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Abstract
We consider a brane world in an arbitrary number of dimensions without Z2 symmetry
and derive the effective Einstein equation on the brane, where its right-hand side is
given by the matter on the brane and the curvature in the bulk. This is achieved
by first deriving the junction conditions for a non-Z2 symmetric brane and second
solving the Gauss equation, which relates the mean extrinsic curvature of the brane
to the curvature in the bulk, with respect to the mean extrinsic curvature. The
latter corresponds to formulating an explicit junction condition on the mean of the
extrinsic curvature, analogue to the Israel junction condition for the jump of the
extrinsic curvature. The derived equation is a basic equation for the study of Kaluza-
Klein brane worlds in which some dimensions on the brane are compactified or for a
regularization scheme for a higher codimension brane world, where the Kaluza-Klein
compactification on the brane is regarded as a means to regularize the uncontrollable
spacetime singularity created by the higher codimension brane.

1 Introduction

String theory suggests that our universe is not four dimensional but, rather, a submanifold (brane)
embeded in a higher-dimensional spacetime (bulk). In particular, Randall and Sumdrum (RS) [2, 3]
proposed an interesting brane world model. The RS model assumes a codimension-1 brane with Z2

symmetry embeded in the bulk with a negative cosmological constant. However, to reconcile a higher-
dimensional theory with the observed four-dimensional spacetime, the RS model is not sufficient. Since
string theory suggests that the number of bulk dimensions is 10 or 11, the corresponding number of
codimensions is 6 or 7. Therefore, we must consider a higher-codimension brane world. But a higher-
codimension brane world has the serious problem that the brane becomes an uncontrollable spacetime
singularity due to its self-gravity, except possibly for a codimension-2 brane world, which may give a
reasonable cosmology. Thus it is necessary to develop a regularization method to realize a reasonable
higher-codimension brane world.

For the above-stated purpose, we focus on a specific regularization scheme, which we now describe.
Let us consider a codimenion-(q + 1) brane in an n-dimensional spacetime. We regularize this brane by
expanding it into q-dimensions, so that it becomes a codimension-1 brane with q compact dimensions on
the brane. Note that the resulting codimension-1 brane will not have the Z2 symmetry. This regulariza-
tion scheme is essentially the same as the Kaluza-Klein (KK) compactification of q spatial dimensions on
the brane, which is called the KK brane world.

In this paper, partly to give a framework for the KK brane worlds and partly as a first step to formulate
the above-mentioned regularization scheme for brane worlds of arbitrary codimension, we consider a
codimension-1 brane world in an arbitrary number of spacetime dimensions without Z2 symmetry and
derive an effective Einstein equation on the brane, which is a generalization of the effective Einstein
equation on the brane with Z2 symmetry derived by Shiromizu, Maeda and Sasaki [4].

The work most relevant to the present one is that of Battye et al., [5] in which the non-Z2 symmetric
brane world is investigated. They study the junction condition in detail and point out that the effective
Einstein equation has terms involving the mean of the extrinsic curvature across the brane which are not
explicitly expressed in terms of either the matter on the brane or the curvature in the bulk. Then, they
focused their investigation on a spatially homogeneous, isotropic brane. Our purpose here is to solve
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this problem and express the effective Einstein equation solely in terms of the matter on the brane and
the curvature in the bulk, and also to present a straightforward generalization in which the number of
spacetime dimensions of the bulk is extended from 5 to n.

Thoughout the paper, we use square brackets to denote the jump of a quantity across the brane and
angled brackets to denote its mean. For an arbitrary tensor A (with tensor indices suppressed), we define
[A] ≡ A+ −A− , 〈A〉 ≡ 1

2 (A+ +A−), where the superscript + denotes the side of the brane from which
the normal vector nA points toward the bulk.

2 Pre-effective Einstein equation on the brane

We consider a family of (n−1)-dimensional timelike hypersurfaces (slicing) in an n-dimensional spacetime
and identify one of them as a brane (i.e., a singular hypersurface). We denote the bulk metric by gMN

where M = 0, 1, · · · , n− 1. We denote the vector field unit normal to the hypersurfaces by nM . Then the
induced metric γMN on the hypersurfaces is given by γMN = gMN −nMnN . The metric γA

B = γACgCB

acts as a projection operator, projecting bulk tensors onto the brane. Here, the Gauss equation gives

R̄ab = Fab + KKab − Ka
cKbc , (1)

where R̄abcd is the (n− 1)-dimensional Riemann curvauture, Kab is the extrinsic curvature on the brane.
For convenience, we introduce the tensor Fab defined by

Fab ≡
n − 3
n − 2

RABγA
a γB

b +
1

n − 2
RCDγCDγab −

1
n − 1

Rγab + Eab , (2)

where RABCD is the n-dimensional Riemann curvature and Eab is the projected Weyl curvature on the
brane, defined by Eab ≡ CACBDnCnDγA

a γB
b . Using the fact that the brane induced metric satisfies the

junction condition [γab] = 0, the Gauss equation can be decomposed into two equations,

〈R̄ab〉 = R̄ab = 〈Fab〉 +
1
4
([K][Kab] − [Kc

a][Kbc]) + 〈K〉〈Kab〉 − 〈Kc
a〉〈Kbc〉 , (3)

[R̄ab] = 0 = [Fab] + 〈K〉[Kab] + [K]〈Kab〉 − 2〈K(a
c〉[Kb)c] , (4)

where we use the relations between the jump and mean symbol〈〉, []. We can construct the effective
Einstein equation on the brane without any symmetry. For convenience, we decompose the Fab and Kab

into trace and traceless parts, Fab = F
n−1γab + ωab, Kab = K

n−1γab + σab, respectively. The effective
Einstein equation is derived from the mean of the Gauss equation (3). Inserting the Israel junction
condition [6] ([Kγab − Kab] = κ2

(n)T̄ab = κ2
(n)(−λγab + τab)) into it, we obtain

Ḡab = −Λ̄γab + κ2
(n−1)τab +

κ2
(n−1)

λ
Sab + 〈Ωab〉 − 〈σa

c〉〈σbc〉 , (5)

where the each terms is defined by

κ2
(n−1) =

n − 3
4(n − 2)

κ4
(n)λ , (6)

Λ̄ =
n − 3

2(n − 1)
〈F〉 +

1
2
κ2

(n−1)λ +
(n − 2)(n − 3)

2(n − 1)2
〈K〉2 − 1

2
〈σcd〉〈σcd〉 , (7)

Sab =
τ

n − 3
τab −

τ2

2(n − 3)
γab −

n − 2
n − 3

τ c
aτbc +

n − 2
2(n − 3)

τ cdτcdγab , (8)

〈Ωab〉 = 〈ωab〉 +
n − 3
n − 1

〈K〉〈σab〉 . (9)

The first term Λ̄ on the right-hand side of Eq. (5) represents the effective cosmological constant. We note,
however, that this quantity may not be constant in general, as is clear from its expression in Eq. (7).
The second and third terms are contributions from the energy-momentum tensor on the brane and its
quadratic term, which are the same as in the Z2 symmetric case [4]. The fourth traceless term, 〈Ωab〉,
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which is traceless by definition, is an extension of the Eab term in the Z2 symmetric case. Finally, the last
term is a new term, which has no analog in the Z2 symmetric case. As is clear from its definition, this
term arises from the square of the mean extrinsic curvature 〈Kab〉, and it vanishes only if the traceless
part of 〈Kab〉 is zero. The above effective Einstein equation, (5), is completely general in the sense that no
symmetry has been imposed. However, it is useless, except in the Z2 symmetric case, because it depends
strongly on the unknown mean extrinsic curvature 〈Kab〉. In order to make it meaningful, it is necessary
to express 〈Kab〉 in terms of geometrical quantities in the bulk (i.e., the bulk metric and curvature) and
the brane energy-momentum tensor.

3 The mean extrinsic curvature 〈Kab〉
The equation we solve is (4),

−[Fab] = 2κ2
(n)τ̂(a

c〈Kb)c〉 + 〈K〉[Kab] . (10)

where we use the Israel junction condition and for convenience we introduce the “hatted” energy-
momentum tensor:

τ̂ab ≡ τab −
(n − 3)λ − τ

2(n − 2)
γab = T̄ab −

1
2(n − 2)

T̄ γab . (11)

Here we seek a general solution without particular assumptions concerning the brane energy-momentum
tensor. Our method consists of two parts. First, we obtain the trace of the mean extrinsic curvature
〈K〉 by introducing the inverse of the hatted tensor τ̂ab. Second, with 〈K〉 known, we rewrite the second
Gauss equation as a matrix equation for 〈Kab〉. This matrix equation can be solved by using the tetrad
(more precisely, the vielbein) decomposition of τ̂ab. Using this strategy, we obtain the general solution
for the mean extrinsic curvature.

κ2
(n)〈Kab〉 = −1

2
(τ̂−1)a

c[Fbc] +
(n − 3)(τ̂−1)de[Fde]

2((n − 3)2 − τ̂m
m(τ̂−1)n

n)

(
γab −

τ̂ c
c

n − 3
(τ̂−1)ab

)
−

∑
i6=j

1
τ̂(i) + τ̂(j)

ē(i)
a ē

(j)
b [ω(i)(j)] . (12)

where (τ̂−1)ab is a inverse matrix of the “hatted” energy-momentum tensor τ̂ab and ē
(i)
a is a local Lorentz

frame in which the hatted tensor τ̂ab is diagonalized. We refer to this as the junction condition for the
mean of the extrinsic curvature, which is a counterpart to the conventional junction condition for the
jump of the extrinsic curvature, Israel junction condition [6]. We also note that this result is valid only if
we have τ̂(i) + τ̂(j) 6= 0 for all possible pairs of (i) and (j). We need a special treatment in the case that
any of the demonimators are zero.

4 Effect of 〈Kab〉 on the brane

Low energy limit

We conjecture that the low energy regime, where |τab| ¿ λ, Einstein gravity is recovered on the brane.
For this reason, we believe that the contributions of the ωab and Sab terms become negligibly small. To
examine this, let us consider the solution for the mean extrinsic curvature up to O(τ2

ab, ωab). In this case,
the inverse of the hatted energy-momentum tensor is given by

(τ̂−1)ab =
2(n − 2)
n − 3

λ−1

(
γab +

2(n − 2)
n − 3

λ−1

(
τab − τ

2(n − 2)
γab

)
+ · · ·

)
.

(13)

Then 〈Kab〉 can be readily obtained as

κ2
(n)〈Kab〉 =

[F ]
2(n − 1)λ

{
γab +

1
λ

(τγab − (n − 2)τab)
}

+ O(τ2
ab, ωab) . (14)
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Using this, the effective Einstein equation becomes

Ḡab = −Λ̄LEγab + κ2
(n−1)

LE
τab + O(τ2

ab, ωab), (15)

where

κ2
(n−1)

LE
=

n − 3
4(n − 2)

κ4
(n)λ − (n − 2)(n − 3)[F ]2

4(n − 1)2κ4
(n)λ

3
, (16)

Λ̄LE =
n − 3

2(n − 1)
〈F〉 +

n − 3
8(n − 2)

(κ2
(n)λ)2 +

(n − 2)(n − 3)[F ]2

8κ4
(n)(n − 1)2λ2

. (17)

Thus, Einstein gravity is recovered. However, in contrast to our naive expectation, the contribution of
the mean extrinsic curvature gives rise to new correction terms from the bulk, both to the gravitational
constant and to the cosmological constant, which are not necessarily constant.

5 Conclusion

We considered a general codimension-1 brane in an arbitrary number of dimensions without Z2 symmetry
and we obtained expressions for both the jump and the mean of the extrinsic curvature in terms of the
bulk curvature tensor and the brane energy-momentum tensor. With this result, we derived the effective
Einstein equation on the brane in its most general form, which is a generalization of the Shiromizu-
Maeda-Sasaki equation [4] to the case in which Z2 symmetry does not exist. The derived effective
Einstein equation has a new term arising from the mean extrinsic curvature, and this new term leads to
the appearance effectively anisotropic matter on the brane.

Thus, our result is a basic equation for the hybrid brane world scenario, in which some spatial
dimensions on the brane are Kaluza-Klein compactified. Also, it provides a basis for higher codimension
brane worlds in which a higher codimension brane is regularized by a codimension-1 brane with extra
dimensions on the brane compactified to an infinitesimally small size.
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