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We construct Lorentz-invariant massless and massive spin-2 theories in flat spacetime. Starting from the
most generic action of a rank-2 symmetric tensor field whose Lagrangian contains up to quadratic in first
derivatives of a field, we investigate the possibility of new theories by using the Hamiltonian analysis. By
imposing the degeneracy of the kinetic matrix and the existence of subsequent constraints, we classify
theories based on the number of degrees of freedom and constraint structures and obtain a wider class of
Fierz-Pauli theory as well as massless and partially massless theories, whose scalar and/or vector degrees of
freedom are absent. We also discuss the relation between our theories and known massless and massive
spin-2 theories.
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I. INTRODUCTION

The search for a theoretically consistent Lorentz-
invariant massive graviton has been a challenging issue
since 1939, when Fierz and Pauli (FP) proposed a linear
theory of massive spin-2 field [1]. Once the FP mass term is
taken into account in general relativity, one would naively
expect that it recovers the results of general relativity as the
mass of the graviton goes to zero. However, a nonvanishing
degree of freedom (DOFs) in the massless limit would lead
to discontinuity found by van Dam and Veltman [2] and
Zakharov [3]. Although Vainshtein claimed that this
problem can be cured by taking into account nonlinear
interactions [4], Boulware and Deser pointed out the scalar
d.o.f. responsible for Vainshtein’s argument carries an extra
ghost d.o.f., the so-called BD ghost [5]. Remarkably, this
unwanted d.o.f. associated with higher derivatives can be
eliminated by adding the fully nonlinear graviton’s mass
terms such that those higher derivative terms vanish due to
the total derivative terms, and this theoretically consistent
massive gravity theory is now known as de Rham-
Gabadadze-Tolley (dRGT) theory [6,7].

In recent years, there have been a number of attempts for
constructing a broad class of theories of massive gravity,
e.g., mass-varying massive gravity [8], quasidilation
theory [9], and massive bigravity [10]. The most interest-
ing one would be new kinetic interactions for a massive
graviton without introducing any extra d.o.f. Such a
kinetic interaction embedded in dRGT theory has been
first found in the context of a pseudolinear theory [11],
however, its nonlinear completions cannot be included in
dRGT theory in a consistent way due to the reappearance
of BD ghost at the nonlinear level [12,13]. The crucial
problem with these derivative interactions was the appear-
ance of higher derivatives of the scalar mode in Euler-
Lagrange equations, and this, in general, leads to the
Ostrogradsky’s ghost [14].
Meanwhile it has been recently argued that higher

derivatives in Euler-Lagrange equations are not essentially
problematic as long as the appropriate number of con-
straints exists in a theory. Such concrete examples are
found in the context of point particles [15–20], their field
theoretical application [21,22], scalar-tensor theories
[15,23–26], and vector-tensor theories [27]. The key point
of these theories is the degeneracy of the kinetic matrix,
which provides an associated primary constraint (and
subsequent constraint depending on the spin of a field),
and an unwanted d.o.f. can be then successfully eliminated.
In fact, in such a theory, higher time derivatives appearing
in Euler-Lagrange equations should be removed by com-
bining Euler-Lagrange equations and their time derivative;
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therefore, initial conditions to solve the resultant differ-
ential equations are consistent with the number of DOFs in
ghost-free theories.
This fact opens up a new direction of study for searching

for new theories of a massive graviton, and it is therefore
worth revisiting the pioneering attempt by Fierz and Pauli
as a starting point of constructing a theoretically consistent
massive gravity. To this end, in the present paper, we
construct the most general quadratic theory of a massive
spin-2 field and a massless spin-2 field with Lorentz
invariance in flat spacetime, based on the Hamiltonian
analysis. This paper is organized as follows. In Sec. II, we
introduce the linear theory of a rank-2 symmetric tensor
field and decompose it into tensors expressed by scalar
quantities, those by vector quantities, and those by tensor
quantities, where each quantity is defined based on trans-
formation properties with respect to a three-dimensional
rotation in Minkowski spacetime. The Hamiltonian for-
malism in Fourier space is also summarized. In Sec. III,
we first derive the action for the transverse traceless
tensor mode and a condition for avoiding instability.
Then we find a condition to eliminate ghosty d.o.f. for
the scalar and vector modes and classify theories based on
the Hamiltonian analysis. In Sec. IV, we investigate the
properties of the obtained theories under the field redefi-
nition to see relations with the known theories. Sec. V
is devoted to summary. In Appendix A, we perform the
complete Hamiltonian analysis of the special cases. In
Appendix B, the explicit proof of the existence of the ghost
d.o.f. is given if a theory has 6 or more d.o.f. In
Appendix C, we derive gauge transformation and construct
gauge invariant variables for each case. We also derive
conditions for avoiding ghost and gradient instabilities for
the scalar mode from a reduced Lagrangian.

II. SETUP

In this section, we introduce the most general Lorentz-
invariant action for a rank-2 symmetric tensor field,
which contains up to the Lagrangian quadratic in the
tensor field and two derivatives with respect to spacetime.
Since a theory for the rank-2 symmetric tensor field in
general contains 10 d.o.f., some of them might be ghost
modes, which are unwanted d.o.f. in a theory. To this end,
we then apply scalar, vector, and tensor decomposition
to the rank-2 symmetric tensor field which is defined
based on transformation properties with respect to a 3—
dimensional rotation in Minkowski spacetime. We will
also provide an overview of the Hamiltonian formalism in
Fourier space.

A. Action

Let us consider a generic Lorentz-invariant action for a
rank-2 symmetric tensor field hμν up to the quadratic order
in Minkowski spacetime,

S½hμν�¼
Z

d4xð−Kαβjμνρσhμν;αhρσ;β−MμνρσhμνhρσÞ; ð1Þ

where Kαβjμνρσ and Mμνρσ are the most general combina-
tions of the Minkowski metric ημν,

Kαβjμνρσ ¼ κ1η
αβημρηνσ þ κ2η

μαηρβηνσ þ κ3η
αμηνβηρσ

þ κ4η
αβημνηρσ; ð2Þ

Mμνρσ ¼ μ1η
μρηνσ þ μ2η

μνηρσ; ð3Þ

and κ1;2;3;4 and μ1;2 are constant parameters. Contracting all
the Minkowski metric, the action can be rewritten, after
integration by parts, as

S½hμν� ¼ −
Z

d4x½κ1hμν;αhμν;α þ κ2hαμ;αhβμ;β þ κ3hαβ ;αh;β

þ κ4h;αh;α þ μ1hμνhμν þ μ2h2�; ð4Þ

where the indices of hμν are raised by ημν and h is the
trace of hμν contracted with the Minkowski metric ημν.
A comma denotes a partial derivative with respect to
spatial coordinates. The linearized Einstein-Hilbert action
can be reproduced by setting κ2 ¼ −κ3 ¼ 2κ4 ¼ −2κ1
up to an overall factor, and the kinetic term of Eq. (1)
is then invariant under the gauge transformation
hμν → hμν þ ∂μξν þ ∂νξμ, where ξμ is a gauge parameter.
In addition to this choice of the parameters, when the
mass parameters satisfy μ1 ¼ −μ2 ≠ 0, the Lagrangian (1)
reproduces the Fierz-Pauli theory [1]. Although the Fierz-
Pauli theory respects the gauge invariance in the kinetic
term, it is not necessary for a generic massive spin-2 field
that we consider in the present paper.

B. SVT decomposition

In order to simplify analysis, we decompose the rank-2
symmetric tensor field hμν into a transverse-traceless tensor,
tensors expressed by transverse vectors, and tensors
expressed by scalars where the scalar, vector, and tensors
are defined based on transformation properties with respect
to a three-dimensional rotation in Minkowski spacetime:

h00 ¼ h00 ¼ −2α; h0i ¼ −h0i ¼ β̂;i þ Bi ðBi
;i ¼ 0Þ;

ð5Þ

hij ¼ hij ¼ 2Rδij þ 2Ê;ij þ Fi;j þ Fj;i þ 2Hij

ðFi
;i ¼ 0; Hi

i ¼ Hij
;j ¼ 0Þ: ð6Þ

Here the transverse-traceless tensor Hij, two transverse

vectors Bi and Fi, and four scalars α, β̂, R, and Ê,
respectively, have two, four, and four components in total.
Therefore, to obtain a theory whose number of d.o.f. is up
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to five including the d.o.f. of the transverse-traceless tensor,
we need to eliminate two components in the vector sector
and three components in the scalar sector, respectively.
Otherwise, ghost d.o.f. appear as shown in Appendix B.
Below we split the action into three parts and each of them
is solely composed by single type of perturbations, that is,
scalar, vector, and tensor perturbations, which is always
possible at the level of linear perturbation,

S½hμν� ¼ SS½α; β̂;R; Ê� þ SV ½Bi; Fi� þ ST ½Hij�: ð7Þ

In the next section, based on this separated action, we will
look for theories with at most 5 d.o.f., finding the
appropriate degeneracy conditions for the scalar and vector
sectors, respectively.

C. Hamiltonian formalism in Fourier space

In this subsection, we briefly summarize the Hamiltonian
formalism in the Fourier space. We, for convenience, work
in the Fourier space, and the Fourier component of a field
Aðt;kÞ is given by

Aðt;kÞ ¼
Z

d3xAðt;xÞeiδjkkjxk : ð8Þ

The Hamiltonian is defined by

HðtÞ ¼
Z

d3kHðt;kÞ; ð9Þ

where H is the Hamiltonian density in the Fourier space,

Hðt;kÞ¼
X
I

ṡIðt;kÞπsI ðt;kÞ−L½sIðt;kÞ; ṡIðt;kÞ�; ð10Þ

where sI and πsI are, respectively, sets of canonical fields
and their conjugate momenta. If the system has n primary
constraints Ci, the total Hamiltonian and its density are
given by

HTðtÞ ¼
Z

d3kHTðt;kÞ;

HTðt;kÞ ¼ Hðt;kÞ þ
Xn
a¼1

λaðt;kÞCaðt;kÞ; ð11Þ

where λi are Lagrange multipliers associated with each
primary constraint Ci. The Poisson bracket between A and
B is defined by

fAðt;kÞ;Bðt;k0Þg ¼
Z

d3k00
X
I

�
δAðt;kÞ
δsIðt;k00Þ

δBðt;k0Þ
δπsIðt;k00Þ

−
δAðt;kÞ
δπsIðt;k00Þ

δBðt;k0Þ
δsIðt;k00Þ

�
: ð12Þ

The time evolution of the function Aðt;kÞ is given by

Ȧðt;kÞ ¼ fAðt;kÞ; HTðtÞg

¼
Z

d3k0
�
fAðt;kÞ;Hðt;k0Þg

þ
Xn
a¼1

λaðt;k0ÞfAðt;kÞ; Caðt;k0Þg
�
: ð13Þ

III. HAMILTONIAN ANALYSIS
AND CLASSIFICATION

In this section, we perform the Hamiltonian analysis for
the theory (1) and classify the theory based on the number
of d.o.f. and constraint structures. Since the number of
d.o.f. in the theory is ten in general, one needs to adequately
eliminate extra d.o.f. in each mode decomposed in the
previous section. We first take a look at the tensor mode
and derive the condition for avoiding a ghost mode. Then
we seek conditions to eliminate unwanted modes for vector
and scalar modes and conditions to have subsequent
constraints. The existence of ghost d.o.f. in the scalar
sector is proved in Appendix B when the total number of
d.o.f. is more than five.

A. Tensor modes

The action in the tensor sector is given by

ST ½Hij� ¼ 4

Z
dt d3k½κ1Ḣ2

ij − ðκ1k2 þ μ1ÞH2
ij�; ð14Þ

where a dot represents the derivative with respect to time t.
As one can see from Eq. (14), the tensor modes are
controlled by only two parameters κ1 and μ1, and the
existence of tensor modes and the condition for avoiding
the ghost instability demand

“Condition 1”∶ κ1 > 0: ð15Þ

Throughout this paper, we always assume condition 1
[Eq. (15)], and then the number of the d.o.f. in the tensor
sector is two. Furthermore, the parameter μ1 should not be
negative in order to avoid the tachyonic instability in the
tensor sector.

B. Vector modes

In this subsection, we focus on the vector modes and
find conditions to avoid extra ghost d.o.f. based on the
Hamiltonian analysis. Before proceeding with the analysis,
let us comment on counting the number of physical d.o.f.
and constraints in the vector modes. Since a vector in vector
modes Vi satisfies the transverse condition kiVi ¼ 0, d.o.f.
in Vi are two while there are three components. Hence
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when we have primary constraints of a vector type like
πVi

¼ 0, this should be understood as two primary con-
straints and not three since the transverse conditions put a
constraint for one component in Vi and primary constraints
should be obtained for the remaining 2 d.o.f.
The action for the vector modes can be written with the

replacement kFi → Fi,

SV ½Bi; Fi� ¼
Z

dt d3k½−ð2κ1 þ κ2ÞḂ2
i þ 2κ1Ḟ2

i

þ 2κ2kBiḞi þ 2ðκ1k2 þ μ1ÞB2
i

− ðk2ð2κ1 þ κ2Þ þ 2μ1ÞF2
i �: ð16Þ

One may immediately notice from Eq. (16) that there are
the appearance of either ghost or gradient instabilities in Bi
or Fi modes, depending on the sign of 2κ1 þ κ2 as well as
κ1. This concludes that one needs to at least eliminate either
Bi or Fi in order to have 2 d.o.f. The existence of the tensor
modes (15) leads to the unique option to have a primary
constraint for Bi, that is,

“Condition 2”∶ 2κ1 þ κ2 ¼ 0 ⇔ κ2 ¼ −2κ1: ð17Þ

With this condition in Eq. (17), the kinetic term of Bi
vanishes, which implies Bi are manifestly nondynamical.
Then the action for the vector mode can be recast as

SV ½Bi; Fi� ¼
Z

dt d3kLV

¼
Z

dt d3k½2κ1Ḟ2
i − 4κ1kBiḞi

þ 2ðκ1k2 þ μ1ÞB2
i − 2μ1F2

i �: ð18Þ

Apparently, the action for the vector modes depends on
only two parameters, κ1 and μ1, as in the tensor modes. The
conjugate momenta for Bi and Fi are given by

πBi
≡ δLV

δḂi
¼ 0; ð19Þ

πFi
≡ δLV

δḞi
¼ 4κ1ðḞi − kBiÞ; ð20Þ

and we therefore have two primary constraints instead of
three, as mentioned at the beginning of this subsection,
which are defined by

CBi
1 ¼ πBi

¼ 0: ð21Þ

Then the Hamiltonian and the total Hamiltonian densities
read

HV ¼ ḂiπBi
þ ḞiπFi

− LV

≈
π2Fi

8κ1
þ kπFi

Bi − 2μ1B2
i þ 2μ1F2

i ;

HV
T ¼ HV þ λBi

πBi
; ð22Þ

where λBi
are Lagrange multipliers. We have suppressed the

terms ḂiπBi
in the final expression of HV since they vanish

once the primary constraints (21) are imposed. One can
easily check that the evolution of the primary constraints
automatically yields secondary constraints,

CBi
2 ≡ ĊBi

1 ¼ fCBi
1 ; HV

Tg ¼ fCBi
1 ; HVg ¼ kπFi

þ 4μ1Bi ≈ 0:

ð23Þ

Then the time evolution of the secondary constraints are
given by1

ĊBi
2 ¼ fCBi

2 ; HV
Tg ¼ fCBi

2 ; HVg þ fCBi
2 ; C

Bj

1 gλBj
≈ 0; ð24Þ

where the coefficients of λBi
are given by

fCBi
2 ; C

Bj

1 g ¼ 4μ1δij: ð25Þ

Therefore, we have two cases:
Case V1: μ1 ¼ 0.
In this case, in addition that the Poisson bracket Eq. (25)

vanishes, fCBi
2 ; HVg is trivially zero. Then, there is no more

constraint. Thus there are two primary constraints CBi
1 and

two secondary constraints CBi
2 , and all of them are first class

since all the Poisson brackets between these constraints
vanish. Therefore,

vector d:o:f:

¼ 4× 2− 4ð2primary&2 secondaryÞ× 2 ðfirst classÞ
2

¼ 0:

ð26Þ

This case is exactly the same as the linearized Einstein’s
gravity, and thus the Lagrangian is invariant under the
gauge transformation, Bi → Bi þ ζ̇i and Fi → Fi þ ζi,
where ζi is the 3-vector satisfying the transverse condition
∂iζi ¼ 0. Note that a theory with only 1 d.o.f. in the vector
sector is prohibited by spatial covariance of the theory.
Case V2: μ1 ≠ 0.
When μ1 ≠ 0, the last equation (24) can be used to

determine the Lagrange multipliers λBi
,

1To be precise, one needs the integral over the Fourier space in
front of the Lagrange multipliers λBj

, which can always be
integrable because of the appearance of Dirac’s delta function.
For simplicity, we omit this integral and the arguments of each
variable since the results do not change.
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λBi
≈

1

4μ1
fCBi

2 ; HVg: ð27Þ

Thus, there are two primary constraints CBi
1 and two

secondary constraints CBi
2 , and all of them are second-class

since the Poisson brackets between these constraints are
nonvanishing. Therefore, the number of d.o.f. for the vector
modes is given by

vector DOFs ¼ 4 × 2 − 4ð2 primary& 2 secondaryÞ
2

¼ 2:

ð28Þ

This case includes the FP theory.

C. Scalar modes

In this subsection, we investigate the scalar modes and
classify theories by finding the condition to avoid the
appearance of extra ghost d.o.f. In Appendix B, we see that
there are dangerous d.o.f. if the system has 2 or more d.o.f.
We also derive gauge transformation and conditions for
avoiding instabilities of obtained theories in Appendix C.
As for scalar perturbations, by introducing dimension-

less quantities β and E, which are defined by β≡ kβ̂ and
E ≡ k2Ê, respectively, the action reduces to

SS½α; β;R; E� ¼
Z

dt d3kLS

¼
Z

dt d3kðLS
kin þ LS

cross þ LS
massÞ; ð29Þ

where

LS
kin ¼ 4ðκ1 þ κ2 þ κ3 þ κ4Þα̇2 − ð2κ1 þ κ2Þβ̇2 þ 12ðκ1 þ 3κ4ÞṘ2 þ 4ðκ1 þ κ4ÞĖ2

− 4ðκ3 þ 2κ4Þð−3Ṙþ ĖÞα̇ − 8ðκ1 þ 3κ4ÞṘ Ė; ð30Þ

LS
cross ¼ −4½ðκ2 þ κ3Þα̇þ ðκ2 þ 3κ3ÞṘ − ðκ2 þ κ3ÞĖ�kβ; ð31Þ

LS
mass ¼ −4½k2ðκ1 þ κ4Þ þ μ1 þ μ2�α2 þ ½k2ð2κ1 þ κ2Þ þ 2μ1�β2

− 4½k2ð3κ1 þ κ2 þ 3κ3 þ 9κ4Þ þ 3ðμ1 þ 3μ2Þ�R2 − 4½k2ðκ1 þ κ2 þ κ3 þ κ4Þ þ μ1 þ μ2�E2

− 4½ðk2ðκ3 þ 6κ4Þ þ 6μ2ÞR − ðk2ðκ3 þ 2κ4Þ þ 2μ2ÞE�α
þ 8½k2ðκ1 þ κ2 þ 2κ3 þ 3κ4Þ þ ðμ1 þ 3μ2Þ�RE: ð32Þ

Now under condition 2 [Eq. (17)], 2κ1 þ κ2 ¼ 0, the time
derivative of β vanishes in the Lagrangian. Then β becomes
nondynamical.
The canonical momenta for Q ¼ fα; β;R; Eg are

defined by πQ ≡ δLS=δQ̇ and read

0
BBB@

πα

πβ

πR

πE

1
CCCA ¼ 4KS

0
BBB@

α̇

β̇

Ṙ

Ė

1
CCCAþ 4

0
BBB@

2κ1 − κ3

0

2κ1 − 3κ3

−2κ1 þ κ3

1
CCCAkβ; ð33Þ

where

KS≡

0
BBB@
2ð−κ1þκ3þκ4Þ 0 3ðκ3þ2κ4Þ −ðκ3þ2κ4Þ

0 0 0 0

3ðκ3þ2κ4Þ 0 6ðκ1þ3κ4Þ −2ðκ1þ3κ4Þ
−ðκ3þ2κ4Þ 0 −2ðκ1þ3κ4Þ 2ðκ1þκ4Þ

1
CCCA:

ð34Þ

Let us calculate the determinant of the kinetic matrix KS,
which is given by

jKSj ¼ −4κ1ð4κ21 − 4κ1κ3 þ 8κ1κ4 þ 3κ23Þ: ð35Þ

Taking into account the condition for having the tensor
mode κ1 ≠ 0 the determinant vanishes only when

“Condition 3”∶ 4κ21 − 4κ1κ3 þ 8κ1κ4 þ 3κ23 ¼ 0

⟺ κ4 ¼ −
4κ21 − 4κ1κ3 þ 3κ23

8κ1
: ð36Þ

Then, the degeneracy of the kinetic matrix (34) leads to an
additional primary constraint in addition to the one for β,
πβ ¼ 0. Note that the linearized Einshtein-Hilbert kinetic
term satisfies condition 3 [Eq. (36)]. When this degeneracy
condition is satisfied, one of the eigenvalues of the kinetic
matrix vanishes and the remaining eigenvalues λ will be a
solution of the following eigenequation:
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λ2 þ
�
10κ1 − 26κ3 þ

33κ23
2κ1

�
λ ¼ 8½4ðκ1 − κ3Þ2 þ κ23� > 0:

ð37Þ

As long as κ1;3 are real, other eigenvalues will be
nonvanishing.

1. One primary constraint: 4κ21 − 4κ1κ3 + 8κ1κ4 + 3κ23 ≠ 0

Let us consider the case with only one primary con-
straint, i.e., condition 3 [Eq. (36)] is not imposed. Thus, we
have a primary constraint,

Cβ1 ¼ πβ ¼ 0: ð38Þ

The Hamiltonian and the total Hamiltonian densities in the
scalar sector reads

HS ¼ α̇πα þ β̇πβ þ ṘπR þ ĖπE − LS

≈ 4½μ1 þ μ2 þ k2ðκ1 þ κ4Þ�α2 − 2μ1β
2 þ 4½μ1 þ μ2 − k2ðκ1 − κ3 − κ4Þ�E2

− 8½μ1 þ 3μ2 − k2ðκ1 − 2κ3 − 3κ4Þ�ERþ 4½3μ1 þ 9μ2 þ k2ðκ1 þ 3κ3 þ 9κ4Þ�R2

− ½4ð2μ2 þ k2ðκ3 þ 2κ4ÞÞE − 4ð6μ2 þ k2ðκ3 þ 6κ4ÞÞR�α

þ 1

32κ1
ð2πR þ 3πEÞπE þ ðπα þ πEÞkβ −

8κ1ðκ1 þ 3κ4Þπ2α − 8κ1ðκ3 þ 2κ4ÞπαπR − ð2κ1 − κ3Þ2πR2

32κ1ð4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4Þ
; ð39Þ

HS
T ¼ HS þ λβπβ: ð40Þ

We have suppressed the term β̇πβ in the final expression of
HS since it vanishes once the primary constraint (38) is
imposed. The evolution of the primary constraint auto-
matically yields a secondary constraint

Cβ2 ≡ Ċβ1 ¼ fCβ1;HS
Tg ¼ fCβ1;HSg ¼ −kπα − kπE þ 4μ1β≈ 0:

ð41Þ

Then, the Poisson bracket between the secondary and
primary constraints of β is given by

fCβ2; Cβ1g ¼ 4μ1: ð42Þ

If μ1 ≠ 0, then no more constraints will be generated and
the last equation can be used to determine the value of λβ,
that is λβ ≈ −fCβ2; HSg=fCβ2; Cβ1g. In this case, we have one
primary constraint Cβ1, and one secondary constraint Cβ2, all
of which are second class. Therefore, the number of d.o.f.
in the scalar sector is ð8 − 2Þ=2 ¼ 3, signaling the existence
of an extra d.o.f. The explicit proof of the existence of a

ghost d.o.f. is given in Appendix B. Therefore, one has to
impose an extra condition μ1 ¼ 0 in order to eliminate this
extra d.o.f.
Case SI: μ1 ¼ 0, 4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4 ≠ 0.
If μ1 ¼ 0, the consistency of the secondary constraint Cβ2

generates a tertiary constraint,

Cβ3 ≡ Ċβ2 ¼ fCβ2; HS
Tg ¼ fCβ2; HSg

¼ 4k3½ð2κ1 − κ3Þαþ ð2κ1 − 3κ3ÞR − ð2κ1 − κ3ÞE� ≈ 0:

ð43Þ

Now one can check that all the constraints commute each
other, i.e., fCβi ; Cβjg ¼ 0 where (i, j ¼ 1, 2, 3). One can also

check that Ċβ3 ¼ k2Cβ2, implying no more constraint. There
are one primary constraint Cβ1, one secondary constraint C

β
2,

and one tertiary constraint Cβ3, and all of them are first class.
Therefore,

scalar d:o:f: ¼ 4 × 2 − 3ð1 primary& 1 secondary& 1 tertiaryÞ × 2ðfirst classÞ
2

¼ 1: ð44Þ

Since μ1 ¼ 0 corresponds to case V1, the vector sector does
not have any d.o.f., and the total number of d.o.f. in this
case is three.

2. Two primary constraints: 4κ21 − 4κ1κ3 + 8κ1κ4 + 3κ23 = 0

Hereafter we impose condition 3 [Eq. (36)], implying the
existence of two primary constraints. As one can easily see,
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the canonical momenta πα and πR are not independent
because of the degeneracy condition (36), i.e.,

ð2κ1 − 3κ3Þπα − ð2κ1 − κ3ÞπR ¼ 0: ð45Þ

This clearly shows that there are two primary constraints in
this class of theories, namely, Eqs. (38) and (45). We
classify theories depending on vanishing or nonvanishing
of the coefficient of πα, 2κ1 − 3κ3. Hereafter, we will focus
only on the case of 2κ1−3κ3≠0. The Hamiltonian analysis

in the class of models with 2κ1 − 3κ3 ¼ 0 is presented in
Appendix A.
In this case, we have the following two primary con-

straints:

Cα1 ¼ πα −
2κ1 − κ3
2κ1 − 3κ3

πR ¼ 0; Cβ1 ¼ πβ ¼ 0: ð46Þ

Here it is clear that Cα1 and C
β
1 commute each other. Then the

Hamiltonian and the total Hamiltonian densities read

HS ¼ α̇πα þ β̇πβ þ ṘπR þ ĖπE − LS;

≈
�
k2ð2κ1 − κ3Þð2κ1 þ 3κ3Þ

2κ1
þ 4ðμ1 þ μ2Þ

�
α2 − 2μ1β

2 þ
�
−
3k2ð2κ1 − κ3Þ2

2κ1
þ 4ðμ1 þ μ2Þ

�
E2

þ
�
k2ð2κ1 − κ3Þð10κ1 − 9κ3Þ

κ1
− 8ðμ1 þ 3μ2Þ

�
ERþ

�
−
k2ð14κ1 − 9κ3Þð2κ1 − 3κ3Þ

2κ1
þ 12ðμ1 þ 3μ2Þ

�
R2

þ
�
k2ð2κ1 − κ3Þð2κ1 − 3κ3Þ

κ1
− 8μ2

�
αE þ

�
−
k2ð12κ21 − 16κ1κ3 þ 9κ23Þ

κ1
þ 24μ2

�
αR

þ kβπE þ
3

32κ1
π2E þ

2κ1 − κ3
2κ1 − 3κ3

kβπR þ 1

16κ1
πRπE −

ð2κ1 − κ3Þð2κ1 þ 3κ3Þ
32κ1ð2κ1 − 3κ3Þ2

π2R; ð47Þ

and

HS
T ¼ HS þ λαCα1 þ λβC

β
1; ð48Þ

where we have suppressed the terms proportional to the
primary constraints (46) in the final expression of HS.
The evolution of the primary constraints requires

Cα2 ≡ Ċα1 ¼ fCα1;HS
Tg ¼ fCα1;HSg ¼ cα2αþ cR2 Rþ cE2E ≈ 0;

ð49Þ

Cβ2 ≡ Ċβ1 ¼ fCβ1; HS
Tg ¼ fCβ1; HSg

¼ −
2κ1 − κ3
2κ1 − 3κ3

kπR − kπE þ 4μ1β ≈ 0; ð50Þ

where we have defined the coefficients,

cα2 ¼ −
8½μ1ð2κ1 − 3κ3Þ− 4μ2κ1 þ 2k2ð2κ1 − κ3Þðκ1 − κ3Þ�

2κ1 − 3κ3
;

ð51Þ

cR2 ¼−
8½−3μ1ð2κ1−κ3Þ−12μ2κ1þ2k2ð2κ1−3κ3Þðκ1−κ3Þ�

2κ1−3κ3
;

ð52Þ

cE2 ¼ −
8½μ1ð2κ1 − κ3Þ þ 4μ2κ1 − 2k2ð2κ1 − κ3Þðκ1 − κ3Þ�

2κ1 − 3κ3
:

ð53Þ

In general we will have two secondary constraints, but
there exists an exceptional case where only one secondary
constraint exists if κ1 ¼ κ3. With this condition satisfied,
the termsproportional tok2 in thenumerator ofEqs. (51)–(53)
vanish and hence Cα2 reduces to a trivial equation depending
on the value of μ1 and μ2. This special case happens when
either μ1 ¼ μ2 ¼ 0 or μ1 þ 4μ2 ¼ 0 is satisfied, which will
be investigated at the end of this subsection. In the meantime,
we consider the case with two nontrivial secondary con-
straints assuming κ1 ≠ κ3.
The Poisson brackets between the primary and secon-

dary constraints are given by

fCα2;Cα1g¼−
32

ð2κ1−3κ3Þ2
½μ1ð4κ21−6κ1κ3þ3κ23Þþ4μ2κ

2
1�;

ð54Þ

fCβ2; Cβ1g ¼ 4μ1: ð55Þ

Thus, as long as these Poisson brackets are nonvanishing,
no more constraints will be generated. In this case, we
have two primary constraints Cα1 , C

β
1 and two secondary

constraints Cα2 , C
β
2, and all the constraints are second class,
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which implies the number of d.o.f. is ð8 − 4Þ=2 ¼ 2. The
explicit proof of the existence of a ghost d.o.f. is given in
Appendix B. Therefore, one needs to eliminate an extra
d.o.f. In order to have an extra constraint, there are three
options: both μ1 and μ2 vanish (case SIIa), either (54)
(case SIIc) or (55) (case SIIb) vanishes.

Case SIIa: μ1 ¼ μ2 ¼ 0.
If μ1 ¼ μ2 ¼ 0, both Eqs. (54) and (55) vanish. In

addition, one can see Ċα2 ∝ Cβ2 ≈ 0 and Ċβ2 ∝ Cα2 ≈ 0, which
implies that no more constraint is therefore generated.
Since all the constraints commute, all the primary and
secondary constraints are first class. Therefore,

scalar d:o:f: ¼ 4 × 2 − 4ð2 primary& 2 secondaryÞ × 2ðfirst classÞ
2

¼ 0: ð56Þ

In this case, the scalar mode as well as the vector mode do
not have any d.o.f. (case V1), and only the tensor mode can
propagate. Since the linearized Einstein-Hilbert term sat-
isfies condition 3 [Eq. (36)], and the mass terms are absent,
this class reduces to linearized general relativity when
2κ1 − κ3 ¼ 0. As we will see in the next section, the whole
parameter family of this case SIIa can be mapped from
linearized general relativity by a field redefinition.
Case SIIb: μ1 ¼ 0, μ2 ≠ 0.
In this case, since Eq. (54) is nonvanishing while

Eq. (55) vanishes, λα is determined by Ċα2 ≈ 0, that is
λα ¼ −fCα2; HSg=fCα2; Cα1g. On the other hand as for Cβ2,
since Cβ2 does not commute with Cα2 , we shall consider a
linear combination of Cβ2 and Cα1 which commute with Cα2
instead of the original Cβ2:

C̃β2 ≡ Cβ2 − kCα1 ¼ −kðπα þ πEÞ: ð57Þ

The consistency of C̃β2 yields a tertiary constraint,

Cβ3 ≡ ˙̃C
β
2 ¼ fC̃β2; HS

Tg ¼ fC̃β2; HSg
¼ 4k3½ð2κ1 − κ3Þαþ ð2κ1 − 3κ3ÞR − ð2κ1 − κ3ÞE� ≈ 0:

ð58Þ

The Poisson brackets between this constraint and primary
constraints vanish and one also find Ċβ3 ¼ k2Cβ2 ¼
k2ðC̃β2 þ kCα1Þ ≈ 0, implying that no more constraint is
generated. One can straightforwardly show that the con-
straints Cβ1, C̃β2, and Cβ3 commute with all constraints
including themselves. Therefore, there are two primary
constraints Cα1 , C

β
1, two secondary constraints Cα2 , C̃

β
2, and

one tertiary constraint Cβ3. The constraints C
β
1, C̃

β
2, and C

β
3 are

first class, and the rest of them are second class. Therefore,

scalar d:o:f: ¼ 4 × 2 − 3ð1 primary& 1 secondary& 1 tertiaryÞ × 2ðfirst classÞ − 2ð1 primary& 1 secondaryÞ
2

¼ 0: ð59Þ

In this case, the vector mode does not propagate (case V1)
and the total number of d.o.f. is two.
Case SIIc: μ1ð4κ21 − 6κ1κ3 þ 3κ23Þ þ 4μ2κ

2
1 ¼ 0, μ1 ≠ 0.

In this case, since Eq. (55) does not vanish, λβ can be

determined by imposing Ċβ2 ≈ 0, that is λβ ¼ −fCβ2; HSg=
fCβ2; Cβ1g, and hence no more constraint will be generated as
for Cβ1. On the other hand, we solve the condition for μ2
from fCα2; Cα1g ¼ 0, which is given by

“Condition 4”∶ μ2 ¼ −
4κ21 − 6κ1κ3 þ 3κ23

4κ21
μ1: ð60Þ

Since Cα2 does not commute with Cβ2, we shall consider a
linear combination of Cα2 and Cβ1 which commutes with Cβ2
instead of the original Cα2:

C̃α2 ≡ Cα2 þ k
8ðκ1 − κ3Þ
2κ1 − 3κ3

Cβ1: ð61Þ

Then, the time consistency of C̃α2 yields a tertiary constraint

Cα3 ≡ ˙̃C
α
2 ¼ fC̃α2; HS

Tg ¼ fC̃α2; HSg

¼ −
4ðκ1 − κ3Þ
2κ1 − 3κ3

�
k2ð2κ1 − κ3Þ − 2μ1

2κ1 − 3κ3
πR þ k2πE

�
≈ 0:

ð62Þ

The Poisson bracket between this constraint and primary
constraints vanishes and the time consistency of Cα3 yields a
quaternary constraint

Cα4≡ Ċα3 ¼fCα3;HS
Tg¼fCα3;HSg¼cα4αþcR4 RþcE4E≈0;

ð63Þ

where
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cα4 ¼ −
8ðκ1 − κ3Þ

κ21ð2κ1 − 3κ3Þ2
½2k4κ21ð2κ1 − κ3Þ2

þ k2κ1μ1ð2κ1 − 3κ3Þð2κ1 − κ3Þ
− 6μ21ð4κ21 − 6κ1κ3 þ 3κ23Þ�; ð64Þ

cR4 ¼ −
8ðκ1 − κ3Þ

κ21ð2κ1 − 3κ3Þ
½2k4κ21ð2κ1 − κ3Þ

þ k2κ1μ1ð2κ1 − 3κ3Þ − 6μ21ð4κ1 − 3κ3Þ�; ð65Þ

cE4 ¼ 8ðκ1 − κ3Þ
κ21ð2κ1 − 3κ3Þ2

½2k4κ21ð2κ1 − κ3Þ2

− k2κ1μ1ð2κ1 þ 3κ3Þð2κ1 − κ3Þ
− 2μ21ð2κ1 − 3κ3Þð4κ1 − 3κ3Þ�: ð66Þ

The Poisson brackets between this constraint and primary
constraints are

fCα4; Cα1g ¼ −
192μ21ðκ1 − κ3Þ2
κ1ð2κ1 − 3κ3Þ2

; fCα4; Cβ1g ¼ 0: ð67Þ

Then, the consistency of this constraint Ċα4 ≈ 0 fixes the
Lagrange multiplier λα ¼ −fCα4; HSg=fCα4; Cα1g. There are
six second class constraints Cα1 , C

β
1, C̃

α
2 , C

β
2, C

α
3 , and Cα4 .

Therefore,

scalar d:o:f: ¼ 4 × 2 − 6ð2 primary& 2 secondary& 1 tertiary& 1 quaternaryÞ
2

¼ 1: ð68Þ

In this case, the total number of d.o.f. is five (case V2). It
should be noted that the Fierz-Pauli theory is included in
this class since the linearized Einstein-Hilbert term satisfies
condition 3 [Eq. (36)], and the condition μ1 ¼ −μ2 is
included in condition 4 [Eq. (60)]. Therefore, this is a wider
class of Fierz-Pauli theory with 5 d.o.f. for a massive spin-2
field. The whole parameter family of this case can be
mapped from Fierz-Pauli theory by a field redefinition as
we will see in the next section.
Other case: κ1 ¼ κ3, κ4¼−ð4κ21−4κ1κ3þ3κ23Þ=ð8κ1Þ¼

−ð3=8Þκ1.
Before the end of this section, we shall consider the case

with κ1 ¼ κ3 and μ1 ¼ μ2 ¼ 0 or μ1 ¼ −4μ2 ≠ 0 in which

only one secondary constraint Cβ2 (50) exists while C
α
2 (49)

vanishes and hence no more constraint will be generated as
for Cα2.
First the condition for the mass parameter in case SIIc,

condition 4, is equivalent to

μ2 ¼ −
4κ21 − 6κ1κ3 þ 3κ23

4κ21
μ1 ¼ −

1

4
μ1: ð69Þ

Since fCβ2; Cβ1g ∝ μ1 ≠ 0, λβ can be determined by impos-

ing Ċβ2 ≈ 0, that is λβ ¼ −fCβ2; HSg=fCβ2; Cβ1g. Since Cα1 is

first class while Cβ1;2 are second class, we have

scalar DOFs ¼ 4 × 2 − 1ð1 primaryÞ × 2ðfirst classÞ − 2ð1 primary& 1 secondaryÞ
2

¼ 2: ð70Þ

As we see in Appendix B, one of the modes is a ghost and hence we will no longer consider this case.
Case SW: κ1 ¼ κ3, κ4 ¼ −ð4κ21 − 4κ1κ3 þ 3κ23Þ=ð8κ1Þ ¼ −ð3=8Þκ1, μ1 ¼ μ2 ¼ 0.
In this case, which is similar to case SIIa except for the additional condition κ1 ¼ κ3, the time consistency of Cβ2 yields a

tertiary constraint since fCβ2; Cβ1g vanishes,

Cβ3 ≡ Ċβ2 ¼ fCβ2; HS
Tg ¼ fCβ2; HSg ¼ 4k3κ1ðα −R − EÞ ≈ 0: ð71Þ

The Poisson brackets with primary constraints are trivially satisfied and also the time evolution of Cβ3 turns out to be
Ċβ3 ∝ Cβ2. Since all the constraints commute each other, two primary, secondary, and tertiary constraints are first class.
Therefore,

scalar d:o:f: ¼ 4 × 2 − 4ð2 primary& 1 secondary& 1 tertiaryÞ × 2ðfirst classÞ
2

¼ 0: ð72Þ
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The total number of d.o.f. is two with 2 tensor modes and
without the vector mode corresponding to case V1.

IV. THEORETICAL PROPERTIES

In this section, we investigate theoretical properties
of the obtained theories in the previous section in detail.
We first consider a field redefinition linear in hμν, which
helps us to understand structures and classification of the
theories. Furthermore, we clarify the crucial differences
between cases SI and SIIb, which cannot be obtained from
the known theories (linearized general relativity and Fierz-
Pauli theory) by any invertible field redefinition.

A. Linear field redefinition

In this subsection, we consider a linear field redefinition
of the rank-2 tensor hμν, which respects Lorentz invariance.
A possible field redefinition as studied in Refs. [28,29] is

hμν ¼ Ω2h̄μν þ Γh̄ημν; ð73Þ

whereΩ and Γ are constants, h̄ is the trace of h̄μν contracted
by ημν. Hereafter we set Ω ¼ 1 without loss of generality
since it only changes the normalization of the Lagrangian.
The inverse transformation is given by

h̄μν ¼ hμν −
Γ

1þ 4Γ
hημν: ð74Þ

When Γ ¼ −1=4, this transformation is not invertible since
its determinant vanishes.
Now we apply this transformation to our theories. After

the field redefinition, the Lagrangian (1) reads

S½hμν ¼ h̄μν þ Γh̄ημν�

¼
Z

d4xð−K̄αβjμνρσh̄μν;αh̄ρσ;β − M̄μνρσh̄μνh̄ρσÞ; ð75Þ

where

K̄αβjμνρσ ¼ κ̄1η
αβημρηνσ þ κ̄2η

μαηρβηνσ

þ κ̄3η
αμηνβηρσ þ κ̄4η

αβημνηρσ; ð76Þ

M̄μνρσ ¼ μ̄1η
μρηνσ þ μ̄2η

μνηρσ: ð77Þ

The straightforward calculation shows the relation between
κi, μi and κ̄i; μ̄i:

κ̄1 ¼ κ1; κ̄2 ¼ κ2; κ̄3 ¼ 2Γκ2 þ ð1þ 4ΓÞκ3; ð78Þ

κ̄4 ¼ 2Γð1þ 2ΓÞκ1 þ Γ2κ2 þ Γð1þ 4ΓÞκ3 þ ð1þ 4ΓÞ2κ4;
ð79Þ

μ̄1 ¼ μ1; μ̄2 ¼ 2μ1Γð1þ 2ΓÞ þ μ2ð1þ 4ΓÞ2: ð80Þ

It should be noted that coefficients κ1;2 and μ1 are invariant
under this transformation as long as Ω ¼ 1. We also find
that the degeneracy conditions for the scalar and vector
modes, Eqs. (17) and (36), are invariant under the field
redefinition Eq. (73). Namely, when κi and μi satisfy
condition 2 and condition 3, the transformed parameters
still satisfy the same relations; that is,

“Condition 2”∶ 2κ̄1 þ κ̄2 ¼ 0;

“Condition 3”∶ 4κ̄21 − 4κ̄1κ̄3 þ 3κ̄23 þ 8κ̄1κ̄4 ¼ 0: ð81Þ
In addition to these, the additional condition to remove
the extra d.o.f. for the scalar modes, μ1 ¼ 0 for cases
SI=SIIaðSIIaÞ=SIIbðSIIbÞ or condition 4 [Eq. (60)] for case
SIIc is also an invariant quantity. It immediately follows
that linear degenerate theories can be transformed to
different linear degenerate theories with a different param-
eter set through the field redefinition Eq. (73). In particular,
when one chooses

Γ ¼ −
2κ1 − 3κ3
12ðκ1 − κ3Þ

ð82Þ

one can obtain the degenerate theories with κ̄3 ¼ 2κ̄1=3, as
in case SIIa from the degenerate theories with κ3 ≠ 2κ1=3
like in case SIIa. We also note that the same kinetic
structure as the linearized Einstein-Hilbert term can be
obtained for all the theories in case SII by setting κ̄3 ¼ 2κ̄1
via the field redefinition with

Γ ¼ −
2κ1 − κ3
4ðκ1 − κ3Þ

: ð83Þ

Hence, upon the field redefinition (73), one can show that

Cases SIIa and SIIa ⟷ Linearized general relativity;

ð84Þ
Case SIIb ⟷ Case SIIb; ð85Þ

Cases SIIc and SIIc ⟷ Fierz-Pauli theory: ð86Þ

B. Symmetry of the Lagrangian

It is interesting to see the symmetry of the Lagrangian as
also studied in Refs. [28,29]. When 2κ1 þ κ2 ¼ 0 is sat-
isfied, Lagrangian (4) can be rewritten as assuming κ1 ≠ κ3,

S½hμν� ¼ κ1SLGR½h̃μν�

−
Z

d4xκ1
4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4

8ðκ1 − κ3Þ2
h̃;αh̃

;α

−
Z

d4x

�
μ1h̃μνh̃

μν þ ð2κ1 − κ3Þκ3μ1 þ 4κ21μ2
4ðκ1 − κ3Þ2

h̃2
�
;

ð87Þ
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where

h̃μν ≡ hμν þ
κ3 − 2κ1
4κ1

hημν; ð88Þ

and SLGR stands for the action of linearized general relativity:

SLGR½hμν�≡ −
Z

d4xðhμν;αhμν;α − 2hαμ;αhβμ;β

þ 2hαβ ;αh;β − h;αh;αÞ: ð89Þ
First, we should note that the kinetic term of tensorial parts in
h̃μν is nicely summarized in a single term, that is SLGR. This
is not possible with a generic κ2. The difference between h̃μν
and hμν is subtle since h̃μν reduces to hμν once κ3 ¼ 2κ1
holds, which can be realized by a suitable field redefinition
as studied in the last subsection. Hence its difference is not
essential in the discussion below at least in the absence of
matter.
Now let us study the symmetry of the Lagrangian. The

first term SLGR is invariant under a transformation with
diffeomorphisms for h̃μν:

h̃μν → h̃μν þ ∂μξν þ ∂νξμ; ð90Þ

while other terms do not in general. However, once the
gauge parameters satisfy a condition such that ∂μξ

μ ¼ 0,
the kinetic term enjoys this restricted gauge symmetry
since h̃ is invariant under this gauge transformation.
Moreover, if μ1 also disappears, this symmetry becomes
the symmetry of the whole Lagrangian. This subgroup of
the diffeomorphisms is known as transverse diffeomor-
phisms [28].
It is now clear that cases SI and SIIb (SIIb) possess

such the transverse gauge symmetry with 3 gauge
parameters, 1 for the scalar sector and 2 for the vector
sector, since μ1 is vanishing as studied in detail in
Appendix C. On the other hand, case SIIa (SIIa) respects
diffeomorphisms with 4 gauge parameters since μ1 ¼
μ2 ¼ 0 as in linearized general relativity. There is no
gauge symmetry in case SIIc (SIIc) since both μ1 and μ2
are present. As for the remaining case SW, the
Lagrangian can be written as

SSW½hμν� ¼ −κ1
Z

d4x

�
hμν;αhμν;α − 2hαμ;αhβμ;β þ hαβ ;αh;β −

3

8
h;αh;α

�

¼ −κ1
Z

d4x½ĥμν;αĥμν;α − 2ĥαμ;αĥ
βμ

;β� ¼ κ1SLGR
�
ĥμν ≡ hμν −

1

4
hημν

�
: ð91Þ

Since the Lagrangian can be described in the form
of linearized general relativity with traceless tensor
ĥμν ≡ hμν − ð1=4Þhημν, this theory enjoys diffeomor-
phism invariance as well as the invariance under a
field redefinition (73). This enhanced symmetry is
called as Weyl-invariant transverse diffeomorphism
invariance [28].

C. New theories

We have seen that the cases SI, SIIb, and SIIb are the
new theories of a spin-2 field, which cannot be mapped
into linearized general relativity and Fierz-Pauli theory
by the field redefinition as studied in the previous
subsection IVA. In this subsection, we take a closer
look at the Lagrangian of these theories particularly
focusing on its scalar sectors.
Now let us first consider linearized general relativity to

understand the structure of theories, which can be simply
obtained by setting 2κ1 − κ3 ¼ 0 in the case SIIa or
equivalently performing a field redefinition with a special
Γ (83). Rewriting the Lagrangian in the scalar sector in
terms of the gauge invariant variables (C13), we obtain up
to total derivative terms

LS
LGR ¼ −3Ṙ2 þ k2R2 þ 2k2α̃R; α̃ ¼ αþ β̇

k
−

Ë
k2

;

ð92Þ

where we have set the overall factor κ1 to be 1=8 for
simplicity. Then the variation with respect to α̃ gives the
constraint R ¼ 0, and it is manifest that the Lagrangian
becomes zero after substituting the constraint. Thus we
have confirmed that the number of d.o.f. in the scalar sector
is zero in the Lagrangian formalism, that is consistent with
the Hamiltonian analysis in the previous section.
Cases SIIb & SIIb∶ Now we would like to perform

the same analysis for the case IIa. Again, we can set
2κ1 − κ3 ¼ 0 and κ1 ¼ 1=8without loss of generality. Then
the Lagrangian in the scalar sector in terms of the gauge
invariant variables (C5) is given by

LS
IIb ¼ −3Ṙ2 þ k2R2 þ 2k2α̃R − 4μ2Ẽ

2;

Ẽ ¼ E − α − 3R: ð93Þ

One can clearly see that the first three terms are exactly the
same as in the case of SIIa (SIIa). However, in this case,

LORENTZ-INVARIANT SPIN-2 THEORIES PHYS. REV. D 99, 084018 (2019)

084018-11



there is an extra term, μ2Ẽ
2 ¼ μ2ðTrhμνÞ2, where −Ẽ is the

trace of a spin-2 field. Since it is completely decoupled
from R and α̃ and has no kinetic term, it is actually a
nondynamical d.o.f. The case SIIb (SIIb) cannot be
obtained from any gauge fixing of the case SIIa (SIIa),
and these theories are therefore independent of each other.
Since α̃ and Ẽ are nondynamical, the Lagrangian becomes
zero after integrating out these variables just as in the case
SIIa (SIIa).
Case SI: Finally, we consider the case SI, whose

number of scalar d.o.f. is one. In this case, we can also
choose 2κ1 − κ3 ¼ 0 and κ1 ¼ 1=8 without loss of gen-
erality. Furthermore, we set κ4 ¼ 1=8 to simplify the
coefficient of the kinetic term for Ẽ. Then the Lagrangian
in terms of the gauge invariant variables (C5) is given by

LS
I ¼ −3Ṙ2 þ k2R2 þ 2k2α̃Rþ ˙̃E

2 − ðk2 þ 4μ2ÞẼ2:

ð94Þ

In this case, the trace of hμν, namely, −Ẽ, which again
decouples from other variables R and α̃, becomes
dynamical since it has now the kinetic term, differently
from the case SIIb. Thus after plugging the constraint of
α̃, 1 scalar d.o.f. remains in the case SI, which is also
consistent with the Hamiltonian analysis.

V. SUMMARY AND DISCUSSION

Summary.—In the present paper, we constructed the
most generic spin-2 field theories in a flat spacetime with
at most 5 d.o.f. without the ghost mode, whose
Lagrangian consists of the quadratic terms of the field
and its first derivatives. By decomposing the spin-2 field
hμν into the transverse-traceless tensor, the tensor com-
posed by transverse vectors, and the tensor composed by
scalar components, we classified theoretically consistent
theories based on the Hamiltonian analysis in a system-
atic manner.

We found that the existence of the tensor d.o.f. is always
controlled by one parameter κ1, which is assumed to be
nonzero while we imposed the degeneracy conditions in
order to eliminate extra problematic d.o.f. for the vector
and scalar modes. Under the degeneracy conditions, we
found two classes in the vector sector: 2 propagating
vector d.o.f. and no d.o.f. As in the vector sector, we
have also classified theories in the scalar sector based on
the Hamiltonian analysis. The classification of the
obtained theories is summarized in Table. I. The case
SIIa and SIIc are a wider class of the known theories:
linearized general relativity and Fierz-Pauli theory, and
we have shown that the cases SIIa and SIIc can be
mapped from these known theories by field redefinition.
On the other hand, the cases SI and SIIb are new
theories, which cannot be mapped from the known
theories. The case SIIb has the same number of d.o.f.
in linearized general relativity, however, it has less gauge
d.o.f., and it contains the trace of the spin-2 field, which
is nondynamical. On the other hand, the case I has the
dynamical d.o.f. coming from the trace of the spin-2
field while the vector d.o.f. is absent. The other remain-
ing three cases: SIIa, SIIb, and SIIc, are the subset of the
cases SIIa, SIIb, and SIIc and hence the case SIIb is also
a new theory. We provided the conditions for avoiding
the ghost, gradient, and tachyonic instabilities by cal-
culating the reduced Lagrangian in Appendix C.
Nonlinear extension to gravity theory.—It is interesting

to consider a nonlinear extension to (massive) gravity
theory of the obtained theories for a spin-2 field. Let us
consider the following Lagrangian,2

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½a1Rþ a2hRþ a3hμνRμν

þKαβjμνρσ∇αhμν∇βhρσ þMμνρσhμνhρσ þOðh2R; h3Þ�;
ð95Þ

TABLE I. The number of the d.o.f., the conditions, free parameters, and comments for each case is shown. For any case, condition 1
[Eq. (15)] and condition 2 [Eq. (17)] are always imposed. Conditions 3,4,5 are shown in Eqs. (36), (60), and (A1) respectively. Among
free parameters, κ1 is not included since it only changes the normalization of the Lagrangian if its sign is appropriately chosen.

Case d.o.f. Conditions Free parameters Comments

SI & V1 3 ¼ 2þ 0þ 1 μ1 ¼ 0 κ3, κ4, μ2 New theories
SIIa & V1 2 ¼ 2þ 0þ 0 Condition 3 & μ1 ¼ μ2 ¼ 0 κ3 General relativity is included
SIIb & V1 2 ¼ 2þ 0þ 0 Condition 3 & μ1 ¼ 0 & μ2 ≠ 0 κ3, μ2 New theories
SIIc & V2 5 ¼ 2þ 2þ 1 Condition 3 & 4 & μ1 ≠ 0 κ3, μ1 Fierz-Pauli is included
SIIa & V1 2 ¼ 2þ 0þ 0 Condition 5 & μ1 ¼ μ2 ¼ 0 None −2κ1 þ 3κ3 ¼ 0 limit of SIIa
SIIb & V1 2 ¼ 2þ 0þ 0 Condition 5 & μ1 ¼ 0 & μ2 ≠ 0 μ2 −2κ1 þ 3κ3 ¼ 0 limit of SIIb
SIIc & V2 5 ¼ 2þ 2þ 1 Condition 5 & μ1 þ 3μ2 ¼ 0 & μ1 ≠ 0 μ1 −2κ1 þ 3κ3 ¼ 0 limit of SIIc

2The effect of the background curvature in the Lagrangian has
been discussed in the literature, e.g., Ref. [30], which is beyond
the scope of the present paper.
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where the fluctuation tensor is defined by hμν ¼ gμν − ημν.
The coefficients of the kinetic and mass terms,Kαβjμνρσ and
Mμνρσ, are functions of the metric gμν,

Kαβjμνρσ ¼ b1gαβgμρgνσ þ b2gμαgρβgνσ þ b3gαμgνβgρσ

þ b4gαβgμνgρσ; ð96Þ

Mμνρσ ¼ μ1gμρgνσ þ μ2gμνgρσ; ð97Þ

and a1;2;3 and b1;2;3;4 are constant parameters. By expand-
ing the action up to the quadratic terms in hμν and
identifying this field as the (massive) spin-2 field intro-
duced in this paper, one can find that the relations between
these constant parameters and the κ parameters introduced
in the Lagrangian (1) are given by

κ1 ¼ b1 −
1

2
a1 þ

1

2
a3; κ2 ¼ b2 þ a1 − a3;

κ3 ¼ b3 − a1 − a2 −
1

2
a3; κ4 ¼ b4 þ

1

2
a1 þ a2: ð98Þ

Then the gravitational action (95) perturbed around
Minkowski space-time reproduces the Lagrangian (1) at
the linear level. Therefore it is for sure that this Lagrangian
(95) with the conditions that we have obtained does not
have an extra d.o.f. at linear order. However, one might
need some extra tuning of the parameters ai and bi for
avoiding the appearance of Boulware-Deser ghost at non-
linear level, and it has to be carefully examined just as in the
construction of the dRGT theory.
Matter coupling.—Although we have obtained the inter-

esting theories of the spin-2 field, one carefully needs to
introduce a coupling to matter fields. To clarify this, let us
consider the case SIIc with the matter coupling hμνTμν=M,
where Tμν is the energy-momentum tensor of an external
source, and M is a mass parameter, which corresponds to
Planck’s mass in general relativity. Ignoring the vector
modes,3 the Λ3 decoupling limit with the Stuckelberg
decomposition, hμν ¼ ĥμν þ 2m2∂μ∂νπ þ bm2ημν□π, and
the conformal transformation, ĥμν¼hμν−ðc1=κ1−κ3Þπημν
yields the following Lagrangian,

LðDLÞ ¼ LðDLÞ
tensor½h�−

6c1
κ1

ð∂μπÞ2 þ
1

M

�
hμνTμν −

c1
κ1 − κ3

πT

�

þ 1

Λ3
3

½2ð∂μ∂νπÞTμν þ bð□πÞT�; ð99Þ

where LðDLÞ
tensor½h̃� is the kinetic Lagrangian of the case IIc,

μ1 ¼ c1m2, m is a mass parameter, T ¼ ημνTμν and

Λ3 ¼ ðMm2Þ1=3. Here, the new interaction appears if
b ≠ 0 and T ≠ 0 which cannot be shown in the Fierz-
Pauli theory with minimally coupled matter. The equation
of motion for the scalar mode π naively contains the second
derivatives of the energy-momentum tensor, which might
lead to higher derivatives, depending on matter fields.
Whether this matter coupling introduce an extra d.o.f.
associated with higher derivatives or not will be reported in
future work (see also Ref. [31]).
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APPENDIX A: OTHER DEGENERATE THEORIES
IN THE SCALAR SECTOR

In this Appendix we consider special cases with
2κ1 − 3κ3 ¼ 0,

“Condition 5”∶ κ3 ¼
2

3
κ1; ðA1Þ

which also satisfies condition 3 [Eq. (36)] as well as
condition 1 [Eq. (15)] and condition 2 [Eq. (17)]. To
summarize, we have

κ1 > 0; κ2 ¼ −2κ1; κ3 ¼
2

3
κ1;

κ4 ¼ −
4κ21 − 4κ1κ3 þ 3κ23

8κ1
¼ −

κ1
3
: ðA2Þ

In this case, the momenta are given by

πα ¼
16

3
κ1ðkβ − α̇Þ; πE ¼ −

16

3
κ1ðkβ − ĖÞ; ðA3Þ

and other momenta gives two primary constraints,

Cβ1 ¼ πβ ¼ 0; CR1 ¼ πR ¼ 0: ðA4Þ

The Hamiltonian and the total Hamiltonian densities are
given by

3A careful analysis shows that the decoupling limit Lagrangian
of the vector field becomes a massless Uð1Þ field, which
completely decouples from the other modes.
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HS ¼ α̇πα þ β̇πβ þ ṘπR þ ĖπE − LS;

≈ 4

�
2k2κ1
3

þ ðμ1 þ μ2Þ
�
α2 − 2μ1β

2 − 4

�
2k2κ1
3

− ðμ1 þ μ2Þ
�
E2 þ 12ðμ1 þ 3μ2ÞR2

−
8

3
ð3μ1 þ 9μ2 − 2k2κ1ÞER − 8

�
μ2E þ 1

3
ð2k2κ1 − 9μ2ÞR

�
α −

3

32κ1
ðπ2α − π2EÞ þ kðπα þ πEÞβ; ðA5Þ

HS
T ¼ HS þ λβπβ þ λRπR; ðA6Þ

where we have suppressed the terms proportional to the
primary constraints (A4) in the final expression of HS.
Then one finds

CR2 ≡ ĊR1 ¼ fCR1 ; HS
Tg ¼ fCR1 ; HSg

¼ −
8

3
½ð9μ2 − 2k2κ1Þαþ ð2k2κ1 − 3μ1 − 9μ2ÞE

þ 9ðμ1 þ 3μ2ÞR�; ðA7Þ

Cβ2 ¼ Ċβ1 ¼ fCβ1; HS
Tg ¼ fCβ1; HSg ¼ −kπα − kπE þ 4μ1β:

ðA8Þ

The Poisson brackets between the secondary and the
primary constraints are given by

fCβ2; Cβ1g ¼ 4μ1; ðA9Þ

fCR2 ; CR1 g ¼ −24ðμ1 þ 3μ2Þ: ðA10Þ

If both are nonvanishing, the Lagrange multipliers λβ and

λR are determined, then it has two primary constraints Cβ1,
CR1 and two secondary constraints Cβ2, C

R
2 . Since all the

constraints are second class, the total number of d.o.f. in the
scalar sector is ð8 − 4Þ=2 ¼ 2. As shown in Appendix B,
we have a ghost d.o.f. in this case. To remove an extra
d.o.f., we have three options: μ1 ¼ μ2 ¼ 0 (case SIIa),
μ1 ¼ 0 (case SIIb), or μ1 þ 3μ2 ¼ 0 (case SIIc).
Case SIIa: μ1 ¼ μ2 ¼ 0.
If μ1 ¼ μ2 ¼ 0, both Eqs. (A9) and (A10) vanish. In this

case, all the primary constraints Cβ1, CR1 and secondary
constraints Cβ2, C

R
2 are first class since all the constraints

commute with each other. Therefore,

scalar d:o:f: ¼ 4 × 2 − 4ð2 primary& 2 secondaryÞ × 2ðfirst-classÞ
2

¼ 0: ðA11Þ

Since the vector mode does not have a d.o.f. (case V1), only
the tensor mode propagate. This case corresponds to the
case SIIb with an additional condition −2κ1 þ 3κ3 ¼ 0 as
one can see from the structure of the constraint algebra as
well as the Lagrangian more explicitly.
Case SIIb: μ1 ¼ 0. If μ1 ¼ 0, the Lagrange multiplier λR

can be determined by ĊR2 ≈ 0, that is, λR ¼ −fCR2 ; HSg=
fCR2 ; CR1 g. On the other hand, the consistency of Cβ2
generates a tertiary constraint

Cβ3 ≡ Ċβ2 ¼ fCβ; HS
Tg ¼ fCβ; HSg ¼ 16

3
k3κ1ðα − EÞ ≈ 0:

ðA12Þ
One also finds Ċβ3 ∝ Cβ2 and hence no more constraint is
generated. Cβ1, C

β
2, and Cβ3 are first-class since these con-

straints commute with all other constraints, i.e., fCβi ; Cβjg ¼
fCβi ; CRk g ¼ 0, where i, j ¼ 1, 2, 3 and k ¼ 1, 2 while CR1
and CR2 are second class. Therefore,

scalar d:o:f: ¼ 4 × 2 − 3ð1 primary& 1 secondary& 1 tertiaryÞ × 2ðfirst classÞ − 2ð1 primary& 1 secondaryÞ
2

¼ 0: ðA13Þ

Then the total number of d.o.f. is two since the vector mode
does not propagate for μ1 ¼ 0 (case V1) while tensor
modes are present.
Case SIIc: μ1 þ 3μ2 ¼ 0, μ1 ≠ 0.

If μ1 þ 3μ2 ¼ 0, the Lagrange multiplier λβ can be
determined by Ċβ2 ≈ 0, i.e., λβ ¼ −fCβ2; HSg=fCβ2; Cβ1g. As
for CR2 , since it does not commute with Cβ2, we shall
consider a linear combination of constraints:
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C̃R2 ≡ CR2 − 2kCβ1: ðA14Þ

The consistency of C̃R2 generates a tertiary constraint

CR3 ≡ ˙̃C
R
2 ¼ fC̃R2 ; HS

Tg ¼ fC̃R2 ; HSg

¼
�
k2 −

3μ1
2κ1

�
πα þ k2πE ≈ 0: ðA15Þ

Since the Poisson brackets between this constraint and
primary constraints are vanishing the time evolution of
the tertiary constraint CR3 yields a quaternary constraint and,
in fact,

CR4 ≡ ĊR3 ¼ fCR3 ; HS
Tg ¼ fCR3 ; HSg

¼ −8
�
2κ1k4

3
−
μ21
κ1

�
α −

12μ21
κ1

R

þ 4

�
4κ1k4

3
− 2k2μ1 þ

μ21
κ1

�
E ≈ 0: ðA16Þ

Since this does not commute with CR1 , no more constraint is
generated and the time consistency of CR4 determines the
Lagrange multiplier as λR ¼ −fCR4 ; HSg=fCR4 ; CR1 g. There
are six second-class constraints CR1 ; C

β
1; C̃

R
2 ; C

β
2; C

R
3 , and C

R
4 .

Therefore,

scalar d:o:f: ¼ 4 × 2 − 6ð2 primary& 2 secondary& 1 tertiary& 1 quaternaryÞ
2

¼ 1: ðA17Þ

In this case, the total number of degrees of freedom is five
combining two vector modes (case V2) and two tensor
modes. One may notice that the structure of the constraints
and the number of the degrees of freedom are the same as
the case SIIc. This implies that this case SIIc is the special
case of the case SIIc with −2κ1 þ 3κ3 ¼ 0.

APPENDIX B: APPEARANCE OF
UNWANTED GHOST

In this Appendix, we show that there is ghost if a system
has two or more d.o.f. in the scalar sector. More clearly, we
will show that at least one of the ghost modes originates

from the structure of the Einstein-Hilbert action. Because
of the general covariance of the Einstein-Hilbert action,
the signs of the kinetic terms for scalar and tensor modes
are opposite. Assuming Newton’s constant is positive,
the kinetic term for a scalar mode is wrong, as found in
Eq. (92). In the case of general relativity, thanks to
diffeomorphism invariance, there is no intrinsic d.o.f. in
the scalar sector and hence this ghost mode is not activated.
But once the diffeomorphism invariance is lost, this ghost
revives, in general, which is explicitly shown below.
The conditions to have 2 or more d.o.f. are summarized

as follows:

3d:o:f:∶4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4 ≠ 0; μ1 ≠ 0; ðB1Þ

2d:o:f:∶4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4 ¼ 0; μ1 ≠ 0; μ1ð4κ21 − 6κ1κ3 þ 3κ23Þ þ 4μ2κ
2
1 ≠ 0; ðB2Þ

2d:o:f:∶3κ1 ¼ 3κ3 ¼ −8κ4; μ1 ¼ −4μ2 ≠ 0: ðB3Þ

In addition to these conditions, we further assume 2κ1 þ
κ2 ¼ 0 and κ1 ≠ 0 to evade the ghost in the vector sector.
First we focus on the first two cases. Then we find the basic
structure of the Lagrangian in the last case is essentially the
same as in the first two cases, and conclude the existence
of the ghost in the last case too. It should be noticed that
we have 4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4 ¼ κ1ð3κ1 þ 8κ4Þ and
μ1ð4κ21 − 6κ1κ3 þ 3κ23Þ þ 4μ2κ

2
1 ¼ κ21ðμ1 þ 4μ2Þ, respec-

tively, thanks to the first condition in Eq. (B3).
In order to simplify discussion, we further assume

κ3 ¼ 2κ1, which is always realized by performing a field
redefinition as studied in IVA. In order to show the
existence of a ghost, we shall take a look at Lagrangian
(29), which now reduces to

LS½α; β;R; E� ¼ 8κ1ð−3Ṙ2 þ k2R2 þ 2k2Rα̃Þ
þ 4ðκ1 þ κ4Þð ˙̃E2 − k2Ẽ2Þ
þ 2μ1ð−4α2 þ β2 − 12R2 − 4αẼ

− 8αR − 8RẼÞ − 4ðμ1 þ μ2ÞẼ2: ðB4Þ

Here, α̃ and Ẽ stand for

α̃ ¼ αþ β̇

k
−

Ë
k2

; Ẽ ¼ −tr½hμν� ¼ E − α − 3R: ðB5Þ

Thanks to the condition 2κ1 þ κ2 ¼ 0, it is clear that the
Lagrangian consists of three parts, namely, linearized
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general relativity (the first three terms), the kinetic term for
the trace of hμν, −Ẽ, and the mass terms as shown in
Eq. (32). A crucial term for the existence of a ghost is the
one proportional to Ë in α̃, which gives a cross term Ṙ Ė
after integration by part. In the presence of μ1, the gauge
invariance of the Lagrangian is totally lost and hence
R, E, and also possibly Ẽ ∼ α are physical d.o.f. while β
is nondynamical since it has no kinetic term. If κ1 þ κ4
vanishes, the kinetic term for Ẽ is lost, which ends up with
2 d.o.f. Since β is not a dynamical d.o.f. in any case, the
constraint equation for β yields

β ¼ 4kκ1
μ1

Ṙ: ðB6Þ

Then after eliminating the dependence of β in the
Lagrangian (B4), the coefficient of Ṙ2 can be changed.
But still one finds

LS½R; E; Ẽ� ¼ −8rκ1Ṙ2 þ 16κ1Ṙ Ėþ4ðκ1 þ κ4Þ ˙̃E2

þ ½no time derivative terms�

¼ −8rκ1
�
Ṙ −

1

r
Ė
�

2

þ 8

r
κ1Ė

2 þ 4ðκ1 þ κ4Þ ˙̃E2

þ ½no time derivative terms�; ðB7Þ

where r ¼ 3þ 4κ1k2=μ1. Now it is clear that no matter
what the signature of r is, the kinetic terms for R and E
have opposite sign. Then at least either R or E will be a
ghosty mode while the nature of Ẽ ∼ α will be determined
by the coefficient of κ1 þ κ4; that is, it is a ghost or not or
even nondynamical. For Eq. (B2), i.e., κ1 þ κ4 ¼ 0, the
appearance of a ghost mode is still inevitable since Ẽ ∼ α
constraint does not involve any time derivatives and the
kinetic part of the Lagrangian remains the same as Eq. (B7).
Finally, we shall consider the last case (B3), whose

Lagrangian reads

LS ¼ 8κ1

�
−3 ˙̃R

2 − 5k2R̃2 þ 2k2R̃
�
E þ β̇

k
−

Ë
k2

��

þ 2μ1ðβ2 − 4E2 − 24R̃2 þ 16ER̃Þ; ðB8Þ

where

R̃≡ 1

4
ð−αþRþ EÞ: ðB9Þ

We note that the essential structure of the Lagrangian is
quite similar to that in the cases studied above, Eq. (B4).

Because of the cross term R̃ Ë ∼ ˙̃R Ė, one will find a ghost
in a similar manner while the constraint equation for β

yields β ¼ ð4kκ1=μ1Þ ˙̃R.

APPENDIX C: GAUGE TRANSFORMATIONS
AND REDUCED LAGRANGIANS

In this Appendix, we derive a gauge transformation for
the cases which have first-class constraints. By using gauge
invariant quantities, we derive reduced Lagrangians and the
conditions for avoiding ghost and gradient instabilities. The
details of finding gauge transformations from a system with
first-class constraints can be referred to Refs. [32–35].
Since the cases SIIa, SIIb, and SIIc are equivalent to SIIa,
SIIb, and SIIc modulo the invertible field transformation
(73), we will omit the detailed analysis for those cases.

1. Case SI

Let us consider the scalar sector in the case SI. The
generating function is given by the linear combination
of the first-class constraints, G ¼ ϵiðtÞCβi . Then Ġ ¼
∂G=∂tþ fG;HSg ¼ 0 gives

ϵ1 þ k2ϵ3 þ ϵ̇2 ¼ 0; ϵ2 þ ϵ̇3 ¼ 0: ðC1Þ

Introducing the gauge parameter ϵðtÞ, we obtain the
following relations:

ϵ1 ¼ ̈ϵ − k2ϵ; ϵ2 ¼ −ϵ̇; ϵ3 ¼ ϵ: ðC2Þ

Then the gauge transformation of the scalar components of
hμν can be obtained from δhμν ¼ fhμν; Gg,

δα ¼ kϵ̇; δβ ¼ ̈ϵ − k2ϵ; δR ¼ 0; δE ¼ kϵ̇:

ðC3Þ

One can easily check that the Lagrangian for the scalar
mode is invariant under this gauge transformation. Taking
into account the gauge transformation of the vector mode,
which is identical to the one in diffeomorphisms, the gauge
transformation in the case SI can be covariantly written as

hμν → hμν þ ∂μξν þ ∂νξμ; with ∂μξμ ¼ 0; ðC4Þ

which is transverse diffeomorphisms [28].
To find the reduced Lagrangian, let us now define the

gauge invariant variables,

α̃ ¼ αþ β̇

k
−

Ë
k2

; Ẽ ¼ E − α − 3R: ðC5Þ

Note that the gauge invariant variable Ẽ is nothing but the
trace of −hμν. Using the gauge invariant variables intro-
duced in the above, we rewrite the Lagrangian in terms of α̃,
Ẽ, and R by eliminating β. And then after solving the
constraint generated by the equation of motion for α̃, we
can integrate out R. Finally, we obtain the reduced action,
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LS ¼ 4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4
2κ1

×

�
˙̃E
2 −

�
k2 þ 8μ2κ1

4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4

�
Ẽ2

�
:

ðC6Þ

Therefore, the conditions for avoiding ghost and tachyonic
instabilities are

4κ21 − 4κ1κ3 þ 3κ23 þ 8κ1κ4 > 0; μ2 > 0: ðC7Þ

2. Case SIIa

In this case, the generating function is given by
G ¼ P

2
i;j ϵijCij, where ϵij is the gauge parameter, and

C11 ¼ Cα1, C12 ¼ Cα2 , C21 ¼ Cβ1 and C22 ¼ Cβ2. Then, the
condition Ġ ¼ 0 gives two equations,

ϵ11 þ ϵ̇12 þ
2κ1 − κ3
4ðκ1 − κ3Þ

kϵ22 ¼ 0; ðC8Þ

ϵ21 þ ϵ̇22 −
4ðκ1 − κ3Þ
2κ1 − 3κ3

kϵ12 ¼ 0: ðC9Þ

These equations can be recasted into

ϵ11 ¼ −ϵ̇1 −
2κ1 − κ3
4ðκ1 − κ3Þ

kϵ2; ϵ12 ¼ ϵ1;

ϵ21 ¼
4ðκ1 − κ3Þ
2κ1 − 3κ3

kϵ1 − ϵ̇2; ϵ22 ¼ ϵ2; ðC10Þ

where we have introduced two gauge parameters ϵ1ðtÞ and
ϵ2ðtÞ. The gauge transformations are given by

δα ¼ −ϵ̇1 −
2κ1 − κ3
4ðκ1 − κ3Þ

kϵ2; δβ ¼ 4ðκ1 − κ3Þ
2κ1 − 3κ3

kϵ1 − ϵ̇2;

ðC11Þ

δR ¼ ð2κ1 − κ3Þ
�

ϵ̇1
2κ1 − 3κ3

−
kϵ2

4ðκ1 − κ3Þ
�
; δE ¼ −kϵ2:

ðC12Þ

One can construct gauge invariant variables as follows:

αIIa ¼ α −
2κ1 − κ3
4ðκ1 − κ3Þ

E þ 2κ1 − 3κ3
4ðκ1 − κ3Þ

�
β̇

k
−

Ë
k2

�
;

EIIa ¼ E − α −
2κ1 − 3κ3
2κ1 − κ3

R: ðC13Þ

In the Einstein-Hilbert limit, 2κ1 − κ3 ¼ 0,R itself is gauge
invariant just as in general relativity, and αIIa coincides

with α̃ defined in the cases SI and also SIIb. Using these
gauge invariant variables, one can show that the reduced
Lagrangian becomes zero as expected.
Taking into account the gauge transformation of the

vector mode, the gauge transformation in the case SIIa can
be covariantly written as

hμν → hμν þ ∂μξν þ ∂νξμ þ b∂ρξ
ρημν; ðC14Þ

where the constant b is given by

b ¼ −
2κ1 − κ3
2ðκ1 − κ3Þ

; ðC15Þ

Note that the transformation in the case b ¼ 0, equivalently
2κ1 ¼ κ3, reduces to the standard gauge transformation in
linearized general relativity.

3. Case SIIb

In the case SIIb, we first arrange the first-class and
second-class constraints. To do so, we define the following
Hamiltonian including only the second-class constraint Cα1:

HS
T ¼ HS þ λαCα1: ðC16Þ

Then the first-class constraints can be written as

C̃β2 ¼ fCβ1; HS
Tg; C̃β3 ¼ fC̃β2; HS

Tg;
˙̃C
β
3 ¼ fC̃β3; HS

Tg ¼ k2C̃β2: ðC17Þ
Then, as in the previous case, we define the generating
function as G ¼ ϵiðtÞCβi , and Ġ ¼ ∂G=∂tþ fG;HSg ¼ 0
yields

ϵ1 þ k2ϵ3 þ ϵ̇2 ¼ 0; ϵ2 þ ϵ̇3 ¼ 0: ðC18Þ
In this case, one obtains the same equations as in the case
SI. Thus the gauge transformations of α, β, R, and E are
also the same as well as the gauge transformation in a
covariant form, which is given by Eq. (C4). Using the
gauge invariant variables introduced in the case SI, one can
show that the reduced Lagrangian after solving all the
constraints becomes zero, implying no scalar d.o.f.

4. Case SIIc

In this case, all the constraints are second class, which
implies that there is no gauge d.o.f. After integrating out the
variables α, β, and R, we finally obtain the reduced
Lagrangian for E:

LS ¼ 24μ21
ð2κ1k2 þ 3μ1Þ2

½κ1Ė2 − ðκ1k2 þ μ1ÞE2�: ðC19Þ

One can immediately see that the remaining scalar d.o.f. is
always ghost-free as long as κ1 > 0, and the conditions for
avoiding tachyonic instability are given by μ1 > 0.

LORENTZ-INVARIANT SPIN-2 THEORIES PHYS. REV. D 99, 084018 (2019)

084018-17



[1] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211
(1939).

[2] H. van Dam and M. J. G. Veltman, Nucl. Phys. B22, 397
(1970).

[3] V. I. Zakharov, Pis’ma Zh. Eksp. Teor. Fiz. 12, 447 (1970)
[JETP Lett. 12, 312 (1970)].

[4] A. I. Vainshtein, Phys. Lett. 39B, 393 (1972).
[5] D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).
[6] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev.

Lett. 106, 231101 (2011).
[7] C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020

(2010).
[8] Q.-G. Huang, Y.-S. Piao, and S.-Y. Zhou, Phys. Rev. D 86,

124014 (2012).
[9] G. D’Amico, G. Gabadadze, L. Hui, and D. Pirtskhalava,

Phys. Rev. D 87, 064037 (2013).
[10] S. F. Hassan and R. A. Rosen, J. High Energy Phys. 02

(2012) 126.
[11] K. Hinterbichler, J. High Energy Phys. 10 (2013) 102.
[12] R. Kimura and D. Yamauchi, Phys. Rev. D 88, 084025

(2013).
[13] C. de Rham, A. Matas, and A. J. Tolley, Classical Quantum

Gravity 31, 165004 (2014).
[14] M. V. Ostrogradsky, Mem. Acad. St. Petersbourg VI 4, 385

(1850).
[15] D. Langlois and K. Noui, J. Cosmol. Astropart. Phys. 02

(2016) 034.
[16] H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi, and D.

Langlois, J. Cosmol. Astropart. Phys. 07 (2016) 033.
[17] R. Klein and D. Roest, J. High Energy Phys. 07 (2016) 130.
[18] H. Motohashi, T. Suyama, and M. Yamaguchi, J. Phys. Soc.

Jpn. 87, 063401 (2018).

[19] R. Kimura, Y. Sakakihara, and M. Yamaguchi, Phys. Rev. D
96, 044015 (2017).

[20] H. Motohashi, T. Suyama, and M. Yamaguchi, J. High
Energy Phys. 06 (2018) 133.

[21] M. Crisostomi, R. Klein, and D. Roest, J. High Energy Phys.
06 (2017) 124.

[22] R. Kimura, Y. Sakakihara, and M. Yamaguchi, Phys. Rev. D
98, 044043 (2018).

[23] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Phys.
Rev. Lett. 114, 211101 (2015).

[24] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Phys.
Rev. Lett. 114, 211101 (2015).

[25] M. Crisostomi, K. Koyama, and G. Tasinato, J. Cosmol.
Astropart. Phys. 04 (2016) 044.

[26] J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois,
K. Noui, and G. Tasinato, J. High Energy Phys. 12 (2016)
100.

[27] R. Kimura, A. Naruko, and D. Yoshida, J. Cosmol.
Astropart. Phys. 01 (2017) 002.

[28] E. Alvarez, D. Blas, J. Garriga, and E. Verdaguer, Nucl.
Phys. B756, 148 (2006).

[29] J. Bonifacio, P. G. Ferreira, and K. Hinterbichler, Phys. Rev.
D 91, 125008 (2015).

[30] S. Akagi, arXiv:1810.02065.
[31] R. L. Arnowitt, S. Deser, and C.W. Misner, Gen. Relativ.

Gravit. 40, 1997 (2008).
[32] L. Castellani, Ann. Phys. (N.Y.) 143, 357 (1982).
[33] R. Sugano and H. Kamo, Prog. Theor. Phys. 67, 1966

(1982).
[34] R. Sugano, Y. Saito, and T. Kimura, Prog. Theor. Phys. 76,

283 (1986).
[35] R. Sugano and T. Kimura, Phys. Rev. D 41, 1247 (1990).

NARUKO, KIMURA, and YAMAUCHI PHYS. REV. D 99, 084018 (2019)

084018-18

https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1016/0550-3213(70)90416-5
https://doi.org/10.1016/0550-3213(70)90416-5
https://doi.org/10.1016/0370-2693(72)90147-5
https://doi.org/10.1103/PhysRevD.6.3368
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevD.86.124014
https://doi.org/10.1103/PhysRevD.86.124014
https://doi.org/10.1103/PhysRevD.87.064037
https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1007/JHEP10(2013)102
https://doi.org/10.1103/PhysRevD.88.084025
https://doi.org/10.1103/PhysRevD.88.084025
https://doi.org/10.1088/0264-9381/31/16/165004
https://doi.org/10.1088/0264-9381/31/16/165004
https://doi.org/10.1088/1475-7516/2016/02/034
https://doi.org/10.1088/1475-7516/2016/02/034
https://doi.org/10.1088/1475-7516/2016/07/033
https://doi.org/10.1007/JHEP07(2016)130
https://doi.org/10.7566/JPSJ.87.063401
https://doi.org/10.7566/JPSJ.87.063401
https://doi.org/10.1103/PhysRevD.96.044015
https://doi.org/10.1103/PhysRevD.96.044015
https://doi.org/10.1007/JHEP06(2018)133
https://doi.org/10.1007/JHEP06(2018)133
https://doi.org/10.1007/JHEP06(2017)124
https://doi.org/10.1007/JHEP06(2017)124
https://doi.org/10.1103/PhysRevD.98.044043
https://doi.org/10.1103/PhysRevD.98.044043
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1088/1475-7516/2016/04/044
https://doi.org/10.1088/1475-7516/2016/04/044
https://doi.org/10.1007/JHEP12(2016)100
https://doi.org/10.1007/JHEP12(2016)100
https://doi.org/10.1088/1475-7516/2017/01/002
https://doi.org/10.1088/1475-7516/2017/01/002
https://doi.org/10.1016/j.nuclphysb.2006.08.003
https://doi.org/10.1016/j.nuclphysb.2006.08.003
https://doi.org/10.1103/PhysRevD.91.125008
https://doi.org/10.1103/PhysRevD.91.125008
http://arXiv.org/abs/1810.02065
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1016/0003-4916(82)90031-8
https://doi.org/10.1143/PTP.67.1966
https://doi.org/10.1143/PTP.67.1966
https://doi.org/10.1143/PTP.76.283
https://doi.org/10.1143/PTP.76.283
https://doi.org/10.1103/PhysRevD.41.1247

