isolated system evolves according to ψ(t) =

e−i(t−t0)H/~(ψ(t0)).

Remark 6.2.22. A translation of Lüder’s paper is available at http://arxiv.org/pdf/
quant-ph/0403007v2.pdf, where the rationale behind this choice is described in de-
tail. We will content ourselves with two simple remarks. If Pλkφ were zero, then φ
would be orthogonal to the eigenspace Mλk and so the transition probability from φ
to any state in Mλk is zero and collapse to an eigenstate in Mλk would have proba-
bility zero. On the other hand, if Pλkφ , 0, collapse onto the normalized projection
of φ into Mλk guarantees that Lüder’s Postulate QM5′ agrees with von Neumann’s
Postulate QM5 when the eigenvalues are simple.

For observables with continuous spectrum the situation is even less clear since
there need not be any eigenvalues at all and therefore no eigenstates onto which
to collapse. Various proposals have been put forth for reasonable versions of the
collapse postulate in the presence of continuous spectrum, but none appears to have
been awarded a consensus and so we will content ourselves with a reference to [Srin]
for those interested in pursuing the matter.

To introduce our next postulate, let’s consider two observables and their corre-
sponding self-adjoint operators A1 and A2. Suppose also that A1 and A2 happen to

http://arxiv.org/pdf/quant-ph/0403007v2.pdf
http://arxiv.org/pdf/quant-ph/0403007v2.pdf
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commute in the sense that their corresponding spectral measures commute. Accord-
ing to von Neumann’s Theorem 5.5.12, both A1 and A2 are functions of a single
self-adjoint operator, that is, there exists a self-adjoint operator B and two real-
valued Borel functions f1 and f2 on R such that Ai = fi(B), i = 1, 2. Assume also
that B corresponds to some observable (recall that Postulate QM2 does not assure
this in general, but, barring superselection rules, one usually assumes that every
self-adjoint operator corresponds to an observable). Then a measurement of B in
any state is, by definition, also a measurement of both f1(B) and f2(B) and conse-
quently a measurement of both A1 and A2. In this sense one can say that A1 and A2
are simultaneously measurable in any state. Moreover, since Theorem 5.5.12 ap-
plies to arbitrary families of commuting self-adjoint operators we conclude that any
family of observables whose corresponding self-adjoint operators commute can be
simultaneously measured in any state (assuming again that the operator B guaran-
teed by Theorem 5.5.12 corresponds to some observable).

Now, what about observables that do not commute? Can they also be simultane-
ously measured in any state? One should take some care with the terminology here.
For commuting observables we need only make one measurement of one observ-
able (B) and then we get the measured values of the commuting observables simul-
taneously and for free simply by virtue of the way observables of the form f (B) are
defined; there is no question of physically coordinating two different measurements.
On the other hand, if A1 and A2 do not commute, then there is no a priori reason
to suppose that we can measure both by simply measuring some third observable
and doing a computation. Taken literally, the “simultaneous measurement” of A1
and A2 in this case would mean that we must perform two different measurements
on the system at the same time and this, we claim, raises some issues. How does
one ensure that apparatus A1 for measuring A1 and apparatus A2 for measuring A2
do their measuring at precisely the same instant? We maintain that, since nothing
in the laboratory is ever determined exactly, one generally cannot ensure this and
for this reason a strict adherence to the literal definition of “simultaneous” is ill-
advised. Once again a physicist will argue that this is no problem provided the two
measurements are separated by a time interval that is “infinitesimal” and once again
we will interpret this as a statement about sufficiently small time intervals. Unlike
our discussion of von Neumann’s repeated measurements, however, even if the time
interval separating them is very small, there is now the additional issue of which
measurement is performed first. Certainly, any interpretation of the “simultaneous
measurability” of A1 and A2 along these lines must at least require that, if the time
lapse between them is sufficiently small, then the order in which the measurements
actually take place is immaterial. However, since quantum mechanics has nothing to
say about the outcome of any individual measurement, a precise formulation of this
must be a statement about the relative frequencies of such outcomes, that is, about
probabilities. The following arguments are intended only to motivate what this pre-
cise formulation should look like and how this is related to the commutativity of the
corresponding operators. In the end we will state precisely what we are assuming in
the form of Postulate QM6.
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We consider two observables A1 and A2 and two Borel sets S 1 and S 2 in R.
Denote the spectral measures of A1 and A2 by EA1 and EA2 , respectively, and let
ψ be some unit vector in H representing a state. We intend to compute the joint
probability that a measurement of A1 is in S 1 and a measurement of A2 is in S 2,
first assuming that the A1 measurement is performed first and then assuming that
the A2 measurement is performed first. Insisting that these two be the same for all
states ψ and for all Borel sets S 1, S 2 ⊆ R will be our way of saying that the order in
which the measurements take place is immaterial. We will then show that this alone
implies that A1 and A2 must commute.

Notice that each EAi (S i), i = 1, 2, being a projection, is an observable with a
discrete spectrum of eigenvalues {0, 1} and that

µψ,A1 (S 1) = µψ,EA1 (S 1)( {1} ) = 〈ψ, EA1 (S 1)ψ〉 = ‖EA1 (S 1)ψ‖2. (6.15)

Exercise 6.2.3. Prove (6.15).

This is the probability that a measurement of A1 in state ψ will yield a value in S 1,
that is, the probability that a measurement of EA1 (S 1) in state ψ will have outcome
1. Assuming EA1 (S 1)ψ , 0, Lüder’s Postulate applied to EA1 (S 1) implies that, when
the measurement is made, the state ψ collapses to

ϕ =
EA1 (S 1)ψ
‖EA1 (S 1)ψ‖

.

Now, the probability that a measurement of A2 in state ϕ will yield a value in S 2 is

µϕ,A2 (S 2) = µϕ,EA2 (S 2)( {1} ) = 〈ϕ, EA2 (S 2)ϕ〉 = ‖EA2 (S 2)ϕ‖2 =
‖EA2 (S 2)EA1 (S 1)ψ‖2

‖EA1 (S 1)ψ‖2
.

Assuming that the measurements of EA1 (S 1) and EA2 (S 2) represent independent
events, the probability that a measurement of A1 followed “immediately” by a mea-
surement of A2 will yield values in S 1 and S 2, respectively, is the product

µφ,A2 (S 2) µψ,A1 (S 1) = ‖EA2 (S 2)EA1 (S 1)ψ‖2.

The same argument shows that, if the measurements are carried out in the reverse
order, the result is

‖EA1 (S 1)EA2 (S 2)ψ‖2.

In general, there is no reason to suppose that these two joint probabilities are the
same. If A1 and A2 have the property that they are the same for all states ψ and
all Borel set S 1 and S 2 in R, then we will say that the observables A1 and A2 are
compatible.

We show now that, assuming there are no superselection rules, the operators
corresponding to compatible observables must commute. The definition of compat-
ibility for A1 and A2 implies that, for any state ψ and any two Borel sets S 1 and
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S 2,〈
EA1 (S 1)EA2 (S 2)ψ, EA1 (S 1)EA2 (S 2)ψ

〉
=

〈
EA2 (S 2)EA1 (S 1)ψ , EA2 (S 2)EA1 (S 1)ψ

〉
.

Rearranging this using the fact that each EAi (S i) is a projection (self-adjoint and
idempotent) gives〈

ψ,
[
EA1 (S 1)EA2 (S 2)EA1 (S 1) − EA2 (S 2)EA1 (S 1)EA2 (S 2)

]
ψ

〉
= 0.

Exercise 6.2.4. Prove this.
If we now assume that the unit vectors ψ in H that correspond to states of

our quantum system exhaust all of the unit vectors in H (that is, that there are
no superselection rules), then it follows from this that EA1 (S 1)EA2 (S 2)EA1 (S 1) −
EA2 (S 2)EA1 (S 1)EA2 (S 2) = 0. From this we obtain[

EA1 (S 1)EA2 (S 2) − EA2 (S 2)EA1 (S 1)
]∗ [EA1 (S 1)EA2 (S 2) − EA2 (S 2)EA1 (S 1)

]
=[

EA2 (S 2)EA1 (S 1) − EA1 (S 1)EA2 (S 2)
] [

EA1 (S 1)EA2 (S 2) − EA2 (S 2)EA1 (S 1)
]

=

EA2 (S 2)EA1 (S 1)EA2 (S 2) − EA1 (S 1)EA2 (S 2)EA1 (S 1)EA2 (S 2)

−EA2 (S 2)EA1 (S 1)EA2 (S 2)EA1 (S 1) + EA1 (S 1)EA2 (S 2)EA1 (S 1) = 0

because

EA1 (S 1)EA2 (S 2)EA1 (S 1)EA2 (S 2) = EA1 (S 1)EA2 (S 2)EA1 (S 1)

and

EA2 (S 2)EA1 (S 1)EA2 (S 2)EA1 (S 1) = EA2 (S 2)EA1 (S 1)EA2 (S 2).

Exercise 6.2.5. Show that, if T is a bounded operator on a Hilbert space and T ∗T =

0, then T = 0.
Thus,

EA1 (S 1)EA2 (S 2) = EA2 (S 2)EA1 (S 1)

for all Borel sets S 1, S 2 ⊆ R and this is precisely the definition of what it means
for the self-adjoint operators A1 and A2 to commute. Consequently, A1 and A2 can
both be written as functions of some self-adjoint operator B and, if B corresponds
to an observable (again, no superselection rules), then A1 and A2 are simultaneously
measurable by measuring B.

A finite family of observables A1, . . . , An is said to be compatible if any two ob-
servables in the family are compatible in the sense we have just defined. Postulate
QM6 asserts that, for finite families of observables, compatibility is to be fully iden-
tified with commutativity of the corresponding operators and therefore with simul-
taneous measurability. Motivated by the joint probability formulas derived above, it
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also extends the Born-von Neumann formula to include such simultaneously mea-
sured values.

Postulate QM6

Let H be the Hilbert space of some quantum system and A1, . . . , An self-adjoint
operators on H corresponding to observables. Then A1, . . . , An are simultaneously
measurable if and only if Ai and A j commute for all i, j = 1, . . . , n. Moreover, in
this case, if ψ is any state and S 1, . . . , S n are Borel sets in R, then the probability
that a simultaneous measurement of the observables A1, . . . , An will yield values in
S 1, . . . , S n, respectively, is

‖ EA1 (S 1) · · · EAn (S n)ψ ‖2 =
〈
ψ, EA1 (S 1) · · · EAn (S n)ψ

〉
, (6.16)

where EA1 , . . . , EAn are the spectral measures of A1, . . . , An, respectively.

Remark 6.2.23. Since the EAi (S i) commute, EA1 (S 1) · · · EAn (S n) is a projection and
this gives the equality in (6.16).

Because of von Neumann’s Theorem 5.5.12, no one argues with the principle that
commuting observables should be simultaneously measurable (in virtually any sense
in which you might define simultaneously measurable). As one might expect, how-
ever, the considerably less obvious converse, that noncommuting observables cannot
be simultaneously measured, has not gone unquestioned. von Neumann presents an
argument in favor of this converse quite different from the one we have used here
(see pages 223-229 of [vonNeu]), but for the view from the loyal opposition one
should consult [PM]. The issue, of course, is that adopting Postulate QM6 essen-
tially defines “simultaneous measurability” as commutativity of the corresponding
operators and one can argue about how accurately this definition reflects the phys-
ical notion of “measuring simultaneously”. Mathematical definitions are clear and
unambiguous, but physics is rarely like that.

Postulates QM1-QM6 provide a framework on which to build many of the for-
mal aspects of quantum mechanics, but any suggestion that quantum mechanics as
a whole is somehow contained in these postulates is wildly false. We will spend
some time investigating this formal structure, but when we turn our attention to
more concrete issues QM1-QM6 will need to be supplemented not only with spe-
cific information about particular quantum systems, but with general procedures for
implementing the postulates (how does one choose the Hilbert space of the system,
or associate operators to its observables, etc.). Furthermore, when we finally come
to the quantum mechanical notion of spin (in Chapter 9) we will find it necessary to
append an additional Postulate QM7 to our list (see page 472).
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6.3 Uncertainty Relations

We would like to begin by taking a closer look at pairs of observables to which
Postulate QM6 does not apply. Thus, we consider two self-adjoint operators A :
D(A) → H and B : D(B) → H representing observables that are not compatible,
that is, do not commute. We know that A and B are not simultaneously measurable
in every state.
Remark 6.3.1. The logical negation of “A and B are simultaneously measurable in
every state” is “there exist states in which A and B are not simultaneously measur-
able”. However, we have not defined what it means for observables to be simulta-
neously measurable in some states, but not in others. There is certainly no obvious
reason to exclude such a possibility, but making sense of it would require a refine-
ment of our definitions based on a much more careful look at the measurement
process than we have attempted here (see pages 230-231 of [vonNeu]).

Each of the observables A and B has an expected value and a dispersion in every
state and we would like to investigate the relationship between the two dispersions.
This is based on the following simple lemma.

Lemma 6.3.1. Let H be a separable, complex Hilbert space, A : D(A) → H and
B : D(B) → H self-adjoint operators on H, and α and β real numbers. Then, for
every ψ ∈ D([A, B]−) = D(AB) ∩D(BA),

‖ (A − α)ψ ‖2 ‖ (B − β)ψ ‖2 ≥
1
4

∣∣∣ 〈ψ, [A, B]−ψ〉
∣∣∣2.

Proof. Notice first that D([A − α, B − β]−) = D([A, B]−) and [A − α, B − β]−ψ =

[A, B]−ψ for every ψ in this domain so it will suffice to prove the result when α =

β = 0. In this case we just compute,∣∣∣ 〈ψ, [A, B]−ψ〉
∣∣∣2 =

∣∣∣ 〈ψ, ABψ − BAψ〉
∣∣∣2 =

∣∣∣ 〈ψ, ABψ〉 − 〈ψ, BAψ〉
∣∣∣2

=
∣∣∣ 〈Aψ, Bψ〉 − 〈Bψ, Aψ〉 ∣∣∣2 = 4

∣∣∣ Im 〈Aψ, Bψ〉
∣∣∣2

≤ 4 ‖Aψ‖2 ‖Bψ‖2.

ut

Now, if A and B represent observables and ψ ∈ D([A, B]−) is a unit vector repre-
senting a state and if we take α and β to be the corresponding expected values of A
and B in this state, then, by (6.4), we obtain

σ2
ψ(A)σ2

ψ(B) ≥
1
4

∣∣∣ 〈ψ, [A, B]−ψ〉
∣∣∣2. (6.17)

If A and B commute we know that [A, B]−ψ = 0 for every ψ ∈ D([A, B]−) so this
last inequality contains no information. Even if A and B do not commute, it is still
possible that [A, B]−ψ = 0 for some or all ψ ∈ D([A, B]−), but should it happen
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that some 〈ψ, [A, B]−ψ〉 , 0, then we have a lower bound on the product of the two
dispersions.
Example 6.3.1. We consider the position Q : D(Q) → L2(R) and momentum P :
D(P)→ L2(R) operators on R. We saw in Example 5.5.11 that S(R) ⊆ D([Q, P]−)
and, for every ψ ∈ S(R),

[Q, P]−ψ = i~ψ.

Consequently, if ψ is a unit vector, 1
4

∣∣∣〈ψ, [Q, P]−ψ〉
∣∣∣2 = 1

4~
2 so

σ2
ψ(Q)σ2

ψ(P) ≥
~2

4
. (6.18)

Notice that, since S(R) is dense in the domain of [Q, P]− (in fact, in all of L2(R))
this inequality is satisfied for every state in D([Q, P]−). One often sees this written
in terms of the standard deviation (the non-negative square root of the dispersion)
as

σψ(Q)σψ(P) ≥
~

2
. (6.19)

The inequality (6.19) (or (6.18)) is called the Uncertainty Relation for position and
momentum.
Example 6.3.2. As a specific example, let ψn be one of the eigenstates of HB. From
Examples 6.2.4 and 6.2.7 we have

σ2
ψn

(Q)σ2
ψn

(P) =

[
~

mω
(n +

1
2

)
][

mω~ (n +
1
2

)
]

= ~2(n +
1
2

)2 ≥
~2

4
,

where equality holds only in the ground state ψ0.
Remark 6.3.2. We have made a point of not calling (6.19) the “Heisenberg Uncer-
tainty Relation”, although it is not uncommon to find this name attached to it. We
will explain our reluctance to use this terminology shortly, but, for those who would
like to see a name attached to such a famous inequality, we might suggest the Ken-
nard Uncertainty Relation in honor of the gentleman who first proved it (see[Kenn]);
the more general result (6.17) is due to Robertson (see [Rob]). We should point out
also that in 1930 Schrödinger obtained a version of the uncertainty relation that is
stronger than (6.17); an annotated translation of Schrödinger’s paper is available at
http://arxiv.org/abs/quant-ph/9903100.

We intend to spend some time sorting out the physical interpretation of the Un-
certainty Relation (6.19), but first we would like to offer another derivation based on
the following standard result in Fourier analysis (except for the normalization of the
Fourier transform, this is Theorem 1.1 of [FS] which contains a simple proof and a
survey of many related results; still more is available in [Fol1]).

Theorem 6.3.2. Let ψ be any element of L2(R, dq) and α and β any two real num-
bers. Then

http://arxiv.org/abs/quant-ph/9903100
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R

(q − α)2|ψ(q)|2dq
∫
R

(p − β)2|ψ̂(p)|2dp ≥
‖ψ‖4

4
. (6.20)

If ‖ψ‖ = 1, then |ψ(q)|2dq and |ψ̂(p)|2dp are both probability measures on R, the
integrals in (6.20) are their variances and the product of these variances is bounded
below by 1

4 . ∫
R

(q − α)2|ψ(q)|2dq
∫
R

(p − β)2|ψ̂(p)|2dp ≥
1
4

(6.21)

Intuitively, (6.21) asserts that these probability measures cannot both be sharply
localized at any points α and β in R. In this case we can apply the integral formulas
in (6.6) and (6.7) directly to obtain (6.18).

σ2
ψ(Q)σ2

ψ(P) =

∫
R

(q − 〈Q〉ψ)2|ψ(q)|2dq
∫
R

(
p −
〈P̂〉ψ̂
~

)2
|ψ̂(p)|2dp ≥

~2

4

The first thing we would like to notice about these two derivations ofσψ(Q)σψ(P)
≥ ~

2 is that, except for the identification of Q and P with position and momentum
operators, there is nothing even remotely resembling physics in either of them. The
first is just a special case of a general result on self-adjoint operators, while the sec-
ond is a special case of an equally general result about functions and their Fourier
transforms. Next, it is important to recognize that σψ(Q)σψ(P) ≥ ~

2 is a statistical
statement about the standard deviations of a large number of measurements of po-
sition and momentum on identically prepared systems and, moreover, that each of
the standard deviations σψ(Q) and σψ(P) is obtained by making repeated measure-
ment of just one of the observables (not both simultaneously). Alternatively, one can
identify the position and momentum observables in state ψ with their corresponding
probability measures |ψ(q)|2dq and |ψ̂(p)|2dp on R and regard σψ(Q)σψ(P) ≥ ~2 as
a limitation on the extent to which both measures can be concentrated about their
expected values. In any case, the essential observation is that one can infer nothing
from it regarding the outcome of any single measurement of position and momen-
tum on a system in state ψ. This places the inequality (6.19) in sharp contrast with
what is usually referred to as the Heisenberg Uncertainty Principle, described in
the following way by Heisenberg himself (to hear Heisenberg speak the words visit
http://www.aip.org/history/heisenberg/voice1.htm).

Actually, at every moment the electron has only an inaccurate position and an
inaccurate velocity, and between these two inaccuracies there is this uncertainty
relation.

-Werner Heisenberg

The uncertainty relation to which Heisenberg refers, written in terms of the posi-
tion and momentum (rather than velocity) of the electron, is

http://www.aip.org/history/heisenberg/voice1.htm
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∆q∆p ≥
~

2
, (6.22)

where ∆q and ∆p are called the “uncertainty”, or “inaccuracy”, in the position and
momentum measurements of the electron at some instant. These terms are generally
not defined precisely, but only illustrated in various gedanken experiments for the
measurement of position and momentum (and, as we will see, they are most cer-
tainly not the same as the statistical quantities σψ(Q) and σψ(P)). The most famous
of these gedanken experiments we will call the Heisenberg-Bohr microscope. Here
one imagines that the position of an electron is determined by “seeing” it in a mi-
croscope, that is, by hitting the electron with a photon which then scatters off of the
electron and through a lens in which it is visible to an observer.

Fig. 6.1 Heisenberg-Bohr Microscope

The quantitative details of the argument involve a bit of optics that we have no
need to discuss in detail. However, it is useful to have at least a qualitative appre-
ciation for what is behind the argument so we will describe a simplified version in
which the underlying idea, we hope, is clear, but various numerical factors are swept
under the rug by some rough order of magnitude approximations.
Remark 6.3.3. The exposition of an idea should not be construed as an endorsement
of that idea. The Heisenberg-Born microscope has probably outlived its usefulness
and there is much in the following argument that could be and, indeed, should be
and has been, criticized. The thrust of the argument is that quantum uncertainty is
the result of what has been called the observer effect, that is, that any measurement
of position necessarily involves a discontinuous and unpredictable effect on momen-
tum; the more delicate the measurement of q, the more pronounced the disturbance
of p thereby ensuring that the product ∆q∆p is inevitably bounded below by some
universal constant. Quantum uncertainty, in the form of (6.19) is rigorously proved
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and experimentally verified beyond any reasonable doubt, but the same cannot be
said of the arguments we embark upon now, nor even of the conclusion to which
these arguments lead. For a more sustained critique of Heisenberg’s version of the
uncertainty principle we refer to [Ozawa], and, especially, [Roz].

The resolving power of the microscope, that is, the minimum distance between
two points that the microscope can see as two distinct points, determines the accu-
racy with which the electron (or any other object) can be located. This resolving
power is determined in part by the construction of the microscope (specifically, the
angle θ in Figure 6.1), but also by the wavelength λsc of the scattered photon. Specif-
ically, let us suppose that a photon is scattered off of the electron through an angle φ
that sends the scattered photon into the lens of the microscope, that is, into the cone
in Figure 6.1. Then the resolving power, that is, the “uncertainty” in the position
of the electron along the q-axis (parallel to the motion of the incoming photon) is
determined, by the optics of the microscope, to be

∆q ≈
λsc

2 sin θ
.

Remark 6.3.4. The wavelength λsc of the scattered photon is not the same as the
wavelength λ of the photon impinging upon the electron in Figure 6.1, but the rela-
tionship between them is well understood. Briefly, the story is as follows. In 1923,
Arthur Compton showed that if one assumes that the scattering of the photon off of
the electron is elastic in the sense that (relativistic) energy and momentum are con-
served and that the energy of a photon is given by the Einstein relation E = hν = hc

λ

(Section 4.3), then

λsc − λ =
h

mec
(1 − cos φ), (6.23)

where h is 2π~, me is the mass of the electron, c is the speed of light in vacuo and φ
is the angle through which the photon is deflected (one can find this argument in es-
sentially any book on special relativity and, in particular, on pages 88-90 of [Nab5]).
The universal constant h

mec is called the Compton wavelength of the electron and, in
SI units (Remark 4.2.2), is

h
mec
≈ 2.4263102175 × 10−12m. (6.24)

Notice that the change in wavelength depends only on the scattering angle and not
on the incident wavelength. The Compton formula (6.23) has been directly verified
experimentally, beginning with experiments conducted by Compton himself, as have
the assumptions upon which it is based (for example, that the recoil electron acquires
exactly the energy and momentum lost by the incoming photon). A more detailed
analysis of this Compton effect is available in Section 2.9 of [Bohm].

From all of this we conclude that, for a fixed θ, one can decrease the uncertainty
∆q arbitrarily by illuminating the electron with photons of small wavelength λ. The
electromagnetic spectrum in Figure 4.1 suggests that one would want to choose
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gamma rays (with, say, λ ≈ 10−12m) to accomplish this. But by (6.24), if λ ≈
10−12m, then λ, λsc and λ − λsc are all of the same order of magnitude and our
approximations will use λ for all of them. In particular,

∆q ≈
λ

2 sin θ
.

Now, because of their short wavelength gamma rays are quite energetic. According
to the Einstein relations (Section 4.3), the energy of a gamma ray of frequency
ν = c

λ
is E = hν = hc

λ
and the magnitude of its momentum is p = hν

c = h
λ
.

Now we consider the component of the scattered photon’s momentum in the q-
direction (parallel to the direction of the incoming gamma ray). All we know about
the scattered photon is that it enters the field of view somewhere in the angular
range between −θ and θ and so this component is somewhere between −p sin θ
and p sin θ. Consequently, the uncertainty in the scattered photon’s momentum is
p sin θ − (−p sin θ) = 2p sin θ ≈ 2h

λ
sin θ (the approximation comes from λsc ≈ λ).

The Compton effect ensures that the momentum lost by the gamma ray when it
scatters is precisely the momentum gained by the electron so the uncertainty in the
q-component of the electron’s momentum after its collision with the photon is also

∆p ≈
2h
λ

sin θ.

Consequently,

∆q∆p ≈
[

λ

2 sin θ

][2h
λ

sin θ
]

= h.

Since h > ~
2 this isn’t as good as ∆q∆p ≥ ~

2 , but it is sufficient to indicate what is
being claimed here, which is something quite different from our Uncertainty Rela-
tion (6.19). The Heisenberg Uncertainty Principle (6.22) is a statement about one
measurement of two observables on a single quantum system, whereas (6.19) is a
statistical statement about many independent measurements of these two observ-
ables on identical quantum systems.

It is important to clearly make this distinction for several reasons. In the first
place, (6.19) is a rigorous mathematical consequence of the most basic assumptions
of quantum mechanics and, should it be found (in the laboratory) to be false, one
would need to completely rethink the foundations of the subject. On the other hand,
(6.22) is not provable (in the mathematical sense) from these basic assumptions
alone and our house of cards could conceivably remain standing if it should prove
not to be universally valid which, incidentally, it appears not to be (see [Ozawa] and
[Roz]).

The Heisenberg uncertainty principle states that the product of the noise in a
position measurement and the momentum disturbance caused by that measurement
should be no less than the limit set by Planck’s constant, ~/2, as demonstrated by
Heisenberg’s thought experiment using a gamma ray microscope. Here I show that
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this common assumption is false: a universally valid trade-off relation between the
noise and the disturbance has an additional correlation term.

-Masanao Ozawa [Ozawa]

While there is a rigorously proven relationship about uncertainties intrinsic to any
quantum system, often referred to as “Heisenberg’s uncertainty principle,” Heisen-
berg originally formulated his ideas in terms of a relationship between the precision
of a measurement and the disturbance it must create. Although this latter relation-
ship is not rigorously proven, it is commonly believed (and taught) as an aspect of
the broader uncertainty principle. Here, we experimentally observe a violation of
Heisenberg’s “measurement-disturbance relationship”, using weak measurements
to characterize a quantum system before and after it interacts with a measurement
apparatus.

-Rozema et al. [Roz]

The Heisenberg Uncertainty Principle (6.22) has various extensions in physics
to pairs of observables other than position and momentum. Essentially, one expects
such an uncertainty principle whenever the operators do not commute; we have not
introduced these yet, but this occurs, for example, for any two distinct components
of angular momentum or spin. However, one also encounters what is called the
Time-Energy Uncertainty Principle, usually written as

∆t ∆E ≥
~

2
.

This, however, is of a rather different character since, as we have already mentioned,
time t is not an observable in quantum mechanics, that is, there is no operator corre-
sponding to t. We would like to say a bit more about this version of the uncertainty
principle, but this is most conveniently done by taking a slightly different point of
view regarding the formulation of quantum mechanical laws called the “Heisenberg
picture” so we will postpone what we have to say until Section 6.4.

6.4 Schrödinger and Heisenberg Pictures

Let’s begin with a brief synopsis of the picture we have painted thus far of quantum
mechanics. A quantum system has associated with it a complex, separable Hilbert
space H and a distinguished self-adjoint operator H, called the Hamiltonian of the
system. The states of the system are represented by unit vectors ψ in H and these
evolve in time from an initial state ψ(0) according to ψ(t) = Ut(ψ(0)) = e−itH/~(ψ(0)).
As a result, the evolving states satisfy the abstract Schrödinger equation i~ dψ(t)

dt =

H(ψ(t)). Each observable is identified with a self-adjoint operator A that does not
change with time. Neither the state vectors ψ nor the observables A are accessible
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to direct experimental measurement. Rather, the link between the formalism and the
physics is contained in the expectation values 〈A〉ψ = 〈ψ, Aψ〉. Knowing these one
can construct the probability measures µψ,A(S ) = 〈ψ, EA(S )ψ〉 and these contain all
of the information that quantum mechanics permits us to know about the system.

We would now like to look at this from a slightly different point of view. As the
state evolves so do the expectation values of any observable. Specifically,

〈A〉ψ(t) = 〈ψ(t), Aψ(t)〉 = 〈Ut(ψ(0)), AUt(ψ(0))〉 = 〈ψ(0), [U−1
t AUt]ψ(0)〉,

because each Ut is unitary. Now, define a (necessarily self-adjoint) operator

A(t) = U−1
t AUt

for each t ∈ R. Then

〈A〉ψ(t) = 〈A(t)〉ψ(0)

for each t ∈ R. The expectation value of A in the evolved state ψ(t) is the same
as the expectation value of the observable A(t) in the initial state ψ(0). Since all of
the physics is contained in the expectation values this presents us with the option of
regarding the states as fixed and the observables as evolving in time. From this point
of view our quantum system has a fixed state ψ and the observables evolve in time
from some initial self-adjoint operator A = A(0) according to

A(t) = U−1
t AUt = eitH/~Ae−itH/~. (6.25)

This is called the Heisenberg picture of quantum mechanics to distinguish it from
the view we have taken up to this point, which is called the Schrödinger picture.
Although these two points of view appear to differ from each other rather trivially,
the Heisenberg picture occasionally presents some significant advantages and we
will now spend a moment seeing what things look like in this picture.
Remark 6.4.1. Heisenberg’s original formulation of quantum mechanics is generally
called matrix mechanics and here the dynamics of a quantum system is defined by
time-dependent observables given by infinite matrices which evolve according to
the Heisenberg equation (see (6.26) below). We will have a more careful look at the
ideas that led Heisenberg to this in Section 7.1. Although Heisenberg, of course,
did not view the matter in this way, one can arrive at these matrices by choosing
an orthonormal basis for H contained in D(A(t)) for every t and using it to move
from H to `2(N). The Heisenberg picture is generally regarded as the one most
appropriate to quantum field theory.

We should first notice that, when A is the Hamiltonian H, Stone’s Theorem 5.5.10
implies that each Ut leaves D(H) invariant and commutes with H so

H(t) = U−1
t HUt = eitH/~He−itH/~ = H ∀t ∈ R.
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The Hamiltonian is constant in time in the Heisenberg picture. For other observ-
ables this is generally not the case, of course, and one would like to have a differ-
ential equation describing their time evolution in the same way that the Schrödinger
equation describes the time evolution of the states. We will derive such an equa-
tion in the case of observables represented by bounded self-adjoint operators in the
Schrödinger picture.
Remark 6.4.2. This is a very special case, of course, so we should explain the re-
striction. In the unbounded case, a rigorous derivation of the equation is substantially
complicated by the fact that, in the Heisenberg picture, the operators (and therefore
their domains), are varying with t so that the usual domain issues also vary with t.
Physicists have the good sense to ignore all of these issues and just formally dif-
ferentiate (6.25), thereby arriving at the very same equation we will derive below.
Furthermore, it is not hard to show that, if A is unbounded and A(t) = U−1

t AUt, then,
for any Borel function f , f (A(t)) = f (A)(t) = U−1

t f (A)Ut so that one can generally
study the time evolution of A in terms of the time evolution of the bounded func-
tions of A and these are bounded operators. We will have a bit more to say about the
unbounded case after we have proved our theorem. Finally, we recall that, from the
point of view of physics, all of the relevant information is contained in the probabil-
ity measures 〈ψ, EA(S )ψ〉 so that, in principle, one requires only the time evolution
of the (bounded) projections EA(S ).

The result we need is a special case of Theorem 3.2, Chapter IV, of [Prug], but
because of its importance to us we will give the proof here as well.

Theorem 6.4.1. Let H be a complex, separable Hilbert space, H : D(H) → H a
self-adjoint operator on H and Ut = e−itH/~, t ∈ R, the 1-parameter group of unitary
operators determined by H. Let A : H → H be a bounded, self-adjoint operator on
H and define, for each t ∈ R, A(t) = U−1

t AUt. If ψ and A(t)ψ are in D(H) for every
t ∈ R, then A(t)ψ satisfies the Heisenberg equation

dA(t)
dt

ψ = −
i
~

[
A(t),H

]
−ψ, (6.26)

where the derivative is the H-limit

dA(t)
dt

ψ = lim
∆t→0

[A(t + ∆t) − A(t)
∆t

ψ
]
.

Remark 6.4.3. Let’s simplify the notation a bit and write (6.26) as

dA
dt

= −
i
~

[
A,H

]
−. (6.27)

Now compare this with the equation (2.65)

d f
dt

= { f ,H}
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describing the time evolution of a classical observable in the Hamiltonian picture
of mechanics. The analogy is striking and suggests a possible avenue from classical
to quantum mechanics, that is, a possible approach to the quantization of classical
mechanical systems. The idea is that classical observables should be replaced by
self-adjoint operators and Poisson brackets { , } by the quantum bracket

{
,
}
~ = −

i
~

[
,
]
−.

This idea, first proposed by Paul Dirac in his doctoral thesis, is the basis for what is
called canonical quantization and we will return to it in Chapter 7.

Proof. Adding and subtracting U−1
t+∆t AUt

∆t to A(t+∆t)−A(t)
∆t gives

A(t + ∆t) − A(t)
∆t

= U−1
t+∆t A

[Ut+∆t − Ut

∆t

]
+

[U−1
t+∆t − U−1

t

∆t

]
AUt.

Now, notice that[Ut+∆t − Ut

∆t

]
ψ =

Ut+∆tψ − Utψ

∆t
=

U∆t(Utψ) − (Utψ)
∆t

→ −
i
~

HUtψ

as ∆t → 0 by Lemma 5.5.9. Since A is bounded and therefore continuous and U−1
t+∆t

is strongly continuous in ∆t,

U−1
t+∆t A

[Ut+∆t − Ut

∆t

]
ψ −→ −

i
~

U−1
t AHUtψ = −

i
~

(U−1
t AUt)Hψ = −

i
~

A(t)Hψ

as ∆t → 0 (recall that Ut commutes with H by Stone’s Theorem 5.5.10).
Exercise 6.4.1. Show similarly that[U−1

t+∆t − U−1
t

∆t

]
AUtψ −→

i
~

HA(t)ψ

as ∆t → 0.
Combining these two gives

dA(t)
dt

ψ = −
i
~

(
A(t)Hψ − HA(t)ψ

)
= −

i
~

[
A(t),H

]
−ψ

as required. ut

Remark 6.4.4. In the physics literature one finds the Heisenberg equation stated
quite generally for operators that are perhaps unbounded and with little attention
paid to domain issues. Although one cannot rigorously justify this in full generality,
it is very often the case that a justification is possible in the cases of physical interest.
For example, if A is unbounded, then the domain of − i

~
[A,H]− may be quite small,

but very often it is not (if A is either the position Q or momentum P operator on
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L2(R) and H = HB, then this domain includes all of S(R)). If it should happen
that − i

~
[A,H]− is essentially self-adjoint on its domain, then, denoting its unique

self-adjoint extension also by − i
~
[A,H]−, one can define the time derivative of A to

be this unique self-adjoint extension so that the Heisenberg equation is satisfied by
definition. Very often one simply has to supply whatever hypotheses are required
to justify a calculation and then check that the hypotheses are satisfied in any case
to which the result of the calculation is applied. While such formal calculations
are anathema to mathematicians, physics could not get along without them simply
because they get to the heart of the matter without distractions. Here’s an example
(remember that the state ψ does not depend on t in the Heisenberg picture):

d
dt
〈 A(t) 〉ψ =

d
dt
〈ψ, A(t)ψ〉 = 〈ψ,

dA(t)
dt

ψ〉 = 〈ψ,−
i
~

[A(t),H]ψ〉 = 〈 −
i
~

[A(t),H] 〉ψ.

(6.28)

The rate of change of the expectation value of A(t) in state ψ is the expectation value
of − i

~
[A(t),H] in state ψ; we will return to this in Section 7.4.

We will conclude by returning to an issue we left open in the previous section.
There we pointed out that, in addition to the Heisenberg Uncertainty Principle (6.22)
for position and momentum, physicists commonly employ what is called the Time-
Energy Uncertainty Principle, written as

∆t ∆E ≥
~

2
. (6.29)

We pointed out also that, in addition to all of the subtleties buried in the usual deriva-
tion of (6.22) via the Heisenberg microscope, one must now contend with the fact
that t is not an observable in quantum mechanics so that it is not represented by an
operator. There is more, however. Leaving aside the relativistic prohibition of any
universal notion of time, it is not even altogether clear what is meant by t in (6.29)
and several different interpretations are possible (this issue is discussed in great de-
tail in [Busch]). We will not attempt to sort out all of these subtleties here, but will
offer just one possible interpretation of (6.29).
Remark 6.4.5. There is a reason that physicists believe so strongly that there should
be some sort of uncertainty relation involving time and energy. Special relativity re-
quires that various well-known classical physical quantities be merged into a single
object in order to ensure relativistic invariance. The most obvious example is the
spacetime position vector 4-vector (x, y, z, t) which combines the classical spatial
3-vector (x, y, z) and the scalar time t coordinate. Another example has the energy
as the time coordinate of a 4-vector whose spatial part is the classical momentum.
A physicist will then say, “Well, there you have it; time is to energy as position is
to momentum so, quantum mechanically, time and energy should satisfy an uncer-
tainty relation analogous to that for position and momentum.” Whether you find this
argument persuasive or not is really not the issue since it is intended only to moti-
vate the search for such a relation. As we have already suggested, the difficulty in
implementing this search is due in large measure to the fact that time is not an ob-
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servable in quantum mechanics. A reasonable response to this might be, “Well then,
just introduce an operator that represents t.” Regrettably, we will find in Chapter 7
that something called the Stone-von Neumann Theorem prohibits doing this in any
physically reasonable way.

Although t is not an observable in quantum mechanics, in the Heisenberg picture
observables are functions of t and the idea is to select (appropriately) some ob-
servable A(t) evolving from A(0) = A according to the Heisenberg equation (6.26)
and let it measure t for us in some way. Fix some state ψ of the system (which, in
the Heisenberg picture, does not change with t) and consider the expected values
〈A(t)〉ψ and standard deviations σψ(A(t)) of the observables A(t) in this state (we
must assume that ψ is in the domain of every A(t)). Then, by (6.17) and (6.28),

σψ(A(t))σψ(H) ≥
1
2

∣∣∣∣∣ 〈ψ, [A(t),H]−ψ 〉
∣∣∣∣∣ =
~

2

∣∣∣∣∣ 〈ψ,− i
~

[A(t),H]−ψ 〉
∣∣∣∣∣

=
~

2

∣∣∣∣∣ 〈− i
~

[A(t),H]− 〉ψ
∣∣∣∣∣

and so

σψ(A(t))σψ(H) ≥
~

2

∣∣∣∣∣ d
dt
〈 A(t) 〉ψ

∣∣∣∣∣.
Evaluating at t = 0 and assuming that d

dt 〈 A(t) 〉ψ
∣∣∣
t=0 , 0 we can define

∆tψ,A =

∣∣∣∣∣ σψ(A)
d
dt 〈 A(t) 〉ψ

∣∣∣
t=0

∣∣∣∣∣
which can be interpreted as (approximately) the time required for the expected value
of A to change by an amount equal to one standard deviation, that is, for the statistics
of A(t) to change appreciably from that of A. Thus, the “uncertainty” in t is expressed
by the average time taken for the expectation of A in state ψ to change by one
standard deviation and therefore describes the shortest time scale on which we will
be able to notice changes by using the observable A in state ψ. The Hamiltonian
represents the total energy so we let ∆E = σψ(H) and obtain

∆ψ,At ∆E ≥
~

2
.

This, of course, depends on the choice of A and ψ, but it is satisfied for any choice
of A and ψ satisfying the conditions we just described so we can let ∆t denote the
infimum of the ∆ψ,At over all such choices and we still have

∆t ∆E ≥
~

2
.

This then is one possible interpretation of the Time-Energy Uncertainty Principle.
Whether or not it is the correct interpretation (that is, is actually satisfied by quan-
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tum systems) remains to be seen; there is a substantial literature on this and those
interested in pursuing the matter might begin with [Busch].





Chapter 7
Canonical Quantization

7.1 PQ − QP = h
2πi

We have seen in Section 4.3 that Max Planck introduced what we would today call
the quantum hypothesis in 1900 to explain the observed spectrum of blackbody ra-
diation. Planck did not regard his hypothesis as a new, fundamental principle of
physics, but rather as a desperate ploy by which he could arrive at a formula that
agreed with experiment. We saw also that, in 1905, Einstein took a different view,
arguing that electromagnetic radiation must be regarded as having a dual character.
To understand its interference and diffraction one must think of it as a wave phe-
nomenon, but its interaction with matter in, say, the photoelectric effect, can only
be accounted for if it is regarded as a stream of particles (light quanta, or pho-
tons), each carrying an amount of energy proportional to its frequency. Although
Einstein’s proposal was initially received with considerable skepticism (not to say,
derision), the predictions to which it led were all borne out experimentally, primarily
through the work of Robert Millikan. A corresponding proposal that material parti-
cles such as electrons might, under certain circumstances, exhibit wavelike behavior
did not come until 1924, from Louis de Broglie. In the meantime, however, physi-
cists devoted much effort to investigating the implications of superimposing various
“quantization conditions” on classical mechanics for understanding such things as
the line spectrum of hydrogen (see Figure 4.3). For example, an electron in an atom
was assumed to move along a classical trajectory according to the laws of classi-
cal mechanics, but only those orbits satisfying the Born-Sommerfeld quantization
condition ∮

p dq = nh, n ∈ Z+, (7.1)

were permitted (the integral is over one period of the orbit in phase space). This
cobbling together of classical mechanics and ad hoc quantization conditions, known
as the old quantum theory, had its successes, but no underlying logical structure.
The goal was simply to take a classical picture (such as the 2-body problem in
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Example 2.2.12) and “quantize” it in some way or other to describe a system that
was viewed as analogous to the classical system, but for which classical mechanics
failed (such as the hydrogen atom). Clearly, some more systematic procedure would
be desirable, but this would have to wait for a more precise understanding of the
logical foundations of this new quantum mechanics. This understanding eventually
emerged from the work of Heisenberg, Born, Jordan, Dirac and Schrödinger.

In 1925, Heisenberg [Heis1] published a paper the stated intention of which was
“to establish a basis for theoretical quantum mechanics founded exclusively upon
relationships between quantities which in principle are observable.” The paper is
notoriously difficult to follow; Nobel laureate Steven Weinberg has referred to it as
“pure magic” (see pages 53-54 of [Weinb]). Max Born and Pascual Jordan [BJ],
however, saw in the bold vision expressed in Heisenberg’s paper a schematic for
the logical foundations of the new mechanics. Perhaps the central element in this
scheme, which did not appear directly in Heisenberg’s paper and which was the
key to the canonical quantization procedure later suggested by Dirac, is the identity
we have chosen as the title of this section, which, incidentally, is also the epitaph
inscribed on the headstone at Max Born’s burial site in Göttingen (Figure 7.1).

Fig. 7.1 Max Born’s headstone in Göttingen

As we will see in the next few sections, there is a real sense in which this identity
captures the essence of quantum mechanics (in mathematical terms, [ P,Q ]− = h

2πi is
the sole nontrivial relation defining the “Heisenberg Lie algebra”). One should have
at least some notion of where it came from and this is what we will try to provide
in this introductory section. We will offer only a very crude sketch, but one should
keep in mind that even the crudest sketch must rely on Heisenberg’s inspiration.
Some things are not amenable to mathematical proof and one needs to approach
them with an open mind. Some of what follows in this section may look vaguely
like mathematics, but it almost certainly is not. In particular, we will pretend that
infinite matrices behave exactly like finite matrices and that any infinite series we
write down converges as nicely as you might want it to converge. The purpose here
is motivation, not derivation. For those who would like to follow more closely the
ideas in [Heis1] and [BJ] we recommend the two expository papers [AMS] and
[FP2].
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We will consider a single electron in a periodic orbit about a proton in a hydrogen
atom and will focus our attention on the electron. As we mentioned above, the old
quantum theory viewed the electron as having a classical trajectory in phase space
subject to the laws of classical mechanics, but with the additional constraint that the
Bohr-Sommerfeld quantization condition (7.1) must be satisfied. This constraint has
the effect of forcing the orbit to lie in one of a discrete set of energy levels (shells)
around the nucleus which can be labeled by an integer n = 1, 2, 3, . . . called the
principal quantum number in such a way that the corresponding energies satisfy
0 < E(1) < E(2) < E(3) < · · · . For each fixed quantum number n the periodic
classical orbit can be expanded in a Fourier series

q(n, t) =

∞∑
α=−∞

qα(n)eiαω(n)t, (7.2)

where ω(n) is the fundamental frequency of the orbit and, because q(n, t) is real,
q−α(n) = qα(n). Heisenberg’s position, however, was that this classical orbit is un-
observable and therefore has no business being built into the foundations of quan-
tum theory. What he needed then was some meaningful quantum analogue of the
electron’s classical position.
Remark 7.1.1. Heisenberg’s motivation is often obscure, but he does make quite
explicit use of some of those aspects of the old quantum theory that seemed clearly
to be pointing in the right direction. Most prominent among these is the Correspon-
dence Principle of Niels Bohr. Roughly, one thinks of this principle as asserting
that, in some limiting sense (say, as ~→ 0), “quantum mechanics reduces to classi-
cal mechanics,” whatever that is taken to mean. Since this is likely to be interpreted
differently in different contexts one should not be surprised to see a number of rather
disparate statements all claiming to be the Correspondence Principle. There are, in
fact, at least three commonly accepted interpretations of the Correspondence Princi-
ple (one can find these described succinctly at http://plato.stanford.edu/entries/bohr-
correspondence/). The one that is relevant to our sketch of Heisenberg’s argument
is referred to as the Selection Rule Interpretation. One can find a very detailed dis-
cussion of both the meaning and the consequences of this version of the Correspon-
dence Principle in the expository paper [FP1]. For the purposes of our sketch of
Heisenberg’s argument a few brief comments will suffice.

The measurable quantities associated with an atom are those contained in its line
spectrum (Figure 4.3), that is, the frequency and intensity of the spectral lines. These
spectral lines arise from photons emitted when an electron “jumps” from one energy
level to a lower energy level; the difference in the energies determines the frequency
of the emitted photon. The intensity of the spectral line is determined by the prob-
ability per unit time for that transition to occur (the more jumps that occur per unit
time, the brighter the line). The Selection Rule Interpretation of the Correspondence
Principle asserts that each allowed transition corresponds to one harmonic compo-
nent qα(n)eiαω(n)t of the classical motion, with the transition energy and transition
probability corresponding to the harmonic frequency αω(n) and harmonic ampli-

http://plato.stanford.edu/entries/bohr-correspondence/
http://plato.stanford.edu/entries/bohr-correspondence/
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tude qα(n), respectively. Now we will try to understand how this led Heisenberg to
a quantum analogue of each harmonic component.

We begin by defining a skew-symmetric function ω : Z × Z → R. For any
(n,m) ∈ Z × Z, the value ω(n,m) will be an integral multiple of 1

~
that is related to

the frequency of the photon associated with the transition n→ m between the energy
levels E(n) and E(m). If either n or m is less than or equal to zero, ω(n,m) is taken
to be zero because there are no energy levels E(k) with k ≤ 0. The reason for the
skew-symmetry can be explained as follows. If E(n) and E(m) are both permissible
energy levels and n > m, then the transition n→ m is accompanied by the emission
of a photon with frequency

ω(n,m) =
1
~

[E(n) − E(m)].

On the other hand, the transition m→ n must be accompanied by the absorption of
a photon of the same frequency. Thinking of the emission of a photon by the atom
as adding energy to the universe outside the atom and the absorption of a photon as
subtracting it we are led to define

ω(m, n) =
1
~

[E(m) − E(n)] = −ω(n,m).

Now fix a quantum number n = 1, 2, 3, . . . and consider one of the harmonic
components

qα(n)eiαω(n)t (7.3)

of the classical path. Assume for a moment that 0 < α < n. Then, by the Correspon-
dence Principle, (7.3) corresponds to the transition

n→ n − α

from the nth to the (n − α)th energy level. Accordingly, we have

ω(n, n − α) =
1
~

[E(n) − E(n − α)] (7.4)

for the frequency of the photon emitted during the transition. Heisenberg took
ω(n, n − α) to be the quantum analogue of the classical frequency αω(n).

Now, if α = 0, our skew-symmetry assumption forces ω(n, n − α) = ω(n, n) = 0.
Furthermore, if α ≥ n, then n−α ≤ 0 and, because there is no energy level E(n−α),
we will take ω(n, n − α) = 0 = ω(n − α, n). Finally, suppose α < 0. Then n − α =

n + |α| > n so ω(n, n− α) = −ω(n− α, n) = 1
~
[E(n)− E(n− α)]. Thus, for each fixed

quantum number n = 1, 2, 3, . . . we have defined ω(n,m) and ω(m, n) for all m ∈ Z.
Since ω(n,m) = 0 whenever n ≤ 0, this completes the definition of ω : Z×Z→ R.
Exercise 7.1.1. Show that, for any n,m, µ ∈ Z,
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ω(n, µ) + ω(µ,m) = ω(n,m).

In particular,

ω(n, n − α) + ω(n − α, n − β) = ω(n, n − β)

for all α, β ∈ Z. We will encounter this identity again quite soon.
To obtain Heisenberg’s quantum version of the classical harmonic component

qα(n)eiαω(n)t one begins with the replacement

eiαω(n)t → eiω(n,n−α)t.

Next Heisenberg introduced quantum analogues Q(n, n − α) of the classical am-
plitudes qα(n). These are called complex transition amplitudes, or probability am-
plitudes and are assumed to have properties that we now describe. For any n,m ∈ Z,

Q(n,m)

is to have the property that |Q(n,m) |2 is a measure of the probability of the transition
n → m, whenever such a transition is permissible. If either n or m is less than
or equal to zero, Q(n,m) is taken to be zero because at least one of the energy
levels E(n) or E(m) does not exist. Heisenberg also introduced a reality condition
analogous to q−α(n) = qα(n) by assuming

Q(m, n) = Q(n,m).

Precisely what these transition amplitudes are in a given context is to be determined
by certain differential equations proposed by Heisenberg that are direct analogues
of the classical Hamilton equations.

With this Heisenberg’s quantization of the classical harmonic component
qα(n)eiαω(n)t amounts simply to the replacement

qα(n)eiαω(n)t → Q(n, n − α)eiω(n,n−α)t.

Remark 7.1.2. In particular, the quantization of the harmonic component q0(n) is
just Q(n, n). Evidentally, Q(n, n) cannot really be regarded as a transition amplitude
(since there is no transition) and so its physical interpretation is not apparent a priori
and must emerge from the rest of the formalism. Notice, however, that each Q(n, n)
is real and time-independent (suggesting, perhaps, something conserved). One can
learn more about this in [BJ], [BHJ], [AMS], and [FP2].

The harmonic components qα(n)eiαω(n)t are all simply terms in the infinite Fourier
series expansion of the electron’s classical orbit. Heisenberg wrote that a “similar
combination of the corresponding quantum-theoretical quantities seems to be im-
possible in a unique manner and therefore not meaningful.” As an alternative to
summing them he simply collected them all together, that is, he suggested that “one
may readily regard the ensemble of quantities”
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Q(t) =

{
Q(n, n − α)eiω(n,n−α)t

}
n∈N,α∈Z

as a representation of the quantum analogue of the classical position q(t) (we no
longer write q(n, t) because the “ensemble” Q(t) contains contributions correspond-
ing to every quantum number n).
Remark 7.1.3. One should take a moment to appreciate the audacity of this idea.
The familiar notion of the position of a particle is replaced by an infinite array of
complex numbers - by a physicist, in 1925. One more comment is worth making at
this point. Today we are all trained to view any rectangular array of numbers as a
matrix and once we do so the machinery of matrix algebra and matrix analysis is
laid before us, free of charge. In 1925, however, Heisenberg did not know what a
matrix was and certainly did not have this machinery available to him. We could, of
course, ignore this historical anomaly and switch immediately into matrix mode. We
feel, however, that this would not only obscure another of Heisenberg’s remarkable
insights, but would also leap over one of the most interesting parts of this story. For
a few moments anyway we will pretend that, with Heisenberg, we’ve never heard of
matrices.

Having decided that the classical notion of the instantaneous position q(t) of an
electron in an atom should be replaced in quantum mechanics by the infinite array
Q(t) of complex numbers, it seemed only natural to Heisenberg that the other clas-
sical observables associated with the system (momentum, the Hamiltonian, etc.)
should have similar representations. For example, the classical momentum p(t)
would be replaced by something of the form

P(t) =

{
P(n, n − α)eiω(n,n−α)t

}
n∈N,α∈Z

.

One might even hazard the guess that, if me is the mass of the electron, then

P(t) = meQ̇(t) =

{
meiω(n, n − α)Q(n, n − α)eiω(n,n−α)t

}
n∈N,α∈Z

.

To build a quantum analogue of a Hamiltonian, however, one needs to think a bit
more. Classical observables such as the Hamiltonian are functions of q and p. Even
the classical harmonic oscillator Hamiltonian contains q2 and p2 so one must know
how to “square” Q(t), that is, find a quantum analogue Q2(t) of q2(t).
Remark 7.1.4. Don’t jump the gun here. Remember that, for the moment, we know
nothing about matrices and, even if we did, it would not be clear at this stage that
matrix multiplication has any physical significance at all in this context. One needs
some physical principle that suggests what it “should” mean to square a set of tran-
sition amplitudes.

To follow Heisenberg’s argument one begins with the corresponding problem as
it would be viewed in the old quantum theory. If q(n, t) =

∑∞
α=−∞ qα(n)eiαω(n)t, then

squaring the Fourier series gives
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q2(n, t) =

( ∞∑
α=−∞

qα(n)eiαω(n)t
)( ∞∑

α′=−∞

qα′ (n)eiα′ω(n)t
)

=

∞∑
α=−∞

∞∑
α′=−∞

qα(n)qα′ (n)ei(αω(n)+α′ω(n))t

Set β = α + α′ and write this as

q2(n, t) =

∞∑
β=−∞

aβ(n)eiβω(n)t,

where

aβ(n) =

∞∑
α=−∞

qα(n)qβ−α(n).

Now rewrite q2(n, t) once more as

q2(n, t) =

∞∑
β=−∞

∞∑
α=−∞

qα(n)qβ−α(n)ei[αω(n)+(β−α)ω(n) ]t

and read off the harmonic components

∞∑
α=−∞

qα(n)qβ−α(n)ei[αω(n)+(β−α)ω(n) ]t.

The problem then is to define an appropriate quantum analogue Q2(n, n−β)eiω(n,n−β)t

of this.
Notice that the Fourier frequencies of the factors in this classical product combine

in the simplest possible way in the product (just add them to get αω(n)+(β−α)ω(n)).
Heisenberg then observes that spectral line frequencies do not behave so simply.
He is referring to what is called the Rydberg-Ritz Combination Rule. This is an
empirical relationship between the frequencies that occur in the line spectrum of any
atom, first noted by Ritz in 1908 for hydrogen. It states that the frequency of any
line in the spectrum can be expressed as the sum or the difference of the frequencies
of two other lines in the spectrum. Mathematically, this takes the form

ω(n, n − α) + ω(n − α, n − β) = ω(n, n − β) (7.5)

(compare Exercise 7.1.1). From this Heisenberg concludes that it is “an almost
necessary consequence” that the quantum analogue of the harmonic component∑∞
α=−∞ qα(n)qβ−α(n)ei[αω(n)+(β−α)ω(n) ]t of q2(n, t) be given by

∞∑
α=−∞

Q(n, n − α)Q(n − α, n − β)ei[ω(n,n−α)+ω(n−α,n−β) ]t. (7.6)
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In particular,

Q2(n, n − β) =

∞∑
α=−∞

Q(n, n − α)Q(n − α, n − β) (7.7)

and this is Heisenberg’s rule for the multiplication of transition amplitudes.
Remark 7.1.5. Confronted with (7.7) it becomes increasingly difficult to go on pre-
tending that we do not know anything about matrices so it is time to relate the oft-
told story of how Heisenberg’s new quantum mechanics became matrix mechanics.

Heisenberg received his Ph.D. in 1923 under the direction of Arnold Sommer-
feld in Munich (his topic was On the Stability and Turbulence of Fluid Flow). He
then moved to Göttingen, became an assistant to Max Born, and completed his Ha-
bilitation in 1924. Born and Heisenberg worked on calculating the spectral lines
of hydrogen. These calculations, together with what appeared to be fundamental
limitations on the applicability of the old quantum theory (to large atoms, for exam-
ple), led Heisenberg to believe that a thoroughgoing re-evaluation of the logical and
mathematical foundations of quantum theory was required. In particular, he felt that
quantum theory should be formulated exclusively in terms of quantities that were
directly observable (frequencies and intensities of spectral lines rather than classical
positions and momenta of electrons). In June of 1925 Heisenberg suffered a severe
allergy attack and left Göttingen for Helgoland (a small island off the coast of Ger-
many in the North Sea that is essentially free of pollen). While there he spent his
time climbing, memorizing passages from Goethe, and thinking about spectral lines.
This last activity culminated in the sort of epiphany that is not granted to mere mor-
tals such as ourselves. Heisenberg quickly wrote down his new vision (I think that’s
the correct term) of quantum mechanics and the result was the paper [Heis1] that
we have been discussing. The strangeness of the ideas in this paper were apparent
to Heisenberg who was reluctant to submit them for publication without first show-
ing them to Born and to his friend Wolfgang Pauli. Born and Pauli, however, were
quick to recognize the significance of the paper. Born submitted it to the Zeitschrift
für Physik and Pauli used the ideas it contained to completely solve the problem of
calculating the spectrum of hydrogen.

Born was particularly intrigued with Heisenberg’s rule (7.7) for the multipli-
cation of transition amplitudes (for his own recollections, see pages 217-218 of
[Born2]). Recalling lectures from his student days by the mathematician Jakob
Rosanes, he soon recognized it as nothing other than the (to us) familiar rule for
matrix multiplication; as matrices, (Q2(n,m)) = (Q(n,m))2.
Remark 7.1.6. Notice that, by (7.6), the quantum analogue of q2(t), as a matrix,

Q2(t) =

( ∞∑
α=−∞

Q(n, n − α)Q(n − α,m)ei[ω(n,n−α)+ω(n−α,m) ]t
)

is also the matrix square of Q(t). But notice also that, by (7.5), every entry in Q2(t)
has precisely the same frequency as the corresponding entry of Q(t). Consequently,
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these entries also have the same exponential time factors. As a result one generally
does not bother to keep track of these time factors, but deals instead only with the
transition amplitudes.

Quantum analogues of the higher powers of q(t) and p(t) can then be defined
simply in terms of the corresponding matrix powers. This, in turn, suggests how one
might define the quantum version of any classical observable that is a polynomial
(or perhaps even a power series) in the classical variables q and p, although Heisen-
berg himself noted that the noncommutativity of his multiplication rule introduced
a “significant difficulty” (we’ll get back to this soon). From these observations Born
and Pascual Jordan (another assistant) reshaped Heisenberg’s rather obscure paper
into the first cogent and systematic foundation for what would henceforth be known
as matrix mechanics. This appeared in their paper [BJ] which we will need to follow
just a bit further since it contains the first appearance of the identity

PQ − QP =
h

2πi
,

which is the focus of our attention here. Notice that, with Q and P interpreted as
matrices, the right-hand side of this identity must be thought of as a scalar matrix,
that is, a multiple of the identity matrix I. For the sake of clarity we will henceforth
include this explicitly and write

PQ − QP =
h

2πi
I. (7.8)

The “significant difficulty” to which Heisenberg alluded is clear enough. Classi-
cal observables are real-valued functions on phase space and these commute under
multiplication, whereas matrices do not. Suppose one is trying to write down the
quantum analogue of a classical observable which, as a function of q and p, contains
the term q2 p = qqp = qpq = pq2. Replacing q and p with their quantum analogues
one has three options for the order in which to write the matrices and these generally
do not give the same result. The naive quantization procedure we have been hint-
ing at is ambiguous. For some classical observables such as the harmonic oscillator
Hamiltonian (which contains only q2 and p2), this is not an issue, but in general the
difficulty really is significant. Physicists have devised a great many schemes for re-
moving this ambiguity each of which gives rise to what we would call a quantization
procedure, but different schemes generally give rise to different physical predictions
and one can only decide which (if any) gives the correct predictions by consulting
the experimentalists. For classical observables that are quadratic functions of q and
p there is only one apparent ambiguity, that is, QP versus PQ. One would there-
fore like to know something about how they differ, that is, about the commutator
PQ − QP.

Heisenberg’s paper [Heis1] contains a great deal more than we have described
so far, but most of this is not our immediate concern ([AMS] contains a detailed
analysis of the entire paper). There is one item we cannot ignore, however. Heisen-
berg postulated differential equations entirely analogous to Hamilton’s equations of
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classical mechanics that should be satisfied by his quantum analogues of position
and momentum, but he needed also some re-interpretation of the Bohr-Sommerfeld
quantization condition (7.1) to ensure discrete energy levels. The condition he pro-
posed (Equation (16) of [Heis1]) is, in our notation,

4πme

∞∑
α=−∞

Q(n, α)Q(α, n)ω(α, n) = h, (7.9)

where me is the mass of the electron and h is Planck’s constant.
Remark 7.1.7. This is also the form in which the quantization condition is stated in
the paper [Dirac1] to which we will be returning shortly.

The path which led Heisenberg to (7.9) is not so easy to follow. Writing out the
Born-Sommerfeld condition (7.1) with p = meq̇ and expanding in Fourier series,
he performs a rather odd differentiation with respect to the (discrete) variable n to
obtain

h = 2πme

∞∑
α=−∞

α
d

dn

(
αω(n)qα(n)q−α(n)

)
.

At this point Heisenberg simply asserts that this equation “has a simple quantum-
theoretical reformulation which is related to Kramers’ dispersion theory” and
records his Equation (16) without further ado.
Remark 7.1.8. Today this would generally be known as Kramers-Heisenberg dis-
persion theory. It concerns itself with the scattering of photons by electrons that
are bound in an atom and was a topic of great interest in 1925 because the details
of atomic structure were by then understood to be intimately related to the emis-
sion and absorption of photons. Lacking both the time and the competence to do
so properly we will not attempt to describe precisely how Heisenberg was led from
dispersion theory to (7.9), but will simply refer those interested in hearing this story
to Section III.5 of [MR].

There is, however, one observation we would like to make about (7.9). With

Q(t) =

(
Q(n,m)eiω(n,m)t

)
and

P(t) = meQ̇(t) =

(
meiω(n,m)Q(n,m)eiω(n,m)t

)
=

(
P(n,m)eiω(n,m)t

)
we compute the products PQ and QP as follows.

(PQ)(n,m) =

∞∑
α=−∞

P(n, α)Q(α,m) = mei
∞∑

α=−∞

ω(n, α)Q(n, α)Q(α,m)

and, similarly,
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(QP)(n,m) = mei
∞∑

α=−∞

Q(n, α)ω(α,m)Q(α,m).

Now, recalling that ω(n, α) = −ω(α, n) we obtain for the diagonal entries (m = n) of
the commutator PQ − QP

(PQ − QP)(n, n) = −2mei
∞∑

α=−∞

Q(n, α)Q(α, n)ω(α, n).

Finally, notice that Heisenberg’s quantization condition (7.9) is precisely the state-
ment that

(PQ − QP)(n, n) =
h

2πi
, n = 1, 2, 3, . . . ,

that is, that the diagonal entries of the commutator PQ − QP are all equal to h
2πi .

Since the diagonal entries of PQ −QP are time independent these are also all equal
to h

2πi .
If Heisenberg noticed that his quantization condition could be written in this

form, he did not say so in [Heis1]. Born did notice, however, and conjectured on
physical grounds that the off-diagonal entries of PQ − QP must all be zero. Jor-
dan established Born’s conjecture by computing the t-derivative of PQ −QP, using
Heisenberg’s quantum version of Hamilton’s equations to show that the derivative is
zero, and then invoking the additional assumption that ω(n,m) , 0 whenever n , m
to show that the off-diagonal elements are zero (the argument is given in some detail
in Section IV of [FP2]).

Whether or not one is willing to take these physical and mathematical arguments
of Heisenberg, Born and Jordan seriously is not really the issue here since the result-
ing identity (7.8) is best regarded as one of the postulates of matrix mechanics and
its viability should be judged on the basis of the predictions to which matrix mechan-
ics leads. As we emphasized earlier, the goal here was motivation, not derivation.
What we hope to have motivated is the underlying algebraic structure of quantum
mechanics. In an attempt to unearth a precise definition of this algebraic structure
we will rewrite (7.8) just slightly using [ , ]− for the matrix commutator, writing
~ for h/2π, and appending to it two trivial commutation relations. This results in
what are called the Born-Heisenberg canonical commutation relations, or quantum
canonical commutation relations, or simply the CCR.

[Q,Q]− = [P, P]− = 0, [P,Q]− = −i~I (7.10)

Remark 7.1.9. One often sees these relations expressed in the following way. Define
the quantum bracket { , }~ by

{ , }~ = −
i
~

[ , ]−.

Then (7.10) can be written
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{Q,Q}~ = {P, P}~ = 0, {Q, P}~ = I. (7.11)

In these terms one cannot help but notice the analogy with the n = 1 case of the
canonical commutation relations (2.66) for classical mechanics, that is,

{q, q} = {p, p} = 0, {q, p} = 1. (7.12)

The analogy is strengthened by comparing the equation (2.65) describing the time
evolution of an observable in classical mechanics

d f
dt

= { f ,H}

with the Heisenberg equation (6.27)

dA
dt

= {A,H}~.

Paul Dirac [Dirac1] was the first to suggest that this analogy might provide a method
of quantizing classical mechanical systems. His suggestion was simply to find a
“reasonable” mapping R from the classical observables f , g, . . . to the quantum ob-
servables R( f ),R(g), . . . (matrices, or operators on a Hilbert space) that sends Pois-
son brackets to quantum brackets, that is, satisfies

{ f , g} → {R( f ),R(g)}~

and carries (7.12) to (7.11). As it turns out, this is not only more easily said than
done, it generally cannot be done at all. Nevertheless, this is what physicists usually
mean by canonical quantization. We will have a much more careful look at this in
the next section.

Finally, notice that if we let C = −i~I, then, from (7.10), we have

[P, P]− = [Q,Q]− = [C,C]− = [P,C]− = [Q,C]− = 0, [P,Q]− = C.

If one regards the matrices {P,Q,C} as basis elements for the 3-dimensional real
vector space they span, then these commutation relations show that the commutator
provides this vector space with the structure of a (nearly commutative) Lie algebra
with C in the center. Of course, in this introductory section we have been rather
cavalier about these infinite matrices that are supposed to represent quantum ob-
servables so one cannot claim that this makes any rigorous sense at the moment. In
the next section we will attempt to rectify this situation.

7.2 Heisenberg Algebras and Heisenberg Groups

The physical reasoning and formal manipulations of the preceding section were all
intended to simply motivate the rigorous definitions and results that we will describe
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now. The objective is to formulate a precise notion of the “canonical quantization”
of a classical mechanical system and discuss the extent to which it can be realized.
In the next two sections we will apply what we learn to the free particle and the
harmonic oscillator. We will need to rely rather heavily on basic information about
(matrix) Lie groups and Lie algebras and, as we have done previously, will take
as our principal references [CM], the lectures by Robert Bryant in [FU], [Hall],
[Knapp], [Nab3], [Sp2], and [Warner].

We begin with the abstract definition of the algebraic structure to which we were
led by Heisenberg and Born in the previous section. We will describe a few concrete
models of this structure and some of its basic properties and then generalize to
accommodate physical systems more complicated than those discussed in Section
7.1.

The 3-dimensional Heisenberg algebra h3 is a 3-dimensional, real Lie algebra
with a basis {X,Y,Z} relative to which the Lie bracket [ , ] is determined by

[X,Z] = [Y,Z] = 0, [X,Y] = Z. (7.13)

In terms of components we have

[xX + yY + zZ, x′X + y′Y + z′Z] = (xy′ − yx′)Z.

Exercise 7.2.1. Show that [A, [B,C]] = 0∀A, B,C ∈ h3 and conclude that the Jacobi
identity

[A, [B,C]] + [C, [A, B]] + [B, [C, A]] = 0 ∀A, B,C ∈ h3.

is satisfied in h3.
Example 7.2.1. It will be useful to have a couple of concrete realizations of h3 so
we will begin with these.

1. For a classical mechanical system with configuration space R the phase space
is T ∗R = R2 and the algebra of classical observables is C∞(T ∗R). This is an
infinite-dimensional, real Lie algebra with the Poisson bracket { , } as the Lie
bracket. Three particular observables are the coordinate functions q and p and
the constant function 1. Consider the linear subspace of C∞(T ∗R) spanned by
{q, p, 1}. Since

{q, 1} = {p, 1} = 0, {q, p} = 1, (7.14)

this is a Lie subalgebra of C∞(T ∗R) isomorphic to h3.
2. The set gl(3;R) of all 3 × 3 real matrices is a Lie algebra under matrix commu-

tator. We consider the subset consisting of those matrices of the form0 x z
0 0 y
0 0 0


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Exercise 7.2.2. Show that these form a Lie subalgebra of gl(3;R) that is isomor-
phic to h3.

There are a few things worth noticing about h3. Recall that the center of a Lie
algebra g consists of all those B ∈ g such that [A, B] = 0 for all A ∈ g. Certainly, Z
is in the center of h3, but more is true.
Exercise 7.2.3. Show that the center of h3 is the 1-dimensional linear subspace
spanned by Z.

You have shown that (7.13) implies

[[A, B],C] = 0 (7.15)

for all A, B,C ∈ h3. In particular, h3 is a nilpotent Lie algebra, but we have in mind
a different use for (7.15). Every finite-dimensional Lie algebra g is the Lie algebra
of some connected Lie group (this is generally known as Lie’s Third Theorem).
Moreover, there is a unique simply connected Lie group whose Lie algebra is g.
This is true, in particular, for h3 and we would like to describe this Lie group. For
this we will identify h3 with the matrix Lie algebra described in Example 7.2.1 (2).
In general, one gets from a Lie algebra to its Lie group via the exponential map so
we will need to exponentiate matrices of the form

xX + yY + zZ = x

 0 1 0
0 0 0
0 0 0

 + y

 0 0 0
0 0 1
0 0 0

 + z

0 0 1
0 0 0
0 0 0

 .
Now, recall that if the matrices A and B commute, then eA+B = eAeB. Since zZ

commutes with everything in h3, we have

exX+yY+zZ = exX+yYezZ .

Since (zZ)2 = 0,

ezZ = I + zZ =

1 0 z
0 1 0
0 0 1

 .
Similarly,

exX = I + xX =

 1 x 0
0 1 0
0 0 1


and

eyY = I + yY =

1 0 0
0 1 y
0 0 1

 .
Since xX and yY do not commute, exX+yY takes a bit more work. One can appeal to
the Baker-Campbell-Hausdorff Formula
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eAeB = eA+B+ 1
2 [A,B]−+ 1

12 [A,[A,B]−]−− 1
12 [B,[A,B]−]−+···

which, by virtue of (7.15), simplifies in the case of h3 to

eAeB = eA+B+ 1
2 [A,B]− .

Remark 7.2.1. There is a very detailed discussion of the Baker-Campbell-Hausdorff
Formula in Chapter 4 of [Hall]. Moreover, Theorem 4.1 of [Hall] contains an inde-
pendent proof of the special case we need for h3. Alternatively, given the simplicity
of the matrices, one can verify the following by direct computation.

exXeyY = exX+yY+ 1
2 [xX,yY]− = exX+yY+ 1

2 xyZ = exX+yYe
1
2 xyZ

From this we conclude that

exX+yY = exXeyYe−
1
2 xyZ .

For future reference we note that one obtains, in the same way,

eyY+xX = eyYexXe
1
2 xyZ .

Since eyY+xX = exX+yY , we conclude that

exXeyY = exyZeyYexX . (7.16)

Exercise 7.2.4. Put all of this together to show that

exX+yY+zZ =

1 x z + 1
2 xy

0 1 y
0 0 1

 .
Conclude that the exponential map on h3 is a bijection onto the set H3 of all 3 × 3
matrices of the form 1 a c

0 1 b
0 0 1

 .
Exercise 7.2.5. Show that 1 a c

0 1 b
0 0 1


 1 a′ c′

0 1 b′

0 0 1

 =

1 a + a′ c + c′ + ab′

0 1 b + b′

0 0 1


and  1 a c

0 1 b
0 0 1


−1

=

1 −a −c + ab
0 1 −b
0 0 1

 .
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Conclude that, under matrix multiplication, H3 is a non-Abelian group whose center
consists precisely of those elements of the form

ecZ =

 1 0 c
0 1 0
0 0 1

 .
To see that H3 is a simply connected Lie group, proceed as follows.
Exercise 7.2.6. Define a map from H3 to R3 by 1 a c

0 1 b
0 0 1

 φ
−→

(
a, b, c

)
.

Regarding H3 as a topological subspace of the 3×3 real matrices (that is, R9), show
that φ is a homeomorphism. In particular, φ : H3 → R3 is a global chart on H3 and
so H3 is a differentiable manifold diffeomorphic to R3.
Exercise 7.2.7. Define a multiplicative structure on R3 by

(x, y, z)(x′, y′, z′) = ( x + x′, y + y′, z + z′ + xy′ ).

Show that this defines a group structure on R3 and, if R3 is given its usual topology
and differentiable structure, it defines a Lie group structure on R3.
Exercise 7.2.8. Show that, when R3 is provided with the Lie group structure in the
previous Exercise, φ : H3 → R3 is a Lie group isomorphism. Conclude that H3 is
the unique simply connected Lie group whose Lie algebra is h3.
Exercise 7.2.9. There is another way of describing a Lie group structure on R3 that
is isomorphic to H3. For this we will denote the elements of R3 by (x, y, u). Show
first that the multiplication defined by

(x, y, u)(x′, y′, u′) = ( x + x′, y + y′, u + u′ +
1
2

(xy′ − x′y) )

provides R3 with the structure of a Lie group. Next show that the map (x, y, z) →
(x, y, u) = (x, y, z − 1

2 xy) satisfies

(x + x′, y + y′, z + z′ + xy′)→ ( x + x′, y + y′, u + u′ +
1
2

(xy′ − x′y) )

and therefore is an isomorphism with the R3-model of H3 described in the previous
exercises.

H3, thought of either as a group of matrices or as R3 with either of the group
structures just introduced, is called the 3-dimensional Heisenberg group. There is
an interesting way of rephrasing our last view of H3 that not only makes the defini-
tion of the group structure appear a bit less odd, but also suggests a rather elegant
generalization. Think of R3 as R2 × R = T ∗R × R and define a nondegenerate,
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skew-symmetric, bilinear form ω on R2 by

ω( (x, y), (x′, y′) ) = xy′ − x′y.

This is just the canonical symplectic form on T ∗R once it has been identified with
a bilinear form on R2 by using the fact that every tangent space to the vector space
R2 is canonically identified with R2. Then the peculiar group structure we have
introduced on R3 can be thought of as a group structure on T ∗R ×R defined by

(v, t)(v′, t′) = ( v + v′, t + t′ +
1
2
ω(v, v′) )

for all v, v′ ∈ T ∗R and all t, t′ ∈ R. As it happens, one can mimic this definition
to associate a “Heisenberg group” and corresponding “Heisenberg algebra” with
V × R for any finite-dimensional symplectic vector space V (see pages 116-118 of
[Berndt]). We will not pursue this in such generality here, but will use the idea to
deal with R2n+1 = R2n × R. Since there are really no new ideas involved we will
simply record the facts.
Remark 7.2.2. Let n ≥ 1 be an integer. The (2n+1)-dimensional Heisenberg algebra
h2n+1 is a (2n+1)-dimensional, real Lie algebra with a basis {X1, . . . , Xn,Y1, . . . ,Yn,Z}
relative to which the Lie bracket [ , ] is determined by

[Xi, X j] = [Yi,Y j] = [Xi,Z] = [Yi,Z] = 0, [Xi,Y j] = δi jZ, i, j = 1, . . . , n.

Example 7.2.2. The corresponding concrete realizations of h2n+1 are as follows.

1. Let C∞(T ∗Rn) = C∞(R2n) be the Lie algebra, relative to the Poisson bracket,
of classical observables for a mechanical system with configuration space Rn.
Then h2n+1 is isomorphic to the Lie subalgebra of C∞(T ∗Rn) generated by
{q1, . . . , qn, p1, . . . , pn, 1}.

2. Let gl(n + 2;R) be the Lie algebra of all (n + 2) × (n + 2) real matrices under
the commutator Lie bracket. Then h2n+1 is isomorphic to the Lie subalgebra of
gl(n + 2;R) consisting of those matrices of the form

0 x1 x2 · · · xn z
0 0 0 · · · 0 y1

0 0 0 · · · 0 y2

...
...
... · · ·

...
...

0 0 0 · · · 0 yn

0 0 0 · · · 0 0


=

0 x z
0 0n y
0 0 0

 ,

where 0n is the n × n zero matrix, 0 is the zero vector in Rn and x and y are
arbitrary vectors in Rn (unless it causes some confusion, we will allow the con-
text to indicate whether the elements of Rn are to be regarded as row or column
vectors).
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The simply connected Lie group whose Lie algebra is h2n+1 is called the (2n+1)-
dimensional Heisenberg group and denoted H2n+1. This can be described in a num-
ber ways. As a matrix group, H2n+1 consists precisely of those (n + 2) × (n + 2) real
matrices of the form 

1 a1 a2 · · · an c
0 1 0 · · · 0 b1

0 0 1 · · · 0 b2

...
...
... · · ·

...
...

0 0 0 · · · 1 bn

0 0 0 · · · 0 1


=

 1 a c
0 In b
0 0 1

 ,

where In is the n × n identity matrix. The matrix exponential map is a bijection of
h2n+1 onto H2n+1 and is given by0 x z

0 0n y
0 0 0

 −→
1 x z + 1

2 〈x, y〉
0 In y
0 0 1

 ,
where 〈x, y〉 is the usual Rn-inner product.

Alternatively, we can identify R2n+1 with R2n × R and define a nondegenerate,
skew-symmetric, bilinear form ω on R2n = Rn ×Rn by

ω(v, v′) = ω( (x, y), (x′, y′) ) = 〈x, y′〉 − 〈x′, y〉.

Then H2n+1 is isomorphic to R2n ×R with the group structure defined by

(v, z)(v′, z′) = ( v + v′, z + z′ +
1
2
ω(v, v′) ),

that is,

(x, y, z)(x′, y′, z′) = ( x + x′, y + y′, z + z′ +
1
2

( 〈x, y′〉 − 〈x′, y〉 ) ). (7.17)

Before returning to quantum mechanics it is only fair to point out that Heisenberg
algebras and Heisenberg groups play decisive roles also in a many areas outside
of mathematical physics (see, for example, [Howe] and [Fol1] for applications to
harmonic analysis).

Now let’s see what all of this has to do with Dirac’s proposal for quantizing a
classical mechanical system. Recall that the idea was to find an “appropriate” map-
ping from classical observables to quantum observables that sends Poisson brackets
to quantum brackets and carries the classical canonical commutation relations (7.12)
to the quantum canonical commutation relations (7.11). We will try to write this out
a bit more carefully and see what happens. For simplicity we will once again focus
on classical systems with one degree of freedom (configuration space R) and then
simply record the more or less obvious generalization to higher dimensions.
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Remark 7.2.3. We will also temporarily put aside Heisenberg’s infinite matrices and
return to our previous view of quantum observables as self-adjoint operators on a
separable, complex Hilbert space H. As we mentioned in Remark 6.4.1, one can get
back to the matrices simply by choosing an orthonormal basis for H. This essen-
tially establishes the mathematical equivalence of Schrödinger’s wave mechanics
and Heisenberg’s matrix mechanics (see Chapter I, Sections 3 and 4 of [vonNeu]
for more on this, or [Casado] for a brief historical survey).

What Dirac is asking us for then is a map R from C∞(T ∗R) to the self-adjoint
operators on some separable, complex Hilbert space H that satisfies

R( { f , g} ) = −
i
~

[R( f ),R(g)]−.

and carries the classical commutation relations (7.12) for position and momentum
to the quantum commutation relations (7.11) for the corresponding operators.
Exercise 7.2.10. Define π′ = − i

~
R and show that R( { f , g} ) = − i

~
[R( f ),R(g)]− is

equivalent to

π′( { f , g} ) = [π′( f ), π′(g)]−. (7.18)

Now, we have already seen that there are all sorts of problems associated with
defining the commutator of two self-adjoint operators. If the operators are un-
bounded the commutator may be defined only at zero. Even if they are bounded
the commutator is not self-adjoint, but rather skew-adjoint and one must multiply
it by ±i to get something self-adjoint. Nevertheless, (7.18) at least resembles some-
thing familiar. Recall that, if g1 and g2 are two real Lie algebras with brackets [ , ]1
and [ , ]2, respectively, then a Lie algebra homomorphism from g1 to g2 is a linear
map h : g1 → g2 satisfying h( [ f , g]1 ) = [ h( f ), h(g) ]2 for all f , g ∈ g1. If g2 is a
Lie algebra of operators on some vector space V under commutator, then h is called
a Lie algebra representation of g1 on V. Consequently, if the self-adjoint operators
on H formed a Lie algebra (which they do not), then π′ would be a representation
of the classical observables by quantum observables on H.

To make something like this work will require a bit more finesse. We will begin
by being somewhat less ambitious. The Heisenberg algebra h3 can be identified
with the Lie subalgebra of C∞(T ∗R) spanned by {q, p, 1} (Example 7.2.1 (1)) and
we will start by looking for an appropriate notion of “representation” only for this
Lie algebra; we will worry later about whether or not such “representations” extend
to larger subalgebras of C∞(T ∗R).
Remark 7.2.4. We put “representation” in quotes since, for the reasons we have been
discussing, it will be necessary to adapt the definition given above to the infinite-
dimensional context. Eventually, we will opt for the word “realization” instead.

First we should understand what cannot be true. The operators in the “represen-
tation” certainly cannot act on a finite-dimensional Hilbert space since the images
Q, P and I of q, p and 1 are required to satisfy QP − PQ = i~I. In finite dimen-
sions we can take the trace on both sides, getting zero on the left, but not on the
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right. In fact, at least one of Q or P must be unbounded. To see this suppose, to the
contrary, that they are both bounded and satisfy [Q, P]− = i~I (which now makes
sense on all of H). Induction then gives [Q, Pn]− = ni~Pn−1 for any n ≥ 1. Thus,
n~ ‖Pn−1‖ = ‖QPn − PnQ‖ ≤ 2‖Q‖ ‖Pn‖. Since P is self-adjoint, it is a normal op-
erator and so ‖Pn‖ = ‖P‖n for any n (see, for example, Section 58 of [Simm1]).
Consequently, n~ ≤ 2‖Q‖ ‖P‖ for every n and this is clearly impossible since the
right-hand side is a constant.

The conclusion we draw from all of this is that one simply has to deal with un-
bounded operators and all of the difficulties presented by their rather problematic
commutators. There are various ways to do this and we will describe one. The idea,
due to Hermann Weyl and based on Theorems 5.5.11 and 5.5.13, is to replace the re-
lations (7.11) with another set of relations involving only bounded (in fact, unitary)
operators. We emphasize at the outset, however, that these two sets of relations are
not equivalent and we will have to say a bit more about this as we proceed. Before
the abstract definitions, however, we will try to get our bearings by looking at an
example.
Example 7.2.3. Recall that the position operator Q : D(Q) → L2(R) (Example
5.2.3) and momentum operator P : D(P) → L2(R) (Example 5.2.4) are defined on
the Schwartz space S(R) by

(Qψ)(q) = qψ(q)

and

(Pψ)(q) = −i~
d

dq
ψ(q).

S(R) is invariant under both, that is,

Q : S(R)→ S(R)

and

P : S(R)→ S(R).

Furthermore, both Q and P are essentially self-adjoint on S(R) (Exercise 5.2.9). The
commutator [P,Q]− is well-defined on S(R) and we have seen that

[P,Q]−ψ(q) = (PQ − QP)ψ(q) = −i~ψ(q) ∀ψ ∈ S(R).

Identifying Q with X, P with Y and i~1 with Z we find that the commutation relations
for the Heisenberg algebra h3 are satisfied on S(R).

The situation described in this example is essentially the closest one can come
to the notion of a “representation” of the Heisenberg algebra h3 by unbounded self-
adjoint operators so we are led to formulate the following definition. A realization
of h3 on the separable, complex Hilbert space H consists of a dense linear subspace
D of H and two operators Q and P on H with D ⊆ D(Q) and D ⊆ D(P) that satisfy
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1. Q : D→ D and P : D→ D,
2. [P,Q]−ψ = (PQ − QP)ψ = −i~ψ ∀ψ ∈ D, and
3. Q and P are essentially self-adjoint on D.

In this case we say that the unique self-adjoint extensions of Q and P satisfy the
canonical commutation relations.

The realization of h3 described in Example 7.2.3 is called the Schrödinger real-
ization of h3. We will need to know a bit more about this example.
Example 7.2.4. We consider again the Schrödinger realization of h3 described in
Example 7.2.3. As is our custom we will denote the unique self-adjoint extensions of
Q : S(R)→ L2(R) and P : S(R)→ L2(R) by the same symbols Q : D(Q)→ L2(R)
and P : D(P) → L2(R). Being self-adjoint, each of these determines a unique
strongly continuous 1-parameter group of unitary operators on L2(R) which we will
denote by

{Ut}t∈R = {eitP}t∈R

and

{Vs}s∈R = {eisQ}s∈R,

respectively. We have already seen (Example 5.5.7) that the operator eitP is just
translation to the left by ~t

(eitPψ)(q) = ψ(q + ~t)

and (Remark 5.5.14) eisQ is multiplication by eisq

(eisQψ)(q) = eisqψ(q).

Now notice that, for any ψ ∈ L2(R),

UtVsψ(q) = eitPeisQψ(q) = eitP(eisqψ(q))

= eis(q+~t)ψ(q + ~t) = ei~tseisqψ(q + ~t)

= ei~tseisQeitPψ(q)

= ei~tsVsUtψ(q)

so

UtVs = ei~tsVsUt

on L2(R).
The thing to notice now is that, if we had known only that these last relations were

satisfied, then the commutation relation [P,Q]−ψ = −i~ψ would have followed from
Theorem 5.5.13 for all ψ ∈ S(R) (indeed, for all ψ ∈ D([P,Q]−)), without recourse
to Example 7.2.3. Furthermore, Theorem 5.5.11 gives the remaining commutation
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relations of the Heisenberg algebra so one can manufacture the Schrödinger realiza-
tion of h3 from relations involving only unitary operators. This is the scenario we
will now generalize.

We will be interested in realizations of h3 that arise in the manner described in
Example 7.2.4. More precisely, suppose H is a separable, complex Hilbert space
and {Ut}t∈R and {Vs}s∈R are two strongly continuous 1-parameter groups of unitary
operators on H. We say that {Ut}t∈R and {Vs}s∈R satisfy the Weyl relations if

UtVs = ei~tsVsUt ∀t, s ∈ R. (7.19)

Remark 7.2.5. Although we have reserved the symbol ~ for the normalized Planck
constant, it is useful now to think of it as representing some (small) positive parame-
ter. It is, after all, an experimentally determined number the value of which not only
depends on the choice of units, but is also uncertain to the extent that the result of
any measurement is uncertain. More significantly, viewing ~ as a parameter opens
the possibility of taking various limits as ~→ 0+ since these should, in some appro-
priate sense, reproduce the results of classical mechanics (this is the gist of the Bohr
Correspondence Principle).

The following is the Corollary to Theorem VIII.14, page 275, of [RS1]; we will
sketch the ideas behind the proof, but this will have to wait until we assemble a bit
more machinery. We record it now for motivational purposes.

Theorem 7.2.1. Let {Ut}t∈R and {Vs}s∈R be two strongly continuous 1-parameter
groups of unitary operators on the separable, complex Hilbert space H that satisfy
the Weyl relations (7.19). Let A : D(A)→ H and B : D(B)→ H be the unique self-
adjoint operators on H for which Ut = eitA ∀t ∈ R and Vs = eisB ∀s ∈ R (Stone’s
Theorem 5.5.10). Then there exists a dense linear subspace D ⊆ H with D ⊆ D(A)
and D ⊆ D(B) and such that

1. A : D→ D and B : D→ D,
2. [A, B]−ψ = (AB − BA)ψ = −i~ψ ∀ψ ∈ D, and
3. A and B are essentially self-adjoint on D.

The upshot of this is that a pair of strongly continuous 1-parameter groups of uni-
tary operators satisfying the Weyl relations will give rise to a realization of h3, that
is, to a solution to the canonical commutation relations. The question then is, how
can one produce such pairs of strongly continuous 1-parameter groups of unitary
operators? A hint is provided by the identity (7.16) satisfied by the images under the
exponential map of the generators {X,Y,Z} of the Heisenberg algebra. Changing the
notation just a bit we write this as

etXesY = etsZesYetX , t, s ∈ R.

Notice that {etX}t∈R and {esY }s∈R are both 1-parameter subgroups of the Heisenberg
group H3. Now let’s suppose we have a group homomorphism π : H3 → U(H) from
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H3 to the group of unitary operators on some separable, complex Hilbert space H.
Then

π(etX) π(esY ) = π(etsZ) π(esY ) π(etX), t, s ∈ R.

Both {Ut}t∈R = {π(etX)}t∈R and {Vs}s∈R = {π(esY )}s∈R are clearly 1-parameter groups
of unitary operators on H; whether they are strongly continuous or not will depend
on π. Since the center of h3 is the 1-dimensional subspace spanned by Z and since
the exponential map carries h3 onto H3, each π(etsZ) commutes with π(g) for every
g ∈ H3. For homomorphisms π that are “irreducible” in a sense to be described
below, we will show that this implies that π(etsZ) must be a multiple of the identity
(Schur’s Lemma) and, since it is unitary, it must be a multiple by some complex
number of modulus one and we begin to get something that looks like (7.19).
Remark 7.2.6. The group homomorphisms π : H3 → U(H) we just mentioned
are “unitary representations of the Heisenberg group” so we will pause for a brief
synopsis of those items we require from representation theory. We will restrict our
attention here to the special cases we need at the moment. Examples of all of the
items we introduce will be described shortly.

The following is a review of a few items from the theory of unitary group repre-
sentations. If this material is familiar you may want to proceed directly to page 292
and refer back if the need arises.

We let G be a matrix Lie group (closed subgroup of some general linear group
GL(n,R) or GL(n,C)) and denote its identity element 1G or simply 1 if no confusion
will arise. Let H be a separable, complex Hilbert space (either finite- or infinite-
dimensional) and U(H) the group of unitary operators on H. A strongly continuous,
unitary representation of G on H is a group homomorphism

π : G → U(H)

such that, for each fixed v ∈ H, the map

g→ π(g)v : G → H

is continuous in the norm topology of H, that is,

g→ g0 in G ⇒ ‖π(g)v − π(g0)v‖ → 0 in R.

The representation is said to be trivial if it sends every g ∈ G to the identity operator
idH = I on H.
Exercise 7.2.11. We saw in Remark 3.3.3 that, for 1-parameter groups of unitary
operators, strong continuity is equivalent to a number of apparently weaker assump-
tions. Since these are simply unitary representations of the Lie group R under ad-
dition, one might hope that something similar is true for unitary representations in



290 7 Canonical Quantization

general. This is what you will prove here. Let G be a matrix Lie group, H a separa-
ble, complex Hilbert space and π : G → U(H) a group homomorphism. Show that
the following are equivalent.

1. π is strongly continuous.
2. π is weakly continuous, that is, for all u, v ∈ H,

g→ g0 in G ⇒ 〈π(g)u, v〉 → 〈π(g0)u, v〉 in C.

3. For each u ∈ H, the map g ∈ G → 〈π(g)u, u〉 ∈ C is continuous at e.

Hint: For (3) ⇒ (1) show that ‖ π(g)u − π(g0)u ‖2 = 2‖u‖2 − 2Re 〈π(g−1
0 g)u, u〉 ≤∣∣∣ ‖u‖2 − 〈π(g−1

0 g)u, u〉
∣∣∣.

A linear subspace H0 of H is said to be invariant under π : G → U(H) if
π(g)(H0) ⊆ H0 for every g ∈ G. The zero subspace 0 and H itself are always
invariant. If π : G → U(H) is nontrivial and if 0 and H are the only closed invariant
subspaces, then π : G → U(H) is said to be irreducible. If there are closed invariant
subspaces other than 0 and H, then the representation is said to be reducible. In a
way we will describe soon, any reducible unitary representation of the Heisenberg
group H3 can be built from irreducible unitary representations so we will concern
ourselves primarily with the latter. We would like to describe all irreducible, unitary
representations of H3, modulo a certain equivalence relation that we now introduce.
Two unitary representations π1 : G → U(H1) and π2 : G → U(H2) of G are said
to be unitarily equivalent if there exists a unitary equivalence U : H1 → H2 of H1
onto H2 such that

Uπ1(g) = π2(g)U ∀g ∈ G,

that is,

π2(g) = Uπ1(g)U−1 ∀g ∈ G.

Another item that will play a role in our discussion of the Heisenberg group is
the following infinite-dimensional version of Schur’s Lemma . The proof is a nice
application of the Spectral Theorem so we will provide the details.
Remark 7.2.7. A more general version of Schur’s Lemma is proved in Appendix 1
of [Lang3].

Theorem 7.2.2. (Schur’s Lemma) Let G be a matrix Lie group, H a separable, com-
plex Hilbert space, and π : G → U(H) a strongly continuous unitary representation
of G. Then π : G → U(H) is irreducible if and only if the only bounded operators
A : H → H that commute with every π(g)

π(g)A = Aπ(g) ∀g ∈ G

are those of the form A = cI, where c is a complex number and I is the identity
operator on H.
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Proof. Suppose first that the only bounded operators that commute with every π(g)
are constant multiples of the identity. We will show that the representation is irre-
ducible. Let H0 be a closed subspace of H that is invariant under every π(g).
Exercise 7.2.12. Show that the orthogonal complement H⊥0 of H0 is also invariant
under every π(g).
Now, let P : H → H0 be the orthogonal projection onto H0.
Exercise 7.2.13. Show that π(g)P = Pπ(g) for every g ∈ G.
According to our assumption, P is a constant multiple of the identity. Being a pro-
jection, P2 = P so the constant is either 0 or 1. Thus, H0 = P(H) is either 0 or H,
as required.

Now, for the converse we will assume that π : G → U(H) is irreducible and that
A : H → H is a bounded operator that commutes with every π(g). Let A∗ : H → H

denote the adjoint of A (also a bounded operator on H).
Exercise 7.2.14. Show that A∗ also commutes with every π(g).
Notice that 1

2 (A + A∗) and i
2 (A − A∗) are both self-adjoint and both commute with

every π(g). Moreover,

A =
1
2

(A + A∗) +
1
i

[ i
2

(A − A∗)
]
.

Consequently, it will be enough to prove that bounded self-adjoint operators that
commute with every π(g) must be constant multiples of the identity. Accordingly, we
may assume that A is self-adjoint. Then, by the Spectral Theorem, A has associated
with it a unique spectral measure EA. Moreover, since A commutes with every π(g),
so does EA(S ) for any Borel set S ⊆ R (Theorem 5.5.8). From this it follows that
each closed linear subspace EA(S )(H) is invariant under π : G → U(H). But, by
irreducibility, this means that

EA(S )(H) = 0 or EA(S )(H) = H

for every Borel set S in R.
Since A is bounded there exist a1 < b1 in R such that, if S ∩ [a1, b1] = ∅, then

EA(S ) = 0. In particular, EA([a1, b1]) = I. Write

[a1, b1] =

[
a1,

a1 + b1

2

]
∪

[a1 + b1

2
, b1

]
.

Now notice that, if EA({ a1+b1
2

})
= I, then the Spectral Theorem gives A = a1+b1

2 I
and we are done. Otherwise, EA must be I on one of the intervals and 0 on the
other. Denote by [a2, b2] the interval on which it is I. Applying the same argu-
ment to [a2, b2] we either prove the result (at the midpoint) or we obtain an interval
[a3, b3] of half the length of [a2, b2] on which EA is I. Continuing inductively, we
either prove the result in a finite number of steps or we obtain a nested sequence
[a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇ · · · of intervals whose lengths approach zero and
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for which EA([ai, bi]) = I for every i = 1, 2, 3, . . .. By the Cantor Intersection The-
orem (Theorem C, page 73, of [Simm1]), ∩∞i=1[ai, bi] = {c} for some c ∈ R. Since
EA(R− [ai, bi] ) = 0 for each i, 0 = EA(∪∞i=1(R− [ai, bi]) ) = EA(R−∩∞i=1[ai, bi] ) =

EA(R − {c}). Thus, EA({c}) = I so again we have A = cI. ut

This is the end of the review of representation theory.

Next we would like to provide a sketch of the ideas that go into the proof of
Theorem 7.2.1. As motivation, we first recall that any representation of a matrix Lie
group G on a finite-dimensional Hilbert space gives rise to a representation of the
corresponding Lie algebra g simply by differentiation at the identity. More precisely,
and more generally, one has the following well-known result (if it is not-so-well-
known to you, see Theorem 3.18 of [Hall]).

Theorem 7.2.3. Let G and H be matrix Lie groups with Lie algebras g and h,
respectively, and suppose φ : G → H is a Lie group homomorphism. Then there
exists a unique real linear map φ̃ : g → h such that φ(eX) = eφ̃(X) for every X ∈ g.
Moreover, φ̃ satisfies

1. φ̃( [X,Y]g ) = [ φ̃(X), φ̃(Y) ]h for all X,Y ∈ g, and
2. φ̃(X) = d

dtφ(etX)|t=0 = limt→0
φ(etX )− 1H

t for all X ∈ g.

Remark 7.2.8. Part (1) of the Theorem asserts that φ̃ is a Lie algebra homomor-
phism and Part (2) tells us how to compute it from φ. If G is connected and simply
connected one can show that, conversely, every Lie algebra homomorphism g → h
is φ̃ for some Lie group homomorphism φ : G → H; this is Theorem 5.33 of [Hall].
All of this is true, in particular, for finite-dimensional representations of G. For rep-
resentations on infinite-dimensional Hilbert spaces the situation is less simple and
we will now sketch the issues involved.

Let G be a matrix Lie group and π : G → U(H) a strongly continuous, unitary
representation of G on the separable, complex Hilbert space H. A vector v ∈ H is
called a smooth vector or C∞ vector for π if

g→ π(g)v : G → H

is a C∞ map from G to H.
Remark 7.2.9. G is a matrix Lie group and therefore a finite-dimensional differen-
tiable manifold, but H is (generally) an infinite-dimensional Hilbert space so we
should say something about what is meant by “C∞” for a map from G to H. The
idea is to regard H as the simplest example of an infinite-dimensional differen-
tiable manifold, specifically, a Banach manifold modeled on H with a single, global
chart (the identity map on H). Choosing charts on G one can then identify the map
G → H with a family of maps (“coordinate expressions”) from a Euclidean space
Rn (n = dim G) into H exactly as in the finite-dimensional case. The problem then
reduces to defining smoothness for maps between open sets in Banach spaces. There
are some minor technical issues due to the infinite dimensionality of the Banach
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spaces, but the general scheme is exactly as in the finite-dimensional case. For our
present purposes we will leave it at this (if you would like to see more details we
recommend Chapter 2 of [AMR]).

We let H∞(π) denote the set of all smooth vectors for π in H. This is clearly a
linear subspace of H and we claim that it is invariant under π : G → U(H). To
see this, let v ∈ H∞(π) and g0 ∈ G. We show that π(g0)v is in H∞(π), that is, that
g → π(g)(π(g0)v) is C∞. But this is clear since this map is the composition of two
maps

g→ gg0 → π(gg0)v = π(g)(π(g0)v),

the first of which is smooth because G is a Lie group and the second because v ∈
H∞(π). What is not so obvious, however, is that H∞(π) is dense in H. This was
proved by Gårding in [Går].

Theorem 7.2.4. Let π : G → U(H) be a strongly continuous, unitary representation
of the Lie group G on the separable, complex Hilbert space H. Then H∞(π) is a
dense, invariant, linear subspace of H.

For each X in g we define a linear map dπ(X) : H∞(π)→ H by

dπ(X) v = lim
t→0

π(etX) − I
t

(v) = lim
t→0

π(etX)v − v
t

=
d
dt
π(etX)v

∣∣∣
t=0, (7.20)

where the limits are in H.
Exercise 7.2.15. Show that the limit in (7.20) exists for every v ∈ H∞(π) and that
dπ(X) depends linearly on X ∈ g.

Next we observe that, for each X ∈ g, dπ(X) leaves H∞(π) invariant, that is,
v ∈ H∞(π) ⇒ dπ(X)v ∈ H∞(π). To see this we must show that g → π(g)dπ(X)v is
C∞. But π is strongly continuous so

π(g)dπ(X)v = π(g)
(

lim
t→0

π(etX)v − v
t

)
= lim

t→0

π(getX)v − π(g)v
t

=
d
dt
π(getX)v

∣∣∣
t=0.

Since g → π(g)v is a C∞ map, it follows that g → π(g)dπ(X)v is C∞ and therefore
dπ(X)v ∈ H∞(π). Due to the infinite-dimensionality of H it takes a bit of work, but
one can also show that, for any X,Y ∈ g,

dπ( [X,Y]g )v = [ dπ(X), dπ(Y) ]−v = ( dπ(X)dπ(Y) − dπ(Y)dπ(X) )v ∀v ∈ H∞(π),

or, briefly,

dπ( [X,Y]g ) = [ dπ(X), dπ(Y) ]−

on H∞(π).
Next we show that, for any X ∈ g and any positive constant a, the operator

ia dπ(X) : H∞(π)→ H
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is symmetric. To see this note that it clearly suffices to prove the result for a = 1.
Also note that, because π is a unitary representation,

(π(etX))∗ = (π(etX))−1 = π(e−tX).

Now we just compute, for any v,w ∈ H∞(π),

〈 i dπ(X)v,w 〉 = 〈 i lim
t→0

π(etX) − I
t

v, w 〉

= lim
t→0
〈 i
π(etX) − I

t
v, w 〉

= lim
t→0
〈 v, −i

(π(etX))∗ − I
t

w 〉

= lim
t→0
〈 v, −i

π(e−tX) − I
t

w 〉

= lim
s→0
〈 v, i

π(esX) − I
s

w 〉

= 〈 v, i dπ(X)w 〉,

as required. Without the i, dπ(X) is skew-symmetric.
Remark 7.2.10. In the best of all possible worlds we would be able to assert next that
the operators i dπ(X) are not merely symmetric, but, in fact, essentially self-adjoint
on H∞(π). Regrettably, Dr. Pangloss was mistaken and things are not so simple.
However, Edward Nelson [Nel1] has refined the ideas we have been discussing to
prove the following. Given a strongly continuous, unitary representation π : G →
U(H) of a Lie group G on a separable, complex Hilbert space H there is a dense,
linear subspace D of H with the following properties.

1. D ⊆ H∞(π).
2. D is invariant under every i dπ(X), that is, i dπ(X)(D) ⊆ D for every X ∈ g.
3. i dπ(X) is essentially self-adjoint on D for every X ∈ g.

Nelson’s procedure was to consider, instead of the smooth vectors H∞(π) in H

associated with π, what are called analytic vectors. By definition, a vector v ∈ H is
an analytic vector for π : G → U(H) if the map g→ π(g)v : G → H is real analytic.
Remark 7.2.11. Any real Lie group admits a unique real analytic manifold struc-
ture for which the group operations are real analytic. In fact, a very famous (and
very difficult) theorem of Gleason and Montgomery-Zippen states that a topological
group G admits a real-analytic Lie group structure if and only if G is a topological
manifold (this is generally regarded as a solution to Hilbert’s Fifth Problem). Even
so, there are a number of plausible alternative definitions of an analytic map from
G into the Hilbert space H. We will simply record the definition adopted by Nelson
(page 579 of [Nel1]). Since G is an analytic manifold it will suffice to define ana-
lyticity for a smooth map u : U → H, where U is an open set in Rn (n = dim G)
containing the origin. For any compact set K ⊆ U we let
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‖u‖K = sup
x∈K
‖u(x)‖H.

We will say that u is analytic on U if it is smooth and, for every x ∈ U, there exists
an ε > 0 such that if K is the closed ball of radius ε about x, then

∞∑
k=0

1
k!

∑
1≤i1,...,ik≤k

∥∥∥∥∥ ∂

∂xi1
· · ·

∂

∂xik
u
∥∥∥∥∥

K
si1 · · · sik

is absolutely convergent for sufficiently small si1 , · · · , sik ; for more on analytic vec-
tors, see [Good].
Remark 7.2.12. One can also define the notions of smooth vector and analytic vector
for a single operator A : D(A)→ H on H. Although these are closely related to the
corresponding notions for a representation we will save the definitions for Section
8.4.2 where we will discuss in more detail their relevance to self-adjointness.

Nelson proves that the set Hω(π) of analytic vectors for π is dense in H (Theorem
4, Section 8, of [Nel1]). Next he shows how to produce a dense linear subspace D

of H that contains a dense, invariant set of analytic vectors for every i dπ(X), X ∈ g.
From this Nelson obtains the essential self-adjointness of each i dπ(X) on D (this
is also Corollary 2, Section X.6, of [RS2]). As usual, we will use the same symbol
i dπ(X) to denote the unique self-adjoint extension and will also write dπ(X) for the
unique skew-adjoint extension of dπ(X). All of the details are available in [Nel1]
and we will discuss them no further, but will instead apply what we have learned to
the examples of most interest to us, that is, the Heisenberg group H3 and Heisenberg
algebra h3.

Let us suppose that π : H3 → U(H) is some strongly continuous, unitary rep-
resentation of the Heisenberg group on a separable, complex Hilbert space H. The
Heisenberg algebra h3 is generated by three elements that we have called X,Y, and
Z subject to the commutation relations [X,Z] = 0, [Y,Z] = 0 and [X,Y] = Z. We
consider the corresponding operators dπ(X), dπ(Y), and dπ(Z). These are all defined
and essentially skew-adjoint on some common dense, invariant subspace D, where

dπ(X)v =
d
dx
π(exX)v

∣∣∣
x=0,

dπ(Y)v =
d
dy
π(eyY )v

∣∣∣
y=0,

and

dπ(Z)v =
d
dz
π(ezZ)v

∣∣∣
z=0.

Now consider the essentially self-adjoint operators on D defined by

i~ dπ(X), i~ dπ(Y) and i~ dπ(Z)
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and use the same symbols to denote their unique self-adjoint extensions. On D we
have

[ i~ dπ(Y), i~ dπ(X) ]− = −~2[ dπ(Y), dπ(X) ]− = ~2dπ( [X,Y] ) = ~2dπ(Z).

This much is true for any strongly continuous, unitary representation π of H3. Now,
let’s think about ~2dπ(Z) for a moment. Suppose we could find a representation π
on some Hilbert space that satisfies dπ(Z) = − i

~
I. Then

[ i~ dπ(Y), i~ dπ(X) ]− = −i~I

which would amount to a rigorous version of Heisenberg-Born-Jordan-Dirac quan-
tization of a single classical particle moving in one dimension. The task then is to
construct such a representation. It should come as no surprise that we will look for a
representation that gives rise to the Schrödinger realization of h3, that is, we would
like to find π : H3 → U(L2(R)) with i~ dπ(Y) = P, i~ dπ(X) = Q and i~ dπ(Z) = I.
Notice that this will be the case if we choose π(exX), π(eyY ) and π(ezZ) as follows.

π(exX) = exQ/i~, π(eyY ) = eyP/i~, and π(ezZ) = ezI/i~.

More explicitly, we want

[π(exX)ψ](q) = exq/i~ψ(q), [π(eyY )ψ](q) = ψ(q − y), and [π(ezZ)ψ](q) = ez/i~ψ(q)
(7.21)

Exercise 7.2.16. Prove the following group-theoretic Lemma.

Lemma 7.2.5. Let G be a group and let α, β, γ : R → G be homomorphisms of the
additive group R into G that satisfy

α(x)γ(z) = γ(z)α(x), β(y)γ(z) = γ(z)β(y), and α(x)β(y) = γ(xy)β(y)α(x)

for all x, y, z ∈ R. Then the map π : H3 → G defined by

π(M(x, y, z)) = γ(z)β(y)α(x),

where

M(x, y, z) =

 1 x z
0 1 y
0 0 1


is a group homomorphism.

Exercise 7.2.17. Apply Lemma 7.2.5 with G = U(L2(R)), α(x) = exQ/i~, β(y) =

eyP/i~, and γ(z) = ezI/i~ to obtain a group homomorphism π : H3 → U(L2(R)). Hint:
To verify the required conditions on α, β and γ you will need the Baker-Campbell-
Hausdorff Formula.
Exercise 7.2.18. Show that the homomorphism π : H3 → U(L2(R)) in Exercise
7.2.17 is strongly continuous. Hint: α, β and γ are strongly continuous 1-parameter
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groups of unitary operators on L2(R). Show that

‖γ(z)β(y)α(x)ψ − ψ‖ ≤ ‖α(x)ψ − ψ‖ + ‖β(y)ψ − ψ‖ + ‖γ(z)ψ − ψ‖.

This depends on the fact that the operators are unitary. Begin by noting that, if
S and T are any two unitary operators on a Hilbert space H, then one can write
S Tv − v = S Tv − S v + S v − v.

Thus, the homomorphism π : H3 → U(L2(R)) in Exercise 7.2.17 is a strongly
continuous, unitary representation of H3 satisfying (7.21). We have therefore suc-
ceeded in producing a representation π of the Heisenberg group H3 whose “infinites-
imal version” dπ reproduces the Schrödinger realization of the Heisenberg algebra
h3. π is called the Schrödinger representation of H3.
Exercise 7.2.19. Show that the Schrödinger representation π can be written explic-
itly as (

π(exX+yY+zZ)ψ
)
(q) = e(xq+z− 1

2 xy)/i~ψ(q − y). (7.22)

One can show that the smooth vectors for this representation are precisely the
Schwartz functions S(R) ⊆ L2(R).
Remark 7.2.13. It is not the case that every realization of h3 arises in this way as dπ
for some representation π of H3. Those realizations of h3 which do arise in this way
are said to be integrable. To learn more about non-integrable realizations of h3 one
can consult [Schm1] and [Schm2].

Next we will use (7.22) to show that the Schrödinger representation of H3 is
irreducible. For this we will suppose that H0 is a nonzero, closed, invariant subspace
of L2(R) and show that its orthogonal complement H⊥0 is trivial so that H0 must be
all of L2(R). Select some nonzero ψ ∈ H0. Then, for any φ ∈ H⊥0 ,

φ ⊥ π(exX+yY )ψ ∀x, y ∈ R,

that is, ∫
R

e(−i/~)xq e(−i/~)x( y
2 ) ψ(q − y) φ(q) dq = 0

Exercise 7.2.20. Use the Shift Property (Exercise 5.2.11) of the Fourier transform
F~ (Remark 5.2.7) to show that this can be written∫

R

e(−i/~)xq ψ(q −
y
2

) φ(q +
y
2

) dq = 0.

We conclude that the Fourier transform of ψ(q − y
2 ) φ(q +

y
2 ) is zero for every y ∈

R. Consequently, ψ(q − y
2 ) φ(q +

y
2 ) = 0 for almost every q ∈ R and for every

y ∈ R. Since the linear transformation (q, y) → (X,Y) = (q − y
2 , q +

y
2 ) is invertible,
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ψ(X)φ(Y)=0 for almost all X and Y . Thus, either ψ or φ is the zero element of L2(R).
But ψ is nonzero by assumption so φ = 0 ∈ L2(R), as required.

Having discovered one strongly continuous, irreducible, unitary representation π
of H3 whose infinitesimal version dπ gives a realization of h3, that is, a solution to
the canonical commutation relations, one might wonder if there are others floating
around somewhere. Of course, one can always produce such representations that
appear different on the surface by choosing some unitary operator U of L2(R) onto
itself and replacing each π(g) by Uπ(g)U−1. This is cheating, however, since, both
mathematically and physically, π and UπU−1 are entirely equivalent (that is, unitar-
ily equivalent). To investigate this question a bit more closely, recall that we pointed
out earlier that it is often useful to regard ~ not as some fixed, universal constant,
but rather as a positive parameter that is part of the “input” in the construction of
a quantum theory (see Remark 7.2.5). From this point of view it might be best to
write the Schrödinger representation as π~ rather than simply π. Now notice that two
different choices of this parameter give rise to representations π~1 and π~2 that are
really different, that is, not unitarily equivalent.
Exercise 7.2.21. Show that if ~1 and ~2 are distinct positive real numbers, then
π~1 (eZ) and π~2 (eZ) are not unitarily equivalent operators on L2(R). Hint: Unitarily
equivalent operators have the same eigenvalues.

According to Schur’s Lemma (Theorem 7.2.2), any strongly continuous, irre-
ducible, unitary representation of H3 must send every element of the center ezZ of
H3 to some multiple of the identity by a unit complex number. The various inequiva-
lent Schrödinger representations of H3 send ezZ to e(−i/~)zI in the center of U(L2(R))
and they are distinguished, one from another, simply by the value of ~. It is a re-
markable theorem of Stone and von Neumann that the same statement is true for
an irreducible representation of H3 on any H and that every such representation is
unitarily equivalent to the Schrödinger representation with the same ~. Indeed, even
more is true.

Theorem 7.2.6. (Stone-von Neumann Theorem (n = 1)) Let ρ : H3 → U(H) be a
strongly continuous, unitary representation of the Heisenberg group H3 on a sepa-
rable, complex Hilbert space H with ρ(ezZ) = e(−i/~)zidH. Then H is the (finite or
countably infinite) direct sum of mutually orthogonal closed subspaces Hα each of
which is invariant under ρ and such that the induced representation ρα : H3 → Hα

of H3 on Hα ( ρα(g) = ρ(g)|Hα
∀g ∈ H3 ) is unitarily equivalent to the Schrödinger

representation π~ : H3 → U(L2(R)). In particular, if ρ is irreducible, then ρ is
unitarily equivalent to π~.

One often finds the Stone-von Neumann Theorem stated in terms of pairs of
strongly continuous 1-parameter groups of unitary operators that satisfying the Weyl
relations (see Theorem 7.2.1). These are entirely equivalent to Theorem 7.2.6 so
for the proof we will simply refer to Theorem VIII.14 of [RS1] or Theorem 6.4,
Chapter IV, of [Prug] (the second reference contains a particularly detailed proof).
The expository paper [RosenJ] contains a nice synopsis of more recent work related
to the Stone-von Neumann Theorem (for example, extending it to the fermionic and
supersymmetric systems that we will discuss in Chapter 9).
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One can interpret the Stone-von Neumann Theorem as asserting that there is
“really only one” integrable, irreducible solution to the canonical commutation re-
lations and this offers some justification for the physicist’s habit of working almost
exclusively with the abstract commutation relations themselves and not worrying
so much about how they are realized. Of course, it is also true that there is “really
only one” separable, infinite-dimensional, complex Hilbert space, but it would be
naive to think that it should not matter which model of it one chooses to deal with
in a particular context. The same is true of the CCR and we will see advantages to
choosing different realizations somewhat later.
Example 7.2.5. Extending everything we have done to n degrees of freedom in-
volves no fundamentally new ideas so we will simply state the facts. We con-
sider a classical mechanical system with configuration space Rn. Phase space is
T ∗(Rn) = R2n with canonical coordinates q1, . . . , qn, p1, . . . , pn relative to which
the classical commutation relations are

{q j, qk} = {p j, pk} = 0 and {q j, pk} = δ
j
k, ∀ j, k = 1, . . . , n,

where { , } is the Poisson bracket. Then {q1, . . . , qn, p1, . . . , pn, 1} generate a Lie sub-
algebra of the classical observables C∞(T ∗(Rn)) that is isomorphic to the Heisenberg
algebra h2n+1 (see Remark 7.2.2). The Heisenberg group H2n+1 is the unique simply
connected Lie group whose Lie algebra is h2n+1. A realization of h2n+1 on a separa-
ble, complex Hilbert space H consists of a dense linear subspace D of H and oper-
ators Q1, . . . ,Qn, P1, . . . , Pn on H with D ⊆ D(Q j) and D ⊆ D(Pk), j, k = 1, . . . , n,
that satisfy

1. Q j : D→ D and Pk : D→ D for all j, k = 1, . . . , n,
2. [Q j,Qk]−ψ = [P j, Pk]−ψ = 0 and [Pk,Q j]−ψ = −i~δ j

kψ for all j, k = 1, . . . , n, and
for all ψ ∈ D, and

3. Q1, . . . ,Qn, P1, . . . , Pn are all essentially self-adjoint on D.

In this case we say that the unique self-adjoint extensions of Q1, . . . ,Qn, P1, . . . , Pn,
denoted by the same symbols, satisfy the canonical commutation relations. If we
identify H2n+1 with Rn ×Rn ×R, where the multiplication is defined by (7.17), then
the Schrödinger representation of H2n+1on L2(Rn) is defined by

( π~(x, y, z)ψ )(q) = e( 〈x,q〉+z− 1
2 〈x,y〉 )/i~ ψ(q − y).

The infinitesimal version dπ~ of π~ gives the Schrödinger realization of h2n+1.

i~ dπ~(X j)ψ(q) = Q jψ(q) = q jψ(q),

i~ dπ~(Yk)ψ(q) = Pkψ(q) = −i~
∂ψ

∂qk ,

i~ dπ~(Z)ψ(q) = ψ(q),
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for all j, k = 1, . . . , n and for all ψ ∈ D. Finally we record the appropriate version of
the Stone-von Neumann Theorem.

Theorem 7.2.7. (Stone-von Neumann Theorem) Let ρ : H2n+1 → U(H) be a strongly
continuous, unitary representation of the Heisenberg group H2n+1 on a separable,
complex Hilbert space H with ρ(0, 0, z) = e(−i/~)zidH. Then H is the (finite or count-
ably infinite) direct sum of mutually orthogonal closed subspaces Hα each of which
is invariant under ρ and such that the induced representation ρα : H2n+1 → Hα

of H2n++1 on Hα ( ρα(g) = ρ(g)|Hα
∀g ∈ H2n+1 ) is unitarily equivalent to the

Schrödinger representation π~ : H2n+1 → U(L2(Rn)). In particular, if ρ is irre-
ducible, then ρ is unitarily equivalent to π~.

At this point we have rather precise information about realizing the classical
canonical commutation relations as self-adjoint operators on a Hilbert space and
we should pause to ask ourselves how close this has gotten us to Dirac’s program
for quantizing classical mechanical systems. Reluctantly, we must admit that the
answer is, “not very close.” Roughly speaking, Dirac asked for a Lie algebra ho-
momorphism from the classical observables to the quantum observables and, at this
point, we have managed to do this only for the classical observables that live in the
Heisenberg algebra h3 and these are all of the form a + bq + cp for a, b, c ∈ R (to
ease the exposition we will again return to systems with one degree of freedom).
Most interesting classical observables (such as the Hamiltonian) are nonlinear func-
tions of q and p and therefore do not live in h3. What we need to do then is try to
extend our realizations of h3 to larger Lie subalgebras of C∞(T ∗R) that contain the
observables we are interested in quantizing. For the classical free particle and the
classical harmonic oscillator the Hamiltonians are quadratic functions of q and p so
we will begin by trying to extend just to these.
Remark 7.2.14. This may seem rather unambitious, but we will see soon that any
more ambitious program is doomed to failure.

Begin by considering the linear subspace P2(q, p) of C∞(R2) spanned by
{1, q, p, q2, p2, qp}. These are precisely the quadratic classical observables. Comput-
ing Poisson brackets gives, in addition to the commutation relations for h3,

{qp, p} = p, {qp, q} = −q, {p2, q} = −2p, {q2, p} = 2q, (7.23)

and {q2

2
,

p2

2

}
= qp, {qp, p2} = 2p2, {qp, q2} = −2q2. (7.24)

Exercise 7.2.22. Verify all of these.
In particular, P2(q, p) is closed under Poisson brackets and is therefore a Lie

subalgebra of C∞(R2). But, according to (7.24), the same is true of the subspace
PH

2 (q, p) spanned by {q2, p2, qp} consisting of homogeneous quadratic polynomials
in q and p. In fact, PH

2 (q, p) is isomorphic to a very familiar Lie algebra. Recall that
sl(2,R) denotes the Lie algebra (under matrix commutator) of all 2×2 real matrices
with trace zero. It is spanned by
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e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, and h =

(
1 0
0 −1

)
which satisfy the commutation relations

[e, f ]− = h, [h, e]− = 2e, [h, f ]− = −2 f .

Comparing this with (7.24) we find that

p2

2
↔ e, −

q2

2
↔ f , qp↔ h

defines a Lie algebra isomorphism of PH
2 (q, p) and sl(2,R) and we will generally

just identify them in this way. sl(2,R) is the Lie algebra of the special linear group
SL(2,R) consisting of all 2 × 2 real matrices with determinant one. Despite its
seeming simplicity, SL(2,R) and its representations cut a very wide swath in mod-
ern mathematics (see, for example, [Lang2]). It is a 3-dimensional, noncompact
Lie group and all of its nontrivial, irreducible, unitary representations are infinite-
dimensional. It is not simply connected. Indeed, its fundamental group is Z and
its universal cover is one of that rare breed of finite-dimensional Lie groups that
are not matrix groups. It has a double cover Mp(2,R) called the metaplectic group.
h3 is also isomorphic to a Lie subalgebra of P2(q, p) and we will now show how
P2(q, p) can be reconstructed from h3 and sl(2,R). The result will identify P2(q, p)
with another well-known Lie algebra.
Remark 7.2.15. We will briefly recall the general notion of the semi-direct product
of Lie groups; details are available in Section I.15 of [Knapp], although we have
adopted a somewhat different notation. Let us begin with two Lie groups H and N
and suppose that we are given a smooth left action of H on N by automorphisms,
that is, a smooth map τ : H×N → N such that h→ τ(h, · ) is a group homomorphism
from H into the group of automorphisms of N. Writing τ(h, n) = h · n one then has
h1 · (h2 · n) = (h1h2) · n and h · (n1n2) = (h · n1)(h · n2). Then the semi-direct product

G = H ×τ N

of H and N determined by τ is the Lie group whose underlying manifold is the
product manifold H × N and whose group operations are defined by

(h, n)(h′, n′) = (hh′, n(h · n′))
1G = (1H , 1N)

(h, n)−1 = (h−1, h−1 · n−1).

Exercise 7.2.23. Verify the group axioms and show that G = H ×τ N is a Lie group.
Example 7.2.6. We take H =SL(2,R) and N = H3. It will be convenient to write the

elements of H3 as
( (

x
y

)
, z

)
rather than (x, y, z). Now define τ :SL(2,R) × H3 → H3

by
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M ·
( (

x
y

)
, z

)
=

(
M

(
x
y

)
, z

)
for every M ∈ SL(2,R). Write the product in H3 as( (

x
y

)
, z

)( (
x′

y′

)
, z′

)
=

( (
x + x′

y + y′

)
, z + z′ +

1
2
ω
( (

x
y

)
,

(
x′

y′

) ) )
,

where

ω
( (

x
y

)
,

(
x′

y′

) )
= xy′ − x′y

is the canonical symplectic form on R2.

Exercise 7.2.24. Show that ω
(

M
(
x
y

)
,M

(
x′

y′

) )
= ω

( (
x
y

)
,

(
x′

y′

) )
.

Now we compute

M ·
[( (

x
y

)
, z

)( (
x′

y′

)
, z′

)]
= M ·

( (
x + x′

y + y′

)
, z + z′ +

1
2
ω
( (

x
y

)
,

(
x′

y′

) ) )
=

(
M

(
x + x′

y + y′

)
, z + z′ +

1
2
ω
( (

x
y

)
,

(
x′

y′

) ) )
=

(
M

(
x
y

)
+ M

(
x′

y′

)
, z + z′ +

1
2
ω
(

M
(
x
y

)
,M

(
x′

y′

) ) )
=

(
M

(
x
y

)
, z

)(
M

(
x′

y′

)
, z′

)
.

=

[
M ·

( (
x
y

)
, z

)][
M ·

( (
x′

y′

)
, z′

)]
.

Consequently, each τ(M, · ) is a homomorphism of H3 and is clearly invertible with
inverse τ(M−1, · ). Thus, each τ(M, · ) is a group automorphism of H3.
Exercise 7.2.25. Show that M → τ(M, · ) is a group homomorphism of SL(2,R)
into the automorphism group Aut(H3) of H3 and that τ :SL(2,R) × H3 → H3 is
smooth.
The corresponding semi-direct product

GJ = SL(2,R) ×τ H3

is called the Jacobi group.
To describe the Lie algebra of a semi-direct product of Lie groups we will need

to introduce an analogous “semi-direct product” of Lie algebras (details for this are
available in Section I.4 of [Knapp]). Notice that, since the underlying manifold of
G = H ×τ N is the product H × N, the tangent space at the identity in G is just the
vector space direct sum h ⊕ n of the Lie algebras of H and N so the objective is to
define an appropriate bracket structure on h ⊕ n.
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Let b be any real Lie algebra. Denote by End(b) the group of all Lie alge-
bra homomorphisms of b. Recall that any D ∈ End(b) satisfying D([B1, B2]b) =

[B1,D(B2)]b + [D(B1), B2]b for all B1, B2 ∈ b is called a derivation of b. The sub-
set Der(b) of End(b) consisting of all derivations is itself a Lie algebra under the
bracket defined by the commutator [D, E] = D ◦ E − E ◦ D for all D, E ∈ Der(b).
The following is Proposition 1.22 of [Knapp]. For the statement we will identify a
and b with the subspaces of a ⊕ b in which the second, respectively, first coordinate
is zero.

Proposition 7.2.8. Let a and b be two real Lie algebras and suppose π : a→ Der(b)
is a Lie algebra homomorphism. Then there is a unique Lie algebra structure on the
vector space direct sum g = a ⊕ b satisfying [A1, A2]g = [A1, A2]a for all A1, A2 ∈ a,
[B1, B2]g = [B1, B2]b for all B1, B2 ∈ b, and [A, B]g = π(A)(B) for all A ∈ a and all
B ∈ b. Moreover, with this Lie algebra structure, a is a Lie subalgebra of g and b is
an ideal in g.

The Lie algebra g described in the Proposition is called the semi-direct product
of the Lie algebras a and b determined by π and written a ×π b. The idea now is
to show that, if G = H ×τ N, then an appropriate choice of π : h → Der(n) gives
g = h ×π n. We will simply describe how one must choose π, refer to Proposition
1.124 of [Knapp] for the proof that it works and then write out the example of
interest to us.

We consider the Lie group semi-direct product G = H×τN, where τ : H×N → N.
Fix an h ∈ H. Then τ(h, · ) : N → N is a Lie group automorphism. Its derivative at
the identity 1N

τ(h) = D(τ(h, · ))(1N) : n→ n

is therefore a Lie algebra isomorphism. This gives a map τ : H → GL(n) from H to
the group of invertible linear transformations on the vector space n. One shows that
τ is a smooth group homomorphism

τ : H → Aut(n)

from H to the automorphism group of n. The derivative of τ at the identity 1H , which
we denote

π = Dτ (1H),

is therefore a linear map from h to the Lie algebra of Aut(n). Now we notice that
every element of the Lie algebra of Aut(n) is, in fact, a derivation of n.
Remark 7.2.16. N is a matrix Lie group and therefore n is a Lie algebra of matrices
so Aut(n) is also a matrix Lie group. Its Lie algebra is therefore contained in End(n).
Furthermore, everything in the Lie algebra of Aut(n) is c′(0), where c(t) is a curve
in Aut(n) with c(0) = idn. But c(t)([X,Y]) = [c(t)X, c(t)Y] for each t implies that
c′(0)([X,Y]) = [c′(0)X,Y] + [X, c′(0)Y] so c′(0) is a derivation. One can show that,
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in fact, the Lie algebra of Aut(n) is precisely Der(n) (this is Proposition 1.120 of
[Knapp]).

Consequently,

π = Dτ (1H) : h→ Der(n)

so we can form the Lie algebra semi-direct product h ×π n and this is precisely the
Lie algebra of H ×τ N (this is Proposition 1.124 of [Knapp]). Now we will work out
the example of interest to us.
Example 7.2.7. We will return now to the Jacobi group GJ constructed in Example
7.2.6. Recall that GJ =SL(2,R) ×τ H3, where τ :SL(2,R) × H3 → H3 is given by

τ
(

M,
( (

x
y

)
, z

) )
=

(
M

(
x
y

)
, z

)
.

Now fix an M ∈ SL(2,R) and consider the map τ(M, · ) : H3 → H3 given by( (
x
y

)
, z

)
→

(
M

(
x
y

)
, z

)
. (7.25)

We need the derivative of this map at 1H3 =

( (
0
0

)
, 0

)
. But, as a manifold, H3 is just

R3 and so h3 is also canonically identified with R3 as well. Furthermore, τ(M, · ) is
linear as a map from R3 to itself so its derivative, at any point, is the same linear
map and we have

τ(M) = D(τ(M, · ))(1H3 ) = τ(M, · ),

that is,

τ(M)
( (

x
y

)
, z

)
=

(
M

(
x
y

)
, z

)
.

Consequently, τ is the map on SL(2,R) that carries M ∈ SL(2,R) onto the map
from h3 to h3 given by (7.25). If we let

M =

(
a b
c d

)
then the matrix of this map relative to the standard basis

e1 =

( (
1
0

)
, 0

)
, e2 =

( (
0
1

)
, 0

)
, e3 =

( (
0
0

)
, 1

)
.

is
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c d 0
0 0 1


Consequently, τ is the map that sends (

a b
c d

)
in SL(2,R) to the automorphism  a b 0

c d 0
0 0 1

 .
of h3.

Exercise 7.2.26. Compute π = Dτ(1SL(2,R)) and show that it sends
(
α β
γ δ

)
in sl(2,R)

to the derivation

α β 0
γ δ 0
0 0 0

 of h3

We can now describe the Lie algebra

g
J = sl(2,R) ×π h3

of the Jacobi group (called, oddly enough, the Jacobi algebra). gJ is generated by
{X,Y,Z, e, f , h}, where X,Y and Z satisfy the commutation relations of h3

[X,Z] = [Y,Z] = 0, [X,Y] = Z,

and e, f and h satisfy the commutation relations of sl(2,R)

[e, f ] = h, [h, e] = 2e, [h, f ] = −2 f .

By Proposition 7.2.8, if A ∈ {e, f , h} and B ∈ {X,Y,Z}, then

[A, B] = π(A)(B).

For example,

[h,Y] = π(h)(Y) =

1 0 0
0 −1 0
0 0 0


010

 =

 0
−1
0

 = −Y.

Exercise 7.2.27. Show that the only nonzero commutation relations for gJ are

[e,Y] = X, [ f , X] = Y, [h, X] = X, [h,Y] = −Y.
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Exercise 7.2.28. The Lie algebra gJ is often described in other, but equivalent terms.
The following exercises are taken from [Berndt].

1. Consider the Lie algebra with basis {H, F,G, P,Q,R} and subject to the commu-
tation relations

[F,G] = H, [H, F] = 2F, [H,G] = −2G

[P,Q] = 2R, [H,Q] = Q, [H, P] = −P

[F, P] = −Q, [G,Q] = −P.

Show that this Lie algebra is isomorphic to gJ .
2. Let P2(q, p) be the Lie subalgebra of quadratic observables in C∞(T ∗R) with

basis {1, q, p, qp, q2, p2}. Show that the map σ : P2(q, p)→ gJ defined by

σ(1) = 2R, σ(q) = P, σ(p) = Q

σ(qp) = H, σ(q2) = −2G, σ(p2) = 2F

is a Lie algebra isomorphism.

We can now view the problem of quantizing the quadratic classical observables
in C∞(T ∗R) as that of extending the Schrödinger realization of the h3 Lie subalgebra
of C∞(T ∗R) to the gJ = sl(2,R) ×π h3 subalgebra.
Remark 7.2.17. According to the Stone-von Neumann Theorem, an appropriate re-
alization of gJ must restrict to the Schrödinger realization on h3 if it is to act ir-
reducibly on the Heisenberg algebra and we take this to be a basic assumption of
our quantization procedure. It is an assumption, however, and one could certainly
conceive of doing without it.

Let’s spell this out in more detail. The Schrödinger realization sends 1 to the
identity operator on L2(R) and, on S(R) ⊆ L2(R), is given by

q→ Q : (Qψ)(q) = qψ(q)

p→ P : (Pψ)(q) = −i~
d
dq
ψ(q)

and satisfies

{p, q} → −
i
~

[P,Q]−.

What we must do is define appropriate images for q2, p2 and qp in such a way that
{ , } → − i

~
[ , ]−. There is certainly an obvious way to start the process.

q2 → Q2 : (Q2ψ)(q) = q2ψ(q)

p2 → P2 : (P2ψ)(q) = −i~
d

dq
[(Pψ)(q)] = −~2 d2

dq2ψ(q)
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The element qp presents a problem, however. One might simply try qp → QP. On
the other hand, in C∞(T ∗R), qp = pq so one might just as well try qp = pq →
PQ and these are not the same. This is the infamous operator ordering problem of
quantization. For quadratic observables the issue is not so serious since we can think
of qp as

qp =
1
2

(qp + pq)

and take

qp→
1
2

(QP + PQ)

which is symmetric in Q and P.
Remark 7.2.18. We will soon see that this apparent guess is actually forced upon
us by the previous assignments, but one should not come to expect this sort of thing
since we will see also that, for polynomial observables of higher degree, the math-
ematics does not dictate a “correct” quantization, but only a number of alternatives
from which to choose. You will establish the essential self-adjointness of Q2, P2

and 1
2 (QP + PQ) shortly and we will then, as usual, use the same symbols for their

unique self-adjoint extensions.
We must, of course, check that these choices preserve the appropriate bracket

relations. This is just a little calculus, but worth going through. First notice that, for
any ψ ∈ S(R),[1

2
(QP + PQ)ψ

]
(q) =

1
2

[
− i~q

d
dq
ψ(q) − i~( q

d
dq
ψ(q) + ψ(q) )

]
= −i~

[
q

d
dq
ψ(q) +

1
2
ψ(q)

]
so we have

1
2

(QP + PQ) = −i~ ( q
d

dq
+

1
2

).

Since {q2, p2} = 4qp, {q2, qp} = 2q2, and {p2, qp} = −2p2 we must show that, on
S(R),

−
i
~

[ Q2, P2 ]− = 4
( 1

2
(QP + PQ)

)
,

−
i
~

[ Q2,
1
2

(QP + PQ) ]− = 2Q2,

and
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−
i
~

[ P2,
1
2

(QP + PQ) ]− = −2P2.

Exercise 7.2.29. Check at least one of these.
Exercise 7.2.30. Show that Q2, P2 and 1

2 (QP + PQ) are all essentially self-adjoint
on S(R).

At this point we should be fully prepared to quantize classical polynomial ob-
servables up to degree two and we will do some of this in the next two sections.
It is not the case, of course, that every classical observable that one would like to
quantize is a polynomial of degree two (we have already pointed out, for example,
that the Hamiltonian for the Higgs boson contains a quartic term). We should there-
fore say something about extending the Schrödinger realization of h3 beyond the
Jacobi algebra gJ . Needless to say, the operator ordering problems become increas-
ingly severe as the degree increases, but it is not altogether clear that they cannot be
resolved. Nevertheless, they cannot, as we will now see.

We would like to briefly describe an example of what the physicists would call a
No-Go Theorem. This is basically a statement (sometimes a rigorous theorem) to the
effect that something can’t be done. In the case at hand, the (rigorous) theorem goes
back to Groenewold [Groe] and Van Hove [VH]. We will discuss only the simplest
version of the result and will only sketch the idea of the proof (for more details see
[Gotay], [GGT], or Section 5.4 of [Berndt]).

Dirac’s proposed quantization scheme asks for a linear map R from C∞(T ∗R)
to the self-adjoint operators on a separable, complex Hilbert space H that satisfies
R(1) = idH and R( { f , g} ) = − i

~
[R( f ),R(g)]−. Thus far we have managed to define

R only on the gJ Lie subalgebra of C∞(T ∗R) generated by {1, q, p, q2, p2, qp} and
we would now like to know if this map R extends to a larger Lie subalgebra of
C∞(T ∗R).

Theorem 7.2.9. (Groenewold-Van Hove Theorem) Let O be a Lie subalgebra of
C∞(T ∗R) that properly contains the Lie subalgebra P2(q, p) generated by
{1, q, p, q2, p2, qp}. Then there does not exist a linear map R from O to the self-
adjoint operators on L2(R) preserving some fixed dense linear subspace D ⊇ S(R)
and satisfying all of the following.

R(1) = idL2(R)

R( { f , g} ) = −
i
~

[R( f ),R(g)]− ∀ f , g ∈ O

R(q) = Q [ (Qψ)(q) = qψ(q)∀ψ ∈ S(R) ]

R(p) = P [ (Pψ)(q) = −i~
d

dq
ψ(q)∀ψ ∈ S(R) ]

R(q2) = Q2 [ (Q2ψ)(q) = q2ψ(q)∀ψ ∈ S(R) ]

R(p2) = P2 [ (P2ψ)(q) = −~2 d2

dq2ψ(q)∀ψ ∈ S(R) ].
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We will describe a few of the ideas behind the proof, but will refer to Section 5.4
of [Berndt] for most of the computational details. Let’s denote by P(q, p) the Lie
subalgebra of C∞(T ∗R) consisting of all polynomials in q and p (this is actually a
Poisson subalgebra of C∞(T ∗R)). We will see that no such mapping R exists even
on a Lie subalgebra of P(q, p) larger than P2(q, p). The first step is to notice that
P2(q, p) is actually a maximal Lie subalgebra of P(q, p) (Theorem 5.9 of [Berndt])
so that defining R on some subalgebra of P(q, p) that properly contains P2(q, p)
necessarily defines R on all of P(q, p). Now, we will assume that such an R exists
and derive a contradiction.

Notice that the assumptions we have made about R do not include our earlier
“guess” for R(qp). The reason is that, as we will now show, this follows from the
rest. Indeed, on D we have

R( {q, p} ) = R(1) = idL2(R) = −
i
~

[R(q),R(p)]− = −
i
~

[Q, P]−

and so

QP − PQ = i~ idL2(R).

Next, from 4qp = { q2, p2 } we obtain

4R(qp) = −
i
~

[R(q2),R(p2)]− = −
i
~

[Q2, P2]− = −
i
~

(Q2P2 − P2Q2)

= −
i
~

( Q(QP)P − P(PQ)Q )

= −
i
~

( Q(PQ + i~ idL2(R))P − P(QP − i~ idL2(R))Q )

= −
i
~

( QPQP + i~QP − PQPQ + i~PQ )

= −
i
~

( (PQ + i~ idL2(R))(PQ + i~ idL2(R)) + i~QP − PQPQ + i~PQ )

= −
i
~

( 2i~PQ − ~2idL2(R) + i~QP + i~PQ )

= −
i
~

( 2i~PQ + i~(QP − PQ) + i~QP + i~PQ ) = 2(QP + PQ)

and therefore

R(qp) =
1
2

(QP + PQ)

as we claimed. Similar, albeit somewhat more intricate computations show that
R(q3) = Q3. This, together with q2 p = 1

6 { q
3, p2 }, gives

R(q2 p) =
1
2

(Q2P + PQ2).
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In the same way, R(p3) = P3 together with qp2 = 1
6 { q

2, p3 } gives

R(qp2) =
1
2

(QP2 + P2Q).

Now here is the point. Computing two simple Poisson brackets shows that

q2 p2 =
1
9
{ q3, p3 } =

1
3
{ q2 p, p2q }

but, with the identities noted above, one obtains

R(
1
9
{ q3, p3 } ) = −

i
9~

[Q3, P3]−

= −
2
3
~2idL2(R) − 2i~QP + Q2P2,

whereas

R(
1
3
{ q2 p, p2q } ) = −

i
12~

[ (Q2P + PQ2), (P2Q + QP2) ]

= −
1
3
~2idL2(R) − 2i~QP + Q2P2.

Since R( 1
3 { q

2 p, p2q } ) , R( 1
9 { q

3, p3 } ), we find that our assumptions imply that
R must assign two different values to the classical observable q2 p2 and this is a
contradiction. An R such as the one described in Theorem 7.2.9 cannot exist.
Remark 7.2.19. This argument does not, of course, imply that it is impossible
to quantize quartic polynomials such as q2 p2 in a manner consistent with the
Schrödinger quantization of P2(q, p). It says only that the assumptions we have
made do not uniquely determine the quantization and it is up to us to use whatever
additional information is available to make a choice or to adapt our requirements.
Needless to say, this is a huge subject and one generally best left to the physicists (a
relatively concise synopsis written with both physicists and mathematicians in mind
is available in [TAE]). For more on rigorous No-Go Theorems in quantization one
can consult [GGT].

In the next two sections we will apply the quantization map R from the Jacobi
algebra gJ ⊆ C∞(T ∗R) to the self-adjoint operators on L2(R) to the two simplest
examples of classical mechanical systems with quadratic Hamiltonians, that is, the
free particle and the harmonic oscillator. Needless to say, these are only baby steps
toward an understanding of canonical quantization, even in the case of quadratic
Hamiltonians. For those who rightly insist on something with more physical sub-
stance we recommend the Supplementary Notes on Canonical Quantization and
Application to a Charged Particle in a Magnetic Field by Arthur Jaffe which is avail-
able online at http://stuff.mit.edu/afs/athena/course/8/8.06/spring08/handouts.shtml.

http://stuff.mit.edu/afs/athena/course/8/8.06/spring08/handouts.shtml
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7.3 The Free Quantum Particle

A classical free particle of mass m moving in one dimension has configuration space
R and phase space T ∗(R) = R2 with coordinates q and (q, p), respectively. The
classical Hamiltonian is 1

2m p2 which lives in the quadratic Lie subalgebra gJ of
C∞(T ∗R) generated by 1, q, p, q2, p2 and qp. The quantum phase space is taken to
be L2(R) and the map R from gJ to the self-adjoint operators on L2(R) constructed
in Section 7.2 assigns to 1, q, p and 1

2m p2 the operators I = idL2(R),Q, P and H0 =
1

2m P2. On the Schwartz space S(R) these are given by (Qψ)(q) = qψ(q), (Pψ)(q) =

−i~ d
dqψ(q), and (H0ψ)(q) = − ~

2

2m
d2

dq2ψ(q), respectively, and they are all essentially
self-adjoint on S(R). We recall also that the domain of H0 is the set of all ψ ∈ L2(R)
for which ∆ψ is in L2(R), where ∆ψ is the second derivative of ψ thought of as a
tempered distribution (Example 5.2.14), and that the spectrum of H0 is σ(H0) =

[0,∞) (Example 5.4.4). From the latter it follows that, just as in the classical case,
the energy of a free quantum particle can assume any non-negative real value, that is,
the energy is not “quantized”. According to Postulate QM4 of Chapter 6, an initial
state ψ(q, 0) of the free particle will evolve in time according to

ψ(q, t) = e−itH0/~ψ(q, 0).

The evolution operator e−itH0/~ is given by

F−1 Qg(p) F,

where F is the Fourier transform and Qg(p) is multiplication by

g(p) = e−i~2tp2/2m

(see (5.56)). Just to see how all of this works we’ll compute a couple of examples.
For these we will return to the initial states described in Example 6.2.3 and given by

ψ(q, 0) =
1
π1/4 e−q2/2eiαq,

where α is any real constant. We showed in Example 6.2.3 that for all of these Q has
expected value 〈Q〉ψ(q,0) = 0 and dispersion σψ(q,0)(Q) = 1

2 . We’ll begin with α = 0.
Example 7.3.1. We suppose that the initial state of our free particle is ψ(q, 0) =

1
π1/4 e−q2/2 and compute ψ(q, t) = (F−1 Qg(p) F)ψ(q, 0). The Fourier transform of
ψ(q, 0) was computed in Example 5.2.8.

F(ψ(q, 0)) =
1
π1/4 e−p2/2.

Thus,
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(Qg(p) F)ψ(q, 0) =
1
π1/4 e−

1+i(~2/m)t
2 p2

.

For the inverse Fourier transform of this we recall (Example 5.2.9) that, if a ∈ C

and Re(a) > 0, then

F(e−aq2/2) =
1
√

a
e−p2/2a,

where the square root has a branch cut along the negative real axis. Consequently,

F−1(e−p2/2a) =
√

a e−aq2/2.

In the case at hand,

a =
1

1 + i(~2/m)t

so

ψ(q, t) = (F−1 Qg(p) F)ψ(q, 0) =
1
π1/4

1√
1 + i(~2/m)t

e−
1
2

(
1

1+i(~2/m)t

)
q2

.

Now we will rewrite this a bit as follows. 1
1+i(~2/m)t = A + Bi, where A = 1

1+(~4/m2)t2

and B = −
(~2/m)t

1+(~4/m2)t2 . Thus,

e−
1
2

(
1

1+i(~2/m)t

)
q2

= e−
1
2 Bq2i e−

1
2

q2

1+(~4/m2)t2

and

ψ(q, t) =
1
π1/4

1√
1 + i(~2/m)t

e−
1
2 Bq2ie−

1
2

q2

1+(~4/m2)t2 .

Now,
√

1 + i(~2/m)t has modulus 4
√

1 + (~4/m2)t2. Combine its phase factor with
e−

1
2 Bq2i and write the result as eiφ(q,t), where φ(q, t) a real-valued function . Then

ψ(q, t) =
1
4
√
π

eiφ(q,t) 1
4
√

1 + (~4/m2)t2
e−

1
2

q2

1+(~4/m2)t2 .

Consequently,

|ψ(q, t)| =
1
4
√
π

1
4
√

1 + (~4/m2)t2
e−

1
2

q2

1+(~4/m2)t2 .

We see then that the evolved wave function still peaks at q = 0 for every t, but
becomes wider and flatter as t → ∞ so that the probability of detecting the particle
away from q = 0 increases.
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Things are a bit different if ψ(q, 0) = 1
π1/4 e−q2/2eiαq with α , 0.

Exercise 7.3.1. Show that if ψ(q, 0) = 1
π1/4 e−q2/2eiαq with α > 0, then

|ψ(q, t)| =
1
4
√
π

1
4
√

1 + (~4/m2)t2
e−

1
2

(q−(α~2/m)t)2

1+(~4/m2)t2 .

In this case the initial wave function also peaks at q = 0, but the evolving wave
functions not only widen and flatten as t → ∞, they also peak at a point that moves
to the right with speed α~2/m. The point at which it is most likely to detect the
particle is moving along the q-axis.

These last examples are rather atypical, of course, since the initial wave function
was chosen in such a way that we could perform all of the required computations
explicitly. Next we will look at much more general initial states and try to repre-
sent the time evolution in terms of an integral kernel as we did for HB in (6.13).
The results we derive will be critical for understanding the Feynman path integral
approach to quantization in Chapter 8.
Example 7.3.2. We consider again the free particle Hamiltonian H0 : D(H0) →
L2(R) as in Example 5.4.4. It will be useful to start from scratch and look at the
Cauchy problem for the corresponding Schrödinger equation which, on R × (0,∞),
takes the form

i
∂ψ(q, t)
∂t

= −
~

2m
∂2ψ(q, t)
∂q2 , (q, t) ∈ R × (0,∞),

(7.26)
lim
t→0+

ψ(q, t) = ψ0(q), q ∈ R.

We begin with a few general observations. First, one cannot help but notice the simi-
larity between the Schrödinger equation in (7.26) and the heat equation we discussed
in Example 5.2.13. Indeed, if one takes α = ~/2m and formally makes the change of
variable t → −it, then the Schrödinger equation becomes the heat equation (physi-
cists would refer to this formal change of variable as analytic continuation from
physical time to imaginary time). In Example 5.2.13 we were able to express the
solution to the heat equation in terms of an integral kernel and this gives us rea-
son to hope. Indeed, throwing caution to the winds one might even conjecture that
the Schrödinger kernel for H0 should be what you get from the heat kernel with
α = ~/2m by replacing t by it, that is,

√
m

2π~ti
e mi(q−x)2/2~t.
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Remarkably enough, this is precisely the kernel we will eventually arrive at (with√
i = eπi/4 = 1

√
2

(1 + i)), but replacing the formal arguments with rigorous ones will
require a little work.

Before getting started on this, however, it will be instructive to digress one more
time and consider some simple, but “unphysical” solutions of the Schrödinger equa-
tion for H0. These are analogues of the plane electromagnetic waves we encountered
in our discussion of Maxwell’s equations in Section 4.2. Specifically, we will con-
sider functions of the form

ψ(q, t) = e
i
~ (pq−ωt),

where ω is a positive constant and p should be regarded as a parameter, different
choices giving different functions. Computing a few derivatives gives

∂ψ

∂t
= −

i
~
ω e

i
~ (pq−ωt) = −

i
~
ωψ(q, t)

∂ψ

∂q
=

i
~

p e
i
~ (pq−ωt) =

i
~

pψ(q, t) (7.27)

and

∂2ψ

∂q2 = −
p2

~2 e
i
~ (pq−ωt) = −

p2

~2 ψ(q, t).

Substituting into the Schrödinger equation in (7.26) gives

1
~
ωψ(q, t) =

1
2m~

p2ψ(q, t)

so ψ(q, t) is a (nontrivial) solution if and only if

ω =
1

2m
p2. (7.28)

The condition (7.28) is called a dispersion relation and if we use it to substitute for
ω in ψ(q, t) we obtain the solutions

ψ(q, t) = e
i
~ (pq− t

2m p2). (7.29)

Clearly, for each fixed t, these functions fail miserably to be in L2(R) since∫
R
|ψ(q, t)|2 dq =

∫
R

1 dq = ∞. Nevertheless, we will find them to be useful and in-
formative. For instance, it often occurs that an honest state (unit vector in L2(R)) is
well-approximated over a restricted region of space and time by such a plane wave.
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Moreover, we will see quite soon that any solution of the Schrödinger equation in
(7.26) can be regarded as a (continuous) superposition of such plane waves.
Exercise 7.3.2. Show that, for t > 0,∫

R

e
i
~ (pq− t

2m p2)dp = (2π~)
√

m
2πt~i

emiq2/2~t, (7.30)

where
√

i = eπi/4 = 1
√

2
(1 + i). Hint: Complete the square in the exponent and use

the Gaussian integral ∫
R

eiax2
dx = esgn(a)πi/4

√
π

|a|
, (7.31)

where a is a nonzero real number and sgn(a) is its sign (see (A.4) in Appendix A).
Remark 7.3.1. It is not uncommon in quantum mechanics to encounter functions
which one would like to regard as states, eigenfunctions, etc., but cannot because
they do not live in the appropriate Hilbert space H. The plane waves ψ(q, t) defined
by (7.29) are such functions. Being solutions to the Schrödinger equation, they look
like they should be states, but they’re not in L2(R) so they aren’t. Physicists would
refer to ψ(q, t) as a non-normalizable state, even though it isn’t really a state at all.
Similarly, (7.27) shows that, if only they were elements of L2(R), these plane waves
would be eigenfunctions of the momentum operator P = −i~ ∂

∂q with eigenvalues
p. These are often referred to as generalized eigenfunctions of the momentum op-
erator on R. There are various ways of stepping outside of the Hilbert space and
incorporating such functions into a rigorous formalism, one of which we have al-
ready gotten a hint of in Remark 5.2.6. Recall that, if S(R) is the Schwartz space
and S ′(R) is its dual space of tempered distributions, then

S(R) ⊆ L2(R) ⊆ S ′(R).

S(R) is not a Hilbert space and its Fréchet space topology is strictly finer than the
topology it would inherit as a subspace of L2(R). It is, however, a dense subset
of L2(R) in the norm topology of L2(R). L2(R) is, in turn, dense in S ′(R). These
circumstances qualify S(R) ⊆ L2(R) ⊆ S ′(R) as an example of what is called a
rigged Hilbert space or Gelfand triple. Notice that, although the plane waves ψ(q, t)
are not in L2(R), they are certainly in L1

loc(R) and can therefore be regarded as
tempered distributions, that is, as elements of S ′(R). Non-normalizable states and
generalized eigenfunctions can be thought of as distributions, living not in L2(R),
but in the larger space S ′(R).
Exercise 7.3.3. The position operator Q : D(Q) → L2(R) has no eigenfunctions in
L2(R) (Qψ = λψ ⇒ (q − λ)ψ(q) = 0 a.e. ⇒ ψ = 0 ∈ L2(R)). Explain the sense in
which the Dirac delta δa ∈ S

′(R) is a generalized eigenfunction for Q. Hint: Fourier
transform.

Now, let’s get back to the business of solving (7.26). For the time being we will
assume that ψ0 is smooth with compact support and will look for smooth solutions to
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the Schrödinger equation on R× (0,∞). Our procedure will be to apply the (spatial)
Fourier transform F, solve for ψ̂(p, t) and then apply F−1 to get ψ(q, t). In this way
one can only find solutions that actually have Fourier transforms, of course, and we
cannot know in advance that there are any. Furthermore, we will assume that there
are solutions sufficiently regular that we can differentiate with respect to t under the
integral sign to show that

F

(
∂ψ

∂t

)
=
∂ψ̂

∂t
.

Whether or not these assumptions are justified will be determined by whether or not
we find solutions that satisfy them. Applying F to (7.26) gives

∂ψ̂

∂t
+

i~
2m

p2ψ̂ = 0

and

lim
t→0+

ψ̂(p, t) = ψ̂0(p).

The solution to this simple first order, linear initial value problem is

ψ̂(p, t) = ψ̂0(p) e−i(~/2m)tp2
.

Now we apply F−1 to obtain

ψ(q, t) = F−1(ψ̂0(p) e−i(~/2m)tp2
) =

1
√

2π

∫
R

ei (pq−(~/2m)tp2)ψ̂0(p) dp. (7.32)

Remark 7.3.2. The inverse Fourier transform of ψ̂0(p) e−i(~/2m)tp2
is given by the

integral in (7.32) because ψ0 is assumed to be smooth with compact support (in
particular, Schwartz) and so ψ̂0 is also in S(R). We should also point out that, while
the function ψ(q, t) defined by (7.32) clearly satisfies the Schrödinger equation in
(7.26), the boundary condition in (7.26) is not at all clear, despite the fact that the
corresponding limit for the Fourier transforms is clearly satisfied. We will have more
to say about this shortly.

In (7.32) we are asked to compute the inverse Fourier transform of a product
of two functions of p and this would lead us to expect ψ(q, t) to be expressed as a
convolution (see (5.12)). Naturally, the inverse transform of ψ̂0(p) is just ψ0(q) so
we need only worry about the inverse transform of e−i(~/2m)tp2

. This is something of a
problem, however, since e−i(~/2m)tp2

is only in L1
loc(R) so its inverse Fourier transform

exists only as a distribution. Example 5.2.9, where we showed that F−1(e−p2/2α) =
√
α e−αp2/2 when Re(α) > 0, does not apply directly since, in our present case, α =

−mi/~t has real part zero. For this reason, the analysis will be a bit more delicate.
For the record, what we intend to prove is that, with

√
i = eπi/4,
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ψ(q, t) =

√
m

2π~ti

∫
R

e mi(q−x)2/2~t ψ0(x) dx, (7.33)

which we can write as

ψ(q, t) =

∫
R

K(q, t; x, 0)ψ(x, 0) dx, (7.34)

where

K(q, t; x, 0) =

√
m

2π~ti
e mi(q−x)2/2~t. (7.35)

Taking the initial condition at t = t0 rather than t = 0 one would obtain instead

ψ(q, t) =

∫
R

K(q, t; x, t0)ψ(x, t0) dx, (7.36)

where

K(q, t; x, t0) =

√
m

2π~(t − t0)i
e mi(q−x)2/2~(t−t0). (7.37)

K(q, t; x, t0) is the propagator, or integral kernel for the free particle Hamiltonian
H0, or simply the Schrödinger kernel for H0.

Remark 7.3.3. Physicists interpret
∣∣∣ K(q, t; x, t0)

∣∣∣2 as the conditional probability of
finding the particle at q ∈ R at time t provided it was detected at the point x ∈ R

at time t0. K(q, t; x, t0) itself is interpreted as the probability amplitude for getting
from x ∈ R at time t0 to q at time t.

Now we proceed with the proof of (7.33). As we pointed out above, the result of
Example 5.2.9 does not apply to e−i(~/2m)tp2

. However,
Exercise 7.3.4. Show that, for any δ > 0 and any t > 0,

F−1
(
e−(δ+i)(~/2m)tp2

)
=

√
m

~t(δ + i)
e−mq2/2~t(δ+i),

where √ refers to the branch of the square root with branch cut along the negative
real axis. Conclude that

F−1
(
ψ̂0(p)e−(δ+i)(~/2m)tp2

)
=

√
m

2π~t(δ + i)

∫
R

e−m(q−x)2/2~t(δ+i)ψ0(x) dx.

Exercise 7.3.5. Combine (7.32) and the previous Exercise to show that (7.33) will
follow if we can prove that∫

R

ei (pq−(~/2m)tp2)ψ̂0(p) dp = lim
δ→0+

∫
R

eipqe−(δ+i)(~/2m)tp2
ψ̂0(p) dp. (7.38)
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For the proof of (7.38) we proceed as follows. Fix t > 0. We must show that

I =

∣∣∣∣∣ ∫
R

eipqe−(~/2m)tp2i(e−(~/2m)tp2δ − 1)ψ̂0(p) dp
∣∣∣∣∣→ 0

as δ → 0+. Let ε > 0 be given. Note that ψ0 ∈ S(R) ⇒ ψ̂0 ∈ S(R) so, in particular,
‖ ψ̂0 ‖L1 =

∫
R
|ψ̂0(p)| dp < ∞. Thus, for some sufficiently large R > 0,

I ≤
∫
R

∣∣∣e−(~/2m)tp2δ − 1
∣∣∣ ∣∣∣ψ̂0(p)

∣∣∣ dp =

∫
[−R,R]

∣∣∣e−(~/2m)tp2δ − 1
∣∣∣ ∣∣∣ψ̂0(p)

∣∣∣ dp

+

∫
|p|≥R

∣∣∣e−(~/2m)tp2δ − 1
∣∣∣ ∣∣∣ψ̂0(p)

∣∣∣ dp

≤ max
p∈[−R,R]

∣∣∣e−(~/2m)tp2δ − 1
∣∣∣ ∫

[−R,R]

∣∣∣ψ̂0(p)
∣∣∣ dp

+

∫
|p|≥R

∣∣∣ψ̂0(p)
∣∣∣ dp

< max
p∈[−R,R]

∣∣∣e−(~/2m)tp2δ − 1
∣∣∣ ∥∥∥ψ̂0

∥∥∥
L1 +

ε

2
.

We fix such an R. Notice that all of this is independent of the choice of δ. Now we
conclude the proof by showing that

max
p∈[−R,R]

∣∣∣e−(~/2m)tp2δ − 1
∣∣∣

can be made arbitrarily small by making δ > 0 sufficiently small. But, for any
p ∈ [−R,R] and any t > 0,

0 ≤ tp2δ ≤ tR2δ⇒ −tR2δ ≤ −tp2δ ≤ 0

⇒ −(~/2m)tR2δ ≤ −(~/2m)tp2δ ≤ 0

⇒ e−(~/2m)tR2δ ≤ e−(~/2m)tp2δ ≤ 1

⇒ e−(~/2m)tR2δ − 1 ≤ e−(~/2m)tp2δ − 1 ≤ 0

⇒
∣∣∣e−(~/2m)tp2δ − 1

∣∣∣ = 1 − e−(~/2m)tp2δ ≤ 1 − e−(~/2m)tR2δ → 0

as δ→ 0+. This completes the proof of (7.38) and therefore also of (7.33).
At this point we have shown that

ψ(q, t) =

√
m

2π~ti

∫
R

e mi(q−x)2/2~t ψ0(x) dx,

is a solution to the Schrödinger equation

i
∂ψ(q, t)
∂t

= −
~

2m
∂2ψ(q, t)
∂q2
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in (7.26), but there remains the issue of the initial condition limt→0+ ψ(q, t) = ψ0(q),
that is,

lim
t→0+

√
m

2π~ti

∫
R

e mi(q−x)2/2~t ψ0(x) dx = ψ0(q). (7.39)

The corresponding result for the heat equation (Exercise 5.2.16) was relatively
straightforward, but the i in the exponent here introduces rapid oscillations in the
integrand (away from x = q) and substantial complications in the analysis of the
integral. We will prove (7.39) by applying an important technique for the study of
such oscillatory integral called the stationary phase approximation. We have in-
cluded a proof of this in Appendix C, but here we will simply state what we need at
the moment. This special case applies to integrals of the form∫

R

eiT f (x)g(x) dx,

where f is a smooth, real-valued function on R with exactly one nondegenerate
critical point x0 ∈ R ( f ′(x0) = 0 and f ′′(x0) , 0), T is a positive real number
and g is smooth with compact support. Then the stationary phase approximation of∫
R

eiT f (x)g(x)dx is given by∫
R

eiT f (x)g(x) dx =

(2π
T

)1/2
e sgn( f ′′(x0)) πi /4 eiT f (x0)√

| f ′′(x0)|
g(x0) + O

( 1
T 3/2

)
(7.40)

as T → ∞.
Remark 7.3.4. Recall that this means that there exists a constant M > 0 and a T0 > 0
such that, for all T ≥ T0,∣∣∣∣∣ ∫

R

eiT f (x)g(x) dx −
(2π

T

)1/2
e sgn( f ′′(x0)) πi /4 eiT f (x0)√

| f ′′(x0)|
g(x0)

∣∣∣∣∣ ≤ M
( 1

T 3/2

)
(there is a more detailed review of the Landau Big O notation in Remark 8.3.4).

To apply this to the integral
∫
R

e mi(q−x)2/2~t ψ0(x) dx we take T = 1
t , g(x) = ψ0(x),

and f (x) = m(q − x)2/2~. Then t → 0+ ⇒ T → ∞ and f has exactly one critical
point at q which is nondegenerate because f ′′(q) = m/~. Substituting all of this into
(7.40) gives ∫

R

e mi(q−x)2/2~t ψ0(x) dx =

√
2π~ti

m
ψ0(q) + O(t3/2)

as t → 0+, where
√

i = eπi/4. Consequently,√
m

2π~ti

∫
R

e mi(q−x)2/2~t ψ0(x) dx = ψ0(q) + O(t)
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and this clearly approaches ψ0(q) as t → 0+. This completes the proof of (7.39).
Let’s summarize what we have done, incorporating the result of Exercise 7.3.2 as

we go. If the initial value of the wave function, which we will now denote ψ(q, 0),
is smooth with compact support, then the time evolution is described by

ψ(q, t) = e−itH0/~(ψ(q, 0)) =

∫
R

K(q, t; x, 0)ψ(x, 0) dx, (7.41)

where the Schrödinger kernel is given by

K(q, t; x, 0) =

√
m

2π~ti
emi(q−x)2/2~t =

1
2π~

∫
R

e
i
~ (p(q−x)− t

2m p2) dp. (7.42)

If the initial condition is given at t = t0 rather than t = 0 one has instead

ψ(q, t) = e−i(t−t0)H0/~(ψ(q, t0)) =

∫
R

K(q, t; x, t0)ψ(x, t0) dx, (7.43)

where the Schrödinger kernel is

K(q, t; x, t0) =

√
m

2π~(t − t0)i
emi(q−x)2/2~(t−t0) =

1
2π~

∫
R

e
i
~ (p(q−x)− t−t0

2m p2) dp. (7.44)

Thus far we have assumed that the initial data ψ0(q) = ψ(q, 0) is smooth with
compact support, but one can show that the equalities (7.41) and (7.43) remain valid
as long as ψ0 is in L1(R)∩ L2(R). For an arbitrary element ψ0 in L2(R) these equal-
ities also remain valid provided the integral is interpreted as an integral in the mean
(Remark 5.2.10), that is, as the the following L2(R)-limit.

lim
M→∞

∫
[−M,M]

K(q, t; x, t0)ψ(x, t0) dx

Since we really want to “flow” arbitrary L2 initial states and since this issue will
arise again at several points in the sequel, we will provide the proof (for simplicity
we will take t0 = 0). We begin by expanding (q − x)2 = q2 + x2 − 2qx to write√

m
2π~ti

emi(q−x)2/2~tψ0(x) =

√
m
~ti

emiq2/2~t 1
√

2π

[
emix2/2~tψ0(x)

]
e−i(mq/~t)x. (7.45)

The function emix2/2~tψ0(x) is in L2(R) and so it has a Fourier transform
F(emix2/2~tψ0(x)) that is also in L2(R). If χM denotes the characteristic function of
the interval [−M,M], then emix2/2~tψ0(x) χM(x) is in L1(R) ∩ L2(R) so its Fourier
transform is

1
√

2π

∫
[−M,M]

[
emix2/2~tψ0(x)

]
e−iqx dx.
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The emix2/2~tψ0(x) χM(x) converge in L2(R) to emix2/2~tψ0(x) as M → ∞ so their
Fourier transforms converge in L2(R) to F(emix2/2~tψ0(x)) as M → ∞, that is,

lim
M→∞

1
√

2π

∫
[−M,M]

[
emix2/2~tψ0(x)

]
e−iqx dx = F(emix2/2~tψ0(x))(q)

in L2(R). Integrating (7.45) over [−M,M] and taking the L2-limit as M → ∞ we
therefore obtain

lim
M→∞

∫
[−M,M]

√
m

2π~ti
emi(q−x)2/2~tψ0(x) dx =

√
m
~ti

emiq2/2~t F(emix2/2~tψ0(x))(mq/~t).

In particular, this limit (in other words, this integral in the mean) exists. Now, for
each M > 0 we let ψM = ψ0 χM . Then, as M → ∞, ψM → ψ0 in L2(R) and therefore
e−itH0/~ψM → e−itH0/~ψ0 in L2(R). Thus,(

e−itH0/~ψ0
)

(q) = lim
M→∞

(
e−itH0/~ψM

)
(q)

= lim
M→∞

∫
[−M,M]

√
m

2π~ti
emi(q−x)2/2~tψM(x) dx

= lim
M→∞

∫
[−M,M]

√
m

2π~ti
emi(q−x)2/2~tψ0(x) dx

=

∫
R

√
m

2π~ti
emi(q−x)2/2~tψ0(x) dx,

where the limits are all in L2(R) and the last integral is to be interpreted as an integral
in the mean. Let’s summarize all of this in the form of a theorem.

Theorem 7.3.1. Let H0 = − ~
2

2m∆ be the free particle Hamiltonian on L2(R). Then H0
is self-adjoint on D(H0) =

{
ψ ∈ L2(R) : ∆ψ ∈ L2(R)

}
, where ∆ is the distributional

Laplacian. For any ψ0 ∈ L2(R)

(
e−itH0/~ψ0

)
(q) =

∫
R

√
m

2π~ti
emi(q−x)2/2~tψ0(x) dx,

where, if ψ0 ∈ L2(R) − L1(R), the integral must be regarded as an integral in the
mean, that is,∫

R

√
m

2π~ti
emi(q−x)2/2~tψ0(x) dx = lim

M→∞

∫
[−M,M]

√
m

2π~ti
emi(q−x)2/2~tψ0(x) dx,

where the limit is in L2(R). If ψ0(q) = ψ(q, t0) is the state of the free particle at
t = t0, then its state at time t is

ψ(q, t) = e−i(t−t0)H0/~(ψ(q, t0)) =

∫
R

K(q, t; x, t0)ψ(x, t0) dx,
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where

K(q, t; x, t0) =

√
m

2π~(t − t0)i
emi(q−x)2/2~(t−t0) =

1
2π~

∫
R

e
i
~ (p(q−x)− p2

2m (t−t0)) dp.

Remark 7.3.5. On occasion it will be convenient to alter the notation we have used
thus far by replacing (x, t0) and (q, t) by (qa, ta) and (qb, tb), respectively, so that

K(qb, tb; qa, ta) =

√
m

2π~(tb − ta)i
emi(qb−qa)2/2~(tb−ta) =

1
2π~

∫
R

e
i
~ (p(qb−qa)− p2

2m (tb−ta)) dp.

(7.46)

We call your attention to the term

p(qb − qa) −
p2

2m
(tb − ta)

in the exponent. We have seen this and variants of it before and we will see them
again so we should take a moment to pay a bit more attention. Our first encounter
with such a thing in this section was the expression (7.29) for the (non-normalizable)
plane wave solutions to the Schrödinger equation. These are parametrized by the
real number p so their integral over −∞ < p < ∞ can be thought of as a continuous
superposition of plane waves of varying frequency ω = 1

2m p2. Next we recall that
the classical Lagrangian for a free particle of mass m moving in one dimension is
L(q, q̇) = 1

2 mq̇2. The corresponding canonical momentum is p = ∂L/∂q̇ = mq̇ and
the Hamiltonian is H0(q, p) = 1

2m p2. Consequently,

pq̇ −
p2

2m
= (mq̇)q̇ −

1
2m

(mq̇)2 =
1
2

mq̇2

so we can think of pq̇− p2

2m as simply another way of writing the classical free particle
Lagrangian. As a result, for any path α joining α(ta) = qa and α(tb) = qb in R, the
classical action is given by

S (α) =

∫ tb

ta
( pq̇ −

p2

2m
) dt.

Notice now that, if p is constant on α (as it is on the classical trajectory in Exercise
2.2.3) we can perform the integrations and obtain

S (α) = p(qb − qa) −
p2

2m
(tb − ta)

as we did in Exercise 2.2.3. We will see in Chapter 8 that the appearance of the
classical action in the propagator is a key ingredient in Feynman’s path integral
approach to quantization.
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It is traditional, and will be convenient, to rephrase some of this by defining
K0 : R ×R × (0,∞)→ C by

K0(q, x, t) = K(q, t; x, 0) =

√
m

2π~ti
emi(q−x)2/2~t.

Then we can write

ψ(q, t) =

∫
R

K0(q, x, t)ψ(x, 0) dx. (7.47)

Exercise 7.3.6. Write the 1-dimensional heat kernel (5.17) as

Hα(q, x, t) =
1

√
4παt

e−(q−x)2/4αt.

Here α is required to be a positive real number. Even so, show that by formally
taking α to be the pure imaginary number ~2m i one turns the heat kernel into the free
Schrödinger kernel, that is,

H ~i/2m(q, x, t) =

√
m

2π~ti
e mi(q−x)2/2~t = K0(q, x, t).

Exercise 7.3.7. Show that, for each fixed x, K0(q, x, t) satisfies the free Schrödinger
equation

i
∂K0(q, x, t)

∂t
= −

~

2m
∂2K0(q, x, t)

∂q2

on R × (0,∞). Similarly, for each fixed q ∈ R,

i
∂K0(q, x, t)

∂t
= −

~

2m
∂2K0(q, x, t)

∂x2

on R × (0,∞).
K0(q, x, t) provides a particularly important solution to the Schrödinger equation

in that any other solution can be gotten from it and the initial (t = 0) data via (7.47).
Notice that (7.39) can now be written

lim
t→0+

∫
R

K0(q, x, t)ψ0(x) dx = ψ0(q) (7.48)

and that this has the following interpretation. If q and t are held fixed, K0(q, x, t) is
certainly an element of L1

loc(R) and so can be regarded as a tempered distribution.
Since ψ0(x) can be any element of S(R), (7.48) simply says that as distributions

lim
t→0+

K0(q, x, t) = δ(x − q).
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One often sees this abbreviated in the literature as simply K0(q, x, 0) = δ(x − q). If
we allow ourselves this one small indiscretion we can summarize our discussion by
saying that the kernel K0(q, x, t) is a (distributional) solution to the free Schrödinger
equation that is initially the Dirac delta at q. In the language of partial differen-
tial equations one would say that K(q, x, t) is the fundamental solution to the free
Schrödinger equation.

We will conclude this section by asking you to prove for K0(q, x, t) a few things
you have already proved for the heat kernel (Exercises 5.2.17 and 5.2.19).
Exercise 7.3.8. Let q, x, z ∈ R, s > 0 and t > 0. Show that

K0(q, x, s + t) =

∫
R

K0(q, z, t)K0(z, x, s) dz.

Hint: See the Hint for Exercise 5.2.17.
Exercise 7.3.9. Let k ≥ 2 be an integer, q, x, z1, . . . , zk−1 ∈ R and t1, . . . , tk > 0.
Show that

K0(q, x, t1 + · · · + tk) =

∫
Rk−1

K0(q, z1, t1)K0(z1, z2, t2) · · ·K0(zk−1, x, tk) dz1 · · · dzk−1.

7.4 The Quantum Harmonic Oscillator

Having warmed up on the quantization of the classical free particle in dimension one
we will now turn to the titular hero of our story. Recall that the classical harmonic
oscillator has configuration space R and phase space T ∗R = R2 with coordinates
q and (q, p), respectively. The classical Hamiltonian is 1

2m p2 + mω2

2 q2, where m and
ω are positive constants. The quantum phase space is taken to be L2(R). Since the
Hamiltonian lives in the Jacobi subalgebra gJ of the Lie algebra C∞(T ∗R) of clas-
sical observables we can apply the quantization map R described in Section 7.2 to
obtain its quantum analogue

HB = R
( 1
2m

p2 +
mω2

2
q2

)
=

1
2m

P2 +
mω2

2
Q2

which, on S(R), is given by

HB

∣∣∣
S(R) = −

~2

2m
d2

dq2 +
mω2

2
q2.

We have already spent a fair amount of time with this operator on L2(R), but it is
worth the effort to review what we know. We have shown (Example 5.3.1) that HB

is essentially self-adjoint on S(R). This followed from the fact that, on S(R), it is
symmetric and has a discrete set of eigenvalues
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En = (n +
1
2

)~ω, n = 0, 1, 2, . . .

with eigenfunctions ψn(q), n = 0, 1, 2, . . ., that live in S(R) and form an orthonormal
basis for L2(R). Specifically,

ψn(q) =
1
√

2nn!

(mω
~π

)1/4
e−mωq2/2~Hn

(√mω
~

q
)
,

where

Hn(x) = (−1)nex2 dn

dxn (e−x2
)

is the nth Hermite polynomial. The eigenvalues En comprise the entire spectrum

σ(HB) = {En}
∞
n=0 = { (n +

1
2

)~ω }∞n=0

of HB (Example 5.4.5) and all of the eigenspaces are 1-dimensional. These eigen-
values are therefore all of the allowed energy levels of the quantum oscillator so,
unlike the free particle, the energy spectrum of the harmonic oscillator is discrete
(quantized). The smallest of these eigenvalues is E0 = 1

2~ω and the corresponding
eigenstate ψ0 is called the ground state of the oscillator (we emphasize once again
that the lowest allowed energy level is not zero). The remaining ψn, n = 1, 2, . . ., are
called excited states. Writing ψ ∈ L2(R) as ψ =

∑∞
n=0〈ψn, ψ〉ψn, the domain D(HB)

of HB is just the set of ψ for which
∑∞

n=0 En〈ψn, ψ〉ψn converges in L2(R), that is, for
which

∞∑
n=0

E2
n | 〈ψn, ψ〉 |

2 < ∞.

Since 0 is not an eigenvalue, HB is invertible. Indeed, its inverse is a bounded oper-
ator on all of L2(R) given by

H−1
B φ =

∞∑
n=0

1
En
〈ψn, φ〉ψn

(see (5.40)). In Example 5.5.4 it is shown that H−1
B is a compact operator.

The evolution operator e−itHB/~ is given by

e−itHB/~ψ =

∞∑
n=0

〈ψn, ψ 〉e−(i/~)Entψ

for any ψ ∈ L2(R). The time evolution of an initial state ψ(q, t0) can be written as
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ψ(q, t) =

∞∑
n=0

( ∫
R

ψn(x)ψ(x, t0)dx
)

e−(i/~)En(t−t0)ψn(q)

which, at least for sufficiently nice initial data, can be written in terms of an integral
kernel as

ψ(q, t) =

∫
R

K(q, t; x, t0)ψ(x, t0)dx,

where

K(q, t; x, t0) =

∞∑
n=0

e−(i/~)En(t−t0)ψn(q)ψn(x) =

∞∑
n=0

e−i(n+ 1
2 )ω(t−t0)ψn(q)ψn(x) (7.49)

(see (6.13)). We will expend some effort at the end of this section to obtain a closed
form expression for this kernel analogous to the one we found for the free particle
in the previous section and will see that here too the classical action will put in an
appearance.

The analysis of the quantum harmonic oscillator is greatly illuminated by the
introduction of the so-called raising and lowering operators b and b† defined by

b =
1

√
2mω~

(mωQ + iP)

and

b† =
1

√
2mω~

(mωQ − iP),

respectively (our discussion of these began on page 180). These are adjoints of each
other

〈bφ, ψ〉 = 〈φ, b†ψ〉 and 〈b†ψ, φ〉 = 〈ψ, bφ〉

and satisfy various algebraic identities, of which we will recall a few. Designating
them as raising and lowering operators is motivated by

b†ψn =
√

n + 1ψn+1, n = 0, 1, 2, . . . and bψn =
√

nψn−1, n = 1, 2, . . . .

On S(R) we have [P,Q]− = −i~ and it follows from this that

[b, b†]− = bb† − b†b = 1

(see (5.32)). Defining the number operator NB by NB = b†b one obtains

NBψn = nψn,
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HB = ~ω(NB +
1
2

),

and various commutation relations such as

[NB, b†]− = b† and [NB, b]− = −b,

and

[HB, b†]− = ~ωb† and [HB, b]− = −~ωb.

Notice that, in particular, {NB, b, b†, 1} generates a 4-dimensional real vector
space of operators (not self-adjoint operators) on L2(R) that is closed under [ , ]−
on S(R). This motivates the following algebraic definition.
Exercise 7.4.1. The oscillator algebra o4 is a 4-dimensional real Lie algebra with a
basis {N, B+, B−,M} subject to the commutation relations

[N, B+] = B+, [N, B−] = −B−, [B−, B+] = M, [M,N] = [M, B+] = [M, B−] = 0.

In particular, M is in the center of o4.

1. Verify the Jacobi identity for these commutation relations.
2. Define 3 × 3 matrices

D(N) =

0 0 0
0 1 0
0 0 0

 ,D(B+) =

0 0 0
0 0 1
0 0 0


D(B−) =

 0 1 0
0 0 0
0 0 0

 ,D(M) =

0 0 1
0 0 0
0 0 0

 .
Show that

{
D(N),D(B+),D(B−),D(M)

}
generates a matrix Lie algebra isomor-

phic to o4. Whenever convenient we will simply identify o4 with this matrix Lie
algebra.

3. Show that {B+, B−,M} generates a Lie subalgebra of o4 isomorphic to the Heisen-
berg algebra h3.

4. Exponentiate a general element nD(N) + b+D(B+) + b−D(B−) + mD(M) of this
Lie algebra, show that the result is1 b−en m + b−b+

0 en b+

0 0 1


and conclude that the exponential map is a bijection from o4 onto the set of 3× 3
real matrices of the form 1 a12 a13

0 a22 a23
0 0 1


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with a22 > 0. Show that these form a group under matrix multiplication.
5. Show that the map that sends  1 b−en m + b−b+

0 en b+

0 0 1


to (n, b+, b−,m) is a bijection onto R4.

6. The oscillator group is the unique simply connected Lie group O4 with Lie al-
gebra o4. Identify O4 with R4 on which is defined the following multiplicative
structure.

(n′, b′+, b
′
−,m

′)(n, b+, b−,m) =( n′ + n, b′+ + b+en′ , b′− + b−e−n′ ,

m′ + m − b−b′+e−n′ ).

Finally, we should record, just for reference, how to retrieve the position Q and
momentum P operators from the raising b and lowering b† operators.

Q =

√
~

2mω
(b† + b)

P = i

√
mω~

2
(b† − b)

Remark 7.4.1. There is a very great deal to be said about the quantum harmonic
oscillator and, perforce, we cannot say it all here so we should briefly describe what
we do intend to say. In the remainder of this section we would like to focus on
two issues. The first is a bit of folklore according to which “quantum mechanics
reduces to classical mechanics in the limit as ~ → 0.” This is rather vague, of
course, but it certainly “should” be true, at least in some moral sense. However,
it may not be entirely clear how one would even formulate a precise statement in the
hope of being able to prove it. Are certain quantum mechanical “things” supposed
to approach various classical “things” as ~ → 0? If so, what things? Or perhaps
the entire classical path of the particle is somehow singled out as ~ → 0? There
are many ways to approach this classical limit problem and we will have a look at
just a few, including the famous theorem of Ehrenfest which takes a rather different
approach that does not involve letting ~ → 0. A very thorough and mathematically
rigorous discussion of this problem is available in [Lands]. This done we will turn
our attention to the derivation of a closed form expression for the Schrödinger kernel
of the harmonic oscillator analogous to (7.46) for the free particle. This will again
contain the action of the classical trajectory and will reappear in Chapter 8 when we
turn to the Feynman path integral for the harmonic oscillator.

What kinds of classical and quantum “things” could one reasonably expect to
be able to compare in the limit as ~ → 0? The observables themselves would not
seem to be an obvious choice. Classical observables are real-valued functions on
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phase space so they take a real value at any state (q, p). Quantum observables are
operators on a Hilbert space and these certainly do not take real values at a state
ψ. Notice, however, that in any state ψ any observable A has an expected value
〈A〉ψ = 〈ψ, Aψ〉 representing, roughly, the expected average of a large number of
independent measurements of A in the state ψ and this is a real number associated
with the quantum state. Moreover, even classically one can measure precise values
of observables only “in principle” so that it would seem more physically realistic
to deal with probabilities and expected values. We will now carry out one such
comparison for the harmonic oscillator.

We consider first the classical oscillator with Hamiltonian HCL = 1
2m p2 + mω2

2 q2,
where m and ω are two positive constants, the first being the mass and the second
the angular frequency of the oscillator. The motion of the oscillator is determined
by Hamilton’s equations

q̇ =
∂HCL

∂p
=

1
m

p

ṗ = −
∂HCL

∂q
= −mω2q.

These combine to give q̈(t)+ω2q(t) = 0, the general solution to which can be written
in the form q(t) = A cos (ωt + φ), where A ≥ 0 and φ are constants determined by

A2 = q(0)2 +
q̇(0)2

ω2

and

tan φ =
q(0)ω
q̇(0)

.

The motion is periodic, of course, with period τ = 2π
ω

. The Hamiltonian represents
the total energy E of the system and this is conserved in time so

E = HCL(0) =
1

2m
p(0)2 +

mω2

2
q(0)2 =

m
2

q̇(0)2 +
mω2

2
q(0)2.

From this it follows that

E =
mω2

2
A2

so the classical motion of the oscillator is constrained to the interval

−A = −

√
2E

mω2 ≤ q ≤

√
2E

mω2 = A.

There is nothing new in any of this, of course, but now we would like to write
down the classical probability density function PCL(q) for the position of the os-
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cillator mass (which we will now take to be a point-mass). This is defined by the
property that, for any closed interval J ⊆ [−A, A],∫

J
PCL(q) dq

is the probability that the mass will be found in the interval J at some ran-
domly chosen instant t. For this we will approximate the probability by sums
that can be interpreted as Riemann sums and in such a way that the approxima-
tions become better as the partitions become finer. Begin by choosing a partition
[q0, q1], [q1, q2], . . . , [qn−1, qn] of J and noting that the probability of finding the
mass in J is the sum of the probabilities of finding it in [qi−1, qi] for i = 1, 2, . . . , n.
The probability of finding the mass in [qi−1, qi] is just the ratio of the time it spends
in [qi−1, qi] during one cycle to the total period of the oscillation. If q∗i is any point
in [qi−1, qi] and if we denote by | q̇(q∗i ) | the speed of the mass at q∗i , then the time the
mass spends in [qi−1, qi] during one cycle is approximately

2∆qi

| q̇(q∗i ) |
,

where ∆qi = qi − qi−1 (once in each direction; hence, the factor of 2). Consequently,
the probability of finding the mass in [qi−1, qi] is approximately

2 ∆qi
| q̇(q∗i ) |

τ
=
ω

π

1
| q̇(q∗i ) |

∆qi.

The probability of finding the mass in J is therefore approximately

n∑
i=1

ω

π

1
| q̇(q∗i ) |

∆qi

and so the probability is given precisely by∫
J

ω

π

1
| q̇(q) |

dq.

We conclude that

PCL(q) =
ω

π

1
| q̇(q) |

.

We’ll put this into a more convenient form by noting that the kinetic energy of the
mass is given by K(q) = 1

2 m(q̇(q))2, but also by K(q) = E − mω2

2 q2 so

(q̇(q))2 =
2
m

(E −
mω2

2
q2) =

2
m

(mω2

2
A2 −

mω2

2
q2

)
= ω2(A2 − q2).
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The bottom line is

PCL(q) =
1
π

1√
A2 − q2

.

Notice that ∫ A

−A
PCL(q) dq = 2 lim

T→A−

∫ T

0

1
π

1√
A2 − q2

dq =
2
π

π

2
= 1,

as it should be. PCL(q) therefore defines a probability measure on [−A, A] and, if
f (q) is any measurable function of the position q, its expected value is

〈 f (q)〉E =

∫ A

−A

1
π

f (q)√
A2 − q2

dq (7.50)

(the subscript is to emphasize that the oscillator energy is fixed at E). In particular,
the probability of finding the mass in J is the expected value of its characteristic
function χJ with respect to this probability measure.

Now we look at the corresponding quantum system. Here “corresponding” means
with the same energy. Classically the energy E of the oscillator can assume any non-
negative value, but the energy of the quantum system must be one of the eigenvalues
En = (n + 1

2 )~ω, n = 0, 1, 2, . . . , of the Hamiltonian HB. In order to have a corre-
sponding quantum system at all we must take E to be one of these. Notice, however,
that these eigenvalues depend on ~ and our goal is to take a limit as ~→ 0+. In order
to take such a limit and at the same time keep the energy fixed we select a sequence
~0, ~1, ~2, . . . of positive real numbers such that

(n +
1
2

)~nω = E.

Specifically,

~n =
2E

(2n + 1)ω

so we can accomplish our purpose by taking the limit as n→ ∞. The limit of what,
you may ask. For each eigenvalue (n + 1

2 )~nω there is precisely one normalized
eigenstate

ψn(q) =
1
√

2nn!

(mω
~nπ

)1/4
e−mωq2/2~n Hn

(√mω
~n

q
)

in which this is the measured energy with probability one. If f (q) is a classical
observable we have found its classical expectation value 〈 f (q)〉E in (7.50) and we
would like to compare this with the limit as n → ∞ of the quantum expectation
value of f (Q) in state ψn(q) which we will write as
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〈 f (Q)〉ψn, ~n = 〈ψn, f (Q)ψn〉.

We will write this out explicitly and simplify a bit.

〈 f (Q)〉ψn, ~n = 〈ψn, f (Q)ψn〉 =

∫
R

ψn(q) f (q)ψn(q) dq =

∫
R

f (q) |ψn(q)|2dq

=
1

2nn!

√
mω
~nπ

∫
R

f (q) e−mωq2/~n Hn

(√mω
~n

q
)2

dq

=
1

2nn!

√
mω
~nπ

√
~n

mω

∫
R

f
(√
~n

mω
u
)

e−u2
Hn(u)2 du

Since √
~n

mω
=

√
1

mω
2E

(2n + 1)ω
=

√
2E

(2n + 1)ω2 =
A

√
2n + 1

we have

〈 f (Q)〉ψn, ~n =
1

2nn!
√
π

∫
R

f
( Au
√

2n + 1

)
e−u2

Hn(u)2 du. (7.51)

What we would like to do is show that, at least for sufficiently nice functions f (q),
the quantum expectation value 〈 f (Q)〉ψn, ~n given by (7.51) approaches the classical
expectation value 〈 f (q)〉E given by (7.50) as n → ∞. We will begin by evaluating
the integral ∫ A

−A

1
π

f (q)√
A2 − q2

dq

for some simple choices of f (q). Suppose, for example, that f (q) = cos (pq), where
p is a real parameter. Then∫ A

−A

1
π

cos (pq)√
A2 − q2

dq =
2
π

∫ A

0

cos (pq)√
A2 − q2

dq

and the substitution q = Asin θ turns this into

2
π

∫ π/2

0
cos (pAsin θ) dθ.

Now we recall that the Bessel function of order zero J0(x) has the integral represen-
tation

J0(x) =
2
π

∫ π/2

0
cos (xsin θ) dθ
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for all x ∈ R (there are proofs of this in Sections 4.7 and 4.9 of [AAR]). We conclude
that

〈 cos (pq) 〉E =
2
π

∫ π/2

0
cos (pAsin θ) dθ = J0(pA).

Notice that, for f (q) = sin (pq), the integral is zero since the integrand is odd.
Consequently,

1
π

∫ A

−A

eipq√
A2 − q2

dq = J0(pA).

Remark 7.4.2. For complex-valued functions such as eipq it will be convenient to
write 〈 eipq 〉E for the complex number that is the expected value of the real part plus
i times the expected value of the imaginary part so

〈 eipq 〉E = J0(pA).

Now suppose f (q) is a Schwartz function. Then its Fourier transform f̂ (p) is also
a Schwartz function. Write f (q) as

f (q) = F−1( f̂ (p))(q) =
1
√

2π

∫
R

eipq f̂ (p) dp

and then

〈 f (q) 〉E =
1
π

∫ A

−A

f (q)√
A2 − q2

dq

=
1
π

1
√

2π

∫ A

−A

∫
R

eipq√
A2 − q2

f̂ (p) dp dq.

We apply Fubini’s Theorem to obtain

〈 f (q) 〉E =
1
√

2π

∫
R

(1
π

∫ A

−A

eipq√
A2 − q2

dq
)

f̂ (p) dp

and so

〈 f (q) 〉E =
1
√

2π

∫
R

J0(pA) f̂ (p) dp. (7.52)

Now we’ll start the whole thing over again by looking at 〈 f (Q)〉ψn, ~n when f (q) =

cos (pq). According to (7.51),

〈 cos(pQ) 〉ψn, ~n =
1

2nn!
√
π

∫
R

cos
( pAu
√

2n + 1

)
e−u2

Hn(u)2 du. (7.53)
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Evaluating integrals of this sort is no mean feat and I won’t lie to you; I looked it
up. Item number 7.388 (5) on page 806 of [GR] is∫

R

cos (
√

2 βu) e−u2
Hn(u)2 du = 2nn!

√
π e−β

2/2 Ln(β2) (7.54)

where β ∈ R and Ln is the nth Laguerre polynomial

Ln(x) =

n∑
k=0

(
n
k

)
(−1)k

k!
xk.

With β =
pA
√

4n+2
this gives

〈 cos(pQ) 〉ψn, ~n = exp
(
−

p2A2

8n + 4

)
Ln

( p2A2

4n + 2

)
.

Now we need only take the limit of this as n → ∞. The exponential factor clearly
approaches one, but for the second factor we must appeal to an old result on the
asymptotics of Laguerre polynomials. A special case of Theorem 8.1.3 of [Szegö]
states that

lim
N→∞

LN

( x2

4N

)
= J0(x)

uniformly on compact sets. Consequently,

lim
n→∞

Ln

( p2A2

4n + 2

)
= J0(pA)

and therefore

lim
n→∞
〈 cos(pQ) 〉ψn, ~n = J0(pA) = 〈 cos (pq) 〉E

as we had hoped. Since the integrand is odd, 〈 sin(pQ) 〉ψn, ~n = 0 for every n so

lim
n→∞
〈 sin(pQ) 〉ψn, ~n = 0 = 〈 sin (pq) 〉E .

Combining these two gives

lim
n→∞
〈 eipQ 〉ψn, ~n = J0(pA) = 〈 eipq 〉E .

Finally, we suppose that f (q) is a Schwartz function. We know that 〈 f (q) 〉E is
given by (7.52) and must show that limn→∞ 〈 f (Q) 〉ψn, ~n gives the same result.
Exercise 7.4.2. Show that 〈 f (Q) 〉ψn, ~n can be written in the form
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〈 f (Q) 〉ψn, ~n =
1
√

2π

∫
R

f̂ (p)
( 1
2nn!
√
π

∫
R

eipAu/
√

2n+1 e−u2
Hn(u)2 du

)
dp

=
1
√

2π

∫
R

f̂ (p) 〈 eipQ 〉ψn, ~n dp.

Hint: See the argument leading to (7.52).
Exercise 7.4.3. Show that

∣∣∣ f̂ (p) 〈 eipQ 〉ψn, ~n

∣∣∣ ≤ ∣∣∣ f̂ (p)
∣∣∣ for every n and every p. Hint:

Apply the β = 0 case of (7.54).
Notice that, since f̂ (p) is a Schwartz function,

∣∣∣ f̂ (p)
∣∣∣ is integrable. Moreover,

the sequence f̂ (p) 〈 eipQ 〉ψn, ~n converges pointwise to f̂ (p) J0(pA) as n→ ∞.
Exercise 7.4.4. Use Lebesgue’s Dominated Convergence Theorem to show that

lim
n→∞
〈 f (Q) 〉ψn, ~n =

1
√

2π

∫
R

J0(pA) f̂ (p) dp = 〈 f (q) 〉E .

With this we conclude our admittedly rather modest illustration of what might
be meant by (or at least implied by) the assertion that quantum mechanics reduces
to classical mechanics as ~ → 0. We have shown that, for the harmonic oscillator,
a particularly simple set of quantum expectation values approach the corresponding
classical expectation values as ~ → 0. There are generalizations of this result to
more general systems and observables, one of which centers on the notion of a
(canonical) coherent state (see Section 5.1 of [Lands] for a brief discussion and
numerous references).

Examining the behavior of quantum expectation values as ~ → 0 is not the only
possible approach one might take to somehow “retrieving” classical mechanics from
quantum mechanics. In 1927, Paul Ehrenfest [Ehren] studied the time evolution of
the expectation values of position and momentum for Hamiltonians of the form
− ~

2

2m∆ + V and found that they satisfied the classical equations of motion for the
position and momentum variables, that is, Hamilton’s equations (or, if you prefer,
Newton’s Second Law). This is known in physics as Ehrenfest’s Theorem although
the argument given by Ehrenfest was not a rigorous proof of a theorem in the math-
ematical sense. Nevertheless, Ehrenfest’s argument is so simple and suggestive that
it is well-worth describing without worrying too much about technical hypotheses;
this done we will briefly consider a rigorous version of the theorem. Whether or
not the result can legitimately be regarded as a transition from quantum to classical
mechanics is quite another matter, however, and we will have a few words to say
about that at the end.
Remark 7.4.3. For simplicity we will restrict our discussion to systems with one
degree of freedom. For the record we will also recall, from Section 2.3, the classical
picture of such systems that we are searching for within the formalism of quan-
tum mechanics. The classical configuration space is M = R and the phase space is
T ∗M = R2 with canonical coordinates (q, p). We are given some classical Hamil-
tonian HCL ∈ C∞(T ∗M) and the system evolves along the integral curves of the
Hamiltonian vector field XHCL . If f ∈ C∞(T ∗M) is any classical observable, then its
variation along an integral curve of XHCL is determined by
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d f
dt

= { f ,HCL},

where { , } is the Poisson bracket. In particular, when this is applied to the position
q and momentum p observables, one obtains Hamilton’s equations

q̇ = {q,HCL} =
∂HCL

∂p

and

ṗ = {p,HCL} = −
∂HCL

∂q
.

Now consider a quantum system with Hilbert space H = L2(R). The Hamilto-
nian H is a self-adjoint operator on H and we denote its dense domain D(H). The
time evolution of the system is determined by the abstract Schrödinger equation

dψ(t)
dt

= −
i
~

Hψ(t)

so that

ψ(t) = e−itH/~ψ0,

where ψ0 = ψ(0) is the initial state and e−itH/~ is the 1-parameter group of unitary
operators determined by Stone’s Theorem and H. Now let A be some observable,
that is, a self-adjoint operator on H with dense domain D(A). Under the assump-
tion that ψ0 ∈ D(A) and D(A) is invariant under e−itH/~ for all t we can define the
expectation value of A in state ψ(t) for any t by

〈A〉ψ(t) = 〈ψ(t), Aψ(t) 〉 = 〈 e−itH/~ψ0, Ae−itH/~ψ0 〉.

Replacing the Poisson bracket with the quantum bracket, what we would like to
assert as the statement of Ehrenfest’s Theorem is

d
dt
〈A〉ψ(t) = 〈 −

i
~

[A,H]− 〉ψ(t). (7.55)

The issues here are abundantly clear. Once again we are faced with all of the usual
difficulties associated with the commutator of unbounded operators, but now we
must even make sense of its expected value in each state ψ(t). Furthermore, there
does not appear to be any reason to believe that 〈A〉ψ(t) is a differentiable (or, for that
matter, even continuous) function of t.
Remark 7.4.4. We will address these issues a bit more carefully soon, but let’s pre-
tend for a moment that they do not exist and just compute, as Ehrenfest did.
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d
dt
〈A〉ψ(t) =

d
dt
〈ψ(t), Aψ(t) 〉 = 〈ψ(t), A

dψ(t)
dt
〉 + 〈

dψ(t)
dt

, Aψ(t) 〉 (Product Rule)

= 〈ψ(t), A(−
i
~

Hψ(t)) 〉 + 〈 −
i
~

Hψ(t), Aψ(t) 〉 (Schrödinger Equation)

= −
i
~
〈ψ(t), AHψ(t) 〉 +

i
~
〈Hψ(t), Aψ(t) 〉

= −
i
~
〈ψ(t), AHψ(t) 〉 +

i
~
〈ψ(t),HAψ(t) 〉 (Self-Adjointness of H)

= −
i
~
〈ψ(t), ( AH − HA )ψ(t) 〉

= 〈ψ(t),−
i
~

[A,H]−ψ(t) 〉

= 〈 −
i
~

[A,H]− 〉ψ(t)

This little calculation has all sorts of problems and is certainly not a proof, but
should at least indicate where Ehrenfest’s result might have come from. We would
now like to briefly discuss what can be done to turn it into a rigorous theorem (we
will be sketching some of the ideas in [FrKo] and [FrSc]).

To make rigorous sense of (7.55) one must first see to it that everything in it is
well-defined. H and A are two self-adjoint operators on the Hilbert space H so, in
particular, Stone’s Theorem guarantees that H generates a unique 1-parameter group
of unitary operators e−itH/~, t ∈ R. ψ(t) = e−itH/~ψ0 is the time evolution of some
initial state ψ0 which we must assume is in D(A) in order that 〈 A 〉ψ0 = 〈ψ0, Aψ0 〉

be defined. Furthermore, since 〈 A 〉ψ(t) = 〈ψ(t), Aψ(t) 〉, each ψ(t) must also be in
D(A), that is, D(A) must be invariant under e−itH/~ for every t ∈ R. Notice that
Stone’s Theorem guarantees that D(H) is necessarily invariant under every e−itH/~.

Dealing with 〈 − i
~
[A,H]− 〉ψ(t) requires a bit more thought due to the problematic

nature of [A,H]− for unbounded operators. Suppose first that we have some ψ that
is actually in the domain of [A,H]−. Then

〈ψ, ( AH − HA )ψ 〉 = 〈ψ, AHψ 〉 − 〈ψ,HAψ 〉 = 〈 Aψ,Hψ 〉 − 〈Hψ, Aψ 〉.

Notice that this last expression makes sense for any ψ ∈ D(A) ∩ D(H) so we can
evade the annoying issues associated with the commutator [A,H]− if we define

〈 −
i
~

[A,H]− 〉ψ = −
i
~

[
〈 Aψ,Hψ 〉 − 〈Hψ, Aψ 〉

]
for all ψ ∈ D(A) ∩ D(H). Defined in this way, 〈 − i

~
[A,H]− 〉ψ(t) will make sense if

ψ(t) ∈ D(A) ∩ D(H) for all t, that is, if D(A) ∩ D(H) is invariant under e−itH/~ for
every t ∈ R.

At this stage we know that, provided D(A) ∩D(H) is invariant under e−itH/~ for
every t ∈ R, both 〈 A 〉ψ(t) and 〈 − i

~
[A,H]− 〉ψ(t) will be well-defined for all t in R.

Of course, it is not enough for 〈 A 〉ψ(t) to be well-defined; it must, by (7.55), be
(at least) differentiable as a function of t. Perhaps the most interesting part of this
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story is that our assumption that D(A) ∩ D(H) is invariant under e−itH/~ for every
t ∈ R is already sufficient to guarantee not only the continuous differentiability
of 〈 A 〉ψ(t), but, indeed, the validity of (7.55). All of this depends on the following
rather nontrivial lemma.

Lemma 7.4.1. Let H be a separable, complex Hilbert space, H : D(H) → H a
self-adjoint operator on H and A : D(A) → H a symmetric, closed operator on
H. Assume that D(A) ∩D(H) is invariant under e−itH/~ for all t ∈ R. Then, for any
ψ0 ∈ D(A) ∩D(H),

sup
t∈I

∥∥∥ Ae−itH/~ψ0
∥∥∥ < ∞

for any bounded interval I ⊂ R.

This is Proposition 2 of [FrSc] where one can find a detailed proof. We will
simply show how it is used to prove the following rigorous version of Ehrenfest’s
Theorem.

Theorem 7.4.2. (Ehrenfest’s Theorem) Let H be a separable, complex Hilbert
space and let H : D(H) → H and A : D(A) → H be self-adjoint operators on
H. Let e−itH/~, t ∈ R, be the 1-parameter group of unitary operators generated by
H and assume that D(A) ∩ D(H) is invariant under e−itH/~ for all t ∈ R. For any
ψ0 ∈ D(A) ∩D(H) let ψ(t) = e−itH/~ψ0 for each t ∈ R and define

〈 A 〉ψ(t) = 〈ψ(t), Aψ(t) 〉

for each t ∈ R. Then 〈 A 〉ψ(t) is a continuously differentiable real-valued function of
the real variable t and satisfies

d
dt
〈A〉ψ(t) = 〈 −

i
~

[A,H]− 〉ψ(t),

where

〈 −
i
~

[A,H]− 〉ψ(t) = −
i
~

[
〈 Aψ(t),Hψ(t) 〉 − 〈Hψ(t), Aψ(t) 〉

]
for all t ∈ R.

We will show how this is proved from Lemma 7.4.1 by considering

d
dt
〈A〉ψ(t) =

d
dt
〈ψ(t), Aψ(t) 〉 = lim

∆t→0

〈ψ(t + ∆t), Aψ(t + ∆t) 〉 − 〈ψ(t), Aψ(t) 〉
∆t

.

Exercise 7.4.5. Show that

〈ψ(t + ∆t), Aψ(t + ∆t) 〉 − 〈ψ(t), Aψ(t) 〉
∆t

=〈 Aψ(t + ∆t),
ψ(t + ∆t) − ψ(t)

∆t
〉

+ 〈
ψ(t + ∆t) − ψ(t)

∆t
, Aψ(t) 〉. (7.56)
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Exercise 7.4.6. Use Lemma 5.5.9 to show that

lim
∆t→0

ψ(t + ∆t) − ψ(t)
∆t

= −
i
~

Hψ(t),

where the limit is in H.
Consequently, for the limit of the second term in (7.56) we obtain

lim
∆t→0
〈
ψ(t + ∆t) − ψ(t)

∆t
, Aψ(t) 〉 =

i
~
〈Hψ(t), Aψ(t) 〉.

The first term in (7.56) uses Lemma 7.4.1 and takes just a bit more work. Notice
first that it will suffice to show that

Aψ(t + ∆t)→ Aψ(t) weakly in H (7.57)

as ∆t → 0 since then the first term in (7.56) approaches

−
i
~
〈 Aψ(t),Hψ(t) 〉

and therefore

lim
∆t→0

〈ψ(t + ∆t), Aψ(t + ∆t) 〉 − 〈ψ(t), Aψ(t) 〉
∆t

= −
i
~

[
〈 Aψ(t),Hψ(t) 〉 − 〈Hψ(t), Aψ(t) 〉

]
as required. Our task then is to prove (7.57).
Remark 7.4.5. We will need to borrow another result from functional analysis. The
following is Theorem 1, Chapter V, Section 2, page 126, of [Yosida].

Theorem 7.4.3. Let B be a separable, reflexive Banach space (in particular, a sep-
arable Hilbert space). Let {xn}

∞
n=1 be any sequence in B that is norm bounded. Then

there is a subsequence {xnk }
∞
k=1 of {xn}

∞
n=1 that converges weakly to some element of

B.

To prove (7.57) we fix a t ∈ R and choose an arbitrary sequence {∆tn}∞n=1 of
real numbers converging to zero. Since Aψ(t + ∆tn) = Ae−i(t+∆tn)H/~ψ0 and since we
can choose a bounded interval I containing all of the t + ∆tn, Lemma 7.4.1 implies
that {Aψ(t + ∆tn)}∞n=1 is norm bounded. Theorem 7.4.3 then implies that there is a
subsequence {Aψ(t + ∆tnk )}

∞
k=1 of {Aψ(t + ∆tn)}∞n=1 that converges weakly to some f

in H. We claim that f must be Aψ(t). Since D(A) is dense in H, it will suffice to
show that 〈 f , φ 〉 = 〈 Aψ(t), φ 〉 for every φ ∈ D(A). This is proved by the following
calculation, which uses (in order) the weak convergence of {Aψ(t + ∆tnk )}

∞
k=1, the

self-adjointness of A, the continuity of ψ(t) in t, the fact that ψ(t) ∈ D(A) for all
t ∈ R, and then self-adjointness again.

〈 f , φ 〉 = lim
k→∞
〈 Aψ(t + ∆tnk ), φ 〉 = lim

k→∞
〈ψ(t + ∆tnk ), Aφ 〉 = 〈ψ(t), Aφ 〉 = 〈 Aψ(t), φ 〉
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Thus, for any sequence ∆tn → 0, {Aψ(t + ∆tn)}∞n=1 contains subsequences that con-
verge weakly and all of these must converge to Aψ(t).
Exercise 7.4.7. Show from this that Aψ(t+∆t)) converges weakly to Aψ(t) as ∆t → 0.

This completes the proof of (7.57) so we have shown, modulo Lemma 7.4.1, that
〈 A 〉ψ(t) is a differentiable function of t and satisfies

d
dt
〈 A 〉ψ(t) = −

i
~

[
〈 Aψ(t),Hψ(t) 〉 − 〈Hψ(t), Aψ(t) 〉

]
.

Exercise 7.4.8. Show that

d
dt
〈 A 〉ψ(t) =

2
~

Im 〈 Aψ(t),Hψ(t) 〉

and use this and what we have proved above to show that 〈 A 〉ψ(t) is continuously
differentiable as a function of t, thereby completing the proof of Ehrenfest’s Theo-
rem.
Remark 7.4.6. Ehrenfest’s Theorem is intuitively very appealing and, at first glance,
seems to provide a rather direct link between quantum and classical mechanics. One
can argue, however, that the link is somewhat illusory. To say that the expected value
of the position observable satisfies the classical equation for position does not in any
way imply that there is some sort of “particle” traversing a classical path. Even so,
in some circumstances it is possible to obtain from Ehrenfest’s Theorem more con-
vincing quantum-classical associations (see, for example, [SDBS]). Perhaps a more
physically persuasive statement might be something like the following. Suppose
that a wave function ψ initially (at t = 0, say) has an expected value of position that
is “close” in some sense to the classical position at t = 0, that is, |ψ(q, 0)|2 peaks
sharply at this point. Let the system evolve under some Hamiltonian H from ψ(q, 0)
at t = 0 to ψ(q,T ) = e−iT H/~ψ(q, 0) at t = T . Then, as ~ → 0, |ψ(q,T )|2 will peak
sharply at the position of the classical particle at time T . We should emphasize that
this is not a rigorous theorem, but one can find a heuristic discussion in terms of path
integrals (which we will discuss in Chapter 8) on page 19 of [Schul]. The bottom
line here is that the precise relationship between quantum and classical mechanics
has not been settled to everyone’s (anyone’s?) satisfaction and remains a topic of
much discussion.

We will conclude this section by deriving an explicit, closed-form expression for
the Schrödinger kernel (propagator) for the harmonic oscillator. There are a number
of ways to go about this (see [BB-FF]). Here we will give a direct argument based
on the representation we already have available (see (7.49)). The most common pro-
cedure in the physics literature is to evaluate Feynman’s path integral representation
for the propagator and we will return to this in Section 8.3.

To ease the notation a bit we will take t0 = 0 and write (7.49) as

K(q, t; x, 0) =

∞∑
n=0

e−i(n+ 1
2 )ωtψn(q)ψn(x).
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Recall from the discussion following (6.14) that K(q, t; x, 0) is interpreted as the con-
ditional probability amplitude of finding the particle at q at time t if it was detected
at x at time 0. Our computations will show that, for fixed x and q, this amplitude
acquires a discontinuous phase change as t passes through a value for which ωt is an
integer multiple of π. These phase shifts, called Maslov corrections, have observable
physical effects (see [Horv]). To exhibit this behavior most clearly we will begin by
assuming that ωt is not an integer multiple of π and let

κ =

⌊
ωt
π

⌋
denote the greatest integer less than ωt

π
. We can then find a unique τ satisfying 0 <

ωτ < π with

ωt = κπ + ωτ.

With this the propagator becomes

K(q, t; x, 0) = e−i( π2 )κ
∞∑

n=0

e−inκπe−i(n+ 1
2 )ωτψn(q)ψn(x).

Now notice that the oscillator eigenfunctions ψn(x) satisfy ψn(−x) = (−1)nψn(x) so

e−inκπψn(x) = (−1)nκψn(x) = ((−1)k)nψn(x) = ψn((−1)κx)

and therefore

K(q, t; x, 0) = e−i( π2 )κ
∞∑

n=0

e−i(n+ 1
2 )ωτ ψn(q)ψn((−1)κx).

Now we rewrite the eigenfunctions as follows. With u =
√

mω
~

q,

ψn(q) =
1
√

2nn!

(mω
~π

)1/4
e−u2/2Hn(u),

and, with v = (−1)κ
√

mω
~

x,

ψn((−1)κx) =
1
√

2nn!

(mω
~π

)1/4
e−v2/2Hn(v).

Consequently,

ψn(q)ψn((−1)κx) =

√
mω
~π

e−
1
2 (u2+v2) Hn(u)Hn(v)

2nn!

and therefore
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K(q, t; x, 0) =

√
mω
~π

e−
1
2 (iωτ+u2+v2) e−i( π2 )κ

∞∑
n=0

Hn(u)Hn(v)
2nn!

(e−iωτ)n. (7.58)

At this point we need to appeal to an old result of Mehler which essentially provides
a generating function for Hn(u)Hn(v)

2nn! .

Theorem 7.4.4. (Mehler’s Formula) Let Hn be the nth-Hermite polynomial and sup-
pose u and v are fixed real numbers. Then for z ∈ C with |z| < 1,

∞∑
n=0

Hn(u)Hn(v)
2nn!

zn =
1

√
1 − z2

exp
(2uvz − (u2 + v2)z2

1 − z2

)
.

The usual reference is [Watson] which contains three proofs; another is available
in [Iyen]. This is not quite good enough for our purposes, however. The radius of
convergence of the series expansion in Mehler’s formula is 1 and the expansion is
obviously not valid at z = ±1 on the real line. As it happens, it is valid everywhere
else on the unit circle and this is what we need. This follows at once from another old
result in analysis called Tauber’s Theorem (one can find a proof of this in Hardy’s
classic monograph [Hardy]).

Theorem 7.4.5. (Tauber’s Theorem) Suppose f (z) =
∑∞

n=0 anzn on the open unit
disc |z| < 1. Assume that

1. nan → 0 as n→ ∞, and
2. for some fixed θ, f (reiθ) approaches a finite limit L as r → 1−.

Then
∑∞

n=0 an(eiθ)n = L.

Exercise 7.4.9. Show that Tauber’s Theorem implies that Mehler’s Formula is valid
for all z ∈ C with |z| ≤ 1 except z = ±1.

Now recall that ωτ satisfies 0 < ωτ < π so e−iωτ , ±1. Thus, we can substitute
e−iωτ into Mehler’s Formula.

∞∑
n=0

Hn(u)Hn(v)
2nn!

(e−iωτ)n =
1

√
1 − e−2iωτ

exp
(2uve−iωτ − (u2 + v2)e−2iωτ

1 − e−2iωτ

)
=

1
√

1 − e−2iωτ
exp

(
2uv

e−iωτ

1 − e−2iωτ − (u2 + v2)
e−2iωτ

1 − e−2iωτ

)
(7.59)

Exercise 7.4.10. Show that

1
√

1 − e−2iωτ
=

e
1
2ωτie−

π
4 i

√
2 sinωτ

,

e−iωτ

1 − e−2iωτ = −
i

2 sinωτ
,
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and

e−2iωτ

1 − e−2iωτ = −
i cosωτ
2 sinωτ

−
1
2
.

Substituting these into (7.59) and simplifying a bit gives

∞∑
n=0

Hn(u)Hn(v)
2nn!

(e−iωτ)n =

e
1
2 (ωτi+u2+v2) e−

π
4 i

√
2 sinωτ

exp
( i

2 sinωτ

(
(u2 + v2)cosωτ − 2uv

) )
. (7.60)

Now notice that sinωτ = |sinωt| = (−1)κsinωt and cosωτ = (−1)κcosωt and recall
that u =

√
mω
~

q, v = (−1)κ
√

mω
~

x, and κ = bωt
π
c.

Exercise 7.4.11. Combine (7.60) and (7.59) to obtain the Feynman-Souriau Formula
for the propagator

K(q, t; x, 0) =√
mω

2π~ |sinωt|
e−i( π

2 )( 1
2 +b ωt

π c ) exp
( i
~

mω
2 sinωt

[
(q2 + x2) cosωt − 2qx

])
(7.61)

which is valid whenever ωt is not an integer multiple of π.
Remark 7.4.7. As usual, if the initial state is specified at t = t0 rather than t = 0, the
propagator K(q, t; x, t0) is given by the Feynman-Souriau formula with t replaced by
T = t − t0. As we did for the free particle, we would like to record this for future
reference with (q, t) and (x, t0) replaced by (qb, tb) and (qa, ta), respectively, Letting
T = tb − ta we have

K(qb, tb; qa, ta) =√
mω

2π~ |sinωT |
e−i( π

2 )( 1
2 +b ωT

π c ) exp
( i
~

mω
2 sinωT

[
(q2

a + q2
b) cosωT − 2qaqb

] )
(7.62)

which is valid whenever ωT is not an integer multiple of π.
Exercise 7.4.12. Show that, as ω → 0, the harmonic oscillator propagator (7.62)
approaches the free particle propagator (7.46).
Remark 7.4.8. A few remarks are in order. Feynman first derived a formula for the
propagator by evaluating a path integral (see Section 8.3), but his result was less
general than (7.61) in that it did not contain the absolute value symbol around sinωt
nor the bωt

π
c in the exponential factor, that is, it was valid only when 0 < ωt < π.

Souriau was the first to extend Feynman’s result to obtain (7.61), but the proof we
have given is modeled on [LGM].
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The significance of the term bωt
π
c in (7.61) is quite clear. For a fixed q and x,

when t increases through a value for which ωt is a multiple of π, bωt
π
c increases by

1 and K(q, t; x, 0) acquires an additional phase factor of e−i( π2 ). This is the Maslov
correction referred to earlier. It occurs abruptly as t passes through such a value
and, as we mentioned earlier, it has physical effects which have been observed,
for example, in optics. Points at which such a Maslov correction occurs are called
caustics in physics.

Finally, we would like to draw your attention to the term

S (q, t; x, 0) =
mω

2 sinωt
[
(q2 + x2) cosωt − 2qx

]
in (7.61). You will want to compare this with the result of Exercise 2.2.4 for the
action of the classical harmonic oscillator along a solution curve. We will see in
Chapter 8 that the appearance of the classical action in the quantum propagator is a
key insight into the Feynman path integral approach to quantum mechanics. Just for
the record, we will rewrite (7.61) as

K(q, t; x, 0) =

√
mω

2π~ |sinωt|
e−i( π

2 )( 1
2 +b ωt

π c ) e
i
~ S (q,t;x,0).

Example 7.4.1. Suppose that, at t = 0, the initial wave function is the harmonic
oscillator ground state

ψ0(q) =
4

√
mω
~π

e−mωq2/2~. (7.63)

Note that

|ψ0(q)|2 =

√
mω
~π

e−mωq2/~ (7.64)

which is just a Gaussian probability distribution centered at q = 0. We will compute
the time evolution of this state, assuming for simplicity that 0 < ωt < π.
Exercise 7.4.13. You should know what the result of this calculation will be so jot
it down and check to see that we get it right. Hint: Remark 6.2.20.

Now,

ψ(q, t) =

∫
R

K(q, t; x, 0)ψ0(x) dx =

4

√
mω
~π

√
mω

2π~ sinωt
e−πi/4

∫
R

exp
( imω

2~ sinωt
[
(q2 + x2)cosωt − 2qx

]
−

mω
2~

x2
)

dx.

One can actually evaluate this Gaussian integral by noting that
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imω
2~ sinωt

[
(q2 + x2)cosωt − 2qx

]
−

mω
2~

x2 =
imωeiωt

2~ sinωt
[

x − e−iωt q
]2
−

mω
2~

q2.

(7.65)

Indeed,

imωeiωt

2~ sinωt
[

x−e−iωt q
]2
−

mω
2~

q2 =
imω

2~ sinωt
[

x2eiωt − 2qx + e−iωtq2 ]
−

mω
2~

q2

=
imω

2~ sinωt
[
(q2 + x2)cosωt − 2qx + i(x2 − q2)sinωt

]
−

mω
2~

q2

=
imω

2~ sinωt
[
(q2 + x2)cosωt − 2qx

]
−

mω
2~

(x2 − q2) −
mω
2~

q2

=
imω

2~ sinωt
[
(q2 + x2)cosωt − 2qx

]
−

mω
2~

x2.

To compute the integral we write it as follows.∫
R

exp
( imω

2~ sinωt
[
(q2 + x2)cosωt − 2qx

]
−

mω
2~

x2
)

dx

=

∫
R

exp
( imωeiωt

2~ sinωt
[

x − e−iωt q
]2
−

mω
2~

q2
)

dx

= e−mωq2/2~
∫
R

exp
( imωeiωt

2~ sinωt
[

x − e−iωt q
]2

)
dx

= e−mωq2/2~
∫
R

e−a(x−b)2/2dx

=

√
2π
a

(see (A.6) in Appendix A)

where √ means the principal branch of the square root function,

a =
mω
~

( 1 − i cotωt ),

and

b = e−iωtq.

Exercise 7.4.14. Show that√
2π
a

=

√
2π~ sinωt

mω
eπi/4e−iωt/2.

Thus,
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R

exp
( imω

2~ sinωt
[
(q2 + x2)cosωt − 2qx

]
−

mω
2~

x2
)

dx =

e−mωq2/2~

√
2π~ sinωt

mω
eπi/4e−iωt/2.

Putting this all together we obtain

ψ(q, t) =
4

√
mω
~π

√
mω

2π~ sinωt
e−πi/4

(
e−mωq2/2~

√
2π~ sinωt

mω
eπi/4e−iωt/2

)
= e−iωt/2ψ0(q).

The result of this calculation is no surprise, of course, since the ground state ψ0(q)
is a stationary state of the harmonic oscillator and so can change only in phase (see
Remark 6.2.20). Nevertheless, the calculation was a nice warm-up for something
that is a bit surprising and quite interesting.
Exercise 7.4.15. Suppose that, at t = 0, the initial wave function is the ground state
translated to the right by some a > 0, that is,

ψ0(q − a) =
4

√
mω
~π

e−mω(q−a)2/2~.

Then

|ψ0(q − a) |2 =

√
mω
~π

e−mω(q−a)2/~

is a Gaussian probability distribution centered at q = a. Show that the time evolution
is given by

ψ(q, t) =
4

√
mω
~π

e−iωt/2 exp
(
−

imω
2~

(2aq sinωt −
a2

2
sin 2ωt)

)
·

exp
(
−

mω
2~

(q − a cosωt)2
)
.

The phase admittedly evolves in a rather complicated fashion, but notice that

|ψ(q, t) |2 =

√
mω
~π

exp
(
−

mω
~

(q − a cosωt)2
)

and this is simply another Gaussian probability distribution, but centered at

q = a cosωt

which oscillates back and forth in precisely the same way as the classical harmonic
oscillator. Hint: The identity you will need in place of (7.65) is
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imω
2~ sinωt

[
(q2 + x2) cosωt − 2qx

]
−

mω
2~

(x − a)2 =

imωeiωt

2~ sinωt
[

x−ie−iωt (a sinωt − iq)
]2
−

mω
2~

(q2 − 2aqe−iωt + a2 e−iωt cosωt).

As we did for the free particle in Section 7.3, one generally takes the initial state
to be specified at t = 0 (rather than some t0 > 0) and then suppresses the “0” from
the notation. Here we will define

KB(q, x, t) = K(q, t; x, 0).

One can then prove analogues of Exercise 7.3.7 and (7.48) to the effect that
KB(q, x, t) is a fundamental solution to the harmonic oscillator equation and also
satisfies the group property with respect to t expressed in Exercises 7.3.8 and 7.3.9.





Chapter 8
Path Integral Quantization

8.1 Introduction

Quantum mechanics, as we have viewed it so far, is a theory of self-adjoint op-
erators on a Hilbert space and is modeled on the Hamiltonian picture of classical
mechanics. Paul Dirac, who viewed Lagrangian mechanics as more fundamental
than Hamiltonian, took the first steps toward a Lagrangian formulation of quan-
tum theory in [Dirac3]. Dirac’s suggestions were taken up by Richard Feynman
in his Princeton Ph.D. thesis (see [Brown]), the result being what is known today
as the Feynman path integral formulation of quantum theory. Initially, Feynman’s
approach to quantum mechanics was largely ignored, but it was not long before
physicists came around to Feynman’s point of view and today path integrals are
standard operating procedure in quantum mechanics, and even more so in quantum
field theory. Not surprisingly, the literature on the subject is vast. The applications
in physics are ubiquitous and the mathematical problem of making some rigorous
sense of Feynman’s “integrals” (which are not integrals at all in the usually accepted
mathematical sense) has received an enormous amount of attention. As always, our
objective here is exceedingly modest. We will try to give some sense of what is
behind Feynman’s idea and why the idea is so difficult to turn into precise mathe-
matics. We will provide detailed computations of the two simplest cases (the path
integral representations of the propagators for the free quantum particle and the har-
monic oscillator). This done we will briefly discuss how one might go about dealing
with path integrals rigorously. By way of compensation for the modesty of our goals
we will try to provide ample references to more serious discussions. Here are a few
general sources. One can find Feynman’s thesis and a discussion of it in [Brown];
his first published paper on the subject is [Feyn] which is very readable and highly
recommended. For a physics-oriented discussion of the path integral and many ap-
plications a standard reference is [Schul], but [Fels] might be more congenial for
mathematicians. There is a nice, brief survey of various approaches to a rigorous
definition of the path integral in [Mazz1] and a great many more details in [AHM],

349
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[JL], and [Simon2]; also highly recommended is the paper [Nel3] of Edward Nel-
son.

We have a number of ways of thinking about the propagator of a quantum me-
chanical system. It is the integral kernel of the evolution operator. It is also the
fundamental solution to the Schrödinger equation. Physically, K(qb, tb; qa, ta) is the
probability amplitude for detecting a particle at qb at time tb given that it is known to
have been detected at qa at time ta. We have already computed two examples explic-
itly and in the next two sections we will compute them again, but the procedure will
be very different indeed. To understand the rationale behind Feynman’s new per-
spective on quantum mechanics we will begin with a brief recap of our discussion
of the 2-slit experiment in Section 4.4.

Fig. 8.1 2-Slit Experiment

The lessons we learned from this experiment are essentially those enumerated by
Feynman in Section 1-7, Volume III, of [FLS].

1. Because of the wave-like attributes of particles in quantum mechanics (de Broglie
waves) and the resultant interference effects, the probability P that a particular
event (such as the arrival of an electron at some location on a screen) will occur
is represented as the squared modulus P = |ψ|2 of a complex number ψ called the
probability amplitude of the event.

2. When there are several classical alternatives for the way in which the event can
occur and no measurements are made on the system, the probability amplitude of
the event is the sum of the probability amplitudes for each alternative considered
separately. In particular, if there are two possibilities with amplitudes ψ1 and ψ2
and probabilities P1 = |ψ1|

2 and P2 = |ψ2|
2, then the probability amplitude of the

event is ψ1 + ψ2 and the probability of the event is

|ψ1 + ψ2|
2 = |ψ1|

2 + |ψ2|
2 + 2 Re(ψ1ψ2).

The last term represents the effect of interference.
3. When a measurement is made to determine whether one or another of the classi-

cal alternatives in (2) is actually taken the interference is lost and the probability
of the event is the sum of the probabilities for each alternative taken separately.
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In Section 4.4 the appearance of an interference pattern in the 2-slit experiment
was explained (qualitatively, at least) by considering the two classical paths from the
electron source S , through one of the slits and on to a point X on the screen, view-
ing each as having a certain probability amplitude and appealing to (2). Feynman’s
rather remarkable idea in [Brown] and [Feyn] was that not only these two paths, but
every continuous path from the source to one of the slits and then on to the point
on the screen must contribute to the probability amplitude; not just the “reasonable”
ones either, but all of them, even the crazy ones (see Figure 8.2).

Fig. 8.2 A Few Crazy Paths

This may sound outlandish at first, but really it is not at all. Indeed, Feynman
was led by this seemingly simple experiment to a vastly more general conclusion.
His reasoning goes something like this. Consider an electron that is emitted (or just
detected) at some point S . The electron wants to get to another point X. What is
the probability amplitude that it will be able to do this? If there were a wall W
with two slits between S and X, then there would be contributions to the amplitude
from (at least) the two piecewise linear paths from S , through one of the slits, and
on to X. If the wall had 3 slits instead of 2, we would have to sum 3 amplitudes
instead of 2, one for each of the 3 piecewise linear paths from S to one of the
slits and then on to the point X in question. If the wall had n1 slits we would sum
amplitudes over n1 piecewise linear paths, each consisting of 2 linear segments. But
now suppose that there are two walls W1 and W2 instead of just one, the first with
n1 slits and the second with n2 slits. These determine n1n2 piecewise linear paths
from S to our point X, each consisting of three linear segments and each with an
amplitude that contributes to the total amplitude for getting from S to X. If there are
m walls W1,W2, . . . ,Wm with n1, n2, . . . , nm slits, respectively, then we would sum
amplitudes over n1n2 · · · nm piecewise linear paths from S to X, each with m + 1
linear segments. Now for the good part. As m, n1, n2, . . . nm become very large, the
walls fill up the space between S and X, the slits drill virtually everything out of the
walls and the piecewise linear paths acquire more and more, but smaller and smaller
linear segments. Since any continuous path from S to X is a uniform limit of such
piecewise linear paths, Feynman concludes that, in the limit, there are no walls and
no slits so the electron is moving through empty space and every continuous path
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contributes to the amplitude. Very pretty! Returning to the 2-slit experiment itself,
everything is exactly the same except there is one fixed, immutable wall W with 2
slits between S and X and we simply carry out Feynman’s argument between S and
W and between W and X, that is, we consider only paths that go through the 2 slits
in W. The question left unresolved by all of this , of course, is precisely how does
each such path “contribute” to the probability amplitude?

The task then would be to assign a probability amplitude to every such continuous
path and somehow “add” them. How these amplitudes should be assigned is not so
clear and even less clear how one is to “add” so many of them. We will try to
supply some general motivation in the remainder of this section and then move on
to the explicit examples in Sections 8.2 and 8.3. Not all of us are motivated by the
same sort of reasoning, of course. Feynman himself arrived at his path integral by
way of physical arguments and an inspired guess due to Dirac. In hindsight, there
are other approaches more likely to appeal to mathematicians. It is our feeling that
one should see both of these so we will sketch both. In deference to our intended
audience, however, we will begin with the one that is likely to be most congenial to
mathematicians (the idea is due to Nelson [Nel3]).

We should be clear on the problem we want to address. We will generally con-
sider only quantum systems with one degree of freedom. The Hilbert space is
H = L2(R) and we will assume the Hamiltonian is of the form

H = H0 + V = −
~2

2m
∆ + V = −

~2

2m
d2

dq2 + V,

where V is some real-valued function on R that acts on L2(R) as a multiplication
operator.

Remark 8.1.1. We know that H0 = − ~
2

2m∆ is defined and self-adjoint on D(H0) ={
ψ ∈ L2(R) : ∆ψ ∈ L2(R)

}
, where ∆ is understood in the distributional sense, and

that V is defined and self-adjoint on D(V) =
{
ψ ∈ L2(R) : Vψ ∈ L2(R)

}
, where

(Vψ)(q) = V(q)ψ(q) for every q ∈ R. Now, the sum of two bounded self-adjoint
operators is self-adjoint ((A + B)∗ = A∗ + B∗ = A + B), but this is generally not true
for unbounded operators where even the “sum” itself could be problematic. On the
other hand, we really need H = H0 + V to be self-adjoint since otherwise it would
not give rise to the evolution operator e−itH/~ that describes the dynamics (this is
Stone’s Theorem 5.5.10) . An enormous amount of work in quantum mechanics has
been and still is devoted to the problem of determining conditions on the potential
V sufficient to ensure the self-adjointness of H0 + V . We will have a very brief look
at just a few such results in Section 8.4.2. We point out, however, that the case of
real interest to us is the harmonic oscillator potential V = mω2

2 q2 and for this we
have already proved the self-adjointness of HB = H0 + V . For the remainder of this
Introduction we will simply assume that we are dealing with a potential V for which
H0 + V is essentially self-adjoint on D(H0) ∩D(V).

What we cannot assume, however, is that H0 and V commute and this is the
first obstacle in our path. Life would be very simple if they did commute for then
the evolution operator e−itH/~ = e−it(H0+V)/~ would be just e−itH0/~ e−itV/~ and this we
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know all about. What will get us over this obstacle is the famous Lie-Trotter-Kato
Product Formula, sometimes called just the Trotter Product Formula.

Theorem 8.1.1. (Lie-Trotter-Kato Product Formula) Let A and B be self-adjoint
operators on the complex, separable Hilbert space H. If A + B is essentially self-
adjoint on D(A + B) = D(A) ∩D(B), then, for every ψ ∈ H and each t ∈ R,

e−it (A+B)ψ = lim
n→∞

( (
e−i( t

n )A e−i( t
n )B )n

ψ
)
,

where (A + B) is the (self-adjoint) closure of A + B and the limit is in H. Stated
otherwise, e−it (A+B) is the strong limit of

(
e−i( t

n )A e−i( t
n )B )n as n → ∞. Furthermore,

the limit is uniform in t on all compact subsets of R.

The proof of this when either H is finite-dimensional, or it is infinite-dimensional
and A and B are bounded is straightforward (see Theorem VIII.29 of [RS1]). When
the operators are unbounded and A + B is actually self-adjoint on D(A) ∩ D(B) a
proof takes a bit more work, but a concise one can be found in Theorem VIII.30 of
[RS1] or Appendix B of [Nel3]. Assuming only that A + B is essentially self-adjoint
on D(A) ∩ D(B) necessitates a rather different sort of argument and for this one
might want to consult [Ch] or Corollary 11.1.6 of [JL].
Remark 8.1.2. There is a generalization of Theorem 8.1.1 in the context of what are
called “contractive semigroups of operators” on Banach spaces and their “infinites-
imal generators”. We will need to discuss this when we consider the Feynman-Kac
Formula in Section 8.4.3; see Remark 8.4.43.

Our objective is to motivate Feynman’s path integral representation for the prop-
agator of the time evolution associated with H = H0 + V . This propagator is the
integral kernel of the time evolution operators. More precisely, it is a function
K(q, t; x, t0) defined by the condition that, for any fixed t0, if ψ is the solution to
the Schrödinger equation for H0 + V with initial state ψ( · , t0), then

ψ(q, t) =

(
e−(i/~)(t−t0)(H0+V) ψ( · , t0)

)
(q) =

∫
R

K(q, t; x, t0)ψ(x, t0) dx

(for the purpose of motivation we will assume that ψ(x, t0) is very nice, say, a
Schwartz function). Intuitively, the amplitude ψ(q, t) for detecting the particle at
location q at time t is a (continuous) “sum” of weighted amplitudes ψ(x, t0) as x
varies over all of the possible locations of the particle time t0, the weight being the
propagator K(q, t; x, t0). The procedure will be to write out the limit in

ψ(q, t) = lim
n→∞

( (
e−(i/~)( t−t0

n )H0 e−(i/~)( t−t0
n )V )n

ψ( · , t0)
)

(q) =

∫
R

K(q, t; x, t0)ψ(x, t0) dx

explicitly and try to read off K(q, t; x, t0).
It will streamline the development a bit if we adopt a few notational changes.

First, let’s fix two real numbers ta < tb. The time evolution of the system defines a
curve in H = L2(R) which we will write as

{
ψt

}
t∈R. We will specify the initial state
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ψta = ψ(·, ta) at time ta. For our application of the Lie-Trotter-Kato Product Formula
we will begin by computing, from (e−(i/~)(tb−ta)V )ψ(· , ta) = e−(i/~)(tb−ta)V(·)ψ(· , ta) and
from (7.46), that

(
e−(i/~)(tb−ta)H0 e−(i/~)(tb−ta)Vψ(· , ta)

)
(qb) =

∫
R

K(qb, tb; x, ta)
[
e−(i/~)(tb−ta)V(x)ψ(x, ta)

]
dx

=

( m
2πi~(tb − ta)

) 1
2
∫
R

e
i
~

m
2

(qb−x)2

tb−ta e−
i
~ (tb−ta)V(x) ψ(x, ta) dx

=

( m
2πi~(tb − ta)

) 1
2
∫
R

e
i
~

[
m
2

( qb−x
tb−ta

)2
−V(x)

]
(tb−ta)

ψ(x, ta) dx.

Remark 8.1.3. Once we get beyond the motivational stage we will want to keep in
mind that, when ψta is a general element of L2(R) and not necessarily a Schwartz
function, this integral must be thought of as an integral in the mean (Theorem 7.3.1).

Now we return to the interval [t0, t]. Fix a positive integer n and subdivide the
interval into n equal subintervals with endpoints t0 < t1 = t0 + ∆t < t2 = t1 + ∆t <
· · · < tn−1 < tn = tn−1 + ∆t = t, where ∆t =

t−t0
n . Apply the formula we just derived

to the interval [ta, tb] = [t0, t1] and write, instead of x and qb, q0 and q1, respectively.
The result is

(
e−(i/~)(t1−t0)H0 e−(i/~)(t1−t0)Vψ(·, t0)

)
(q1) =( m

2πi~(t1 − t0)

) 1
2
∫
R

e
i
~

[
m
2

( q1−q0
t1−t0

)2
−V(q0)

]
(t1−t0)

ψ(q0, t0) dq0,

or

(
e−(i/~)∆tH0 e−(i/~)∆tVψ(·, t0)

)
(q1) =

( m
2πi~∆t

) 1
2
∫
R

e
i
~

[
m
2

( q1−q0
∆t

)2
−V(q0)

]
∆t ψ(q0, t0) dq0.

Next we compute

( (
e−(i/~)∆tH0 e−(i/~)∆tV )2

ψ(t0, ·)
)
(q2) =(

e−(i/~)(t2−t1)H0 e−(i/~)(t2−t1)V )(
e−(i/~)(t1−t0)H0 e−(i/~)(t1−t0)Vψ(t0, ·)

)
(q2) =( m

2πi~∆t

) 2
2
∫
R

e
i
~

[
m
2

( q2−q1
∆t

)2
−V(q1)

]
∆t

∫
R

e
i
~

[
m
2

( q1−q0
∆t

)2
−V(q0)

]
∆t ψ(t0, q0) dq0 dq1 =( m

2πi~∆t

) 2
2
∫
R

∫
R

e
i
~

[[
m
2

( q2−q1
∆t

)2
−V(q1)

]
∆t +

[
m
2

( q1−q0
∆t

)2
−V(q0)

]
∆t
]
ψ(t0, q0) dq0 dq1 =( m

2πi~∆t

) 2
2
∫
R

∫
R

e
i
~

∑2
k=1

[
m
2

( qk−qk−1
∆t

)2
−V(qk−1)

]
∆t ψ(t0, q0) dq0 dq1

Continuing inductively in this way we arrive at



8.1 Introduction 355( (
e−(i/~)∆tH0 e−(i/~)∆tV )n

ψ(t0, ·)
)
(qn) =( m

2πi~∆t

) n
2
∫
R

∫
R

· · ·

∫
R

e
i
~

∑n
k=1

[
m
2

( qk−qk−1
∆t

)2
−V(qk−1)

]
∆t ψ(t0, q0) dq0 dq1 · · · dqn−1.

Let’s define

S n(q0, q1, . . . , qn; t) =

n∑
k=1

[m
2

(qk − qk−1

∆t

)2
− V(qk−1)

]
∆t (8.1)

and write ( (
e−(i/~)∆tH0 e−(i/~)∆tV )n

ψ(t0, ·)
)
(qn) =( m

2πi~∆t

) n
2
∫
R

· · ·

∫
R

∫
R

e
i
~ S n(q0,q1,...,qn;t)ψ(t0, q0) dq0 dq1 · · · dqn−1 =∫

R

{ ( m
2πi~∆t

) n
2
∫
R

· · ·

∫
R

e
i
~ S n(q0,q1,...,qn;t) dq1 · · · dqn−1

}
ψ(t0, q0) dq0.

To make contact with our previous notation we set q0 = x and qn = q and write this
just once more as ( (

e−(i/~)∆tH0 e−(i/~)∆tV )n
ψt0

)
(q) =∫

R

{ ( m
2πi~∆t

) n
2
∫
R

· · ·

∫
R

∫
R

e
i
~ S n(q,q1,...,qn−1,x;t) dq1 dq2 · · · dqn−1

}
ψt0 (x) dx.

According to the Lie-Trotter-Kato Product Formula, the sequence of functions of
q on the right-hand side converges in L2 as n→ ∞ to the evolved state ψt, that is,

ψ(q, t) = lim
n→∞

∫
R

{ ( m
2πi~∆t

) n
2
∫
R

· · ·

∫
R

e
i
~ S n(q,q1,...,qn−1,x;t) dq1 · · · dqn−1

}
ψ(x, t0) dx.

(8.2)

This suggests that the expression in the braces should converge to the propagator.
The limit

lim
n→∞

( m
2πi~∆t

) n
2
∫
R

· · ·

∫
R

e
i
~ S n(q,q1,...,qn−1,x;t) dq1 · · · dqn−1 (8.3)

is, by definition, the Feynman path integral representation for the propagator
K(q, t; x, t0). The limit in (8.2) is the definition of the Feynman path integral rep-
resentation for the wave function ψ(q, t). We will see in the next two sections that,
for the free particle and the harmonic oscillator, the limit (8.3) can be computed ex-
plicitly and the results agree with the propagators we found in Sections 7.3 and 7.4.
Notice, however, that one cannot deduce the convergence of the path integral (8.3)
to the propagator from the Lie-Trotter-Kato Product Formula. The reason is that the
propagator is the distributional solution to the Schrödinger equation with initial data
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given by a Dirac delta and the Dirac delta is nowhere to be found in L2(R). For more
on the convergence of the path integral to the propagator one can consult [Fuj1].
Remark 8.1.4. Convergence in L2(R) implies the pointwise a.e. convergence of
some subsequence, but one might ask whether or not the limit in (8.2) exists in some
stronger sense. One can, indeed, prove convergence in various stronger senses, but
only for certain restricted classes of potentials V; for more on this, see [Fuj2] and
[Fuj3].

The limit in (8.3) does not seem to involve any “paths” and certainly does not
look like an “integral” in the usual measure-theoretic sense (indeed, we will see in
Section 8.4 that it is not). It may seem strange then to refer to it as a “path integral”
and to denote it, as physicists generally do, by some variant of a symbol such as∫

PR(q,t;x,t0)
e

i
~ S (α)Dq, (8.4)

where PR(q, t; x, t0) is the space of continuous paths α in R joining x at time t0 with
q at time t and Dq is intended to represent the “measure”

Dq = lim
n→∞

( m
2πi~∆t

) n
2

dq1 · · · dqn−1. (8.5)

There is really nothing sensible to say about this “measure” Dq except that it is
purely formal and quite meaningless as it stands. The e

i
~ S (α) on the other hand is not

so obscure. No doubt the expression in (8.1) for S n(q0, . . . , qn; t) looks familiar. If
we had a smooth path α : [t0, t] → R in R describing a classical path in a system
with Lagrangian m

2 q̇2−V(q) and if V were continuous, then its classical action would
be

S (α; t) =

∫ t

t0

[m
2
α̇(s)2 − V(α(s))

]
ds.

But t0 < t1 = t0 + ∆t < t2 = t0 + 2∆t < · · · < tn = t0 + n∆t = t is a subdivision
of [t0, t] and if we take qk = α(tk), k = 0, 1, . . . , n, then S n(q0, . . . , qn; t) is just a
Riemann sum approximation to S (α; t) and approaches S (α; t) as n→ ∞. While the
classical action is not defined for a path that is continuous, but not differentiable,
the sum in (8.1) is perfectly well-defined for such paths. Intuitively, at least, we can
turn this whole business around in the following way. Suppose that α : [t0, t] → R

is an arbitrary continuous path. For any n we have a partition t0 < t1 = t0 +∆t < t2 =

t0 +2∆t < · · · < tn = t0 +n∆t = t of [t0, t] and we can approximate α by the piecewise
linear path with segments joining (tk−1, qk−1) = (tk−1, α(tk−1)) and (tk, qk) = (tk, α(tk))
for k = 1, . . . , n. Then S n(q0, . . . , qn; t) is approximately the action of this polygonal
path in a system with Lagrangian m

2 q̇2 − V(q). Since any continuous path can be
uniformly approximated arbitrarily well by such piecewise linear paths one should
be able to define an “action” functional S (α) on PR(q, t; x, t0).

Since Dq, as it was introduced in (8.5), is not a measure, or anything else for that
matter, (8.4) certainly cannot be regarded as a Lebesgue integral with respect to Dq.
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This does not preclude the possibility that there exists a measure on PR(q, t; x, t0)
relative to which the integral of e

i
~ S (α) is just the limit in (8.3) and this would cer-

tainly be a desirable situation since it would make available all of the rather sub-
stantial machinery of Lebesgue theory. Alas, there is no such measure (this is a
theorem of Cameron [Cam] that we will discuss in Section 8.4.3 ). Nevertheless, the
Feynman “integral” is closely related to an honest Lebesgue integral on the space
of continuous paths constructed by Norbert Wiener to model the phenomenon of
Brownian motion and we will have a bit more to say about this in Section 8.4.3. For
the time being it will be best to think of (8.4) as simply a shorthand notation for the
limit (8.3).
Remark 8.1.5. Two comments are in order here. First, we note that the original
motivation for thinking of the limit (8.3) as some sort of “integral” will become a
bit clearer shortly when we sketch Feynman’s more physically motivated sum over
histories approach. Second, one can, in fact, rigorously define measures on infinite-
dimensional path spaces such as PR(q, t; x, t0) and we will look at two means of
doing this in Section 8.4.3.

The procedure we have just described for arriving at the Feynman path integral
representation of the propagator is not at all the way Feynman thought of it (the
Lie-Trotter-Kato Product Formula did not exist at the time). We will conclude this
Introduction by briefly sketching the physical ideas that led Feynman to his path
integral (although we strongly recommend that the reader go directly to [Feyn] in-
stead). The underlying philosophy has already been described at the beginning of
this section. The probabilistic interpretation of the propagator and the fact that quan-
tum mechanics will not permit us to view a particle as following any particular path
led Feynman to view K(qb, tb; qa, ta) as a sum of contributions, one from each con-
tinuous path α joining the points in question, that is, one from each (classically)
possible history of the particle. One might write this symbolically as∑

PR(qb,tb;qa,ta)

K(α),

where K(α) is the amplitude assigned to the path α ∈ PR(qb, tb; qa, ta). On the other
hand, PR(qb, tb; qa, ta) is rather large so this might more properly be thought of as a
“continuous sum” or “integral” ∫

PR(qb,tb;qa,ta)
K(α).

This is all very well, but how does one assign an amplitude K(α) to every
α ∈ PR(qb, tb; qa, ta) and, once this is done, how does one actually compute this
sum/integral? A proposed answer to the first question comes, not from Feynman, but
from Dirac [Dirac3] who suggested that the appropriate weight, or amplitude to be
assigned to any path α should be determined by its classical action S (α) according
to
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K(α) = e
i
~ S (α). (8.6)

Dirac’s reasoning, described in the first three sections of [Dirac3], is not based
on direct physical arguments, but rather on formal analogies between classical La-
grangian mechanics and quantum mechanics that suggested, to Dirac, that the tran-
sition amplitude between the states ψta and ψtb in quantum mechanics “corresponds
to”

e
i
~

∫ tb
ta

L dt

in classical mechanics. In the end it is probably best to regard (8.6) as the sort of
inspired guess that one would expect from Dirac. In hindsight, the recurrence of e

i
~ S

in our calculations of the propagators for the free particle and harmonic oscillator
as well as its emergence from the Lie-Trotter-Kato Product Formula lend support to
the idea, but fundamentally this is just a brilliant insight from a great physicist.

Feynman adopted Dirac’s proposal and so his task was to provide an operational
definition of ∫

PR(qb,tb;qa,ta)
e

i
~ S (α).

Not surprisingly, Feynman’s procedure was to approximate and take a limit; it is
called time slicing in physics. One chooses a partition ta = t0 < t1 < · · · < tn−1 <
tn = tb of [ta, tb] into n subintervals of length ∆t = tb−ta

n . Let q0 = qa and qn = qb. Any
choice of q1, . . . , qn−1 in R gives rise to a piecewise linear path joining (tk−1, qk−1)
to (tk, qk) for k = 1, . . . , n. Then

S n(q0, q1, . . . , qn−1, qn) =

n∑
k=1

[m
2

(qk − qk−1

∆t

)2
− V(qk)

]
∆t

is approximately the classical action of the piecewise linear path if the Lagrangian
is m

2 q̇2 − V(q) and

e
i
~ S n(q0,q1,...,qn−1,qn)

is the contribution this path makes to the propagator. Another choice of q1, . . . , qn−1
gives another piecewise linear path with another contribution and one obtains the
total contribution of all such piecewise linear paths by adding all of these up, that is,
by integrating over −∞ < qk < ∞ for each k = 1, . . . , n.∫

R

· · ·

∫
R

e
i
~ S n(qa,q1,...,qn−1,qb) dq1 · · · dqn−1.

Repeating this procedure over and over with larger and larger n and operating under
the assumption that any continuous path can be arbitrarily well approximated by
such piecewise linear paths with sufficiently many segments, Feynman would like
to take the limit of these (n − 1)-fold multiple integrals as n → ∞. Realizing full
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well that the limit will generally not exist, Feynman chooses a normalizing factor of( m
2πi~∆t

) n
2

to multiply the integrals by in order to ensure convergence. Although Feynman of-
fers no hint as to how he arrived at an appropriate factor, one might guess that he
chose it in order to guarantee that, in the case of the free particle, his limit not only
existed, but gave the right answer for the propagator (we will see this explicitly
when we evaluate the free particle path integral in the next section).
Remark 8.1.6. Notice that, since ∆t = tb−ta

n ,( m
2πi~∆t

) n
2

→ ∞

as n→ ∞.
Thus, Feynman’s definition of his path integral is the same as ours; reinserting

the mythical Dq it is∫
PR(qb,tb;qa,ta)

e
i
~ S (α)Dq = lim

n→∞

( m
2πi~∆t

) n
2
∫
R

· · ·

∫
R

e
i
~ S n(qa,q1,...,qn−1,qb) dq1 · · · dqn−1,

where ∆t = tb−ta
n .

Remark 8.1.7. One might reasonably ask why anyone would want to write the Feyn-
man integral as an integral if it isn’t really an integral at all. The answer is, in a
sense, psychological. Written as an integral one is inclined to think of it as an inte-
gral and to do things with it and to it that one is accustomed to doing with and to
integrals (change of variables, integration by parts, stationary phase approximation,
and so on). Although these things are in no way justified mathematically by the
definition they, quite remarkably, often lead to conclusions that can be verified by
other means. This is particularly true in quantum field theory where formal manip-
ulations with path integrals have led to quite extraordinary insights into numerous
branches of mathematics seemingly unrelated to quantum field theory. These are,
regrettably, far beyond our grasp here (for an introduction to the connections be-
tween quantum field theory and topology one might begin with [Nash]). We will,
however, mention just one rather more mundane instance of this phenomenon be-
cause it bears on our discussion of the Classical Limit Problem. If one is willing
to take

∫
PR(qb,tb;qa,ta) e

i
~ S (α)Dq seriously as an integral, then one cannot help but no-

tice its formal similarity to the oscillatory integrals
∫
R

ei T f (x) g(x) dx considered in
Appendix B. For certain of these finite-dimensional oscillatory integrals we found
a Stationary Phase Approximation describing their asymptotic behavior as T → ∞.
For the path integral this would correspond to the classical limit ~ → 0+. Permit-
ting oneself the latitude of believing that the path integral is really an integral and
that there is an infinite-dimensional analogue of the Stationary Phase Approxima-
tion, a formal application of the approximation to the integral leads, just as in the
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finite-dimensional case, to the conclusion that the dominant contributions to the path
integral come from the stationary points of the action functional and these are just
the classical trajectories (see Section 5 of [KM]). In this sense, the ~ → 0+ limit of
quantum mechanics picks out from among all of the possible paths a particle might
follow precisely the one that classical mechanics says it should follow. Physicists
have actually taken this a great deal further. There are circumstances in which one
can prove (in the finite-dimensional context) that the stationary phase approxima-
tion is actually exact. These circumstances are best described in terms of what is
called equivariant cohomology and so the results are called equivariant localiza-
tion theorems (see, for example, [BGV]). Formally appropriating these results in
the infinite-dimensional context physicists obtain relatively simple closed form ex-
pressions for otherwise intractable path integrals. For more on this we will simply
refer those interested to [Szabo].

8.2 Path Integral for the Free Quantum Particle

This section (and the next) should be regarded as something of a reality check.
We have already calculated an explicit formula for the propagator K(qb, tb; qa, ta)
representing the probability amplitude that a free particle will be detected at qb at
time tb given that it was detected at qa at time ta. Specifically,

K(qb, tb; qa, ta) =

√
m

2πi~(tb − ta)
e

i
~

(
m

2(tb−ta ) (qb−qa)2
)
.

Feynman has assured us that the same propagator can be obtained by “integrating”
e

i
~ S (α) over all continuous paths α in R from α(ta) = qa to α(tb) = qb and he has told

us precisely what he means by “integrating”. We will now compute Feynman’s path
integral and see if it comes out right. In the next section we will do the same thing
for the harmonic oscillator.

To get a feel for how the calculations are done and to re-enforce some of the
physical ideas that are behind them we will begin by looking at the approximation
to Feynman’s integral corresponding to a subdivision of the time interval [ta, tb] into
just two subintervals.

t0 = ta < t1 =
ta + tb

2
< tb = t2

Feynman’s idea is that every continuous path α : [ta, tb] → R from α(ta) = qa

to α(tb) = qb contributes to the propagator K(qb, tb; qa, ta) so this should be true, in
particular, for any polygonal path starting at q0 = qa at time t0, going through (t1, q1)
for some q1 ∈ R, and ending at q2 = qb at time t2. Fix such a path and let ∆t = tb−ta

2
be the length of each subinterval. Each of the straight line segments is regarded as
the classical path of a free particle joining its endpoints and, thought of in this way,
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each has a classical action given, according to Exercise 2.2.3, by

m
2∆t

(qk − qk−1)2, k = 1, 2.

Thus, the total action associated to the polygonal path is

m
2∆t

[ (q1 − q0)2 + (q2 − q1)2 ]

and the contribution this path makes to the propagator is

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2 ].

The collection of all paths of the type we are discussing is obtained by allowing
q1 to vary over −∞ < q1 < ∞ and we must “sum” these up, that is, compute∫

R

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2 ] dq1.

To turn this and the remaining integrals we need to do into Gaussians we will
need a few algebraic identities. We will prove the first and then leave the rest for
you to do in the same way. We will show that, for any real numbers x, y and z,

(x − y)2 + (z − x)2 = 2
(

x −
y + z

2

)2
+

(y − z)2

2
(8.7)

(the reason we like this is that x appears only in the first square). To prove this we
just complete the square.

(x − y)2 + (z − x)2 = x2 − 2xy + y2 + z2 − 2xz + x2

= 2x2 − 2x(y + z) + y2 + z2

= 2
[

x2 − x(y + z) +
y2

2
+

z2

2

]
= 2

[
x2 − x(y + z) +

(y + z)2

4
−

(y + z)2

4
+

y2

2
+

z2

2

]
= 2

[ (
x −

y + z
2

)2
+

y2

2
−

y2 + 2yz + z2

4
+

z2

2

]
= 2

[ (
x −

y + z
2

)2
+

y2

4
−

2yz
4

+
z2

4

]
= 2

(
x −

y + z
2

)2
+

(y − z)2

2

Exercise 8.2.1. Complete the square to show that, for any x, y, z ∈ R,

(x − y)2

2
+ (z − x)2 =

3
2

(
x −

y + 2z
3

)2
+

1
3

(y − z)2 (8.8)
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and, in general, for any n ≥ 2,

(x − y)2

n − 1
+ (z − x)2 =

n
n − 1

(
x −

y + (n − 1)z
n

)2
+

1
n

(y − z)2. (8.9)

Now we use (8.7) and the Gaussian integral∫
R

e
1
2 iau2

du =

√
2πi
a
, a > 0, (8.10)

(see Example A.0.1 in Appendix A) to compute∫
R

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2 ] dq1 = e

i
~

m
2∆t

(q2−q0)2

2

∫
R

e
i
~

m
2∆t 2( q1−

q0+q2
2 )2

dq1

= e
i
~

m
2∆t

(q2−q0)2

2
1
√

2

∫
R

e
1
2 i
(

m
~∆t

)
u2

du

= e
i
~

m
2∆t

(q2−q0)2

2
1
√

2

√
2πi~∆t

m

=
1
√

2

(2πi~∆t
m

)1/2
e

i
~

m
2∆t

(qb−qa)2

2 .

Let’s do this once more. Subdivide [ta, tb] into three equal subintervals with end-
points

t0 = ta < t1 = t0 + ∆t < t2 = t0 + 2∆t < tb = t3,

where ∆t = tb−ta
3 . Let q0 = qa, q3 = qb, and let q1, q2 ∈ R be arbitrary. Now consider

the polygonal path from (t0, q0) to (t3, q3) with segments joining (t0, q0) and (t1, q1),
(t1, q1) and (t2, q2), and (t2, q2) and (t3, q3). Each of the straight line segments is
regarded as the classical path of a free particle joining its endpoints and, thought of
in this way, each has a classical action given, according to Exercise 2.2.3, by

m
2∆t

(qk − qk−1)2, k = 1, 2, 3.

Thus, the total action associated to the polygonal path is

m
2∆t

[ (q1 − q0)2 + (q2 − q1)2 + (q3 − q2)2 ]

and the contribution this path makes to the propagator is

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2+(q3−q2)2 ].

Now, the collection of all paths of the type we are discussing is obtained by al-
lowing q1 and q2 to vary over (−∞,∞) and we must “sum” these up, that is, compute
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R

∫
R

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2+(q3−q2)2 ] dq1 dq2.

For this we use the integral we just evaluated, the algebraic identity (8.8), and the
Gaussian (8.10).∫

R

∫
R

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2+(q3−q2)2 ] dq1 dq2

=

∫
R

e
i
~

m
2∆t (q3−q2)2

∫
R

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2 ] dq1 dq2

=

√
1
2

(2πi~∆t
m

)1/2 ∫
R

e
i
~

m
2∆t [ (q2−q0)2

2 +(q3−q2)2 ] dq2

=

√
1
2

(2πi~∆t
m

)1/2
e

i
~

m
2∆t

(q3−q0)2

3

∫
R

e
i
~

m
2∆t

3
2 ( q2−

q0+2q3
3 )2

dq2

=

√
1
2

√
2
3

(2πi~∆t
m

)2/2
e

i
~

m
2∆t

(q3−q0)2

3

=

√
1
3

(2πi~(tb − ta)
3m

)2/2
e

i
~

(
m

2(tb−ta ) (qb−qa)2
)

Exercise 8.2.2. Show by induction that, for any n ≥ 2,∫
R

∫
R

· · ·

∫
R

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2+(q3−q2)2+···+(qn−qn−1)2 ] dq1 dq2 · · · dqn−1

=

√
1
2

√
2
3
· · ·

√
n − 1

n

(2πi~∆t
m

) n−1
2

e
i
~

m
2∆t

(qn−q0)2

n

=

√
1
n

(2πi~(tb − ta)
nm

) n−1
2

e
i
~

(
m

2(tb−ta ) (qb−qa)2
)
.

Exercise 8.2.3. Show that, for any n ≥ 2,(2πi~∆t
m

)− n
2
∫
R

∫
R

· · ·

∫
R

e
i
~

m
2∆t [ (q1−q0)2+(q2−q1)2+(q3−q2)2+···+(qn−qn−1)2 ] dq1 dq2 · · · dqn−1

=

√
m

2πi~(tb − ta)
e

i
~

(
m

2(tb−ta ) (qb−qa)2
)
.

According to Feynman’s instructions we are to take the limit as n → ∞ of this
last expression to obtain his path integral. Since n has disappeared, this is not so
hard to do and we have arrived at the∫

PR(qb,tb;qa,ta)
e

i
~ SDq =

√
m

2πi~(tb − ta)
e

i
~

(
m

2(tb−ta) (qb−qa)2
)

= K(qb, tb; qa, ta).
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In the case of the free particle, at least, the Feynman path integral does, indeed,
converge (trivially) to the propagator. We turn next to a somewhat more interesting
test case where the limit is not trivial.

8.3 Path Integral for the Harmonic Oscillator

The harmonic oscillator potential is V(q) = mω2

2 q2 so the path integral we need to
evaluate can be written∫

PR(qb,tb;qa,ta)
e

im
2~

∫ tb
ta

(q̇2−ω2q2) dt
Dq =

lim
n→∞

( m
2πi~∆t

)
n
2

∫
R

· · ·

∫
R

e
im

2~∆t
∑n

k=1

(
(qk−qk−1)2−ω2∆t2q2

k

)
dq1 · · · dqn−1,

where ∆t = tb−ta
n , q0 = q(ta) = qa, and qn = q(tb) = qb. Evaluating this limit is alge-

braically quite a bit more involved than it was for the free particle in Section 8.2 and
the result we are looking for is, as we saw in Section 7.4, also rather more involved.
In the hope of minimizing these issues as much as possible we will consider only
the case in which the elapsed time interval T = tb − ta is small enough to ensure that
0 < ωT < π. The adjustments required when νπ < ωT < (ν + 1)π, ν = 1, 2, . . ., are
modest and you may want to keep track of them for yourself as we go along. This
will leave only the behavior when ωT is an integer multiple of π which, as we found
in Section 7.4, involves Maslov corrections and we will briefly discuss this at the
end. With these assumptions we can record the result we would like to obtain from
the evaluation of the path integral (taken from Section 7.4) .√

m
2πi~ sinωT

exp
( i
~

mω
2 sinωT

[
(q2

a + q2
b) cosωT − 2qaqb

] )
Remark 8.3.1. Just to get in the proper frame of mind we will write out the
n = 3 term in the sequence of multiple integrals. As motivation for some of
the manipulations we mention that the objective is to rewrite the quadratic form∑n

k=1
(
(qk − qk−1)2 − ω2∆t2q2

k
)

in such a way that

1. the terms involving only q0 and qn are exposed and can be pulled out of the
integral, and

2. the remaining quadratic form is one to which we can apply a standard Gaussian
integration formula.

For the record, the Gaussian integral we propose to apply is the following. Let A be
a real, symmetric, nondegenerate, N × N matrix. Then
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RN

e
i
2 〈Aq,q〉+i〈p,q〉 dNq = e

Nπi
4 −

νπi
2

√
(2π)N
√
| det A|

e−
i
2 〈A

−1p,p〉, (8.11)

where q,p ∈ RN , 〈 , 〉 denotes the standard inner product on RN , and ν is the number
of negative eigenvalues of A (see (A.7) of Appendix A).

To rewrite

3∑
k=1

(
(qk − qk−1)2 − ω2∆t2q2

k
)

=

(q1 − q0)2 + (q2−q1)2 + (q3 − q2)2 − ω2∆t2q2
1 − ω

2∆t2q2
2 − ω

2∆t2q2
3

appropriately, let q =

(
q1
q2

)
, p =

(
q0
q3

)
=

(
qa

qb

)
, and

A2 =

(
2 − ω2∆t2 −1
−1 2 − ω2∆t2

)
.

A few quick calculations show that

〈A2q,q〉 = 2q2
1 − ω

2∆t2q2
1 − 2q1q2 + 2q2

2 − ω
2∆t2q2

2

−2〈p,q〉 = −2q0q1 − 2q2q3

and

〈p,p〉 = q2
0 + q2

3

so that

〈A2q,q〉 − 2〈p,q〉 + 〈p,p〉 =

(q2
1 − 2q0q1 + q2

0) + (q2
1 − 2q1q2 + q2

2) + (q2
1 − 2q2q3 + q2

3) − ω2∆t2q2
1 − ω

2∆t2q2
2 =

3∑
k=1

(
(qk − qk−1)2 − ω2∆t2q2

k

)
+ ω2∆t2q2

3.

Consequently,

e
im

2~∆t
∑3

k=1

(
(qk−qk−1)2−ω2∆t2q2

k

)
= e

im
2~∆t (q2

a+q2
b−ω

2∆t2q2
b)e

im
2~∆t (〈 A2q,q〉−2〈p,q〉 )

and so
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R

∫
R

e
im

2~∆t
∑3

k=1

(
(qk−qk−1)2−ω2∆t2q2

k

)
dq1 dq2 =

e
im

2~∆t (q2
a+q2

b−ω
2∆t2q2

b)
∫
R2

e
im

2~∆t (〈 A2q,q〉−2〈p,q 〉)d2q =

e
im

2~∆t (q2
a+q2

b−ω
2∆t2q2

b)
∫
R2

e
i
2 〈

m
~∆t A2q,q 〉+i〈 − m

~∆t p,q 〉d2q.

This integral is just the Gaussian in (8.11) with A = m
~∆t A2 and p replaced by − m

~∆t p.
Exercise 8.3.1. Show that

det A =

( m
~∆t

)2
det A2 =

( m
~∆t

)2 [
(2 − ω2∆t2)2 − 1

]
,

〈 A−1(−
m
~∆t

p), −
m
~∆t

p 〉 =
m
~∆t
〈 A−1

2 p,p 〉,

and that the eigenvalues of A are given by

m
~∆t

(2 − ω2∆t2) ±
m
~∆t

=
m
~∆t

[
(2 ± 1) − ω2∆t2].

=
m
~∆t

(2 − ω2∆t2) + 2

√(
−

m
~∆t

)(
−

m
~∆t

)
cos

( kπ
2 + 1

)
,

for k = 1, 2 (the reason for the peculiar expression with the cosine will become clear
shortly).

This exercise provides us with almost all of the information we would need to
evaluate the Gaussian integral using (8.11); almost, but not quite. The problem is
the eigenvalues. Their signs depend on the size of ω∆t so the number ν2 of negative
eigenvalues is not determined and we need this in (8.11). We will now proceed with
the general construction of the nth term in the sequence of multiple integrals defining
the path integral. We will find that, for sufficiently large n, the number of negative
eigenvalues is zero (because we have assumed that 0 < ωT < π) and this will permit
us to do the Gaussian integral and evaluate the limit as n→ ∞.
Remark 8.3.2. Before getting started we will need to borrow a result from linear
algebra. We consider an N × N symmetric, tridiagonal, Toeplitz matrix, that is, one
of the form 

a b 0 0 0 · · · 0 0
b a b 0 0 · · · 0 0
0 b a b 0 · · · 0 0
0 0 b a b · · · 0 0
...
...
...
...
...

...
...

0 0 0 0 0 · · · a b
0 0 0 0 0 · · · b a


where we assume that a and b are nonzero real numbers. Then there are N distinct
real eigenvalues given by
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λk = a + 2b cos
( kπ

N + 1

)
, k = 1, . . . ,N,

and a corresponding set of eigenvectors given by

Vk =

(
sin

( 1 · kπ
N + 1

)
, sin

( 2kπ
N + 1

)
, . . . , sin

( Nkπ
N + 1

) )
, k = 1, . . . ,N.

Oddly enough, all such matrices have the same eigenvectors. One can find a proof of
this and some more general results at http://rendiconti.dmi.units.it/volumi/20/09.pdf.

Now we fix an integer n ≥ 2 and consider the integral∫
R

· · ·

∫
R

e
im

2~∆t
∑n

k=1

(
(qk−qk−1)2−ω2∆t2q2

k

)
dq1 · · · dqn−1,

where ∆t = T
n = tb−ta

n , q0 = q(ta) = qa, and qn = q(tb) = qb. The first step is entirely
analogous to the n = 3 case treated above. We introduce an (n − 1) × (n − 1) matrix

An−1 =



2 − ω2∆t2 −1 0 0 0 · · · 0 0
−1 2 − ω2∆t2 −1 0 0 · · · 0 0
0 −1 2 − ω2∆t2 −1 0 · · · 0 0
0 0 −1 2 − ω2∆t2 −1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 2 − ω2∆t2 −1
0 0 0 0 0 · · · −1 2 − ω2∆t2



and define q =


q1
q2
...

qn−1

 ∈ Rn−1 and p =



q0
0
...
0
qn


=



qa

0
...
0
qb


∈ Rn−1.

Exercise 8.3.2. Show that

〈An−1q,q〉 − ω2∆t2q2
b − 2〈p,q〉 + q2

a + q2
b =

n∑
k=1

(
(qk − qk−1)2 − ω2∆t2q2

k
)
.

Consequently,

e
im

2~∆t
∑n

k=1

(
(qk−qk−1)2−ω2∆t2q2

k

)
= e

im
2~∆t (q2

a+q2
b−ω

2∆t2q2
b)e

im
2~∆t (〈 An−1q,q〉−2〈p,q〉 )

and so

http://rendiconti.dmi.units.it/volumi/20/09.pdf


368 8 Path Integral Quantization∫
R

· · ·

∫
R

e
im

2~∆t
∑n

k=1

(
(qk−qk−1)2−ω2∆t2q2

k

)
dq1 · · · dqn−1 =

e
im

2~∆t (q2
a+q2

b−ω
2∆t2q2

b)
∫
Rn−1

e
im

2~∆t (〈 An−1q,q〉−2〈p,q 〉)dn−1q =

e
im

2~∆t (q2
a+q2

b−ω
2∆t2q2

b)
∫
Rn−1

e
i
2 〈

m
~∆t An−1q,q 〉+i〈 − m

~∆t p,q 〉dn−1q.

This integral is just the Gaussian in (8.11) with A = m
~∆t An−1 and p replaced with

− m
~∆t p. We begin to write out this Gaussian by noticing first that

A−1
(
−

m
~∆t

p
)

= −A−1
n−1p

so 〈
A−1

(
−

m
~∆t

p
)
, −

m
~∆t

p
〉

=
m
~∆t
〈 A−1

n−1p,p 〉

and √
| det A| =

( m
~∆t

) n−1
2 √
| det An−1|.

Exercise 8.3.3. Use these and (8.11) to show that∫
Rn−1

e
i
2 〈

m
~∆t An−1q,q 〉+i〈 − m

~∆t p,q 〉dn−1q =

e
(n−1)πi

4 e−
νn−1πi

2

( m
2π~∆t

)− n−1
2

| det An−1|
− 1

2 e−
mi

2~∆t 〈 A−1
n−1p,p 〉,

where νn−1 is the number of negative eigenvalues of An−1.
Exercise 8.3.4. The definition of the path integral requires that, before taking the

limit, we multiply the integral by the normalizing factor
(

m
2πi~∆t

)n/2
. In preparation

for this show that

e
(n−1)πi

4

( m
2πi~∆t

)n/2( m
2π~∆t

)− n−1
2

=

√
m

2πi~∆t

Exercise 8.3.5. Put all of this together to obtain( m
2πi~∆t

) n
2
∫
R

· · ·

∫
R

e
im

2~∆t
∑n

k=1

(
(qk−qk−1)2−ω2∆t2q2

k

)
dq1 · · · dqn−1 =

e−
im
2~ω

2q2
b∆t

(
e−

νn−1πi
2

√
m

2πi~∆t | det An−1|
e

im
2~∆t (q2

a+q2
b−〈 A−1

n−1p,p 〉 )
)
. (8.12)
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Since ∆t = T
n , the first factor clearly approaches 1 as n → ∞ so we need only

worry about the second factor. For this we will need some fairly detailed information
about

1. det An−1,
2. 〈 An−1p,p 〉, and
3. νn−1.

First we’ll look at the determinant

an−1 = det An−1.

Exercise 8.3.6. Compute the first few of these to show that

a1 = 2 − ω2∆t2

a2 = (2 − ω2∆t2)a1 − 1

a3 = (2 − ω2∆t2)a2 − a1

a4 = (2 − ω2∆t2)a3 − a2

and then prove by induction that

ak−1 = (2 − ω2∆t2)ak−2 − ak−3, k ≥ 4.

Hint: Expand the determinants by the cofactors of the last row.
Taking a0 = 1 and a−1 = 0 we have a recurrence relation

ak−1 = (2 − ω2∆t2)ak−2 − ak−3, k ≥ 2

and this is what we must solve. We could apply general results from the theory
of linear, homogeneous, recurrence relations, but let’s proceed a bit more directly.
Suppose we have found a solution z to the equation

z + z−1 = 2 − ω2∆t2

(we’ll actually find some momentarily). Then our recurrence relation can be written
as

ak−1 = (z + z−1)ak−2 − ak−3, k ≥ 2.

Now notice that al = zl+1, l ≥ 1, is a solution to the recurrence relation since

(z + z−1)ak−2 − ak−3 = (z + z−1)zk−1 − zk−2 = zk = ak−1

and, similarly, if we let al = (z−1)l+1 = z−l−1, then

(z + z−1)ak−2 − ak−3 = (z + z−1)z−k+1 − z−k+2 = z−k = ak−1.
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By the linearity of the recurrence, al = m1zl+1 + m2z−l−1, l ≥ 1, is also a solution
for any m1 and m2. In order to satisfy the initial conditions we set a−1 = 0, which
gives m1 + m2 = 0 and therefore al = m1(zl+1 − z−l−1), and then a0 = 1, giving
m1(z − z−1) = 1. In particular, z , ±1 so

m1 =
1

z − z−1 = −m2.

These initial conditions uniquely determine the solution to our recurrence relation
to be

al =
1

z − z−1 (zl+1 − z−l−1) =
zl+1 − z−l−1

z − z−1 .

In particular,

det An−1 = an−1 =
zn − z−n

z − z−1 .

Now we set about finding explicit solutions to the equation z + z−1 = 2 − ω2∆t2.
Since z = 0 is certainly not a solution, this can be written

z2 − (2 − ω2∆t2)z + 1 = 0.

Remark 8.3.3. For the record we mention that

p(z) = z2 − (2 − ω2∆t2)z + 1

is called the characteristic polynomial of our recurrence relation.
An application of the quadratic formula gives

z = 1 −
1
2
ω2∆t2 ±

1
2
ω∆t
√
ω2∆t2 − 4.

Now, recall that at the very beginning of all of this we fixed an integer n ≥ 2
(the number of subintervals into which we partitioned [ta, tb]). Ultimately, we are
interested only in the limit as n → ∞ and so only in large n. Notice that, since
∆t = T

n , large n means small ω2∆t2 so eventually the roots we just found will be
complex with positive real part. We want to ignore the real roots corresponding to
small n so we will select some positive integer N0 such that these roots are complex
if n > N0. Since n is beginning to play a role now it seems proper to make its
appearance explicit by writing z(n) rather than simply z. Thus, for n > N0, our two
roots are given by

z(n) = 1 −
1
2
ω2∆t2 +

1
2
ω∆t
√

4 − ω2∆t2 i.

and its conjugate.
Exercise 8.3.7. Show that | z(n) |2 = 1.
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Thus, our two roots lie on the unit circle and are therefore z(n) and z(n)−1. We
will write these in polar form as

z(n) = eiθ(n) and z(n)−1 = e−iθ(n).

Notice also that, since 1 and -1 are certainly not roots of the characteristic polyno-
mial and Im(z(n)) > 0, we can assume that

0 < θ(n) < π ∀n > N0.

Now we can write det An−1 in the form we were after, that is,

det An−1 =
z(n)n − z(n)−n

z(n) − z(n)−1 =
einθ(n) − e−inθ(n)

eiθ(n) − e−iθ(n) =
sin nθ(n)
sin θ(n)

.

We will need to know something about the behavior of θ(n) for large n. For this
we first recall that z(n) + z(n)−1 is equal to both eiθ(n) + e−iθ(n) = 2 cos θ(n) and
2 − ω2∆t2 so cos θ(n) = 1 − 1

2ω
2∆t2. Moreover, since 0 < θ(n) < π,

θ(n) = arccos
(
1 −

1
2
ω2∆t2

)
= arccos

(
1 −

(
ω2T 2

2

)
n−2

)
. (8.13)

Remark 8.3.4. It will be convenient now to make liberal use of the Landau Big O
notation so we will record the few items we need. First recall that f (x) = O(g(x))
as x → a+ (respectively, x → a−) means that there exist two positive constants M
and δ such that | f (x)| ≤ M|g(x)| for all x with |x − a| < δ and x > a (respectively,
x < a). Similarly, if n is a positive integer, then f (n) = O(g(n)) as n→ ∞means that
there exists a positive constant M and an integer N0 ≥ 1 such that | f (n)| ≤ M|g(n)|
for all n > N0. Instead of f (x) = O(g(x)) and f (n) = O(g(n)) one often writes
f (x) ∈ O(g(x)) and f (n) ∈ O(g(n)), thereby thinking of O(g(x)) and O(g(n)) as the
collection of all functions that satisfy the required conditions. In a similar vein, one
writes such things as f1(x) = f2(x) + O(g(x)) to mean that f1(x) − f2(x) ∈ O(g(x)),
that is, f1(x) and f2(x) differ by some particular element of O(g(x)). For example,
if f (x) = sin (ωT + x), then Taylor’s Theorem implies that f (x) = f (0) +

f ′(c)
1! x =

sinωT + cos (ωT + c) x for some c between 0 and x and, since | cos (ωT + c) | ≤ 1,

sin (ωT + x) = sinωT + O(x)

as x→ 0 (that is, as x→ 0+ and as x→ 0−). In particular,

sin (ωT + n−1) = sinωT + O(n−1)

as n→ ∞. In the same way,

sin x = x + O(x2)
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as x → 0 and, more generally, if f (x) has n + 1 continuous derivatives on some
interval about a and Pn(x; a) is its nth Taylor polynomial at x = a, then Taylor’s
Theorem implies

f (x) = Pn(x; a) + O( (x − a)n+1 )

as x → a. We’ll record a few easily verified consequences of the definition that
simplify computations with Big O; we state them for O(g(x)) as x→ a, but they all
have obvious analogues for x→ a± and n→ ∞.

1. limx→a

∣∣∣ f (x)
g(x)

∣∣∣ = C < ∞ ⇒ f (x) = O(g(x))
2. O(g1(x))O(g2(x)) = O(g1(x)g2(x)), that is, f1(x) ∈ O(g1(x)) and f2(x) ∈ O(g2(x))
⇒ f1(x) f2(x) ∈ O(g1(x)g2(x))

3. O(g1(x)) + O(g2(x)) = O(| g1(x) | + | g2(x) |)
4. f (x) ∈ O(g(x)) and g(x) ∈ O(h(x))⇒ f (x) ∈ O(h(x))
5. O( O(g(x)) ) = O(g(x))
6. f (x) + O(g(x)) = O(| f (x) | + | g(x) |)
7. f (x)O(g(x)) = O( f (x)g(x))
8. O(cg(x)) = O(g(x)) for c ∈ R, c , 0
9. limx→a | f (x) | < ∞ ⇒ O( f (x)g(x)) = O(g(x))

Our first objective is to show that, with θ(n) as in (8.13),

θ(n) = ω∆t + O(n−2) as n→ ∞,

that is, that there exists an integer N1 ≥ N0 and a positive constant M such that

| θ(n) − ω∆t | ≤
M
n2 ∀n ≥ N1.

For this it will suffice to show that the real-valued function arccos (1 − 1
2 x2) of the

real variable x is x + O(x2) as x → 0+. To do this we would like to apply Taylor’s
Formula with a quadratic remainder at x = 0. Unfortunately, this is not differentiable
at x = 0. Indeed, for x , 0,

d
dx

arccos (1 −
1
2

x2) =
x
|x|

(1 −
x2

4
)−1/2

so at x = 0 the right-hand derivative is 1 and the left-hand derivative is -1. To remedy
the situation we consider instead

f (x) =

 arccos (1 − 1
2 x2), if x ≥ 0

−arccos (1 − 1
2 x2), if x ≤ 0.

Then f (x) is differentiable and

f ′(x) =

(
1 −

x2

4

)−1/2
.
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Consequently,

f ′′(x) =
x
4

(
1 −

x2

4

)−3/2
.

Now, by Taylor’s Formula,

f (x) = f (0) + f ′(0)x +
θ′′(c)

2!
x2 = x +

c
8

(
1 −

c2

4

)−3/2
x2

where c is between 0 and x. But, on −1 ≤ c ≤ 1, the function c
8 (1 − c2

4 )−3/2 is
continuous and therefore bounded by some K > 0 so

| f (x) − x | ≤ Kx2.

In particular, if we choose N1 ≥ N0 sufficiently large that ω∆t = ωT
n < 1 whenever

n ≥ N1, then

| θ(n) − ω∆t | ≤
Kω2T 2

n2 ∀n ≥ N1,

as required.
Next note that sin (ωT + x) = sinωT + O(x) as x → 0 implies that sin (ωT +

O(n−1)) = sinωT + O(O(n−1)) = sinωT + O(n−1) as n→ ∞. Thus,

θ(n) =
ωT
n

+ O(n−2)⇒ nθ(n) = ωT + O(n−1)⇒ sin nθ(n) = sinωT + O(n−1)

as n→ ∞.
Exercise 8.3.8. Show that

sin θ(n) =
ωT
n

+ O(n−2)

as n→ ∞.
But sin x = x + O(x2) as x→ 0 so sin ωT

n = ωT
n + O(n−2) as n→ ∞ and therefore

sin θ(n) = sin
(
ωT
n

)
+ O(n−2)

as n→ ∞. We will put all of this to use in computing the limits we need for (8.12).
Before moving on to more estimates that we need to compute the limit we’ll

pause for a moment to draw an important conclusion from what we have so far. We
will show that, for sufficiently large n, An−1 has no negative eigenvalues so νn−1 = 0
(this is a consequence of our assumption that 0 < ωT < π). Begin by fixing some
n ≥ N1. Since An−1 is an (n − 1) × (n − 1) symmetric, tridiagonal, Toeplitz matrix, it
has n − 1 distinct real eigenvalues given by
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λk = (2 − ω2∆t2) − 2 cos
(kπ

n

)
, k = 1, . . . , n − 1

= z(n) + z(n)−1 − 2 cos
(kπ

n

)
, k = 1, . . . , n − 1

= 2 cos θ(n) − 2 cos
(kπ

n

)
, k = 1, . . . , n − 1

(see Remark 8.3.2). Now notice that λk < 0 if and only if cos θ(n) < cos
( kπ

n
)

and,
since all of the angles are in (0, π), this is the case if and only if

kπ
n
< θ(n).

But

kπ
n
< θ(n)⇒

kπ
n
< ω∆t +

M
n2 ⇒

kπ
n
<
ωT
n

+
M
n2

⇒ kπ < ωT +
M
n
⇒ k <

ωT
π

+
M
π

1
n

⇒ k < 1 +
M
π

1
n

and this is clearly not possible for arbitrarily large n unless k = 1.
Exercise 8.3.9. Show directly that 0 < ωT < π implies that, for sufficiently large n,
λ1 =

(
2− ω2T 2

n2

)
−2 cos

( π
n
)

is positive. Hint: Look at a Taylor polynomial for cos
( π

n
)
.

Thus, we can choose an integer N2 ≥ N1 ≥ N0 such that

νn−1 = 0 ∀n ≥ N2.

Exercise 8.3.10. Show that, if ν > 0 is an integer and νπ < ωT < (ν + 1)π, then, for
sufficiently large n, An−1 has precisely ν negative eigenvalues.

Now we will get back to some estimates required to compute the limit as n→ ∞
of (8.12). We have already shown that

θ(n) =
ωT
n

+ O(n−2) as n→ ∞.

Exercise 8.3.11. Show that

lim
n→∞

n sin
ωT
n

= ωT.

Now write

n sin θ(n)
T sin nθ(n)

=
n sin ωT

n + O(n−1)
T sinωT + O(n−1)

=
n sin ωT

n

T sinωT + O(n−1)
+

O(n−1)
T sinωT + O(n−1)

.

The second term clearly approaches zero as n → ∞ and, by the previous Exercise,
the first approaches ω

sinωT so
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lim
n→∞

n sin θ(n)
T sin nθ(n)

=
ω

sinωT
.

Furthermore, since θ(n) = ωT
n + O(n−2) and 0 < ωT < π,

lim
n→∞

∣∣∣∣∣ n sin θ(n)
T sin nθ(n)

∣∣∣∣∣ =
ω

sinωT
.

Recalling that νn−1 = 0 for n ≥ N2 we find that

lim
n→∞

e
νn−1πi

2

√
m

2πi~∆t | det An−1|
= lim

n→∞

√
m

2πi~

∣∣∣∣∣ n sin θ(n)
T sin nθ(n)

∣∣∣∣∣ =

√
mω

2πi~ sinωT
.

All that remains for our computation of the limit in (8.12) is to investigate the
behavior of

e
im

2~∆t (q2
a+q2

b−〈 A−1
n−1p,p 〉 )

as n → ∞. We begin with 〈 A−1
n−1p,p 〉. Denoting the entries in the matrix A−1

n−1 by
B(i, j) we obtain

A−1
n−1p =



B(1,1) · · · B(1,n−1)
B(2,1) · · · B(2,n−1)
...

...
B(n−2,1) · · · B(n−2,n−1)
B(n−1,1) · · · B(n−1,n−1)





qa

0
...
0
qb


=



B(1,1)qa + B(1,n−1)qb

B(2,1)qa + B(2,n−1)qb
...

B(n−2,1)qa + B(n−2,n−1)qb

B(n−1,1)qa + B(n−1,n−1)qb


and therefore

〈 A−1
n−1p,p 〉 =

(
B(1,1)qa + B(1,n−1)qb

)
qa +

(
B(n−1,1)qa + B(n−1,n−1)qb

)
qb.

Exercise 8.3.12. Using the fact that A−1
n−1 is 1

det An−1
times the adjoint of An−1 show

that

B(1,1) = B(n−1,n−1) =
sin (n − 1)θ(n)

sin nθ(n)

and

B(1,n−1) = B(n−1,1) =
sin θ(n)
sin nθ(n)

.

From this we find that

〈 A−1
n−1p,p 〉 =

sin (n − 1)θ(n)
sin nθ(n)

(q2
a + q2

b) +
sin θ(n)

sin nθ(n)
(2qaqb).

and therefore
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q2
a + q2

b − 〈 A−1
n−1p,p 〉 =

1
sin nθ(n)

( (
sin nθ(n) − sin (n − 1)θ(n)

)
(q2

a + q2
b)

− sin θ(n)(2qaqb)
)
.

Exercise 8.3.13. Show that

sin nθ(n) − sin (n − 1)θ(n) = cos nθ(n) sin θ(n) + sin nθ(n) (1 − cos θ(n)).

From this we obtain

im
2~∆t

(
q2

a + q2
b − 〈 A−1

n−1p,p 〉
)

=
imn

2~T sin nθ(n)

[
[ cos nθ(n) sin θ(n)

+ sin nθ(n) (1 − cos θ(n)) ](q2
a + q2

b) − sin θ(n)(2qaqb)
]

=
imω
2~

[ (cos nθ(n)
sin nθ(n)

sin θ(n)
ωT/n

+
1 − cos θ(n)

ωT/n

)
(q2

a + q2
b)

−
1

sin nθ(n)

( sin θ(n)
ωT/n

)
(2qaqb)

]
.

Exercise 8.3.14. Use the various estimates we obtained earlier to show that

lim
n→∞

im
2~∆t

(
q2

a + q2
b − 〈 A−1

n−1p,p 〉
)

=
imω

2~ sinωT
(

(q2
a + q2

b) cosωT − 2qaqb
)
.

and therefore

lim
n→∞

e
im

2~∆t

(
q2

a+q2
b−〈 A−1

n−1p,p 〉
)

= e
i
~

mω
sinωT

(
(q2

a+q2
b) cosωT−2qaqb

)
.

With this we have all of the ingredients required to complete the evaluation of
the harmonic oscillator path integral when 0 < ωT < π.
Exercise 8.3.15. Trace back through all of the results we have obtained in this sec-
tion to show that, when 0 < ωT < π,∫

PR(qb,tb;qa,ta)
e

im
2~

∫ tb
ta

(q̇2−ω2q2) dt
Dq =

lim
n→∞

( m
2πi~∆t

) n
2
∫
R

· · ·

∫
R

e
im

2~∆t
∑n

k=1

(
(qk−qk−1)2−ω2∆t2q2

k

)
dq1 · · · dqn−1 =

lim
n→∞

e−
im
2~ω

2q2
b∆t

(
e−

νn−1πi
2

√
m

2πi~∆t | det An−1|
e

im
2~∆t (q2

a+q2
b−〈 A−1

n−1p,p 〉 )
)

=√
mω

2πi~ sinωT
e

i
~

mω
sinωT

(
(q2

a+q2
b) cosωT−2qaqb

)
.

Mercifully, this agrees with the result we obtained from Mehler’s Formula for the
propagator of the quantum harmonic oscillator in Section 7.4.



8.4 Sketch of Some Rigorous Results 377

Exercise 8.3.16. Re-examine the arguments we have just given and make whatever
adjustments are required to handle the case in which νπ < ωT < (ν+1)π with ν > 0.
Hint: Exercise 8.3.10.

The only issue we have not addressed is the behavior of the path integral as ωT
approaches an integral multiple of π. In Section 7.4 we found that the propagator ex-
periences Maslov corrections at these integral multiples of π and that these amount
to discontinuous jumps in the phase. To see this behavior in the path integral one
can compute the limit, in the distributional sense, of√

mω
2πi~ sinωT

e
i
~

mω
sinωT

(
(q2

a+q2
b) cosωT−2qaqb

)
.

as T approaches, for example, 0. The result is simply the Dirac delta δ(qa − qb). We
will not carry out this calculation, but if you would like to do so yourself we might
suggest (5.13).

8.4 Sketch of Some Rigorous Results

8.4.1 Introduction

Let’s begin by summarizing Feynman’s prescription for evaluating his path integral
representation of the propagator K(qb, tb; qa, ta) for a particle moving along the q-
axis from qa at time ta to qb at time tb under the influence of a Hamiltonian of the
form H = − ~

2

2m∆+V , assumed to be self-adjoint on some domain D(H) in L2(R). We
are told to slice the t-interval [ta, tb] into n equal subintervals [tk−1, tk], k = 1, . . . , n,
of length ∆t = tb−ta

n , with t0 = ta and tn = tb. Now we let q0 = qa and qn = qb and
take q1, . . . , qn−1 to be arbitrary real numbers and compute

S n(qa, q1, . . . , qn−1, qb) =

n∑
k=1

[m
2

(qk − qk−1

∆t

)2
− V(qk−1)

]
∆t. (8.14)

Next we are to perform the integrations∫
R

· · ·

∫
R

e
i
~ S n(qa,q1,...,qn−1,qb) dq1 . . . dqn−1, (8.15)

multiply by the normalizing factor ( m
2πi~∆t

)n/2
(8.16)

(where i1/2 = eπi/4) and take the limit as n→ ∞ to get
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PR(qb,tb;qa,ta)

e
i
~ SDq = lim

n→∞

( m
2πi~∆t

)n/2 ∫
R

· · ·

∫
R

e
i
~ S n(qa,q1,...,qn−1,qb) dq1 . . . dqn−1.

(8.17)

The right-hand side is then the definition of the left-hand side.
We found in the previous two sections that this worked out admirably in the two

simplest cases of the free particle (V = 0) and the harmonic oscillator (V(q) =

mω2q2/2), giving us precisely the propagators we had computed by other means
earlier. It is an unfortunate fact of life, however, that for even slightly more compli-
cated potentials the explicit computation of the path integral is, at least, orders of
magnitude more difficult and, at worst, impossible. Physicists have developed many
ingenious schemes for evaluating, or at least approximating, such path integrals (see
[Smir]), but this is really not our concern here. We would like to approach this from
the other end and look for general theorems that address some of the mathematical
issues raised by Feynman’s definition. Here are the issues we have in mind.

1. The potentials V with which one must deal are dictated by physics and one cannot
simply assume that H = − ~

2

2m∆ + V is self-adjoint; one must prove it. If H is not
self-adjoint on some domain, then it cannot be regarded as an observable and,
more to the point here, does not determine a time evolution e−itH/~ at all and so
there is no propagator. One would like to see general theorems guaranteeing the
self-adjointness of H for certain classes of physically meaningful potentials V .

2. Since ∣∣∣ e i
~ S n(qa,q1,...,qn−1,qb)

∣∣∣ = 1

the exponential in the path integral for the propagator is not Lebesgue integrable
on Rn−1 and so the meaning of∫

R

· · ·

∫
R

e
i
~ S n(qa,q1,...,qn−1,qb) dq1 . . . dqn−1

is not a priori clear.
3. Even assuming that the issue in (2) can be resolved, Feynman defines his path

integral as a limit (8.17), but does not specify what sort of limit he has in mind
and, of course, limits have the unfortunate habit of not existing when you want
them to exist. We would like to see some general results asserting the existence of
the limit (in some sense) for various classes of physically reasonable potentials.

4. It would be a fine thing if the path “integral” were really an integral in the
Lebesgue sense since this would provide us with an arsenal of very powerful
analytical weapons with which to study it. We would therefore like to know if
there is a measure on the path space PR(qb, tb; qa, ta) with the property that in-
tegrating e

i
~ S with respect to this measure is the same as evaluating Feynman’s

limit (8.17).

It goes without saying that all of these issues have received a great deal of atten-
tion since 1948 and the literature is not only vast, but technically quite imposing.
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The following sections can be regarded as nothing more than an appetizer, but we
will try to provide sufficient references for those who crave the entire meal.
Remark 8.4.1. Before getting started we should point out that much of what we
will have to say, particularly in Section 8.4.2, was proved in order to deal with very
specific physical situations and that these generally involve more than one degree of
freedom. The classical configuration space of a single particle moving in space, for
example, is R3, not R, so quantization gives rise to the Hilbert space L2(R3), not
L2(R). The hydrogen atom consists of two particles moving in space so its classical
configuration space R3 × R3 = R6 and the corresponding Hilbert space is L2(R6).
These additional degrees of freedom can substantially increase the technical issues
involved in solving concrete problems, but the corresponding Schrödinger equation
is the obvious, natural generalization of (6.10) and we would like to record it here.
We consider n particles with masses m1, . . . ,mn moving in R3. For each k = 1, . . . , n
we denote by qk the position vector of the kth particle and we will label the standard
coordinates in R3n in such a way that

q1 = (q1, q2, q3), q2 = (q4, q5, q6), . . . , qn = (q3n−2, q3n−1, q3n).

The potential governing the motion of the particles is a real-valued function V :
R3n → R on R3n and we will write its coordinate expression as V(q1, . . . ,qn). To
each k = 1, . . . , n we associate a Laplacian

∆k =
∂2

(∂q3k−2)2 +
∂2

(∂q3k−1)2 +
∂2

(∂q3k)2

so that the Laplacian ∆ on R3n itself is just the sum of these. The Hamiltonian H is
defined on smooth functions in L2(R3n) by

H = −

n∑
k=1

~2

2mk
∆k + V. (8.18)

The wave function of this system of n particles is written

ψ(q1, . . . ,qn, t)

and, if smooth, is assumed to satisfy the Schrödinger equation

i~
∂ψ(q1, . . . ,qn, t)

∂t
=

(
−

n∑
k=1

~2

2mk
∆k + V

)
ψ(q1, . . . ,qn, t) (8.19)

in the classical sense. For a single particle of mass m we will generally write q =

(q1, q2, q3) and

i~
∂ψ(q, t)
∂t

=

(
−
~2

2m
∆ + V

)
ψ(q, t).
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Example 8.4.1. (Hydrogen Atom) An atom of hydrogen consists of a proton of mass
m1 = mp ≈ 1.672 × 10−27kg and an electron of mass m2 = me ≈ 9.109 × 10−31kg
interacting through a potential that is inversely proportional to the distance between
them. More precisely, if q1 and q2 denote the position vectors of the proton and
electron, respectively, then V is given by Coulomb’s Law

V(q1,q2) = −
1

4πε0

e2

‖q1 − q2‖
,

where −e ≈ −1.602 × 10−19C is the charge of the electron (so e is the charge of the
proton) and ε0 is the vacuum permittivity (see Section 4.2). According to (8.18) the
Hamiltonian of this system is

H = −
~2

2mp
∆1 −

~2

2me
∆2 −

1
4πε0

e2

‖q1 − q2‖
. (8.20)

Fig. 8.3 Hydrogen Orbital Structure

Remark 8.4.2. The image in Figure 8.3 is not a computer rendering, but a relatively
recent direct image of the orbital structure of a hydrogen atom obtained using what is
called a quantum microscope (see http://physicsworld.com/cws/article/news/2013/

may/23/quantum-microscope-peers-into-the-hydrogen-atom).
The form of the Hamiltonian given in (8.20) is not the most convenient for many

purposes. To find something better we will introduce the center of mass coordinates
that we first saw in our discussion of the classical 2-body problem (Example 2.2.12).
Define r and R by

r = q1 − q2

and

R =
m1q1 + m2q2

m1 + m2
.

http://physicsworld.com/cws/article/news/2013/may/23/quantum-microscope-peers-into-the-hydrogen-atom
http://physicsworld.com/cws/article/news/2013/may/23/quantum-microscope-peers-into-the-hydrogen-atom
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Thus,

q1 = R +
m2r

m1 + m2

and

q2 = R +
m1r

m1 + m2

To express the Hamiltonian in terms of the coordinates r and R we let Ψ (q1,q2) be
a function of q1 and q2 and Φ(r,R) the corresponding function of r and R, that is,

Φ(r,R) = Ψ
(
R +

m2r
m1 + m2

,R +
m1r

m1 + m2

)
and

Ψ (q1,q2) = Φ
(
q1 − q2,

m1q1 + m2q2

m1 + m2

)
.

Now introduce a little notation. Write r = (r1, r2, r3), R = (R1,R2,R3) and let r =

‖r‖. Define operators

∆r =
∂2

(∂r1)2 +
∂2

(∂r2)2 +
∂2

(∂r3)2

and

∆R =
∂2

(∂R1)2 +
∂2

(∂R2)2 +
∂2

(∂R3)2 .

Finally, let M = m1 + m2 be the total mass and µ = m1m2
m1+m2

the so-called reduced
mass.
Exercise 8.4.1. Show that, in terms of the variables r and R, the Hamiltonian for
the hydrogen atom is given by

H = −
~2

2M
∆R −

~2

2µ
∆r −

e2

4πε0

1
r
. (8.21)

The real advantage to this form of the Hamiltonian becomes apparent when one
confronts the problem of solving the corresponding Schrödinger equation. In terms
of the variables R and r one can separate variables to obtain two equations, one
representing the translational motion of the center of mass and the other represent-
ing the motion of the two particles relative to each other. From the second of these
one computes, for example, the possible energy levels (eigenvalues) of the hydrogen
atom. Differences between consecutive energy levels can then be compared directly
with the experimentally determined frequencies of the emission lines in the hydro-
gen spectrum (see Section 4.2). Carrying out these calculations is somewhat tedious,
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but it is something that everyone should go through. We recommend proceeding in
three steps. Begin with a relatively painless undergraduate version of the computa-
tions (for example, Sections 2-5 of [Eis]). Proceed then to a more sophisticated, but
still physics-oriented treatment in one of the standard graduate texts (say, Chapter
IX, Sections I and III, of [Mess1]). Finally, for the rigorous version, consult Chapter
II, Section 7, of [Prug].
Remark 8.4.3. We should point out that the hydrogen atom, in addition its sig-
nificance in physics, is not entirely unrelated to our leitmotif here. As it happens,
there is a natural generalization of the harmonic oscillator to dimension four and
the Schrödinger equation for the bound states of the hydrogen atom reduces, after a
simple change of variable, to the Schrödinger equation for this 4-dimensional oscil-
lator. From this one can calculate the energy levels of the hydrogen atom by solving
the harmonic oscillator (see [Corn]).
Remark 8.4.4. In Section 8.4.2 we will need to make precise statements about the
domain and self-adjointness of the operators (8.18). To do this, and for other pur-
poses as well, we will need all of the machinery described in Remark 5.2.6, and a
bit more, extended to higher dimensions so this would seem an appropriate point to
do that. Most of this is entirely analogous to what we have already seen in Remark
5.2.6 so our discussion will be a bit more abbreviated. Good sources for this are
Sections 4.3.1 and 5.2.1 of [Evans], Sections 2-1 and 2-2 of [SW], Sections IX.1
and IX.2 of [RS2], and Chapters 5, 6, and 7 of [LL].

The following digression on Fourier transforms, tempered distributions and
Sobolev spaces on RN is rather lengthy so if this material is familiar you may want
to proceed directly to Section 8.4.2 and refer back as the need arises.

Let N denote the set of non-negative integers and NN = N×
N
· · · ×N the set of N-

tuples of non-negative integers. An element α = (α1, . . . , αN) of NN will be called a
multi-index. For each such multi-index α we write |α| for the sum α1 + · · · + αN . If
q = (q1, . . . , qN) ∈ RN and φ is a smooth real- or complex-valued function on RN ,
we will denote by ∂αφ the partial derivative

(∂αφ)(q) =

(
∂

∂q1

)α1

· · ·

(
∂

∂qN

)αN

φ(q).

If α = (0, . . . , 0), then ∂αφ = φ. If α = (1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0), . . . ,
(0, 0, 0, . . . , 0, 1), we will write ∂αφ as ∂1φ, ∂2φ, . . . , ∂Nφ so that ∂kφ = ∂φ/∂qk for
k = 1, 2, . . . ,N. We will write qα for the monomial

qα = (q1)α1 · · · (qN)αN .

The Schwartz space S(RN) consists of all smooth, complex-valued functions φ on
RN for which

sup
q∈RN

∣∣∣ qα(∂βφ)(q)
∣∣∣ < ∞
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for all multi-indices α and β. These are the functions which, together with all of
their partial derivatives, decay more rapidly than the reciprocal of any polynomial
in q1, . . . , qN as ‖q‖ → ∞. Examples include such things as

φ(q) = Q(q)e−c ‖q−q0 ‖
2
,

where c > 0, q0 ∈ R
N , and Q(q) =

∑
|α|≤d aαqα is a polynomial on RN .

On S(RN) we can define a countable family of semi-norms

‖φ‖α,β = sup
q∈RN

∣∣∣ qα(∂βφ)(q)
∣∣∣,

parametrized by pairs of multi-indices α, β ∈ NN . Although each ‖φ‖α,β is only a
semi-norm, the family of all such has the property that ‖φ‖α,β = 0∀α, β ∈ NN ⇒

φ = 0 so these combine to give a metric

ρ(φ1, φ2) =
∑

α,β∈NN

1
2|α|+|β|

‖φ1 − φ2‖α,β

1 + ‖φ1 − φ2‖α,β

that is, moreover, complete (Cauchy sequences converge). We supply S(RN) with
the topology determined by this metric and S(RN) thereby becomes a Fréchet space
(again we refer to [Ham] for a very thorough discussion of Fréchet spaces).

The complex-valued, linear functionals on S(RN) that are continuous with re-
spect to this Fréchet topology are called tempered distributions on RN and the linear
space of all such is denoted S′(RN). The elements of S(RN) are called test func-
tions. Every ψ in L1

loc(RN) (complex-valued, measurable functions on RN that are
integrable on compact subsets of RN) gives rise to a tempered distribution Tψ by
defining

Tψ[φ] =

∫
RN
φ(q)ψ(q) dNq

for every φ ∈ S(RN). As in the N = 1 case we will often simply identify Tψ and
ψ. Since L2(RN) ⊆ L1

loc(RN), every L2-function on RN gives rise to a tempered
distribution in this way. Distributions of the form Tψ for some ψ ∈ L1

loc(RN) are
called regular distributions, while all of the others are called singular distributions.
An example of a singular distribution is the Dirac delta at a ∈ RN , denoted δa and
defined by

δa[φ] = φ(a) ∀φ ∈ S(RN).

Sequential convergence in S′(RN) is defined pointwise on S(RN), that is, a se-
quence {Tn} in S′(RN) converges to T in S′(RN) if and only if {Tn(φ)} converges in C

to T (φ) for every φ ∈ S(RN). For any multi-index α, the αth-distributional derivative
of a distribution T is defined by
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∂αT [φ] = (−1)|α|T [∂αφ]

for every φ ∈ S(RN). If T = Tψ for some ψ ∈ L1
loc(RN) and if ∂αTψ is also regular so

that there exists a (necessarily unique) element ∂w
αψ of L1

loc(RN) with ∂αT = T∂w
αψ,

then ∂w
αψ is called the αth-weak derivative of ψ. This is characterized by∫

RN
ψ(q)(∂αφ)(q) dNq = (−1)|α|

∫
RN

(∂w
αψ)(q)φ(q) dNq

for every φ in S(RN) (see Example 5.2.11).
Remark 8.4.5. It is not uncommon in the literature to drop the w and use the same
symbol for ordinary and weak derivatives. There is no real harm in this since the
two coincide when both make sense. Also notice that if we adhere to the conven-
tion of identifying an L1

loc(RN) function with the corresponding regular distribution,
then distributional derivatives and weak derivatives are also identified, provided the
weak derivative exists (the distributional derivative always exists, but it need not be
regular).

For α = (1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0), . . . , (0, 0, 0, . . . , 0, 1) the weak deriva-
tives ∂w

αψ are written ∂w
1ψ, ∂

w
2ψ, . . . , ∂

w
Nψ. Thus, for each k = 1, . . . ,N,∫

RN
ψ(q) (∂kφ)(q) dNq = −

∫
RN

(∂w
k ψ)(q) φ(q) dNq

for every φ ∈ S(RN). Similarly we will write ∂w
k1
∂w

k2
ψ for ∂w

αψ when α has 1 in the k1
and k2 slots and 0 elsewhere; the order is immaterial because of the corresponding
result for smooth functions (Theorem 2-5 of [Sp1]). The weak gradient of ψ is the
N-tuple

∇wψ = (∂w
1ψ, ∂

w
2ψ, . . . , ∂

w
Nψ),

provided each ∂w
k ψ exists.

Exercise 8.4.2. Suppose ψ1, ψ2 ∈ L1
loc(Rn) and the weak derivatives ∂w

αψ1 and ∂w
αψ2

exist. Let c1, c2 ∈ C. Show that ∂w
α (c1ψ1 + c2ψ2) exists and is given by ∂w

α (c1ψ1 +

c2ψ2) = c1∂
w
αψ1 + c2∂

w
αψ2.

Weak derivatives share many of the other basic properties of ordinary derivatives
and we will record those we require as the need arises (also see Theorem 1, Section
5.2.3, of [Evans]). The particular use we would like to make of weak derivatives at
the moment is the description of certain Hilbert spaces that will play an essential
role when we start looking for domains of differential operators on L2(RN).

We define the Sobolev space H1(RN) to be the subset of L1
loc(RN) consisting of

those elements that are in L2(RN) and for which the first order weak derivatives exist
and are also in L2(RN), that is,

H1(RN) =

{
ψ ∈ L1

loc(RN) : ψ, ∂w
k ψ ∈ L2(RN), k = 1, 2, . . . ,N

}
.
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On H1(RN) we define an inner product by

〈ψ1, ψ2〉H1 = 〈ψ1, ψ2〉L2 + 〈∂w
1ψ1, ∂

w
1ψ2〉L2 + · · · + 〈∂w

Nψ1, ∂
w
Nψ2〉L2 (8.22)

so that the corresponding norm is

‖ψ‖2H1 = ‖ψ‖2L2 +

N∑
k=1

‖∂w
k ψ‖

2
L2 . (8.23)

With this inner product, H1(RN) is a Hilbert space (Theorem 2, Section 5.2, of
[Evans]). Relative to the norm topology determined by (8.23), the smooth functions
on RN are dense. Indeed, one can show that the set C∞0 (RN) of smooth functions
with compact support is dense in H1(RN) relative to the H1(RN)-norm (Theorem
7.6 of [LL]). In fact, H1(RN) is often defined to be the Hilbert space completion of
C∞0 (RN) relative to the inner product (8.22); see Section 3.3 of [Fried].
Remark 8.4.6. It is worth noting that the Integration by Parts Formula∫

RN
ψ(q) (∂kφ)(q) dNq = −

∫
RN

(∂w
k ψ)(q) φ(q) dNq

for every φ ∈ S(RN), which is essentially the definition of the weak derivatives,
generalizes to an Integration by Parts Formula on H1(RN): If ψ and φ are both in
H1(RN), then ∫

RN
ψ(q) (∂w

k φ)(q) dNq = −

∫
RN

(∂w
k ψ)(q) φ(q) dNq.

This is Theorem 7.7 of [LL].
Next define the Sobolev space H2(RN) to be the subset of L1

loc(RN) consisting
of those elements that are in L2(RN) and for which the first and second order weak
derivatives exist and are in L2(RN), that is,

H2(RN) =

{
ψ ∈ L1

loc(RN) : ψ, ∂w
k ψ, ∂

w
k1
∂w

k2
ψ ∈ L2(RN), k, k1, k2 = 1, 2, . . . ,N

}
.

H2(RN) is also a Hilbert space with inner product

〈ψ1, ψ2〉H2 = 〈ψ1, ψ2〉L2 +

N∑
k=1

〈∂w
k ψ1, ∂

w
k ψ2〉L2 +

N∑
k1=1

N∑
k2=1

〈∂w
k1
∂w

k2
ψ1, ∂

w
k1
∂w

k2
ψ2〉L2

(8.24)

and corresponding norm

‖ψ‖2H2 = ‖ψ‖2L2 +

N∑
k=1

‖∂w
k ψ‖

2
L2 +

N∑
k1=1

N∑
k2=1

‖∂w
k1
∂w

k2
ψ‖2L2 (8.25)
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(Theorem 2, Section 5.2, of [Evans]). As for H1(RN), one can also define H2(RN) to
be the Hilbert space completion of C∞0 (RN) with respect to the inner product defined
by (8.24).
Remark 8.4.7. We will need only H1(RN) and H2(RN), but, for integers K ≥ 3, the
Sobolev spaces HK(RN) are defined analogously so, as sets,

· · · ⊆ HK(RN) ⊆ · · · ⊆ H2(RN) ⊆ H1(RN) ⊆ L2(RN), (8.26)

although each of these has a different inner product. Much more refined informa-
tion about these inclusions and about the degree of regularity one can expect of the
elements of a given Sobolev space can be obtained from the so-called Sobolev In-
equalities which are discussed in detail in Chapter 5 of [Evans]. We mention also
that, for Ck-valued functions, the Sobolev norms are defined to be the sum of the
Sobolev norms of the coordinate functions and one thereby obtains Sobolev spaces
of Ck-valued functions.

The Fourier transform of φ ∈ S(RN) is defined by

(Fφ)(p) = φ̂(p) =
1

(2π)N/2

∫
RN

e−iq·pφ(q) dNq, (8.27)

where q · p =
∑N

i=1 qi pi if q = (q1, . . . , qN) ∈ RN and p = (p1, . . . , pN) ∈ RN .
Remark 8.4.8. One should really think of the RN in which q lives and the RN in
which p lives as distinct. Paint one red and the other blue. Somewhat more invari-
antly, one often identifies the p copy of RN with the dual of the q copy of RN . In
this case it would be more proper to subscript the components of p as (p1, . . . , pN)
and think of q · p =

∑N
i=1 qi pi as the natural pairing on RN × (RN)∗ rather than the

usual inner product on RN .
Remark 8.4.9. We have already mentioned (Remark 5.2.7) that, when N = 1, there
are many variants of this definition, differing one from another by various constants.
These same variants are in use when N > 1, but here there is even more flexibility.
Indeed, one does not alter the essential features of the Fourier transform by taking
q · p to be, not the usual inner product on Rn, but any nondegenerate, symmetric,
bilinear form on RN .
Exercise 8.4.3. Let A be an N × N, symmetric, positive definite matrix. Show that
the Fourier transform of

φ(q) = e−
1
2 q·Aq

is given by

φ̂(p) =
1

√
det A

e−
1
2 p·A−1p.

Hint: The N = 1 case is Example 5.2.8. For N > 1 choose an orthogonal matrix B
such that
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BT AB = Λ = diag(λ1, . . . , λN).

In the integral defining the Fourier transform make the changes of variable q = Bq̃
and p = Bp̃ and apply the N = 1 case N times.

The Fourier transform of a Schwartz function of q is a Schwartz function of p.
Indeed, the mapping F : S(RN) → S(RN) that sends φ to Fφ = φ̂ is a (Fréchet)
continuous, linear, bijection with a continuous inverse F−1 : S(RN)→ S(RN) given
by

(F−1φ)(q) = φ̌(q) =
1

(2π)N/2

∫
RN

eiq·pφ(p) dNp. (8.28)

This is called the Fourier Inversion Theorem and is Theorem IX.1 of [RS2].
All of the familiar properties of the Fourier transform on R have analogues on

RN . Here are a few of the most commonly used. For any φ, φ1, φ2 ∈ S(RN), any
multi-index α, any a , 0 in R, and any a ∈ RN ,

1. F(∂αφ)(p) = (ip)α(Fφ)(p)

2. F((−iq)αφ)(p) = ∂α(Fφ)(p)

3. F−1(∂αφ)(q) = (−iq)α(F−1φ)(q)

4. F−1((ip)αφ)(q) = ∂α(F−1φ)(q)

5. F(φ(q − a)) = e−ia·pφ̂(p)

6. F(eia·qφ(q)) = φ̂(p − a)

7. F(φ(aq)) = 1
|a| φ̂

(
1
a p

)
8. F(φ1 ∗ φ2)(p) = (2π)N/2φ̂1(p)φ̂2(p), where the convolution product φ1 ∗ φ2 is

defined by

(φ1 ∗ φ2)(q) =

∫
RN
φ1(q − y)φ2(y) dNy.

Furthermore, F : S(RN)→ S(RN) preserves the L2(RN) norm, that is,∫
RN
|φ(q)|2dNq =

∫
RN
|φ̂(p)|2dNp

for every φ ∈ S(RN) (Corollary to Theorem IX.1 of [RS2]). Since S(RN) is dense in
L2(RN) and F carries S(RN) onto S(RN), this implies that F extends by continuity
to a unitary operator of L2(RN) onto itself, which we will continue to denote

F : L2(RN)→ L2(RN)
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(this is called the Plancherel Theorem). We will continue to refer to F : L2(RN) →
L2(RN) as the Fourier transform, although it is often called the Fourier-Plancherel
transform. F−1 : S(RN) → S(RN) extends to the L2(RN)-adjoint of F : L2(RN) →
L2(RN). For φ in L1(RN)∩L2(RN), Fφ is computed from the integral (8.27), but for
an element of L2(RN) that is not Lebesgue integrable on RN this integral will not
converge.
Remark 8.4.10. As in the 1-dimensional case (Remark 5.2.10 ) one can compute
Fφ either as a limit in L2(RN) of the Fourier transforms of a sequence of functions
in L1(RN) ∩ L2(RN) converging to φ or as

(Fφ)(p) = φ̂(p) = lim
M→∞

1
(2π)N/2

∫
[−M,M]N

e−iq·pφ(q) dNq,

where the limit is in L2(RN). Also as in the 1-dimensional case, the L2-limit on
the right-hand side is generally written simply 1

(2π)N/2

∫
RN e−iq·pφ(q) dNq, but this is a

new use of the integral sign and we would like to extend the terminology of Remark
5.2.10 to make the distinction.

Let g be an element of L2(RN) and let k : RN ×RN → C be a function with the
following properties. For any M > 0,

1. k( · ,p) ∈ L1([−M,M]N) for almost every p ∈ RN .
2.

∫
[−M,M]N k(q,p) dNq is in L2(RN) as a function of p.

Then we say that g is the integral in the mean, or the mean-square integral of k if

lim
M→∞

∫
[−M,M]N

k(q, · ) dNq = g( · ),

where the limit is in L2(RN), that is, if

lim
M→∞

∥∥∥∥∥ g( · ) −
∫

[−M,M]N
k(q, · ) dNq

∥∥∥∥∥
L2

= 0.

In this case we will abuse notation a bit and still write

g(p) =

∫
RN

k(q,p) dNq.

Remark 8.4.11. The Fourier transform actually extends to all φ ∈ L1(RN) by (8.27),
but φ̂ will, in general, only be in the space C0

∞(RN) of continuous functions that
vanish at infinity (|φ̂(p)| → 0 as ‖p‖ → ∞). This is the so-called Riemann-Lebesgue
Lemma (see Theorem IX.7 of [RS2]). Moreover, F maps L1(RN) into, but not onto
C0
∞(RN).

Just as in the 1-dimensional case, the Fourier transform and its inverse extend
beyond L2(RN) to the tempered distributions S′(RN) ⊇ L2(RN) via the definitions

(FT )[φ] = T̂ [φ] = T [Fφ] = T [φ̂] ∀φ ∈ S(RN)
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and

(F−1T )[φ] = Ť [φ] = T [F−1φ] = T [φ̌] ∀φ ∈ S(RN).

For example,

Fδa =
1

(2π)N/2 e−ia·p,

where the function on the right-hand side is identified with the corresponding regular
distribution.

Both F : S′(RN) → S′(RN) and F−1 : S′(RN) → S′(RN) are still linear bijec-
tions. Moreover, if T is any tempered distribution and f is any function on RN that
does not grow too rapidly (more precisely, has the property that, if φ is a Schwartz
function, then fφ is also a Schwartz function), then one can define a distribution f T
by

( f T )[φ] = T [ fφ].

This is certainly the case if f is a polynomial on Rn. With this definition one can
show that properties (1)-(4) above are still valid when φ is taken to be a distribution
in L2(RN), provided the distributional derivatives are also in L2(RN). Thus, even
for distributions, the Fourier transform takes derivatives to products, which is essen-
tially its raison d’être. For example, if ψ is in L2(RN) and if ∂w

k ψ exists and is in
L2(RN) for each k = 1, . . . ,N, then

F(∂w
k ψ)(p) = i (pk) ψ̂(p).

But F is an isometry on L2(RN) so

‖ ∂w
k ψ ‖

2
L2 =

∫
RN

(pk)2 |ψ̂(p)|2 dNp.

Consequently,

‖ψ ‖2L2 +

N∑
k=1

‖ ∂w
k ψ ‖

2
L2 =

∫
RN

(1 + ‖p‖2) |ψ̂(p)|2 dNp

and we conclude that if ψ is in H1(RN), then (1 + ‖p‖2)
1
2 ψ̂(p) is in L2(RN) and

‖ψ ‖H1 =
∥∥∥ (1 + ‖p‖2)

1
2 ψ̂(p)

∥∥∥
L2 .

For functions in L2(RN) it is also true that, conversely, if (1 + ‖p‖2)
1
2 ψ̂(p) is in

L2(RN), then ψ is in H1(RN) (Theorem 7.9 of [LL]). There are analogous Fourier
characterizations of all of the Sobolev spaces (Theorem 7, Section 5.8.4, of [Evans]).
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This is the end of the digression on Fourier transforms, tempered distributions and
Sobolev spaces on RN .

8.4.2 Self-Adjointness of − ~
2

2m∆ + V

In this section we would like to have a look at just a few of the many rigorous
theorems that have been proved to establish the self-adjointness (or essential self-
adjointness) of Schrödinger operators − ~

2

2m∆ + V for various classes of potentials V .
We will prove a result strong enough to yield the self-adjointness of the Hamiltonian
for the hydrogen atom (Example 8.4.1), but then will be content to state some of the
important results and provide references to the proofs. The best general reference is
[RS2], Sections X.1-X.6, and its Notes to Chapter X. We begin with a famous result
of Kato and Rellich that guarantees the self-adjointness of a sufficiently “small” (in
some appropriate sense) perturbation of a self-adjoint operator.

Remark 8.4.12. Although we will tend to phrase everything in terms of − ~
2

2m∆ + V ,
by taking m = 1

2 and choosing units in which ~ = 1, all of the results apply equally
well to −∆ + V .

Theorem 8.4.1. (Kato-Rellich Theorem) Let H be a compiex, separable Hilbert
space, A : D(A)→ H a self-adjoint operator on H and B : D(B)→ H a symmetric
operator on H with D(A) ⊆ D(B). Suppose there exist real numbers a and b with
a < 1 such that

‖ Bψ ‖ ≤ a‖ Aψ ‖ + b‖ψ ‖

for every ψ ∈ D(A). Then

A + B : D(A)→ H

is self-adjoint.

For the proof of this we will use the following modest extension of Theorem 5.2.3.

Lemma 8.4.2. Let H be a complex, separable Hilbert space and A : D(A) → H a
symmetric operator. Then A is self-adjoint if and only if there exists a real number
µ for which Image (A ± µi) = H.

Proof. Certainly, if A is self-adjoint, then there is such a µ by Theorem 5.2.3
(namely, µ = 1). Conversely, suppose A is symmetric and there exists a real num-
ber µ for which Image (A ± µi) = H. We must show that D(A∗) = D(A). Since A
is symmetric, D(A) ⊆ D(A∗) and A∗|D(A) = A. Thus, we let φ ∈ D(A∗) and show
that it is in D(A). Since Image (A − µi) = H, we can select an η in D(A) with
(A − µi)η = (A∗ − µi)φ. Since D(A) ⊆ D(A∗), φ − η is in D(A∗). Moreover,
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(A∗ − µi)(φ − η) = (A∗ − µi)φ − (A∗ − µi)η = (A∗ − µi)φ − (A − µi)η = 0.

But Image (A + µi) = H so Kernel (A + µi)∗ = Kernel (A∗ − µi) = 0 and therefore
φ = η and, in particular, φ ∈ D(A), as required. ut

Exercise 8.4.4. Show that a symmetric operator A : D(A) → H is self-adjoint if
and only if Image (A ± µi) = H for all real µ , 0.

Proof. (Kato-Rellich Theorem) We intend to apply the previous lemma and show
that, for sufficiently large real µ, Image (A + B ± µi) = H. First note that, since A is
self-adjoint, its spectrum is real so, for any nonzero real µ, (A + µi)−1 exists and is
defined on Image (A+µi). But, applying the previous Exercise to A, Image (A+µi) =

H so (A + µi)−1 is defined on all of H. We claim that, in fact, (A + µi)−1 is bounded
and satisfies

‖ (A + µi)−1 ‖ ≤
1
|µ|
.

To see this, first note that, for any ψ ∈ D(A),

‖ (A + µi)ψ ‖2 = ‖ Aψ ‖2 + µ2‖ψ ‖2.

Indeed,

‖ (A + µi)ψ ‖2 = 〈 Aψ + µiψ, Aψ + µiψ 〉

= 〈 Aψ, Aψ 〉 + 〈 Aψ, µiψ 〉 + 〈 µiψ, Aψ 〉 + 〈 µiψ, µiψ 〉

= ‖ Aψ ‖2 + µi〈 Aψ, ψ 〉 − µi〈ψ, Aψ 〉 + µ2‖ψ ‖2

= ‖ Aψ ‖2 + µi〈ψ, Aψ 〉 − µi〈ψ, Aψ 〉 + µ2‖ψ ‖2

= ‖ Aψ ‖2 + µ2‖ψ ‖2.

It follows that

‖ (A + µi)ψ ‖ ≥ |µ| ‖ψ ‖.

Now, for any φ ∈ H, applying this to ψ = (A+µi)−1φ gives ‖ φ ‖ ≥ |µ| ‖ (A+µi)−1φ ‖,
that is,

‖ (A + µi)−1φ ‖ ≤
1
|µ|
‖ φ ‖

as required.
Exercise 8.4.5. Show that, for any φ ∈ H,

‖ A(A + µi)−1φ ‖ ≤ ‖ φ ‖.

Now, for a and b as specified in the Kato-Rellich Theorem we have
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‖ B(A + µi)−1φ ‖ ≤ a‖ A(A + µi)−1φ ‖ + b‖ (A + µi)−1φ ‖

≤ a‖ φ ‖ + b
( 1
|µ|
‖ φ ‖

)
and therefore

‖ B(A + µi)−1φ ‖ ≤
(

a +
b
|µ|

)
‖ φ ‖.

Since a < 1 we can choose |µ| sufficiently large to ensure that a + b
|µ|

< 1 and
therefore

‖ B(A + µi)−1 ‖ < 1.

We make use of this in the following way. Write

A + B + µi = (I + B(A + µi)−1)(A + µi),

where I is the identity operator on H. Since∥∥∥ I −
(

I + B(A + µi)−1) ∥∥∥ < 1,

the operator I + B(A + µi)−1 has a bounded inverse given by the Neumann series

∞∑
n=0

(
I − (I + B(A + µi)−1)

)n
,

where the series converges in the operator norm on B(H).
Remark 8.4.13. This is essentially just a generalization of the usual geometric series
and is proved in basically the same way (see Theorem 4.1-C of [TaylA]). Indeed,
the same argument gives the same result in any Banach algebra (see Theorem A,
Section 65, of [Simm1]).

In particular, the operator I + B(A + µi)−1 maps onto H. Since A is self-adjoint,
the same is true of A + µi and we conclude that

Image (A + B + µi) = Image (I + B(A + µi)−1)(A + µi) = H.

Exercise 8.4.6. Check that exactly the same proof shows that

Image (A + B − µi) = H

and conclude that A + B : D(A)→ H is self-adjoint.
ut

There is also a version of the Kato-Rellich Theorem for essential self-adjointness.
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Corollary 8.4.3. Let H be a compiex, separable Hilbert space, A : D(A) → H an
essentially self-adjoint operator on H and B : D(B)→ H a symmetric operator on
H with D(A) ⊆ D(B). Suppose there exist real numbers a and b with a < 1 such
that

‖ Bψ ‖ ≤ a‖ Aψ ‖ + b‖ψ ‖

for every ψ ∈ D(A). Then

A + B : D(A)→ H

is essentially self-adjoint and

A + B = A + B.

Proof. Since A is essentially self-adjoint, its closure A is its unique self-adjoint
extension. Since B is symmetric, it is closable and therefore B exists and it too is
symmetric. We intend to apply the Kato-Rellich Theorem to A and B so we will first
show that D(A) ⊆ D(B). Let ψ ∈ D(A). Since A is characterized by the fact that its
graph Gr(A) is the closure in H ⊕H of the graph of A, there is a sequence of points
ψn in D(A) with ψn → ψ and Aψn → Aψ. Since

‖ B(ψn − ψm) ‖ ≤ a‖ A(ψn − ψm) ‖ + b‖ (ψn − ψm) ‖

the sequence of the Bψn is Cauchy in H and so Bψn → φ for some φ ∈ H. Then,
since B is closed, ψ ∈ D(B) and φ = Bψ. In particular, D(A) ⊆ D(B). Furthermore,
for any ψ ∈ D(A),

‖ Bψ ‖ = lim
n→∞
‖ Bψn ‖ ≤ lim

n→∞
(a‖ Aψn ‖ + b‖ψn ‖) = a‖ Aψ ‖ + b‖ψ ‖.

Thus, A and B satisfy the hypotheses of the Kato-Rellich Theorem and we conclude
that

A + B : D(A)→ H

is self-adjoint. In particular, A + B is a closed extension of A + B and therefore also
an extension of A + B. But (A + B)ψn → Aψ + Bψ so (A + B)ψ = Aψ + Bψ which
means that A + B is also an extension of A + B so we conclude that

A + B = A + B.

In particular, A + B is self-adjoint so A + B is essentially self-adjoint. ut

In order to apply these results to Schrödinger operators H = − ~
2

2m∆ + V we will
need to do two things.
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1. Establish the self-adjointness of the free particle Hamiltonian H0 = − ~
2

2m∆ on
some appropriate domain D(H0) ⊇ S(R3) in L2(R3) and its essential self-
adjointness on S(R3). We have already done this for the free particle Hamiltonian
on R in Example 5.2.14 and, as we will see, the proof for R3 is virtually identical.
Remark 8.4.14. To streamline the exposition a bit we will stick with R3. Every-
thing we will say is equally true for R and R2, but for RN with N ≥ 4 some
adjustments are occasionally required. We will point some of these out as we
proceed, but for the full story see Chapter X of [RS2].

2. Isolate some class of potentials V for which D(H0) is contained in the domain
D(V) of the multiplication operator V and for which there exist real numbers
a < 1 and b such that

‖Vψ ‖ ≤ a‖H0ψ ‖ + b‖ψ ‖

for every ψ ∈ D(H0). Our stated objective is to find such a class of potentials large
enough to include the Coulomb potential for the hydrogen atom. The condition
we eventually decide on may look a bit strange at first sight so we will use the
hydrogen atom to motivate it in the following example.

Example 8.4.2. Writing the Hamiltonian for the hydrogen atom in the form (8.21),
the potential is given by

V(r) = −
e2

4πε0

1
r
.

Let χ1 denote the characteristic function of the closed unit ball r ≤ 1 in R3. Then
1 − χ1 is the characteristic function of r > 1 and we can write

V = V1 + V2 = χ1V + (1 − χ1)V.

Exercise 8.4.7. Show that V1 = χ1V is in L2(R3) and V2 = (1 − χ1)V is in L∞(R3).
We intend to show that, whenever the potential V is real-valued and can be written

as the sum of an element V1 of L2(R3) and an element V2 of L∞(R3), then H0 +

V satisfies the hypotheses of the Kato-Rellich Theorem and so is self-adjoint on
D(H0).
Remark 8.4.15. We should say a few words about why we need the Kato-Rellich
Theorem for both self-adjoint and essentially self-adjoint operators and how we in-
tend to use them. A Schrödinger operator is initially defined in the classical sense
on some space of differentiable functions (such as S(R3) or C∞0 (R3)). Here it is not
self-adjoint and so we would like to find a self-adjoint extension. But this alone is
not enough. We would like to be sure that there is only one self-adjoint extension
since, if there is more than one, then there is more than one contender for the Hamil-
tonian of the quantum system under consideration and, consequently, for the time
evolution of that system. One can see explicitly that different self-adjoint extensions
correspond to different physics in Examples 1 and 2, Section X.1, of [RS2]. But
suppose we show that H is self-adjoint by showing that the potential satisfies the
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hypotheses of the Kato-Rellich Theorem on D(H0) ⊆ L2(R3). Then it certainly also
satisfies these conditions on S(R3) and, since H0 is essentially self-adjoint on S(R3),
we conclude from the Corollary that H |S(R3) is also essentially self-adjoint and so
has a unique self-adjoint extension, which must be H. The Corollary is a roundabout
way of establishing uniqueness.

Now we turn to the first of the two tasks we set ourselves above. For this it will
clearly suffice to consider only the Laplace operator −∆ (we will explain the reason
for leaving the minus sign shortly). We begin with a few remarks on the restriction
of −∆ to S(R3). Two integrations by parts show that −∆ is symmetric on S(R3).
Indeed, for ψ and φ in S(R3),

〈 −∆ψ, φ 〉 =

∫
R3
−∆ψ(q)φ(q) d3q

=

3∑
j=1

∫
R3
−∂2

jψ(q)φ(q) d3q

=

3∑
j=1

∫
R3
∂ jφ(q)∂ jφ(q) d3q

=

3∑
j=1

∫
R3
−ψ(q)∂2

jφ(q) d3q

= 〈ψ,−∆φ 〉.

Exercise 8.4.8. Show that, for ψ ∈ S(R3),

〈 −∆ψ, ψ 〉 ≥ 0.

We conclude that −∆ is a positive, symmetric operator on S(R3). The reason this
is of interest is that the Friedrichs Extension Theorem (Remark 5.2.20) guarantees
the existence of a positive, self-adjoint extension of −∆ to L2(R3) (the positivity of
−∆ is the reason for retaining the minus sign). In the case of −∆ on S(R3) there is,
in fact, a unique self-adjoint extension, but this does not follow from the Friedrichs
theorem so we will need a more explicit construction. This is done just as it was for
R in Example 5.2.14 by applying the Fourier transform.

For φ ∈ S(R3), it follows from F(∂αφ)(p) = (ip)α(Fφ)(p) with α =

(0, . . . , 2, . . . , 0) (2 in the jth slot) that F(∂2
jφ)(p) = −(p j)2φ̂(p) for j = 1, 2, 3. Thus,

F(−∆φ)(p) = ‖p‖2φ̂(p).

In particular, for every φ ∈ S(R3),

−∆φ(q) = (F−1Q‖p‖2F)φ(q),

where Q‖p‖2 is the multiplication operator on L2(R3) defined by (Q‖p‖2 φ̂)(p) =

‖p‖2φ̂(p). We have noted that F(∂αψ)(p) = (ip)α(Fψ)(p) is true even when ψ is
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a distribution in L2(R3) provided the derivatives, interpreted in the distributional
sense, are also in L2(R3). If ‖p‖2φ̂(p) is also in L2(R3), then we can define −∆ as an
operator on L2(R3) that extends −∆ on S(R3) by

−∆ : D(−∆)→ L2(R3)

−∆ψ = (F−1Q‖p‖2F)ψ,

where

D(−∆) =

{
ψ : ψ ∈ L2(R3) and ‖p‖2ψ̂ ∈ L2(R3)

}
.

Remark 8.4.16. The domain of −∆ on L2(R3) can, of course, also be written

D(−∆) =

{
ψ : ψ ∈ L2(R3) and∆ψ ∈ L2(R3)

}
and it is worth pointing out that this is the same as the Sobolev space H2(R3).
Since −∆ = F−1Q‖p‖2F and F : L2(R3)→ L2(R3) is unitary, −∆ is unitarily equiva-
lent to Q‖p‖2 .
Exercise 8.4.9. Show that Q‖p‖2 : D(−∆) → L2(R3) is self-adjoint. Hint: See Exer-
cise 5.2.6 and the discussion preceding it.
According to Lemma 5.2.5, −∆ : D(−∆)→ L2(R3) is therefore also self-adjoint and
this is what we wanted to prove.

Well, that’s not quite all we wanted to prove. We now have one self-adjoint exten-
sion of −∆|S(R3), but to remove any ambiguities we need to know that it is the only
one. For this we must show that −∆|S(R3) is essentially self-adjoint and therefore has
a unique self-adjoint extension. Since the argument is exactly the same as the one
given for S(R) in Section 5.2 we will leave it for you (if you would prefer a little
variety, there is another argument in Theorem IX.27 (c) of [RS2]).
Exercise 8.4.10. Show that −∆|S(R3) is essentially self-adjoint by proving that
Image (−∆|S(R3) ± i)⊥ are both zero.

Since a positive multiple of −∆ clearly has all of the properties of −∆ that we
have just established, we have completed the first of the tasks we set for ourselves,
that is, the free particle Hamiltonian

H0 = −
~2

2m
∆

on R3 is self-adjoint on

D(H0) =

{
ψ : ψ ∈ L2(R3) and ‖p‖2ψ̂ ∈ L2(R3)

}
=

{
ψ : ψ ∈ L2(R3) and ∆ψ ∈ L2(R3)

}
= H2(R3)
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and essentially self-adjoint on S(R3). Our second objective takes a bit more work,
but we will begin by stating precisely what it is we would like to prove.

Theorem 8.4.4. Let V be a real-valued, measurable function on R3 that can be
written as V = V1 + V2, where V1 ∈ L2(R3) and V2 ∈ L∞(R3). Then

H = H0 + V = −
~2

2m
∆ + V

is essentially self-adjoint on C∞0 (R3) and self-adjoint on D(H0).

Exercise 8.4.11. Show that if H = H0 + V = − ~
2

2m∆+ V is essentially self-adjoint on
C∞0 (Rn), then it is also essentially self-adjoint on S(Rn). Hint: Use Corollary 5.2.4
and the fact that C∞0 (Rn) ⊆ S(Rn).
Remark 8.4.17. Theorem 8.4.4 remains true if R3 is everywhere replaced by R or
R2, but for Rn with n ≥ 4 it is not sufficient to assume that V1 is L2 (see Theorem
X.29 of [RS2]).

By virtue of Example 8.4.2 we conclude from Theorem 8.4.4 that the Hamilto-
nian of the hydrogen atom is self-adjoint on D(H0); we will see shortly that there
is a generalization of Theorem 8.4.4 that applies to any atom or molecule. For the
proof of Theorem 8.4.4 we will need the following lemma.

Lemma 8.4.5. Let ψ ∈ L2(R3) be in D(H0). Then ψ is in L∞(R3) and, moreover,
for any a > 0 there exists a real number b, independent of ψ, such that

‖ψ‖L∞ ≤ a ‖H0ψ‖L2 + b ‖ψ‖L2 . (8.29)

Proof. We would like to show first that ψ̂ ∈ L1(R3). For this we recall that, by
the Hölder Inequality (see, for example, Theorem 2.3 of [LL]), the product of two
L2-functions is an L1-function. Since ψ ∈ D(H0), we know that ψ ∈ L2(R3) so
ψ̂ ∈ L2(R3). Moreover, ‖p‖2ψ̂ ∈ L2(R3). Consequently, (1 + ‖p‖2)ψ̂ is in L2(R3).
But an integration in spherical coordinates shows that∥∥∥ (1 + ‖p‖2)−1

∥∥∥2
L2 =

∫
R3

1
(1 + ‖p‖2)2 d3p = π2

so (1 + ‖p‖2)−1 is also in L2(R3). Consequently, the product

ψ̂ = (1 + ‖p‖2)−1(1 + ‖p‖2) ψ̂

is in L1(R3). In particular, ‖ψ̂‖L1 is finite and (by the Hölder Inequality again)

‖ψ̂‖L1 ≤
∥∥∥ (1 + ‖p‖2)−1

∥∥∥
L2

∥∥∥ (1 + ‖p‖2)ψ̂
∥∥∥

L2 ≤ π
(
‖ψ̂‖L2 +

∥∥∥ ‖p‖2ψ̂∥∥∥L2

)
. (8.30)

Exercise 8.4.12. Show that

‖ψ‖L∞ ≤ (2π)−3/2‖ψ̂‖L1



398 8 Path Integral Quantization

and conclude that ψ ∈ L∞(R3).
Since the Fourier transform is an isometry on L2(R3),

‖H0ψ‖L2 = ‖F(H0ψ)‖L2 =
~2

2m

∥∥∥ ‖p‖2ψ̂ ∥∥∥
L2

and

‖ψ‖L2 = ‖ψ̂‖L2 .

so, for any a, b ∈ R,

a ‖H0ψ‖L2 + b ‖ψ‖L2 = a
(
~2

2m

) ∥∥∥ ‖p‖2ψ̂ ∥∥∥
L2 + b ‖ψ̂‖L2 .

From this and Exercise 8.4.12 we conclude that to prove our lemma it will suffice to
show that, for any a′ > 0, there exists a b′ ∈ R such that

‖ψ̂‖L1 ≤ a′
∥∥∥ ‖p‖2ψ̂ ∥∥∥

L2 + b′ ‖ψ̂‖L2 .

To prove that this we fix an arbitrary r > 0 and define ψ̂r by

ψ̂r(p) = r3ψ̂(rp).

Exercise 8.4.13. Use the scaling property of the Fourier transform (F(ψ(aq)) =
1
|a| ψ̂

( 1
a p

)
for a , 0 in R) to show that ψ̂r is also the Fourier transform of some

element of D(H0) so that (8.30) is valid for ψ̂r as well, that is,

‖ψ̂r‖L1 ≤ π
(
‖ψ̂r‖L2 +

∥∥∥ ‖p‖2ψ̂r

∥∥∥
L2

)
. (8.31)

Now notice that

‖ψ̂r‖L1 =

∫
R3
| ψ̂r(p) | d3p = r3

∫
R3
| ψ̂(rp) | d3p = r3

∫
R3
| ψ̂(p′) | r−3 d3p′ = ‖ψ̂‖L1 .

Exercise 8.4.14. Show similarly that

‖ψ̂r‖L2 = r3/2‖ψ̂‖L2

and ∥∥∥ ‖p‖2ψ̂r

∥∥∥
L2 = r−1/2

∥∥∥ ‖p‖2ψ̂ ∥∥∥
L2 .

Substituting all of this into (8.31) gives

‖ψ̂‖L1 ≤ πr−1/2
∥∥∥ ‖p‖2ψ̂ ∥∥∥

L2 + πr3/2 ‖ψ̂‖L2 .
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Thus, given an a′ > 0 we choose r so that πr−1/2 = a′ and then, with this value of r,
b′ = πr3/2 will satisfy (8.29) so the proof of the lemma is complete. ut

Proof. (Theorem 8.4.4) We assume that V is a real-valued function on R3 that can
be written as V = V1 + V2, where V1 ∈ L2(R3) and V2 ∈ L∞(R3) and will apply
the Kato-Rellich Theorem 8.4.1 to show that H = H0 + V is self-adjoint on D(H0).
Since V , being real-valued, is clearly symmetric as a multiplication operator we
must prove two things.

1. D(H0) ⊆ D(V)
2. There exist real numbers a and b with a < 1 such that

‖Vψ ‖L2 ≤ a ‖H0ψ ‖L2 + b ‖ψ ‖L2

for all ψ ∈ D(H0).

D(V) consists of all those ψ in L2(R3) for which Vψ is also in L2(R3). Let ψ be in
D(H0). In particular, ψ ∈ L2(R3) and, by Lemma 8.29, ψ ∈ L∞(R3). Consequently,
both ‖ψ ‖L2 and ‖ψ ‖L∞ are finite so

‖Vψ ‖L2 = ‖V1ψ + V2ψ ‖L2 ≤ ‖V1ψ ‖L2 + ‖V2ψ ‖L2 ≤ ‖V1 ‖L2 ‖ψ ‖L∞ + ‖V2 ‖L∞ ‖ψ ‖L2

implies that Vψ is in L2(R3) and therefore D(H0) ⊆ D(V) as required.
According to Lemma 8.29, for any a′ > 0 there is a b′ ∈ R for which ‖ψ‖L∞ ≤

a′ ‖H0ψ‖L2 + b′ ‖ψ‖L2 . Thus,

‖Vψ ‖L2 ≤ ‖V1 ‖L2 ‖ψ ‖L∞ + ‖V2 ‖L∞ ‖ψ ‖L2

≤ a′ ‖V1 ‖L2 ‖H0ψ ‖L2 +
(

b′ ‖V1 ‖L2 + ‖V2 ‖L∞
)
‖ψ ‖L2

so if we choose a′ sufficiently small that a = a′ ‖V1 ‖L2 < 1 and take b = b′ ‖V1 ‖L2 +

‖V2 ‖L∞ , then ‖Vψ ‖L2 ≤ a ‖H0ψ ‖L2 + b ‖ψ ‖L2 , as required. The argument for the
essential self-adjointness of H on S(R3) is described in Remark 8.4.15 ut

We will conclude this section by surveying just a few of the many rigorous the-
orems of this same sort that specify a class of potentials V for which H = H0 + V
is self-adjoint, or at least essentially self-adjoint, on some domain. There is a very
detailed account of such results in Sections X.1-X.6 of [RS2] and a guide to even
more in the Notes to Chapter X of this source. The results we describe will gener-
ally assert the essential self-adjointness of H on the space of smooth functions with
compact support. Essential self-adjointness is generally all that matters. For exam-
ple, we need to be sure of the existence of a unique self-adjoint operator that agrees
with − ~

2

2m∆+V on smooth functions, but the precise domain on which this extension
is self-adjoint is very often not relevant (and also very often difficult to determine).

Theorem 8.4.4, from which we obtained the self-adjointness of the Hamiltonian
for the hydrogen atom, is but a special case of a very famous result of Kato [Kato]
which established the self-adjointness of the Hamiltonian for any atom or molecule.
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We will describe the Hamiltonian for a neutral (uncharged) atom of atomic num-
ber Z. The nucleus therefore contains Z protons and perhaps some neutrons. Be-
ing neutral, the atom also has Z electrons. We will denote the mass of the nucleus
by M and the mass of each electron by me. We’ll denote the position vector of
the nucleus by q0 = (q1, q2, q3) and the position vectors of the Z electrons by
q1 = (q4, q5, q6), . . . ,qZ = (q3Z+1, q3Z+2, q3Z+3). For each k = 0, 1, . . . ,Z we in-
troduce a Laplacian ∆k = ∂2

3k+1 + ∂2
3k+2 + ∂2

3K+3. The potential is determined by the
Coulomb interactions between each electron and the nucleus and the Coulomb in-
teractions between each pair of distinct electrons. Specifically, the Hamiltonian is
defined on C∞0 (R3Z+3) by

H = −
~2

2M
∆0 −

~2

2me

Z∑
k=1

∆k −
1

4πε0

Z∑
k=1

Ze2

‖qk − q0‖
+

1
4πε0

Z∑
k=1

∑
k< j

e2

‖qk − q j‖
(8.32)

and its essential self-adjointness on C∞0 (R3Z+3) is a consequence of the following
result of Kato (which is Theorem X.16 of [RS2]).
Remark 8.4.18. The center of mass coordinates we used to apply Theorem 8.4.4 to
the hydrogen atom can be generalized to systems containing more than two particles
(see Section 5.2 of Chapter II in [Prug]).

Theorem 8.4.6. (Kato’s Theorem) Let {Vk}mk=1 be a collection of real-valued func-
tions on R3 each of which can be written as Vk = Vk

1 + Vk
2 , where Vk

1 ∈ L2(R3)
and Vk

2 ∈ L∞(R3). Let Vk(yk) be the multiplication operator on L2(R3n) obtained by
choosing yk to be three coordinates of R3n. Finally, let ∆ denote the Laplacian on
R3n. Then − ~

2

2m∆ +
∑m

k=1 Vk(yk) is essentially self-adjoint on C∞0 (R3n).

Since a great deal of quantum mechanics focuses on the behavior of atoms and
molecules, Kato’s Theorem is arguably the most important self-adjointness result
we will see. Even so, not every physically interesting quantum system has a Hamil-
tonian to which one can apply Kato’s Theorem to establish self-adjointness. We turn
next to one particularly important example.

Very early on in our discussion of the classical harmonic oscillator we empha-
sized that the potential V(q) = 1

2 mω2q2 provides an accurate model of only the
small displacements of a mass on a spring, or a pendulum, or any system with one
degree of freedom near the stable equilibrium point at q = 0. When the displace-
ments cannot be regarded as small, but are not “too large” (for example, the spring
is not stretched out into a straight piece of wire) one corrects the potential by includ-
ing additional terms in its Taylor series about the equilibrium point. The simplest
example of such a perturbed harmonic oscillator potential would seem to be

V(q) =
1
2

mω2q2 + αq4, (8.33)

where α is a small positive constant.
Remark 8.4.19. You are wondering why we jumped over the cubic term. Of course,
we didn’t have to. One can include a multiple of q3 in the potential, but at the cost
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of rather seriously distorting the physical situation that one probably has in mind for
a “perturbed harmonic oscillator”. One would think, for example, that the potential
for such a system would be symmetric about the equilibrium point, which it is not
with a cubic term. More seriously, including a q3 term gives a potential that is not
bounded from below and so, for large enough displacements, leads to “runaway”
solutions which is hardly in keeping with any sort of “oscillator”.

A system governed by a potential of the form (8.33) will be referred to as an
anharmonic oscillator. The natural quantization of such a system leads to a Hamil-
tonian which, on the smooth functions in L2(R), is given by

H = HB + αq4 = −
~2

2m
∆ +

1
2

mω2q2 + αq4 = −
~2

2m
d2

dq2 +
1
2

mω2q2 + αq4, (8.34)

where V = 1
2 mω2q2 + αq4 acts on L2(R) as a multiplication operator. The essential

self-adjointness of H on C∞0 (R) does not follow from the results of Kato, but [RS2]
offers five distinct proofs (Section X.2, Example 6; Section X.4, Example 2; Section
X.6, Example 5; Section X.9, Example 2; Section X.10, Example). The simplest of
these is just an appeal to the following theorem (Theorem X.28 of [RS2]). We will
look at another proof in Example 8.4.3. Needless to say, the theorem also applies
to the harmonic oscillator potential 1

2 mω2q2 and therefore implies the essential self-
adjointness of HB.

Theorem 8.4.7. Let V ∈ L2(Rn)loc is real-valued and V ≥ 0 pointwise a.e. and let
∆ be the Laplacian on Rn. Then − ~

2

2m∆ + V is essentially self-adjoint on C∞0 (Rn).

Remark 8.4.20. Recall that L2(Rn)loc consists of all the measurable complex-valued
functions on Rn that are square integrable on compact subsets of Rn. This is cer-
tainly true of a continuous function such as V(q) = 1

2 mω2q2 + αq4. Moreover, since
V(q) ≥ 0 for every q ∈ R we conclude from the theorem that the anharmonic oscil-
lator Hamiltonian is essentially self-adjoint on C∞0 (R). We should also point out that
the proof of this theorem is based on a famous distributional inequality called Kato’s
Inequality (Theorem X.27 of [RS2]). One can also replace V ≥ 0 with V ≥ −c for
any constant c ≥ 0 so the essential point is that the potential is bounded from below.

One can extend this to handle some potentials that are not bounded from below.
Suppose V : Rn → R is written as the difference of its positive and negative parts,
that is, V = V+ − V−, where V+(q) = max (V(q), 0) and V−(q) = max (−V(q), 0).
Then one can prove the following amalgam of Theorems 8.4.4 and 8.4.7 (this is
a special case of Theorem X.29 of [RS2] which also describes the modifications
required when n ≥ 4).

Theorem 8.4.8. Let V be a real-valued function on Rn, n = 1, 2, 3, and write V =

V+ − V− = max (V, 0) − max (−V, 0). If V+ ∈ L2(Rn)loc and V− = V−1 + V−2 , where
V−1 ∈ L2(Rn) and V−2 ∈ L∞(Rn), then − ~

2

2m∆+V is essentially self-adjoint on C∞0 (Rn).

We would like to describe one more result of this sort, primarily because it in-
volves an idea that we have encountered before. In Section 7.2 we introduced the
notions of smooth and analytic vectors for a unitary representation (see Remarks
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7.2.10 and 7.2.11). We mentioned also that there were corresponding notions for a
single operator A : D(A) → H (Remark 7.2.12) and promised to introduce those
notions here and describe their relation to self-adjointness. This is what we will do
now.

We consider a densely defined operator A : D(A) → H on a complex, separable
Hilbert space H. An element ψ of H is called a smooth or C∞ vector for A if it is an
element of the domain of every power of A, that is, if

ψ ∈

∞⋂
n=1

D(An).

The set of all C∞ vectors for A will be denoted C∞(A).
Remark 8.4.21. Here is some motivation for the terminology. Suppose H = L2(R3)
and A is the Laplacian ∆. We have seen that any ψ ∈ D(∆) is in H2(R3). Similar
arguments show that any ψ ∈ D(∆2) is in H4(R3) and, in general, any ψ ∈ D(∆n)
is in H2n(R3). Consequently, any ψ ∈ ∩∞n=1D(∆n) is in every Hk(R3). Now one can
appeal to a Sobolev Embedding Theorem according to which any function that is
in every Sobolev space Hk(R3) is necessarily smooth, that is, in C∞(R3) (this is
Corollary 1.4 of [TaylM]). Thus, C∞(∆) consists entirely of smooth functions on
R3 (not every smooth function on R3, of course). All of this is actually true of any
elliptic operator on any L2(Rn) .

Due to the usual domain issues it is entirely possible that C∞(A) contains only the
zero vector in H, even if A is essentially self-adjoint ([RS2] leaves as Exercise 39 of
Chapter X the construction of a self-adjoint operator A with a domain of essential
self-adjointness that intersects D(A2) only in the zero vector). If A : D(A) → H is
self-adjoint, however, then C∞(A) is dense in D(A). This follows from the Spectral
Theorem (if EA is the spectral measure associated with A and ψ is any element of
H, then EA(−n, n)ψ, n = 1, 2, . . . is a dense set of smooth vectors for A).

For any ψ ∈ C∞(A) one can at least write down the power series

∞∑
k=0

‖Akψ‖

k!
zk, (8.35)

although there is no reason to suppose that it converges for any z , 0. A vector ψ
in H is said to be an analytic vector for A if ψ ∈ C∞(A) and the series (8.35) has a
nonzero radius of convergence, which we will denote rA(ψ). The set of all analytic
vectors for A will be denoted Cω(A); it is a linear subspace of H, but might well
consist of the zero vector alone.
Exercise 8.4.15. Show that if A : D(A)→ H has an eigenvector ψ, then ψ ∈ Cω(A).

The main result on analytic vectors and essential self-adjointness is due to Nelson
[Nel1]. To state it we need a definition. A subset S of the Hilbert space H is said to
be total in H if the set of all finite linear combinations of elements of S is dense in
H; for example, any basis for H is total in H.



8.4 Sketch of Some Rigorous Results 403

Theorem 8.4.9. (Nelson’s Analytic Vector Theorem) Let A : D(A) → H be a
symmetric operator on a complex, separable Hilbert space H. If D(A) contains a
total set of analytic vectors for A, then A is essentially self-adjoint.

The result actually stated in [Nel1] (as Lemma 5.1) is a corollary of this; also see
Theorem X.39 of [RS2].

Corollary 8.4.10. Let A : D(A) → H be a closed, symmetric operator on a com-
plex, separable Hilbert space H. Then A is self-adjoint if and only if D(A) contains
a total set of analytic vectors for A.

Remark 8.4.22. There are a number of ways to prove Nelson’s Analytic Vector
Theorem, all of which require a fair amount of work. We will simply suggest four
different sources where the proofs have rather different flavors and let the interested
reader find one that appeals. One can, of course, consult the proof of Lemma 5.1 in
Nelson’s paper [Nel1]. Nelson’s Theorem also appears as Theorem X.39 in [RS2],
Theorem 5.6.2 of [BEH], and Theorem 2.31 of [Kant].

For positive operators Nelson’s Theorem can be strengthened a bit (recall that an
operator A : D(A) → H is said to be positive if 〈ψ, Aψ 〉 ≥ 0 for all ψ ∈ D(A)). We
will say that a vector ψ in H is semi-analytic for A if ψ ∈ C∞(A) and the series

∞∑
k=0

‖Akψ‖

(2k)!
z2k

has a nonzero radius of convergence. The following is Theorem 1 in [Simon1].

Theorem 8.4.11. Let A : D(A) → H be a positive, symmetric operator on a com-
plex, separable Hilbert space H. If D(A) contains a total set of semi-analytic vectors
for A, then A is essentially self-adjoint.

By way of compensation for not including proofs of these results we would like to
work through an interesting example that will establish the essential self-adjointness
of the anharmonic oscillator Hamiltonian (8.34) on S(R) and will also give us the
opportunity to make use of the raising and lowering operators for the harmonic
oscillator (5.30). This is basically Example 5, Section X.6, of [RS2].
Example 8.4.3. (Anharmonic Oscillator Hamiltonian is Essentially Self-Adjoint)
The Hamiltonian for the anharmonic oscillator is given by (8.34), but to keep the
arithmetic tolerable we will take m = 1, ω = 1, and α = 4 and will work in units in
which ~ = 1. Consequently, our Hamiltonian is given on S(R) by

H = HB + 4q4 =
1
2

(
−

d2

dq2 + q2
)

+ 4q4.

Remark 8.4.23. It may not be clear at the moment why we have switched from
C∞0 (R) to S(R), but it will be shortly.

We would now like to rewrite H in terms of the raising and lowering operators
we introduced for the harmonic oscillator in Example 5.3.1. We will briefly review
what we need with the choice of constants we have made. On S(R) we define
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b =
1
√

2
(Q + iP)

and

b† =
1
√

2
(Q − iP),

where Q and P are the position and momentum operators on S(R). Then Q = 1
√

2
(b+

b†). The number operator is then defined by NB = b†b and the Hamiltonian HB can
be write

HB = NB +
1
2
.

Recall that we used these operators to produce an orthonormal basis for L2(R) con-
sisting of eigenfunctions {ψn}

∞
n=0 of HB. Specifically, these were given by the Her-

mite functions

ψ0(q) = π−1/4e−q2/2

and

ψn(q) = (n!)−1/2bnψ0 =
1
√

2nn!
π−1/4e−q2/2Hn(q), n = 1, 2, 3, . . . ,

where Hn is the nth-Hermite polynomial.
Remark 8.4.24. Our objective is to show that these eigenfunctions of HB are semi-
analytic vectors for H and then appeal to Theorem 8.4.11. Since they lie in S(R)
and not C∞0 (R), this explains our decision to show that H is essentially self-adjoint
on S(R) rather than on C∞0 (R).

Here are a few things we proved in Example 5.3.1 that we will need.

b†ψn =
√

n + 1ψn+1, n = 0, 1, 2, . . . ,

bψ0 = 0,

and

bψn =
√

nψn−1, n = 1, 2, . . . .

Using these and the fact that ‖ψn‖ = 1 for every n = 0, 1, 2, . . . we find that ‖b†ψn‖ =√
n + 1 for n = 0, 1, 2, . . ., ‖bψ0‖ = 0 and ‖bψn‖ =

√
n for n = 1, 2, . . .. If we let b]

denote one of b, b†, or the identity I, then we can conclude from this that

‖b]ψn‖ ≤
√

n + 1, n = 0, 1, 2, . . . .
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Similarly, ‖b†b†ψn‖ =
√

n + 1
√

n + 2, ‖b†bψ0‖ = 0, ‖b†bψn‖ =
√

n
√

n for n =

1, 2, . . ., ‖bb†ψn‖ =
√

n + 1
√

n + 1 for n = 0, 1, 2, . . ., ‖bbψ0‖ = 0, ‖bbψ1‖ = 0, and
‖bbψn‖ =

√
n
√

n − 1 for n = 2, 3, . . .. In particular,

‖b]b]ψn‖ ≤
√

n + 1
√

n + 2, n = 0, 1, 2, . . . .

Exercise 8.4.16. Show that, for any k = 1, 2, . . .,

‖b] k
· · · b]ψn‖ ≤

√
n + 1 · · ·

√
n + k ≤

√
(n + k)! , n = 0, 1, 2, 3, . . . .

Next we rewrite the Hamiltonian H in terms of b and b† as follows.

H = HB + 4Q4

= (NB +
1
2

) + 4Q4

= b†b +
1
2

+ 4
( 1
√

2
(b + b†)

)4

= b†b +
1
2

+ (b + b†)4

Expanding (b + b†)4 (and taking care not to use commutativity) one sees that it
consists of 16 terms.

bbbb + bbbb† + bbb†b + · · · + b†b†b†b†

Consequently, H contains 18 terms and, for any k ≥ 1, Hk is a sum of 18k terms.
Each of these terms is a product of the form ckb] 4k

· · · b], where b] is one of b, b†, or
I and 0 < c ≤ 1. Consequently,

‖Hkψn‖ ≤ 18k
√

n + 1 · · ·
√

n + 4k ≤ 18k
√

(n + 4k)!.

Exercise 8.4.17. Prove each of the following.

1. The series
∑∞

k=0
‖Hkψn‖

(2k)! z2k converges on |z| < (72)−1/2 for any n = 0, 1, 2, . . ..
Conclude that each ψn is a semi-analytic vector for H. Hint: Ratio Test.

2. H is a positive operator on S(R).
3. {ψn}

∞
n=0 is total in L2(R).

4. H is essentially self-adjoint on S(R).
5. The estimates we have obtained do not imply that ψn is an analytic vector for H.
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8.4.3 Brownian Motion and Wiener Measure

We should begin with a little historical perspective.

There’s a model, you should realize,
A paradigm of this that’s dancing right before your eyes -

For look well when you let the sun peep in a shuttered room
Pouring forth the brilliance of its beams into the gloom,
And you’ll see myriads of motes all moving many ways

Throughout the void and intermingling in the golden rays
As if in everlasting struggle, battling in troops,

Ceaselessly separating and regathering in groups.
From this you can imagine all the motions that take place
Among the atoms that are tossed about in empty space.

For to a certain extent, it’s possible for us to trace
Greater things from trivial examples, and discern

In them the trail of knowledge. Another reason you should turn
Your attention to the motes that drift and tumble in the light:

Such turmoil means that there are secret motions, out of sight,
That lie concealed in matter. For you’ll see the motes careen

Off course, and then bounce back again, by means of blows unseen,
Drifting now in this direction, now that, on every side.

You may be sure this starts with atoms; they are what provide
The base of this unrest. For atoms are moving on their own,

Then small formations of them, nearest them in scale, are thrown
Into agitation by unseen atomic blows,

And these strike slightly larger clusters, and on and on it goes -
A movement that begins on the atomic level, by slight
Degrees ascends until it is perceptible to our sight,

So that we can behold the dust motes dancing in the sun,
Although the blows that move them can’t be seen by anyone.

-Lucretius, On the Nature of Things, Book II, lines 89-141, [Lucr]

And yet, we call it Brownian motion; the random movement of minute parti-
cles in a liquid or gas as a result of continuous bombardment by the atoms or
molecules of the surrounding medium (if you have never seen this you may want
to visit https://www.youtube.com/watch?v=cDcprgWiQEY). But this is fair, I sup-
pose, since the botanist Robert Brown made the first careful observations of the
phenomenon by watching pollen grains (Figure 8.4) through his microscope in the
19th century.

Early on a great many potential mechanisms were proposed to explain these ran-
dom motions of the particles observed by Brown, from “They’re alive!” to the view

https://www.youtube.com/watch?v=cDcprgWiQEY
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Fig. 8.4 Pollen Grains

espoused by Lucretius nearly two thousand years before. The issue was resolved
once and for all, in favor of Lucretius, when Einstein took up the problem in a series
of five papers between 1905 and 1908. We will have nothing more to say about the
history of the problem (if you’re interested, consult the first four sections of [Nel4])
and very little to say about the details of Einstein’s analysis (all five papers have
been translated, with notes in [Ein4]). What we will have something to say about
is the rigorous path integral reformulation of Brownian motion devised by Norbert
Wiener [Wiener] and the rather striking similarity its construction bears to that of
the Feynman “integral”. We will see that it is not possible to modify Wiener’s pro-
cedure to turn the Feynman integral into an actual (Lebesgue) integral and, indeed,
that the Feynman integral simply is not a Lebesgue integral. Nevertheless, the anal-
ogy is close enough that Edward Nelson [Nel3] was able to establish a link between
the two and we will sketch how this is done in the next section. A much more de-
tailed discussion of all that we will have to say (and a great deal more) is available
in [JL].

One should understand that in his first (1905) paper Einstein did not set out ex-
plicitly to explain the mechanism responsible for the behavior of Brownian particles.
Indeed, at this time Einstein seems to have had access to only very limited informa-
tion about earlier work on Brownian motion. As to the actual purpose of the paper,
we will ask the author to speak for himself.

In this paper it will be shown that, according to the molecular-kinetic theory
of heat, bodies of microscopically visible size suspended in a liquid will perform
movements of such magnitude that they can be easily observed in a microscope,
on account of the molecular motions of heat. It is possible that the movements to be
discussed here are identical with the so-called “Brownian molecular motion”; how-
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ever, the information available to me regarding the latter is so lacking in precision,
that I can form no judgement in the matter.

If the movement discussed here can actually be observed (together with the laws
relating to it that one would expect to find), then classical thermodynamics can no
longer be looked upon as applicable with precision to bodies even of dimensions dis-
tinguishable in a microscope: an exact determination of actual atomic dimensions
is then possible.

-Albert Einstein, On the Movement of Small Particles Suspended in a Stationary
Liquid Demanded by the Molecular-Kinetic Theory of Heat, [Ein4]

In 1905 the existence of atoms and molecules was by no means universally accepted
among physicists. The molecular-kinetic theory hypothesizes that such things do ex-
ist and that macroscopic properties of fluids such as temperature and pressure can be
accounted for by their properties, such as their kinetic energy. The very precise in-
formation obtained by Einstein about the motion of particles suspended in the fluid
resulting from collisions with these atoms and molecules and their subsequent ex-
perimental confirmation validated the molecular-kinetic theory and, by implication,
the existence of atoms and molecules.
Remark 8.4.25. The experimental confirmation of Einstein’s conclusions is largely
credited to Jean Perrin [Per] in 1909, whose careful observations of the motion of
individual Brownian particles led to sketches of the sort shown in Figure 8.5. Perrin
was even led to suggest that a typical Brownian path should be represented by a
continuous, nowhere differentiable curve and to mention in this regard the famous
example of Weierstrass. This is an idealization, of course, since, however small,
there is a nonzero time lapse between collisions and during such a time interval the
particle should not behave so erratically. Nevertheless, we will see these continuous,
nowhere differentiable curves emerge again in the rigorous treatment due to Wiener.

The molecular-kinetic theory is, by its very nature, statistical due to the huge
number of particles involved (see Exercise 2.4.1 and the comments that follow it).
Einstein therefore describes the physical situation with a probability density func-
tion ρ(t, q) with q ∈ R.
Remark 8.4.26. Actually, a probability density function ρ(t,q) with q ∈ R3, but
we will restrict ourselves to the 1-dimensional situation. One can view this either
as an actual Brownian motion taking place on a line or, more realistically, as one
coordinate of the 3-dimensional Brownian motion.
ρ(t, q) is then interpreted as the probability density that a Brownian particle is at
location q at time t; more precisely, for any measurable subset E of R,∫

E
ρ(t, q) dq

is the probability that the particle is somewhere in E at time t. Rather detailed phys-
ical arguments led Einstein to the conclusion that, if the particles are not subject to
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Fig. 8.5 A Brownian Motion

any external forces (gravity, for instance), ρ(t, q) must satisfy the diffusion equation

∂ρ(t, q)
∂t

− D
∂2ρ(t, q)
∂q2 = 0.

Moreover, assuming that the particles are spheres of (small) radius a, Einstein ar-
gued that the diffusion constant D must be given by

D =
κBT
6πηa

,

where η is the coefficient of viscosity of the fluid, T is the temperature of the fluid
(in Kelvin), and κB is the Boltzmann constant (see page 111). Let us suppose now
that the Brownian particles under observation all originated at some point qa at the
instant ta. Then the problem we need to solve is

∂ρ(t, q)
∂t

− D
∂2ρ(t, q)
∂q2 = 0, (t, q) ∈ (ta,∞) ×R

lim
t→t+a

ρ(q, t) = δqa , q ∈ R

(the limit being in the sense of distributions). But we (or rather, you) have already
solved this problem (Example 5.2.13 and the exercises therein). Letting
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HD(t, q, qa) =
1

√
4πDt

e−(q−qa)2/4Dt, (t, q) ∈ (0,∞) ×R,

denote the heat kernel, that is, the Gaussian distribution with mean qa and standard
deviation

√
2Dt, the solution is

HD(t − ta, q, qa) =
1

√
4πD(t − ta)

e−(q−qa)2/4D(t−ta), (t, q) ∈ (ta,∞) ×R. (8.36)

In particular, for any −∞ ≤ α ≤ β ≤ ∞, the probability that such a Brownian
particle, known to be at qa at time ta, will be in (α, β] at time t > ta is given by∫ β

α

HD(t − ta, q, qa) dq =

∫ β

α

1
√

4πD(t − ta)
e−(q−qa)2/4D(t−ta) dq.

More generally, if E ⊆ R is any measurable set, then∫
E

HD(t − ta, q, qa) dq =

∫
E

1
√

4πD(t − ta)
e−(q−qa)2/4D(t−ta) dq (8.37)

is the probability that the particle will be in the set E at time t.
Now suppose ta < t ≤ tb and let ta = t0 < t1 < t2 < · · · < tn−1 < tn = t ≤ tb be a

partition of the interval [ta, t] into n equal subintervals of length ∆t = t−ta
n and write

t − ta = (tn − tn−1) + · · · + (t2 − t1) + (t1 − t0).
Exercise 8.4.18. Use Exercise 5.2.19 to show that

HD(t − ta, q, qa) =∫
R

· · ·

∫
R

HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1)dq1 · · · dqn−1 =( 1
4πD∆t

) n
2
∫
R

· · ·

∫
R

e−S n(q0,q1,...,qn−1,qn;t) dq1 · · · dqn−1, (8.38)

where q0 = qa, qn = q and

S n(q0, q1, . . . , qn−1, qn; t) =
1

4D

n∑
k=1

(qk − qk−1

∆t

)2
∆t.

Remark 8.4.27. One should compare this with the nth approximation to the Feynman
integral in (8.3). There is no potential term since we have not considered Brownian
particles subjected to external forces. Otherwise, the analogy seems clear enough,
but one must take note of where the analogy breaks down. Simply put, there is no
“i” in the exponent in (8.38) so the integrals are not oscillatory, but rather decay-
ing exponentially. We will see that all of the mathematical difficulties associated
with the Feynman integral arise from the oscillatory nature of the finite-dimensional
integrals in its definition.
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There is no particularly compelling reason to insist that the partition ta = t0 <
t1 < t2 < · · · < tn−1 < tn = t ≤ tb of [ta, t] be uniform, that is, into intervals of the
same length. For a general partition one simply has instead

HD(t − ta, q, qa) =∫
R

· · ·

∫
R

HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1)dq1 · · · dqn−1 =

[(4πD)n(t1 − t0) · · · (tn − tn−1)]−1/2
∫
R

· · ·

∫
R

e−
1

4D
∑n

k=1
(qk−qk−1)2

tk−tk−1 dq1 · · · dqn−1. (8.39)

If, for each j = 1, . . . , n, we have extended real numbers −∞ ≤ α j ≤ β j ≤ ∞,
then the probability that a Brownian particle, known to be at qa at time ta, will be in
(α1, β1] at time t1, and in (α2, β2] at time t2, . . ., and in (αn, βn] at time tn is given by∫ βn

αn

· · ·

∫ β1

α1

HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1)dq1 · · · dqn

= [(4πD)n(t1 − t0) · · · (tn − tn−1)]−1/2
∫ βn

αn

· · ·

∫ β1

α1

e−
1

4D
∑n

k=1
(qk−qk−1)2

tk−tk−1 dq1 · · · dqn.

(8.40)

Again more generally, if E j ⊆ R is a measurable set for each j = 1, . . . , n, then∫
En

· · ·

∫
E1

HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1)dq1 · · · dqn

= [(4πD)n(t1 − t0) · · · (tn − tn−1)]−1/2
∫

En

· · ·

∫
E1

e−
1

4D
∑n

k=1
(qk−qk−1)2

tk−tk−1 dq1 · · · dqn (8.41)

is the probability that the particle will be in E1 at time t1, and in E2 at time t2, . . .,
and in En at time tn.
Exercise 8.4.19. Show that∫

R

· · ·

∫
R

HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1)dq1 · · · dqn = 1,

as it should be.
Remark 8.4.28. There are physical assumptions about Brownian motion buried in
these formulas. These are encapsulated abstractly in the probabilistic notion of a
Wiener process (also called a Brownian motion). One of these assumptions arises
in the following way. Since (8.41) is essentially an iteration of (8.37) in which
the individual probabilities are multiplied there is an implicit assumption that the
events are independent; getting from E j to E j+1 does not depend on how the parti-
cle got from E j−1 to E j. The particle has no memory. For a more complete list of
the assumptions involved and their restatement as axioms for a Wiener process see
http://www.math.uah.edu/stat/brown/Standard.html.

http://www.math.uah.edu/stat/brown/Standard.html
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At about this point in our discussion of the Feynman integral we were instructed
to take the limit as n → ∞. Wiener, however, had a different idea (in 1923). To
state this precisely we will need to introduce a few definitions. We will consider
two real numbers ta < tb and will denote by C[ta, tb] the linear space of continuous
real-valued functions x(t) on [ta, tb]. Supplied with the uniform norm

‖x‖ = max
ta≤t≤tb

|x(t)|,

C[ta, tb] is a real, separable Banach space. Paths of Brownian particles will be rep-
resented by elements of C[ta, tb] that all start at some fixed point at time ta and, for
simplicity, we will take this fixed point (called qa above) to be q = 0. Thus, the
space of Brownian paths is contained in

C0[ta, tb] =
{
x ∈ C[ta, tb] : x(ta) = 0

}
.

Since C0[ta, tb] is a closed linear subspace of C[ta, tb], it is also a real, separable
Banach space when supplied with the uniform norm. In particular, C0[ta, tb] is a
topological space and so it has a σ-algebra of Borel sets B = B(C0[ta, tb]) (see
Remark 2.4.1). This is, as always, the σ-algebra generated by the open (or closed)
subsets of C0[ta, tb], but there is a more useful description in terms of sets we have
already encountered. For any t1, . . . , tn satisfying ta = t0 < t1 < · · · < tn−1 < tn ≤ tb
and any extended real numbers −∞ ≤ α j ≤ β j ≤ ∞, j = 1, . . . , n, we define

I = I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn]) =
{
x ∈ C0[ta, tb] : x(t j) ∈ (α j, β j]

}
.

Sets of this form in C0[ta, tb] are called cylinder sets and the collection of all such
will be denoted I.

Proposition 8.4.12. The collection I of cylinder sets in C0[ta, tb] has the following
properties.

1. ∅ and C0[ta, tb] are in I.
2. If I1 and I2 are in I, then I1 ∩ I2 is in I.
3. If I is in I, then C0[ta, tb] − I is a finite disjoint union of elements of I.

Proof. (1) is clear since

∅ =

{
x ∈ C0[ta, tb] : 1 < x(tb) ≤ 1

}
and

C0[ta, tb] =

{
x ∈ C0[ta, tb] : −∞ < x(tb) ≤ ∞

}
.

For (2), let I1 = I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn]) and I2 = I(s1, . . . , sm; (γ1, δ1] ×
· · · × (γm, δm]). Let

{
r1, . . . , rl

}
=

{
t1, . . . , tn

}
∪

{
s1, . . . , sm

}
. If ri ∈

{
t1, . . . , tn

}
∩{

s1, . . . , sm
}
, say ri = t j = sk, set (µi, νi] = (α j, β j] ∩ (γk, δk]. If ri ∈

{
t1, . . . , tn

}
−
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s1, . . . , sm

}
, say ri = t j, set (µi, νi] = (α j, β j] and if ri ∈

{
s1, . . . , sm

}
−

{
t1, . . . , tn

}
,

say ri = sk, set (µ j, ν j] = (γk, δk]. Then I1 ∩ I2 = I(r1, . . . , rl; (µ1, ν1] × · · · × (µl, νl]).
Exercise 8.4.20. Show that C0[ta, tb] − I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn]) can be
written as a finite disjoint union of elements of I.

ut

Not only is each cylinder set a Borel set in C0[ta, tb], but B is, in fact, the σ-
algebra generated by I. The following is Theorem 3.2.11 of [JL].

Theorem 8.4.13. The σ-algebra σ(I) generated by the cylinder sets in C0[ta, tb] is
the σ-algebra B = B(C0[ta, tb]) of Borel sets in C0[ta, tb].

Now we can describe Wiener’s idea in the following way. Fix a cylinder set
I = I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn]) in C0[ta, tb]. Then (8.40), with q0 = 0,
assigns to I a probability, that is, the probability that a Brownian particle starting at
q0 = qa = 0 at time ta will pass through each (α j, β j] at time t j for j = 1, . . . , n.
Let us regard this probability as a “measure” of the size of I in C0[ta, tb] and denote
it m(I). Thus, m(I) measures the likelihood that the path of a Brownian particle
will satisfy the conditions that define I. Wiener set himself the task of constructing
a (Lebesgue) measure on some σ-algebra of subsets of C0[ta, tb] containing I that
agrees with m(I) for I ∈ I.

Needless to say, Wiener succeeded admirably. In the intervening years many dif-
ferent constructions of this Wiener measure have been devised, all of which involve
very substantial technical work. We do not intend to go through the details of any
of these, but we will sketch two of them. The first is a very elegant functional ana-
lytic argument due to Edward Nelson (Appendix A of [Nel3]). This arrives quickly
at a measure with the required properties, but perhaps sacrifices some of the intu-
itive connection with Brownian motion and the analogy with the Feynman integral.
Nevertheless, it is a beautiful argument and worth seeing. The second is entirely
analogous to the usual construction of the Lebesgue measure on R, although the
technical issues are rather more substantial; Chapter 3 of [JL] fills in many of these
details, but not all so we will supply references for the rest.

To prepare for Nelson’s construction we should briefly review two items, one a
definition from measure theory and the other a theorem from functional analysis
(both are discussed in Sections 55-56 of [Hal1] or one can consult Proposition 6,
Section 2, Chapter 14 and Theorem 8, Section 3, Chapter 14 of [Roy]). We let
X denote a locally compact Hausdorff topological space and A a σ-algebra on X
containing the σ-algebra B(X) of Borel sets in X. A non-negative measure µ on the
measurable space (X,A) is said to be regular if

1. µ(K) < ∞ for every compact set K ⊆ X,
2. A ∈ A⇒ µ(A) = inf

{
µ(U) : U is open in X and A ⊆ U

}
,

3. U ⊆ X open⇒ µ(U) = sup
{
µ(K) : K is compact in X and K ⊆ U

}
.

The following is one version of the Riesz Representation Theorem.

Theorem 8.4.14. (Riesz Representation Theorem) Let X be a compact Hausdorff
topological space and C(X) its Banach space of continuous, real-valued functions
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on X (with the uniform norm). Let α be a linear functional on C(X) that is non-
negative ( f ∈ C(X) and f (x) ≥ 0∀ x ∈ X ⇒ α( f ) ≥ 0). Then there exists a σ-
algebra A on X containing the σ-algebra B(X) of Borel sets on X and a regular
measure µ on (X,A) such that

α( f ) =

∫
X

f (x) dµ(x)

for every f ∈ C(X). Moreover, the restriction of µ to B(X) is unique.

Remark 8.4.29. Non-negative linear functionals are often called positive linear func-
tionals. Whatever you call them, it is not necessary to assume a priori that they
are bounded (continuous) for this follows automatically. Indeed, suppose α is non-
negative. Then, for any f ∈ C(X), −‖ f ‖ ≤ f (x) ≤ ‖ f ‖ ∀x ∈ X and this implies
that −α(1)‖ f ‖ ≤ α( f ) ≤ α(1)‖ f ‖. Thus, |α( f )| ≤ α(1)‖ f ‖ so α is bounded, that is,
continuous.
Exercise 8.4.21. Show from this that

‖α‖C(X)∗ = α(1),

where C(X)∗ is the dual of the Banach space C(X).
Exercise 8.4.22. Show that all of this is true for any subalgebra A of C(X) containing
1 and provided with the uniform norm. Specifically, if α is a linear functional on A
that is non-negative ( f ∈ A and f (x) ≥ 0∀x ∈ X ⇒ α( f ) ≥ 0), then α is continuous
and ‖α‖A∗ = α(1), where A∗ is the dual of A. Note: A need not be complete, but A∗

is always a Banach space (Theorem 4.4.4 of [Fried]).
Nelson considers paths starting at some point q0 ∈ R at time t0 = 0, defined

on [0,∞) and taking values in R (actually, in Rn, but we will stick to the one-
dimensional situation).
Remark 8.4.30. With essentially obvious modifications, the same procedure works
equally well for paths defined on a finite interval [ta, tb] and starting at t0 = ta, but
to facilitate a transition to Nelson’s paper [Nel3] we will do as Nelson did. When
we construct the Wiener measure again using the more familiar procedures from
Lebesgue theory we will return to paths defined on [ta, tb].

Begin by considering the 1-point compactification Ṙ = R ∪ {∞} of R (see, for
example, pages 162-163 of [Simm1]). For each t ∈ [0,∞), let Ṙt be a copy of Ṙ and
consider the product

Ω =
∏

t∈[0,∞)

Ṙt,

provided with the Tychonoff product topology. By the Tychonoff Theorem (Theo-
rem A, Section 23, of [Simm1]), Ω is a compact Hausdorff topological space. An
element ω ∈ Ω is then a completely arbitrary curve ω : [0,∞) → Ṙ in Ṙ, perhaps
discontinuous and perhaps passing through the point at infinity. Inside Ω one finds
the subset of continuous curves in R starting at q0 at time t0 = 0.
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We consider the real Banach space C(Ω) of continuous, real-valued functions
on Ω. Keep in mind that C(Ω) is also an algebra with unit 1 under pointwise mul-
tiplication. Nelson produced measures on Ω by defining, for each fixed q0 ∈ R,
a non-negative linear functional αq0 on C(Ω) and appealing to the Riesz Repre-
sentation Theorem. We will define this linear functional first on a subset of C(Ω)
consisting of what are called finite functions because their value at any ω ∈ Ω de-
pends on only finitely many of the values ω(t) taken on by ω. Specifically, suppose
0 = t0 < t1 < · · · < tn < ∞ and let

F :
n∏

j=1

Ṙt j → R

be a function defined on the corresponding finite product of copies of Ṙ. Define a
function ϕ = ϕF;t1,...,tn : Ω→ R by

ϕ(ω) = ϕF;t1,...,tn (ω) = F(ω(t1), . . . , ω(tn)). (8.42)

The evaluation map ω→ (ω(t1), . . . , ω(tn)) is just the projection of Ω onto
∏n

j=1 Ṙt j

and so is continuous. Consequently, if F is continuous, then so is ϕ.
Now we consider the set C f in(Ω) of all functions on Ω that can be written in the

form ϕF;t1,...,tn for some 0 = t0 < t1 < · · · < tn < ∞ and some continuous F. We have
just noticed that these are all continuous on Ω so

C f in(Ω) ⊆ C(Ω).

There are, of course, a great many things in C(Ω) that are not in C f in(Ω), but you
will now show that C f in(Ω) is uniformly dense in C(Ω).
Exercise 8.4.23. Prove each of the following and then appeal to the Stone-Weierstrass
Theorem (Theorem A, Section 36, of [Simm1]) to conclude that C f in(Ω) is uni-
formly dense in C(Ω).

1. C f in(Ω) is a linear subspace of C(Ω).
2. C f in(Ω) is a subalgebra of C(Ω) containing the unit element 1.
3. C f in(Ω) separates points of Ω in the sense that, if ω1 , ω2, then there exists a

ϕ ∈ C f in(Ω) for which ϕ(ω1) , ϕ(ω2).

With q0 ∈ R fixed, but arbitrary, we define, for any finite function ϕ = ϕF;t1,...,tn ,

αq0 (ϕ) = αq0 (ϕF;t1,...,tn ) =∫
Ṙ

· · ·

∫
Ṙ

F(q1, . . . , qn)HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1)dq1 · · · dqn,

(8.43)

provided the integral exists (t0 = 0 for us right now, but we have included it in the
definition for the sake of symmetry).
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Remark 8.4.31. This requires some interpretation. F is defined on
∏n

j=1 Ṙt j so
q1, . . . , qn are in Ṙ and the integrals must be over Ṙ, which one can identify with
the unit circle S 1 by stereographic projection. However, we have not yet attached
any meaning to HD(t, q, q0) when q is the point at infinity in Ṙ. We intend to de-
fine HD(t,∞, q0) = 0 for all t ≥ 0 and all q0 ∈ R. One can either regard this as a
statement about the limit of

HD(t, q, q0) =
1

√
4πDt

e−(q−q0)2/4Dt

as q → ∞ in Ṙ or as the physical assumption that the probability density for a
Brownian particle to get from any q0 to ∞ in any finite time is zero. Interpreted
in this way the integrand in (8.43) is zero at any point (q1, . . . , qn) for which some
q j, j = 1, . . . , n, is the point at infinity so that αq0 (ϕ) is completely determined by
the values of ϕ on R×

n
· · · ×R and each integral reduces to an integral over R.

Notice also that, if E1, . . . , En are measurable sets in R and F(q1, . . . , qn) is defined
to be 1 if q j ∈ E j for each j = 1, . . . , n and 0 otherwise, then (8.43) reduces to the
probability (8.41).

One more remark is in order. We would like αq0 to be a well-defined linear func-
tional on C f in(Ω) so one must check that, if ϕ(ω) = F(ω(t1), . . . , ω(tn)) and F does
not depend on some given q j, then the same value for αq0 (ϕ) results if we define ϕ
in terms of the corresponding function of n − 1 variables. But the following special
case of (8.38)∫

R

HD(t j − t j−1, q j, q j−1)HD(t j+1 − t j, q j+1, q j)dq j = HD(t j+1 − t j−1, q j+1, q j−1)

(8.44)

allows one to integrate out such a variable q j and the result follows from this.
We now have a well-defined linear functional αq0 on C f in(Ω). Furthermore,

αq0 (1) = 1 by Exercise 8.4.19 and, since HD is non-negative, αq0 (ϕ) ≥ 0 whenever
ϕ(ω) ≥ 0∀ω ∈ Ω. By Exercise 8.4.22, ‖α‖C f in(Ω)∗ = 1. αq0 is therefore a non-negative
linear functional of norm 1 on C f in(Ω). According to the Hahn-Banach Theorem
(Theorem 4.8.2 of [Fried]), αq0 has an extension to a bounded linear functional on
C(Ω) of norm 1 and, since C f in(Ω) is dense in C(Ω), this extension is unique and
non-negative. We will continue to denote this unique extension by αq0 .

Now we apply the Riesz Representation Theorem 8.4.14 to obtain a regular mea-
sure mq0 on some σ-algebra Aq0 (Ω) on Ω containing the Borel σ-algebra B(Ω) on
Ω with the property that

αq0 (ϕ) =

∫
Ω

ϕ(ω) dmq0 (ω) ∀ϕ ∈ C(Ω).

Since αq0 (1) = 1, mq0 is, in fact, a probability measure on Ω. For any fixed q0, mq0

is called a Wiener measure on Ω.
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Exercise 8.4.24. Show that the Wiener measure of a cylinder set in Ω is the physi-
cally correct probability; part of the exercise is to decide what this means.
Remark 8.4.32. One should take careful note of the fact that Nelson’s application
of the Riesz Representation Theorem depended in an essential way on the positiv-
ity of HD(t, q, q0) = 1

√
4πDt

e−(q−q0)2/4Dt. The Schrödinger kernel looks much like this
except that D is complex and so the argument breaks down completely. This does
not preclude the possibility that some other argument might produce an analogous
(complex) measure appropriate to the Feynman integral, but we will see that a the-
orem of Cameron [Cam] shows that, in fact, no such measure exists.

This is not exactly what we promised, however. We set out looking for a probabil-
ity measure on the space of continuous paths in R, but the paths in Ω are completely
arbitrary and are even permitted to pass through∞. What one would like to show is
that, although Ω is much too large for our purposes, the Wiener measures concen-
trate on the subset of Ω consisting of continuous paths that do not pass through ∞
in the sense that this subset has full measure (namely, 1). This, in fact, is where the
really hard work begins. The following theorem, originally due to Wiener, is proved
by Nelson as Theorem 4 of his paper [Nel3].

Theorem 8.4.15. Fix q0 ∈ R and let

C([0,∞),R) =

{
ω ∈ Ω : ω is continuous andω(t) ∈ R ∀t ∈ [0,∞)

}
.

Then C([0,∞),R) is a Borel set in Ω and mq0 (C([0,∞),R)) = 1.

Stated otherwise, the set of points in Ω that correspond to paths that are dis-
continuous or pass through the point at infinity is, measure-theoretically, negligible
(has Wiener measure zero). In the language of probability, an element ofΩ is almost
surely real-valued and continuous.

One can obtain more precise information in the following way. Recall that, if
0 < β ≤ 1, a map ω : [0,∞)→ R is said to be (locally) Hölder continuous of order
β if, for every 0 < m < ∞, there exists an M > 0 such that

|ω(s) − ω(t) | ≤ M | s − t | β ∀ s, t ∈ [0,m].

We will denote by Ωβ the set of all elements in Ω that are Hölder continuous of
order β. The following result combines Corollary 3.4.4 of [JL] and Theorem 5.2 of
[Simon2].

Theorem 8.4.16. Fix q0 ∈ R and 0 < β ≤ 1. Then Ωβ is a Borel set in Ω and

mq0 (Ωβ) =

{
1 if 0 < β < 1

2 ;
0 if 1

2 ≤ β ≤ 1.

A path in Ω is almost surely Hölder continuous of order β < 1
2 , but almost surely

not Hölder continuous of order β ≥ 1
2 .

Finally, we address the issue of differentiability. We have seen that Perrin, on
the basis of his experimental results, suggested that the path of a Brownian particle
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might well be modeled by a continuous, nowhere differentiable function of the type
first described by Weierstrass. Although this seems rather implausible physically it
is remarkable that, in 1933, Paley, Wiener and Zygmund proved that a path in Ω
is almost surely a function of this type. The following is Theorem 1.30 of [MP];
we should mention that this reference focuses on the probabilistic definition of a
Brownian motion, which we have not emphasized here, so one will need to absorb
some additional terminology in order to read the proof. A somewhat less ambitious
result (a path in Ω is almost surely differentiable at most on a subset of Lebesgue
measure zero) has a more accessible proof and is Theorem 3.4.7 of [JL].

Theorem 8.4.17. Fix q0 ∈ R and let

CND([0,∞),R) =
{
ω ∈ C([0,∞),R) : ω(t) is nowhere differentiable on [0,∞)

}
.

Then CND([0,∞),R) is a Borel set in Ω and mq0 (CND([0,∞),R)) = 1.

Remark 8.4.33. Now we will turn to the second construction of Wiener measure, a
bit less elegant perhaps, but also certain to be more familiar to those who recall the
usual construction of the Lebesgue measure on Rn. We will begin with a schematic
of the procedure; for the sake of clarity we will also include a sketch of the basic
measure theory that goes into the construction (Sections 1-2, Chapter 12, of [Roy]
contains everything we will need).

The following review is intended only to establish some notation and terminology
and to recall a few basic results that we will need in the construction of the Wiener
measure. It would be reasonable to proceed directly to page 420 and refer back if
the need arises.

Let X denote some nonempty set and P(X) its power set (the collection of all
subsets of X). For any subset S ⊆ P(X) containing ∅, a pre-measure on S is a non-
negative, extended real-valued function µS : S → [0,∞] on S that satisfies the
following two conditions (we use

⊔
for disjoint unions).

1. µS(∅) = 0
2. If S k ∈ S for k = 1, 2, . . . with S k1 ∩ S k2 = ∅ ∀ k1 , k2 and if

⊔∞
k=1 S k is in S, then

µS
( ∞⊔

k=1

S k
)

=

∞∑
k=1

µS(S k).

Now we begin with a semi-algebra I ⊆ P(X) on X (a semi-algebra on X is a collec-
tion of subsets of X that contains ∅ and X, is closed under finite intersections, and
has the property that if A is in I, then X − A can be written as a finite disjoint union
of elements of I).
Remark 8.4.34. Notice that, by Proposition 8.4.12, the collection I of cylinder sets
in C0[ta, tb] is a semi-algebra. It is true, but not at all obvious that, for a fixed q0, the
probabilities assigned to cylinder sets by (8.40) define a pre-measure on I. We will
have a bit more to say about this shortly.
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Denote by A(I) ⊆ P(X) the algebra generated by I (an algebra A on X is a
collection of subsets of X that contains ∅ and X and has the property that A, B ∈
A ⇒ A ∪ B ∈ A and A − B ∈ A). A(I) is just the intersection of all the algebras
in P(X) containing I. Any pre-measure µI on I extends in a natural way to a pre-
measure µA(I) on A(I); see Proposition 9 and Exercise 5, Section 2, Chapter 12, of
[Roy].

An algebra on X that is closed under countable unions is called a σ-algebra on
X. The σ-algebra generated by S ⊆ P(X) is the intersection of all the σ-algebras
on X containing S and will be denoted σ(S). If I is a semi-algebra and A(I) is the
algebra it generates, then σ(A(I)) = σ(I). A pre-measure µ on some σ-algebra A

in X is called a measure on the measurable space (X,A), or simply a measure on
X if the σ-algebra is understood. The elements of A are called µ-measurable, or
simply measurable, sets. The triple (X,A, µ) is called a measure space. We should
recall also that a measure space (X,A, µ) is said to be complete if A contains all
subsets of sets of µ-measure zero, that is, if A ∈ A with µ(A) = 0 and B ⊆ A, then
B ∈ A (and so µ(B) = 0). For any measure space (X,A, µ) one can find a complete
measure space (X,A0, µ0) with A ⊆ A0, µ0|A = µ and A0 =

{
A∪ B : A ∈ A and B ⊆

C with C ∈ A and µ(C) = 0
}
. (X,A0, µ0) is called the completion of (X,A, µ); see

Proposition 4, Section 1, Chapter 11, of [Roy]. For example, denoting the σ-algebra
of Lebesgue measurable sets in Rn by ALeb(Rn) and writing µLeb for the Lebesgue
measure, (Rn,ALeb(Rn), µLeb) is the completion (Rn,B(Rn), µLeb|B(Rn)).

Our problem is to describe how to get from a pre-measure on a semi-algebra
on X to a measure on some σ-algebra on X. The standard procedure for doing this
is due to Caratheodory and we will review it briefly. Assume that we are given a
pre-measure µ on the semi-algebra I and that we have extended it to a pre-measure
on the algebra A(I) generated by I. For simplicity we will denote this extended
pre-measure by µ : A(I) → [0,∞] also. Now let T ∈ P(X) denote an arbitrary
subset of X. An A(I)-cover of T is a sequence A1, A2, . . . of elements of A(I) with
T ⊆

⋃∞
k=1 Ak. For a given T there are generally many of these and we define

µ∗(T ) = inf
{ ∞∑

k=1

µ(Ak)
}
,

where the infimum is over all A(I)-covers {Ak}
∞
k=1 of T . The function

µ∗ : P(X)→ [0,∞]

thus defined is called an outer measure on X. What this means is that µ∗ has the
following properties (see Lemma 4, Section 2, Chapter 12, of [Roy] ).

1. µ∗(∅) = 0
2. A ⊆ B⇒ µ∗(A) ≤ µ∗(B), ∀A, B ∈ P(X)
3. µ∗

( ⋃∞
k=1 Ak

)
≤

∑∞
k=1 µ

∗(Ak), ∀A1, A2, . . . ∈ P(X)

To turn the countable subadditivity in (3) into countable additivity Caratheodory
restricts attention to those subsets of X that “split every other set additively”, as
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Halmos puts it (page 44 of [Hal1]). More precisely, we will say that a subset M of
X is µ∗-measurable if, for every T ∈ P(X),

µ∗(T ) = µ∗(T ∩ M) + µ∗(T ∩ (X − M)).

One can then show that the collection σ(µ∗) of all µ∗-measurable sets is a σ-algebra
on X and that µ∗|σ(µ∗) is a complete measure on (X, σ(µ∗)); see Theorem 1, Section
1, Chapter 12, of [Roy]. Furthermore, σ(I) = σ(A(I)) ⊆ σ(µ∗) and µ∗|σ(I) = µ; see
Lemma 5, Section 2, Chapter 12, of [Roy]. We will call µ∗|σ(I) the measure induced
by the pre-measure µ and from now on we will use the same symbol µ for both.

This is the end of the measure theory review.

With this review behind us we would now like to apply these ideas to the con-
struction of Wiener measure. We begin with the underlying set X = C0[ta, tb] and its
semi-algebra I of cylinder sets. In order for the Caratheodory machinery to kick in
we need only define a pre-measure m on I. The idea is to do this in such a way that,
for any I ∈ I, m(I) has the appropriate physical interpretation in terms of Brownian
motion. This gives us no real choice; we must take

m(I) = m(I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn]))

=

∫ βn

αn

· · ·

∫ β1

α1

HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1) dq1 · · · dqn,

(8.45)

where q0 = 0 is the fixed “starting point” for the curves .
Remark 8.4.35. It will be useful later to have this written as a Lebesgue integral
over the rectangle (α1, β1] × · · · × (αn, βn]. We will write

m(I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn])) =

∫
(α1, β1]×···×(αn, βn]

Wn(t,q) dnq, (8.46)

where t = (t1, . . . , tn) with ta = t0 < t1 < · · · < tn−1 < tn ≤ tb, q = (q1, . . . , qn), dnq
stands for Lebesgue measure on Rn, and

Wn(t,q) = HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1) (8.47)

= [(4πD)n(t1 − t0) · · · (tn − tn−1)]−1/2e−
1

4D
∑n

k=1
(qk−qk−1)2

tk−tk−1 (8.48)

and again we recall that q0 = 0.
Before confronting the issue of whether or not this is a pre-measure one should

notice that it is not obviously well-defined. The reason is that an element I of I

generally has many different representations as I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn])
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and (8.45) appears to depend on the representation. However, the different repre-
sentations for a given I ∈ I cannot be too different; they can differ, one from an-
other, only by the insertion or deletion of subdivision points s for which the cor-
responding half-open interval is (−∞,∞] since it is only these that have no ef-
fect on the set of functions in I. To show that m(I) is well-defined we can be-
gin by choosing from among all of these representations of I a “minimal” one
I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn]) in which all such subdivision points have been
deleted so that, for each (α j, β j], j = 1, . . . , n, at least one of α j or β j is finite. Then
one need only show that adding to t1, . . . , tn more subdivision points with “restric-
tion intervals” (−∞,∞] does not alter the value of m(I). By induction, it clearly
suffices to do this for one point, say, s. Suppose first that t0 < s < t1 so that the
representation for I is

I(s, t1, . . . , tn; (−∞,∞] × (α1, β1] × · · · × (αn, βn]).

Now note that, if we use this representation in the definition of m(I), we obtain∫ βn

αn

· · ·

∫ β1

α1

∫ ∞

−∞

HD(s − t0, v, q0)HD(t1 − s, q1, v) · · ·

· · ·HD(tn − tn−1, qn, qn−1) dvdq1 · · · dqn.

According to (8.44) the first integration (with respect to v) gives∫ ∞

−∞

HD(s − t0, v, q0)HD(t1 − s, q1, v) dv = HD(t1 − t0, q1, q0)

so this is the same as∫ βn

αn

· · ·

∫ β1

α1

HD(t1 − t0, q1, q0) · · ·HD(tn − tn−1, qn, qn−1) dq1 · · · dqn

which is what we wanted to show.
Exercise 8.4.25. Show that the same argument works if s is in any of the open
intervals (tk−1, tk), k = 2, . . . , n, som is well-defined on I. Hint: Justify interchanging
the order of integration.
Exercise 8.4.26. Show that m(∅) = 0, m(I) > 0 if I , ∅, and m(C0[ta, tb]) = 1.

The good news is that there is only one item left to verify in order to show that
m defines a pre-measure on I, that is, countable additivity. One must show that if
I1, I2, . . . are pairwise disjoint elements of I and if I =

⊔∞
k=1 Ik is also in I, then

m(I) =
∑∞

k=1m(Ik). Once this is done the Caratheodory procedure described above
produces for us a measure on C0[ta, tb] that takes the “right” values on cylinder sets.
The bad news is that countable additivity is by far the deepest and most difficult
part of the construction, that proofs are not so easy to find in the literature, and that
those one can find tend to require a substantial background in stochastic analysis.
Our basic source for the material on Wiener measure [JL] does not include a proof,
but suggests a few references, among them a relatively short proof on pages 13-14
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of [Kal]; one can also consult Theorem 3.1.1 and Appendix A.4 of [GJ] for a proof.
We will not attempt to sketch the proof here.
Remark 8.4.36. One can get some sense of why the argument for countable additiv-
ity must be rather subtle by noting that it must somehow carefully distinguish curves
that are “merely” continuous from those that have derivatives somewhere since, in
the end, the set of curves that are differentiable somewhere will have Wiener mea-
sure zero and so, in a sense, “don’t count”. In the functional analytic approach of
Nelson that we described earlier one seems to get countable additivity for free from
the Riesz Representation Theorem, but only because the deep issues are shifted to
showing that the measure on Ω concentrates on the continuous curves in R.

Modulo this one, admittedly shameless omission on our part we have produced
a pre-measure m on the pre-algebra I of cylinder sets in C0[ta, tb]. Caratheodory’s
procedure then provides a complete measure, which we will also denote m, on a σ-
algebra W of subsets of C0[ta, tb] containing σ(I) = B(C0[ta, tb]). (C0[ta, tb],W,m)
is, in fact, the completion of (C0[ta, tb],B(C0[ta, tb]),m|B(C0[ta,tb])) so W consists pre-
cisely of sets of the form A ∪ B, where A ∈ B(C0[ta, tb]) and B is a subset of some
C ∈ B(C0[ta, tb]) with m(C) = 0. The elements of W are called Wiener measurable
sets. m itself is called the Wiener measure on C0[ta, tb].
Remark 8.4.37. More accurately, one should say thatm is the Wiener measure start-
ing at q0 = 0 since this was built into our definition of m on the cylinder sets in
(8.45); one might even prefer to denote it m0 and use mq0 to indicate the analogous
measure built with starting point q0. Until it becomes necessary to be careful about
the distinction, however, we will stick with m.
Remark 8.4.38. This construction of Wiener measure is so analogous to the usual
construction of the Lebesgue measure on Rn that we would do well to sound a cau-
tionary note. Wiener measure does not share all of the nice properties of Lebesgue
measure on Rn. For example, it is not translation invariant. Indeed, one can show
that there is no nontrivial translation invariant Borel measure on C0[ta, tb] at all; this
is Theorem 3.1.3 of [JL]. Here’s another example. Lebesgue measure on Rn has the
property that, if M is a measurable set in Rn, then, for any c ∈ R, cM = {cx : x ∈ M}
is also measurable. The analogous statement in C0[ta, tb], however, is false. There
exist Wiener measurable sets M in C0[ta, tb] for which 2M = {2x : x ∈ M} is not
Wiener measurable (see [JS] or Section 4.2 of [JL]).

So far we only know how to compute the Wiener measure of cylinder sets so we
will try to enlarge our arsenal just a bit. Fix (t1, . . . , tn) with ta = t0 < t1 < · · · < tn ≤
tb and denote this n-tuple

t = (t1, . . . , tn).

Now define the evaluation map

evt : C0[ta, tb]→ Rn

by
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evt(x) = (x(t1), . . . , x(tn))

for every x ∈ C0[ta, tb]. Notice that evt is clearly linear and it is bounded because

‖evt(x)‖2 = x(t1)2 + · · · + x(tn)2 ≤ n
(

max
ta≤t≤tb

|x(t)|
)2

= n ‖x‖2.

Thus, evt is continuous and therefore Borel measurable, that is, for any Borel set A
in Rn,

ev−1
t (A) =

{
x ∈ C0[ta, tb] : (x(t1), . . . , x(tn)) ∈ A

}
is a Borel set in C0[ta, tb].
Remark 8.4.39. The converse is also true, that is, ev−1

t (A) ∈ B(C0[ta, tb]) if and only
if A ∈ B(Rn); this is Proposition 3.5.1 of [JL].

In particular, m( ev−1
t (A) ) is defined and we would like to compute it. The result

we will prove is entirely analogous to (8.46). Specifically, we will show that

m( ev−1
t (A) ) =

∫
A

Wn(t,q) dnq,

where Wn(t,q) is given by (8.47). The function Wn(t, · ) is positive and satisfies∫
Rn Wn(t,q) dnq = 1. Thus, we can use it to define a probability measure νn on Rn

by

νn(E) =

∫
E

Wn(t,q) dnq

for every Lebesgue measurable set E in Rn. We wish to compare this with the push-
forward measure (evt)∗(m) on Rn defined by

( (evt)∗(m) )(E) = m( ev−1
t (E) ).

Remark 8.4.40. Recall that, if (X,A, µ) is a measure space, (Y,C) is a measurable
space and g : (X,A) → (Y,C) is a measurable function, then the pushforward mea-
sure g∗(µ) on (Y,C) is defined by

(g∗(µ))(C) = µ(g−1(C)) ∀C ∈ C.

There is an abstract change of variables formula (Theorem C, Section 39, of [Hal1])
that asserts the following. If f is any extended real-valued measurable function on
(Y,C), then f is integrable with respect to g∗(µ) if and only if f ◦ g is µ-integrable
and, in this case, ∫

Y
f (y) d(g∗(µ))(y) =

∫
X

( f ◦ g)(x) dµ(x). (8.49)
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Furthermore, (8.49) holds in the stronger sense that, if either side is defined (even if
it is not finite), then the other side is defined and they agree.

According to (8.46), the measures νn and (evt)∗(m) agree when E is a rectangle of
the form (α1, β1]× · · · × (αn, βn]. But these rectangles generate the Borel sets B(Rn)
in Rn so

νn = (evt)∗(m) on B(Rn).

Consequently, for all A ∈ B(Rn),

m( ev−1
t (A) ) = ((evt)∗(m))(A) = νn(A) =

∫
A

Wn(t,q) dnq,

as required. Notice, in particular, that if A has Lebesgue measure zero, then ev−1
t (A)

has Wiener measure zero.
We will show now that, in fact, the same is true for any Lebesgue measurable set

in Rn. Denote the σ-algebra of Lebesgue measurable sets in Rn by ALeb(Rn) and
write µLeb for the Lebesgue measure..

Theorem 8.4.18. Let t = (t1, . . . , tn) be fixed, where ta = t0 < t1 < · · · < tn ≤ tb.
Then

evt : (C0[ta, tb],W)→ (Rn,ALeb(Rn))

defined by

evt(x) = (x(t1), . . . , x(tn))

is measurable and, for any E ∈ ALeb(Rn),

m( ev−1
t (E)) =

∫
E

Wn(t, q) dnq.

Proof. First we show that evt is measurable. Let E ∈ ALeb(Rn). Since
(Rn,ALeb(Rn), µLeb) is the completion (Rn,B(Rn), µLeb|B(Rn)), E can be written as
E = A ∪ B, where A ∈ B(Rn) and B ⊆ C, where C is in B(Rn) and has µLeb(C) = 0.
Now,

ev−1
t (E) = ev−1

t (A) ∪ ev−1
t (B)

and ev−1
t (B) ⊆ ev−1

t (C). We have just seen that ev−1
t (A) and ev−1

t (C) are in B(C0[ta, tb])
and m( ev−1

t (C) ) = 0. But (C0[ta, tb],W,m) is the completion of
(C0[ta, tb],B(C0[ta, tb]),m|B(C0[ta,tb])) . It follows that ev−1

t (E) is in W so evt is mea-
surable.
Remark 8.4.41. This shows that if E ⊆ Rn is Lebesgue measurable, then ev−1

t (E)
is Wiener measurable. In fact, the converse is also true, that is, ev−1

t (E) is Wiener
measurable if and only if E is Lebesgue measurable; this is Theorem 3.5.2 of [JL].
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Completeness also implies that ev−1
t (B) is in W and m(ev−1

t (B)) = 0. Conse-
quently,

m( ev−1
t (E) ) = m( ev−1

t (A) ) =

∫
A

Wn(t,q) dnq =

∫
E

Wn(t,q) dnq,

as required. ut

Remark 8.4.42. Notice that this result can be rephrased by saying that the pushfor-
ward measure (evt)∗(m) on Rn agrees with the measure on Rn determined by the
density function Wn(t,q) and the Lebesgue measure.

The Wiener measure of a set of the form ev−1
t (E) for E Lebesgue measurable in

Rn can be computed as a finite-dimensional integral. We will now show that, more
generally, the integral with respect to Wiener measure of a function on C0[ta, tb] that
depends only on the values each x ∈ C0[ta, tb] takes at t = (t1, . . . , tn) is just a finite-
dimensional integral over Rn; as we did in Nelson’s construction we will call these
finite functions in C0[ta, tb]. More precisely, we will prove the following.

Theorem 8.4.19. Let t = (t1, . . . , tn) be fixed, where ta = t0 < t1 < · · · < tn ≤ tb, and
let f : Rn → R be a Lebesgue measurable function. Define ϕ : C0[ta, tb] → R by
ϕ = f ◦ evt, that is,

ϕ(x) = f (x(t1), . . . , x(tn))

for all x ∈ C0[ta, tb]. Then∫
C0[ta,tb]

ϕ(x) dm(x) =

∫
Rn

f (q)Wn(t, q) dnq,

where Wn(t, q) is given by (8.47) and the equality is interpreted in the strong sense
that if either side is defined, whether finite or infinite, then so is the other side and
they agree.

Proof. We have shown that evt : C0[ta, tb]→ Rn is measurable so we can apply the
change of variables formula (8.49) to obtain∫

C0[ta,tb]
ϕ(x) dm(x) =

∫
C0[ta,tb]

( f ◦ evt)(x) dm(x) =

∫
Rn

f (q) d((evt)∗(m))(q).

But we have also shown (Remark 8.4.42) that d((evt)∗(m))(q) = Wn(t,q) dnq so the
result follows. ut

We should probably compute one or two simple integrals (many more examples
can be found in Section 3.3 of [JL] and in [GY]). Let’s fix t = (t1) with ta = t0 <
t1 ≤ tb and write evt1 for evt. Then evt1 (x) = x(t1) and, for any measurable function
f : R→ R, ( f ◦ evt1 )(x) = f (x(t1)) and
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C0[ta,tb]

f (x(t1)) dm(x) =

∫
R

f (q1)W1(t1, q1) dq1 =

∫
R

f (q1) HD(t1 − t0, q1, q0) dq1.

Example 8.4.4. Take f to be the identity map on R, that is, f (q1) = q1. Then
( f ◦ evt1 )(x) = evt1 (x) = x(t1) so∫

C0[ta,tb]
x(t1) dm(x) =

∫
R

q1W1(t1, q1) dq1

= [4πD(t1 − t0)]−1/2
∫
R

q1e−
1

4D
(q1−q0)2

t1−t0 dq1

= [4πD(t1 − t0)]−1/2
∫
R

q1e−
1

4D
q2
1

t1−t0 dq1

= 0

because the integrand is odd.
Example 8.4.5. Take f to be f (q1) = q2

1. Then∫
C0[ta,tb]

x(t1)2 dm(x) =

∫
R

q2
1 W1(t1, q1) dq1

= [4πD(t1 − t0)]−1/2
∫
R

q2
1e−

1
4D

q2
1

t1−t0 dq1

= [4πD(t1 − t0)]−1/2[4D(t1 − t0)]3/2
∫
R

u2e−u2
du

= 2D(t1 − t0),

where we have used the Gaussian integral∫
R

u2e−u2
du =

√
π

2

(see Exercise A.0.3 (2) of Appendix A).
These examples may seem a bit artificial so we would like to try to get something

more interesting out of Theorem 8.4.19. For this, however, and for other purposes as
well we will need to digress and discuss the famous Hille-Yosida Theorem and the
generalization of the Lie-Trotter-Kato Product Formula (Theorem 8.1.1) mentioned
in Remark 8.1.2.

The following digression on strongly continuous semigroups is somewhat lengthy,
but its dividends are considerable (for example, a rigorous path integral represen-
tation for heat flow). If you would prefer to refer back to it as the need arises, we
take up the thread of our current discussion again on page 434.

Remark 8.4.43. Let E denote a Banach space and, for each t ≥ 0, let Tt : E→ E be
a bounded linear operator on E. If {Tt}t≥0 satisfies
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1. T0 = idE,
2. Tt+s = TtTs, ∀t, s ≥ 0, and
3. for each x ∈ E,

t → Tt x : [0,∞)→ E

is continuous,

then {Tt}t≥0 is called a strongly continuous semigroup of operators, or a C0-semigroup
of operators on E . The semigroup of operators associated with the heat flow on R

(Exercise 5.2.18) is a nice example to keep in mind. We will now describe what is
essentially the simplest example; this uses some basic properties of the exponential
of a bounded operator, all of which are proved essentially as they are for the matrix
exponential function (Chapter IX, Section 6, of [Yosida] contains all of the details).
Example 8.4.6. Let E be a Banach space and A : E → E a bounded linear operator
on E. For each t ≥ 0 define Tt : E→ E by

Tt = etA =

∞∑
n=0

(tA)n

n!
.

Since ‖A‖ < ∞ the series converges, for each fixed t, in the Banach space B(E) of
bounded operators on E to a bounded operator. Clearly, T0 = idE and, since tA and
sA commute, e(t+s)A = etAesA so Tt+s = TtTs. Because A is bounded we actually have
a much stronger continuity condition than the definition requires. Indeed, since

‖Tt − idE‖ =

∥∥∥∥∥ ∞∑
n=1

(tA)n

n!

∥∥∥∥∥ ≤ ∞∑
n=1

tn‖A‖n

n!
= et ‖A‖ − 1

and et ‖A‖ − 1→ 0 as t → 0+, t → etA is actually continuous as a map into B(E).
Exercise 8.4.27. Show that, for any x ∈ E,

lim
t→0+

etA(x) − x
t

= Ax

and then that

lim
h→0

e(t+h)A(x) − etA(x)
h

= AetA(x).

Write the second of these as

d
dt

Tt(x) = ATt(x)

and recall that

T0(x) = x.
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Since every tangent space to a vector space can be identified with that same vector
space, even in the infinite-dimensional case, we can think of the operator A as defin-
ing a vector field on E whose value at x ∈ E is Ax ∈ Tx(E). This suggests regarding
Tt(x) as the integral curve of the vector field on E represented by A that starts at
T0(x) = x. This is what we would like to generalize.

One can show, from the Uniform Boundedness Theorem (Theorem 4.5.1 of
[Fried], or Theorem III.9 of [RS1]), that, for any C0-semigroup {Tt}t≥0 of operators
on a Banach space E, there exists an ω ∈ R and an M ≥ 0 such that, for each t ≥ 0,
‖Tt‖ ≤ Meωt (see page 246 of [RS2], page 418 of [Lax], or page 232 of [Yosida]).
We will use this result only to motivate the following definitions. If ω is a real num-
ber, then a C0-semigroup {Tt}t≥0 is said to be ω-contractive if ‖Tt‖ ≤ eωt for each
t ≥ 0; {Tt}t≥0 is contractive if it is 0-contractive, that is, if ‖Tt‖ ≤ 1 for each t ≥ 0.
As a rule, results proved for contractive semigroups have relatively straightforward
extensions to the general case (see Section X.8 of [RS2]).

Let {Tt}t≥0 be a C0-semigroup of operators on a Banach space E. We introduce
an operator A, called the infinitesimal generator of {Tt}t≥0, as follows. The domain
of A is

D(A) =

{
x ∈ E : lim

t→0+

Tt x − x
t

exists inE
}
.

Then A : D(A)→ E is given, at each x ∈ D(A), by

Ax = lim
t→0+

Tt x − x
t

.

The following is Theorem 2, Section 7.4.1, of [Evans], Theorem 4, Section 34.1, of
[Lax], and the Proposition in Section X.8 of [RS2].

Theorem 8.4.20. Let {Tt}t≥0 be a C0-semigroup of operators on a Banach space E

and A : D(A)→ E its infinitesimal generator. Then D(A) is a dense linear subspace
of E and A is a closed linear operator on D(A).

Remark 8.4.44. Recall that A is closed if, whenever xn ∈ D(A) for n = 1, 2, . . .,
xn → x in E and Axn → y in E, then x ∈ D(A) and Ax = y.

Although the following result is proved in [Evans], [Lax], and [Yosida], it is the
key to isolating an appropriate notion of “flow” in the infinite-dimensional context
so we will record the simple proof here as well. We will assume that the semigroup
is contractive to simplify the proofs of (3) and (4), but the result is true in general
(see Theorem 2, Section IX.3, of [Yosida]). In the statement of the Theorem the
derivative of t → Tt x, for x ∈ E, is defined to be the following limit in E, provided
the limit exists.

d
dt

Tt x = lim
h→0

Tt+hx − Tt x
h
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Theorem 8.4.21. Let {Tt}t≥0 be a (contractive) C0-semigroup of operators on a Ba-
nach space E and A : D(A) → E its infinitesimal generator. Let x be in D(A).
Then

1. Tt x is in D(A) for all t ≥ 0,
2. ATt x = TtAx for all t ≥ 0,
3. The map t → Tt x is continuously differentiable on t > 0, and
4. d

dt Tt x = ATt x for all t > 0.

Proof. Since x ∈ D(A), the limit lims→0+
Ts x−x

s exists in E and is, by definition, Ax.
Then, for any t ≥ 0,

Ts(Tt x) − Tt x
s

=
Ts+t x − Tt x

s
=

Tt+sx − Tt x
s

=
Tt(Tsx) − Tt x

s
= Tt

(Tsx − x
s

)
.

Since Tt is bounded (continuous), lims→0+
Ts(Tt x)−Tt x

s exists in E and therefore Tt x ∈
D(A) so (1) is proved. Moreover, taking the limit as t → 0+ on both sides gives
ATt x = TtAx so (2) is proved as well. We will prove (3) and (4) by showing that, for
any t > 0,

lim
h→0

Tt+hx − Tt x
h

= ATt x

for every x ∈ D(A). By (2) it is enough to show that limh→0
Tt+h x−Tt x

h = TtAx and for
this we will examine the limits as h → 0+ and h → 0− separately. Let h > 0 and
note that

Tt+hx − Tt x
h

− TtAx = Tt

(Thx − x
h

− Ax
)
.

From the definition of Ax and the continuity of Tt, this approaches zero as h → 0+.
For the limit as h → 0− we again assume h is positive (and sufficiently small) and
consider

Tt x − Tt−hx
h

− TtAx = Tt−h

(Thx − x
h

− Ax
)

+ (Tt−hAx − TtAx).

Since {Tt}t≥0 is assumed contractive, ‖Tt−h‖ ≤ 1 and we conclude that∥∥∥∥∥Tt x − Tt−hx
h

− TtAx
∥∥∥∥∥ ≤ ∥∥∥∥∥Thx − x

h
− Ax

∥∥∥∥∥ +
∥∥∥Tt−hAx − TtAx

∥∥∥.
Both of the terms on the right-hand side approach zero as h → 0+. This shows
that limh→0−

Tt+h x−Tt x
h = ATt x and completes the proof of differentiability and (4).

Continuity of the derivative follows from (4) and the strong continuity of {Tt}t≥0. ut

Remark 8.4.45. If we regard the infinitesimal generator A as a vector field on D(A)
with values in E, then, motivated by (4), we call {Tt}t≥0 the flow of A. Also motivated
by (4) is the traditional notation for the semigroup generated by A, that is,
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Tt = etA.

This notation is very suggestive and convenient. For example, TtTs = Tt+s becomes
etAesA = e(t+s)A and d

dt Tt x = ATt x becomes d
dt e

tAx = AetAx. However, one should
keep in mind that it is only under certain circumstances that etA is literally the expo-
nential of an operator in the sense of a functional calculus; this is true, for example,
if the infinitesimal generator A happens to be a bounded operator (Example 8.4.6)
and we will mention one other instance of this in a moment.

Typically, one is not given a flow (semigroup of operators) and asked to find the
vector field that gives rise to it (its infinitesimal generator). Rather, one is given a
vector field and would like to know that a flow exists. The crucial question then is,
given an unbounded operator/vector field A how can one know that it is the infinites-
imal generator for some C0-semigroup of operators? This is the question addressed
by the Hille-Yosida Theorem, to which we now turn.

We already know that the infinitesimal generator A of any C0-semigroup {Tt}t≥0
of operators on a Banach space E is a densely defined, closed operator on E. In
fact, any such A has two additional properties and, remarkably enough, these two
characterize infinitesimal generators among the densely defined, closed operators.
To describe these two properties we recall that λ ∈ C is in the resolvent set ρ(A) of
the closed operator A if and only if λ − A : D(A) → E is one-to-one and onto and
that it follows from this that the resolvent operator Rλ(A) = (λ − A)−1 : E → D(A)
is bounded (Theorem, Section VIII.1, [Yosida]). One can then show that, if A is
the infinitesimal generator of an ω-contractive semigroup of operators on a Banach
space, then

1. (ω,∞) ⊆ ρ(A), and
2. ‖Rλ(A)‖ = ‖(λ − A)−1‖ ≤ 1

λ−ω
∀λ > ω.

The proof of this amounts to writing Rλ(A) as a Laplace transform

Rλ(A)x =

∫ ∞

0
e−λsTsx ds

and estimating the integral using ‖Tt‖ ≤ eωt (see Theorem 3(ii), Section 7.4.1, of
[Evans], Section X.8 of [RS2], Section 34.1 of [Lax], or Section IX.3 of [Yosida]).
Remarkably, these two properties alone characterize the infinitesimal generators of
ω-contractive semigroups of operators on a Banach space among the densely de-
fined, closed operators.

Theorem 8.4.22. (Hille-Yosida Theorem) Let E be a Banach space and A : D(A)→
E a densely defined, closed operator on E. Then A is the infinitesimal generator of
an ω-contractive semigroup of operators on E for some ω ∈ R if and only if

1. (ω,∞) ⊆ ρ(A), and
2. ‖Rλ(A)‖ = ‖(λ − A)−1‖ ≤ 1

λ−ω
∀λ > ω.

Remark 8.4.46. The contractive case of the Hille-Yosida Theorem is Theorem X.47a
of [RS2] and Theorem 7, Section 34.2, of [Lax]. The extension to arbitrary C0-
semigroups is generally called the Hille-Yosida-Phillips Theorem and is Theorem
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X.47b of [RS2]. A more general result for locally convex, sequentially complete
topological vector spaces appears as the Theorem in Section IX.7 of [Yosida].
Here is a consequence of Hille-Yosida that we will need.

Theorem 8.4.23. Let H be a Hilbert space and T : D(A) → H an operator on H

that is self-adjoint and positive
(
〈Tψ, ψ〉 ≥ 0 ∀ψ ∈ D(T )

)
. Then −T generates a

contractive C0-semigroup of operators on H.

Proof. Since T is self-adjoint, so is −T . Since T is positive, its spectrum σ(T )
is contained in [0,∞) so σ(−T ) ⊆ (−∞, 0]. Consequently, (0,∞) ⊆ ρ(−T ) and
condition (1) of the Hille-Yosida Theorem is satisfied. Now suppose λ > 0 and
consider the (bounded) resolvent operator (λ − (−T ))−1 = (λ + T )−1. For any
ψ ∈ D(T ) = D(−T ),

‖(λ + T )ψ‖ ‖ψ‖ ≥ | 〈(λ + T )ψ, ψ〉 | = λ‖ψ‖2 + 〈Tψ, ψ〉 ≥ λ‖ψ‖2,

so

‖(λ + T )ψ‖ ≥ λ‖ψ‖ ∀ψ ∈ D(T ) = D(λ + T ).

Applying this to (λ + T )−1φ for any φ ∈ H gives

‖(λ + T )−1φ‖ ≤
1
λ
‖φ‖

and so

‖(λ + T )−1‖ ≤
1
λ
.

This verifies condition (2) of the Hille-Yosida Theorem so we conclude that −T is
the infinitesimal generator for a contractive C0-semigroup of operators on H which
we will denote

e−tT .

ut

Remark 8.4.47. We mention that in this case the semigroup operator e−tT really is
the exponential function of the operator −tT in the sense of the functional calculus.
That is, if

T =

∫
[0,∞)

λ dEλ

is the spectral decomposition of T , then

e−tT =

∫
[0,∞)

e−tλ dEλ.
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Example 8.4.7. Let V : R → R be a non-negative, measurable function. Then the
corresponding multiplication operator on L2(R), which we will also denote V , is
self-adjoint and positive on D(V) = {φ ∈ L2(R) : Vφ ∈ L2(R)}. Consequently, −V
generates a contractive C0-semigroup e−tV on L2(R).
Example 8.4.8. We have shown that the operator −∆ : D(∆)→ L2(R) is self-adjoint
and positive so we conclude from Theorem 8.4.23 that ∆ generates a contractive
semigroup

et∆

of operators on L2(R). We would like show that this semigroup coincides with the
heat semigroup of Exercise 5.2.18 (with D = 1).
Remark 8.4.48. There is another proof in Example 2, Section 6, Chapter IX, of
[Yosida].

Let ψ0 be an arbitrary element of L2(R) and define

ψ(t, x) = (et∆ψ0)(t, x).

Part (4) of Theorem 8.4.21 implies that

d
dt
ψ(t, x) = ∆ψ(t, x)

and, moreover,

lim
t→0+

ψ(t, x) = ψ0(x).

Furthermore, by (3) of Theorem 8.4.21, ψ(t, x) is continuously differentiable with
respect to t and, by definition, ψ(t, x) is in L2(R) as a function of x for each t.
Appealing to Exercise 6.2.1 we find that

d
dt
ψ(t, x) =

∂ψ(t, x)
∂t

and so ψ(t, x) is a solution to the heat equation (with D = 1) and satisfies the initial
condition limt→0+ ψ(t, x) = ψ0(x). The heat semigroup also has the property that it
carries ψ0 onto a solution to this initial value problem, but, as we have already men-
tioned (Remark 5.2.15), solutions to an initial value problem for the heat equation
need not be unique so we cannot yet infer that the two semigroups agree. We will
approach this somewhat differently.

Denote the heat semigroup by {Tt}t≥0 and denote its infinitesimal generator by A.
We will first show that the operators A and ∆ agree on the Schwartz space S(R) ⊆
L2(R). Thus, we let ψ0 be in S(R). Then

(Ttψ0)(x) =

∫
R

1
√

4πt
e−(x−y)2/4tψ0(y) dy = (Kt ∗ ψ0)(x),
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where

Kt(x) =
1
√

4πt
e−x2/4t.

Exercise 8.4.28. Compute Fourier transforms and show that

F[Ttψ0](p) = e−tp2
F[ψ0](p).

From this we obtain

F

[Ttψ0 − ψ0

t

]
(p) =

e−tp2
− 1

t
F[ψ0](p)

and therefore

Ttψ0 − ψ0

t
= F−1

[e−tp2
− 1

t
F[ψ0](p)

]
.

Taking the limit as t → 0+ then gives

Aψ0 = F−1[ − p2F[ψ0](p)
]

= ∆ψ0.

We conclude then that the infinitesimal generator A of the heat semigroup agrees
with the Laplacian ∆ on S(R). It follows that etA and et∆ agree on S(R). Now let ψ
be an arbitrary element of L2(R). Choose a sequence {ψn}

∞
n=1 in S(R) converging to

ψ in L2(R). Then, for any n,

etAψ − et∆ψ = (etA − et∆)(ψ − ψn).

Now, etA − et∆ is a bounded operator on L2(R) with norm, say, M. Thus, for any n,

‖etAψ − et∆ψ‖ ≤ M‖ψ − ψn‖

so etAψ = et∆ψ in L2(R) and we have shown that the semigroup generated by the
Laplacian is the heat semigroup.

We mentioned earlier (Remark 8.1.2) that the Trotter Product Formula has a gen-
eralization to the context of operator semigroups. It is now time to formulate the
result we had in mind. The following is Theorem 9, Appendix B, of [Nel3].

Theorem 8.4.24. Let A : D(A) → E and B : D(B) → E be linear operators on the
Banach space E that are infinitesimal generators of contractive semigroups on E.
Suppose that A + B : D(A) ∩D(B)→ E also generates a contractive semigroup on
E. Then, for all ϕ ∈ E,

et(A+B)ϕ = lim
n→∞

(e
t
n Ae

t
n B)nϕ.

Remark 8.4.49. It is actually enough to assume that the closure of (A+ B) |D(A)∩D(B)
generates a contractive semigroup, but the proof requires more work; see Theorem
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11.1.4 of [JL] where this result is obtained from a still more general product formula
due to Chernoff.
Example 8.4.9. Let V : R → R be a bounded, measurable function on R and let
M > 0 be such that |V(x)| ≤ M ∀x ∈ R. We do not assume that V is non-negative.
However, V+M : R→ R is bounded, measurable and non-negative. Using the same
symbols to denote the multiplication operators on L2(R) determined by V , M, and
V + M, we find that all of these are bounded and self-adjoint and the operator V + M
is also positive on L2(R). Consequently, −(V+M) generates a contractive semigroup
of operators on L2(R) and each of the semigroup operators is just multiplication by
the ordinary exponential e−t(V+M). Moreover, each of the multiplication operators
e−tV and e−tM is defined and bounded and e−t(V+M) = e−tVe−tM . Now, consider also
the positive, self-adjoint operator −∆ : D(∆) → L2(R) on L2(R). Then ∆ generates
the heat semigroup et∆ on L2(R). Using the fact that the multiplication operator e−tM

commutes with every operator on L2(R) we compute, for any integer n ≥ 1 and any
ϕ ∈ L2(R),

e−tM
(
e

t
n∆e−

t
n V

)n
ϕ =

(
e−

t
n Me

t
n∆e−

t
n V

)n
ϕ =

(
e

t
n∆e−

t
n (V+M)

)n
ϕ.

Since V + M is bounded, Theorem 8.4.4 implies that −∆ + (V + M) is self-adjoint
on D(∆) and, since V + M is non-negative, −∆ + (V + M) is a positive operator.
Consequently, ∆ − (V + M) also generates a contractive semigroup on L2(R) so
Theorem 8.4.24 implies that

lim
n→∞

(
e

t
n∆e−

t
n (V+M)

)n
ϕ = et(∆−(V+M))ϕ = e−tMet(∆−V)ϕ.

Consequently,

e−tM lim
n→∞

(
e

t
n∆e−

t
n V

)n
ϕ = e−tMet(∆−V)ϕ,

which gives

et(∆−V)ϕ = lim
n→∞

(
e

t
n∆e−

t
n V

)n
ϕ.

The thing to notice is that, although Theorem 8.4.24 does not apply directly to ∆−V ,
the conclusion we have arrived at is precisely the same. We will put this to use
shortly.

This is the end of the digression on strongly continuous semigroups.

With this detour behind us we can return to the task at hand. We have just seen
in Example 8.4.8 that the heat semigroup {Tt}t≥0 (with D = 1) coincides with the
semigroup {et∆}t≥0 generated by minus the Laplacian. We will now use this and The-
orem 8.4.19 to show that heat flow can be represented as a Wiener (path) integral.
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We will work on the interval [0, t] for some fixed, but arbitrary t > 0 and will apply
Theorem 8.4.19 to the trivial partition 0 = t0 < t1 = t. For reasons that will be-
come clear momentarily we will use y1 as the integration variable and write, for any
ψ0 ∈ L2(R),

(et∆ψ0)(q) =

∫
R

(4πt)−1/2e−(y0−y1)2/4tψ0(y1) dy1,

where y0 = q. Make the change of variable q1 = y1 − q and q0 = y0 − q = q − q = 0
(which we need to apply Theorem 8.4.19). Then

(et∆ψ0)(q) =

∫
R

(4πt)−1/2e(q0−q1)2/4tψ0(q1 + q) dq1,

where q0 = 0. Now notice that, with t = (t1) = (t) written simply as t and q = (q1)
written as q1,

W1(t,q) = W1(t, q1) = (4πt)−1/2e−(q0−q1)2/4t

so

(et∆ψ0)(q) =

∫
R

ψ0(q1 + q)W1(t, q1) dq1 =

∫
C0[0,t]

( f ◦ evt1 )(x) dmt(x),

where f (q1) = ψ0(q1 + q) and we have written mt to emphasize the dependence of
the Wiener measure on t. Since t1 = t we finally arrive at

(et∆ψ0)(q) =

∫
C0[0,t]

ψ0(x(t) + q) dmt(x) (8.50)

as the path integral representation for the heat flow. Shortly we will describe a very
substantial extension of this result which combines Theorem 8.4.19 with the Trotter
Product Formula in order to acomodate a nonzero potential term.

The Wiener measure of a Wiener measurable set W ∈ W has, in itself, a nice
physical interpretation; m(W) is the probability that a Brownian path starting at
q0 = 0 satisfies whatever conditions define W. Even so, this is not where its real
significance lies for us. Recall that we got into this business in the first place because
we were interested in whether or not the Feynman “integral” was really an integral
and that the reason we cared about Feynman integrals was that they describe the
time evolution operators

e−(i/~)(t−t0)(H0+V) (8.51)

of a quantum system, either directly (8.2), or by way of the propagator (8.3). We
will soon have something to say about whether or not the Feynman “integral” is
an integral in the same sense that the Wiener integral is, but first we would like
to see that the analogous “evolution question” for the heat equation has an entirely
satisfactory and rigorous solution in the context of the Wiener integral. The first step
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in this direction is the path integral representation (8.50) for et∆, but now we would
like to include a (sufficiently nice) potential V and consider the evolution operator
et(∆−V). The result we will describe is a very special case of the so-called Feynman-
Kac Formula. To keep the argument as simple as possible we will make some wildly
extravagant assumptions, but we will mention also a much more general result that
is proved in Theorem 12.1.1 of [JL]; there is also a proof fashioned on the Nelson
approach to the Wiener integral in Theorem X.68 of [RS2].

We will again work on the interval [0, t] for some fixed, but arbitrary t > 0
and will consider an operator of the form −∆ + V on L2(R), where V : R → R

is a real-valued (potential) function concerning which we will need to make some
assumptions. The assumptions will have to be sufficient to guarantee that −(−∆ +

V) = ∆ − V generates a semigroup et(∆−V) of operators on L2(R) to which we can
apply the generalized Trotter Product Formula in Theorem 8.4.24. Now, in Section
8.4.2 we isolated a number of conditions on V that ensure the self-adjointness of
−∆ + V . In particular, by Theorem 8.4.4 and Remark 8.4.17, if V happens to be
continuous and bounded, then −∆ + V is self-adjoint on D(∆) and this is what we
will assume for our proof.
Remark 8.4.50. This is our “wildly extravagant” assumption. Everything we will
do can be proved under the much weaker assumption that V satisfies the conditions
specified in Theorem 8.4.8; proofs in this case are available in Theorem 12.1.1 of
[JL] and Theorem X.68 of [RS2].
We will not assume that V is non-negative since we saw in Example 8.4.9 that
boundedness is enough to ensure that

et(∆−V)ψ0 = lim
n→∞

(
e

t
n∆e−

t
n V

)n
ψ0

for every ψ0 ∈ L2(R). Under these assumptions we will derive a path integral repre-
sentation for heat flow. Specifically, we will show that, for every ψ0 ∈ L2(R), every
t > 0, and for (Lebesgue) almost every q ∈ R,

( et(∆−V)ψ0 )(q) =

∫
C0[0,t]

e−
∫ t

0 V(x(s)+q) dsψ0(x(t) + q) dmt(x), (8.52)

where mt is the Wiener measure on C0[0, t] =
{
x : [0, t]→ R : x is continuous and

x(0) = 0
}
. Notice that, if V happens to be zero, then this reduces to (8.50). We begin,

as we did for the Feynman integral, by writing out the Trotter products. Fix a t > 0
and a ψ0 ∈ L2(R). For reasons that will become clear shortly we will use y, y1, . . . , yn

as integration variables. From

(et∆ψ0)(q) =

∫
R

(4πt)−1/2e−(q−y)2/4tψ0(y) dy,

we conclude that
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(et∆/2e−tV/2ψ0)(q) = (4π(t/2))−1/2
∫
R

e−(q−y2)2/4(t/2)e−(t/2)V(y2)ψ0(y2) dy2.

Thus,[
(et∆/2e−tV/2)2 ψ0

]
(q) =

[
(et∆/2e−tV/2)

(
et∆/2e−tV/2ψ0

) ]
(q) =

(4π(t/2))−2/2
∫
R

e−(q−y1)2/4(t/2)e−(t/2)V(y1)
[ ∫

R

e−(y1−y2)2/4(t/2)e−(t/2)V(y2)ψ0(y2) dy2

]
dy1

= (4π(t/2))−2/2
∫
R

∫
R

e−
∑2

k=1(yk−1−yk )2

4(t/2) e−(t/2)
∑2

k=1 V(yk)ψ0(y2) dy2 dy1,

where y0 = q. Continuing inductively gives[
(et∆/ne−tV/n)n ψ0

]
(q) =

(4π(t/n))−n/2
∫
R

· · ·

∫
R

e−
∑n

k=1(yk−1−yk )2

4(t/n) e−(t/n)
∑n

k=1 V(yk)ψ0(yn) dyn · · · dy1, (8.53)

where y0 = q. Now introduce new variables qk = yk − q for k = 0, 1, . . . , n so that
q0 = 0 and [

(et∆/ne−tV/n)n ψ0
]
(q) =

(4π(t/n))−n/2
∫
R

· · ·

∫
R

e−
∑n

k=1(qk−1−qk )2

4(t/n) e−(t/n)
∑n

k=1 V(qk+q)ψ0(qn + q) dqn · · · dq1. (8.54)

Now we will use Theorem 8.4.19 to show that the right-hand side of (8.54) can be
written as a Wiener integral. We consider the partition 0 = t0 < t1 < · · · < tn = t of
[0, t], where tk = kt/n, k = 0, 1, . . . , n. Let t = (t1, . . . , tn) and q = (q1, . . . , qn) ∈ Rn.
Then

Wn(t,q) = (4π(t/n))−n/2e−
∑n

k=1(qk−1−qk )2

4(t/n) .

Since ψ0 is defined almost everywhere on R, the same is true of

f (q) = f (q1, . . . , qn) = e−(t/n)
∑n

k=1 V(qk+q)ψ0(qn + q).

According to Theorem 8.4.19,∫
Rn

f (q)Wn(t,q) dnq =

∫
C0[0,t]

( f ◦ evt)(x) dmt(x),

so we conclude that[
(et∆/ne−tV/n)n ψ0

]
(q) =

∫
C0[0,t]

e−(t/n)
∑n

k=1 V(x(kt/n)+q)ψ0(x(t) + q) dmt(x).

We have already seen that our hypotheses concerning V imply that, in L2(R),
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lim
n→∞

(et∆/ne−tV/n)n ψ0 = et(∆−V)ψ0.

Convergence in L2(R) implies that some subsequence converges pointwise almost
everywhere so there is a subsequence {n j}

∞
j=1 of {n}∞n=1 such that, for almost every

q ∈ R,

lim
j→∞

(
(et∆/n j e−tV/n j )n j ψ0

)
(q) =

(
et(∆−V)ψ0

)
(q).

Now, since every x ∈ C0[0, t] is continuous and since we have assumed that V is
continuous,

lim
j→∞

n j∑
j=1

V
(
x( jt/n j) + q

)
(t/n j) =

∫ t

0
V(x(s) + q) ds

because the left-hand side is a limit of Riemann sums for the right-hand side. Con-
sequently,

lim
j→∞

e
− t

n j

∑n j
j=1 V

(
x( jt/n j)+q

)
= e−

∫ t
0 (V(x(s)+q) ds.

Next observe that x(t) + q = evt(x) + q.
Exercise 8.4.29. Use the fact that ψ0 is defined almost everywhere on R and Theo-
rem 8.4.18 to show that ψ0(x(t) + q) is defined for mt-almost every x ∈ C0[0, t].

Thus, for mt-almost every x ∈ C0[0, t] and almost every q ∈ R,

lim
j→∞

e−(t/n j)
∑n j

j=1 V
(

x( jt/n j)+q
)
ψ0(x(t) + q) = e−

∫ t
0 (V(x(s)+q) dsψ0(x(t) + q).

We can therefore complete the proof of (8.52) by showing that we can take the limit

lim
j→∞

∫
C0[0,t]

e−(t/n j)
∑n j

j=1 V
(

x( jt/n j)+q
)
ψ0(x(t) + q) dmt(x)

inside the integral. Since the Wiener integral is an honest Lebesgue integral we are
free to apply the Dominated Convergence Theorem (see, for example,Theorem 1.8
of [LL]). But since V is assumed bounded we can let M be a positive constant for
which |V(u)| ≤ M for every u ∈ R and then∣∣∣ e−(t/n j)

∑n j
j=1 V

(
x( jt/n j)+q

)
ψ0(x(t) + q)

∣∣∣ ≤ e(t/n j)
∑n j

j=1 M
∣∣∣ψ0(x(t) + q)

∣∣∣ = etM
∣∣∣ψ0(x(t) + q)

∣∣∣.
Exercise 8.4.30. Show that∫

C0[0,t]
etM

∣∣∣ψ0(x(t) + q)
∣∣∣ dmt(x) < ∞

and conclude that the Dominated Convergence Theorem gives
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lim
j→∞

∫
C0[0,t]

e−(t/n j)
∑n j

j=1 V
(

x( jt/n j)+q
)
ψ0(x(t) + q) dmt(x) =∫

C0[0,t]
e−

∫ t
0 V(x(s)+q) dsψ0(x(t) + q) dmt(x).

Putting all of this together gives (8.52) and we have a path integral representation
for the evolution operators et(∆−V) for the heat/diffusion equation on L2(R) when the
potential is continuous and bounded; we mention once more that the same result can
be proved with much less restrictive conditions on V and refer those interested to
Theorem 12.1.1 of [JL] and Theorem X.68 of [RS2].

All of this is very nice and has had an enormous impact on a wide range of math-
ematical disciplines (see, for example, [KacM]), but what we were really hoping for
was an analogous result for the quantum mechanical time evolution operators

eit(∆−V)

(to stress the similarity with the diffusion operators we have adopted units in which
~ = 1 and taken t0 = 0 and m = 1

2 in (8.51)). The similarity of the evolution operators
certainly tempts one to believe that it should be possible to modify the construction
of the Wiener measure to accommodate the quantum evolution. Feynman suspected
something of the sort.

Some sort of complex measure is being associated with the space of functions x(t).
Finite results can be obtained under unexpected circumstances because the

measure is not positive everywhere, but the contributions from most of the paths
largely cancel out. These curious mathematical problems are sidestepped by the

subdivision process. However, one feels as Cavalieri must have felt calculating the
volume of a pyramid before the invention of calculus.

-Feynman [Feyn], page 8.

Even one of the greatest mathematicians of the 20th-century succumbed to the temp-
tation.

It is natural that such a complex measure ... will be just as “good” as Wiener
measure. ... A strict proof of this fact does not differ from the corresponding proof

for the case of Wiener measure.

-Gel’fand and Yaglom [GY], page 58.

Cameron [Cam], however, admonishes us that it is sometimes wise to resist temp-
tation. Let’s take a moment to decide what one would want from a “Feynman mea-
sure” and then see what Cameron has to say about it. In Section 8.1 we discussed
Feynman’s interpretation of the 2-slit experiment and how it led to his notion of a
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path integral (this begins on page 350 and then again on page 357 and you may wish
to review it briefly now). The idea was to “weight” each classically possible path for
the particle with an amplitude and “add” these amplitudes with a normalizing factor
over all such paths. As we did for Brownian motion a bit earlier we can consider the
following special case. Let 0 = t0 < t1 < · · · < tn−1 < tn = t be a uniform partition
of [0, t] with ∆t = t/n and consider the cylinder set

I = I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn])
=

{
x ∈ C0[0, t] : x(t j) ∈ (α j, β j], j = 1, . . . , n

}
.

For a Brownian particle starring at q0 = 0 at t0 = 0 the probability that the particle
is in (αk, βk] at time tk for each k = 1, . . . , n is∫ βn

αn

· · ·

∫ β1

α1

(4πD(t/n))−n/2e−
1
D

∑n
k=1

(qk−qk−1)2

4(t/n) dq1 · · · dqn, (8.55)

where q0 = 0. For a free (V = 0) quantum particle, Feynman’s expression for the
amplitude of a particle passing through (αk, βk] at time tk for each k = 1, . . . , n is∫ βn

αn

· · ·

∫ β1

α1

(4πi(t/n))−n/2e i
∑n

k=1
(qk−qk−1)2

4(t/n) dq1 · · · dqn, (8.56)

where we continue to use units in which ~ = 1 and take t0 = 0 and m = 1
2 . For-

mally, at least, (8.56) is just (8.55) with complex “diffusion constant” D = i. The
construction of the Wiener measure begins with (8.55) which is, by definition, the
measure of I = I(t1, . . . , tn; (α1, β1]× · · · × (αn, βn]). This definition is fundamentally
what is behind the ability of the Wiener integral to represent the evolution opera-
tors of the diffusion equation. By the same token, any measure on C0[0, t] that is to
provide a path integral representation for the time evolution of a quantum particle’s
probability amplitude must begin by assigning the “correct” (according to Feynman)
amplitude to I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn]), that is, (8.56); notice that this is
complex. The existence of such a measure is the question addressed by Cameron.
Remark 8.4.51. To state Cameron’s result we should briefly review a few items
concerning complex measures (details are available in Section 6.1 of [Rud2]). Let
A be a σ-algebra on the set X. A complex measure on the measurable space (X,A)
is a complex-valued map ν : A→ C map on A that satisfies

1. ν(∅) = 0
2. If Ak ∈ A for k = 1, 2, . . . with Ak1 ∩ Ak2 = ∅ ∀k1 , k2, then

ν
( ∞⊔

k=1

Ak
)

=

∞∑
k=1

ν(Ak),

where the series is required to converge absolutely.

For example, if µ is an ordinary (positive) measure on (X,A) and ϕ is an element
of L1(X, µ), then ν(A) =

∫
A ϕ dµ defines a complex measure on (X,A). For any
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complex measure ν on (X,A) one defines the map |ν| on A by

|ν| (A) = sup
∑
|ν(Ak)|

where the supremum is taken over all sequences A1, A2, . . . of pairwise disjoint ele-
ments of A with A =

⊔∞
k=1 Ak. One can show (Theorem 6.2 of [Rud2]) that |ν| is a or-

dinary (positive) measure on (X,A); it is called the total variation measure of ν. Fur-
thermore (Theorem 6.4 of [Rud2]), |ν| is a finite measure, that is, |ν| (X) < ∞; |ν| (X)
is called the total variation of ν. This is generally expressed by saying that any com-
plex measure has finite total variation. For example, if ν is given by ν(A) =

∫
A ϕ dµ

for some ϕ ∈ L1(X,A), then the total variation of ν is just the L1-norm of ϕ.
Cameron [Cam] has shown that there is no complex measure on C0[0, t] with the

property that the measure of every cylinder set I(t1, . . . , tn; (α1, β1] × · · · × (αn, βn])
is given by ∫ βn

αn

· · ·

∫ β1

α1

(4πi(t/n))−n/2ei
∑n

k=1
(qk−qk−1)2

4(t/n) dq1 · · · dqn.

The proof amounts to showing that, if such a measure existed, it would have to have
infinite total variation, which is not possible (see the previous Remark). This is not
to say that making rigorous sense of the Feynman integral is hopeless, but only that
the most obvious attempt to do so cannot succeed. Many other, less obvious attempts
have been made over the years and we will have a few words to say about this in the
next section.

8.4.4 Analytic Continuation

The previous section ended on what might be considered a discouraging note. We
had hoped to mimic Wiener’s construction of his (Lebesgue) measure on C0[0, t]
and the path integral representation it gives rise to for the evolution operators of
the diffusion equation in the case of the Schrödinger equation and the quantum time
evolution, thereby exhibiting the Feynman “integral” as an actual integral. Cameron,
however, has disabused us of the notion that the Feynman integral can be regarded
as an integral in the Lebesgue sense. Even so, this is not the end of the story. One
would still like to fit the Feynman integral into some rigorous mathematical context
even if that context cannot be the familiar Lebesgue theory. Now, one can argue
that we already have a perfectly rigorous definition of the Feynman integral. It is
defined as a limit, which may or may not exist, and one can simply set out to prove
various convergence theorems (see, for example, [Fuj1], [Fuj2], and [Fuj3]). The
only obvious issue one might take with this is that, in general, knowing that a limit
exists does not always tell you a great deal about it (is ζ(5) =

∑∞
n=1

1
n5 irrational?).

We intend to look in another direction.
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The search for its appropriate rigorous context has been ongoing essentially since
Feynman introduced his integral. Various approaches have been proposed and one
can obtain a brief overview of some of the most successful of these in [Klau] and
[Mazz1]; much more detailed discussions and comparisons are available in [JL]. We
will simply illustrate the sort of thing that can be done by focusing on just one of
these. The approach we will describe was historically the first and is probably the
most “obvious” thing to try. The motivation could not be simpler. Let’s consider the
free Schrödinger equation

i
∂ψ(q, t)
∂t

= −
~

2m
∂2ψ(q, t)
∂q2 .

Now formally introduce a new variable T , picturesquely referred to as imaginary
time, and defined by

T = it.

One quick application of the chain rule shows that, in terms of the variables (q,T ),
the Schrödinger equation becomes

∂ψ(q,T )
∂T

−
~

2m
∂2ψ(q,T )
∂q2 = 0.

Et voilà, the heat equation with diffusion constant D = ~
2m . On the other hand,

the substitution t = −iT formally turns the heat equation with D = ~
2m into the

Schrödinger equation. This is amusing enough, but since T = it is not a legitimate
change of the (real) variable t, it really contains little usable information beyond a
hint as to how we might want to proceed.

We have learned a fair amount about the heat equation at this point, even path
integral representations for its solutions, and we would like to use the hint provided
by the formal substitution t → −it to build a rigorous bridge from what we know
to what we would like to know. Here is the plan. We begin by fixing a potential
function V : R → R. As we did earlier in our proof of the Feynman-Kac Formula
we would like to illustrate the idea with minimal technical difficulties by assuming
that V is continuous and bounded. This is much more restrictive than necessary and
physically uninteresting, but the idea is the same for the proof of the more general
result that assumes only that V satisfies the conditions specified in Theorem 8.4.8
(see Theorem 13.3.1 of [JL]). We will also return to the system of units in which
~ = 1 and again take m = 1

2 . Given these assumptions we conclude from Theorem
8.4.4 that H = H0 + V = −∆ + V is self-adjoint on D(∆). Moreover, since we
have assumed that V is continuous and since every x ∈ C0[0, t] is continuous by
definition, the expression

e−
∫ t

0 V(x(s)+q) ds
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if defined for every x in C0[0, t] and every q ∈ R. Now, the idea is to consider the
right-hand side of the Feynman-Kac Formula (8.52), for which we will introduce
the new symbol

(JV (t)ψ)(q) =

∫
C0[0,t]

e−
∫ t

0 V(x(s)+q) dsψ(x(t) + q) dmt(x), (8.57)

where ψ is an arbitrary element of L2(R). For each t > 0 and almost every q ∈
R we have, by the Feynman-Kac Formula, (JV (t)ψ)(q) = (et(∆−V)ψ)(q), or, more
simply, JV (t) = et(∆−V). Our “hint” above suggests that we try to extend JV (t) as an
operator-valued function of t to the case in which t is pure imaginary. Needless to
say, just making the formal substitution suggested above in the Wiener integral is
meaningless, but we will now see how to do this extension rigorously.
Remark 8.4.52. We would like to perform an analytic continuation much in the spirit
of classical complex analysis (Chapter 16 of [Roy]) except that the mapping we will
want to continue analytically takes values in the Banach space B(L2(R)) of bounded
linear operators on L2(R). We must therefore define what we mean by analyticity
in this context. There are three natural choices for such a definition depending on
the topology one chooses for B(L2(R)), but, as it happens, these all give rise to the
same notion of analyticity (Sections 3.10-3.14 of [HP] contain the generalization
of classical complex analysis to vector- and operator-valued functions). We will
formulate the definition in the following way. Let D be a domain (connected, open
set) in the complex plane C and suppose f is a mapping from D to B(L2(R)). Then
f is said to be analytic on D if z ∈ D→ 〈ψ, f (z)ψ〉 is an ordinary C-valued analytic
map on D for every ψ ∈ L2(R).

The first step is to show that, because we have assumed that V is bounded, each
exponential et(∆−V), t > 0, is a bounded operator on L2(R); once this is done we
can regard t → JV (t) = et(∆−V) as a map from (0,∞) to B(L2(R)) and we can try to
analytically continue it to a map from C+ = {z ∈ C : Re(z) > 0} to B(L2(R)). For
this analytic continuation we will actually need, and will now prove, a bit more.

Recall (Remark 5.4.6) that −∆ is a positive, self-adjoint operator so 〈ψ,−∆ψ〉 ≥ 0
for all ψ ∈ D(∆). Furthermore, since V is real-valued and bounded, 〈ψ,Vψ〉 ≥
m ‖ψ‖2, where m = infq∈R V(q). Consequently,

〈ψ, (−∆ + V)ψ〉 ≥ m ‖ψ‖2.

A symmetric operator A : D(A) → H on a Hilbert space H is said to be semi-
bounded, or bounded from below if, for some m ∈ R, 〈ψ, Aψ〉 ≥ m ‖ψ‖2 for all
ψ ∈ D(A); equivalently, 〈ψ, (m − A)ψ〉 ≤ 0 ∀ψ ∈ D(A).

Lemma 8.4.25. Let A : D(A) → H be a self-adjoint, semi-bounded operator on
the Hilbert space H with 〈ψ, Aψ〉 ≥ m ‖ψ‖2 ∀ψ ∈ D(A). Then the spectrum σ(A) of
A is contained in [m,∞)

Proof. Since A is self-adjoint, σ(A) ⊆ R. We will show that an x < m cannot be in
the spectrum of A. Let ε = m − x. Then ε > 0 and, for any ψ ∈ D(A),
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‖(x − A)ψ‖2 = 〈(m − A)ψ − εψ, (m − A)ψ − εψ〉

= ε2‖ψ‖2 + ‖(m − A)ψ‖2 − ε〈ψ, (m − A)ψ〉 − ε〈(m − A)ψ, ψ〉

≥ ε2‖ψ‖2

since the last two terms are greater than or equal to zero. From this it follows that
x − A is injective and, for any ϕ in the image of x − A,

‖(x − A)−1ϕ‖ ≤
1
ε2 ‖ϕ‖

so (x − A)−1 is bounded. Thus, x is in neither the point spectrum nor the continu-
ous spectrum of A. Since A is self-adjoint, its residual spectrum is empty and we
conclude that x < σ(A) and so σ(A) ⊆ [m,∞). ut

Applying this to −∆ + V we find that σ(−∆ + V) ⊆ [m,∞), where m = infq∈R V(q).

Exercise 8.4.31. Show that this implies that, for each fixed z ∈ C+ = {z ∈ C :
Re(z) ≥ 0}, the function fz : σ(−∆ + V)→ C defined by fz(u) = e−zu is bounded.
It therefore follows from the Functional Calculus (Theorem 5.5.8, Part (2)) that the
operator

e−z(−∆+V) = ez(∆−V)

is bounded for every z ∈ C+. In particular, t → JV (t) = et(∆−V) is a map from (0,∞)
to B(L2(R)). Now, if we can analytically extend this map to pure imaginary values
of t, then, by the Feynman-Kac Formula, we have extended the Wiener integral on
the right-hand side of (8.52). If this does what the Feynman integral is supposed to
do (and we will see that it does), then we can regard this extension as a rigorous
definition of the Feynman integral.

An analytic continuation is always easier to find if you know in your heart what
the extension should be in advance and, in this case, we certainly have a reasonable
candidate for the extension of et(∆−V) to C+, namely, ez(∆−V) for z ∈ C+. We will show
that z ∈ C+ → ez(∆−V) ∈ B(L2(R)) is analytic, but we will also need a continuity
condition on the imaginary axis since it is eit(∆−V) that we are really after. We will
show that the map z→ ez(∆−V) is

1. strongly continuous on C+, and
2. analytic on C+.

The strong continuity is a simple consequence of the Functional Calculus (specif-
ically, Theorem 5.5.8, Part (5)). To see this, let {zn}

∞
n=1 be a sequence in C+ con-

verging to z in C+. Then { fzn (u)}∞n=1 = {e−znu}∞n=1 converges to e−zu for each u in
σ(∆ − V).
Exercise 8.4.32. Show that the sequence { ‖e−znu‖∞ }

∞
n=1 is bounded, where ‖e−znu‖∞ =

sup { | e−znu | : u ∈ σ(∆ − V) }.
By Theorem 5.5.8 (5), ezn(∆−V) converges strongly to ez(∆−V) so z→ ez(∆−V) is strongly
continuous on C+.
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Next we show that z → ez(∆−V) is analytic on C+. According to Remark 8.4.52
we must show that, for each fixed ψ in L2(R),

z ∈ C+ → 〈ψ, ez(∆−V)ψ〉 ∈ C

is an analytic complex-valued function of a complex variable. It will suffice to prove
this when ‖ψ‖ = 1. Now, since −∆+V is self-adjoint on D(∆), it has, by the Spectral
Theorem 5.5.6, an associated projection-valued measure E on R and, from this,
a corresponding resolution of the identity {Eλ}λ∈R. E and ψ together determine a
probability measure 〈ψ, Eψ〉 (Remark 5.5.8) which, by (5.50), is concentrated on
the spectrum σ(−∆ + V). Moreover, by the Functional Calculus (Theorem 5.5.8),

〈ψ, e−z(−∆+V)ψ〉 =

∫
R

e−zλd〈ψ, Eλψ〉 =

∫ ∞

m
e−zλd〈ψ, Eλψ〉

since σ(−∆ + V) ⊆ [m,∞), where m = infq∈R V(q). Since we have already shown
that z→ ez(∆−V) is strongly continuous,

z→ 〈ψ, ez(∆−V)ψ〉 (8.58)

is a continuous complex-valued function of complex variable. Now, to prove ana-
lyticity we will apply Morera’s Theorem which we now recall in the form stated in
Theorem 10.17 of [Rud2].

Theorem 8.4.26. (Morera’s Theorem) Let D be a domain in the complex plane C

and f : D→ C a continuous function. If∫
∂Γ

f (z)dz = 0

for every closed triangle Γ in D, then f is analytic on D (∂Γ is the simple closed
contour that is the boundary of Γ).

Thus, we need to show that, for any closed triangle Γ in C+, the integral∫
∂Γ

〈ψ, e−z(−∆+V)ψ〉 dz =

∫
∂Γ

[ ∫ ∞

m
e−zλd〈ψ, Eλψ〉

]
dz (8.59)

is zero. Notice that, if we could justify interchanging the order of integration, then,
since the Cauchy Integral Theorem gives∫

∂Γ

e−zλdz = 0

for each λ, the result would follow. For this we need to verify the applicability of
Fubini’s Theorem.
Remark 8.4.53. To be clear we will record the form of Fubini’s Theorem that we
need. The following is Theorem 8.8 (c) of [Rud2].
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Theorem 8.4.27. (Fubini’s Theorem) Let (X,AX , µX) and (Y,AY , µY ) be σ-finite
measure spaces and let f : X × Y → C be a complex-valued L1-function on the
product measure space (X × Y,AX×Y , µX × µY ). Let fx : Y → C and f y : X → C be
given by fx(y) = f (x, y) and f y(x) = f (x, y). Then fx ∈ L1(Y, µY ) for µX-almost all
x ∈ X and f y ∈ L1(X, µX) for µY -almost all y ∈ Y. Define,

ϕ(x) =

∫
Y

fx(y) dµY (y)

for µX-almost all x ∈ X, and

ψ(y) =

∫
X

f y(x) dµX(x)

for µY -almost all y ∈ Y. Then ϕ ∈ L1(X, µX), ψ ∈ L1(Y, µY ), and∫
X
ϕ(x) dµX(x) =

∫
X×Y

f (x, y) d(µX × µY )(x, y) =

∫
Y
ψ(y) dµY (y).

In particular,∫
X

[ ∫
Y

fx(y) dµY (y)
]

dµX(x) =

∫
Y

[ ∫
X

f y(x) dµX(x)
]

dµY (y).

The most obvious difficulty we have in applying Fubini’s Theorem to (8.59) is
that we do not (yet) have two measure spaces. The inner integral is fine, being an
integral over [m,∞) with respect to a probability measure on R. The outer integral,
however, is a contour integral in the complex plane so we will need to see if this can
be regarded as a Lebesgue integral. This is indeed possible, but to do so will require
another brief digression.
Remark 8.4.54. In connection with the Spectral Theorem we reviewed some basic
information about the Riemann-Stieltjes integral (see Remark 5.5.6) and we men-
tioned that there is a generalization of this in the Lebesgue theory. We will briefly
describe the ideas we require in order to deal with (8.59) and refer to Section 1.5 of
[Fol2], or Chapter III of [Saks] for more details. The terminology and notation from
measure theory that we adopt has been reviewed in Remark 8.4.33.

The following is a brief synopsis of the Lebesgue-Stieltjes integral. If the material
is familiar you may wish to proceed directly to page 449 and refer back if the need
arises.

What we would like to do first is describe all of the regular Borel measures on R.
Note that, with obvious modifications, the procedure we will describe works equally
well for any interval in R. We begin with the collection of all subsets of R of the
form (a, b], (a,∞), or ∅, where −∞ ≤ a < b < ∞. The collection of all finite disjoint
unions of such sets forms an algebra A and the σ-algebra generated by A coincides
with the Borel σ-algebra B(R) of R. Now fix some function α : R → R that is
nondecreasing and right-continuous (limτ→τ+

0
α(τ) = α(τ0) for each τ0 ∈ R).
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Example 8.4.10. If we happen to start with a finite Borel measure µ on R, then its
distribution function α(τ) = µ(−∞, τ] is nondecreasing and right-continuous. We
are basically going to reverse this process.

Now define µα by µα(∅) = 0, and

µα

( n⊔
k=1

(ak, bk]
)

=

n∑
k=1

(
α(bk) − α(ak)

)
for any finite family of pairwise disjoint intervals (ak, bk], k = 1, . . . , n. Then µα is a
pre-measure on A (Proposition 1.15 of [Fol2]). As we saw in Remark 8.4.33, µα then
determines an outer measure µ∗α on the power set P(R) of R. The µ∗α-measurable sets
form a σ-algebra σ(µ∗α) on R containing the σ-algebra B(R) generated by A and the
restriction of µ∗α to σ(µ∗α) is a complete measure which, as usual, we will also denote
simply µα. This measure is called the Lebesgue-Stieltjes measure on R determined
by α; it is, in fact, a regular measure on R (Theorem 1.18 of [Fol2]). If α(τ) = τ,
then this is just the ordinary Lebesgue measure on R. We should point out that it is
also common to refer to the regular Borel measure µα|B(R) as the Lebesgue-Stieltjes
measure and to denote it µα as well. The following combines Theorems 1.16 and
1.18 of [Fol2].

Theorem 8.4.28. Let α : R → R be any nondecreasing, right-continuous function
on R. Then there exists a unique regular Borel measure µα on R such that µα(a, b] =

α(b) − α(a) for all a < b in R. If β is another nondecreasing, right-continuous
function, then µα = µβ if and only if α− β is a constant. Conversely, if µ is a regular
Borel measure on R and if

α(τ) =


µ(0, τ], if τ > 0
0, if τ = 0
−µ(−τ, 0], if τ < 0,

then α is nondecreasing and right-continuous and µ = µα.

If we write limτ→a− α(τ) as α(a−) and limτ→b− α(τ) as α(b−), then one can check
each of the following (this is Exercise 28 in [Fol2]).

1. µα({a}) = α(a) − α(a−)
2. µα[a, b) = α(b−) − α(a−)
3. µα[a, b] = α(b) − α(a−)
4. µα(a, b) = α(b−) − α(a)

The integral associated with the Lebesgue-Stieltjes measure µα is, naturally
enough, called the Lebesgue-Stieltjes integral. If E is a µα-measurable set and f
is a µα-integrable real-valued function on R, then the integral is generally denoted∫

E f dµα,
∫

E f (τ) dµα(τ), or, more commonly,
∫

E f dα, or
∫

E f (τ) dα(τ); if E is an

interval one generally opts for
∫ b

a rather than
∫

E .
The Lebesgue-Stieltjes integral can be defined for functions α that are of bounded

variation and right-continuous by using the fact that any such α can be written as the
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difference α = v1 − v2 of two functions that are nondecreasing (in fact, increasing)
and right-continuous (see Section 3.5 of [Fol2] or Section 4 of [RiSz.N]) and then
defining ∫

E
f (τ) dα(τ) =

∫
E

f (τ) dv1(τ) −
∫

E
f (τ) dv2(τ).

Remark 8.4.55. One can choose v1 and v2 in the following way. Define v1(a) = 0
and, for a < τ ≤ b, let v1(τ) be the total variation of α on (a, τ]. Then v1 is increasing,
as is v2 = α − v1. It can then be shown that α is right-continuous at τ in [a, b] if and
only if v1 is right-continuous at τ.

For particularly nice functions there are simple computational formulas for
Lesbesgue-Stieltjes integrals. For example, if f is a bounded Borel function on [a, b]
and α is absolutely continuous (Remark 5.2.2), then∫ b

a
f (τ) dα(τ) =

∫ b

a
f (τ)α′(τ) dτ,

where the right-hand side is an ordinary Lebesgue integral. In particular, since a
continuously differentiable function on [a, b] is absolutely continuous, this is true
when f ∈ C0[a, b] and α ∈ C1[a, b]; in this case the Lebesgue-Stieltjes integral
agrees with the Riemann-Stieltjes integral.

As we did for the Riemann-Stieltjes integral, we now define the Lebesgue-
Stieltjes integral when α and f are complex-valued. If α = α1 + iα2 and f = f1 + i f2,
where the first is of bounded variation and the second is a bounded Borel function,
then we set

∫ b

a
f (τ)dα(τ) =

( ∫ b

a
f1(τ)dα1(τ) −

∫ b

a
f2(τ)dα2(τ)

)
+

i
( ∫ b

a
f2(τ)dα1(τ) +

∫ b

a
f1(τ)dα2(τ)

)
.

With this we can describe the example for which all of this was intended to prepare
us. We consider a curve γ : [a, b]→ C in the complex plane, which we will assume
is in C1[a, b], and a continuous, complex-valued function F defined on some open
set U ⊆ C containing the image γ[a, b] of γ. Then F ◦ γ : [a, b] → C is continuous
and the Lebesgue-Stieltjes integral of F ◦ γ with respect to γ is∫ b

a
(F ◦ γ) dγ =

∫ b

a
F(γ(τ)) γ′(τ) dτ,

where the multiplication in the integrand on the right-hand side now means complex
multiplication. This is, of course, just what is ordinarily called the contour integral
of F along γ and denoted
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γ

F(z) dz.

One handles piecewise C1-curves in the usual way by integrating over each piece
and adding. That is, if γk : [ak, bk] → C is a C1-curve for each k = 1, . . . , n with
a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = b and γk(bk) = γk+1(ak+1)
for k = 1, . . . , n − 1 and if

∑n
k=1 γk : [a, b] → C is the curve that agrees with γk on

[ak, bk] for each k = 1, . . . , n, then∫
∑n

k=1 γk

F(z) dz =

n∑
k=1

∫
γk

F(z) dz =

n∑
k=1

∫ bk

ak

(F ◦ γk) dγk.

The point we want to take out of all of this is the following. A contour integral in
the complex plane over a piecewise C1-curve can be written as a sum of Lebesgue-
Stieltjes integrals.

This is the end of the digression on the Lebesgue-Stieltjes integral.

Now let’s return to (8.59), where we noted that our proof of analyticity would be
complete if we could justify reversing the order of integration in∫

∂Γ

[ ∫ ∞

m
e−zλd〈ψ, Eλψ〉

]
dz. (8.60)

We now know that the contour integral over ∂Γ can be written as a sum of Lebesgue-
Stieltjes integrals so (8.60) is a sum of iterated integrals, the first integration being
with respect to the probability measure d〈ψ, Eλψ〉 and the second being with respect
to some Lebesgue-Stieltjes measure dα which is a finite measure on each edge of
the triangle. It will therefore suffice to justify the application of Fubini’s Theorem
to each of these integrals. For each of these Fubini’s Theorem requires that the
integrand be an L1 function with respect to the product measure. Now, we have
already seen that, for each fixed z in C+, e−zλ is bounded on [m,∞). Moreover, since
the triangle Γ is bounded away from C− = {z ∈ C : Re(z) < 0}, e−zλ is also bounded
on ∂Γ for each fixed λ. Since a bounded, continuous function on a finite measure
space is integrable, e−zλ is integrable on each product measure space and the result
follows. This completes the proof that z→ 〈ψ, ez(∆−V)ψ〉 is analytic on C+.

We now have an extension of the operator-valued function JV (t), defined on t >
0 by (8.57), to C+ that is strongly continuous on C+ and analytic on C+. Since
analytic functions on C+ are uniquely determined by their values on (0,∞) and
since continuity then uniquely determines the extension to C+, this extension is the
only one with these properties. Furthermore, the extension is given explicitly by
JV (z) = e−z(−∆+V) for z ∈ C+. In particular, for z = it, t ≥ 0, we have

JV (it) = e−it(−∆+V) = eit(∆−V)
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and this, according to our Postulate QM4 (page 237), is the unitary time evolution
operator for a quantum system with Hamiltonian H = −∆ + V (in units for which
~ = 1 and with m = 1

2 ) so, for any initial state ψ, JV (t)ψ is a solution to the initial
value problem for the corresponding abstract Schrödinger equation (6.8). This is, of
course, the same result we obtained from the Trotter Product Formula which gave
rise to the Feynman integral in the first place. Since JV (it) is the analytic continu-
ation of the Wiener integral in (8.57) to the imaginary axis and since it describes
the time evolution of a quantum state, we shall to refer to it as the analytic-in-time
operator-valued Feynman integral.
Remark 8.4.56. We should mention once again that in this section we have made
extremely restrictive assumptions about the potential V in order to lay bare the un-
derlying ideas, but that the result we have arrived at can be proved under much
milder hypotheses (see Theorem 13.3.1 of [JL]).

We will conclude this section by noting that analytic continuation in time is not
the only approach one might have taken here to build a rigorous bridge between the
heat equation and the Schrödinger equation. In his rather remarkable paper [Nel3],
Edward Nelson analytically continued in the mass parameter and was able to obtain
results similar to those we have described here, but for a quite different family of
potentials that included some that are highly singular and much closer to the needs
of the physicists. For this one should consult [Nel3] directly, but it is also discussed
in some detail in Section 13.5 of [JL].



Chapter 9
Fermionic and Supersymmetric Harmonic
Oscillators

9.1 The Stern-Gerlach Experiment and Spin One-Half

Long ago (Remark 4.4.4) we conceded that our initial foray into the quantum me-
chanics of particles such as the electron was incomplete in that we consciously sup-
pressed a critical aspect of their behavior known as spin. The time has come now
to do what we can to remedy this. In truth, we cannot do all that we would like to
do because spin is a concept that cannot really be understood outside the context of
relativistic quantum mechanics (specifically, the Dirac equation).
Remark 9.1.1. In the interest of fairness we should point out that not everyone
agrees with the statement we just made (see, for example, [L-L]).
Nevertheless we will try to provide some sense of what this phenomenon is and
how the physicists have incorporated it into their mathematical model of the quan-
tum world. In this section we will first briefly describe the famous Stern-Gerlach
experiment in which this very strange behavior was first observed.
Remark 9.1.2. The experiment (first performed in 1922) was not originally designed
to observe spin. Indeed, the notion of spin was not introduced until 1925 (by Uhlen-
beck and Goudsmit). While the historical development of these ideas makes for an
interesting story, it is a bit convoluted and, we feel, could only distract us from our
purpose here and so we will not discuss it (if you are interested in this sort of thing
you might consult Section IV.3 of [MR]).

We should be clear at the outset. There is nothing like quantum mechanical spin
in classical physics. This behavior is new, bizarre and wholly quantum mechani-
cal. There is, however, a classical analogy. The analogy is inadequate and can be
misleading if taken too seriously, but it is the best we can do so we will begin by
describing it.

Imagine a spherical mass m of radius a moving through space on a circular or-
bit of radius R � a about some point O and, at the same time, spinning around
an axis through one of its diameters (to a reasonable approximation, the Earth
does all of this). Due to its orbital motion, the mass has an angular momentum

451
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L = r × (mv) = r × p (see (2.20)) which we will now call its orbital angular mo-
mentum.. The spinning of the mass around its axis contributes additional angular
momentum that one calculates by subdividing the spherical region occupied by the
mass into subregions, regarding each subregion as a mass in a circular orbit about
a point on the axis, approximating its angular momentum, adding all of these and
taking the limit as the regions shrink to points. The resulting integral gives the an-
gular momentum due to rotation. This is called the rotational angular momentum,
is denoted S, and is given by

S = Iω,

where I is the moment of inertia of the sphere and ω is the angular velocity (ω is
along the axis of rotation in the direction determined by the right-hand rule from
the direction of the rotation). If the mass is assumed to be uniformly distributed
throughout the sphere (in other words, if the sphere has constant density), then an
exercise in calculus gives

S =
2
5

ma2ω.

The total angular momentum of the sphere is L + S.
Now let’s suppose, in addition, that the sphere is charged. Due to its orbital

motion the charged sphere behaves like a current loop. As we saw in Section 4.2,
Maxwell’s equations imply that moving charges give rise to magnetic fields. If we
assume that our current loop is very small (or, equivalently, that we are viewing it
from a distance) the corresponding magnetic field is that of a magnetic dipole (see
Sections 14-5 and 34-2, Volume II, of [FLS]). All we need to know about this is that
this magnetic dipole is described by a vector µL called its orbital magnetic moment
that is proportional to the orbital angular momentum. Specifically,

µL =
q

2m
L,

where q is the charge of the sphere (which can be positive or negative). Similarly,
the rotational angular momentum of the charge gives rise to a magnetic field that is
also that of a magnetic dipole and is described by a rotational magnetic moment µS
given by

µS =
q

2m
S. (9.1)

The total magnetic moment µ is

µ = µL + µS =
q

2m
(L + S).

The significance of the magnetic moment µ of the dipole is that it describes the
strength and direction of the dipole field and determines the torque
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τ = µ × B

experienced by the magnetic dipole when placed in an external magnetic field B. If
the magnetic field B is uniform (that is, constant), then its only effect on the dipole
is to force µ to precess around a cone whose axis is along B in the same way that
the axis of a spinning top precesses around the direction of the Earth’s gravitational
field (see Figure 9.1 and Section 2, Chapter 11, of [Eis]). Notice that this precession
does not change the projection µ · B of µ along B.

Fig. 9.1 Precession

If the B-field is not uniform, however, there will be an additional translational force
acting on the mass which, if m is moving through the field, will push it off course.
Precisely what this deflection will be depends, of course, on the nature of B and we
will say a bit more about this in a moment.

Now we can begin our discussion of the Stern-Gerlach experiment (a schematic
is shown in Figure 9.2). We are interested in whether or not the electron has a ro-
tational magnetic moment and, if so, whether or not its behavior is adequately de-
scribed by classical physics. What we will do is send a certain beam of electrically
neutral atoms through a non-uniform magnetic field B and then let them hit a photo-
graphic plate to record how their paths were deflected by the field. The atoms must
be electrically neutral so that the deflections due to the charge (of which we are al-
ready aware) do not mask any deflections due to magnetic moments of the atoms.
In particular, we can’t do this with free electrons. The atoms must also have the
property that any magnetic moment they might have could be due only to a single
electron somewhere within it. Stern and Gerlach chose atoms of silver (Ag) which
they obtained by evaporating the metal in a furnace and focusing the resulting gas
of Ag atoms into a beam aimed at a magnetic field.
Remark 9.1.3. Silver is a good choice, but for reasons that are not so apparent. A
proper explanation requires some hindsight (not all of the information was avail-
able to Stern and Gerlach) as well as some quantum mechanical properties of atoms
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Fig. 9.2 Stern-Gerlach Experiment

that we have not discussed here. Nevertheless, it is worth saying at least once since
otherwise one is left with all sorts unanswered questions about the validity of the
experiment. So, here it is. The stable isotopes of Ag have 47 electrons, 47 protons
and either 60 or 62 neutrons so, in particular, they are electrically neutral. Since the
magnetic moment is inversely proportional to the mass and since the mass of the
proton and neutron are each approximately 2000 times the mass of the electron, one
can assume that any magnetic moments of the nucleons will have a negligible effect
on the magnetic moment of the atom and can therefore be ignored. Of the 47 elec-
trons, 46 are contained in contained in closed, inner shells (energy levels) and these,
it turns out, can be represented as a spherically symmetric cloud with no orbital or
rotational angular momentum (this is not at all obvious). The remaining electron is
in what is termed the outer 5s-shell and an electron in an s-state has no orbital angu-
lar momentum (again, not obvious). Granting all of this, the only possible source of
any magnetic moment for a Ag atom is a rotational angular momentum of its outer
5s-electron. Whatever happens in the experiment is attributable to the electron and
the rest of the silver atom is just a package designed to ensure this.

We will first see what the classical picture of an electron with a rotational mag-
netic moment would lead us to expect in the Stern-Gerlach experiment and will then
describe the results that Stern and Gerlach actually obtained (a more thorough, but
quite readable account of the physics is available Chapter 11 of [Eis]). For this we
will need to be more specific about the magnetic field B that we intend to send the
Ag atoms through. Let’s introduce a coordinate system in Figure 9.2 in such a way
that the Ag atoms move in the direction of the y-axis and the vertical axis of symme-
try of the magnet is along the z-axis so that the x-axis is perpendicular to the paper.
The magnet itself can be designed to produce a field that is non-uniform, but does
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not vary with y, is predominantly in the z-direction, and is symmetric with respect to
the yz-plane. The interaction between the neutral Ag atom (with magnetic moment
µ) and the non-uniform magnetic field B provides the atom with a potential energy
−µ · B so that the atom experiences a force

F = ∇(µ · B) = ∇( µxBx + µyBy + µzBz ). (9.2)

For the sort of magnetic field we have just described, By = 0 and Bz dominates Bx.
From this one finds that the translational motion is governed primarily by

Fz ≈ µz
∂Bz

∂z
(9.3)

(see pages 333-334 of [Eis]). The conclusion we draw from this is that the displace-
ments from the intended path of the silver atoms will be in the z-direction (up and
down in Figure 9.2) and the forces causing these displacements are proportional to
the z-component of the magnetic moment. Of course, different orientations of the
magnetic moment µ among the various Ag atoms will lead to different values of µz

and therefore to different displacements. Moreover, due to the random thermal ef-
fects of the furnace, one would expect that the silver atoms exit with their magnetic
moments µ randomly oriented in space so that their z-components could take on
any value in the interval [−|µ|, |µ| ]. As a result, the expectation based on classical
physics would be that the deflected Ag atoms will impact the photographic plate at
points that cover an entire vertical line segment (see the segment labeled “Classical
prediction” in Figure 9.2).
Remark 9.1.4. Writing q = −e for the charge of the electron and m = me for its
mass we find that

Fz ≈ µz
∂Bz

∂z
= −

e
2me

S z
∂Bz

∂z

so that the deflection of an individual Ag atom is a measure of the component S z of
S in the direction of the magnetic field gradient.

This, however, is not at all what Stern and Gerlach observed. What they found
was that the silver atoms arrived at the screen at only two points, one above and
one the same distance below the y-axis (again, see Figure 9.2). The experiment was
repeated with different orientations of the magnet (that is, different choices for the
z-axis) and different atoms and nothing changed. We seem to be dealing with a very
peculiar sort of “vector” S. The classical picture would have us believe that, how-
ever it is oriented in space, its projection onto any axis is always one of two things.
Needless to say, ordinary vectors in R3 do not behave this way. What we are really
being told is that the classical picture is simply wrong. The property of electrons that
manifests itself in the Stern-Gerlach experiment is in some ways analogous to what
one would expect classically of a small charged sphere rotating about some axis,
but the analogy can only be taken so far. It is, for example, not possible to make an
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electron “spin faster (or slower)” to alter the length of its projection onto an axis.
This is always the same; it is a characteristic feature of the electron. What we are
dealing with is an intrinsic property of the electron that does not depend on its mo-
tion (or anything else); for this reason it is often referred to as the intrinsic angular
momentum of the electron, but, unlike its classical counterpart, it is quantized.
Remark 9.1.5. Not only the electron, but every particle (elementary particle, atom,
molecule, etc.) in quantum mechanics is supplied with some sort of intrinsic angular
momentum. Although we will make no serious use of this we will need some of
the terminology so we will briefly describe the general situation here (for more
details see, for example, Chapter 11 of [Eis], or Chapters 14 and 17 of [Bohm]).
The basic idea is that these particles exhibit behaviors that mimic what one would
expect of angular momentum, but that cannot be accounted for by any orbital motion
of the particle. To quantify these behaviors every particle is assigned a spin quantum
number s. The allowed values of s are

0,
1
2
, 1,

3
2
, 2,

5
2
, . . . ,

n − 1
2

, . . . , (9.4)

where n = 1, 2, 3, 4, 5, . . .. Intuitively, one might think of n as the number of dots that
appear on the photographic plate if a beam of such particles is sent through a Stern-
Gerlach apparatus. According to this scheme an electron has spin 1

2 (n = 2). Particles
with half-integer spin 1

2 ,
3
2 ,

5
2 , . . . are called fermions, while those with integer spin

0, 1, 2, . . . are called bosons. We will eventually see that fermions and bosons have
very different properties and play very different roles in particle physics. Among
the fermions, particles of spin 1

2 are by far the principal players. Indeed, one must
look long and hard to find a fermion of higher spin. The best know examples are
the so-called ∆ baryons which have spin 3

2 , but you dare not blink if you’re looking
for one of these since their mean lifetime is about 5.63× 10−24 seconds. Among the
bosons, the photon has spin 1 and the very recently observed Higgs boson has spin
0, whereas the conjectured, but not yet observed graviton has spin 2.

We have seen that the classical vector S used to describe the rotational angular
momentum does not travel well into the quantum domain where it simply does not
behave the way one expects a vector to behave. Nevertheless, it is still convenient
to collect together the quantities S x, S y and S z, measured, for example, by a Stern-
Gerlach apparatus aligned along the x-, y- and z-axes, and refer to the triple

S = (S x, S y, S z)

as the spin vector. Quantum theory decrees that, for a particle with spin quantum
number s, the only allowed values for the “components” S x, S y and S z are

−s~, −(s − 1)~, . . . , (s − 1)~, s~.

In particular, for a spin 1
2 particle such as the electron there are only two possible

values so, for example,
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S z = ±
~

2

and these correspond to the two dots in our Stern-Gerlach experiment. As in the
classical case one can associate a spin magnetic moment µS to each spin vector S,
but the classical definition requires an adjustment. For the electron this is given by

µS = ge

(
−e

2me

)
S, (9.5)

where −e is the charge of the electron, me is the mass of the electron, and ge is a
dimensionless constant called the electron spin g-factor. As it happens, ge is the
most accurately measured constant in physics with a value of approximately

ge ≈ 2.00231930419922 ± (1.5 × 10−12)

(see [OHUG] for more on the measurement of ge). The Dirac equation predicts a
value of ge = 2 and the corrections are accounted for by quantum electrodynamics.
This is one of the reasons that physicists have such confidence in quantum elec-
trodynamics, and quantum field theory in general, despite the fact that they do not
have the sort of rigorous mathematical foundations that mathematicians would like
to see.

With this synopsis of the general situation behind us we will return the particular
case of spin 1

2 and, still more particularly, to the electron. We know that the clas-
sical picture of the electron as a tiny spinning ball cannot describe what is actually
observed so we must look for another picture that can do this.
Remark 9.1.6. We pointed out at the beginning of this section that the correct picture
is to be found in relativistic quantum mechanics and the Dirac equation. What we
will describe now is non-relativistic precursor of Dirac’s theory due to Wolfgang
Pauli [Pauli1].

Whatever this picture is it must be a quantum mechanical one so we are looking
for a Hilbert space H and some self-adjoint operators on it to represent the observ-
ables S x, S y and S z. Previously we represented the state of the electron by a wave
function ψ(x, y, z) that is in L2(R3), but we now know that the state of a spin 1

2 par-
ticle must depend on more that just x, y, and z since these alone cannot tell us which
of the two paths an electron is likely to follow in a Stern-Gerlach apparatus; we say
“likely to” because we can no longer hope to know more than probabilities. What
we would like to do is isolate some appropriate notion of the “spin state” of the
particle that will provide us with the information we need to describe these proba-
bilities. Now, we know that the only possible values of S z are ± ~2 . By analogy with
the classical situation one might view this as saying that the spin vector S can only
be either “up” or “down”, but nothing in-between. This suggests that we consider
wave functions

ψ(x, y, z, σ) (9.6)
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that depend on x, y, z, and an additional discrete variable σ that can take only two
values, say, σ = 1 and σ = 2 (or, if you prefer, σ = up and σ = down). Then
|ψ(x, y, z, 1) |2 would represent the probability density for locating the electron at
(x, y, z) with S z = ~

2 and similarly |ψ(x, y, z, 2) |2 is the probability density for locat-
ing the electron at (x, y, z) with S z = − ~2 . Stated this way it sounds a little strange,
but notice that this is precisely the same as describing the state of the electron with
two functions ψ1(x, y, z) = ψ(x, y, z, 1) and ψ2(x, y, z) = ψ(x, y, z, 2) and this is what
we will do. Specifically, we will identify the wave function of a spin 1

2 particle with
a (column) vector (

ψ1(x, y, z)
ψ2(x, y, z)

)
,

where ψ1 and ψ2 are in L2(R3) and∫
R3

( |ψ1(x, y, z) |2 + |ψ2(x, y, z) |2 ) dµ = 1

because the probability of finding the electron somewhere with either S z = ~
2 or

S z = − ~2 is 1. The Hilbert space is therefore H = L2(R3) ⊕ L2(R3).
Now we must isolate self-adjoint operators on H to represent the observables

S x, S y and S z. Since these observables represent an intrinsic property of a spin 1
2

particle, independent of x, y and z, we will want the operators to act only on the
spin coordinates 1 and 2 and the action should be constant in (x, y, z). Thus, we are
simply looking for 2×2 complex, self-adjoint (that is, Hermitian) matrices. Since the
only possible observed values are ± ~2 , these must be the eigenvalues of each matrix.
There are, of course, many such matrices floating around and we must choose three
of them. The motivation for our choice is based on the following exercise and the
fact that S x, S y and S z correspond to measurements made along the directions of an
oriented, orthonormal basis for R3.
Exercise 9.1.1. Denote by R3 the set of all 2 × 2 complex, Hermitian matrices with
trace zero.

1. Show that every X ∈ R3 can be uniquely written as

X =

(
x3 x1 − ix2

x1 + ix2 −x3

)
= x1σ1 + x2σ2 + x3σ3,

where x1, x2 and x3 are real numbers and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the so-called Pauli spin matrices.

2. Show that, with the operations of matrix addition and (real) scalar multiplication,
R3 is a 3-dimensional, real vector space and

{
σ1, σ2, σ3

}
is a basis. Consequently,

R3 is linearly isomorphic to R3. Furthermore, defining an orientation on R3 by
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decreeing that
{
σ1, σ2, σ3

}
is an oriented basis, the map X → (x1, x2, x3) is an

orientation preserving isomorphism when R3 is given its usual orientation.
3. Show that

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2, σ1σ2σ3 = iI,

where I is the 2 × 2 identity matrix.
4. Show that σ1, σ2, σ3 satisfy the following commutation relations.

[σ1, σ2]− = 2iσ3, [σ2, σ3]− = 2iσ1, [σ3, σ1]− = 2iσ2. (9.7)

5. Show that σ1, σ2, σ3 satisfy the following anticommutation relations.

[σi, σ j]+ = 2δi jI, i, j = 1, 2, 3, (9.8)

where δi j is the Kronecker delta.
6. Show that, if X = x1σ1 + x2σ2 + x3σ3 and Y = y1σ1 + y2σ2 + y3σ3, then

1
2

[X,Y]+ = (x1y1 + x2y2 + x3y3)I.

Conclude that, if one defines an inner product 〈X,Y〉R3 on R3 by

1
2

[X,Y]+ = 〈X,Y〉R3 I,

then
{
σ1, σ2, σ3

}
is an oriented, orthonormal basis for R3 and R3 is isometric to

R3. We will refer to R3 as the spin model of R3.
7. Regard the matrices σ1, σ2, σ3 as linear operators on C2 (as a 2-dimensional,

complex vector space with its standard Hermitian inner product) and show that
each of these operators has eigenvalues ±1 with normalized, orthogonal eigen-
vectors given as follows.

σ1 :
1
√

2

(
1
1

)
,

1
√

2

(
1
−1

)
σ2 :

1
√

2

(
1
i

)
,

1
√

2

(
1
−i

)
σ3 :

(
1
0

)
,

(
0
1

)
This spin model of R3 contains a great deal of useful information and we will

return to it shortly, but first we will use the Pauli spin matrices to define the operators
corresponding to the spin components S x, S y, and S z.
Remark 9.1.7. Ordinarily we would use the same symbols to denote the correspond-
ing operators, but it will be much more convenient at this point to denote the opera-
tors S 1, S 2 and S 3 and also to opt for coordinates x1, x2 and x3 rather than x, y and
z.
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Specifically, we define

S 1 =
~

2
σ1, S 2 =

~

2
σ2, and S 3 =

~

2
σ3. (9.9)

Each of these is clearly Hermitian and it follows from Exercise 9.1.1(7) that each has
eigenvalues ± ~2 . Notice that, in terms of S 1, S 2, and S 3, the commutation relations
(9.7) become

[S 1, S 2]− = i~S 3, [S 2, S 3]− = i~S 1, [S 3, S 1]− = i~S 2. (9.10)

In particular, these operators do not commute and so, according to our Postulate
QM6, no pair of them is simultaneously measurable. This we know imposes Uncer-
tainty Relations on the measurements of the various spin components. Let’s just see
what one of these looks like by applying (6.17) to S 3 and S 1 for an electron whose
state is described by the 2-component wave function

ψ =

(
ψ1
ψ2

)
.

σψ(S 3)σψ(S 1) ≥
1
2

∣∣∣ 〈ψ, [S 3, S 1]−ψ〉
∣∣∣ =

1
2

∣∣∣ 〈ψ, i~S 2ψ〉
∣∣∣

=
1
2

∣∣∣ 〈ψ, i(~2/2)σ2ψ〉
∣∣∣

=
~2

4

∣∣∣∣∣ 〈 (
ψ1
ψ2

)
,

(
0 −i
i 0

) (
ψ1
ψ2

) 〉 ∣∣∣∣∣
=
~2

4

∣∣∣∣∣ 〈 (
ψ1
ψ2

)
,

(
−iψ2
iψ1

) 〉 ∣∣∣∣∣
=
~2

4

∣∣∣ψ1(−iψ2) + ψ2(iψ1)
∣∣∣

=
~2

4

∣∣∣ 2 Im (ψ1ψ2)
∣∣∣

Thus,

σψ(S 3)σψ(S 1) ≥
~2

2

∣∣∣ Im (ψ1ψ2)
∣∣∣.

Exercise 9.1.2. Find an expression for the expectation value 〈S 3〉ψ of S 3 in the state

ψ =

(
ψ1
ψ2

)
.

Remark 9.1.8. Pauli’s motivation for the introduction of the specific operators
S 1, S 2, and S 3 was not the same as what we have described here. He too was looking
for 2 × 2, complex Hermitian matrices with eigenvalues ± ~2 , but instead of looking
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for a basis for the copy R3 of R3 he insisted that the matrices he was after satisfy
the commutation relations (9.10). His reason was that these are precisely the same
as the commutation relations satisfied by the components of the quantized (orbital)
angular momentum (see, for example, Sections 14.2 and 14.3 of [Bohm]) and he
sought to keep spin angular momentum and orbital angular momentum on the same
formal footing since, classically, they really are the same thing.

Having decided to model the spin state of an electron by a 2-component wave
function, Pauli [Pauli1] then proposed a Hamiltonian to describe the interaction of
this “spinning” electron with an external electromagnetic field and wrote down a
corresponding “Schrödinger equation”, now generally known as the Pauli equation.
The solutions to the equation accurately describe the behavior of a non-relativistic
spin 1

2 charged particle in an electromagnetic field. The equation, however, has two
shortcomings. The most obvious is that, in general, one cannot always ignore rel-
ativistic effects in particle physics. More fundamentally, perhaps, is that in Pauli’s
treatment the spin of the electron is put in by hand and one would prefer to see
it arise of its own accord from some more fundamental hypothesis (such as rela-
tivistic invariance). Both of these issues were beautifully resolved by Dirac [Dirac2]
in 1928 (for a brief taste of how this was done we might suggest Section 2.4 of
[Nab4]). We will not pursue these matters any further here, but will instead turn to
a quite remarkable property of spin 1

2 particles that will lead us unexpectedly into
topology and back to the Dirac scissors that we first encountered in Example 2.2.13.
One of our objectives is to get some idea of what spinors are and what they have to
do with spin.

The result of the Stern-Gerlach experiment is completely independent of the di-
rection in R3 onto which one chooses to project the spin vector and so is independent
of the choice of oriented, orthonormal basis giving rise to the coordinates x1, x2 and
x3. The Pauli Hamiltonian and the corresponding equations of motion therefore need
to be invariant under such a change of coordinates, that is, invariant under the action
of rotation group SO(3) on the coordinates. This is also true in classical mechanics,
of course, and in this context we have actually dealt with rotational invariance when
we discussed symmetries of Lagrangians in Section 2.2. Classically the situation is
somewhat more straightforward and it is important to understand why so we will
begin with a review of the classical picture.

The mathematical objects used to describe the physical quantities that appear in
classical physics (that is, scalars, vectors, and tensors) all have perfectly explicit,
well-defined transformation laws under a change of coordinates so one need only
substitute these into the basic equations and check that they retain the same form
(F = mA is a vector equation precisely because both forces and accelerations trans-
form in the same way and masses remain constant). These transformation laws are
defined rigorously in the following way.
Remark 9.1.9. We will need a few facts about the representations of SO(3). These
are described in a bit more detail in Section 2.4 of [Nab4], but for the full story one
can consult [Gel].
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Recall that a representation of the group SO(3) on a finite-dimensional vector
space V is a group homomorphism T :SO(3)→ GL(V) of SO(3) into the group of
invertible linear operators on V (which can be identified with a group of invertible
matrices once a basis for V is chosen). In particular,

T (R1R2) = T (R1)T (R2) ∀R1,R2 ∈ S O(3),

T (idR3 ) = idV, and T (R−1) = T (R)−1 for every R ∈ SO(3). The representation T is
said to be irreducible if there is no nontrivial linear subspace of V that is invariant
under T (R) for every R ∈ SO(3); every representation of SO(3) can be built from ir-
reducible representations. The elements of V are called carriers of the representation
and these are used to represent the various physical and geometrical objects of inter-
est. For each R ∈ SO(3), T (R) : V→ V describes how each carrier transforms under
the rotation R. For a real scalar such as the mass one takes V = R and T (R) = idR

for every R ∈ SO(3) so that the value is the same in every coordinate system. For a
vector V in R3 such as the momentum, we take V = R3 and T (R) = R for every R ∈
SO(3) because vectors, by definition, transform in the same way as the coordinates.
Specifically, suppose R = (Ri

j)i, j=1,2,3 ∈ SO(3) and x̂i = Ri
jx j, i = 1, 2, 3, are the

rotated coordinates (here we sum over j = 1, 2, 3). Then the components of V in the
two coordinate systems are related by

V̂ i = Ri
jV j, i = 1, 2, 3.

Vector fields transform as vectors at each point, that is, if we write R−1 = (Ri
j)i, j=1,2,3

so that x j = Ri
j x̂i, then

V̂ i(x̂1, x̂2, x̂3) = (Ri
jV j)(Rk

1 x̂k,Rk
2 x̂k,Rk

3 x̂k), i = 1, 2, 3.

For a second rank tensor field S (such as the stress tensor in continuum mechanics),
V = R9 and T (R) = R ⊗ R is the tensor product of the matrix R with itself so the
nine components are related by

Ŝ i j(x̂1, x̂2, x̂3) = (Ri
mR j

nS mn)(Rk
1 x̂k,Rk

2 x̂k,Rk
3 x̂k), i, j = 1, 2, 3,

where we sum over k,m, n = 1, 2, 3.
The point to all of this is that the representations of SO(3) determine transfor-

mation laws and each of these expresses a certain type of rotational invariance in
the sense that if the components of two quantities of the same type are equal in one
oriented, orthonormal coordinate system, then the components in any other such
coordinate system are also equal because they transform in the same way.

Let’s return now to Pauli’s 2-component electron. To establish some sort of rota-
tional invariance it would seem that what we need is some representation of SO(3)
on the 2-dimensional complex vector space C2 of pairs

ψ =

(
ψ1
ψ2

)
.
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of complex numbers. The good news is that all of the representations of SO(3) are
known. The bad news is that (up to equivalence, that is, up to a change of coordi-
nates) there is only one irreducible representation of SO(3) on C2, namely, the one
that sends every R ∈ SO(3) to the 2 × 2 identity matrix. This representation leaves
every element of C2 fixed for every rotation R and we claim that this clearly will not
do for our purposes. The reason is simple. Since ψ1 and ψ2 represent the probabil-
ity densities for detecting the electron with spin up and spin down, respectively, a
rotation that reverses the direction of the z-axis must interchange ψ1 and ψ2 (up to
phase) (

ψ1
ψ2

)
→ eiφ

(
ψ2
ψ1

)
and the one representation we have available does not do this.

All is not lost, however. Indeed, a moment’s thought should make it clear
that our classical picture of rotational invariance has missed an essential feature
of quantum mechanics. Wave functions are determined only up to phase so, in
particular, ±T (R)ψ describe precisely the same state and so the transformation
law/representation is determined only up to sign. Physicist’s are inclined to say that
what we need is not a representation of SO(3), but rather a “2-valued representation”
of SO(3)

R→ ±T (R).

This really makes no sense, of course, since functions are never “2-valued”. Never-
theless, there is a perfectly rigorous construction that will allow us to make sense of
the underlying idea. To describe this we will need to exploit a remarkable relation-
ship between SO(3) and the group SU(2) of 2× 2 unitary matrices with determinant
1, specifically, that SU(2) is the universal double covering group of SO(3). Every-
thing we will need is proved in Appendix A of [Nab3], but we will sketch a few
of the ideas to provide some intuition. SU(2) and SO(3) are both Lie groups (see
Section 5.8 of [Nab3]). The claim is that there exists a smooth, surjective, group
homomorphism

Spin : SU(2)→ SO(3)

with kernel ±
(
1 0
0 1

)
and with the property that each point in SO(3) has an open neigh-

borhood V whose inverse image under Spin is a disjoint union of two open sets in
SU(2), each of which is mapped diffeomorphically onto V by Spin (this last property
is the meaning of “double cover”). In particular, SO(3) is isomorphic to SU(2) /Z2
and SU(2) is locally diffeomorphic to SO(3). Since SU(2) is homeomorphic to the
3-sphere S 3 (Theorem 1.1.4 of [Nab3]), this implies that SO(3) is homeomorphic to
real, projective 3-space RP3 (Section 1.2 of [Nab3]). With this we can record the
fundamental groups of SU(2) and SO(3) (see pages 117-119 and Theorem 2.4.5 of
[Nab3]).
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π1(SU(2)) � 1 (SU(2) is simply connected)

π1(SO(3)) � Z2

Remark 9.1.10. Let’s take a moment to see where the map Spin comes from. The
most efficient way to do this is to identify R3 with R3 as in Exercise 9.1.1. Now
notice that, for any U ∈ SU(2) and any X ∈ R3, UXU

T
= UXU−1 is also in R3.

Exercise 9.1.3. Prove this.
Consequently, for each U ∈ SU(2) we can define a map

RU : R3 → R3

by

RU(X) = UXU
T

= UXU−1 ∀X ∈ R3.

Exercise 9.1.4. Show that RU is an orthogonal transformation of R3 for each U ∈
SU(2).
In particular, the determinant of each RU is either 1 or -1.
Exercise 9.1.5. Show that SU(2) consists precisely of those 2× 2 complex matrices
of the form (

α β

−β α

)
.

where |α|2 + |β|2 = 1. Also show that, if α = a + bi and β = c + di, then the matrix
of RU relative to the oriented, orthonormal basis

{
σ1, σ2, σ3

}
for R3 isa2 − b2 − c2 + d2 2ab + 2cd −2ac + 2bd

−2ab + 2cd a2 − b2 + c2 − d2 2ad + 2bc
2ac + 2bd 2bc − 2ad a2 + b2 − c2 − d2

 .
Notice that the determinant of this matrix is a continuous, real-valued function on
SU(2).
Exercise 9.1.6. Show that each RU has determinant 1. Hint: Continuity.
Consequently, we can define Spin: SU(2)→ SO(3) by Spin(U)=RU for each U ∈

SU(2).
Exercise 9.1.7. Prove that Spin is a smooth group homomorphism with kernel

±

(
1 0
0 1

)
.

The proof of surjectivity requires a bit more work and an appeal to Theorem
2.2.2. It turns out that for any element R of SO(3), expressed in the form described
in Theorem 2.2.2, one can simply write down an element U of SU(2) for which
Spin(±U)=R (details are available on page 398 of [Nab3]). That SU(2) is a double
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cover for SO(3) follows from the fact that S 3 is a double cover for RP3 (pages 64-65
of [Nab3]).

Now suppose T :SO(3)→ GL(V) is a representation of SO(3). Composing with
Spin gives a representation

T̃ = T ◦ Spin : SU(2)→ GL(V) (9.11)

of SU(2). Thus, every representation of SO(3) gives rise to a representation of
SU(2). The converse is not true, however. Specifically, a given representation T̃ :
SU(2)→ GL(V) of SU(2) will clearly descend to a representation of SO(3) if and
only if T̃ (−U) = T̃ (U) for every U ∈ SU(2). The representations of SU(2) that do
not satisfy this condition, but instead satisfy T̃ (−U) = −T̃ (U) for every U ∈ SU(2)
are what the physicists mean when they refer to 2-valued representations of SO(3),
although they are not representations of SO(3) at all, of course. There certainly is
a representation of SU(2) on C2 that satisfies this condition, namely, the one that
sends every element of SU(2) to itself. Up to equivalence this is, in fact, the only
irreducible one and it is traditionally denoted D

1
2 .

D
1
2 : SU(2)→ GL(C2)

D
1
2 (U) = U ∀U ∈ SU(2)

The carriers
(
ψ1
ψ2

)
∈ C2 of this representation are called 2-component spinors.

Remark 9.1.11. There is a great deal of beautiful mathematics hidden in this appar-
ently simple idea of a 2-component spinor. For a synopsis of some of its connections
with Clifford algebras and Hopf bundles from the point of view of spin 1

2 physics
we recommend [Socol]. For the full story of Clifford algebras and spinors in general
see [LM].
Exercise 9.1.8. Show that

U =

(
cos π

2 −i sin π
2

−i sin π
2 cos π

2

)
is in SU(2) and Spin(±U) is a rotation about the x-axis through π (not π/2) and
therefore reverses the direction of the z-axis. Then note that

D
1
2 (U)

(
ψ1
ψ2

)
= e−

π
2 i

(
ψ2
ψ1

)
so that, up to phase, D

1
2 (U) reverses the spin components ψ1 and ψ2 as Stern-Gerlach

insists that it should. Hint: For Spin(±U) use Exercise 9.1.4.
Notice that there is an interesting doubling of angles under Spin in the previous

exercise. This is a characteristic feature of Spin and arises because Spin(U)(X) =
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UXU
T

essentially “squares” U. It is also the feature that will lead us to one of the
most remarkable properties of spin 1

2 particles (and fermions in general). To uncover
this property we will make considerable use of the discussion in Example 2.2.13 so
we suggest a review of this (especially pages 47-51) before you proceed.

As we have learned (Example 2.2.13), the physical process of rotating an object
in space is modeled mathematically by a continuous curve α : [t0, t1] → SO(3) in
SO(3). For example, 1 0 0

0 cos t −sin t
0 sin t cos t


is a rotation through t radians about the x-axis so the curve α : [0, 2π] → SO(3)
defined by this matrix for 0 ≤ t ≤ 2π defines a continuous rotation about the x-axis
through 360◦. This is a loop at the 3 × 3 identity matrix I3×3 in SO(3) and so it
determines an element [α] of the fundamental group π1(SO(3)). On the other hand,
the curve α2 : [0, 4π] → SO(3) defined by the same matrix for 0 ≤ t ≤ 4π (α
traversed twice) defines a rotation about the x-axis through 720◦ and determines the
element [α2] = [α]2 in π1 (SO(3)). How does the wave function of a spin 1

2 particle
respond to these two rotations? To answer this we recall that, since Spin: SU(2)→
SO(3) is a covering space, curves in the covered space SO(3) lift uniquely to curves
in the covering space SU(2) once an initial point is selected (see Corollary 1.5.13
of [Nab3]). Since α begins at I3×3 and Spin(±I2×2) = I3×3, there is a unique curve
α̃ : [0, 2π]→ SU(2) with Spin ◦ α̃ = α and α̃(0) = I2×2.
Exercise 9.1.9. Show that α̃(t) is given by(

cos t
2 −i sin t

2
−i sin t

2 cos t
2

)
,

where 0 ≤ t ≤ 2π. Similarly, the unique lift of α2 starting at I2×2 is given by this
same matrix with 0 ≤ t ≤ 4π. Notice that the lift of α begins at I2×2 and ends at
−I2×2, whereas the lift of α2 begins and ends at I2×2, passing through −I2×2 along
the way.

The response of the 2-component spinor wave function ψ =

(
ψ1
ψ2

)
to these rotations is

described by D
1
2 applied to the points along the lifted curves in SU(2). In particular,

D
1
2 (α̃(0))

(
ψ1
ψ2

)
= D

1
2 (I2×2)

(
ψ1
ψ2

)
=

(
ψ1
ψ2

)
,

whereas

D
1
2 (α̃(2π))

(
ψ1
ψ2

)
= D

1
2 (−I2×2)

(
ψ1
ψ2

)
= −

(
ψ1
ψ2

)
,

so a rotation through 360◦ reverses the sign of the wave function.
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Exercise 9.1.10. Show that a rotation through 720◦ returns the wave function to its
original value.

We have therefore found a physical system (namely, a spin 1
2 particle) whose

wave function is changed by a rotation through 360◦, but returns to its original
value after a rotation through 720◦. It certainly does seem strange to our macro-
scopically conditioned brains that a 360◦ rotation and a 720◦ rotation could result in
“something different”, but this is quantum mechanics, after all, where strange is the
order of the day. Alleviating this feeling of strangeness to some degree is really the
point of Dirac’s ingenious scissors experiment which we described in some detail in
Example 2.2.13.

Notice, however, that mathematically the difference between α and α2 is not at all
mysterious if we keep in mind that π1(SO(3))� Z2, but SU(2) is simply connected.
The loop α2 in SO(3) lifts to a loop in SU(2) which must be null-homotopic by
simple connectivity. Pushing the null-homotopy down to SO(3) by Spin shows that
α2 itself is null-homotopic. However, α cannot be null-homotopic since its lift to
SU(2) is a path from I2×2 to −I2×2 and not a loop at all (see the Homotopy Lifting
Theorem 2.4.1 of [Nab3]). Representing Z2 as the multiplicative group

{
[−1], [1]

}
of integers mod 2 we can write all of this symbolically as [α] = [−1] ∈ π1(SO(3)),
but [α2] = [α]2 = [−1]2 = [1] ∈ π1(SO(3)).
Remark 9.1.12. The homotopy type of a rotation (thought of as a curve in SO(3))
determines the effect of the rotation on the wave function of a spin 1

2 particle. This
is interesting enough, but one might wonder whether or not this change in the wave
function resulting from a 2π rotation is actually observable, that is, whether or not it
has any physical consequences. After all, ±ψ represent the same state of the particle
so perhaps all of this is just a peculiarity of the mathematical model and not physics
at all. For some thoughts on this, see [AS].

9.2 Anticommutation Relations and the Fermionic Harmonic
Oscillator

The quantum systems that we have examined thus far have all arisen in essentially
the same way. One begins with a familiar classical system and chooses some appro-
priate quantization scheme to build a “corresponding” quantum system. Generally,
one then checks that the quantum system approaches the classical system in some
limiting sense (say, as ~→ 0). We have gotten away with this so far only because we
have conscientiously ignored the existence of particles with half-integer spin and,
in particular, the fact that the electron has spin 1

2 . Having come face to face with the
Stern-Gerlach experiment and the bizarre reaction of spin 1

2 particles to rotations,
we should probably not continue to do this. There is a problem, however. Since
nothing in the classical world behaves like a fermion, we have nothing to quantize!
The quantum mechanics of a fermion system must be built from scratch without ref-
erence to any “corresponding” classical system. This is a big deal because fermion
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systems exist in great abundance and are, in a sense, responsible for everything that
we see and experience in the world around us. Every atom is built from spin 1

2 par-
ticles (electrons, protons and neutrons and even the quarks from which protons and
neutrons are built). The arrangement of the corresponding elements in the periodic
table as well as all of their chemical properties are explicable only in terms of the
quantum theory of fermions. Even neutron stars and white dwarf stars can exist only
because fermions are subject to what is called the Pauli Exclusion Principle; indeed,
it is thanks to this principle that we exist to see and experience the world around
us (see [Lieb]). In this section we will describe the standard operating procedure in
quantum theory for dealing with fermions and illustrate the procedure by building a
fermionic analogue of the bosonic harmonic oscillator.

The standard operating procedure to which we referred above is easy to state
(“change the commutators [ , ]− to anticommutators [ , ]+”), but not so easy to mo-
tivate or justify. One can simply say, as one often does in quantum mechanics, that
the proof of the pudding is in the eating so one must simply be patient and see what
consequences can be drawn and whether or not they jibe with the experimental facts.
This is fine, but rather unsatisfying. After all, someone had to actually think of trying
it and presumably had reasons for doing so.

In this particular case, that person was Pascual Jordan. In 1927 Jordan was trou-
bled by what he perceived to be an inconsistency between, on the one hand, the
canonical quantization procedure of Dirac (Section 7.2) in which one represents
classical (Poisson bracket) commutation relations as operators on a Hilbert space,
and, on the other hand, the nature of the intrinsic angular momentum (spin) of an
electron. Very roughly, the idea goes something like this. Dirac’s program would
arrive at the quantum description of the electron with spin by quantizing the clas-
sical rotational angular momentum of a charged spinning sphere. This it would do
by identifying canonically conjugate coordinates for the classical problem and rep-
resenting them as self-adjoint operators on a Hilbert space. Now, classically these
conjugate coordinates consist of a projection of the magnetic moment onto some
axis, say, S z and a corresponding angular coordinate φz. What bothered Jordan was
that there is no meaningful (that is, measurable) quantum analogue of φz since, as
far as anyone can tell, the electron behaves like a structureless, point particle and
so, in particular, has no marker on it that would make such an angle measurable.
But now recall from the previous section that, according to Pauli, the components
S i, i = 1, 2, 3, of the spin vector are given by S i = ~

2σi, i = 1, 2, 3, and thatσ1, σ2, σ3
satisfy [σi, σ j]+ = 2δi j I2×2. It follows that

[S i, S j]+ =
~2

2
δi j I2×2, i, j = 1, 2, 3.

Now we will define two new operators a and a† that should be compared with (5.30)
and (5.31).

a =
1
~

(S 3 + iS 1) and a† =
1
~

(S 3 − iS 1)
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Exercise 9.2.1. Show that

[a, a]+ = [a†, a†]+ = 0 and [a, a†]+ = I2×2 (9.12)

and note that one obtains the same result if S 1 is replaced by S 2 in the definitions of
a and a†.

The relations in (9.12) are, of course, strikingly similar to the canonical com-
mutation relations, but involve anticommutators rather than commutators. From this
one can at least imagine how anticommutation relations might play a role in the
description of fermions and what might have led Jordan to his insight. However, the
real story behind this lies in much greater depths, specifically, in the so-called Spin-
Statistics Theorem of quantum field theory. Even a precise statement of this result
would take us very far outside of our comfort zone here, but we would feel remiss
if we did not at least try to provide some sense of what it is all about.
Remark 9.2.1. For those who are quite properly dissatisfied with the brief sketch that
follows we can suggest the following sources for more detailed discussions. The
Spin-Statistics Theorem is, in fact, a rigorous mathematical theorem in axiomatic
quantum field theory. The standard reference for the rather demanding proof is [SW]
which also provides a schematic of the Wightman axioms for quantum field theory,
but not a great deal in the way of physical motivation. The original, less rigorous, but
more physically based argument is due to Wolfgang Pauli [Pauli2]. A great deal of
effort has been expended in the search for a simpler proof of the result, but without
much success. Regarding these one can consult [DS2] and [Wight] and the book
[DS1] which also contains some historical perspective and excerpts from the many
of the seminal papers.

We should emphasize that being a rigorous theorem in axiomatic quantum field
theory should not lead one to assume that the conclusion drawn from the Spin-
Statistics Theorem is an incontestable physical fact. The proof is based on assump-
tions (the Wightman axioms) about the essential prerequisites of any quantum field
theory and these have certainly not gone unquestioned. Furthermore, quantum field
theory is a relativistic theory and quantum mechanics is not so at our level (the level
of quantum mechanics) the Spin-Statistics Theorem is not a theorem at all and if
we want to make use of its conclusion (and we do) this must be introduced as an
addition to our list QM1-QM6 of Postulates (Section 6.2). This is what we will do,
but we will need to build up to it slowly.

The first order of business is to take note of yet one more peculiarity of quantum
mechanics. In both classical and quantum mechanics any two electrons are identical
in the sense that they have precisely the same characteristic properties (classically,
their mass and charge and quantum mechanically their mass, charge and spin). Clas-
sical physics, however, allows one to distinguish even identical particles by simply
keeping track of their trajectories in space (electron Number 1 is here and electron
Number 2 is there). In quantum mechanics particles do not have trajectories, only
wave functions, so this option is not available and one is led to the conclusion that
any two electrons are indistinguishable. Intuitively, this means that the state of a
system consisting of more than one electron remains the same if two of the elec-
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trons are interchanged (we will make this more precise in a moment). The same is
true of protons and neutrons and, indeed, of any identical quantum particles.

In order to make more precise the notion of indistinguishable particles as well as
to formulate a version of the Spin-Statistics Theorem we will need to say something
about how quantum mechanics associates a Hilbert space to a system consisting
of more than one particle. This has not come up in our discussions yet and the
procedure does not follow from our list of Postulates QM1-QM6 so we will need a
new one.
Remark 9.2.2. We will require some of the basic properties of tensor products of
Hilbert spaces. Everything we need is treated in detail in Chapter II, Sections 6.3,
6.4, 6.5, and Chapter IV, Section 4.5, of [Prug], but one can also consult Section II.4
of [RS1] for a different, but equivalent approach. We will just summarize the items
we require. For this we let H1, . . . ,HN be complex, separable Hilbert spaces with in-
ner products 〈 , 〉1, . . . , 〈 , 〉N , respectively. Then H1, . . . ,HN are, in particular, com-
plex vector spaces so they have an algebraic tensor product H1 ⊗alg · · · ⊗alg HN

(Chapter II, Section 6.4, of [Prug]) consisting of all finite linear combinations of
elements of the form ψ1 ⊗ · · · ⊗ ψN , where ψi ∈ Hi for each i = 1, . . . ,N. Define a
complex-valued bilinear map 〈 , 〉 on H1 ⊗alg · · · ⊗alg HN by

〈ψ1 ⊗ · · · ⊗ ψN , φ1 ⊗ · · · ⊗ φN〉 = 〈ψ1, φ1〉1 · · · 〈ψN , φN〉N .

This defines an inner product on H1 ⊗alg · · · ⊗alg HN (Theorem 6.8, Chapter II,
of [Prug]) and the Hilbert space tensor product H1 ⊗ · · · ⊗ HN of H1, . . . ,HN is
defined to be the completion of H1⊗alg · · ·⊗algHN with respect to this inner product.
H1 ⊗ · · · ⊗ HN is separable and if {ei

n}
∞
n=1 is an orthonormal basis for Hi for each

i = 1, . . . ,N, then {
e1

n1
⊗ · · · ⊗ eN

nN
: 1 ≤ n1, . . . , nN < ∞

}
is an orthonormal basis for H1 ⊗ · · · ⊗HN (Chapter II, Theorem 6.10, of [Prug]).

If H1, . . . ,HN are all the same Hilbert space H, then we will write the tensor
product as ⊗NH and call it the N th tensor power of H. Notice that the symmetric
group S N of permutations of {1, . . . ,N} acts naturally on ⊗NH by defining

σ · (ψ1 ⊗ · · · ⊗ ψN) = ψσ(1) ⊗ · · · ⊗ ψσ(N)

for every σ ∈ S N and then extending to all of ⊗NH by linearity and the density
of the algebraic tensor product in ⊗NH. We define two closed, linear subspaces of
⊗NH as follows.

⊗N
S H =

{
Ψ ∈ ⊗NH : σ · Ψ = Ψ ∀σ ∈ S N

}
is called the N th symmetric tensor power of H and

⊗N
AH =

{
Ψ ∈ ⊗NH : σ · Ψ = (sgnσ)Ψ ∀σ ∈ S N

}
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is the N th antisymmetric tensor power of H. These subspaces of ⊗NH are orthogonal
with respect to the inner product defined above and one defines the projections πS :
⊗NH → ⊗N

S H and πA : ⊗NH → ⊗N
AH to be the extensions of

πS (ψ1 ⊗ · · · ⊗ ψN) =
1

N!

∑
σ∈S N

ψσ(1) ⊗ · · · ⊗ ψσ(N)

and

πA(ψ1 ⊗ · · · ⊗ ψN) =
1

N!

∑
σ∈S N

(sgnσ)ψσ(1) ⊗ · · · ⊗ ψσ(N).

One generally writes

πS (ψ1 ⊗ · · · ⊗ ψN) = ψ1 ⊗S · · · ⊗S ψN

and

πA(ψ1 ⊗ · · · ⊗ ψN) = ψ1 ⊗A · · · ⊗A ψN .

Then ⊗N
S (H) and ⊗N

A (H) are the closed linear spans of the ψ1 ⊗S · · · ⊗S ψN and
ψ1 ⊗A · · · ⊗A ψN , respectively.
Remark 9.2.3. ψ1 ⊗A · · · ⊗A ψN is also often written ψ1 ∧ · · · ∧ ψN .

The particular examples of most interest to us arise in the following way. Let
(X1,A1, µ1) and (X2,A2, µ2) be two measure spaces and consider the correspond-
ing Hilbert spaces L2(X1,A1, µ1) and L2(X2,A2, µ2). If f ∈ L2(X1,A1, µ1) and
g ∈ L2(X2,A2, µ2), then f (x1)g(x2) represents an element of L2(X1 × X2,A1 ×A2,
µ1 × µ2) that we denote f · g, that is,

( f · g)(x1, x2) = f (x1)g(x2) ∀(x1, x2) ∈ X1 × X2.

With this we can define a linear map from the algebraic tensor product
L2(X1,A1, µ1) ⊗alg L2(X2,A2, µ2) to L2(X1 × X2,A1 ×A2, µ1 × µ2) by

n∑
k=1

ak fk ⊗ gk →

n∑
k=1

ak fk · gk.

According to Theorem 6.9, Chapter II, of [Prug], this map extends uniquely to a uni-
tary equivalence of the Hilbert space tensor product L2(X1,A1, µ1) ⊗ L2(X2,A2, µ2)
onto L2(X1×X2,A1×A2, µ1×µ2). In particular, we can identify, for any n = 1, 2, . . .,

L2(Rn) ⊗ L2(Rn) � L2(Rn ×Rn) � L2(R2n)

and, by induction, for any N = 1, 2, . . .,

⊗N L2(Rn) � L2(Rn×
N
· · · ×Rn) � L2(RNn)
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(Lebesgue measure is understood here). Thus, we can identify elements of⊗N L2(Rn)
with (equivalence classes of) square integrable functions ψ(x1, . . . , xN), where
x1, . . . , xN ∈ Rn. The elements of ⊗N

S L2(Rn) then correspond to functions that are
(up to a set of measure zero) symmetric under permutations of their variables

ψ(xσ(1), . . . , xσ(N)) = ψ(x1, . . . , xN) ∀σ ∈ S N ,

while those in ⊗N
A L2(Rn) are antisymmetric

ψ(xσ(1), . . . , xσ(N)) = (sgnσ)ψ(x1, . . . , xN) ∀σ ∈ S N .

Now we can return to quantum mechanics. We consider a quantum system S

consisting of N particles in space. The Hilbert space associated to each particle is
H = L2(R3). Now consider the tensor product ⊗NH = ⊗N L2(R3), one factor for
each particle. The particles are said to be identical if the action of the symmetric
group S N on ⊗N L2(R3) leaves the state of the system invariant, that is, if

ψ(xσ(1), . . . , xσ(N)) = R(σ)ψ(x1, . . . , xN) ∀σ ∈ S N ,

where each R(σ) is a complex number of modulus one (phase factor). Notice that
R is a homomorphism of S N to the group of unit complex numbers, of which there
are only two, namely, R(σ) = 1 ∀σ ∈ S N and R(σ) = sgnσ ∀σ ∈ S N . We conclude
that quantum particles fall into two types, namely, those for which a system of N
such particles has wave functions that are symmetric (states are in ⊗N

S L2(R3)) and
those for which a system of N such particles has wave functions that are antisym-
metric (states are in ⊗N

A L2(RN)). The final Postulate we add to our list (QM1-QM6)
identifies these two types and will serve as our version of the Spin-Statistics Theo-
rem.

Postulate QM7

Let S be a quantum system consisting of N identical particles in space. The
Hilbert space of each individual particle is L2(R3). Then the states of the system
S are in ⊗N L2(R3) and are either

1. symmetric (that is, in ⊗N
S L2(R3)), in which case the particles are bosons (integer

spin), or
2. antisymmetric (that is, in ⊗N

A L2(R3)), in which case the particles are fermions
(half-integer spin).

Remark 9.2.4. The most remarkable aspect of this Postulate is the relationship it
establishes between the intrinsic angular momentum (spin) of a particle and the be-
havior of a system of such particles (statistics). It would be a very good thing to
be able to offer some sort of intuitive motivation for this relationship, but, as the
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saying goes, “I got nothing!”. Indeed, it seems that no one has anything to offer in
this regard. Here is the oft-quoted comment of Richard Feynman.

We apologize for the fact that we cannot give you an elementary explanation. An
explanation has been worked out by Pauli from complicated arguments of quantum
field theory and relativity. He has shown that the two must necessarily go together,
but we have not been able to find a way of reproducing his arguments on an ele-
mentary level. It appears to be one of the few places in physics where there is a rule
which can be stated very simply, but for which no one has found a simple and easy
explanation. The explanation is deep down in relativistic quantum mechanics. This
probably means that we do not have a complete understanding of the fundamental
principle involved.

-Richard Feynman ([FLS], Volume III, 4-3)

We should point out a particularly important consequence of Postulate QM7.
Suppose S consists of N identical fermions (say, electrons). Assume that, at some
instant, one of the particles is in a state represented by ψ1, another is in a state
represented by ψ2, . . ., and so on. Then the state of the system is represented by
Ψ = ψ1 ⊗ψ2 ⊗ · · · ⊗ψN ∈ ⊗

N
A L2(R3). What happens if two of the fermions are in the

same state, that is, ψi = ψ j for some 1 ≤ i < j ≤ N? If σi j is the permutation that
switches i and j and leaves everything else alone (which is odd), then σi j · Ψ = −Ψ
by antisymmetry. But ψi = ψ j clearly implies that σi j ·Ψ = Ψ and these cannot both
be true unless Ψ = 0 ∈ ⊗N

A L2(R3) which is not a state at all. From this we obtain the
famous Pauli Exclusion Principle.

In a system of identical fermions, no two of the fermions can be in the same state.

As we mentioned earlier, this principle is responsible not only for the existence of
the world we see around us, but for our existence as well. Historically, it was not
derived from the Spin-Statistics Theorem (which it predated) and, indeed, it was not
“derived” from anything. Pauli proposed the Exclusion Principle (for electrons in
an atom) as an ad hoc hypothesis which he found could explain a huge number of
otherwise mysterious, but incontestable experimental facts. Even after establishing
the Spin-Statistics Theorem and being awarded the Nobel Prize, Pauli admitted to
an uneasy feeling about the logical status of the Exclusion Principle.

Already in my original paper I stressed the circumstance that I was unable to
give a logical reason for the exclusion principle or to deduce it from more gen-
eral assumptions. I had always the feeling, and I still have it today, that this is a
deficiency.

-Wolfgang Pauli ([Pauli3])
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Finally, we must try to see what all of this has to do with commutation and an-
ticommutation relations. This will take us somewhat outside of our element since it
involves a technique, known as second quantization, that is more specifically geared
toward quantum field theory. For this reason we will provide only a brief sketch
(more details are available in Section 4.5 of [Fol3] and Sections 12.1 and 12.2 of
[BEH]).

The first construction we will require is not particularly well-motivated by what
we have done previously, but is easily explained. In elementary particle physics the
interactions that take place generally do not leave the number of particles fixed.
For example, in Figure 9.3 a γ-ray (which is not visible) enters from the left and,
at the vertex joining the two spirals, interacts with a nearby atom, decays into an
electron-positron pair (the spirals) and ejects an electron from the atom (the third
track leaving the vertex). Shortly thereafter the ejected electron emits a γ-ray (again,
not visible) which then also decays into an electron-positron pair with straighter
tracks (the < to the right of the vertex).

Fig. 9.3 Pair Production

Interactions of this sort are described in quantum field theory and this is not
within our purview, but we will borrow the mathematical device used there to asso-
ciate a Hilbert space to a system with a possibly varying number of particles. We
will restrict our attention to systems of identical fermions, although the procedure is
much more general than this (see Section 4.5 of [Fol3] and Sections 12.1 and 12.2
of [BEH]).

We begin with the Hilbert space H = L2(R3) of a single fermion; this we will
refer to as the 1-particle Hilbert space and will also write it as ⊗1

AH. For any N ≥ 1,
⊗N

AH will be called the N-particle Hilbert space. Also set ⊗0
AH = C and refer to

this as the 0-particle Hilbert space. The algebraic direct sum of the vector spaces
⊗N

AH
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alg

{
⊗N

A H : N = 0, 1, 2, . . .
}

= C ⊕alg H ⊕alg ⊗
2
AH ⊕alg · · ·

is called the finite particle space. An element of the finite particle space has only
finitely many nonzero coordinates. For each N ≥ 0 we will identify ⊗N

AH with
the subspace in which all of the coordinates are zero except in the N th. On the
other hand, the Hilbert space direct sum of the ⊗N

AH is called the antisymmetric, or
fermionic Fock space of H and is denoted

FA(H) =
⊕{

⊗N
A H : N = 0, 1, 2, . . .

}
= C ⊕ H ⊕ ⊗2

AH ⊕ · · ·

Remark 9.2.5. Recall that if H0,H1,H2, . . . are Hilbert spaces, then their Hilbert
space direct sum H =

⊕∞

n=0 Hn is the linear subspace of the vector space direct
product

∏∞
n=0 Hn consisting of all sequences (x0, x1, x2, . . .) with xn ∈ Hn for each

n = 0, 1, 2, . . . and
∑∞

n=0 ‖xn‖
2
Hn

< ∞ and with the inner product defined by

〈
(xn)∞n=0, (yn)∞n=0

〉
H =

∞∑
n=0

〈 xn, yn 〉Hn .

The algebraic direct sum of the vector spaces H0,H1,H2, . . . is naturally identified
with a dense linear subspace of

⊕∞

n=0 Hn.
We can therefore identify the elements of FA(L2(R3)) with sequences(

ψ0, ψ1(x1), ψ2(x1, x2), . . . , ψN(x1, x2, . . . , xN), . . .
)
,

where

|ψ0 |
2 + ‖ψ1(x1) ‖2L2(R3) + · · · + ‖ψN(x1, x2, . . . , xN) ‖2

L2(R3×
N
···×R3)

+ · · · < ∞

and each of the functions is antisymmetric with respect to permutations of its argu-
ments (up to a set of measure zero).

Now we would like to define a number of operators on the Fock space FA(H)
analogous to the raising and lowering operators for the bosonic harmonic oscillator
(Remark 5.3.5). The difference is that, whereas for the oscillator these operators
raised and lowered the number of energy quanta, we now think of them as creating
and annihilating particles, that is, mapping ⊗N

AH → ⊗
N+1
A H and ⊗N

AH → ⊗
N−1
A H,

respectively. Begin by looking in the algebraic direct sum
⊕

alg
(
⊗N

A H
)

of the
particle spaces. For each φ ∈ H we define a(φ)† : ⊗N

AH → ⊗
N+1
A H to be the linear

extension to ⊗N
AH of the map defined as follows. If N = 0, then a(φ)†(1) = φ and if

N ≥ 1, then

a(φ)†(ψ1 ⊗A · · · ⊗A ψN) =
√

N + 1 (φ ⊗A ψ1 ⊗A · · · ⊗A ψN).
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This defines a linear map on all of
⊕

alg
(
⊗N

A H
)
. Next define a(φ) : ⊗N

AH → ⊗
N−1
A H

for N ≥ 1 to be the linear extension to ⊗N
AH of the map defined as follows. If N = 1,

then a(φ)(ψ) = 〈φ, ψ〉H and if N ≥ 2,

a(φ)(ψ1 ⊗A · · · ⊗A ψN) =
1
√

N

N∑
j=1

(−1) j−1〈φ, ψ j〉H(ψ1 ⊗A · · · ψ̂ j · · · ⊗A ψN),

where the hat ˆ indicates that ψ j is omitted. To cover N = 0 we can simply take
⊗−1

A H to be the vector space containing only 0 and let a(φ) : ⊗0
AH → ⊗

−1
A H be the

map that sends everything to 0. The linear maps a(φ) and a(φ)† are formal adjoints of
each other with respect to the inner product introduced above, that is, on

⊕
alg

(
⊗N

A
H

)
, 〈

a(φ)Ψ,Φ
〉

=
〈
Ψ, a(φ)†Φ

〉
.

Exercise 9.2.2. Verify the following special case.〈
a(φ)(ψ1 ⊗A ψ2 ⊗A ψ3), ϕ1 ⊗A ϕ2

〉
=

〈
ψ1 ⊗A ψ2 ⊗A ψ3, a(φ)†(ϕ1 ⊗A ϕ2)

〉
Hint: Show that both sides are equal to

1
√

3

1
2!

[
〈ψ1, φ〉〈ψ2, ϕ1〉〈ψ3, ϕ2〉 − 〈ψ1, φ〉〈ψ2, ϕ2〉〈ψ3, ϕ1〉 − 〈ψ2, φ〉〈ψ1, ϕ1〉〈ψ3, ϕ2〉+

〈ψ2, φ〉〈ψ1, ϕ2〉〈ψ3, ϕ1〉 + 〈ψ3, φ〉〈ψ1, ϕ1〉〈ψ2, ϕ2〉 − 〈ψ3, φ〉〈ψ1, ϕ2〉〈ψ2, ϕ1〉

]
.

Exercise 9.2.3. Show that, on
⊕

alg
(
⊗N

A H
)
,

1. [a(φ1)†, a(φ2)†]+ = 0 and
2. [a(φ1), a(φ2)]+ = 0.

Next we show that, on
⊕

alg
(
⊗N

A H
)
,

[a(φ1), a(φ2)†]+ = 〈φ1, φ2〉I, (9.13)

where I is the identity operator on H. For this we notice first that

a(φ1)a(φ2)†(ψ1 ⊗A · · · ⊗A ψN) =
√

N + 1 a(φ1)(φ2 ⊗A ψ1 ⊗A · · · ⊗A ψN) =

〈φ1, φ2〉(ψ1 ⊗A · · · ⊗A ψN) +

N∑
j=1

(−1) j〈φ1, ψ j〉φ2 ⊗A ψ1 ⊗A · · · ψ̂ j · · · ⊗A ψN .

But also
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a(φ2)†a(φ1)(ψ1 ⊗A · · · ⊗A ψN) =

a(φ2)†
( 1
√

N

N∑
j=1

(−1) j−1〈φ1, ψ j〉ψ1 ⊗A · · · ψ̂ j · · · ⊗A ψN

)
=

N∑
j=1

(−1) j−1〈φ1, ψ j〉φ2 ⊗A ψ1 ⊗A · · · ψ̂ j · · · ⊗A ψN .

Adding these two gives

[a(φ1), a(φ2)†]+(ψ1 ⊗A · · · ⊗A ψN) = 〈φ1, φ2〉(ψ1 ⊗A · · · ⊗A ψN)

as required.
Exercise 9.2.4. Use (9.13) to show that, on

⊕
alg

(
⊗N

A H
)
,

‖ a(φ)Ψ ‖2 + ‖ a(φ)†Ψ ‖2 = ‖φ‖2 ‖Ψ‖2

and conclude from this that a(φ) and a(φ)† extend uniquely to bounded operators on
the Fock space FA(H).

We will use the same symbols a(φ) and a(φ)† for these extensions and will refer to
them as the annihilation and creation operators on FA(H), respectively. For systems
of identical fermions they play roles analogous to the lowering and raising operators
we introduced for the bosonic harmonic oscillator.
Remark 9.2.6. This last remark is a bit cavalier, of course, and needs to be justified,
but a proper justification would require that we venture into the quantum theory
of large systems and, especially, quantum field theory and these are outside of our
range. To gauge the significance of these operators and their generalizations one
might just browse through the Wightman axioms for quantum field theory in [SW].

Finally, suppose
{
e1, e2, . . .

}
is an orthonormal basis for H and define operators

ai and a†i by

ai = a(ei) and a†i = a(ei)†, i = 1, 2, . . . .

Then (9.13) and the identities in Exercise 9.2.3 give

[ai, a j]+ = 0, [a†i , a
†

j ]+ = 0, and [ai, a
†

j ]+ = δi jI, i, j = 1, 2, . . . (9.14)

These, or (9.13) and the identities in Exercise 9.2.3 that gave rise to them, are gen-
erally referred to as the canonical anticommutation relations.

Our objective here has been to suggest that, just as bosonic systems (like
the bosonic harmonic oscillator) are characterized by commutation relations, so
fermionic systems are characterized by anticommutation relations. This is the key to
the construction of the so-called “fermionic harmonic oscillator”, to which we turn
now.
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Remark 9.2.7. The construction is based on the picture of the bosonic oscillator
in terms of its lowering (b) and raising (b†) operators so a review of pages 180-
185 would probably be in order. In particular, one should recall their commutation
relations

[b, b]− = [b†, b†]− = 0, and [b, b†]− = 1. (9.15)

There is also a corresponding bosonic number operator

NB = b†b

in terms of which the bosonic oscillator Hamiltonian can be written

HB =
1
2
~ω[b†, b]+ = ~ω (NB +

1
2

).

All of the essential physical information about the bosonic oscillator (for example,
the spectrum of the Hamiltonian HB) is contained in any algebra of operators sat-
isfying these relations. Adopting an algebraic point of view, one could identify the
bosonic harmonic oscillator with this algebra and this choice of Hamiltonian. This
is the path we will follow in the fermonic case.

According to the “standard operating procedure” described at the beginning of
this section our course would seem clear. To define a fermonic analogue of the
bosonic harmonic oscillator we are simply to change the commutators in (9.15) to
anticommutators.

[ f , f ]+ = [ f †, f †]+ = 0, and [ f , f †]+ = 1. (9.16)

This raises some issues, however. In the bosonic case, b and b† were defined to be
operators on L2(R) obtained from the canonical quantization of the Poisson bracket
commutation relations for the classical harmonic oscillator. As a result one can,
modulo the usual domain difficulties, make sense of the commutators. As we have
gone to some lengths to emphasize, however, there are no classical fermionic sys-
tems and therefore nothing to quantize so it is not at all clear where f , f †, 0 and 1
are supposed to live and what meaning is to be attached to [ , ]+ in (9.16). For this
reason we will need to begin in a somewhat more abstract algebraic setting.

An algebra with involution is a complex algebra A with multiplicative unit 1A on
which is defined a conjugate-linear map A 7→ A† : A→ A, called an involution, that
satisfies (A†)† = A and (AB)† = B†A† for all A, B ∈ A. An element A of A is said to
be self-adjoint if A† = A. Since A is an algebra, one can define the commutator and
anticommutator on A ×A by [A, B]− = AB − BA and [A, B]+ = AB + BA.

An obvious example of an algebra with involution is the algebra B(H) of
bounded operators on a complex Hilbert space H with the involution † taken to
be the Hilbert space adjoint ∗ . If A is an arbitrary algebra with involution and
H is a complex Hilbert space, then a linear map π : A → B(H) satisfying
π(AB) = π(A)π(B), π(1A) = idH, and π(A†) = π(A)∗ for all A, B ∈ A is called
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a representation of A on H. The representation π is said to be faithful if it is injec-
tive so that distinct elements of A are represented by distinct operators.
Remark 9.2.8. One can also consider representations of A by unbounded operators
on H, but we will have no need to do so here. Indeed, we will actually require only
finite-dimensional Hilbert spaces.

It is common to define the algebras with involution of interest in physics in terms
of generators and relations with the relations specified as commutation or anticom-
mutation relations. One then establishes the existence of such an algebra by finding a
faithful representation of the generators and relations. For example, we would like to
identify the fermonic harmonic oscillator algebra with an algebra with involution
containing elements { f , f †, 0, 1}, with 0 the additive identity, 1 the multiplicative
identity and subject to the anticommutation relations

[ f , f ]+ = [ f †, f †]+ = 0, and [ f , f †]+ = 1. (9.17)

In fact, it is quite easy to construct a concrete representation of this algebra in terms
of spin operators. Specifically, we take the Hilbert space H to be C2 and define

Hermitian operators on C2 with respect to the standard basis e0 =

(
0
1

)
and e1 =

(
1
0

)
for C2 by

S 1 =
~

2
σ1, S 2 =

~

2
σ2, and S 3 =

~

2
σ3,

where σ1, σ2 and σ3 are the Pauli spin matrices (see Exercise 9.1.1). These satisfy

[S i, S j]+ =
~2

2
δi j1, i, j = 1, 2, 3,

where we denote by 1 the identity operator on C2. Now introduce operators

f =
1
~

(S 1 + iS 2)

and

f † =
1
~

(S 1 − iS 2).

Exercise 9.2.5. Show that f † is the adjoint f ∗ of f on C2 and then verify

[ f , f ]+ = [ f †, f †]+ = 0, and [ f , f †]+ = 1.

The algebra of 2×2 complex matrices generated by f , f † and 1 is a concrete faithful
representation of the fermionic harmonic oscillator algebra.

Exercise 9.2.6. Show that, with respect to the standard basis e0 =

(
0
1

)
and e1 =

(
1
0

)
for C2,
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f =

(
0 0
1 0

)
and f † =

(
0 1
0 0

)
so that f e0 = 0, f e1 = e0, f †e0 = e1, and f †e1 = e0.

We will refer to f † and f as the fermionic creation and annihilation operators,
respectively. Pursuing the analogy with the bosonic oscillator we introduce also the
fermionic number operator by

NF = f † f .

Notice that this is self-adjoint and

N2
F = ( f † f )2 = (1 − f f †)2 = 1 − f f † − f f † + f f † f f †

= 1 − f f † − f f † + f (1 − f f †) f † = 1 − f f † − ( f f )( f † f †) = 1 − f f †

= NF

so it is also idempotent, that is, NF is a projection. Consequently, NF is an observable
and its spectrum consists of just the two eigenvalues 0 and 1. The only possible
observed values of NF are 0 and 1, which is another reflection of the Pauli Exclusion
Principle (at most one fermion per state).
Exercise 9.2.7. Show that

NF =

(
1 0
0 0

)
so that NFe0 = 0 · e0 and NFe1 = 1 · e1.
In particular, the eigenspaces of NF corresponding to the eigenvalues 0 and 1 are
Span {e0} and Span {e1}, respectively. The states in Span {e0} are said to be unoccu-
pied, while those in Span {e1} are occupied.
Exercise 9.2.8. Define two new operators on C2 by

f1 = f † + f and f2 = −i ( f † − f ).

Show that the anticommutation relations (9.17) are equivalent to

[ fi, f j]+ = 2δi j1, i, j = 1, 2. (9.18)

These are the defining relations for the complex Clifford algebra Cl(2,C). We will
not pursue this any further here, but for those who are interested, the standard intro-
duction to Clifford algebras is Chapter 1 of [LM].

Taking the analogy with the bosonic oscillator one step further we will introduce
a Hamiltonian for the fermonic oscillator by

HF =
1
2
~ω[ f †, f ]− = ~ω (NF −

1
2

). (9.19)
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The fermionic harmonic oscillator algebra together with this Hamiltonian we will
call the fermionic harmonic oscillator. Notice that, unlike HB which is symmetric
under the interchange b↔ b†, HF is antisymmetric under f ↔ f †.
Exercise 9.2.9. Show HF is self-adjoint and that the spectrum of HF is

{
− 1

2~ω,
1
2~ω

}
so that these are the only two allowed energy levels for the fermionic harmonic
oscillator.

At the risk of being tedious we would like to emphasize once again that there
is no classical mechanical system that one can quantize to obtain the fermionic
harmonic oscillator, or any other fermionic system; spin does not exist in classical
physics and therefore neither do fermions. That is not to say, however, that one
cannot construct something “like” a classical system and a procedure not unlike
canonical quantization that will give rise to such systems. Precisely why one would
want to do this might not be so clear. For the moment it will suffice to say that the
effort is well-rewarded, particularly when one begins the search for a framework in
which bosons and fermions can be seen from a more unified point of view. This
framework is called supersymmetry and we will have an ever-so-brief encounter
with it in the next section.

Carrying out this program, however, will require a rather abrupt paradigm shift.
The obstacles (both mathematical and psychological) that will confront us are not
unlike those faced by mathematicians wanting to solve polynomial equations before
a rigorous construction of complex numbers. The intuitive solution was simple and
clear; introduce a new “number” i with the formal property that i2 = −1 and write
the solutions to your equation as “numbers” that look like a + bi. Eventually this
program was carried out with enough rigor to satisfy mathematicians, but this step
was not entirely trivial and it did not come first. In a similar vein, if we put aside our
mathematical scruples for a moment we might write something like[

θ1A1, θ2A2
]
− = θ1θ2(A1A2) − θ2θ1(A2A1)

=

 θ1θ2 [A1, A2]−, if θ1 and θ2 commute
θ1θ2 [A1, A2]+, if θ1 and θ2 anticommute,

where θ1 and θ2 are “numbers” and we have somehow made sense of what it means
for two “numbers” to anticommute. Granting for a moment that this is possible,
one should be able to treat commutators and anticommutators (that is, bosons and
fermions) from a more unified point of view.

The notion that one might use “anticommuting numbers” to build rigorous
“pseudo-classical” models of fermions was first proposed in [Martin]. Subsequently,
the underlying mathematical structures required to do this were extensively devel-
oped (see, for example, [Ber1]). We will have a bit more to say about the issues
involved in constructing a unified point of view for bosons and fermions in the next
section. Here we will limit ourselves to a few remarks on what a pseudo-classical
analogue of a fermion might look like (a more detailed discussion is available in
Chapter 7 of [Takh]).



482 9 Fermionic and Supersymmetric Harmonic Oscillators

The first order of business, of course, is to decide just what an “anticommuting
number” is supposed to be. Fortuitously, objects of just the sort required have been
well-known in mathematics since the 19th century; they are called generators of a
Grassmann algebra.
Remark 9.2.9. Grassmann algebras can be viewed in a number of different ways
(there is a very detailed treatment in Chapter 1, Part I, of [Ber2]) . The most direct is
in terms of generators and relations. A Grassmann algebra with n generators is an
associative, unital, complex algebra Gr(n) for which there are generators θ1, . . . , θn

subject to the relations

θiθ j + θ jθi = 0, i, j = 1, . . . , n. (9.20)

In particular, each of the generators is nilpotent in Gr(n); specifically,

θ2
i = 0, i = 1, . . . , n.

Gr(n) can be realized concretely in several ways. For example, if AC(θ1, . . . , θn) is
the associative, unital, complex algebra freely generated by θ1, . . . , θn and J is the
2-sided ideal generated by elements of the form θiθ j + θ jθi, then Gr(n) is the quo-
tient AC(θ1, . . . , θn)/J. On the other hand, if VC(θ1, . . . , θn) is the complex vector
space freely generated by θ1, . . . , θn, then Gr(n) is isomorphic to the exterior alge-
bra

∧
VC(θ1, . . . , θn) of VC(θ1, . . . , θn), that is, the antisymmetric part of the tensor

algebra. From our present point of view the best way to think of Gr(n) is as the alge-
bra C[θ1, . . . , θn] of complex polynomials in the anticommuting variables θ1, . . . , θn,
any element α of which can be written uniquely in the form

α = c0 + c1θ1 + · · · + cnθn + c12θ1θ2 + · · · + ci1i2···ikθi1θi2 · · · θik + · · · + c12···nθ1θ2 · · · θn,
(9.21)

where 1 ≤ i1 < i2 < · · · < ik ≤ n for k = 1, . . . , n and c0, c1, c12, . . . , c12···n are all in
C. There are no polynomials of higher degree because the generators are nilpotent.
Exercise 9.2.10. Show that the dimension of Gr(n) as a complex vector space is 2n.

The decomposition (9.21) provides Gr(n) with a grading

Gr(n) =

n⊕
k=0

Grk(n), (9.22)

where Gr0(n) = C and, for 1 ≤ k ≤ n, Grk(n) consists of those elements that
are homogeneous of degree k, that is, linear combinations of terms of the form
θi1θi2 · · · θik with 1 ≤ i1 < i2 < · · · < ik ≤ n. We will denote the degree of a
homogeneous element α by |α|. Notice that the multiplication in Gr(n) satisfies

Grk(n) ·Grl(n) ⊆ Grk+l(n),

where Grk+l(n) = 0 if k + l > n.
Exercise 9.2.11. Show that, if α = θi1θi2 · · · θik and β = θ j1θ j2 · · · θ jl , then
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αβ = (−1)klβα

so that, for any homogeneous elements α and β,

αβ = (−1)|α||β|βα.

If we write the additive group of integers modulo 2 as Z2 = {0, 1}, then (9.22)
provides Gr(n) with a Z2-grading

Gr(n) = Gr0(n) ⊕Gr1(n),

where Gr0(n) is the direct sum of the Grk(n) with k even and Gr1(n) is the direct sum
of the Grk(n) with k odd. The elements of Gr0(n) are said to be even, while those
in Gr1(n) are said to be odd. . Even elements commute with either even elements or
odd elements, but two odd elements anticommute. Of course, an element α of Gr(n)
need not be either even or odd, but it can be written uniquely as the sum α = α0 +α1

of its even and odd parts.
Next we will define an involution on Gr(n), called complex conjugation, as fol-

lows. If α ∈ Gr(n) is given by (9.21), then

α 7→ α = c0 + c1θ1 · · · + ci1i2···ikθik · · · θi2θi1 + · · · + c12···nθn · · · θ2θ1.

Exercise 9.2.12. Show that this does, in fact, define an involution on Gr(n).
We will say that an element α in Gr(n) is real if α = α (these are the self-adjoint

elements as defined on page 478) and imaginary if α = −α. Thus, each generator θi

is a real element of Gr(n).
Exercise 9.2.13. Show that θi1θi2 · · · θik is real if and only of k(k−1)

2 is an even integer
and it is imaginary otherwise.

Finally we observe that, being a complex vector space of dimension 2n, Gr(n)
admits a standard Hermitian inner product 〈 , 〉Gr(n) that can be defined by simply
decreeing that the basis

{
1, θ1, . . . , θn, θ1θ2, . . . , θi1θi2 · · · θik , . . . , θ1θ2 · · · θn

}
,

with 1 ≤ i1 < i2 < · · · < ik ≤ n, is an orthonormal basis and extending 〈 , 〉Gr(n) so
that it is linear in the second slot and conjugate linear in the first slot. In particular,〈

θi1θi2 · · · θik , θ j1θ j2 · · · θ jl

〉
Gr(n)

= δklδi1 j1δi2 j2 · · · δik jk .

With this, Gr(n) becomes a finite-dimensional Hilbert space and therefore a Ba-
nach space with the corresponding norm ‖ ‖Gr(n). The results of the following two
exercises will not be called upon here, but are worth seeing.
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Exercise 9.2.14. Show that ‖1‖Gr(n) = 1 and ‖αβ ‖Gr(n) ≤ ‖α ‖Gr(n) ‖ β ‖Gr(n) so that
Gr(n) is a Banach algebra. Hint: For the definition and a very nice, elementary
discussion of Banach algebras see Chapter Twelve of [Simm1].
Exercise 9.2.15. Show that ‖αα ‖Gr(n) = ‖α ‖2Gr(n) so that Gr(n) is a B∗-algebra. Hint:
See Section 72 of [Simm1].

We can now return to fermionic systems. We should be clear on how we are inter-
preting the Grassmann algebra Gr(n), which we will now identify with the algebra
C[θ1, . . . , θn] of complex polynomials in the anticommuting variables θ1, . . . , θn. The
generators θ1, . . . , θn are thought of as the fermionic analogues of the ordinary (com-
muting) variables q1, . . . , qk, p1, . . . , pk in the phase space of a classical mechanical
system although we need not assume that n is even. The polynomials in Gr(n) can
be thought of as functions of θ1, . . . , θn so the real (that is, self-adjoint) elements of
Gr(n) correspond to the fermionic analogue of classical observables.
Remark 9.2.10. Notice that, unlike q1, . . . , qk, p1, . . . , pk, the fermionic variables
θ1, . . . , θn are not coordinates “in” anything. There is no fermionic analogue of the
classical phase space, only of its algebra of functions. That a mathematical object
can be completely characterized by some algebra of functions on it is an idea that
goes back to a beautiful result of Banach and Stone which reconstructs any compact
Hausdorff topological space X as the maximal ideal space of its algebra C(X) of
continuous complex-valued functions (see Section 74 of [Simm1]). This idea has
evolved to an extraordinary level of depth, primarily through the work of Alain
Connes on noncommutative geometry (see [Connes]).

On the other hand, Gr(n) is a finite-dimensional, complex Hilbert space. We
will conclude this section by describing a “Schrödinger-like” representation of the
canonical anticommutation relations

[ai, a j]+ = 0, [a†i , a
†

j ]+ = 0, and [ai, a
†

j ]+ = δi jI, i, j = 1, 2, . . . , n, (9.23)

by multiplication and differentiation operators on Gr(n).
Remark 9.2.11. The canonical anticommutation relations in (9.14) have i, j =

1, 2, . . ., but (9.23) has i, j = 1, 2, . . . , n. It is possible to define the Grassmann al-
gebra on an infinite number of anticommuting variables θ1, θ2, . . . and extend what
we are about to do, but this requires more analytical work and we will simply refer
those interested to [Tuyn].

The calculus of anticommuting variables was initiated and developed by Berezin,
but we will require only the most elementary parts of this (see [Ber2] for a thorough
discussion). For each generator θi we define a linear operator

Θi : Gr(n)→ Gr(n)

on Gr(n) that multiplies on the left by θi, that is,

Θiα = θiα.
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For example, Θ2(θ1θ2θ3) = −Θ2(θ2θ1θ3) = −θ2
2θ1θ3 = 0. Next we define the left

partial differentiation operator

∂L

∂θi
: Gr(n)→ Gr(n)

on Gr(n). It is enough to define the operator on basis elements and extend linearly.
The idea is quite simple. If there is no θi present, the result is zero. If there is a θi

present, move it all the way to the left using anticommutativity and then drop θi. For
example,

∂L

∂θ2
(θ1θ2θ3) = −

∂L

∂θ2
(θ2θ1θ3) = −θ1θ3.

In general,

∂L

∂θi
(θi1 · · · θik ) =

k∑
l=1

(−1)l−1δiilθi1 · · · θ̂il · · · θik ,

where, as usual, the hat ˆ indicates that θil has been omitted. Similarly, we define the
right partial differentiation operator

∂R

∂θi
: Gr(n)→ Gr(n)

by moving θi all the way to the right, that is,

(θi1 · · · θik )
∂R

∂θi
=

k∑
l=1

(−1)k−lδiilθi1 · · · θ̂il · · · θik .

Exercise 9.2.16. Prove the following graded versions of the product rule. For ho-
mogeneous elements α and β of Gr(n),

∂L

∂θi
(αβ) =

∂Lα

∂θi
β + (−1)|α| α

∂Lβ

∂θi

and

(αβ)
∂R

∂θi
= α

(
β
∂R

∂θi

)
+ (−1)|β|

(
α
∂R

∂θi

)
β.

Hint: It’s enough to do this for basis elements.
First we will show that, with respect to the inner product 〈 , 〉Gr(n), the operators

Θi and ∂L

∂θi
are adjoints of each other. Since Gr(n) is finite-dimensional, there are

no domain issues and so we need only show that 〈 ∂
L

∂θi
α, β 〉Gr(n) = 〈α, Θiβ 〉Gr(n).

Moreover, it is enough to prove this for basis elements so we must show that
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〈 ∂L

∂θi
(θi1 · · · θik ), θ j1 · · · θ jl

〉
Gr(n) (9.24)

is equal to 〈
θi1 · · · θik , Θi(θ j1 · · · θ jl )

〉
Gr(n). (9.25)

Suppose first that (9.24) is nonzero. Then, in particular, θi = θim for some m =

1, . . . , k. Thus,

∂L

∂θi
(θi1 · · · θik ) = (−1)m−1θi1 · · · θim−1θim+1 · · · θik .

Since (9.24) is nonzero, θi1 · · · θim−1θim+1 · · · θik must be equal to θ j1 · · · θ jl and so (9.24)
is equal to (−1)m−1. Moreover,

Θi(θ j1 · · · θ jl ) = Θi(θi1 · · · θim−1θim+1 · · · θik )
= θimθi1 · · · θim−1θim+1 · · · θik

= (−1)m−1θi1 · · · θim−1θimθim+1 · · · θik

and therefore, (9.25) is also equal to (−1)m−1, as required.
Exercise 9.2.17. Show that, if (9.24) is equal to zero, then (9.25) is also equal to
zero and thereby complete the proof that

Θi =

(
∂L

∂θi

)∗
.

Finally, we will prove that the operators Θi and ∂L

∂θi
, i = 1, . . . , n, provide an irre-

ducible representation of the canonical anticommutation relations (9.23) on Gr(n).
First we show that

[Θi, Θ j]+ = 0,
[
∂L

∂θi
,
∂L

∂θ j

]
+

= 0, and
[
Θi,

∂L

∂θ j

]
+

= δi jI, i, j = 1, . . . , n,

where I is the identity operator on Gr(n).
Exercise 9.2.18. Prove the first two of these.

Now consider[
Θi,

∂L

∂θ j

]
+

(θi1 · · · θik ) = Θi
∂L

∂θ j
(θi1 · · · θik ) +

∂L

∂θ j
Θi (θi1 · · · θik ).

Suppose first that i = j. If θi is not among the factors of θi1 · · · θik , then the first
term is zero and the second term is θi1 · · · θik . If θi is among the factors of θi1 · · · θik ,
then the second term is zero and the first term is θi1 · · · θik . In either case, the result
is proved. Now suppose i , j. If θ j is among the factors of θi1 · · · θik , then the two
terms differ by a sign so the sum is zero. If θ j is not among the factors of θi1 · · · θik ,
then both terms are zero and, again, the result is proved.
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All that remains is to show that this representation of the canonical anticommu-
tation relations by the operators Θi and ∂L

∂θi
, i = 1, . . . , n, is irreducible, that is, if V

is a linear subspace of Gr(n) that is invariant under all of these operators, then V is
either the subspace consisting only of 0, or it is all of Gr(n). First we note that if
π : Gr(n) → Gr(n) is any linear map that commutes with all of the Θi and ∂L

∂θi
, then

π must be a complex multiple of the identity operator on Gr(n). Indeed,

∂L

∂θi

(
π(1)

)
= π

(
∂L

∂θi
(1)

)
= π(0) = 0

for all i = 1, . . . , n implies that π(1) = c · 1 for some c ∈ C. But π(θi) = π(Θi(1)) =

Θi(π(1)) = cΘi(1) = cθi. Now, if i1 < i2, then

π(θi1θi2 ) = π(Θi1 (θi2 )) = Θi1 (π(θi2 )) = Θi1 (cθi2 ) = cΘi1 (θi2 ) = c(θi1θi2 ).

Continuing inductively gives

π(θi1θi2 · · · θik ) = c(θi1θi2 · · · θik )

and from this it follows that π = cI.
Now suppose that V is a linear subspace of Gr(n) that is invariant under all of the

operators Θi and ∂L

∂θi
, i = 1, . . . , n.

Exercise 9.2.19. Show that the orthogonal complement V⊥ of V with respect to
the inner product 〈 , 〉Gr(n) is also invariant under all of the operators Θi and ∂L

∂θi
,

i = 1, . . . , n.
Let πV : Gr(n) = V ⊕ V⊥ → V be the orthogonal projection onto V . We claim

that πV commutes with all of the operators Θi and ∂L

∂θi
, i = 1, . . . , n. To see this let

v + v⊥ ∈ Gr(n) with v ∈ V and v⊥ ∈ V⊥. Then Θi(v + v⊥) = Θi(v) + Θi(v⊥) with
Θi(v) ∈ V and Θi(v⊥) ∈ V⊥. Thus, πV (Θi(v + v⊥)) = Θi(v) = Θi(πV (v + v⊥)) so
πV Θi = Θi πV .
Exercise 9.2.20. Show that πV

∂L

∂θi
= ∂L

∂θi
πV .

Consequently, πV = cI for some c ∈ C. Thus, Kernel (πV ) is either {0} (if c , 0) or
Gr(n) (if c = 0). But Kernel (πV ) = V⊥ so V is either Gr(n) or {0}, as required.
Remark 9.2.12. There is an important aspect of the calculus of anticommuting vari-
ables called Berezin integration that we have not discussed here. The basics can be
found in Section 2.3, Chapter 7, of [Takh]; for the whole story see [Ber1], [Ber2],
and [Tuyn]. Section 4 of [Takh] describes the analogue of the Feynman path integral
for anticommuting variables, which we will also not discuss here.
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9.3 N = 2 Supersymmetry and the Harmonic Oscillator

Supersymmetry (SUSY) is an idea that was born in the 1970s in physics, soon be-
came the darling of the particle physics community due to the promise it held for
resolving many fundamental questions not addressed by the Standard Model of ele-
mentary particles and, at the same time, spawned an entirely new branch of mathe-
matics, also called supersymmetry. We have seen that bosons and fermions behave
quite differently and appear to require very different sorts of theoretical models for
their description. SUSY postulates the existence of a new type of quantum sym-
metry operator (see page 238) that interchanges bosons and fermions and thereby
permits one to view these two seemingly different sorts of animals from a more
unified perspective. The idea is clearly very appealing, but even its most ardent pro-
ponents concede that its Achilles heel appears to be that the proposal is based on
philosophical and aesthetic convictions rather than experimental facts. Here is how
the situation was viewed in 1985 by a physicist whose work did much to advance
the cause of supersymmetry.

Modern science shares with both the Greek and earlier philosophies the convic-
tion that the observed universe is founded on simple underlying principles which
can be understood and elaborated through disciplined intellectual endeavor. By the
Middle Ages, this conviction had, in Christian Europe, become stratified into a sys-
tem of Natural Philosophy that entirely and consciously ignored the realities of the
physical world and based all its insights on thought, and Faith, alone. The break
with the medieval tradition occurred when the scientific revolution of the 16th and
17th centuries established an undisputed dominance in the exact sciences of fact
over idea, of observation over conjecture, and of practicality over aesthetics. Ex-
periment and observation were established as the ultimate judge of theory. Modern
particle physics, in seeking a single unified theory of all elementary particles and
their fundamental interactions, appears to be reaching the limits of this process and
finds itself forced, in part and often very reluctantly, to revert for guidelines to the
“medieval” principles of symmetry and beauty.

-Martin Sohnius ([Sohn])

This may seem a rather peculiar attitude for theoretical physics, but it is not
without precedent. Paul Dirac believed very strongly that mathematical beauty was
not simply a useful criterion for, but a decisive guide to physical laws.

. . . it is more important to have beauty in one’s equations than to have them
fit experiment. . . . If there is not complete agreement between the results of one’s
work and experiment, one should not allow oneself to be too discouraged, because
the discrepancy may well be due to minor features that are not properly taken into
account and that will get cleared up with further developments of the theory.

-Paul Dirac ([Dirac4])
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Dirac’s philosophical and aesthetic convictions served him extraordinarily well,
the most obvious example being the relativistic equation for spin 1

2 particles to which
they guided him. The equation predicted the existence of an “antiparticle” for the
electron which, at the time, was nowhere to be found in nature. It was not long,
however, before Carl Anderson found the tracks of these so-called “positrons” in
his cloud chamber, thereby vindicating Dirac’s equation in a rather spectacular way.
Supersymmetry makes an analogous prediction. Every elementary particle should
have an associated “superpartner” (the hypothetical superpartner of the electron has
been christened the “selectron”). None of these supersymmetric pairs is to be found
in the currently known elementary particle zoo so one must try to produce them
as the result of collisions in particle accelerators. However, the masses of the su-
perpartners are predicted to be quite large so enormous amounts of energy would be
required to produce them (E = mc2). Until quite recently such energies were beyond
the reach of even the largest particle accelerators. This changed, however, with the
construction of the Large Hadron Collider (LHC) at CERN in Switzerland which
is capable of producing the required energies. For adherents to the SUSY philoso-
phy, the news has not been good; none of the presumably accessible superpartners
has been detected. This is quite a serious problem for particle physics which, for
nearly 45 years, has pinned its hopes on supersymmetry (one can read more about
this “crisis” in [LS]). Of course, the new branch of mathematics, also known as su-
persymmetry, doesn’t really care. The mathematics is either beautiful, or it is not,
either useful, or not, and it happens to be both. Whatever the eventual fate of SUSY
in physics, the subject is still worth knowing something about.

Before getting started we should be clear on what we can, and cannot, deliver
here. Whether one has in mind the physics or the mathematics, supersymmetry is
a vast and complex subject and we cannot pretend to offer anything even remotely
resembling an introduction to either. Although a bit dated now, [Sohn] is a highly re-
garded survey of the physics. For the mathematics one might consult [Tuyn], [Ber2],
and [Vara] or, for a different approach, [Rogers]. Our very modest goal here is to
describe the simplest possible system that exhibits supersymmetry and try to place
it within some general context by defining what is called N = 2 supersymmetry.
This done we will briefly describe a familiar mathematical structure that serves as
a model of N = 2 supersymmetry and as the starting point of Edward Witten’s
extremely influential paper [Witten2] on Morse Theory.

What we would like to do is combine the bosonic and fermionic oscillators into
a single quantum system and then describe symmetry operators on this new system
that interchange bosonic and fermionic states. In order to have all of the components
assembled before us we will begin with a synopsis of what we have already done.

Bosonic Harmonic Oscillator

Hilbert space: HB = L2(R)
Lowering operator: b = 1

√
2mω~

(mωQ + iP)

Raising operator: b† = 1
√

2mω~
(mωQ − iP)

Commutation relations: [b, b]− = [b†, b†]− = 0, [b, b†]− = 1
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Number operator: NB = b†b
Hamiltonian: HB = 1

2~ω[b†, b]+ = ~ω(NB + 1
2 )

Orthonormal basis: ψ0 = ( mω
~π

)1/4e−mωq2/2~, ψn = 1
n! (b

†)nψ0, n = 1, 2, . . .
NBψn = nψn, n = 0, 1, 2, . . .

HBψn = Enψn = (n + 1
2 )~ωψn, n = 0, 1, 2, . . .

Fermionic Harmonic Oscillator

Hilbert space: HF = C2

Annihilation operator: f = 1
~
(S 1 + iS 2)

Creation operator: f † = 1
~
(S 1 − iS 2)

Anticommutation relations: [ f , f ]+ = [ f †, f †]+ = 0, [ f , f †]+ = 1
Number operator: NF = f † f

Hamiltonian: HF = 1
2~ω[ f †, f ]− = ~ω(NF −

1
2 )

Orthonormal basis: e0 =

(
0
1

)
, e1 =

(
1
0

)
NFe0 = 0 · e0, NFe1 = 1 · e1

HFe0 = − 1
2~ωe0, HFe1 = 1

2~ωe1

The combined system is called the supersymmetric harmonic oscillator or SUSY
harmonic oscillator and its Hilbert space is taken to be

HS = HB ⊗HF = L2(R) ⊗ C2.

The first order of business is to transfer all of the relevant operators on HB and HF

to the tensor product.
Remark 9.3.1. Suppose H1 and H2 are two complex, separable Hilbert spaces and
T1 and T2 are operators on H1 and H2, respectively. If T1 and T2 are bounded, then
one defines a bounded operator

T1 ⊗ T2 : H1 ⊗H2 → H1 ⊗H2

as follows. On the algebraic tensor product H1 ⊗alg H2 one defines (T1 ⊗ T2)(φ1 ⊗

φ2) = (T1φ1) ⊗ (T2φ2) and then extends by linearity. Since H1 ⊗alg H2 is dense in
H1 ⊗H2, boundedness gives a unique bounded extension to all of H1 ⊗H2. If the
operators are unbounded, then one can define T1⊗T2 at least on the algebraic tensor
product D(T1)⊗algD(T2), which is again dense in H1⊗H2. We will require only the
case in which one of the two operators is the identity. Since we will have a number
of such identity operators floating around we will abandon the rather nondescript 1
in favor of idHB , idHF , and idHS . We will also eschew the usual custom of using the
same symbol for an operator on H1 or H2 and the induced operator on the tensor
product obtained by tensoring with the identity.

Now define the number operator NS on HS by

NS = (NB ⊗ idHF ) + (idHB ⊗ NF)
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and the Hamiltonian HS a by

HS = (HB ⊗ idHF ) + (idHB ⊗ HF).

Exercise 9.3.1. Prove each of the following.

1. NB ⊗ idHF = (b† ⊗ idHF )(b ⊗ idHF )
2. idHB ⊗ NF = (idHB ⊗ f †)(idHB ⊗ f )
3. HS = ~ω

[
(b† ⊗ idHF )(b ⊗ idHF ) + (idHB ⊗ f †)(idHB ⊗ f )

]
= ~ωNS

Remark 9.3.2. The next few items on the agenda will be easier to write if we intro-
duce a bit of notation. If T is an operator on H and T has an eigenvalue λ we will
write the corresponding eigenspace Eλ(T ).

Notice that the operator idHB ⊗NF on HB⊗HF is bounded and given by (idHB ⊗

NF)(ψ ⊗ (a0e0 + a1e1)) = ψ ⊗ (a1e1).
Exercise 9.3.2. Show that idHB ⊗ NF is self-adjoint and satisfies ( idHB ⊗ NF )2 =

idHB ⊗NF so that it is an orthogonal projection. Conclude that its spectrum consists
of just the two eigenvalues λ = 0, 1 and show that E0(idHB ⊗ NF) = HB ⊗ E0(NF)
and E1(idHB ⊗ NF) = HB ⊗ E1(NF).

An essential ingredient in what we would like to do here is a unitary involution τ
on HS defined by

τ = idHS − 2(idHB ⊗ NF).

We show that τ is, indeed, a unitary involution as follows. Let ϕ be an element of
HS and compute

τ2ϕ = τ(ϕ − 2(idHB ⊗ NF)ϕ)
= ϕ − 2(idHB ⊗ NF)ϕ − 2(idHB ⊗ NF)(ϕ − 2(idHB ⊗ NF)ϕ)

= ϕ − 4(idHB ⊗ NF)ϕ + 4(idHB ⊗ NF)2ϕ

= ϕ

so τ is an involution.

τ2 = idHS

Exercise 9.3.3. Show that τ = idHS − 2(idHB ⊗ NF) satisfies 〈τϕ, τϕ〉 = 〈ϕ, ϕ〉 for
every ϕ ∈ HS and conclude that τ is a unitary operator on HS .

Since τ is an involution its spectrum consists of just the two eigenvalues λ =

1,−1. Furthermore, since τϕ = ϕ⇔ ϕ − 2(idHB ⊗ NF)ϕ = ϕ⇔ (idHB ⊗ NF)ϕ = 0,

E1(τ) = E0(idHB ⊗ NF) = HB ⊗ E0(NF).

Similarly,

E−1(τ) = E1(idHB ⊗ NF) = HB ⊗ E1(NF).
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Since τ is unitary, HS has an orthogonal decomposition as the direct sum of these
eigenspaces. Notice that E0(NF) and E1(NF) are both isomorphic to C so E1(τ) and
E−1(τ) are both copies of HB. We will denote them

H+
B = E1(τ) =

{
ϕ ∈ HS : τϕ = ϕ

}
and

H−B = E−1(τ) =
{
ϕ ∈ HS : τϕ = −ϕ

}
so that

HS = H+
B ⊕H

−
B.

The states in H+
B will be referred to as bosonic, while those in H−B are fermionic.

Remark 9.3.3. If we had not already used up the symbols HB and HF for the Hilbert
spaces of the bosonic and fermionic oscillators we would have called these sub-
spaces HB and HF instead of H+

B and H−B, as is more customary. When we general-
ize in a few moments and do not begin with the harmonic oscillators, we will adopt
this more common notation.
Exercise 9.3.4. Show that, if ϕ is in H+

B, then HSϕ is also in H+
B and if ϕ is in H−B,

then HSϕ is also in H−B.
Consequently, we can define operators

H+
S : H+

B → H+
B

and

H−S : H−B → H−B

by restricting HS . It is often convenient to think of HS as a diagonal matrix acting
on column vectors of states.

HS =

(
H+

S 0
0 H−S

)
:
H+

B
⊕

H−B

→

H+
B
⊕

H−B

The Hamiltonian HS , as you have just shown, preserves the bosonic and fermionic
subspaces of HS . Now we will introduce two operators D± that switch them. Specif-
ically, we define

D+ϕ =
√
~ω (b ⊗ idHF )(idHB ⊗ f †)

and

D−ϕ =
√
~ω (b† ⊗ idHF )(idHB ⊗ f ).
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Evaluating each of these at ϕ = ψ ⊗ A ∈ HS gives

D+ϕ = D+(ψ ⊗ A) =
√
~ω (bψ) ⊗ ( f †A)

and

D−ϕ = D−(ψ ⊗ A) =
√
~ω (b†ψ) ⊗ ( f A).

Exercise 9.3.5. Prove each of the following.

1. ϕ ∈ H+
B ⇒ D+ϕ ∈ H−B

2. ϕ ∈ H−B ⇒ D−ϕ ∈ H+
B

Thus,

D+|H+
B

: H+
B → H−B

and

D−|H−
B

: H−B → H+
B.

Now notice that

D+D−ϕ = D+(
√
~ω (b†ψ) ⊗ ( f A))

= ~ω
(

(b ⊗ idHF )(idHB ⊗ f †)
)
( (b†ψ) ⊗ ( f A) )

= ~ω (b ⊗ idHF )( (b†ψ) ⊗ ( f † f A) )

= ~ω (bb†ψ) ⊗ (NF A)

and, similarly,

D−D+ϕ = ~ω (NBψ) ⊗ ( f f †A).

Exercise 9.3.6. Show that

[D+,D−]+ = D+D− + D−D+ = ~ω (NB ⊗ idHF + idHB ⊗ NF) = HS .

Next we compute

D+D+ϕ =
√
~ωD+((bψ) ⊗ ( f †A)) = ~ω (bbψ) ⊗ ( f † f †A) = ~ω (bbψ) ⊗ 0 = 0

and, similarly,

D−D−ϕ = 0.

It follows from these that

(D+ + D−)2 = D+D+ + D+D− + D−D+ + D−D− = 0 + HS + 0 = HS .
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For future reference and in the hope that it might look vaguely familiar we will
summarize a few of the identities we have just derived.

D+D+ = 0
D−D− = 0

(D+ + D−)2 = HS

Remark 9.3.4. If these do not look familiar you might want to browse through Chap-
ter 6 of [Warner] or Chapter 2 of [Jost] on Hodge theory. We will return to this
shortly.

Shortly we will distill from the example we are now investigating the essential
ingredients of what is called N = 2 supersymmetry. There are three of them, the
first two of which (a Hilbert space HS of states and a unitary involution τ) we have
already seen. The third is an operator Q whose square is taken to be the Hamiltonian
of the system. We have just seen what this must be in our example. Define

Q = D+ + D−

so that

Q2 = HS .

From this it follows at once that Q commutes with the Hamiltonian so that

[Q,HS ]− = 0.

Exercise 9.3.7. Show that

1. τD+ = −D+τ and
2. τD− = −D−τ

and conclude that

[Q, τ]+ = 0.

Exercise 9.3.8. Show that, for ϕ1, ϕ2 ∈ HS ,

〈ϕ1,Qϕ2 〉 = 〈Qϕ1, ϕ2 〉.

At this point we have seen enough of the SUSY oscillator to motivate the general
definition of N = 2 supersymmetry, but there is one last item we would like to
discuss. HB has an orthonormal basis {ψnb }

∞
nb=0 of eigenstates for HB with energy

~ω (nb + 1
2 ).

HBψnb = ~ω (nb +
1
2

)ψnb , nb = 0, 1, 2, . . .

The ground state is ψ0 and has energy 1
2~ω. All of the eigenspaces are 1-dimensional.

Similarly, HF has an orthonormal basis {en f }n f =0,1 of eigenstates for HF with energy
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~ω (n f −
1
2 ).

HFen f = ~ω (n f −
1
2

) en f , n f = 0, 1.

The ground state is e0 and has energy− 1
2~ω. All of the eigenspaces are 1-dimensional.

HS therefore has an orthonormal basis consisting of all

ψnb ⊗ en f , nb = 0, 1, 2, . . . , n f = 0, 1.

Each ψnb ⊗ en f is an eigenstate for HS with energy ~ω(nb + n f ) because

HS (ψnb ⊗ en f ) = (HB ⊗ idHF )(ψnb ⊗ en f ) + (idHB ⊗ HF)(ψnb ⊗ en f )

= ~ω (nb +
1
2

)ψnb ⊗ en f + ~ω (n f −
1
2

)ψnb ⊗ en f

= ~ω (nb + n f )ψnb ⊗ en f .

The ground state is ψ0 ⊗ e0 and has energy 0. While the ground state is unique, we
will show now that all of the remaining eigenvalues are degenerate (the eigenspaces
have dimension greater than 1). To see this, fix an nb ≥ 1. Now notice that

ψnb ⊗ e0 and ψnb−1 ⊗ e1

have the same energy ~ωnb and

ψnb ⊗ e1 and ψnb+1 ⊗ e0

both have energy ~ω(nb + 1). Also,

ψ0 ⊗ e1 and ψ1 ⊗ e0

both have energy ~ω. One can phrase these results rather suggestively as follows.
The simultaneous creation of one bosonic quantum of energy and annihilation of
one fermionic quantum of energy (or vice versa) leaves the total energy unchanged.

There is much more one could say about the SUSY oscillator (see, for exam-
ple, Sections 2.1-2.5 of [Bagchi]), but we would now like to abstract the essential
features of this example in the form of a definition. We will say that a triple

(HS , τ, Q )

consisting of a complex, separable Hilbert space HS , a unitary involution τ on HS ,
and a self-adjoint operator Q on HS that anticommutes with τ is an instance of
N = 2 supersymmetry. The supersymmetric harmonic oscillator is one such and
we will see another soon. First we would like to develop a few of the elementary
consequences of the definition. We will pursue this only far enough that we can say
a few words about what Edward Witten [Witten2] has called “the most important
question about a supersymmetric theory”.
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Since τ is a unitary involution, its spectrum consists only of the two eigenvalues
±1 and HS has an orthogonal decomposition into the direct sum of the correspond-
ing eigenspaces E±1(τ). We define the bosonic and fermionic subspaces of HS by

HB = E1(τ)

and

HF = E−1(τ),

respectively, so that

HS = HB ⊕HF .

The Hamiltonian of (HS , τ, Q ) is defined by

HS = Q2.

There are domain issues here, of course, but these need to be resolved in each ex-
ample separately. The same is true of much of what follows. Notice that, since Q is
self-adjoint,

〈HSψ1, ψ2〉 = 〈ψ1,HSψ2〉

and, since Q anticommutes with τ,

τHS = τQ2 = (τQ)(Q) = (−Qτ)Q = −Q(τQ) = −Q(−Qτ) = Q2τ = HS τ

so

[HS , τ]− = 0.

Now, if ϕ ∈ HB, then τϕ = ϕ so

HSϕ = HS (τϕ) = τHSϕ

so

τHSϕ = τ2HSϕ = HSϕ

and therefore HSϕ is also in HB. Thus,

HS (HB) ⊆ HB.

Exercise 9.3.9. Prove each of the following.

1. HS (HF) ⊆ HF

2. Q(HB) ⊆ HF

3. Q(HF) ⊆ HB
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Thus, HS preserves the bosonic and fermionic subspaces, but Q reverses them.
We can therefore define operators

HB = HS |HB : HB → HB,

HF = HS |HF : HF → HF ,

D+ = Q |HB : HB → HF ,

D− = Q |HF : HF → HB.

Then

HB = D−D+

and

HF = D+D−.

Exercise 9.3.10. Show that, for ψ ∈ HB and ϕ ∈ HF ,

〈ψ,D−ϕ〉 = 〈D+ψ, ϕ〉.

Exercise 9.3.11. Prove each of the following.

1. Kernel (HB) = Kernel (D+)
2. Kernel (HF) = Kernel (D−)
3. Kernel (HS ) = Kernel (Q) = Kernel (D+) ⊕ Kernel (D−)

It is sometimes convenient to write HS and Q as 2 × 2 matrices of operators acting
on column vectors of states.

HS =

(
HB 0
0 HF

)
=

(
D−D+ 0

0 D+D−

)
:
HB

⊕

HF

→

HB

⊕

HF

Q =

(
0 D−

D+ 0

)
:
HB

⊕

HF

→

HB

⊕

HF

Finally, we will define operators Q1 and Q2, called supercharges, or generators
of the supersymmetry. The fact that there are two of them accounts for the “N = 2”
in “N = 2 supersymmetry”. Specifically, we set

Q1 = Q
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and

Q2 = iQτ.

Both of these reverse the bosonic and fermionic subspaces of HS and satisfy

Kernel Q1 = Kernel Q2 = Kernel Q = Kernel HS ,

〈Q1ψ1, ψ2〉 = 〈Qψ1, ψ2〉 = 〈ψ1,Qψ2〉 = 〈ψ1,Q1ψ2〉,

and

〈Q2ψ1, ψ2〉 = 〈iQτψ1, ψ2〉 = −i〈ψ1, τQψ2〉 = i〈ψ1,Qτψ2〉 = 〈ψ1,Q2ψ2〉.

Moreover,

Q2
1 = Q2 = HS

and

Q2
2 = −(Qτ)(Qτ) = −Q(τQ)τ = Q(Qτ)τ = Q2τ2 = Q2 = HS

so

Q2
1 = Q2

2 = HS .

Exercise 9.3.12. Show that

[Q1,Q2]+ = 0.

We can write these last few identities as

[Qi,Q j]+ = 2δi jHS , i, j = 1, 2.

Exercise 9.3.13. Show that Q1 and Q2 both commute with the Hamiltonian, that is,

[HS ,Qi]− = 0, i = 1, 2.

The seemingly endless barrage of identities that you are being subjected to actu-
ally has a serious purpose. We are in the process of uncovering a very fundamental
notion in supersymmetry. To fully expose it, however, will require one more identity
and, for this, a few definitions. Operators, such as HS , that preserve the bosonic and
fermionic subspaces of HS are said to be even and to have degree 0 ∈ Z2. Oper-
ators, such as Q1 and Q2, that reverse the bosonic and fermionic subspaces of HS

are said to be odd and to have degree 1 ∈ Z2. If an operator A is either even or odd
we will say that it is homogeneous and we will write its degree as |A| ∈ Z2. Since
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HS = HB ⊕HF , any operator can be written as the sum of an even operator and an
odd operator.

As we have seen, some operators satisfy commutation relations and some satisfy
anticommutation relations. To express all of these various relations in a uniform way
we will define the supercommutator of two homogeneous operators A and B on HS

by

[A, B]S = AB − (−1)|A| |B| BA

and then extend to all operators by decreeing that [ , ]S should be bilinear (products
and sums of degrees are in Z2 = {0, 1} and (−1)0 = 1, while (−1)1 = −1). If A and
B are both odd, then [A, B]S = [A, B]+, while, if either A or B is even, [A, B]S =

[A, B]−. Notice that it follows immediately from this that

[A, B]S = −(−1)|A| |B|[B, A]S .

The final identity we need is called the super Jacobi identity and it states that

(−1)|A| |C|
[
A, [B,C]S

]
S + (−1)|C| |B|

[
C, [A, B]S

]
S + (−1)|B| |A|

[
B, [C, A]S

]
S = 0.

To prove this we need to write out[
A, [B,C]S

]
S =

[
A, BC − (−1)|B| |C|CB

]
S =

[
A, BC

]
S + (−1)|B| |C|

[
A,CB

]
S

= ABC − (−1)|A| |BC| BCA − (−1)|B| |C|
(

ACB − (−1)|A| |CB|CBA
)

= ABC − (−1)|A| |B|+|A| |C| BCA − (−1)|B| |C|
(

ACB − (−1)|A| |C|+|A| |B|CBA
)
.

Consequently,

(−1)|A| |C|
[
A, [B,C]S

]
S =(−1)|A| |C|ABC − (−1)|A| |B|BCA−

(−1)|A| |C|+|B| |C|ACB + (−1)|A| |B|+|B| |C|CBA.

Changing the names gives

(−1)|C| |B|
[
C, [A, B]S

]
S =(−1)|C| |B|CAB − (−1)|C| |A|ABC−

(−1)|C| |B|+|A| |B|CBA + (−1)|C| |A|+|A| |B|BAC

and

(−1)|B| |A|
[
B, [C, A]S

]
S =(−1)|B| |A|BCA − (−1)|B| |C|CAB−

(−1)|B| |A|+|C| |A|BAC + (−1)|B| |C|+|C| |A|ACB.

Adding these last three one sees that everything cancels on the right-hand side.
Here is what we have shown. Let g = g0 ⊕ g1, where g0 is the vector space freely

generated by the even operator HS and g1 is the vector space freely generated by the
two odd operators Q1 and Q2. The elements of g0 are even and of degree 0, while
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those of g1 are odd and of degree 1. For homogeneous elements A and B in g, define

[A, B]S = AB − (−1)|A| |B|BA

and extend by bilinearity. Then [Qi,Q j]S = 2δi jHS , i, j = 1, 2, and [HS ,Qi]S =

0, i = 1, 2, imply that

[ gi, gj ]S ⊆ gi+j, i, j ∈ Z2 (9.26)

and, for homogeneous elements, we have

[A, B]S = −(−1)|A| |B|[B, A]S (9.27)

and

(−1)|A| |C|
[
A, [B,C]S

]
S + (−1)|C| |B|

[
C, [A, B]S

]
S + (−1)|B| |A|

[
B, [C, A]S

]
S = 0.

(9.28)

A Lie superalgebra is a Z2 graded vector space g = g0 ⊕ g1 with a bilinear map
[ , ]S : g ⊕ g → g satisfying (9.26) as well as (9.27) and (9.28) for homogeneous
elements A and B of g. We see then that N = 2 supersymmetry gives rise to a natural
Lie superalgebra.
Remark 9.3.5. Lie superalgebras are sometimes called super Lie algebras, but the
terminology can be misleading since a Lie superalgebra is not a Lie algebra at all.
Notice, however, that the restriction of [ , ]S to g0 × g0 is an ordinary Lie bracket
and therefore g0 is a Lie algebra. For the applications of supersymmetry to particle
physics one must proceed in the other direction, that is, one must begin with a given
Lie algebra g0 (such as the so-called Poincaré algebra) and construct a Lie super-
algebra for which g0 is the even part. Such Lie superalgebras are regarded as the
infinitesimal generators of supersymmetries in the same way that Lie algebras are
regarded as infinitesimal generators of symmetries in mechanics. A proper introduc-
tion to this requires very sophisticated physical ideas that are beyond our level here
(one might begin with the Preface and Introduction to [Sohn]). The rigorous study
of Lie superalgebras was initiated by Kac in [KacV].

Before leaving the general subject of N = 2 supersymmetry and proceeding to
our final example we would like to say a few words about a fundamental problem
in supersymmetry that has had a profound impact on both physics and mathematics.
Recall that the Hamiltonian for the supersymmetric harmonic oscillator has a ground
state ψ0 ⊗ e0 with energy 0 and that this ground state is unique. Now, in any N = 2
supersymmetric theory the Hamiltonian is, by definition, a square (HS = Q2) so
it follows from self-adjointness that its spectrum σ(HS ) is contained in [0,∞). In
general, 0 may or may not be in the spectrum and, if it is, it may or may not be an
eigenvalue. We will let

E0 = inf σ(HS ) (9.29)
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and we will consider only the case in which E0 is actually an eigenvalue of HS so
that there exists a ψ0 ∈ HS with ‖ψ0‖ = 1 and

HSψ0 = E0ψ0. (9.30)

ψ0 is then called a ground state of (HS , τ, Q ). Notice that it follows from this that

HS (Qψ0) = Q(HSψ0) = Q(E0ψ0) = E0(Qψ0). (9.31)

Thus, Qψ0 is also an eigenstate of HS with energy E0. Let’s think about this phys-
ically for a second. ψ0 is thought of as the state of some particle, either boson
or fermion, with ground state energy E0. Qψ0 is the state of another particle, ei-
ther fermion or boson because Q reverses these, with the same ground state energy
E0. The particles corresponding to ψ0 and Qψ0 are called superpartners and quan-
tum field theory has something to say about these superpartners. Specifically, if the
ground state energy E0 = 0, then ψ0 and Qψ0 must have the same mass.

The problem with this is that bosons and fermions with the same mass have
simply not been observed and, if they exist, they should have been observed since
lots of bosons and fermions have been produced in particle accelerators and the
mass/energy is the only impediment to the production of particles in accelerators.
The conclusion we draw from this is that a realistic supersymmetric theory cannot
have a ground state energy E0 = 0. There is some terminology in physics used to
describe what is going on here.

An N = 2 supersymmetry (HS , τ, Q ) for which E0 = 0 is said to be unbroken.;
if E0 > 0, then the supersymmetry (HS , τ, Q ) is said to be spontaneously broken.
We have just seen that a realistic supersymmetric theory must be spontaneously
broken and this simply amounts to the requirement that the equation HSψ = 0 has
no nontrivial solutions in HS or, equivalently (Exercise 9.3.11), the equation

Qψ = 0

has no nontrivial solutions in HS . Stated otherwise, in a spontaneously broken su-
persymmetric theory zero is not an eigenvalue of Q.
Remark 9.3.6. Group theory provides a context in which symmetry breaking in
physics can be defined precisely and studied. We will not pursue this at all and will
say only that, if supersymmetry (symmetry between bosons and fermions) is a real
physical symmetry, then the symmetry must have been broken at some point in the
past and is no longer visible to us because we do not observe bosons and fermions
of the same mass. This is analogous to the discovery made by Pierre Curie that, be-
yond a certain critical temperature Tc, ferromagnetic materials lose their magnetic
properties because the alignment of the magnetic moments of the atoms is destroyed
by thermal agitation. For T > Tc the ground state (state of minimal energy) has a
rotational symmetry in the sense that there is no preferred direction in space, but
for T < Tc this symmetry is destroyed. Notice that the rotational symmetry can
be restored by raising the temperature, that is, the ground state energy. It has been
suggested that supersymmetry was visible in the very early universe shortly after
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the big bang and could become visible again if we had access to accelerators with
sufficiently high energies; so far this does not appear to be working out (see page
489).

How could one show that Qψ = 0 has no nontrivial solutions in HS ? Generally,
this is a difficult problem. Q is typically some differential operator and we are asking
about its smallest eigenvalue. In some circumstances one can obtain a lower bound
on the energy eigenvalues and, if this happens to be positive, then 0 cannot be an
eigenvalue and Qψ = 0 can have no nontrivial solutions. As a rule, however, such
direct estimates are generally inaccessible. Witten [Witten2] proposed an indirect
method that can sometimes provide an answer to our question and we will just
briefly describe the idea.

We have Q written as

Q =

(
0 D−

D+ 0

)
:
HB

⊕

HF

→

HB

⊕

HF .

and will now focus our attention on D+ : HB → HF . Then D− : HF → HB is the
adjoint of D+ (Exercise 9.3.10). We will assume that D+ is a Fredholm operator.
Remark 9.3.7. A densely defined, closed operator T : H1 → H2 between separable,
complex Hilbert spaces is Fredholm if it has closed range and both Kernel T and
Kernel T ∗ are finite-dimensional.
We can then define the Fredholm index of D+ by

ind D+ = dim (Kernel D+) − dim (Kernel D−).

Now, it follows from Exercise 9.3.11 that

dim (Kernel Q) = dim (Kernel D+) + dim (Kernel D−)

so, in particular, if ind D+ , 0, then dim (Kernel Q) , 0 as well so zero is an eigen-
value of Q and the supersymmetry is unbroken. In the context of supersymmetry,
ind D+ is generally called the Witten index and computing it for a given supersym-
metric theory is a problem of considerable interest. One can interpret the Witten
index physically in the following way. In general, a state of zero energy is referred
to in physics as a zero mode. In our context, the zero modes are just the elements
of the kernel of Q. Thus, ind D+ is the number of linearly independent bosonic zero
modes minus the number of linearly independent fermionic zero modes.

One can say very little about the zero modes of supersymmetric theories in gen-
eral. For those with an interest in pursuing further some specific examples that arise
in physics we might suggest [Witten1] or, for a mathematically rigorous treatment,
[JLL]. We will say no more about these, but will conclude with one more example
of an N = 2 supersymmetry (HS , τ, Q ). This one arises, not in physics, but in
mathematics.
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Remark 9.3.8. The idea behind this example is very simple, but formulating it all
precisely enough to fit our rigorous definition of N = 2 supersymmetry draws upon
quite a surprising amount of machinery. Probably the best single source for the
material we will require is [Warner], especially Chapters 2, 4, and 6.

We begin with a compact, connected, oriented, smooth, n-dimensional manifold
X with a Riemannian metric g. Recall that g assigns to each tangent space Tx(X) a
positive definite inner product gx = 〈 , 〉x and that these vary smoothly from point
to point in the sense that, if V and W are smooth vector fields on X, then x ∈
X 7→ 〈V(x),W(x)〉x ∈ R is a smooth real-valued function on X. We will denote
by Ωp(X), p = 0, 1, . . . , n, the C∞(X;R)-module of real-valued p-forms on X. Our
construction will begin with the de Rham complex

0→ Ω0(X)
d0
→ Ω1(X)

d1
→ Ω2(X)

d2
→ · · ·

dp−1
→ Ωp(X)

dp
→ Ωp+1(X)

dp+1
→ · · ·

dn−1
→ Ωn(X)→ 0,

(9.32)

where each dp is the exterior derivative acting on p-forms so that dp+1dp = 0 for
each p = 0, 1, . . . , n − 2 (soon we will adopt the usual custom of writing all of
these as d and dp+1dp = 0 as d2 = 0). The de Rham cohomology groups with real
coefficients are defined for 0 < p < n by

Hp(X;R) = Kernel (dp)/Image (dp−1)

and for p = 0 and p = n by

H0(X;R) = Kernel (d0), Hn(X;R) = Ωn(X)/Image (dn−1).

However, since we are trying to build a complex Hilbert space HS we will actu-
ally be interested in complex-valued differential forms. These are obtained simply
by tensoring (over R) each Ωp(X) with C thought of as a 2-dimensional real vector
space.
Exercise 9.3.14. As a reminder, we should review a few facts about the complexifi-
cation of a real vector space V. For this we regard C as a 2-dimensional real vector
space and define VC = V ⊗R C. If {e1, . . . , en} is a basis for V and if we take {1, i}
as a basis for C, then {e1 ⊗ 1, . . . , en ⊗ 1, e1 ⊗ i, . . . , en ⊗ i} is a basis for VC as a real
vector space.

1. Show that VC becomes a complex vector space if one defines complex scalar
multiplication by α(v ⊗ β) = v ⊗ (αβ) for all v ∈ V and all α, β ∈ C.

2. Show that any element v of VC can be written as v = v1 ⊗ 1 + v2 ⊗ i, where
v1, v2 ∈ V, and henceforth adopt the usual notational convention and write this
simply as v1 + v2i.

3. Show that, if a1 + a2i ∈ C and v1 + v2i ∈ VC, then

(a1 + a2i)(v1 + v2i) = (a1v1 − a2v2) + (a1v2 + a2v1)i.

4. Show that the complex dimension of VC is equal to the real dimension of V.
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5. Let 〈 , 〉 be a positive definite inner product on V and define 〈 , 〉C : VC×VC → C

by

〈 v1 + v2i, w1 + w2i 〉C = 〈v1,w1〉 + 〈v2,w2〉 + i ( 〈v1,w2〉 − 〈v2,w1〉 ).

Show that 〈 , 〉C is a Hermitian inner product on VC, complex linear in the second
slot and conjugate linear in the first.

6. Apply this construction to Ωp(X) and show that the elements of Ωp(X)C =

Ωp(X)⊗C can be regarded as differential forms with complex-valued coefficients.

Thinking of the elements of Ωp(X)⊗C as differential forms with complex-valued
coefficients one defines dp by computing exterior derivatives of real and imaginary
parts and then the entire apparatus of de Rham theory goes through without change
for

0→ Ω0(X) ⊗ C
d0
→ Ω1(X) ⊗ C

d1
→ Ω2(X) ⊗ C

d2
→ · · ·

dp−1
→

Ωp(X) ⊗ C
dp
→ Ωp+1(X) ⊗ C

dp+1
→ · · ·

dn−1
→ Ωn(X) ⊗ C→ 0. (9.33)

For example, the de Rham cohomology groups with complex coefficients are defined
for 0 < p < n by

Hp(X;C) = Kernel (dp)/Image (dp−1)

and for p = 0 and p = n by

H0(X;C) = Kernel (d0), Hn(X;C) = Ωn(X)/Image (dn−1).

We will summarize those just those parts of the apparatus that we will need.
Remark 9.3.9. The elements of Ω0(X) are simply smooth, real-valued functions on
X. We have seen (Remark 2.2.5) that smooth vector fields on X can also be regarded
as functions on X, specifically, as sections of the tangent bundle T X and (Remark
2.3.2) that smooth 1-forms on X, that is, the elements of Ω1(X), can be identified
with sections of the cotangent bundle T ∗X. As it happens, the elements of anyΩp(X)
can be described in a similar way (indeed, this is how p-forms are defined in Section
2.14 of [Warner]). Since we will soon find this point of view particularly fruitful, we
will pause for a moment to briefly describe the context in which it is done (details
are available in [Warner] and in many other places as well, for example, Volume I
of [Sp2]).

T X and T ∗X are manifolds built by supplying a differentiable structure to the
disjoint union of the vector spaces Tx(X) and T ∗x (X), for x ∈ X, respectively, and for
each there is a natural smooth projection π onto X. The general context we have in
mind is contained in the following definitions. Let F denote either R or C and k a
positive integer. Then a k-dimensional smooth F-vector bundle over the manifold X
consists of a smooth manifold E and a smooth map π : E → X of E onto X such
that the following conditions are satisfied.
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1. Each of the fibers π−1(x0) for x0 ∈ X has the structure of a k-dimensional vector
space over F.

2. (Local Triviality) For each x0 ∈ X there exists an open neighborhood U of x0 in
X and a diffeomorphism Φ : π−1(U)→ U ×Fk such that each of the following is
satisfied.

a. π1 ◦Φ = π, where π1 : U × Fk → U is the projection onto the first factor.
b. For each x ∈ U the map Φx : π−1(x)→ Fk defined by Φx = π2 ◦Φ|π−1(x) is an

F-vector space isomorphism, where π2 : U × Fk → Fk is the projection onto
the second factor.

Exercise 9.3.15. Check the local triviality condition for both T X and T ∗X.
k is called the fiber dimension of the vector bundle and the pair (U, Φ) is called a
local trivialization of the bundle. By shrinking U if necessary one can (and we will)
always assume that U is a coordinate neighborhood for the manifold X. A section of
the vector bundle is a smooth map s : X → E satisfying π ◦ s = idX . Thus, a section
selects an element in the vector space π−1(x) for each x ∈ X and the selections vary
smoothly with x. The trivial k-dimensional F-vector bundle over X is simply the
product E = X × Fk with π : X × Fk → X being just the projection onto the first
factor. Notice that smooth F-valued functions on X can be regarded as sections of
the trivial bundle X × F by simply identifying the function with its graph.

All of the usual operations by which one produces new vector spaces from given
vector spaces (subspaces, duals, direct sums, tensor products, exterior powers, etc.)
have direct analogues for vector bundles which just apply the vector space oper-
ations to the fibers. In particular, one can construct the pth exterior power of the
cotangent bundle T ∗X, generally denoted ∧p(T ∗X). Smooth p-forms on X are then
identified with sections of ∧p(T ∗X). Similarly, one can complexify the fibers of T ∗X
and form the pth exterior power to obtain a vector bundle denoted ∧p(T ∗X⊗C). The
complex-valued p-forms on X are just sections of ∧p(T ∗X ⊗ C).

This point of view is fruitful because it allows us to think of the de Rham com-
plexes (9.32) and (9.33) as sequences of differential operators on sections of vector
bundles and, as we will see, this is not only useful for us, but suggests the possibility
of a vast generalization of what we will describe here.

The fibers of an R-vector bundle are isomorphic copies of some real vector space
V. If V has a positive definite inner product 〈 , 〉, then this will induce a positive
definite inner product 〈 , 〉x on each fiber π−1(x). In general, a fiber metric on an R-
vector bundle π : E → X is an assignment of a positive definite inner product 〈 , 〉x
to each fiber π−1(x) that varies smoothly with x in the sense that x 7→ 〈s1(x), s2(x)〉x
is a smooth real-valued function on X for any sections s1 and s2. If E = T X, this
is just a Riemannian metric. A fiber metric on a C-vector bundle π : E → X is
an assignment of a Hermitian inner product 〈 , 〉x to each fiber π−1(x) that varies
smoothly with x in the sense that x 7→ 〈s1(x), s2(x)〉x is a smooth complex-valued
function on X for any sections s1 and s2.

Since X is a compact, oriented n-manifold with a Riemannian metric g there is a
standard procedure for supplying each Ωp(X) with a positive definite inner product
which we will briefly sketch. The metric and the orientation determine a unique vol-
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ume form volg ∈ Ωn(X) and any element of Ωn(X) can be uniquely written as some
smooth, real-valued function on X times volg. Moreover, the metric and orientation
also determine, for each p = 0, 1, . . . , n, an isomorphism

∗ : Ωp(X)→ Ωn−p(X),

called the Hodge star operator; the image of β ∈ Ωp(X) under this isomorphism is
denoted ∗β. Consequently, for α, β ∈ Ωp(X), α ∧ ∗β is in Ωn(X) so

α ∧ ∗β = 〈α , β〉 volg

for some smooth, real-valued function 〈α , β〉 on X called the pointwise inner prod-
uct of α and β. One then obtains an inner product on Ωp(X) by integrating over
X. ∫

X
α ∧ ∗β =

∫
X
〈α , β〉 volg, α, β ∈ Ωp(X)

Applying Exercise 9.3.14 (5) to 〈 , 〉 on each fiber of Ωp(X) one obtains a Hermitian
fiber metric onΩp(T ∗X⊗C) which we will also write simply as 〈 , 〉 rather than 〈 , 〉C

since we will not have occasion to use the real-valued function again. Integrating
then gives an L2-inner product on Ωp(X) ⊗ C.

〈α, β〉L2 =

∫
X
〈α , β〉 volg, α, β ∈ Ωp(X) ⊗ C

The completion of Ωp(X)⊗C with respect to this inner product is called the Hilbert
space of L2-sections of ∧p(T ∗X ⊗ C), or simply the space of L2-forms of degree p
on X and we will denote it

L2(Ωp(X) ⊗ C).

The elements of L2(Ωp(X) ⊗ C) are, as usual, equivalence classes of sections that
differ only on a set of measure zero, the measure being the one determined by the
metric volume form volg on X.

Because we are interested primarily in the construction of a complex Hilbert
space HS for our example of an N = 2 supersymmetry we will henceforth re-
strict our attention to the complex case. With respect to the L2-inner products on
the smooth forms each dp−1 : Ωp−1(X) ⊗ C → Ωp(X) ⊗ C has a formal adjoint
δp : Ωp(X) ⊗ C → Ωp−1(X) ⊗ C defined by the condition that, for α ∈ Ωp−1(X) ⊗ C
and β ∈ Ωp(X) ⊗ C,

〈 dp−1α, β 〉L2 = 〈α, δpβ 〉L2 .

Exercise 9.3.16. Show that δp−1δp = 0 for p = 1, . . . , n.
It follows from basic properties of the Hodge star operator and Stokes’ Theorem
that
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δp = (−1)n(p+1)+1 ∗ dn−p ∗ .

It’s usful to keep the following diagrams in mind.

Ωp−1(X) ⊗ C
dp−1
−→ Ωp(X) ⊗ C

dp
−→ Ωp+1(X) ⊗ C

Ωp−1(X) ⊗ C
δp
←− Ωp(X) ⊗ C

δp+1
←− Ωp+1(X) ⊗ C

Now define, for each p = 0, 1, . . . , n, the Hodge Laplacian (also called the
Laplace-Beltrami operator)

∆p : Ωp(X) ⊗ C→ Ωp(X) ⊗ C

as follows. For p = 0,

∆0 = δ1d0,

and, for p = n,

∆n = dn−1δn,

while, for 1 ≤ p ≤ n − 1,

∆p = δp+1dp + dp−1δp.

Notice that, for α, β ∈ Ωp(X) ⊗ C,

〈∆pα, β 〉L2 = 〈 δp+1dpα + dp−1δpα, β 〉L2

= 〈 δp+1dpα, β 〉L2 + 〈 dp−1δpα, β 〉L2

= 〈 dpα, dpβ 〉L2 + 〈 δpα, δpβ 〉L2

= 〈α, δp+1dpβ 〉L2 + 〈α, dp−1δpβ 〉L2

= 〈α, ∆pβ 〉L2

so ∆p is formally self-adjoint with respect to 〈 , 〉L2 for 1 ≤ p ≤ n − 1; the same is
true of ∆0 and ∆n. A p-form α in the kernel of ∆p (∆pα = 0 ∈ Ωp(X) ⊗ C) is said to
be Hodge harmonic.
Exercise 9.3.17. Show that α ∈ Ωp(X) ⊗ C is Hodge harmonic if and only if it is
closed (dpα = 0) and co-closed (δpα = 0). Hint: One direction is obvious; for the
other, compute 〈∆pα, α〉L2 .
Remark 9.3.10. Although we will not make any serious use of them we would feel
remiss if we did not mention two quite deep results that lie at the heart of Hodge
theory (these are proved in great detail in Chapter 6 of [Warner]).

Theorem 9.3.1. (Hodge Decomposition Theorem) Let X be a compact, connected,
oriented, smooth, Riemannian n-manifold and 0 ≤ p ≤ n an integer. Then the space
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of Hodge harmonic p-forms is finite-dimensional and Ωp(X) ⊗ C admits an L2-
orthogonal direct sum decomposition

Ωp(X) ⊗ C = Image∆p ⊕ Kernel∆p.

Consequently, the equation ∆pα = β has a solution in Ωp(X) ⊗ C if and only if β is
orthogonal to the space of Hodge harmonic p-forms.

Corollary 9.3.2. Each de Rham cohomology class on a compact, oriented, Rieman-
nian manifold contains a unique Hodge harmonic representative.

We should note in passing that, by the Corollary, the pth de Rham cohomology
group of a compact, oriented, Remannian n-manifold X is isomorphic to the space
of Hodge harmonic p-forms on X for each p = 0, 1, . . . , n. In particular, the Euler
characteristic χ(X) of X, which is defined to be the alternating sum of the dimensions
of the cohomology groups, is also given by

n∑
p=0

(−1)pdim (Kernel∆p). (9.34)

But the Euler characteristic is a topological invariant of a compact manifold and this
last formula expresses it in terms of analytic data (the number of independent solu-
tions to the partial differential equations ∆pα = 0 on Ωp(X) ⊗C for p = 0, 1, . . . , n).
The expression in (9.34) is called the analytic index of the de Rham complex (9.33)
and it just so happens to be a topological invariant of the underlying manifold. There
is a vast generalization of this scenario due to Atiyah and Singer. We will have noth-
ing further to say about this other than to suggest [LM] or [Palais1] as sources for
those interested in pursuing it.

Next we need to consolidate all of the spaces of forms Ωp(X) ⊗ C into a single
object. We do this by forming their vector space direct sum.

Ω∗(X) ⊗ C =

n⊕
p=0

Ωp(X) ⊗ C

We will identify eachΩp(X)⊗C with a subspace ofΩ∗(X)⊗C and write the elements
ofΩ∗(X)⊗C as sums of elements of these subspaces.Ω∗(X)⊗C is not only a complex
vector space, but also a C∞(X;C)-module and we will extend the Hermitian inner
products on theΩp(X)⊗C toΩ∗(X)⊗C by declaring the distinct summandsΩp(X)⊗C
to be mutually orthogonal. Furthermore, we will define linear transformations

d : Ω∗(X) ⊗ C→ Ω∗(X) ⊗ C,

δ : Ω∗(X) ⊗ C→ Ω∗(X) ⊗ C,

and



9.3 N = 2 Supersymmetry and the Harmonic Oscillator 509

∆ : Ω∗(X) ⊗ C→ Ω∗(X) ⊗ C

by

d |Ωp(X)⊗C = dp,

δ |Ωp(X)⊗C = δp,

and

∆ |Ωp(X)⊗C = ∆p,

respectively. The object of real interest, however, is the linear transformation

d + δ : Ω∗(X) ⊗ C→ Ω∗(X) ⊗ C.

Notice that, for α ∈ Ωp(X) ⊗ C,

(d + δ)α = dpα + δpα ∈
[
Ωp+1(X) ⊗ C

]
⊕

[
Ωp−1(X) ⊗ C

]
.

Exercise 9.3.18. Show that d + δ is formally self-adjoint and, for α ∈ Ωp(X) ⊗ C,

(d + δ)2α = ∆pα.

The result of this exercise can be written simply as (d + δ)2 = ∆ . To jog the
memory just a bit let’s record this with two other identities we have proved (you
may want to revisit Remark 9.3.4 at this point).

d2 = 0

δ2 = 0

(d + δ)2 = ∆

Next define a linear map T : Ω∗(X) ⊗ C→ Ω∗(X) ⊗ C by

T |Ωp(X)⊗C = (−1)p,

that is, Tα = (−1)pα for all α ∈ Ωp(X) ⊗ C. Then T clearly preserves the Hermitian
inner product on Ω∗(X) ⊗C, satisfies T2 = id Ω∗(X)⊗C, and anticommutes with d + δ.
Consequently, T has precisely two eigenvalues, 1 and -1, and Ω∗(X) ⊗ C has an
orthogonal decomposition into the direct sum of the corresponding eigenspaces.
The eigenspace E1(T) consists precisely of the forms with even degree while E−1(T)
consists of those with odd degree so we obtain a Z2 grading

Ω∗(X) ⊗ C =
[
Ω0(X) ⊗ C

]
⊕

[
Ω1(X) ⊗ C

]
,

where
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Ω0(X) ⊗ C =
⊕

p≡0 mod 2

Ωp(X) ⊗ C

and

Ω1(X) ⊗ C =
⊕

p≡1 mod 2

Ωp(X) ⊗ C.

This should all be sounding very familiar so we will pause for a moment to
compare what we have at this point with what we actually want. Here is what we
want

Hilbert space: HS

Unitary involution: τ

Supercharge: Q

Hamiltonian: HS = Q2

and here is what we have

Ω∗(X) ⊗ C
T

d + δ

∆ = (d + δ)2.

Conspicuously absent from what we have is the Hilbert space structure. Ω∗(X) ⊗ C

is a Hermitian inner product space, T is a unitary involution on this inner product
space, and d + δ is formally self-adjoint and anticommutes with T, but Ω∗(X)⊗C is
not a Hilbert space because it is not complete. To produce an N = 2 supersymmetry
we must complete Ω∗(X)⊗C to a Hilbert space and extend the operators T and d +δ
to the completion while preserving the desired properties of these operators. Not
surprisingly, this requires some analytic work.

We mentioned earlier (page 505) that the reason for wanting to think of the
smooth differential forms on X as sections of vector bundles is that one can then
regard any exterior derivative operator as a 1st order differential operator on these
sections and that this would prove to be useful; now we will see why it is useful. We
begin with a few general definitions. Let πE : E → X and πF : F → X be two com-
plex vector bundles over the compact, connected, oriented, Riemannian n-manifold
X with fiber dimensions k and l, respectively, and each equipped with a Hermitian
fiber metric, denoted 〈 , 〉E and 〈 , 〉F , respectively. We will denote the C∞(X;C)-
modules of smooth sections of the vector bundles by Γ(E) and Γ(F), respectively;
in particular, these are complex vector spaces. A complex-linear map

D : Γ(E)→ Γ(F)
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is called a (linear) differential operator of order m if, roughly speaking, “it locally
looks like an mth-order differential operator on Rn”. To make this precise we select
an open coordinate neighborhood U on X with coordinates x1, . . . , xn and with the
property that both E and F have local trivializations ΦE : π−1

E (U) → U × Ck and
ΦF : π−1

F (U) → U × Cl over U. On U the sections of E and F can be identified
with C∞(U;Ck) and C∞(U;Cl), respectively, and what we require is that, for every
f ∈ C∞(U;Ck), D f ∈ C∞(U;Cl) is of the form

(D f )(x) =
∑
|α|≤m

Aα(x)(∂α f )(x),

where α is a multi-index (see Remark 8.4.4), f is a column vector of smooth,
complex-valued functions on U, ∂α f is computed entrywise, and Aα(x) is some
k× l matrix of smooth, complex-valued functions on U with Aα , 0 for some α with
|α| = m.
Remark 9.3.11. A change of coordinates shows that this definition is independent
of the choice of coordinates, but it is also possible to give an invariant definition of
linear differential operators in terms of jet bundles (see Section 3, Chapter IV, of
[Palais1]).
Example 9.3.1. For our purposes the most important examples are the exterior dif-
ferentiation operators

dp : Ωp(X) ⊗ C→ Ωp+1(X) ⊗ C

which are differential operators of order 1. Just to get an idea of how the no-
tation works we’ll write it out explicitly when p = 1 and n = 3. Thus, we
choose an arbitrary coordinate neighborhood U in X with coordinates x1, x2, x3

and above which the exterior bundles ∧1(T ∗X ⊗ C) and ∧2(T ∗X ⊗ C) are both
trivial. On U we identify the sections in Γ(∧1(T ∗X ⊗ C)) = Ω1(X) ⊗ C and
Γ(∧2(T ∗X⊗C)) = Ω2(X)⊗C with C∞(U;C3) and C∞(U;C3), respectively, by iden-
tifying forms with their components relative to the standard bases {dx1, dx2, dx3}

and {dx1 ∧ dx2, dx2 ∧ dx3, dx1 ∧ dx3}. Since α = a1dx1 + a2dx2 + a3dx3 implies
d1α = (∂1a2 − ∂2a1)dx1 ∧ dx2 + (∂2a3 − ∂3a2)dx2 ∧ dx3 + (∂1a3 − ∂3a1)dx1 ∧ dx3,
we have

d1

a1
a2
a3

 =

∂1a2 − ∂2a1
∂3a2 − ∂2a3
∂1a3 − ∂3a1

 =

0 1 0
0 0 0
0 0 1


∂1a1
∂1a2
∂1a3

 +

−1 0 0
0 0 1
0 0 0


∂2a1
∂2a2
∂2a3

 +

 0 0 0
0 −1 0
−1 0 0


∂3a1
∂3a2
∂3a3


=

0 1 0
0 0 0
0 0 1

 ∂1

a1
a2
a3

 +

−1 0 0
0 0 1
0 0 0

 ∂2

a1
a2
a3

 +

 0 0 0
0 −1 0
−1 0 0

 ∂3

a1
a2
a3

 .
Although a bit messier to write out explicitly it should be clear that the same sort of
decomposition occurs for any dp : Ωp(X) ⊗ C→ Ωp+1(X) ⊗ C so these are, indeed,
1st order differential operators.
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To obtain the Hilbert space HS one needs to extend our discussion of the Sobolev
spaces in Remark 8.4.4 from complex-valued functions on Rn to sections of com-
plex vector bundles. This can be done in a number of ways and we will sketch one
of them (a much more detailed discussion from a more general point of view is
available in Chapters IX and X of [Palais1]). Intuitively, the idea is simple enough.
Locally, a section of πE : E → X is a smooth map from an open set U in Rn to Ck

and for these we have defined Sobolev norms (Remark 8.4.4) so we would like to
piece these together with a partition of unity to get a Sobolev norm on the sections
of E, and then complete the space of sections with respect to this norm to get a
Hilbert space.

What follows is a digression on Sobolev spaces of sections of vector bundles. If you
would prefer to take this for granted you should proceed directly to page 513.

We will consider an arbitrary complex vector bundle πE : E → X with Hermitian
fiber metric 〈 , 〉E over a compact, connected, oriented, Riemannian n-manifold X.
We begin by constructing a specific type of finite open cover for X. We will denote
by Bn(r) the open ball of radius r > 0 about the origin in Rn and by B

n
(r) its

closure in Rn. At each point x0 in X we can choose a chart whose image is an open
set about the origin in Rn containing Bn( 3

2 ). Call the inverse image of Bn( 3
2 ) under

the chart map Ux0 and denote the restriction of the chart map to Ux0 by ϕx0 . Thus,
ϕx0 : Ux0 → Bn( 3

2 ) is a diffeomorphism. In particular, Ux0 is contractible so the
bundle πE : E → X is trivial over Ux0 and π−1

E (Ux0 ) can be identified with Ux0 ×C
k.

Remark 9.3.12. Any vector bundle over a contractible space is trivial, but this is cer-
tainly not obvious. We will not supply a proof, but will simply send those interested
in seeing one to Section 3, Chapter II, of [Osborn].
Denote by y = (y1, . . . , yn) the coordinates supplied to Ux0 by ϕx0 . These are also
coordinates on Vx0 = ϕ−1

x0
(Bn(1)) ⊆ Ux0 and on Wx0 = ϕ−1

x0
(Bn( 1

√
2
)) ⊆ Vx0 ⊆ Ux0 . On

Vx0 we make the change of coordinates

y = (y1, . . . , yn)→ x = (x1, . . . , xn) =
1√

1 − ‖y‖2
(y1, . . . , yn)

to get a new chart φx0 on Vx0 and Wx0 . Notice that φx0 (Vx0 ) = Rn and φx0 (Wx0 ) =

Bn(1).
All of this can be done for any x0 ∈ X so {Wx0 : x0 ∈ X} is an open cover for X.

By compactness, we can select a finite subcover {W1, . . . ,WN} together with open
sets V1, . . . ,VN and U1, . . . ,UN in X satisfying Wi ⊆ Vi ⊆ V i ⊆ Ui for i = 1, . . . ,N
and each of the following.

1. πE : E → X is trivial over Ui for each i = 1, . . . ,N.
2. There are charts φi : Vi → Rn with φI(Vi) = Rn and φi(Wi) = Bn(1) for i =

1, . . . ,N.

Now we select a smooth partition of unity {χ1, . . . , χN} on X subordinate to
{W1, . . . ,WN}, that is, a family of smooth functions χi : X → [0, 1] on X with
supports satisfying supp χi ⊆ Wi for each i = 1, . . . ,N and, for each x ∈ X,
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i=1 χi(x) = 1. The existence of such a partition of unity is proved, for example,

in Section 3.1 of [Nab4], but in many other places as well (for example, Corollary
16, Chapter 2, Volume I, of [Sp2], or Appendix 3, Volume I, of [KN]).

Now consider a section s : X → E of E. Since
∑N

i=1 χi(x) = 1 for each x ∈ X, we
can write s as s =

∑N
i=1 si, where si = χis for each i = 1, . . . ,N. In the coordinate

trivializations we have chosen each si can be identified with a smooth, Ck-valued
function on Rn with compact support contained in the unit ball Bn(1). For these we
have Sobolev K-norms (page 386) so we can defined the Sobolev K-norm of s by

‖s‖HK =

N∑
i=1

‖si‖HK .

The completion of Γ(E) with respect to this norm is a Hilbert space that we will
denote

L2
K(E).

In particular, the smooth sections Γ(E) are dense in every L2
K(E). Clearly, we made

a great many choices in arriving at this definition (trivializations, coordinates, parti-
tions of unity), but one can show that different choices give rise to equivalent norms
and therefore to the same L2

K(E). This is proved in Section 2, Chapter III, of [LM].

This is the end of the digression on Sobolev spaces of sections.

We now have available a plethora of Hilbert spaces of sections of our vector
bundle πE : E → X which we can arrange in a chain of dense inclusions (compare
(8.26))

· · · ⊆ L2
K(E) ⊆ · · · ⊆ L2

2(E) ⊆ L2
1(E) ⊆ L2

0(E) = L2(E).

These Sobolev spaces have many properties that make them ideal arenas in which
to study partial differential equations. Although we will need relatively few of these
it seems worthwhile to enumerate some of the most basic properties just to get a
sense of how nice these spaces really are. For the proofs of these and for a great deal
more as well we refer you to any one of our principal references, that is [Warner],
[LM], or [Palais1]. Each of these sources also contains a great deal of important
information about elliptic operators which is perhaps the most interesting part of
the story, but which we will not consider.

We let πE : E → X and πF : F → X be two complex vector bundles with fiber
dimensions k and l, respectively, over the compact, connected, oriented, Riemannian
n-manifold X.

1. Every differential operator

D : Γ(E)→ Γ(F)

of order m extends extends to a bounded linear operator
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DK : L2
K(E)→ L2

K−m(F)

for every K ≥ m.
2. The Hilbert space adjoint of the extension DK of D is the extension of the formal

L2-adjoint D∗ of D.

(DK)∗ = (D∗)K−m

3. Let C0(E) denote the continuous sections of E. Then, for K > n
2 ,

L2
K(E) ⊆ C0(E)

in the sense that every equivalence class in L2
K(E) has a continuous representative.

4. Let Cr(E) denote the r times continuously differentiable sections of E. Then, for
K > n

2 + r,

L2
K(E) ⊆ Cr(E)

in the sense that every equivalence class in L2
K(E) has an r times continuously dif-

ferentiable representative. Thus, by choosing K sufficiently large we can ensure
any desired degree of differentiability for the elements of L2

K(E). In particular, a
section that is in L2

K(E) for every K = 1, 2, . . . is smooth.
5. The inclusion L2

K+1(E) ⊆ L2
K(E) is compact in the sense that a sequence that is

bounded in L2
K+1(E) has a subsequence that converges in L2

K(E).

Now, finally we can specialize all of this machinery to construct our example of
an N = 2 supersymmetry (HS , τ, Q ). The procedure is virtually identical to that for
Ω∗(X) ⊗ C, but with smooth objects replaced by L2 objects. Begin by considering
the complex vector bundle ∧p(T ∗X ⊗ C). Then Ωp(X) ⊗ C = Γ(∧p(T ∗X ⊗ C)).
The exterior derivative dp : Γ(∧p(T ∗X ⊗ C)) → Γ(∧p+1(T ∗X ⊗ C)) is a differential
operator of order 1 and so it extends to a bounded operator

dp : L2
1
(
∧p (T ∗X ⊗ C)

)
→ L2 (

∧p+1 (T ∗X ⊗ C)
)
.

that we will also denote dp. The Hilbert space adjoint of this operator is the extension
of the formal L2 adjoint δp+1 : Γ(∧p+1(T ∗X ⊗C))→ Γ(∧p(T ∗X ⊗C)) of dp and will
also be denoted

δp+1 : L2 (
∧p+1 (T ∗X ⊗ C)

)
→ L2

1
(
∧p (T ∗X ⊗ C)

)
.

Notice that, since L2
1
(
∧p (T ∗X⊗C)

)
is a dense linear subspace of L2 (

∧p (T ∗X⊗C)
)
,

we can regard dp as an unbounded operator on L2 (
∧p (T ∗X ⊗C)

)
. Now define HS

to be the Hilbert space direct sum

HS =

n⊕
p=0

L2 (
∧p (T ∗X ⊗ C)

)
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of the L2 p-forms on X for p = 0, 1, . . . , n. Define operators d and δ on HS by
d |L2(∧p(T ∗X⊗C)) = dp and δ |L2(∧p(T ∗X⊗C)) = δp. Then let

Q = d + δ : HS → HS

and define τ : HS → HS by

τ |L2(∧p(T ∗X⊗C)) = (−1)p,

that is, τα = (−1)pα for all α ∈ L2(∧p(T ∗X ⊗ C)). Then τ is a unitary involution
on HS that commutes with Q so we have produced all of the required ingredients
for (HS , τ, Q ). The corresponding Hamiltonian is HS = Q2 = (d + δ)2 = dδ + δd,
which is the extension of the Hodge Laplacian to

⊕n
p=0 L2

2
(
∧p (T ∗X⊗C)

)
regarded

as an unbounded operator on HS .
Remark 9.3.13. We will conclude with the recommendation that you proceed from
here directly to the remarkable paper [Witten2] in which this example of an N = 2
supersymmetry drawn from Hodge theory led Edward Witten to a radically new
view of Morse theory and opened the door to the extraordinary impact that physics
has had on topology in the past three decades.





Appendix A
Gaussian Integrals

The purpose of this appendix is to evaluate just those Gaussian integrals that we
had need of in the body of the text. Most of these are integrals over R of some
real or complex quadratic exponential. Some of these must be regarded as improper
Riemann integrals and some can also be regarded as Lebesgue integrals. Although
the relationship between these two is probably familiar it seems prudent to begin
by establishing some notation to distinguish them and reviewing some of the basic
facts. This material can be found in most books treating measure and integration
([Apos], in particular, has everything we will need).

Let [a, b] be a compact interval in R and f a real- or complex-valued function
on [a, b]. Then the Riemann integral

∫ b
a f (x)dx exists if and only if f is continuous

almost everywhere. In this case, the Lebesgue integral
∫

[a,b] f dµ also exists and the
two are equal (we will use µ for the Lebesgue measure). If f is Riemann integrable
on [a, b] for all b ≥ a and if the limit limb→∞

∫ b
a f (x)dx exists, then the improper

Riemann integral of f over [a,∞) is defined by∫ ∞

a
f (x)dx = lim

b→∞

∫ b

a
f (x)dx.

The improper Riemann integral
∫ a
−∞

f (x)dx is defined analogously. If
∫ 0
−∞

f (x)dx
and

∫ ∞
0 f (x)dx both exist, then one also defines∫

R

f (x)dx =

∫ ∞

−∞

f (x)dx =

∫ 0

−∞

f (x)dx +

∫ ∞

0
f (x)dx.

If
∫ ∞
−∞

f (x)dx exists, then so does the limit limb→∞
∫ b
−b f (x)dx and these two are

equal. However, the limit limb→∞
∫ b
−b f (x)dx can exist even when the improper in-

tegral
∫ ∞
−∞

f (x)dx does not (for example, when f (x) = x). When it exists, the limit

limb→∞
∫ b
−b f (x)dx is called the Cauchy Principal Value of

∫ ∞
−∞

f (x)dx . The follow-
ing is Theorem 10.31 of [Apos].

517
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Theorem A.0.1. Suppose f is defined on [a,∞) and Lebesgue integrable on [a, b]
for every b ≥ a. Suppose also that there exists a positive constant M with the prop-
erty that

∫
[a,b] | f | dµ ≤ M for all b ≥ a. Then f is Lebesgue integrable on [a,∞),

limb→∞
∫

[a,b] f dµ exists and∫
[a,∞)

f dµ = lim
b→∞

∫
[a,b]

f dµ.

There is an analogous result for functions defined on (−∞, a]. Finally, we record
the following analogue of Theorem A.0.1 for Riemann integrable functions (which
is Theorem 10.33 of [Apos]); there is, of course, a corresponding result for (−∞, a].

Theorem A.0.2. Suppose f is defined on [a,∞) and Riemann integrable on [a, b] for
every b ≥ a. Suppose also that there exists a positive constant M with the property
that

∫ b
a | f (x)| dx ≤ M for all b ≥ a. Then the improper Riemann integrals of f and

| f | both exist on [a,∞). Moreover, f is Lebesgue integrable on [a,∞) and∫
[a,∞)

f dµ =

∫ ∞

a
f (x)dx.

Now we can begin computing the integrals we need. The first is essentially the
Example (or Exercise) that one finds in every calculus book in the world.

∫ ∞

−∞

e−x2
dx =

√
π =

∫
R

e−x2
dµ(x) (A.1)

To prove this we will show first that
∫ ∞
−∞

e−x2
dx exists so that we can compute it as

the Cauchy Principal Value. Notice first that, for x > 1, 0 < e−x2
< xe−x2

so, if b > 1,∫ b

1
e−x2

dx <
∫ b

1
xe−x2

dx =
1
2

(e−1 − e−b2
) <

1
2e
.

Consequently, ∫ b

0
e−x2

dx < M,

where

M =

∫ 1

0
e−x2

dx +
1
2e
.

In particular,
∫ ∞

0 e−x2
dx exists.

Exercise A.0.1. Show that
∫ 0
−∞

e−x2
dx exists.
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We conclude that
∫ ∞
−∞

e−x2
dx exists and therefore agrees with its Cauchy Principal

Value, that is, ∫ ∞

−∞

e−x2
dx = lim

b→∞

∫ b

−b
e−x2

dx.

To compute this we temporarily let I(b) =
∫ b
−b e−x2

dx and compute

I(b)2 =

( ∫ b

−b
e−x2

dx
) ( ∫ b

−b
e−y2

dy
)

=

∫ b

−b

( ∫ b

−b
e−y2

dy
)

e−x2
dx

=

∫ b

−b

∫ b

−b
e−(x2+y2)dydx

=

∫ ∫
[−b,b]×[−b,b]

e−(x2+y2)dµ(x, y),

where, in the last equality, we have used Fubini’s Theorem to turn the iterated inte-
gral into a double integral over the square. Now we will bound this double integral
above and below as follows. Let R1 be the disc of radius b about the origin in R2

and R2 the disc of radius
√

2 b about the origin. Then R1 is inscribed in the square
[−b, b]× [−b, b] and R2 is circumscribed about the square. Since e−(x2+y2) is positive
we have ∫ ∫

R1

e−(x2+y2)dµ(x, y) ≤ I(b)2 ≤

∫ ∫
R2

e−(x2+y2)dµ(x, y)

which, in polar coordinates, gives∫ 2π

0

∫ b

0
e−r2

rdrdθ ≤ I(b)2 ≤

∫ 2π

0

∫ √
2 b

0
e−r2

rdrdθ

and therefore

π
(
1 − e−b2)

≤ I(b)2 ≤ π
(
1 − e−2b2

).

Thus, limb→∞ I(b)2 = π = ( limb→∞ I(b) )2 so limb→∞ I(b) =
√
π, that is,∫ ∞

−∞

e−x2
dx =

√
π.

Exercise A.0.2. Show that ∫
R

e−x2
dµ(x) =

√
π.

Exercise A.0.3. Prove each of the following.
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1.
∫ ∞
−∞

xe−x2
dx =

∫
R

xe−x2
dµ(x) = 0

2.
∫ ∞
−∞

x2e−x2
dx =

∫
R

x2e−x2
dµ(x) =

√
π

2

Hint: Integrate by parts.
3. For any a > 0, ∫ ∞

−∞

e−ax2/2dx =

∫
R

e−ax2/2dµ(x) =

√
2π
a

4. For a > 0, b, c ∈ R,∫ ∞

−∞

e−ax2/2+bx+cdx =

∫
R

e−ax2/2+bx+cdµ(x) =

√
2π
a

e
b2
2a +c

Hint: Complete the square.

All of the examples we have seen so far are integrals that can be regarded either
as improper Riemann integrals or Lebesgue integrals. This is not true of the next
example.
Example A.0.1. We will prove that, for a > 0,∫ ∞

−∞

e iax2/2dx =

√
2π
a

eπi/4 =

√
2πi
a

(a > 0), (A.2)

where we have taken the value of
√

i to be eπi/4. Note that, since
∣∣∣ e iax2/2

∣∣∣ = 1 is
not Lebesgue integrable over R, neither is e iax2/2. Thus, we will need to examine∫ 0
−∞

e iax2/2dx and
∫ ∞

0 e iax2/2dx separately. Integrals of this sort are often handled by
relating them to contour integrals for functions of a complex variable. Although
we intend to take a different approach shortly it is worth the effort to see how this
technique works so this is what we will do here. Notice first that∫ ∞

0
e iax2/2dx =

√
2
a

∫ ∞

0
eix2

dx

so we need only evaluate
∫ ∞

0 eix2
dx. For this we will consider the contour integral∫

C
eiz2

dz,

where C is the closed (slice of pizza) contour consisting of the following three seg-
ments (R is an arbitrary positive real number).

C1 : z1(x) = x, 0 ≤ x ≤ R
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CR : zR(θ) = Reiθ, 0 ≤ θ ≤
π

4

and −C2, where

C2 : z2(x) = eπi/4x, 0 ≤ x ≤ R.

Since eiz2
is analytic on all of C, the Cauchy Integral Theorem implies that

∫
C eiz2

dz =

0 so

0 =

∫
C1

eiz2
dz +

∫
CR

eiz2
dz −

∫
C2

eiz2
dz

=

∫ R

0
eix2

dx +

∫
CR

eiz2
dz − eπi/4

∫ R

0
e−x2

dx.

Exercise A.0.4. Compute the contour integrals over C1 and C2 and verify the second
equality.
Taking the limit as R→ ∞ gives∫ ∞

0
eix2

dx = eπi/4
( √

π

2

)
+ lim

R→∞

∫
CR

eiz2
dz.

Next we will show that limR→∞
∫

CR
eiz2

dz = 0 so that∫ ∞

0
eix2

dx = eπi/4
( √

π

2

)
and therefore ∫ ∞

0
e iax2/2dx =

√
2
a

eπi/4
( √

π

2

)
=

1
2

√
2π
a

eπi/4.

For the limit limR→∞
∫

CR
eiz2

dz we will need what is called Jordan’s Inequality.
Exercise A.0.5. Show that if 0 ≤ φ ≤ π/2 and a > 0, then∫ π/2

0
e−a sin φdφ <

π

2a
.

Hint: Show that sin φ ≥ 2
π
φ for 0 ≤ φ ≤ π/2.

Now we observe that, on CR,∣∣∣ eiz2 ∣∣∣ =
∣∣∣ eiR2e2θi ∣∣∣ = e−R2 sin 2θ

and therefore
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CR

eiz2
dz

∣∣∣∣∣ =

∣∣∣∣∣ ∫ π/4

0
eiR2e2θi

(iReiθ)dθ
∣∣∣∣∣ ≤ R

∫ π/4

0
e−R2 sin 2θdθ =

R
2

∫ π/2

0
e−R2 sin φdφ <

π

4R
.

Consequently, limR→∞
∫

CR
eiz2

dz = 0 and this completes the proof of∫ ∞

0
eix2

dx = eπi/4
( √

π

2

)
.

As we noted earlier this gives us∫ ∞

0
e iax2/2dx =

1
2

√
2π
a

eπi/4.

Exercise A.0.6. Show that, for a > 0,∫ ∞

0
cos

(ax2

2

)
dx =

∫ ∞

0
sin

(ax2

2

)
dx =

1
2

√
π

a
.

These are called Fresnel integrals.
Exercise A.0.7. Show that, for a > 0,∫ 0

−∞

e iax2/2dx =
1
2

√
2π
a

eπi/4

and conclude that ∫ ∞

−∞

e iax2/2dx =

√
2π
a

eπi/4 =

√
2πi
a

(a > 0)

as required by (A.2).
Exercise A.0.8. Show that if a is any nonzero real number, then∫ ∞

−∞

e iax2/2dx =

√
2π
|a|

esgn(a)πi/4 =

√
2πi
a

(a ∈ R, a , 0), (A.3)

where sgn(a) = 1 if a > 0, sgn(a) = −1 if a < 0 and
√

i = eπi/4.
Now we would like to describe a different approach that will yield a more general

result and at the same time fulfill a promise we made some time ago in Remark
5.2.11. We begin by recalling a result from complex analysis that we mentioned in
Remark 5.2.11. We consider the improper Riemann integral

∫ ∞
a f (x, z) dx, where

a ∈ R and f (x, z) is a function of the real variable x in [a,∞) and z is a complex
number in some domain D of the complex plane C. We will assume that

1. The integral converges for each fixed value of z ∈ D.
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2. For each fixed x ∈ [a,∞), f (x, z) is an analytic function of z on D.
3. ∂ f (x,z)

∂z is a continuous function of (x, z) ∈ [a,∞) × D.
4.

∫ ∞
a

∂ f (x,z)
∂z dx converges uniformly on D. Note: Uniform convergence means that

there exists a function M(x) such that
∣∣∣ ∂ f (x,z)

∂z

∣∣∣ ≤ M(x) for all z ∈ D and∫ ∞
a M(x) dx converges.

It follows from these assumptions that
∫ ∞

a f (x, z) dx is an analytic function of z on
D (this is 5.32 of [WW]). There is an analogous theorem for

∫ a
−∞

f (x, z) dx and
therefore also for

∫ ∞
−∞

f (x, z) dx.
Now we consider the function f (x, z) = e−zx2/2, where x ∈ [0,∞) and z is in the

right half (Re(z) > 0) of the complex plane. Then, since

e−zx2/2 = e−Re(z)x2/2e−iIm(z)x2/2,

we have | e−zx2/2 | = e−Re(z)x2/2. According to Exercise A.0.3 (3),
∫ ∞

0 e−Re(z)x2/2 dx
converges. Consequently,

∫ ∞
0 e−zx2/2 dx converges uniformly on Re(z) > 0.

Exercise A.0.9. Let f (x, z) = e−zx2/2, where x ∈ [0,∞) and z is in the right half
(Re(z) > 0) of the complex plane. Show that

∫ ∞
0

∂ f (x,z)
∂z dx converges uniformly on

Re(z) > 0.
From this it follows that

∫ ∞
0 e−zx2/2 dx is an analytic function of z on Re(z) > 0.

Similarly,
∫ 0
−∞

e−zx2/2 dx is an analytic function of z on Re(z) > 0 and conse-
quently the same is true of

∫ ∞
−∞

e−zx2/2 dx. Changing the z to an a we conclude that∫ ∞
−∞

e−ax2/2 dx is an analytic function of a on Re(a) > 0. Now notice that if a is a pos-

itive real number, then Exercise A.0.3 (3) gives the value of this integral as
√

2π
a .

On Re(a) > 0 the principal branch of the square root function √ (branch cut along
the negative real axis) is analytic and gives the positive square root of a positive real

number. Consequently,
√

2π
a is an analytic function of a on Re(a) > 0 that agrees

with
∫ ∞
−∞

e−ax2/2 dx on the positive real axis. As a result, they must agree everywhere
on Re(a) > 0 (Corollary to Theorem 10.18 of [Rud2]) so∫ ∞

−∞

e−ax2/2 dx =

√
2π
a

(a ∈ C,Re(a) > 0), (A.4)

where √ is the principal branch of the square root function.
Exercise A.0.10. Show that (A.4) is also true if a is on the imaginary axis. Specifi-
cally, show that ∫ ∞

−∞

e−αix2/2dx =

√
2π
α

e−πi/4 (α > 0)

and
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−∞

e−αix2/2dx =

√
2π
|α|

eπi/4 (α < 0).

Show also that this can be written as∫ ∞

−∞

esgn(α) |α|ix2/2dx =

√
2π
|α|

esgn(α)πi/4. (A.5)

Hint: Exercise A.0.6
Next notice that if b is a real number, then the simple substitution x → x + b

gives ∫ ∞

−∞

e−a(x−b)2/2 dx =

∫ ∞

−∞

e−ax2/2 dx =

√
2π
a

(a ∈ C,Re(a) > 0) (A.6)

When b is complex this substitution makes no sense since x is real and x + b is com-
plex. Nevertheless, (A.6) is still true when b is complex. Although we will forego
the details here one can see this by carrying out a contour integral argument anal-
ogous to that in Example A.0.1. Specifically, one shows that, for any fixed a with
Re(a) > 0, the contour integral of e−a(z−b)2/2 over the curve z(x) = x,−∞ < x < ∞,
(which we want) is the same as its contour integral over z(x) = x + b,−∞ < x < ∞,

(which we know is
√

2π
a ). This can be done by integrating around the parallelogram

with vertices −R,R,R + b, and −R + b, applying the Cauchy Integral Theorem, and
showing that, as R → ∞, the contributions from the two non-horizontal sides go to
zero.

All of the examples we have seen thus far have been 1-dimensional integrals, but
in Section 8.3 we also need an n-dimensional Gaussian integral (see (8.11)). The
general context for such integrals is as follows. We are given some real, symmetric,
nonsingular, N × N matrix A = (Ai j)i, j=1,...,N . We write the usual inner product on
RN as 〈x, J〉 =

∑N
i=1 xiJi. Then A determines a quadratic form on RN given by

〈x, Ax〉 =
∑N

i, j=1 Ai jxix j. Writing dNx = dx1 · · · dxN , the result we require is

∫
RN

ei〈x,Ax〉/2+i〈x,J〉dNx = eNπi/4−νπi/2

√
(2π)N

| det A|
e−i〈A−1J, J〉 (A.7)

for all J ∈ RN , where ν is the number of negative eigenvalues of A. We will see
where this comes from in a moment, but as a warm-up we will first prove something
simpler.
Example A.0.2. Suppose in addition that A is positive definite (its N distinct real
eigenvalues are positive). We will show that∫

RN
ei〈x,Ax〉/2dNx = eNπi/4

√
(2π)N

det A
. (A.8)
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Since A is a real symmetric matrix we can find some orthogonal matrix S with
determinant 1 for which S AS −1 = D is the diagonal matrix whose diagonal entries
are the distinct real eigenvalues a1, . . . , aN of A. Since A is positive definite all of
these eigenvalues are positive and so det A = a1 · · · aN is also positive. Now make
the change of variable y = S x. Then

〈x, Ax〉 = 〈S x, S (Ax)〉 = 〈y,D(S x)〉 = 〈y,Dy〉 = a1(y1)2 + · · · + aN(yN)2.

Since dNx = | det S | dNy = dNy = dy1 · · · dyN we have∫
RN

ei〈x,Ax〉/2dNx =

∫
R

· · ·

∫
R

eia1(y1)2/2+···+iaN (yN )2/2dy1 · · · dyN

=

∫
R

· · ·

∫
R

eia1(y1)2/2 · · · eiaN (yN )2/2dy1 · · · dyN

=

( ∫
R

eia1(y1)2/2dy1
)
· · ·

( ∫
R

eiaN (yN )2/2dyN
)

=

(√2π
a1

eπi/4
)
· · ·

(√2π
aN

eπi/4
)

(Exercise A.0.10)

= eNπi/4

√
(2π)N

det A

as required.
Exercise A.0.11. Show that if A is not necessarily positive definite (but still real,
symmetric and nonsingular), then

∫
RN

ei〈x,Ax〉/2dNx = eNπi/4−νπi/2

√
(2π)N

| det A|

where ν is the number of negative eigenvalues of A. Hint: Exercise A.0.10 and note
that N − 2ν is the signature sgn(A) of A, that is, the number of positive eigenvalues
minus the number of negative eigenvalues.

Now let’s try the same sort of thing for
∫
RN ei〈x,Ax〉/2+i〈x,J〉dNx. We assume only

that A is a real, symmetric, nonsingular, N × N matrix and denote by ν the number
of negative eigenvalues of A and by sgn(A) = N − 2ν the signature of A. J ∈ RN

is arbitrary. We select an orthogonal matrix S = (S i j)i, j=1,...,N with determinant 1
such that S AS −1 = D is a diagonal matrix with diagonal entries a1, . . . , aN that are
the distinct real nonzero eigenvalues of A. Make the change of variable y = S x and
one has, exactly as in the previous example, 〈x, Ax〉 = a1(y1)2 + · · · + aN(yN)2. In
addition,

〈x, J〉 = 〈S −1y, J〉 = 〈S T y, J〉 = 〈y, S J〉 = b1y1 + · · · + bNyN ,

where we have written
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S J =


S 1 jJ j

...
S N jJ j

 =


b1

...
bN

 .
Then∫

RN
ei〈x,Ax〉/2+i〈x,J〉dNx =

∫
RN

ei[a1(y1)2/2+b1y1] · · · ei[aN (yN )2/2+bN yN ]dNy

=

( ∫
R

ei[a1(y1)2/2+b1y1]dy1
)
· · ·

( ∫
R

ei[aN (yN )2/2+bN yN ]dyN
)

(A.9)

Now, for any a , 0 and any b ∈ R we complete the square to obtain∫
R

ei[ay2/2+by]dy = e−ib2/2a
∫
R

eia(y+ b
a )2/2dy = e−ib2/2a

∫
R

eiau2/2du

= e−ib2/2a


√

2π
|a| ]e

−πi/4, if a < 0√
2π
a eπi/4, if a > 0.

Applying this to each of the factors in (A.9) and keeping in mind that a1, . . . , aN are
the eigenvalues of A we obtain

∫
RN

ei〈x,Ax〉/2+i〈x,J〉dNx =

√
(2π)N

| det A|
esgn(A)πi/4

[
e
−i

∑N
j=1

(b j )2
2a j

]
.

Next we note that

N∑
j=1

(b j)2

2a j
=

1
2
〈S J,D−1S J〉 =

1
2
〈J, S T D−1S J〉 =

1
2
〈J, (S −1D−1S )J〉

=
1
2
〈J, (S −1(S A−1S −1)S )J〉 =

1
2
〈J, A−1J〉.

With this and sgn(A) = N − 2ν we therefore obtain

∫
RN

ei〈x,Ax〉/2+i〈x,J〉dNx = eNπi/4−νπi/2

√
(2π)N

| det A|
e−i〈A−1J, J〉

as required.



Appendix B
Morse Lemma

The result we would like to prove in this appendix is not particularly difficult, but it
has an enormous number of beautiful ramifications. The subject that evolves from
it is called Morse Theory, but, regrettably, this is not our subject here. Our only ex-
cuse for including a proof (and we would have jumped at any excuse) is that the
result, called the Morse Lemma, is a key ingredient in the proof of the stationary
phase approximation to which we will turn in Appendix C. For those who would
like to see more we suggest the following. One of the simpler applications of the
Morse Lemma is the proof of Reeb’s elegant topological characterization of the n-
dimensional sphere S n and one can find this in Section 5-12 of [Nab2]. Milnor’s
beautiful book [Milnor] is everyone’s recommended source for a deeper introduc-
tion to Morse Theory. You will certainly also want to begin browsing through [Bott]
and, if you incline toward physics and/or supersymmetry, the very influential paper
[Witten2] by Witten. But now to the task at hand.

Theorem B.0.1. Let U be an open ball centered at (a1, . . . , an) in Rn and f : U →
R a smooth, real-valued function on U.

1. There exist smooth, real-valued functions f1, . . . , fn on U satisfying

f (x1, . . . , xn) = f (a1, . . . , an) + x1 f1(x1, . . . , xn) + · · · + xn fn(x1, . . . , xn)

= f (a1, . . . , an) +

n∑
i=1

xi fi(x1, . . . , xn)

for all (x1, . . . , xn) ∈ U and

fi(a1, . . . , an) =
∂ f
∂xi (a1, . . . , an), i = 1, . . . , n.

2. If f has a critical point at (a1, . . . , an), that is, if ∂ f
∂xi (a1, . . . , an) = 0 for each

i = 1, . . . , n, then there exist smooth functions fi j, i, j = 1, . . . , n, on U such that

527
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f (x1, . . . , xn) = f (a1, . . . , an) +

n∑
i, j=1

xix j fi j(x1, . . . , xn)

and

fi j(a1, . . . , an) =
∂2 f
∂xi∂x j (a1, . . . , an), i, j = 1, . . . , n.

3. (Morse Lemma) If f has a critical point at (a1, . . . , an) that is nondegenerate,
that is, for which the Hessian matrix(

∂2 f
∂xi∂x j (a1, . . . , an)

)
i, j=1,...,n

is nonsingular, then there is a diffeomorphism ϕ : U → ϕ(U) ⊆ Rn,

ϕ(x1, . . . , xn) = (y1, . . . , yn),

of U onto an open neighborhood ϕ(U) of (0, . . . , 0) in Rn such that ϕ(a1, . . . , an) =

(0, . . . , 0) and

( f ◦ ϕ−1)(y1, . . . , yn) = f (a1, . . . , an) − (y1)2 − · · · − (yl)2 + (yl+1)2 + · · · + (yn)2

(B.1)

for (y1, . . . , yn) ∈ ϕ(U), where 0 ≤ l ≤ n is an integer. Moreover, l is the same for
any such diffeomorphism.

Remark B.0.1. f ◦ ϕ−1 is just f expressed in terms of the coordinates (y1, . . . , yn)
on U determined by ϕ and we will generally write this simply as f (y1, . . . , yn). The
content of the Morse Lemma is that any smooth function is, locally, near an nonde-
generate critical point, quadratic in some coordinates.

Proof. We will begin by asking you to simplify the arithmetic just a bit.
Exercise B.0.1. Show that it will suffice to prove the theorem when (a1, . . . , an) =

(0, . . . , 0) and f (0, . . . , 0) = 0.
Consequently, we will assume that f is smooth on the open ball U centered

at (0, . . . , 0) in Rn and f (0, . . . , 0) = 0. Notice that, for any (x1, . . . , xn) in U,
t(x1, . . . , xn) = (tx1, . . . , txn) is also in U for every 0 ≤ t ≤ 1 so we can define

fi(x1, . . . , xn) =

∫ 1

0

∂ f
∂xi (tx1, . . . , txn) dt.

These are clearly smooth on U and
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n∑
i=1

xi fi(x1, . . . , xn) =

n∑
i=1

xi
∫ 1

0

∂ f
∂xi (tx1, . . . , txn) dt

=

∫ 1

0

n∑
i=1

xi ∂ f
∂xi (tx1, . . . , txn) dt

=

∫ 1

0

d
dt

f (tx1, . . . , txn) dt

= f (tx1, . . . , txn)
∣∣∣1
0

= f (x1, . . . , xn).

Moreover,

fi(0, . . . , 0) =

∫ 1

0

∂ f
∂xi (0, . . . , 0) dt =

∂ f
∂xi (0, . . . , 0), i = 1, . . . , n,

and this completes the proof of (1).
To prove (2) we assume, in addition, that ∂ f

∂xi (0, . . . , 0) = 0 for each i = 1, . . . , n
and apply the argument in (1) to ∂ f

∂xi as follows.

f (x1, . . . , xn) =

n∑
j=1

x j f j(x1, . . . , xn)

=

n∑
j=1

x j
∫ 1

0

∂ f
∂xi (tx1, . . . , txn) dt

=

n∑
j=1

x j
∫ 1

0

n∑
i=1

xi
( ∫ 1

0

∂2 f
∂xi∂x j (stx1, . . . , stxn) ds

)
dt

=

n∑
i, j=1

xix j
( ∫ 1

0

∫ 1

0

∂2 f
∂xi∂x j (stx1, . . . , stxn) ds dt

)
.

Now we let

fi j(x1, . . . , xn) =

∫ 1

0

∫ 1

0

∂2 f
∂xi∂x j (stx1, . . . , stxn) ds dt.

Again, each fi j is clearly smooth on U and

fi j(0, . . . , 0) =
∂2 f
∂xi∂x j (0, . . . , 0)

so the proof of (2) is complete.
For the proof of (3) we increment our assumptions once more and assume that

the critical point at (0, . . . , 0) is nondegenerate, that is, that the Hessian matrix
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∂2 f
∂xi∂x j (0, . . . , 0)

)
i, j=1,...,n

is nonsingular. We begin with the result from (2).

f (x1, . . . , xn) =

n∑
i, j=1

xix j fi j(x1, . . . , xn), (B.2)

where

fi j(0, . . . , 0) =
∂2 f
∂xi∂x j (0, . . . , 0). (B.3)

Exercise B.0.2. Show that we can assume that the functions fi j satisfy

f ji = fi j (B.4)

for all i, j = 1, . . . , n. More precisely, show that the functions f ′i j = 1
2 ( fi j + f ji) have

a nonsingular Hessian at (0, . . . , 0) and satisfy (B.2),(B.3), and (B.4).
Now we consider the quadratic form

∑n
i, j=1 ai jxix j on Rn, where ai j = fi j(0, . . . , 0)

for all i, j = 1, . . . , n. By assumption, the matrix (ai j)i, j=1,...,n is nonsingular. In par-
ticular, it is not identically zero, that is, some ai j is nonzero. It follows from this
that some nonsingular linear transformation of Rn will provide new coordinates
x̂1, . . . , x̂n in terms of which the quadratic form is given by

∑n
i, j=1 âi j x̂i x̂ j, where

â11 , 0.
Remark B.0.2. This is a standard result about nonzero, real quadratic forms (see,
for example, the Lemma in Section 8, Chapter IX, of [BM]), but we will sketch
the proof. Suppose first that some coefficient on the diagonal is nonzero, say, aii.
Consider the nonsingular linear transformation that interchanges xi and x1, that is,
x̂1 = xi, x̂i = x1, and x̂ j = x j for j , 1, i. Then â11 = aii , 0. Suppose, on the
other hand, that aii = 0 for each i = 1, . . . , n, but ai j , 0 for some i , j. The
nonsingular linear transformation that interchanges xi and x1 as well as x j and x2

gives â12 = ai j , 0 so we might as well assume at the outset that a12 , 0. Then the
terms in the quadratic form involving x1 and x2 are

a11(x1)2 + 2a12x1x2 + a22(x2)2 = 2a12x1x2

(recall that we are assuming aii = 0 for all i = 1, . . . , n). Now define new coordinates
by x1 = x̂1 + x̂2, x2 = x̂1 − x̂2, and xi = x̂i for i = 3, . . . , n. Then the terms in the
quadratic form involving x̂1 and x̂2 are

2a12x1x2 = 2a12(x̂1 + x̂2)(x̂1 − x̂2) = 2a12(x̂1)2 − 2a12(x̂2)2

so â11 = 2a12 , 0, as required.
Rewriting f (x1, . . . , xn) =

∑n
i, j=1 xix j fi j(x1, . . . , xn) in terms of the coordinates

x̂1, . . . , x̂n determined by this nonsingular linear transformation gives
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f (x̂1, . . . , x̂n) =

n∑
i, j=1

x̂i x̂ jhi j(x̂1, . . . , x̂n),

where the functions hi j(x̂1, . . . , x̂n) are smooth and, as above, we can assume that
h ji = hi j for all i, j = 1, . . . , n. Moreover, computing second derivatives gives

hi j(0, . . . , 0) =
∂2 f
∂x̂i∂x̂ j (0, . . . , 0).

and, by construction,

h11(0, . . . , 0) , 0.

Exercise B.0.3. Show that, if A is the nonsingular linear transformation that carries
(x1, . . . , xn) to (x̂1, . . . , x̂n), then(

∂2 f
∂x̂i∂x̂ j (0, . . . , 0)

)
i, j=1,...,n

= AT
(
∂2 f
∂xi∂x j (0, . . . , 0)

)
i, j=1,...,n

A

and conclude that
(

hi j(0, . . . , 0)
)
i, j=1,...,n is nonsingular.

Now, since h11 is smooth and nonzero at (0, . . . , 0) it must be nonzero on some
neighborhood of (0, . . . , 0) and on that neighborhood

| h11 |
1/2

is smooth and nonzero. We will now make a coordinate transformation on some
neighborhood of (0, . . . , 0) that will alter only x̂1. To see where it comes from we
recommend the following exercise.
Exercise B.0.4. Complete the square to show that

h11(x̂1)2 + 2
n∑

j=2

h1 j x̂1 x̂ j = ±

(
| h11 |

1/2 (
x̂1 +

n∑
j=2

h1 j

h11
x̂ j ) )2

− h11

( n∑
j=2

h1 j

h11
x̂ j

)2
.

Now define (u1, . . . , un) by
u1 = | h11 |

1/2 (
x̂1 +

∑n
j=2

h1 j

h11
x̂ j )

u2 = x̂2

...

un = x̂n.

This is a smooth map from some neighborhood of (0, . . . , 0) in Rn to Rn carrying
(0, . . . , 0) to (0, . . . , 0) and its Jacobian is
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∂u1

∂x̂1
∂u1

∂x̂2 · · ·
∂u1

∂x̂n

0 1 · · · 0
...

...
...

0 0 · · · 1

 .
The determinant of the Jacobian is therefore

∂u1

∂x̂1 = | h11 |
1/2 ∂

∂x̂1

(
x̂1 +

n∑
j=2

h1 j

h11
x̂ j

)
+
∂ | h11 |

1/2

∂x̂1

(
x̂1 +

n∑
j=2

h1 j

h11
x̂ j

)
which, at (0, . . . , 0), is

∂u1

∂x̂1 (0, . . . , 0) = | h11(0, . . . , 0) |1/2 , 0.

By the Inverse Function Theorem the map is therefore a diffeomorphism of some
neighborhood of (0, . . . , 0) in Rn onto another neighborhood of (0, . . . , 0) in Rn and
therefore (u1, . . . , un) are coordinates on some neighborhood of (0, . . . , 0) in Rn.
Exercise B.0.5. Show that f is given in terms of the coordinates u1, . . . , un by

f (u1, . . . , un) = ±(u1)2 +

n∑
i, j=2

uiu jgi j(u1, . . . , un)

for some smooth functions gi j(u1, . . . , un), i, j = 2, . . . , n.
Now we would like to continue inductively, applying the same argument to∑n

i, j=2 uiu jgi j(u1, . . . , un). To do so we must show that the matrix
(

gi j(0, . . . , 0)
)
i, j=2,...,n

is nonsingular. But we know that the Hessian of f at (0, . . . , 0), computed in any co-
ordinates, is nonsingular and

(
∂2 f
∂ui∂u j (0, . . . , 0)

)
i, j=1,...,n

=


±2 0 · · · 0
0
...

(
gi j(0, . . . , 0)

)
i, j=2,...,n

0


so

(
gi j(0, . . . , 0)

)
i, j=2,...,n must be nonsingular as well. As before, we can assume that

g ji = gi j for all i, j = 2, . . . , n and g22(0, . . . , 0) , 0. Defining v1, . . . , vn by



v1 = u1

v2 = | g22 |
1/2 (

u2 +
∑n

j=3
g2 j

g22
u j )

v2 = u3

...

vn = un.
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gives

n∑
i, j=2

uiu jgi j(u1, . . . , un) = ±(v2)2 +
∑

i, j=3,...,n

viv j pi j(v1, . . . , vn)

and so

f (v1, . . . , vn) = ±(v1)2 ± (v2)2 +
∑

i, j=3,...,n

viv j pi j(v1, . . . , vn)

on some neighborhood of (0, . . . , 0) in Rn.
Exercise B.0.6. Explicitly carry out the induction argument required to obtain co-
ordinates y1, . . . , yn on some neighborhood of (0, . . . , 0) in Rn relative to which
f (y1, . . . , yn) = ±(y1)2 ± · · · ± (yn)2.
Renumbering the coordinates if necessary we can write

f (y1, . . . , yn) = −(y1)2 − · · · − (yl)2 + (yl+1)2 + · · · + (yn)2

for some integer 0 ≤ l ≤ n.
All that remains is to show that if z1, . . . , zn are local coordinates at (0, . . . , 0) in

Rn for which

f (z1, . . . , zn) = −(z1)2 − · · · − (zm)2 + (zm+1)2 + · · · + (zn)2,

then m = l.
Exercise B.0.7. Compute the Hessian of f at the critical point (0, . . . , 0) in both
coordinate systems and show that these matrices are similar.
According to Sylvester’s Law of Inertia (Theorem 6 − z3 of [Her]) these matrices
must have the same signature (number of positive eigenvalues minus the number of
negative eigenvalues) so n − 2l = n − 2m and therefore m = l. ut

We will conclude with a definition and a few remarks. If U is an open set in Rn

and f : U → R is a smooth, real-valued function, then f is said to be a Morse func-
tion if all of its critical points are nondegenerate. Although this sounds like a rather
restrictive condition, there is a sense in which Morse functions are the common state
of affairs. The following is Lemma 5-22 of [Nab2].

Theorem B.0.2. Let U be an open set in Rn and g : U → R an arbitrary smooth
function. For each b = (b1, . . . , bn) in Rn define a smooth function gb : U → R by

gb(x1, . . . , xn) = g(x1, . . . , xn) + b1x1 + · · · + bnxn.

Then the set of all b ∈ Rn for which gb fails to be a Morse function has (Lebesgue)
measure zero in Rn.

Intuitively, almost every linear perturbation of any smooth function is Morse.
Notice also that the critical points of a Morse function f are isolated in the sense
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that each one has an open neighborhood that contains no other critical points (since
a sum or difference of squares has only one critical point, any open set on which f
has the form f (a1, . . . , an) − (y1)2 − · · · − (yl)2 + (yl+1)2 + · · · + (yn)2 contains only
the critical point at (y1, . . . , yn) = (0, . . . , 0)). The integer l is called the index of f
at the critical point. If l = 0, then f has a relative minimum at (a1, . . . , an); if l = n,
then f has a relative maximum at (a1, . . . , an). In general, l specifies the number
of independent directions in which f decreases at (a1, . . . , an). Finally, although we
will have no need of this, we point out that the Morse Lemma, being purely local,
generalizes at once to smooth functions defined on finite-dimensional manifolds;
there is also a version for smooth functions on Banach spaces (see [Palais2]).



Appendix C
Stationary Phase Approximation

Recall that in Example 7.3.2 we found an integral representation for the solution to
the Cauchy problem

i
∂ψ(q, t)
∂t

= −
~

2m
∂2ψ(q, t)
∂q2 , (q, t) ∈ R × (0,∞),

lim
t→0+

ψ(q, t) = ψ0(q), q ∈ R

for the free Schrödinger equation with initial data ψ0(q) (assumed to be smooth with
compact support). Briefly, the procedure was to take the Fourier transform to obtain
the solution

ψ(q, t) =

√
m

2π~ti

∫
R

e mi(q−x)2/2~t ψ0(x) dx

to the Schrödinger equation and then deal with the problem of showing that this ap-
proached ψ0(q) as t → 0+. Because of the oscillatory nature of the integral this limit
was not at all straightforward and we had to appeal to what is called its stationary
phase approximation. Our objective in this Appendix is to provide the proof. Since
such oscillatory integrals arise with great regularity in classical as well as quantum
physics and can only rarely be evaluated explicitly the result we will prove is a
well-worn part of any physicist’s toolkit (see, for example, [GS3] for applications
to geometric optics).

We will begin, as we did in Example 7.3.2, by noting that the oscillatory integral
under consideration is of the general form∫

R

eiT f (x)g(x) dx, (C.1)

where T = 1
t , f (x) = m(q− x)2/2~, and g(x) = ψ0(x) and that we are interested in its

asymptotic behavior as T → ∞. We will assume that both f (x) and g(x) are smooth
and that g(x) has compact support. The intuitive rationale behind the approximation
we are looking for goes something like this. The exponential factor eiT f (x) is oscil-

535
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latory. Near a point x0 where f ′(x0) , 0 the rate at which it is oscillating (that is,
the frequency) changes with x and, as T gets large, these oscillations become more
and more rapid near x0. One might expect that these very rapid oscillations near
x0 with varying frequencies will (approximately) cancel (real and imaginary parts
are positive as often as they are negative) so that the dominant contributions to the
integral as T → ∞ will come from neighborhoods of points where f ′(x0) = 0 where
f (x) is nearly constant; we will state this precisely and prove it soon. The problem
then is to compute the contributions due to the critical (that is, stationary) points of
f (x). If the critical point x0 is degenerate ( f ′′(x0) = 0), then the behavior of f (x)
nearby can be very complicated and it is difficult to say anything in general. On the
other hand, if x0 is a nondegenerate critical point of f (x), then the Morse Lemma
(Theorem B.0.1 (3)) implies that, nearby, f is quadratic in some coordinates and one
might hope to compute the contribution as a Gaussian integral. For this reason, we
will assume throughout that f is a Morse function (page 533); note that, by virtue of
Theorem B.0.2, this is not as serious a restriction as it might seem. The general re-
sult we will prove gives the following stationary phase approximation in the special
case of a Morse function f : R → R with exactly one nondegenerate critical point
at x0.∫

R

eiT f (x)g(x) dx =

(2π
T

)1/2
e sgn( f ′′(x0)) πi /4 eiT f (x0)√

| f ′′(x0)|
g(x0) + O

( 1
T 3/2

)
(C.2)

as T → ∞. Recall (Remark 8.3.4) that this means that there exists constants M > 0
and T0 > 0 such that, for all T ≥ T0,∣∣∣∣∣ ∫

R

eiT f (x)g(x) dx −
(2π

T

)1/2
e sgn( f ′′(x0)) πi /4 eiT f (x0)√

| f ′′(x0)|
g(x0)

∣∣∣∣∣ ≤ M
( 1

T 3/2

)
.

Remark C.0.1. Although we will give the proof shortly it might be instructive to
see a quick, informal calculation that gives some sense of where the terms in the
approximation come from. For this we will take g(x) = 1, but one should keep in
mind that this does not have compact support so the general result we will prove is
not applicable; nevertheless, the following rough computation is illuminating. Thus,
we will consider the integral ∫

R

eiT f (x) dx,

where f (x) has a nondegenerate critical point at x0. We approximate f (x) by its
second Taylor polynomial

f (x) ≈ f (x0) +
1
2

f ′′(x0)(x − x0)2

at x0 and then
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R

eiT f (x) dx ≈
∫
R

eiT [ f (x0)+ 1
2 f ′′(x0)(x−x0)2] dx.

But ∫
R

eiT [ f (x0)+ 1
2 f ′′(x0)(x−x0)2] dx = eiT f (x0)

∫
R

eiT f ′′(x0)(x−x0)2/2 dx

= eiT f (x0)
∫
R

eiT f ′′(x0)x2/2 dx

= eiT f (x0)
∫
R

eiT sgn( f ′′(x0)) | f ′′(x0)| x2/2 dx

=

(2π
T

)1/2
e sgn( f ′′(x0)) πi /4 eiT f (x0)√

| f ′′(x0)|
,

where the last equality follows from the Gaussian integral (A.5).
For the remainder of this appendix we will consider the following situation. f :

Rn → R is a Morse function with finitely many critical points p1, . . . ,pN , g : Rn →

R is a smooth function with compact support and T > 0 is a real number. We will
consider the integral ∫

Rn
eiT f (x)g(x) dnx

and will investigate its asymptotic behavior as T → ∞. The first order of business
is to confirm our earlier intuitive suspicion that the noncritical points of f do not
contribute to the limit limT→∞

∫
Rn eiT f (x)g(x) dnx. Specifically, we will let U = Rn −

{p1, . . . ,pN} and will show that the integral∫
U

eiT f (x)g(x) dnx

approaches zero as T → ∞. In fact, we will show that, for any m = 1, 2, . . .,∫
U

eiT f (x)g(x) dnx = O(T−m) as T → ∞.

Recall (Remark 8.3.4) that this means that, for each such m, there exist positive
constants M(m) and T0(m) such that, for all T ≥ T0(m),∣∣∣∣∣ ∫

U
eiT f (x)g(x) dnx

∣∣∣∣∣ ≤ M(m)
T m .

To prove this we note that the gradient of f defines a nonvanishing, smooth vector
field

V = ∇ f =

n∑
j=1

∂ f
∂x j

∂

∂x j
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on U. Moreover,

V
[
eiT f (x)] =

n∑
j=1

∂ f
∂x j eiT f (x)(iT )

∂ f
∂x j = iTeiT f (x) ‖V‖2.

Defining the smooth vector field W by

W =
1

T‖V‖2
V

we can write this as

eiT f (x) = −iW
[
eiT f (x)].

Thus, ∫
U

eiT f (x)g(x) dnx = −i
∫

U
W

[
eiT f (x)]g(x) dnx = i

∫
U

eiT f (x)W[g(x)] dnx,

where we have integrated by parts componentwise in W and used the fact that g(x)
has compact support. Continuing this computation we obtain∫

U
eiT f (x)g(x) dnx = i

∫
U

eiT f (x)
( 1
T‖V‖2

V[g(x)]
)

dnx =
1
T

(
i
∫

U
eiT f (x)h(x) dnx

)
,

where h(x) = 1
‖V‖2 V[g(x)]. Notice that h(x) also has compact support. We find then

that ∣∣∣∣∣ ∫
U

eiT f (x)g(x) dnx
∣∣∣∣∣ ≤

∫
U |h(x)| dnx

T

for all T > 0 so ∫
U

eiT f (x)g(x) dnx = O(T−1) as T → ∞.

Exercise C.0.1. Use the fact that h(x) also has compact support to repeat the same
argument and show that∫

U
eiT f (x)g(x) dnx = O(T−2) as T → ∞

and then continue inductively to obtain∫
U

eiT f (x)g(x) dnx = O(T−m) as T → ∞

for every m ≥ 1. In particular
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lim
T→∞

∫
U

eiT f (x)g(x) dnx = 0. (C.3)

Now we must handle the critical points. Choose disjoint open balls U1, . . . ,UN

centered at p1, . . . ,pN , respectively, and sufficiently small that on each one f takes
the form (B.1) specified by the Morse Lemma. Also let UN+1 = Rn − {p1, . . . ,pN}.
Then {U1, . . . ,UN ,UN+1} is an open cover of Rn. Now we choose a partition of unity
{ϕ1, . . . , ϕN , ϕN+1} subordinate to this open cover.
Remark C.0.2. We recall that this means the following. Each ϕ j, j = 1, . . . ,N,N +1,
is a smooth function from Rn to [0, 1] with the following properties.

1. The support supp (ϕ j) of ϕ j is contained in U j for each j = 1, . . . ,N,N + 1.
2. For each x ∈ Rn,

∑N+1
j=1 ϕ j(x) = 1.

The existence of such a partition of unity is not obvious, but is proved, for example,
in Theorem 3-11 of [Sp1], or Corollary 3.1.5 of [Nab4].

Thus, we can write g(x) =
∑N+1

j=1 g(x)ϕ j(x) and so

∫
Rn

eiT f (x)g(x) dnx =

N+1∑
j=1

∫
U j

eiT f (x)g(x)ϕ j(x) dnx

=

N∑
j=1

∫
U j

eiT f (x)g(x)ϕ j(x) dnx +

∫
UN+1

eiT f (x)g(x)ϕN+1(x) dnx.

(C.4)

Observe that each g(x)ϕ j(x) has compact support so we already know that the last
integral above is O(T−m) as T → ∞ for every m = 1, 2, . . .. Now, fix some j =

1, . . . ,N and, for convenience, write U j = U, ϕ j = ϕ and p j = p. Also let g(x)ϕ(x) =

h(x). Then h(x) has compact support and we will consider the integral∫
U

eiT f (x)h(x) dnx.

Recall that U is an open ball centered at p and we have assumed that it was chosen
sufficiently small that there are local coordinates y1, . . . , yn on U relative to which

f (y) = f (p) + [−(y1)2 − · · · − (yl)2 + (yl+1)2 + · · · + (yn)2]/2 = f (p) + Q(y)/2,

where Q(y) = −(y1)2 − · · · − (yl)2 + (yl+1)2 + · · ·+ (yn)2. Let
( ∂x
∂y

)
denote the Jacobian

of the coordinate transformation x = x(y). Then∫
U

eiT f (x)h(x) dnx =

∫
U

eiT f (y)h(y)
∣∣∣ det

(
∂x
∂y

) ∣∣∣ dny.

The function h(y)
∣∣∣ det

( ∂x
∂y

) ∣∣∣ is also smooth with compact support contained in U.
We extend it to all of Rn by taking it to be zero on Rn −U. Call this extension F(y)
and write it as
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F(y) = F(p) + y1F1(y) + · · · + ynFn(y),

where F1, . . . , Fn are smooth and have compact support. Then∫
U

eiT f (x)h(x) dnx = F(p)
∫
Rn

eiT f (y) dny +

n∑
k=1

∫
Rn

eiT f (y)ykFk(y) dny. (C.5)

Now we will examine each of these integrals separately. Begin by evaluating F(p).
Exercise C.0.2. Show that ϕ(p) = 1.
Thus,

F(p) = h(p)
∣∣∣ det

(
∂x
∂y

)
(p)

∣∣∣ = g(p)
∣∣∣ det

(
∂x
∂y

)
(p)

∣∣∣.
To evaluate

∣∣∣ det
( ∂x
∂y

)
(p)

∣∣∣ we note that, since p is a critical point of f , the Hessian of
f at p computed in the y-coordinates is related to the Hessian of f at p computed in
the x-coordinates by(

∂2 f
∂yi∂y j (p)

)
=

(
∂x
∂y

(p)
)T (

∂2 f
∂xi∂x j (p)

)(
∂x
∂y

(p)
)
.

Taking the determinant on both sides gives

1 =
∣∣∣ det

(
∂x
∂y

)
(p)

∣∣∣2 ∣∣∣ det H( f (x))(p)
∣∣∣,

where we have written H( f (x)) for the Hessian
( ∂2 f
∂xi∂x j

)
of f in the x-coordinates.

Consequently, ∣∣∣ det
(
∂x
∂y

)
(p)

∣∣∣ =
1√ ∣∣∣ det H( f (x))(p)

∣∣∣
and so

F(p) =
g(p)√ ∣∣∣ det H( f (x))(p)

∣∣∣
Exercise C.0.3. Show that∫

Rn
eiT f (y) dny =

(2π
T

)n/2
eπi sgn(H( f (x))(p))/4eiT f (p)

and therefore

F(p)
∫
Rn

eiT f (y) dny =

(2π
T

)n/2
eπi sgn(H( f (x))(p))/4 eiT f (p)√ ∣∣∣ det H( f (x))(p)

∣∣∣ g(p).
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This takes care of the first term in (C.5). Notice, in particular, that this term is
O(T−n/2) as T → ∞. Keep in mind, however, that all of this has been done for
U = U j, ϕ = ϕ j, and p = p j for some fixed j = 1, . . . ,N so what we will need in
(C.4) is the sum

N∑
j=1

∫
U j

eiT f (x)g(x)ϕ j(x) dnx =

N∑
j=1

(2π
T

)n/2
eπi sgn(H( f (x))(p j))/4

eiT f (p j)√ ∣∣∣ det H( f (x))(p j)
∣∣∣ g(p j). (C.6)

These are all O(t−n/2).
All that remains is to consider the integrals

n∑
k=1

∫
Rn

eiT f (y)ykFk(y) dny

in (C.5). Fix some k = 1, . . . , n and consider the integral∫
Rn

eiT f (y)ykFk(y) dny.

Compute

∂

∂yk

(
eiT f (y)

)
= eiT f (y)(iT )

∂ f
∂yk = eiT f (y)(iT )

∂

∂yk ( f (p) + Q(y)/2) = (±i)TeiT f (y)yk.

Thus,

eiT f (y)yk = (∓i)
( 1
T

)
∂

∂yk

(
eiT f (y))

and so ∫
Rn

eiT f (y)ykFk(y) dny =
1
T

(∓i)
∫
Rn

∂

∂yk

(
eiT f (y))Fk(y) dNy

=
1
T

(±i)
∫
Rn

eiT f (y) ∂Fk

∂yk dny,

where, for the last equality, we integrated by parts and used the fact that Fk has
compact support. Since ∂Fk

∂yk has compact support this last integral has exactly the
same form as the integral

∫
Rn eiT f (x)g(x) dnx with which we began, that is, we can

write ∫
Rn

eiT f (y)ykFk(y) dny =
1
T

(±i)
∫
Rn

eiT f (y)φ(y) dny
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and repeat the entire argument to obtain∫
Rn

eiT f (y)ykFk(y) dny =
1
T

(±i)
[
Φ(p)

∫
Rn

eiT f (y)dny +

n∑
k=1

eiT f (y)ykΦk(y) dny
]
.

We have seen that the first term inside the bracket is O(T−n/2) so, with the extra
factor of 1

T , the first term on the right-hand side is O(T−n/2−1) and for the rest we
pick up yet another factor of 1

T . Continuing we find that the lowest order terms are
the O(T−n/2) terms in (C.6). Consequently,∫

Rn
eiT f (x)g(x) dnx =

N∑
j=1

(2π
T

)n/2
eπi sgn(H( f (x))(p j))/4

eiT f (p j)√ ∣∣∣ det H( f (x))(p j)
∣∣∣ g(p j) + O

( 1
T n/2+1

)
. (C.7)

This is the stationary phase approximation. Notice that when n = 1 and there is
exactly one nondegenerate critical point at x0 this reduces to (C.2).

This is really all we need here, but we would like to conclude with a few remarks.
We have already pointed out the uses made of this approximation in dealing with
oscillatory integrals that cannot be evaluated explicitly. What we have not pointed
out yet is the remarkable fact that there are circumstances in which the stationary
phase approximation is exact, that is, the sum on the right-hand side of (C.7) is
equal to the integral on the left so that the error terms vanish. Precisely when this
occurs involves some rather deep topological issues and the phenomenon itself is
best viewed from the perspective of localization theorems in equivariant cohomol-
ogy. For those who would like to learn more about this we suggest [Kirwan], [DH],
[Atiyah], [AB] and [BGV]. Needless to say, from the point of view of quantum the-
ory it would be very desirable if some sort of stationary phase approximation could
be established in the infinite-dimensional context and applied to Feynman path “in-
tegrals”. Better yet, one would like analogues of those finite-dimensional equivariant
localization theorems that guarantee the exactness of the approximation. From the
rigorous mathematical point of view this quite a nontrivial problem (see, however,
Section 10.3 of [AHM]). Physicists are undeterred by this, of course, as one can see
from, for example, [Szabo].
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Szegö. Szegö, G., Orthogonal Polynomials, American Mathematical Society, Providence, RI,

1939.

http://arxiv.org/abs/hep-th/9608068


552 References

Takh. Takhtajan, L.A., Quantum Mechanics for Mathematicians, American Mathematical So-
ciety, Providence, RI, 2008.

TaylA. Taylor, A.E., Introduction to Functional Analysis, John Wiley and Sons, Inc., London,
England, 1967.

TaylM. Taylor, M.E., Partial Differential Equations I, Second Edition, Springer, New York, NY,
2011.

ter H. ter Haar, D., The Old Quantum Theory, Pergamon Press, Oxford, England, 1967.
’t Ho1. ’t Hooft, G., Gauge Theories of the Forces between Elementary Particles, Scientific

American, 242, 1980, 90-116.
’t Ho2. ’t Hooft, G., How a Wave Function can Collapse Without Violating Schrödinger’s Equa-

tion, and How to Understand Born’s Rule, http://arxiv.org/abs/1112.1811
Traut. Trautman, A., Noether Equations and Conservation Laws, Commun. Math. Phys. 6,

1967, 248-261.
Tuyn. Tuynman, G.M., Supermanifolds and Supergroups: Basic Theory, Kluwer Academic

Publishers, New York, NY, 2005.
TAE. Twareque Ali, S. and M. Englis̆, Quantization Methods: A Guide for Physicists and

Analysts, http://arxiv.org/abs/math-ph/0405065
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diffusion equation

1-dimensional, 166, 409
Dirac delta, 162, 383
Dirac scissors, 49, 467
dispersion, 80, 227, 229

of momentum on R, 235
of position on R, 234
zero, 228

dispersion relation, 314
distribution function, 80
distributional derivative, 163
domain issues, 180
double pendulum, 51

Euler-Lagrange equations, 51
Hamilton’s equations, 69
Hamiltonian, 69
Lagrangian, 51
motion, 70

dynamics, 77, 236

Ehrenfest’s Theorem, 328, 335, 338
physicist’s “proof”, 336
rigorous proof, 338

eigenspace, 174
eigenvalue, 174

simple, 185, 244
electric charge, 91
electric field, 92
electric force, 91
electrodynamics, 91
electromagnetic spectrum, 94
electromagnetic wave, 98

circularly polarized, 99
elliptically polarized, 99
linearly polarized, 98
plane, 98
unpolarized, 99

electron, 90
electron spin g-factor, 457
elliptic operator, 513
elliptic regularity, 105
emission spectrum, 95
energy, 4, 5, 9, 14, 33, 60, 237
energy density

electromagnetic field, 107
entanglement, 244
equivariant cohomology, 360, 542
equivariant localization theorems, 360, 542
essential range, 193, 197
essentially bounded function, 197
essentially self-adjoint operator, 153

and an orthonormal eigenbasis, 174
Euler-Lagrange equations, 22

and Newton’s Second Law, 24
coordinate independence, 22

evaluation map, 415, 422
even operator, 498
evolution operator, 77, 439

in quantum mechanics, 237
expectation value, 80, 227

of a commutator, 337
expected value, 80, 227
exponentials of operators, 215

fermion, 46, 49, 456
fermionic harmonic oscillator, 481
fermionic harmonic oscillator algebra, 479
fermionic states, 492
fermionic subspace, 496
Feynman path integral, 143, 243, 355

analytic-in-time operator-valued, 450
Cameron’s result, 441
free particle, 360, 363
harmonic oscillator, 364, 376

Feynman-Kac Formula, 436
Feynman-Souriau Formula, 343
fiber dimension, 505
fiber metric, 505
finite function, 415, 425
finite particle space, 475
First Principles of Quantum Mechanics, 142
flat torus, 115

fundamental domain, 115
flow of a vector field, 37

infinite-dimensional, 429
formally self-adjoint operator, 152
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Fourier coefficients, 117
Fourier series, 117
Fourier transform

Gaussian, 156, 386
of a tempered distribution, 164
on R, 156
on RN , 386
variants, 156, 386

Fourier-Plancherel transform, 158, 388
Fréchet space, 155, 383
Fréchet topology, 155, 383
Fraunhofer lines, 95
Fredholm index, 502
Fredholm operator, 502
free motion with constraints, 30
free particle Hamiltonian H0, 173, 394

domain, 173, 397
integral kernel, 317
is self-adjoint, 173, 397
path integral, 363
propagator, 317, 343
Schrödinger kernel, 317
spectrum, 193

free particle, classical, 26
action, 25

free quantum particle, 311
path integral, 360, 363

Fresnel integrals, 522
Friedrichs extension, 173, 395
Fubini’s Theorem, 446
functional calculus, 212

exponential, 215
for Borel functions, 213
for bounded operators, 213

fundamental solution
free Schrödinger equation, 324
harmonic oscillator equation, 347
heat equation, 169

gauge field, 99
gauge freedom, 101
gauge transformation, 101
Gaussian distribution, 167
Gaussian integral, 169, 315, 344, 362, 365,

426, 517
Gelfand triple, 315
generalized coordinates, 20
generalized eigenfunction, 315
generator of supersymmetry, 497
generators of a Lie algebra, 42
generators of rotations, 43
generators of translations, 43
geodesic, 32
geodesic equations, 32

gradient
weak, 384

graph of an operator, 151
Grassmann algebra, 482

even elements, 483
generators, 482
imaginary element, 483
involution on, 483
multiplication operators, 484
odd elements, 483
partial differentiation operators, 485
real element, 483

graviton, 456
Groenewold-Van Hove Theorem, 308
ground state, 501
ground state energy, 7, 501
group action, 36

Hamilton’s equations, 62
and Newton’s Second Law, 63

Hamiltonian
atomic, 400
classical mechanics, 60
free particle, 173
harmonic oscillator

bosonic, 176
fermionic, 481
supersymmetric, 491

hydrogen atom, 380
quantum, 237

Hamiltonian mechanics, 58
Hamiltonian vector field, 62, 65
harmonic function, 103
harmonic oscillator, bosonic

classical limit, 335
Hamiltonian HB, 176, 187

dispersion, 233
domain, 194
eigenvalues, 179
eigenvalues are simple, 185
eigenvectors, 179
expected value, 233
integral kernel, 243
inverse, 195
inverse is bounded, 195
inverse is compact, 199
is essentially self-adjoint on S(R), 176
matrix representation, 187
path integral, 364
propagator, 243, 343, 364
resolution of the identity, 209
resolvent, 196
resolvent is bounded, 196
resolvent is compact, 199
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Schrödinger kernel, 243
spectrum, 194

harmonic oscillator,classical
action, 25
and stable equilibrium points, 5
energy, 7
equation, 2

amplitude, 2
linearized pendulum equation, 3
natural frequency, 2
phase, 2

Euler-Lagrange equation, 24
expected value of an observable, 331
Hamiltonian, 63
Hamiltonian vector field, 63
Lagrangian, 24
mass on a spring, 1

Hooke’s Law, 1
spring constant, 1

potential, 4, 6, 400
probability density for position, 331
quantized energy, 7

heat equation
1-dimensional, 166

heat kernel
1-dimensional, 168

heat semigroup, 170, 432
Heisenberg algebra

(2n+1)-dimensional, 283
3-dimensional, 279
realization of, 286, 299

Heisenberg equation, 261
Heisenberg group, 299

(2n+1)-dimensional, 284
3-dimensional, 282

Heisenberg picture, 260
Heisenberg Uncertainty Principle, 255
Heisenberg-Bohr microscope, 256
Hermite equation, 177
Hermite functions, 186
Hermite polyomials, 178
Higgs boson, 308, 456
Hilbert space, 83
Hilbert space tensor product, 470
Hilbert’s Fifth Problem, 294
Hille-Yosida Theorem, 426, 430
Hille-Yosida-Phillips Theorem, 431
Hodge Decomposition Theorem, 507
Hodge harmonic differential form, 507
Hodge Laplacian, 507
holonomic constraint, 28
homogeneous operator, 498
Hooke’s Law, 1
Huygens’ Principle, 136

hydrogen atom, 380, 394

identical particles, 469, 472
imaginary time, 442
index

Fredholm, 502
Witten, 502

index of a critical point, 534
indistinguishable particles, 469
infinitesimal generator, 217, 428
infinitesimal generator of rotations, 38
infinitesimal symmetry, 38
inhomogeneous rotation group, 41
integrable realization of h3, 297
integral in the mean, 159, 388
integral kernel

free particle, 317
harmonic oscillator, 326, 340
heat equation, 168

integral kernel for HB, 243
integration by parts in H1(RN ), 385
intensity, 110
interference term, 224
internuclear distance, 6
intrinsic angular momentum, 456
invariant subspace, 290
inverse Fourier transform, 158, 387

of a tempered distribution, 164, 388
irreducible representation, 290, 462
isolated system

classical, 236
quantum, 236, 244

isometric embedding, 83
isometric isomorphism, 83
isometry, 83

Jacobi algebra, 305
Jacobi group, 302
Jacobi Identity, 66
Jordan’s Inequality, 521

Kato’s Theorem, 400
Kato-Rellich Theorem, 390
Kelvin scale, 109
Kennard uncertainty relation, 254
kinetic energy, 4, 14
kinetic energy metric, 31, 48
Kramers-Heisenberg dispersion theory, 276

Lüder’s Postulate, 248
ladder operators, 184
Lagrangian, 18, 20

from a Riemannian metric, 30
nondegenerate, 53
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regular, 57
symmetry of, 35
time-dependent, 23

Lagrangian mechanics, 17
Laplace equation, 103
Laplace-Beltrami operator, 507
Laplacian

1-dimensional, 165
is self-adjoint, 165

3-dimensional, 379
is self-adjoint, 396

Lebesgue-Stieltjes integral, 447
Lebesgue-Stieltjes measure, 447
Legendre transformation, 56
Leibniz Rule, 68
Lie algebra homomorphism, 285
Lie algebra representation, 285
Lie superalgebra, 500
Lie-Trotter-Kato Product Formula, 44, 353,

433
Liouville measure, 73
Liouville’s Theorem, 73
local triviality, 505
local trivialization, 505
loop in SO(3), 48
Lorentz Force Law, 92
Lorentz gauge, 102
Lorenz condition, 102
Lorenz gauge, 102
lowering operator, 184, 187, 232
Lucretius, 406

macrostate, 125
magnetic dipole, 452
magnetic field, 92
magnetic force, 91
magnetic moment

orbital, 452
rotational, 452
total, 452

magnetic monopole, 92
Maslov correction, 341, 344
matrix mechanics, 226, 260, 274, 275
maximally symmetric operator, 153
Maxwell’s equations, 92, 99
mean energy, 129, 131
mean value, 80
mean-square integral, 159, 388
measurable set, 420

Wiener, 422
measurable space, 419
measure, 419

complex, 440
total variation measure of, 441

total variation of, 441
Lebesgue-Stieltjes, 447
pushforward, 423
Wiener, 422

measure induced by a pre-measure, 420
measure space, 419

complete, 419
completion, 419

measurement, 223, 226, 236, 243
Mehler’s Formula, 342
metaplectic group, 301
microstate, 126
mixed state, 224
modes, 125

counting, 125
momentum, 26

conjugate, 26
photon, 132

momentum density, 108
momentum operator on R, 150

dispersion, 235
does not commute with the position

operator, 221
generates translations, 219
has no bounded extension, 150
is self-adjoint, 154
is unitarily equivalent to the position

operator, 171
motivation, 240
resolution of the identity, 209
spectrum, 193

momentum representation, 233
momentum space, 234
Morera’s Theorem, 445
Morse function, 533
Morse Lemma, 527, 528
multi-index, 382
multiplication operator, 86, 154

and the Spectral Theorem, 197

natural 1-form, 58
natural coordinates

cotangent bundle, 55
tangent bundle, 20

natural symplectic form, 59
Nelson’s Analytic Vector Theorem, 403
neutron, 90
Newton’s Second Law, 2
Nichols Radiometer, 107
No-Go Theorem, 308
Noether’s Theorem, 23, 28, 39
non-normalizable state, 315
noncommutative geometry, 484
norm convergence in B(H), 83
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norm topology on B(H), 83
normal distribution, 167
normal operator, 197
nucleus, 90
number operator, 181, 187, 480, 490

observable, 76, 77
classical, 66
compatible, 250
compatible families, 251
quantum, 226
simultaneous measurability, 249

observer effect, 256
occupation numbers, 126
occupied state, 480
odd operator, 498
old quantum theory, 267
operator, 147

adjoint of, 150
annihilation, 184, 480
bounded from below, 443
closable, 151
closed, 150
closure of, 151
compact, 198
completely continuous, 198
creation, 184, 480
degree 0, 498
degree 1, 498
essentially self-adjoint, 153
even, 498
exponential of, 215
formally self-adjoint, 152
Fredholm, 502
graph of, 151
homogeneous, 498
ladder, 184
lowering, 184, 187
maximally symmetric, 153
momentum, 150
multiplication, 154
normal, 197
number, 181, 187, 480, 490
odd, 498
orthogonal projection, 198
position, 148
positive, 194, 403
projection, 198
raising, 184, 187
self-adjoint, 151
semi-bounded, 443
symmetric, 152
unbounded, 150
unitary, 83

unitary equivalence, 171
operator ordering problem, 307
orbital angular momentum, 452
orbital magnetic moment, 452
orthogonal projection, 198
oscillator algebra, 327
oscillator group, 328
outer measure, 419

partition function, 129
path integral, 143, 243, 355

free particle, 360, 363
harmonic oscillator, 364, 376
heat flow, 435, 436

path space, 18, 20, 412
Pauli equation, 461
Pauli Exclusion Principle, 468, 480
Pauli spin matrices, 458
pendulum, 2

double, 51
spherical, 26
state, 10
state space, 10

pendulum equation, 3
phase space, classical, 58
photoelectric effect, 108, 133
photoelectron, 133
photon, 132, 456
photon momentum, 132
Plancherel Theorem, 158, 388
Planck’s constant, 114, 131

normalized, 114
quantum of action, 114

Planck’s Hypothesis, 130
Planck’s Law, 113
plane electromagnetic wave, 98
plane wave, 118
point spectrum, 188
Poisson algebra, 68
Poisson bracket, 65

and conserved quantities, 69
Jacobi identity, 66

Poisson equation, 103, 104
Poisson manifold, 68
polarization

circular, 99
direction of, 99
elliptical, 99
linear, 99

polarization directions, 120
polarization identity, 86, 202
position operator on R, 148

dispersion, 232, 234
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does not commute with the momentum
operator, 221

expected value, 232
has no bounded extension, 148
is self-adjoint, 153
is unitarily equivalent to the momentum

operator, 171
motivation, 231
resolution of the identity, 207, 208
spectral decomposition, 208
spectrum, 192

position representation, 233
position space, 234
positive linear functional, 414
positive operator, 194, 403
Postulates of Quantum Mechanics

QM1, 223
QM2, 226
QM3, 227
QM4, 237
QM5, 246
QM5′, 248
QM6, 252
QM7, 472

potential
anharmonic oscillator, 401, 403
harmonic oscillator, 401
hydrogen atom, 394
self-adjoint Hamiltonian, 352, 378, 397,

400, 401, 403
potential energy, 4, 14
Poynting vector, 107
Poynting’s Theorem, 107
pre-measure, 418
preparatory measurement, 228
principal quantum number, 269
Principle of Least Action, 17
Principle of Stationary Action, 17
probability amplitude, 142, 143, 224, 271

for momentum, 234
for position, 231

probability density
for momentum, 234
for position, 231

probability density function, 80
projection operator, 198
Projection Postulate, 244
projection-valued measure, 204
propagator, 25, 239, 322

for H0, 317, 343
for HB, 243, 343
path integral representation, 355

for H0, 360
for HB, 364

proton, 90
pure state, 224
pushforward measure, 423

quanta, 184
quantization, 227
quantization procedure, 275
quantum bracket, 262, 277
quantum hypothesis, 10, 90, 267
quantum jump, 7
quantum of action, 114
quantum system, 223

state space, 225
states as operators, 225
symmetry of, 238

radiation gauge, 103
radiation oscillators, 123
radio waves, 94
raising operator, 184, 187, 232
random variable, 80
Rayleigh-Jeans, 111, 130
realization of h3 , 287
realization of h2n+1 , 299
reduced mass, 381
reducible representation, 290
Reduction Postulate, 244
regular distribution, 161
regular measure, 413
representation of an algebra with involution,

479
faithful, 479

residual spectrum, 188
resolution of the identity, 201, 205

HB, 209
and self-adjoint operators, 210
discrete spectrum, 214
for unitary operators, 211
momentum operator on R, 209
position operator on R, 207, 208
unitarily equivalent operators, 208

resolvent, 188
resolvent set, 188
Riemann-Lebesgue Lemma, 388
Riemann-Stieltjes integral, 201
Riemannian metric, 30
Riesz Representation Theorem, 413
rigged Hilbert space, 315
rotation group, 35, 36

exponential map on, 36
Lie algebra of, 36
representations, 462

rotational angular momentum, 452
rotational magnetic moment, 452
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Rydberg-Ritz Combination Rule, 273

scaling property of the Fourier transform, 161
Schrödinger equation

abstract version, 220, 239
physics version, 240, 379

Schrödinger kernel for H0, 317, 320
Schrödinger kernel for HB, 243
Schrödinger picture, 260
Schrödinger realization of h3 , 287
Schrödinger realization of h2n+1, 299
Schrödinger representation of H3, 297
Schrödinger representation of H2n+1, 299
Schur’s Lemma, 290
Schwartz space

on R, 155
on RN , 382

second quantization, 474
section

of a vector bundle, 505
of the cotangent bundle, 55
of the tangent bundle, 20

selection rule interpretation, 269
self-adjoint operator, 151

and unitary equivalence, 171
commuting, 220
has a real spectrum, 188
spectral decomposition of, 210
Stone’s Theorem, 217

semi-algebra of subsets, 418
semi-analytic vector, 403
semi-bounded operator, 443
semi-direct product, 41, 301, 303
semi-Riemannian manifold, 32
semigroup of operators, 170, 427

C0, 427
ω-contractive, 428
contractive, 428
infinitesimal generator, 428
strongly continuous, 170, 427

shift property of the Fourier transform, 161
SI units, 91
simultaneously measurable observables, 249

and commutativity, 250
singular distribution, 161
smooth vector

for a representation, 292
for an operator, 402

Sobolev space H1(RN ), 384
Sobolev space H2(RN ), 385
Sobolev space HK(RN ), 386
spectral family, 205
spectral measure, 204

and self-adjoint operators, 206, 210

and unitary operators, 211
discrete spectrum, 214
on R, 204
strong convergence, 203
uniform convergence, 203
weak convergence, 203

Spectral Theorem, 197
and multiplication operators, 197
compact operators, 198

converse, 199
general case, 210

spectrum, 188
H0, 193
HB, 194
continuous, 188
discrete, 244
momentum operator on R, 193
of closed, symmetric operators, 189
position operator on R, 192
residual, 188

speed of light, 94
spherical pendulum, 26, 40
spherically symmetric potential, 35, 36
spin, 141, 252, 451
spin 1

2 , 456
spin magnetic moment, 457
spin model of R3, 459
spin quantum number, 456
spin vector, 456
Spin-Statistics Theorem, 469, 472
spinor, 461

2-component, 465
spring constant, 1
stable equilibrium point, 4
standard deviation, 80, 254
state, 76, 77

as an operator, 225
in quantum mechanics, 224
non-normalizable, 315
of the pendulum, 10
stationary, 246

state space
in classical mechanics, 18, 19
in quantum mechanics, 225

stationary curve, 21
and geodesics, 32

stationary phase approximation, 319, 527, 535,
542

exact, 542
stationary point, 21
statistical mechanics, 72
Stefan-Boltzmann constant, 111
Stern-Gerlach experiment, 451
Stieltjes integral, 80
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Lebesgue, 447
Riemann, 201

Stone’s Theorem, 217
Stone-von Neumann Theorem, 264, 298, 300
strong convergence, 146
strongly continuous

1-parameter group of unitary operators, 85
semigroup of operators, 170, 427
unitary representation, 289

sum over histories, 357
super Jacobi identity, 499
supercharge, 497
supercommutator, 499
superpartners, 501
superselection rules, 225
supersymmetric harmonic oscillator, 490

bosonic states, 492
fermionic states, 492

supersymmetry, 481
N = 2, 489, 495
crisis, 489

SUSY, 488
SUSY harmonic oscillator, 490
symmetric operator, 152
symmetry, 35

quantum system, 238
symmetry breaking, 501
symmetry group, 40
symplectic form, 59

natural, 59
symplectic gradient, 65
symplectic manifold, 59
symplectic vector field, 68
symplectomorphism, 68

tangent bundle, 19
Tauber’s Theorem, 342
temperature, 109
tempered distribution, 161, 383

regular, 161, 383
singular, 161, 383

tensor power, 470
antisymmetric, 471
symmetric, 470

tensor product
Hilbert space, 470

test charge, 91
test functions, 161, 383
time slicing, 358
time translation symmetry, 33
Time-Energy Uncertainty Principle, 259, 263,

264
total angular momentum, 452

2-body problem, 45

total energy, 4, 14, 33
conservation, 4, 33
electromagnetic field, 114, 122
in quantum mechanics, 237

total magnetic moment, 452
total momentum

2-body problem, 45
total set in a Hilbert space, 402
total variation measure, 441
transition amplitude, 235, 271

multiplication, 274
transition probability, 235
translation operators on L2(R), 218

infinitesimal generator, 218
trivial representation, 289
Trotter Product Formula, 353, 433

ultraviolet catastrophe, 113
unbounded operator, 150
uncertainty principle

Heisenberg, 255
position-momentum, 255
time-energy, 259, 263

uncertainty relation, 253
for position and momentum, 254
Heisenberg, 255
Kennard, 254

uniform convergence in B(H), 83
uniform operator topology on B(H), 83
unit ray, 225
unitarily equivalent representations, 290
unitary equivalence, 83, 171
unitary operator, 83

spectral decomposition of, 211
unitary representation

strongly continuous, 289
unoccupied state, 480
unpolarized light, 99

vacuum permeability, 92
vacuum permittivity, 92
variance, 80, 227
variation, 14, 21
variational principle, 17
vector bundle, 504

fiber dimension, 505
fiber metric, 505
local trivialization, 505
section of, 505
trivial, 505

vibrating string problem, 7
von Neumann’s assumption, 245

wave /particle duality, 95, 134, 141



Index 563

wave equation, 8, 94, 96, 104
wave function, 143, 224

collapse, 236
path integral representation, 355

wave mechanics, 226
wave operator, 105
wavefront, 98
wavenumber, 98
wavevector, 98
weak derivative, 163, 384
weak gradient, 384
weak solution, 104
weakly continuous

1-parameter group of unitary operators, 85

weakly measurable
1-parameter group of unitary operators, 85

weight of a configuration, 127
Weyl relations, 288
Wien’s Law, 111
Wiener measurable set, 422
Wiener measure, 413, 416, 422
Wigner symmetry, 238
Witten index, 502

Young’s Inequality, 170

zero mode, 502
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