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Given a nonlinear scalar partial differential equation (PDE) or nonlinear system 

of PDEs one can do the following [1-4]: 

(i) Determine whether or not it can be linearized by an invertible mapping without 

knowing the target linear PDE. Find such a mapping when it exists. 

(2) Determine if it can be linearized by embedding the given PDE in a linear PDE 

through a non-invertible mapping without knowing the target linear PDE. Find such 

a mapping when it exists. 

Let R{x,u} denote a given system of PDEs with n independent variables 

x = (x I ..... x n) and m dependent variables u = (u l,...,u m). Let 

X = ~i(x'u'ul ..... kU) %~i + qg(x,u,ul ..... kU) 88u ~ (susm%ation over a repeated index) be 

an infinitesimal generator of local syim~etries of R{x,u} where u denotes the set of 
J 

coordinates corresponding to all jth order partial derivatives of u with respect to x. 

Such local symmetries include point symmetries (k=0), contact s~etries 

(~i~0,m=l,k=l), and Lie-Back!~d S~etries. 

Let S{z,w) denote a target system of PDEs with n independent variables 

z = (z I ..... z n) and m dependent variables w = (w I .,w m) 

Let ~ denote a mapping which transforms any solution u = U(x) of R{x,u} to a 

solution w = W(z) of S{z,w} given by mapping equations of the form 

z = ~(x,u,u,...,u), 
1 £ 

W = ~(x,u,u ..... u). 
1 

One can prove the following two theorems concerning invertible mappings ~. 

Theorem 1. (scalar PDE, m=1,[5]): ~ defines an invertible mapping from 

(x,u,u ..... u)-space to [z,w,w ..... w)-space if and only if ~ is an invertible contact 
1 p 1 p 

transformation 

z = ~(x,u,u), 
1 

w = ~(x,u,u), 
1 

w = ~(x,u,u). 
1 1 1 

Theorem 2. (system of PDEs, mk2,[6]): ~ defines an invertible mapping from 

(x,u,u ..... u)-space to (z,w,w .... ,w)-space if and only if ~ is an invertible point 
1 p 1 p 
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z = ~(x,u), 

w = ~(x,u). 

The following two theorems (of. [2],[3]) hold for invertible mappings relating 

nonlinear systems of PDEs and linear systems of PDEs. 

Theorem 3. (necessary conditions): If there exists an invertible mapping p from a 

given nonlinear system of PDEs (m>l) to some linear system then R{x,u} must admit an 

infinitesimal generator of the form 
m 

X = 0=I~ (u; F°lx'u) ~8 + ~ FO(x,u) 8 )Ou ~ 

o o 
ai,~ ~ are specific functions of (x,u) and F = (F 1 ..... F m) is an arbitrary where 

solution of some linear system of PDEs L[X]F = 0; L[X] is a linear operator with 

respect to independent variables X = (Xl(X,U),...,Xn(X,U)). 

Theorem 4. (sufficient conditions): If the system of m first order PDEs 

:L ~ + ~ 8u'~ = 
2 

has as n functionally independent solutions xl(x,u) ..... Xn(X,U), and the system of m 

first order PDEs 

o a@ T 67o, 
z i au v 

[6 TO is the Kronecker symbol) has a solution ~ = (~l(x,u] ..... sm[x,u)], then the 

inver tible mapping 

zj = ~jlx, u) = xjlx, u), j=z ..... n, 

w T = %~T[X,U), 7=1 ..... m, 

transforms R{x,u} to a linear system Sis,w} given by L[z]w = g(z) for some 

nonhomogeneous term g (z} . 

The following two theorems (cf. [2], [3] ) hold for invertible mappings relating 

nonlinear scalar PDEs and linear scalar PDEs. 

Theorem 5. (necessary conditions): If there exists an invertible mapping ~ from a 

given nonlinear scalar PDE to some linear scalar PDE then R{x,u} must admit an 

infinitesimal generator of the form 
8 B 

X = (aiF + uijHj) ~ + (~F + ~jgj) ~u + (~i F + AijHj) 8u. 
1 1 

where ai,ai4,~,~,Ai,Ai4j~j are specific functions of (x,u,u) and F = F(x,u,u) is an 
1 1 

arbitrary solution of some linear PDE L[X]F = 0; L[X] is a linear operator with 
8F 

respect to independent variables X = ( X l ( x , u , u l ,  . . . .  Xn(X,u ,u ) ) ;  Hj = 8 ~ , j = l  . . . . .  n, 

Theorem 6. (.sufficient conditions): Suppose the system of n+l first order PDEs 
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8@ 8@ %~ 
% a--~ + ~ ~u + xi  a-~T = o, 

1 1 

8@ O~, 8¢~ - 0, 
Uij ~ + ~j ~U + Aij 8u i 

has as n functionally independent solutions Xl{X,U,U} ..... X n 
1 

first order PDEs 

aia_9_+ ~ 8_~+ Xi aj_= I, 8x. 8u ~u. 
1 1 

a--VL.-+13j~u+ a-A-= o, 
aij ax i Xij au i 

has a solution ~(x,u,u); the system of n(n+l) first order PDEs 
1 

'h o, 
1 z 

aik ax i Aik au i 6kj' 

has n functionally independent solutions %~ = (%~l(X,U,U),...,~n(X,U,U)); and 
1 1 

(z,w,w) = (X(x,u,u),~(x,u,u),~(x,u,u}) defines a contact transformation. Then the 
1 1 1 1 1 

invertible mapping zj = ~j(x,u,l) = Xj (x,u,u), w = ~(x,u,u), wj 
1 1 = ~j (x'u'l) ' 

transforms R[x,u) to S[z,w} given by L[z]w = g(x) for some nonhomogeneous term g(z). 

Numerous examples illustrating Theorems 3 to 6 are given in [2-4]. A symbolic 

manipulation algorithm [7] exists which automatically determines whether or not a 

given PDE admits an infinitesimal generator X satisfying the necessary conditions of 

Theorems 3 or 5. 

The algorithms presented in Theorems 3 to 6 can be extended to non-lnvertlble 

by extending the classes of sy~netries admitted by PDEs to nonlocal 

symmetries realized as potential s~etrles [2,4,8]. Here let Q[x,u] denote a given 

nonlinear system of r PDEs with independent variables x = (x I ..... Xn) and dependent 

variables u = (u I, .... ,u k) A symmetry admitted by Q{x,u} is nonlocal if its 

infinitesimals at any point x depend on the global behaviour of u(x). Suppose Q[x,u] 

has one PDE of order ~ written in conserved form: 

D. fZ(x,u,u .... u } = 0. (i) 
1 

1 ~-I 
Through (I) introduce (uniquely to within a gauge) n-1 auxiliary dependent variables 

(potentials) v = |v 1,,,.,v n-l) defined by 

fl _ 8v 1 

%x 2 ' 

(x,u,u); the system of n+l 
1 
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fJ = (-i) j-I F 8vj + ~vJ-l~ l<j<n, (2) 

~*I aXj-lJ 
= %v n-I 

fn (_l)n-I 
8Xn_ 1" 

Now define an auxiliary system R{x,u,v} of r+n-i PDEs obtained by replacing (i) of 

Q{x,u} by (2). Most importantly Q{x,u} is embedded in R[x,u,v}: If (u(x),v(x)) 

solves R{x,u,v} then u(x) solves Q[x,u]; if u(x) solves Q[x,u} then there is some v(x} 

such that (u(x),v(x)) solves R{x,u,v}. Clearly the relationship between Q(x,u} and 

R[x,u,v} is non-invertible. 

Suppose R{X,U,V} admits an infinitesimal generator of the form 

X = ~i(x,u,v) a~ i + nC(x,u,v) aeu c + ~(x,u,vl 8v ~8 (3) 

such that (i) (~(x,u,v),~(x,u,v)) depends explicitly on v; (ii) the criteria of 

Theorems 3 and 4 are satisfied. Then one can construct an invertible mapping p which 

transforms R{x,u,v} to a linear system of PDEs S{z,w}. Consequently the composition 

of ~ and the non-invertible mapping which relates Q{x,u} and R{x,u,v] yields a 

non-invertible mapping which embeds Q(x,u} in the linear system S{x,w}. Numerous 

examples are given in [2], [4]. 
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