
RELIABLE SOFTWARE DEVELOPMENT FOR MACHINE PROTECTION

SYSTEMS

J.C. Garnier, D. Anderson, M. Audrain, M. Dragu, K. Fuchsberger, A.A. Gorzawski, M. Koza,

K. Krol, K. Misiowiec, K. Stamos, M. Zerlauth, CERN, Geneva, Switzerland

Abstract

The Controls software for the Large Hadron Collider

(LHC) at CERN, with more than 150 millions lines of code,

resides amongst the largest known code bases in the world1.

Industry has been applying Agile software engineering tech-

niques for more than two decades now, and the advantages

of these techniques can no longer be ignored to manage the

code base for large projects within the accelerator commu-

nity. Furthermore, CERN is a particular environment due

to the high personnel turnover and manpower limitations,

where applying Agile processes can improve both, the code-

base management as well as its quality. This paper presents

the successful application of the Agile software development

process Scrum for machine protection systems at CERN, the

quality standards and infrastructure introduced together with

the Agile process as well as the challenges encountered to

adapt it to the CERN environment.

MOTIVATION

The accelerator control system at CERN is developed and

maintained by numerous groups. Each group, like the Ma-

chine Protection group, is responsible for certain equipments

and infrastructures. The software used to run the control

system relies on more than 150 million lines of code, of

which the Machine Protection software team accounts for

about 6.5 million.

In the group, a software engineer was hired to work on a

dedicated project, to develop and maintain a software part,

for a short duration contract. Maintenance was not easy

as the project’s software engineer was leaving and others

would take over. Conventions were a clear requirement in

this context, as transitions would be eased by this practice.

With each short term software engineer compartmental-

ized in different projects, the group was not taking advantage

of team synergies. Little knowledge was shared between

the developers and almost no software was reused, or even

reusable. More than sharing source code, projects might

even have been able to share a vision, a common service

infrastructure, a graphical look and feel and a way users

interact with the applications.

The software developed for machine protection consists

of system supervision and diagnostic, commissioning and

operation fault tracking, and data analysis. It is mandatory

that one can ensure that this software is dependable, that it

has a certain level of quality, and that the maintenance does

not rely on a single person.

1 http://dailyinfographic.com/how-many-lines-of-code-does-it-take-

infographic

The Machine Protection software engineers decided to

apply the Scrum Agile methodology from 2012 onwards.

More than just solving the issues the group faced, it was

the opportunity to integrate engineering practices in the

new development process, like refactoring strategies, pair

programming or continuous delivery.

OVERVIEW OF AGILE AND SCRUM

Agile [1] Software Development consists of iterative pro-

cesses involving the users as much as possible to get their

feedback regarding the product, which should be responsive

to change, continuously running and deliverable.

The aim of this paper is not to present Agile methods and

Scrum [2] in detail, but rather the team’s implementation

and experience, so this section is kept concise. The reader

interested in deeper details is invited to read the Scrum Ref-

erence Card [3] to have a quick overview of Scrum before

continuing.

First of all, the Scrum framework consists of a set of rules

and it is designed in a way that the team can adjust it through

its own Scrum experience, being free to review the rules if

they are not valuable.

Scrum defines three roles. The Product Owner is respon-

sible for the product definition and is basically the interface

between the users and the second role, the team. The team

is the group of developers that work on the product. The

Scrum Master is the facilitator of the process, he chairs cer-

emonies and makes sure that no impediments will slow the

team down.

Within Scrum, building the product means delivering

features iteratively. A feature is defined in a user story, fol-

lowing the format “As <someone>, I want <something>, So

that <Added value>”. A user story will be implemented as

a vertical slice, from the user interaction down to the lowest

layers of the application. Every feature is continuously inte-

grated within the application. The team estimates the user

story complexity in story points. A story point is a relative

unit used to compare stories and to gather metrics about

the team performance. A user story can be split into multi-

ple technical tasks which might correspond to the different

horizontal layers orthogonal to the vertical slice.

An iteration is called a Sprint. A sprint lasts from 1 to

4 weeks. During the Sprint Planning, the team defines the

Sprint Goal and commits to do the Sprint Backlog, which is a

reduced collection of user stories from the Product Backlog.

The number of story points done in a sprint is the Velocity.

The team velocity is a very valuable metric as it allows the

team to have fine grained commitments, i.e. if a team did

20 story points per sprint for the last 5 sprints, it may not

Proceedings of IPAC2014, Dresden, Germany MOPME050

06 Instrumentation, Controls, Feedback & Operational Aspects

T23 Machine Protection

ISBN 978-3-95450-132-8

489 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

be able to commit to 30 story points for the next sprint. In

addition, from the average velocity and the estimations of

the product backlog, one can foresee when the product can

be shipped quite accurately.

The velocity normalized by the number of available man-

days is the Focus Factor, i.e. the percentage of time team

members were focused on their tasks. These values helps the

team to understand its own capacity in doing story points.

A user story or a task is done if it matches the definition

of done. The team agrees on the definition, it can be “unit

tests are implemented and the line coverage is greater than

70%”, or “the user interface must survive to two non-coder’s

tests”.

The sprint ends with a potentially shippable product. It

is presented during the Spring Review to stakeholders and

users. This is a very informal meeting in which people are

invited to try out the product and give feedback on it in order

to adjust the next priorities.

The team performs retrospective meetings. It is the op-

portunity to improve the process for the next sprints, based

on the experience of the previous ones. The team identifies

the fields that must be improved and proposes measurable

solutions to apply for the next sprints. It is the opportunity

to improve the Scrum process implementation itself to fit

it to the team. Retrospectives help to identify many of the

engineering practices presented in the next section.

ENGINEERING PRACTICES

Scrum, in comparison to different approaches like eX-

treme Programming (XP) [4], sets a development process

framework which does not enforce the use of engineering

practices. Scrum relies on some practices from XP for the

process definition itself, as presented in the previous sec-

tion. The team has the freedom to discover what software

engineering practices it should use, based on what it finds

necessary to do to improve their velocity. The team iden-

tified some practices as mandatory from the beginning of

the Scrum implementation: Coding Conventions, Collective

Code Ownership, Unit Testing, Continuous Integration [4].

After the first sprints the team focused on improving its

basic understanding of the Scrum framework, to find the

proper sustainable pace, to avoid creating artificial blockers,

etc. Measuring how efficient the team was improving quality

became a major requirement quite quickly.

SonarQube [5] is an open source quality management

platform which integrates all the reports from Continuous

Integration and monitors the evolution of the software qual-

ity, per project or per group of projects. In addition it calcu-

lates the technical debt, a quality index and a maintainability

model. Convention metrics and rules can be centralized and

distributed by SonarQube, which helps ensuring that the

same rules are followed by the team.

Other practices that were integrated by the team are peer-

reviews and pair-programming. Their value is, among others,

to improve software quality and knowledge sharing. Every

team member either teaches or learns with the others con-

tinuously. These two practices help to deal with the high

turnover, distributing knowledge actively throughout the en-

tire team. The shortcoming of pair-programming was that

the pair configuration is not necessarily flexible and team

members are encouraged to mingle different pairs through

the sprint.

Major refactorings became challenging while extracting

and reusing software components in order to develop a simi-

lar architecture in every product. Many refactorings relate to

multiple products, and cannot be done in a single sprint. Yet,

keeping in mind that the product should always be potentially

deliverable, the team identified refactoring strategies to keep

the application running and to keep the refactoring on-going

in a good direction, ideally reaching a perfectly reusable and

extensible pattern, following the SOLID principles2.

Unit tests were completed with integration tests and ac-

ceptance tests as the software became more important and

its integration phases more critical. These tests validate the

behaviour of multiple components integrated together or a

complete user story. Based on the confidence gained from

these tests, a Continuous Delivery environment [6] could be

implemented.

Each retrospective is the opportunity to study new soft-

ware engineering practices to be integrated in the process.

With a good process, the team should be able to produce

quality software answering the reliability requirements from

the machine protection domain. The team is currently in-

vestigating ways to audit the quality of the tests. An inter-

esting solution might be the implementation of Mutation

Testing [7].

EXPERIENCE OF THE MACHINE

PROTECTION SOFTWARE TEAM

Applying Scrum resulted at first in a small adaptation

period during which the team velocity stagnated. The

golden age where velocity increases continuously was not yet

reached, as the work environment brings several constraints.

The main one is that the software team suffers from a high

turnover. Figure 1 shows that when the team changes, it has

an impact on the velocity. In addition, it shows that adding

people to the team does not necessarily or immediately in-

crease velocity. This is mainly due to the training required

for the new team members. The best configuration is to have

a stable team for a long time, then the average velocity will

increase.

Another constraint is that the team develops numerous

projects that can be categorized in six products3. Remaining

on the same product long enough to be efficient has always

been prevented by changing priorities. So far the team never

focused on the same product for more than three sprints,

which is not enough to really increase the average velocity.

2 Single responsibility principle, Open/closed principle, Liskov substitution

principle, Interface segregation principle, Dependency inversion principle
3 The definition of a product is very wide. It consists of multi-tier applica-

tions with C++ layers, Java servers and GUIs.

MOPME050 Proceedings of IPAC2014, Dresden, Germany

ISBN 978-3-95450-132-8

490C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

06 Instrumentation, Controls, Feedback & Operational Aspects

T23 Machine Protection

Figure 1: Done story points vs man-days (solid line) vs

People added, removed and overall team size (step func-

tions). Increasing the number of people does not necessarily

increase productivity.

As described in the first section, CERN’s traditional work-

ing scheme is to give project responsibilities to one person.

As the team evolved from this structure to Scrum, the pre-

vious project owners were legitimately Product Owners on

their own project, sharing the development responsibility

with the team. This quickly became a problem, as it en-

couraged a behaviour that Scrum should prevent. Direct

communication with the team is indeed a source of distrac-

tion, henceforth a possible cause for low focus factor. As

team members are also product owners, product users were

contacting them during a sprint related to another product,

distracting them and sometimes reorganizing their priorities.

However, once a sprint is started, nothing should change

its priorities. The solution was to emphasize more about

the behaviour expected from team members and product

owners. Another surprise after implementing Scrum is that

the Scrum Master role can circulate through the team. It

is actually very positive that any team member is given the

chance to assume the Scrum Master responsibility for a few

sprints. It gives them the opportunity to learn more actively

about Scrum.

Before entering Long Shutdown 1 (LS1), the software

team performed six sprints. One could calculate the average

team velocity: 16 points. The LS1 was originally foreseen

to last 22 sprints, until the first commissioning of the acceler-

ator complex. Thus the team agreed that it could commit to

do roughly 352 story points as a baseline for the LS1, keep-

ing in mind that the team would change, the sprint size could

change, breaks could be inserted, etc. The team roughly

estimated the epic user stories for every machine protection

products foreseen for this period or required for the machine

restart. This served as a base to define the must-have at the

end of the LS1, and what could wait for a later time. New

user stories appeared with time and priorities were shifted

to keep the commitment level acceptable. Figure 2 shows

the ideal performance over the 2 year LS1 and the actual

performance of the team. Scrum brings very interesting

metrics in order to plan and estimate work, and to know the

team capacity.

Figure 2: The ideal progress story point consumption (solid

line) and the actual story point consumption from the team

each sprint (dots) compared.

OUTLOOK

The software team has been using Scrum for 30 sprints,

or 2 years. Experience proved that Scrum allowed the team

to know its capacity and to give clear commitments. It has

improved the work environment and the attitude toward the

projects and the way the team works. More than the original

goal to share knowledge and ensure continuity to carry out

projects, it really created a dynamic environment in which

team members are happy to work, can develop themselves,

learn about the latest technologies and software engineer-

ing practices. The most noticeable change is the personal

responsibility given to team members. The team takes ini-

tiatives and drives the process autonomously. So far the

team practised Scrum during the shutdown of the acceler-

ator complex and the maintenance activity was reduced to

a minimum. The challenge will be coming soon with the

start of the accelerator complex and the LHC powering tests.

The Scrum implementation will be adapted to accommo-

date interruptive support and maintenance tasks. There are

patterns that the team can follow and improve to alleviate

this issue. Striving for continuous improvement, inviting a

certified Scrum coach would be a good opportunity to review

the Scrum process and working environment.

REFERENCES

[1] K. Beck et al., http://agilemanifesto.org/

[2] K.S. Rubin, “Essential Scrum: A Practical Guide to the Most

Popular Agile Process”, Addison-Wesley Signature Series

(Cohn).

[3] http://scrumreferencecard.com/scrum-reference-card/

[4] K. Beck, C. Andres, “Extreme Programming Explained: Em-

brace Change”, Addison-Wesley; 2nd edition (The XP Se-

ries).

[5] http://www.sonarqube.org

[6] J. Humble, D. Farley, “Continuous Delivery: Reliable Soft-

ware Releases through Build, Test, and Deployment Automa-

tion”, Addison-Wesley Signature Series (Fowler).

[7] http://pitest.org

Proceedings of IPAC2014, Dresden, Germany MOPME050

06 Instrumentation, Controls, Feedback & Operational Aspects

T23 Machine Protection

ISBN 978-3-95450-132-8

491 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

