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In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H)
and use its geometric structure. It will be shown that the star product in Berezin quantiza-
tion is equivalent to the Poisson bracket on P(H) and the Berezin method to construction
a correspondence between a given classical theory and a given quantum theory is used to
define a classical limit for geometric quantum mechanics.

1 Introduction

In Berezin quantization one defines from a representation of C∗-algebra of quantum observables
the covariant symbols. These symbols are expectation values of the observables in terms of
coherent states: the holomorphic functions on classical phase space M that is assumed to be
a Kähler manifold.

Berezin [2] showed that the covariant symbols form a ∗�-algebra which in limit � → 0 leads
to the Poisson algebra between the corresponding classical observables: The functions on the
phase space M .

In this paper we will see that the Berezin ∗�-algebra is in fact a Poisson algebra which is
induced by the Fubini–Study 2-form on space of coherent states. This space is defined as follows:
coherent states span a dense subspace H̃ of Hilbert space H. P(H̃), which is denoted by M,
is a Kähler manifold with induced symplectic structure from P(H). Therefore the covariant
symbols can be considered as functions on M. It is shown [13] that there exists an embedding
mapping between the classical phase space M and M, by which to any point z ∈ M is associated
a point Z ∈ M. With this construction to all of the quantum observables are associated their
covariant symbols, which form a Poisson algebra on M and since the corresponding classical
observables form a Poisson algebra on M , the Berezin quantization is a systematic procedure to
relate these two Poisson algebras. Also the relation of Berezin quantization and geometric for-
mulation of quantum mechanics will be evident as follows. The geometric quantum mechanics is
a formulation of quantum mechanics in projective Hilbert spaces. With our construction one sees
that the Berezin quantization is an equivalent formulation and in addition gives a prescription
as classical limit for geometric quantum mechanics [9].

2 Geometry of projective Hilbert space

Let H be a Hilbert space and P(H) is its projective space by the canonical projection π : H\0 →
P(H). Any point in P(H) is shown with [ψ] corresponds to the one dimensional subspace Cψ
in H. P(H) is a Kähler manifold, the symplectic form is given by [12]

Ω�

[ψ](Tψπ(φ1), Tψπ(φ2)) = −2�(〈φ1, φ2〉), (1)
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where φ ∈ (Cψ)⊥ and Tψπ(φ) is tangential space of P(H) in point [ψ], which is isomorphic to
H\Cψ,

Tψπ : H → T[ψ]P(H) � H\Cψ. (2)

and defined by

(Tψπ)(φ) =
d

dt
π(ψ + tφ) |t=0 .

2.1 Vector fields on P(H)

Let (M, ω) be a symplectic manifold. The vector field A is called Hamiltonian if there exists
a smooth function f on M such that

iAω = df, (3)

where iA is interior derivative of Ω with respect to A.
The quantum mechanical observables are self adjoint operators on Hilbert space and one can

consider the expectation values of these observables as function on projective Hilbert space; in
fact the expectation value of HA is defined by

〈HA〉ψ =
〈ψ, HAψ〉
〈ψ, ψ〉 . (4)

By the following theorem the relation between the operators on Hilbert space and the associated
Hamiltonian vector field will be evident.

Theorem 1. Let A be a Hamiltonian vector field on P(H) and HA the corresponding Hamil-
tonian operator on H. Then the Schrödinger equation HAψ(t) = i�dψ/dt is equivalent to the
equation of motion that induced by A on P(H), such that

A[ψ] =
1
i�

HAψ

‖ψ‖ , (5)

where A is given in local coordinates Z on P(H) with respect to Fubini-study form as

A = −i
∑
n,p

Ωk,np

(
∂〈HA〉
∂Z̄k

p

∂

∂Zk
n

− ∂〈HA〉
∂Zk

p

∂

∂Z̄k
n

)
. (6)

Proof. See [3, 15]. �

As a consequence one can say that the Schrödinger equation is nothing but the classical
Hamilton equations. Then it is natural to expect that there exists a Poisson structure on P(H).
With the following proposition will be seen that the symplectic form on P(H) endows it with
Poisson algebra. For a symplectic manifold with form Ω we have:

{f, g} = Ω(Xf , Xg), (7)

where Xf and Xg are Hamiltonian vector fields of f and g respectively.

Proposition 1. Let A, B : P(H) → TP(H) are two Hamiltonian vector fields corresponding to
the functions 〈HA〉 and 〈HB〉 on P(H) respectively. Then

{〈HA〉, 〈HB〉} = 〈 1
i�

[HA, HB]〉, (8)

where the Poisson bracket is defined by (1) and the relation

{〈HA〉, 〈HB〉} = ΩFS(A, B).

Proof. Direct calculation [12, 15]. �
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It must be pointed out that the Poisson structure is defined on quantum phase space P(H)
rather than classical phase space M .

It is well known that the P(H) has a natural metric, called Fubini–Study metric g, by which
the transition probability is defined [3, 9, 12]. Then the vector field A on P(H) is Hamiltonian
if and only if LAg = 0, where LA is Lie derivative along A and A = X〈HA〉 is defined by (3).
Therefore the Hamiltonian flow of the functions 〈HA〉 preserves the geometric structures carried
by P(H) and then the quantum mechanical observables generate the structural symmetries of
P(H) [4].

2.2 The coherent states manifold

The generalized coherent states are elements of a G-orbit, which are generated by action of the
Lie group G on a dominant weight vector φ0 in the separated Hilbert space H. This orbit H̃ is
dense subspace of H [1]. If Ug is a unitary representation of g ∈ G Then the projective space
P(H̃) ≡ M is also a dense subspace of P(H). M is Kählerian if G is a semi-simple group [11].
The manifold of coherent states is given by

M = {[Ugψ0] | g ∈ G}, (9)

where [Ug] is the projective representation of G induced by U .
Let K denote the maximal stabilisator of G. Then there exists an isomorphism between M

and G/K.
With this construction there exist an embedding ι : M → P(H) and the symplectic and other

geometrical structures of projective Hilbert space are induced in M:

Ω = ι∗ΩFS = ΩFS |M . (10)

2.3 The embedding of classical phase space in M
Let (M, ω) be a Kähler manifold as classical phase space. We define the weighted Bergman
space as

H� =
{

f |
∫

|f(z)|2e− 1
�
Ψ(z,z̄)dν(z, z̄) = ‖f‖2

� < ∞
}

. (11)

As a subspace of L2
(
M, e−

1
�
Ψ
)
, H� is a Hilbert space. In fact H� is the space of analytic

quadratic integrable functions on Kähler manifold M with measure

dµ(z, z̄) = e−
1
�
Ψ(z,z̄)dν(z, z̄). (12)

In this space the Berezin coherent states Φ�

ζ̄
form a overcomplete set. According to definition of

inner product in H� we have

Φ�

ζ̄ (z) = 〈Φ�

z̄ , Φ
�

ζ̄ 〉� =: K�(ζ̄, z), (13)

where K�(ζ̄ , z) is the Bergman kernel, which is defined uniquely for any manifold and has the
reproducing property

f(ζ) = 〈Φ�

ζ̄ , f〉�. (14)

For a symmetric space the Berezin coherent states are the same as the generalized coherent
states [14]. Therefore to any point of Kähler manifold M is associated a coherent state in H� as
a kerned Hilbert space. Hence there exists a holomorphic embedding ι� : M → M�, where M�
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is the projective space of H�. This association is called the coherent states quantization [1, 13].
Two important properties of this embedding are that it is one-one and global differentiable. Then
the pull-back of ι∗ΩFS of Fubini–Study form of M�, induced from M, is again a symplectic
form. If the coherent states are generated from the representation of a Lie group G, then (M, ω)
is a homogeneous symplectic manifold.

3 The Berezin quantization on the coherent states manifold

Berezin quantization [2, 6] on an arbitrary Kähler manifold is defined by the ∗�-algebra out
of covariant symbols, which are the expectation values of quantum observables (self adjoint
bounded operators) in terms of coherent states Φ�

ζ̄

ÃB = Ã ∗� B̃(z) =
∫

M
Ã(ζ̄ , z)B̃(z̄, ζ)

|K�(ζ̄, z)|2
K�(z̄, z)

e−
1
�
Ψ(ζ̄,z) dν(ζ̄, ζ), (15)

where Ã is Berezin covariant symbol defined by

Ã(ζ̄ , z) =
〈K�(z̄, ·), AK�(ζ̄ , ·)〉�

K�(ζ̄, z)
=

〈Φ�
z̄ , AΦ�

ζ̄
〉�

〈Φ�
z̄ , Φ�

ζ̄
〉�

. (16)

K�(ζ̄, z) is the Bergman kernel and Ψ(ζ̄, z) is the Kähler function. Berezin has considered the
covariant symbols as bounded functions on classical phase space (M, ω), to be a Kähler manifold,
which form the ∗�-algebra A�. The classical limit � → 0 results from(

Ã ∗� B̃
)

(z) = a(z)b(z) + O(�), (17)

1
�

(
Ã ∗� B̃ − B̃ ∗� Ã

)
(z) = −i{a, b}(z) + O(�). (18)

where a, b are the � → 0 limits of Ã, B̃ respectively.
By construction in Section 2 we can also consider the covariant symbols as functions on

projective Hilbert space M�. Therefore these functions form a Poisson algebra via the induced
Fubini-Study form on M�. What we must show is that both these algebras, i.e. Poisson algebra
and ∗� algebra, are the same.

From Proposition 1 one sees clearly that for two covariant symbols Ã, B̃, as expectation
values of the operators A, B, in terms of coherent states, we have

1
i�

[̃A, B] = {Ã, B̃}ι∗ΩFS
. (19)

On other hand from equation (15) it can be easily shown

1
i�

[̃A, B] =
1
i�

(
Ã ∗� B̃ − B̃ ∗� Ã

)
. (20)

The lhs of equations (19) and (20) are identical, so we have

1
i�

(
Ã ∗� B̃ − B̃ ∗� Ã

)
=

{
Ã, B̃

}
ι∗ΩFS

. (21)

Hence: The ∗�-algebra correspond to Poisson algebra on M�.
We emphasise again that this Poisson structure is defined on quantum phase space and

preserves all of the quantum mechanical properties of the system.
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The classical limit in Berezin quantization is defined now by

lim
�→0

{
Ã, B̃

}
ι∗ΩFS

(Z) =
{

ϕ(Ã), ϕ(B̃)
}

(z), z ∈ M, Z ∈ M�, (22)

where ϕ is defined as the quantum to classical observable map:

lim
�→0

Ã = ϕ(Ã). (23)

Dynamics is also defined in Berezin quantization as follows:
The Heisenberg equation of motion for the observable A is dA

dt = 1
i�[A, H]. This equation

on M� has the following form

dÃ(Z)
dt

=
{

Ã(Z), H̃(Z)
}

ι∗ΩFS

, Z ∈ M. (24)
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