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Given a nonlinear scalar partial differential equation (PDE) or nonlinear system

of PDEs one can do the following [1-4]:

(1) Determine whether or not it can be linearized by an invertible mapping without
knowing the target linear PDE. Find such a mapping when it exists.

{2} Determine if it can be linearized by embedding the given PDE in a linear PDE
through a non—invertible mapping without knowing the target linear PDE. Find such
a mapping when it exists.

Let R{x,u} denote a given system of PDEs with n independent variables

X = {x ,...,xn) and m dependent variables u = (ul,...,um}. Let
X =E,(x,uu,...,u4) . + n”(x,u,u,...,u) L (surnmation over a repeated index} be
. 8x, 1 kX du
an infinitesimal generator of local symmetries of R{x,u} where u denotes the set of

3
coordinates corresponding to all jth order partial derivatives of u with respect to x.

Such local symmetries include point symmetries (k=0), contact symmetries

{§,%0,m=1,k=1), and Lie-Backlund symmetries.

Let S{z,w} denote a target system of PDEs with n independent variables
2 = (zl""'zn) and m dependent variables w = (wl,...,wm).

Let p denote a mapping which transforms any solution u = U({x) of R{x,u} to a

solution w = W(z) of 8{z,w} given by mapping equations of the form

z = ¢(x,u,u,...,u),
1 2

w=9P(x,u,u...,u).
1 2

One can prove the following two theorems concerning invertible mappings u.

Theorem 1. (scalar PDE, m=1,{5)): yp defines an invertible mapping from

{x,u,u,...,u)~8pace to {z,w,w,...,w)-space if and only if u is an invertible contact

1 s} 1 p
transformation

z = ¢(x,u,u},
1

w = $(x,u,u},
1

w = ¢({x,u,u).

1 1 1

Theorem 2. (system of PDEs, m22, [6]): u defines an invertible mapping from

{x,u,u,...,u)-space to (z,w,w,...,w)-space if and only if u is an invertible point
1 P 1 p
transformation
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z = ¢(x,u),
w = P{x,u).
The following two theorems {cf. [2],{3]) hold for invertible mappings relating

nonlinear systems of PDEs and linear systems of PDEs.

Theorem 3. (necessary conditions): If there exists an invertible mapping u from a

given nonlinear system of PDEs (m»1l) to some linear system then R{x,u} must admit an
infinitesimal generator of the form
x= X 0 Fxu o=+ 88 e )
i Bu
o O . : 1 Fm . .
where qi’Bv are specific functions of (x,u) and ¥ = (F",...,F} is an arbitrary
solution of some linear system of PDEs L{X]F = 0; L{X] is a linear operator with

respect to independent variables X = (xl(x,u),...,xn(x,u)).

Theorem 4. (sufficient conditions): If the system of m first order PDEs
° e . ﬂc 9 . 0,
v o,V
du

i Ax,
i
has as n functionally independent solutions xl(x,u),...,xn(x,u), and the system of m

2

first order PDEs

9@.321+ﬁ aw’ _ = &7°,

41
io9x
o ! au® 1 m
(6T is the Kronecker symbol) has a solution ¢ = ($p~(x,u),...,¥ (x,u)), then the
invertible mapping

z,
J

x,u) o= X, (x,u), 3=1,...,n,
¢J( ) J( P
w o= 9T (x,u), 7=1,...,m,
transforms R{x,u} to a linear system S{z,w} given by L{z]w = g(z) for some
nonhomogeneous term g{z}.
The following two theorems {cf. [2],[3]}) hold for invertible mappings relating

nonlinear scalar PDEs and linear scalar PDEs.

Theorem 5. {necessary conditions}): If there exists an invertible mapping u from a

given nonlinear scalar PDE to some linear scalar PDE then R{X,u} must admit an
infinitesimal generator of the form

X = (Q F + alJHJ) ax + {BF + B H | -l 2 (A F + AlJHJ) 3u

where ai,aijaﬁrﬁjfki,kij are specxflc functions of (x,u,u} and F = th,u,u} is an

1 1
arbitrary sclution of some linear PDE LI[XIF = 0; L[X] is & linear operator with
respect te independent variables X = (xl(x,u,u),...,x {x,u,u}); H, - 8. =—,3=1,...,n

1 n 1 3 axJ
Theorem 6. (sufficient conditions): Suppose the system of n+l first order PDEs
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39 30 30
% ax, T B au " Ai du, 0,
1 b3
20 ) 0 _
%5 Bx, By au * Mj Bu, 0

has as n functionally independent solutions xltx,u,u),...,xn(x,u,u); the system of n+1
1 1
first order PDEs
o WoLp By By

i 8x, idu, ~
1 i

WL, B, W

%43 ax, T "3 Bu i3 dug
has a solution P{x,u,u); the system of nin+l) first order PDEs
1
3. 3y, 3y,
a, s+ =L+ A L=
i 9x du idu !
3y, 8y, 8¢,
W, ML, W

s ] -
ik 3x; P Thu Mk Bu; © Sy

has n functionally independent solutions ¢ = (wl(x,u,u),...,wn(x,u,u)); and
1 1

{z,w,w] = {X{x,u,u),¥(x,u,u},¥{x,u,u)} defines a contact transformation. Then the
1 1 1 1 1
invertible mapping z. = ¢.{x,u,u) = X, (x,u,u}, w = ¢{x,u,u), w, = P, {x,u,u),
3 J 1 J 1 J J 1

transforms R{x,u} to S{z,w} given by L[zlw = g{x) for some nonhomogeneous term g(z).

Numerous examples illustrating Theorems 3 to 6 are given in [2-4]. A symbolic
manipulation algorithm [7] exists which automatically determines whether or not a
given PDE admits an infinitesimal generator X satisfying the necessary conditions of
Theorems 3 or 5.

The algorithms presented in Theorems 3 to 6 can be extended to non-invertible
mappings by extending the classes of symmetries admitted by PDEs to nonlocal
symmetries realized as potential symmetrieg [2,4,8]. Here let Q{x,u} denote a given

nonlinear system of r PDEs with independent variables x = (xl,...,xn) and dependent
variables u = (ul,...,uk). A symmetry admitted by Q{x,u} is nonlocal if its
infinitesimals at any point x depend on the global behaviour of u(x). Suppose Q{x,u}

has one PDE of order & written in conserved form:

D, £5(x,uu,. ., u) = 0. (1)
1 -1
Through {1} introduce {uniguely to within a gauge) n~1 auxiliary dependent variables
{potentials) v = (v5,...,v" %) defined by
1 avt
£ =
2
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) . 3 3~1
g2 It | 1¢j<n, (2)
ax. ax
j+1 j-1
n-1
fn - (_1)n-1 v .
8x
n-1

Now define an auxiliary system R{x,u,v} of r+n-1 PDEs obtained by replacing (1} of
Q{x,u} by {2). Most importantly Q{x,u} is embedded in R{x,u,v}: If (u(x),v{x})}
solves R{x,u,v} then u{x} solves Q{x,u}; if u{x) solves Q(x,u} then there is some v(x}
such that (u({x),v(x)) solves R{x,u,v}. Clearly the relationship between Q{x,u} and
R{x,u,v} is non-invertible.

Suppose R{x,u,v} admits an infinitesimal generator of the form
a

o o) <]
R R iz, == (3)

3u av"

guch that {i} (E{x,u,v).ni{x,u,v}} depends explicitly on v; {ii} the criteria of

X = gi(x,u,V)

Theorems 3 and 4 are satisfied. Then one can construct an invertible mapping u which
transforms R{x,u,v} to a linear system of PDEs S{z,w}. Conseguently the composition
of w and the non-invertible mapping which relates Q{x,u} and R{x,u,v} yields a
non—invertible mapping which embeds Q{x,u} in the linear system S{x,w}. Numerous
examples are given in [2], [4].
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