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Abstract
We propose a general framework to contract unitary dual of Lie groups via holomor-
phic quantization of their coadjoint orbits, using geometric quantization. The sufficient
condition for the contractibility of a representation is expressed via cocycles on coad-
joint orbits. This condition is verified explicitly for the contraction of SU2 into H.
We construct two types of contractions that can be implemented on every matrix Lie
group with diagonal contraction matrix.
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1 Introduction

Physicists study certain degenerations of group laws which are called contractions. In
this paper, we study Lie group contractions in the context of geometric quantization.
The degeneration is understood in the sense that group law becomes “more abelian”,
i.e. more structure constants of Lie algebra become zero. The pioneering work of
Inönü and Wigner [14] is a classical original source. Their motivation was simply to
relate two different physics: Galilean and Lorentzian. Contractions of representation
of Lie groups and Lie algebras and their unitary duals have attracted the attention of
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many authors [5,7,12,13,19,22,23] and continue to be a field of active investigations;
see, for example, [3,4,9,10].

The first general global definition of Lie group contraction has been given in [19]
where the authors study the contraction of the principal continuous series of the de
Sitter groups SO(n, 1) to positive mass representations of both the Euclidean group
E(n) and the Poincaré group E0(n − 1, 1). In [22], a contraction of SU(2) to the
Heisenberg group H was studied in detail. The authors showed that the group action
on the manifold depends smoothly on the contraction parameter ε > 0. They also
established transference results linking Fourier analysis on these two groups. Applying
[22], Ricci and Rubin proved in [23] an analogue of de Leeuw’s theorem relating L p-
norms of Fourier multipliers on SU (2) and H. A short and elegant proof of the main
result of [22] was given in [5] employing Berezin quantization. Furthermore, it was
shown by [8] that every semisimple Lie group can be contracted to its Cartan motion
group.

Generally, one cannot expect that there always exists a contraction �ε : G0 → G1
for any Lie group G0 and G1. Indeed, let g1 and g0 be the Lie algebras of G1 and
G0 and Uε : g1 → g0 be differential of �ε. Then, the existence of contraction Uε is
equivalent to the fact that g0 is the limit in the Zariski topology on the affine variety of
Lie algebras. It can be seen that not every two points in the affine variety of Lie algebras
of dimension less than 6 are path-connected in the Zariski topology [18, Theorem 1].
In other words, the existence of Lie algebra contraction Uε : g0 → g1 is equivalent
to saying that g0 is the limit of Lie algebras Uεg1 in the Zariski topology. Hence, we
shall assume that there exists a Lie algebra contraction Uε of g1 into g0.

The aim of the paper is to show that the existence of Lie group contraction combined
with the geometric quantization yields a systematic approach to link harmonic analysis
on two groups. The novelty of the paper is that we do not impose any restriction on the
group nor on the contraction. In addition, we tried to answer the following question.

Question 1.1 Let G0 and G1 be two Lie groups and let �ε : G1 → G0 be a Lie group
contraction. Does there exist a contraction ̂�ε of ̂G1 into ̂G0?. In other words, does
the following diagram commute

G1 ̂G1

G0 ̂G0

G Q

�ε
̂�ε

G Q

(1.1)

where G Q stands for the geometric quantization. We shall give meaning to ̂�ε as an
MN-contraction of ̂G1 into ̂G0.

A similar problem has been treated in [4] in the context of the algebraic Harish-
Chandra modules.
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2 Geometric quantization

2.1 General theory

We first recall a few basic elements of the geometric quantization needed here. The
procedure of quantization consists of assigning to a smooth function on a symplectic
manifold (M, ω), an operator on a Hilbert spaceHwith the following three properties.
For each f : M → R, there should be an operator ̂f acting on H such that

(1) the map f �→ ̂f is linear;
(2) if f is constant, ̂f is a multiplication operator
(3) if [ f1, f2] = f3, then [ ̂f1, ̂f2] = −i� ̂f3,

where � is the Planck constant.
The main ingredient in the program of geometric quantization for a symplectic

manifold (M, ω) of dimension 2n with symplectic (exact) 2-form ω is to construct
a Hermitian line bundle π : B → M with Hermitian connection ∇ for which the
curvature 2-form is equal to �

−1ω. Locally, the connection ∇, or covariant derivative
∇X for a vector field X on M , is given by

∇X ( f ) = X( f ) − i

�
θ(X) f , (2.1)

where f is a function on M where the connection 1-form θ can be shown to be locally
related [11, Proposition 23.5] to ω as dθ = ω. It is possible to construct such a line
bundle on (M, ω) only if the symplectic manifold satisfies the integrality condition
or is quantizable. Such a result is, for example, proved in [11, Theorem 23.9, p.489]
where the integrality condition is

1

2π�

∫

�

ω ∈ Z , (2.2)

where � is an arbitrary closed 2-surface in M . This condition is purely geometric
and involves the computation of the holonomy of the line bundle for closed loop,
which when contracted must be equal to 1. The condition (2.2) is obtained after using
Stokes’s theorem.

This line bundle has a natural Hilbert spaceH consisting of square-integrable global
sections with respect to the natural Liouville measure of M and a Hermitian structure
on the line bundle B. It is an inner product in the fibres denoted by (·, ·) with the
property to be smooth in the sense that for a smooth section v : M → B, (v, v) is a
smooth function of M . We now have the Hilbert space and we need to find the map
f �→ ̂f satisfying the three conditions. It is given, for a section s : M → B, by

̂f (s) = −i�∇X f s + f s , (2.3)

where X f is the Hamiltonian vector field associated with the function f , i.e.
ω(X f , Y ) = d f (Y ) for any vector field Y , and f s is the multiplication operation.
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This operator obviously satisfies (1) and (2); the third condition is satisfied by using
the properties of the covariant derivative ∇X f ; see [11,28] for more details.

We will now follow [28] to expose a dynamical interpretation of ̂f , which will
give us a useful formula for later. Let V f be the vector field on B given in a local
trivialization by

V f = X f + �
−1L

∂

∂φ
, (2.4)

where z = reiφ is the coordinate on the fibre of L and

L = θ(X f ) − f (2.5)

is the Lagrangian associated with the function f , or equivalently the Legendre trans-
form of the Hamiltonian f . This vector field is constructed so that it is invariant under
gauge transformations and f �→ V f is a Lie algebra isomorphism from C∞(M) to a
subalgebra of vector fields on B. Let ξt denote the flow of V f which projects to ρt ,
the flow of X f . From these two flows, we can define the action of the flow ρt on the
sections s : M → B by mapping it to ρ̂t such that

ξt (ρ̂t s(m)) = s(ρt m) . (2.6)

This formula shows that ρ̂t is the correct pull-back of the sections such that the flow
ξt corresponds to only moving the base point with ρt . In a local trivialization, the
sections s and ρ̂t s are represented by the complex functions ψ and ρ̂tψ with the
following relation

ρ̂tψ(m) = ψ(ρt m) exp

⎛

⎝− i

�

t
∫

0

L(ρt ′m)dt ′
⎞

⎠ . (2.7)

Itmight happen that the quantumHilbert space is reducible. A notion of polarization
imposes further restrictions.

Definition 2.1 A polarization P of a symplectic manifold M is a choice at each point
z ∈ M of a Lagrangian subspace P(z) ⊂ T C

z M (dimension is n) satisfying the
following conditions

(1) If two complex vector fields X and Y lie in P(z) at each point z, then the com-
mutator [X , Y ] ∈ P(z).

(2) The dimension of P(z) ∩ P(z) is constant.

Definition 2.2 (The quantum Hilbert space). Let P be a polarization of M . A smooth
section s of L → M is said to be polarized if

∇X s = 0, ∀X ∈ P . (2.8)
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Contractions of group representations via geometric… 47

The quantum Hilbert space HP associated with P is the closure in the prequantum
Hilbert space of the space of smooth, square-integrable, polarized sections s : L → M .

Definition 2.3 A polarization P of a symplectic manifold M is called purely complex
if

P(z) ∩ P(z) = ∅

for every z ∈ M .

A purely complex polarization P yields existence of a unique integrable almost
complex structure J on M such that P(z) is (1, 0)-tangent space of M for all z ∈ M .

Definition 2.4 LetP be a purely complex polarization of M and let J be the integrable
almost complex structure associated withP such that J (z) = i Id on P(z) and J (z) =
−i Id on P(z). We say that P is a Kähler polarization if the bilinear form

g(X , Y ) := ω(X , J (z)Y ), X , Y ∈ Tz M,

is positive definite for each z ∈ M .

For a thorough exposition of the geometric quantization, we refer [11,15,16,28].

2.2 Lie group representation

We now specify this construction to Lie group representations. Let G be a locally
compact Lie group with Lie algebra g. Each ξ ∈ g generates a right-invariant vector
field Rξ . Let μ ∈ g∗ and Oμ be the coadjoint orbit through μ. A coadjoint orbit is a
symplectic manifold with the symplectic form

ωμ(ξ, η) = μ ([ξ, η]) , ∀ξ, η ∈ g , (2.9)

corresponding to the reduction of the canonical symplectic form on T ∗G using the
momentum map J : T ∗G → g∗. This form is exact and thus ωμ = dθμ, where

θμ(ξ) = μ(ξ) . (2.10)

(Oμ, dθμ) is a presymplectic manifold, the symplecticmanifold of right cosets G/Gμ,
where Gμ is the stabilizer of μ, i.e.

Gμ := {g ∈ G : Ad∗
gμ = μ} , (2.11)

and its Lie algebra

gμ = {ξ ∈ g : ad∗
ξμ = 0} . (2.12)
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48 R. Akylzhanov, A. Arnaudon

A coadjoint orbit Oμ is integral if the symplectic manifold (Oμ, ωμ) is integral in
the sense of (2.2). LetOμ be an integral coadjoint orbit, then there exists [11, Theorem
23.9, p.489] a holomorphic line bundle B over Oμ. From (2.10) the Lagrangian Lμ

associated with μ is given by Lμ(ξ) = 1
2μ(ξ).

Let π ∈ ̂G and let (Uα, ϕα) be a local trivialization of Oμ. Then, it follows from
(2.7) that the flow ρt acts locally on the space of global holomorphic sections of
B → Oμ via the formula

π(g)s(m) = s(Ad∗
g−1m)e

i
�
μ

∫ m1
m Lμ ds, m ∈ Oμ. (2.13)

where m1 = Ad∗
g−1m. We used the fact that the Lagrangian Lμ is invariant under

the coadjoint flow and the flow on the base is given by the coadjoint action; see [20,
Chapter 13].

The second element of the construction is a choice of polarization. A remarkable
result [25,26] yields the existence of polarizing subalgebras for solvable Lie algebras.
These subalgebras can be constructed algorithmically [21]. It is unknown to the authors
whether there exist complex polarizations for general connectedLie groups. Therefore,
we make the following assumption.

Assumption 2.5 Let G be a locally compact Lie group such that for every coadjoint
orbit O there exists invariant Kähler polarization P ⊂ TO.

3 Contractions

3.1 Lie group contractions

Before using geometric quantization to contract unitary duals, let us recall classic
results on Lie group contractions.

LetG1 andG0 be two locally compact connected Lie groups of the same dimension.

Definition 3.1 We say that the family {�ε}ε≥0 of differential maps

�ε : G0 → G1 , (3.1)

mapping the identity eG0 of G0 to the identity eG1 of G1, defines a contraction of G1
to G0, if given any relatively compact open neighbourhood V of eG0

(1) there is εV > 0 such that for ε < εV the map �ε

∣

∣

V is a diffeomorphism;
(2) If W is such that W 2 ⊂ V and ε < εV , then �ε(W )2 ⊂ �ε(V );
(3) for x, y ∈ V

lim
ε→0

�−1
ε (�ε(x)�ε(y)−1) = xy−1 . (3.2)

The first two conditions are necessary for the limit of the third condition to be well
defined.
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The Lie algebra can be contracted by the differential Uε = De�ε of �ε. That is,
at the identity eG0

Uε := De�ε : g0 → g1 . (3.3)

This map is then used to contract the Lie algebra Uε : g0 → g1. Now, we fix a
contraction �ε : G0 → G1 of G1 to G0 as in Definition 3.1.

3.2 Contraction of the unitary dual

Assume that there exists a contraction �ε : G0 → G1. Then, the differential Uε of
�ε allows us to deform the coadjoint orbits of G1 into the coadjoint orbits of G0. We
express the adjoint action Ad0 of G0 on g0 as follows:

Ad0(e
X ) = lim

ε→0
U−1

ε ◦ Ad(eUε(X)) ◦ Uε, X ∈ g0 . (3.4)

By the duality, we obtain the coadjoint action

Ad∗
0(e

X ) = lim
ε→0

[Uε]∗ ◦ Ad∗(eUε(X)) ◦ [U−1
ε ]∗, X ∈ g0 , (3.5)

where

U∗
ε (X)(Y ) = Y (Uε(X)), X , Y ∈ g∗

0 . (3.6)

The corresponding character of the contracted group G0 is given by

χμ(eX ) = lim
ε→0

eU∗
ε ( f )(X), μ ∈ g∗

0, X ∈ g0 . (3.7)

Following from example [2], the coadjoint orbits of the contracted group G0 can
be obtained via the following procedure

(1) Fix an element μ ∈ g∗
0 and fix a coadjoint orbit Oμ.

(2) Transport the point μ to g∗
1 by using the map (U∗

ε )−1.
(3) The action of G1 on με = (U∗

ε )−1(μ) originates a G1-coadjoint orbit Õε ⊂ g∗
1.

(4) The orbit Õε is translated to g∗
0 by using the map U∗

ε , i.e.

Oε
μ = U∗

ε (Õε) . (3.8)

The orbit method of Kirillov is a method in geometric representation theory which
identifies the unitary representations of Lie groups with the canonical G-action on
spaces of sections of specific line bundles over the coadjoint orbits. The general case
of a Lie group is not yet fully understood. Vogan rigorously justified [27] the orbit
method for reductive Lie groups. However, we shall restrict ourselves to solvable type
I Lie groups to use results of Kostant [15] and Auslander [1].

123



50 R. Akylzhanov, A. Arnaudon

Coadjoint orbits can be described by AdG -invariant functions f : g∗ → C. How-
ever, it is not clear whether the holomorphic line bundles over the coadjoint orbitsOε

are contracted properly. Therefore, we introduce.

Definition 3.2 Let (Uα, ϕα) be a local trivialization of the line bundle Oμ → B.
We shall say that a family {Oε}ε>0 of integral polarized coadjoint orbits Oε is an
admissible contraction of Oμ if there is a family of local trivializations (Uα, cε

α) of
the line bundles Oε → Bε such that

lim
ε→0

c ε
α β = cα β, z ∈ V , (3.9)

uniformly on compact subsets V ⊂ C
r , where c ε

α β and cα β are the transition functions
associated with the trivializations (Uα, ϕα) and (Uα, ϕ ε

α ).

Definition 3.3 Let B → M be a holomorphic line bundle.We say a sequence of global
sections {sn : M → B} converges to the global section s : M → B if

lim
n→∞ cn

α β(x)sn β(x) = sα(x), x ∈ Uα β , (3.10)

where sn β and sα are the localization of sn and s on Uβ and Uα , respectively.

A rigorous notion of contraction of representations was first introduced in [19].

Definition 3.4 [19] We say that a representation σ of G0 in H is M N -contraction of
the sequence {πn} of representations πn of G1 inHn if there exists a sequence εn with
limit 0, a sequence of unitary operators An : Hn → H and a dense subspace D of H
such that

(1) For each v ∈ D there is an integer n(v) such that n ≥ n(v) implies v ∈ An(Hn);
(2) For each v ∈ D and g ∈ G0

lim
n→0

‖Anπn(�εn (g))A−1
n v − σ(g)v‖H = 0. (3.11)

Question 3.5 [6] Let G1 be a semisimple compact Lie group. Assume that there is
a group contraction of G1 to G0. What unitary representations π of G0 are M N-
contractions of the unitary irreducible representations of G1?

In Theorem 3.6 we find sufficient condition on elements π ∈ ̂G to be contraction
of a sequence {πε} ⊂ ̂G1. The condition is expressed in terms of the corresponding
coadjoint orbits.

Theorem 3.6 Let G1 be a compact Lie group and G0 be a locally compact solvable
type I Lie group. Let π ∈ ̂G0 be an infinite-dimensional irreducible unitary represen-
tation of G0. Then, π is an M N-contraction of the sequence of unitary irreducible
representations if Oε is an admissible contraction of {Oπ }.
Question 3.7 Is the converse true? In other words, let π be an M N-contraction of the
sequence of unitary representations πε ∈ ̂G1. Then, the coadjoint orbits Oε are an
admissible contraction of the coadjoint orbit {Oπ }.

123



Contractions of group representations via geometric… 51

Sketch of the argument for Question 3.7 Thinking locally, we should have M N -con-
traction on each Uα , i.e.

πε(g)sα

on each local section sα . Each local section gives rise to cocycles cα,β . Adding a bit
more mathematical rigour, one should be able to conclude the statement of Ques-
tion 3.7. ��

Prior to the proof of Theorem 3.6, we consider the classical contraction�ε : H
1 →

SU2.

Example 3.8 Let G1 = SU (2) and G0 = H. A Lie group contraction �ε =
exp(Uε) : G0 → G1 is given by

Uε =
(

ε
1
2 0 0
0 ε 0
0 0 ε

)

. (3.12)

The coadjoint orbits {Os} of SU2 are the two-dimensional spheres with half-integer
radius s ∈ 1

2N, i.e.

Os(SU2) = {(x1, x2, x3) : x21 + x22 + x23 = s2, s �= 0}. (3.13)

Using that Os is diffeomorphic to the complex projective line CP
1, we transport

the coordinate atlas U1, U2 ⊂ C on Os . There exists a holomorphic line bundle
π : B → Os with the transition function

cs(z) = z2s . (3.14)

The existence follows from the fact thatOs is a quantizable symplectic manifold. The
choice (3.14) picks up a specific bundle.

A global holomorphic section s of the bundle π : B → Os is given by two holo-
morphic functions s1 : U1 → C and s2 : U2 → C related by

s1 (z) = cs (z) s2

(

1

z

)

, z ∈ U1 ∩ U2 . (3.15)

Expanding holomorphic functions s1 and s2 into Taylor series

∑

n=0

am zm = z2s
∑

n=0

ãnz−na (3.16)

in respective coordinates and equating coefficients, we find that ãn = an = 0 for
m > 2s and ã0 = a2s, ã1 = a2s−1, etc. Hence, the section s is given by a polynomial

s(z) =
2s

∑

n=0

anzn . (3.17)
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The coadjoint orbits Oλ of the Heisenberg group H are given by

Oλ =
{

z ∈ C : z + z∗

2
= λ,

z − z∗

2
= 0

}

. (3.18)

In other words, the orbitsOλ are planes through the pointOλ = {(λ, 0)}. There exists
a holomorphic line bundle π : B → Oλ with the transition function

cλ(z) = eiλz, z ∈ C . (3.19)

A global holomorphic section F ofπ : B → Oλ is a holomorphic function.We deform
the transition function cs defined in (3.14) as follows:

cε
s (z) = (1 + iεz)2sε , (3.20)

where

sε =
[

λ

ε

]

, λ ∈ R . (3.21)

An elementary calculation then yields

lim
ε→0

(1 + iεz)2sε = eiλz . (3.22)

This shows the condition (3.9) holds true.

The extension of Example 3.8 to a broader class of Lie groups (e.g. semisimple Lie
groups) remains a challenging problem [24] and will be considered elsewhere.

Proof of Theorem 3.6 For every g ∈ G0 the sections πε(gε)sε converge to the section
π(g)sα in the sense of Definition 3.3, i.e.

lim
ε→0

πε(gε)sε
α = π(g)sα , (3.23)

uniformly for every compact subset V ⊂ Uα ∩ Uβ .
Let π be a fixed unitary irreducible representation, and let us denote by Oπ ⊂

g0 the coadjoint orbit associated with π . Let us denote by πε the representations
corresponding to the coadjoint orbits Oε

π . The latter is a contraction of Oπ by the
hypothesis. Let (Uα, ϕα) be a local trivialization of Oπ → B, and let us fix an
arbitrary element s ∈ Hπ . We denote by sα its localization to Uα ⊂ Oπ . Abusing our
notation, we shall also write sα for the coordinate representation of sα , i.e. sα(z) =
sα(ϕ−1

α (z)), z ∈ C
r . Let us denote

Ad∗ ε
g : Oπ → Oε

π (3.24)
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given by

Ad∗ ε
g (X) = U∗

ε Ad
∗ 1
g (U−1

ε )∗(X), X ∈ g0 . (3.25)

Indeed, by (2.13)

πε(g)sα(m) = sα(Ad∗ ε
g m)ψμ(m, g), (3.26)

where we denote

ψμ(m, g) = exp

⎛

⎜

⎝

i

2�

∫

γ : m→Ad∗
gm

Lμ ds

⎞

⎟

⎠ . (3.27)

Thus, we get

∣

∣π(g)sα(m) − πε(�ε(g))sε
α(m)

∣

∣ ≤
∣

∣

∣sα(Ad∗
gm) − sε

α(Ad∗ ε
g m)

∣

∣

∣

+ C
∣

∣ψμ(m, g) − ψμε(m,�εn (g))
∣

∣ , (3.28)

where we used (3.27) and the fact that
∣

∣ψμ(m, g)
∣

∣ ≤ 1. This shows that

lim
ε→0

∣

∣

∣sα(Ad∗
gm) − sε

α(Ad∗ ε
g m)

∣

∣

∣ uniformly in Uα . (3.29)

The sections s and sε are holomorphic. Hence, their localizations sα and sε
α admit

Taylor expansions

sα(z) =
∑

n∈Nr

cα
k zk, z ∈ ϕ(Uα) ⊂ C

r , (3.30)

sεα(z) =
∑

n∈Nr

cα ε
k zk, z ∈ ϕ(Uα) ⊂ C

r . (3.31)

Since every coadjoint orbit Oπε is compact, the Hilbert space Hε of global holo-
morphic sections sε is finite dimensional in view of the Riemann–Roch theorem. The
dimension of the representation space is given [17] by

dim(πε) = vol(Oε
π ) . (3.32)

Hence, we get

sε
α(z) =

∑

|k|≤Nε

cα ε
k zk , z ∈ C

r , (3.33)

in where Nε ≥ dim(πε). Let us choose
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cα ε
k = cα

k , |k| ≤ Nε . (3.34)

We have
∣

∣

∣sα(Ad∗
gm) − sε

α(Ad∗ ε
g m)

∣

∣

∣ =
∣

∣

∣sα(Ad∗
gm) − sε

α(Ad∗
gm) + sε

α(Ad∗
gm) − sε

α(Ad∗ ε
g m)

∣

∣

∣

≤
∣

∣

∣sα(Ad∗
gm) − sε

α(Ad∗
gm)

∣

∣

∣ +
∣

∣

∣sε
α(Ad∗

gm) − sε
α(Ad∗ ε

g m)

∣

∣

∣ .

(3.35)

Since sε
α is a continuous function and using (3.5), we get that the second term in the

last inequality of (3.35) goes to zero as ε → 0.
Composing (3.30) and (3.31) and (3.33), we get

∣

∣

∣sα(Ad∗
gm) − sε

α(Ad∗
gm)

∣

∣

∣ =
∑

k∈N
r : |k|≥Nε

cα
k (Ad∗

gm)k . (3.36)

The last sum converges to zero uniformly by the holomorphicity of sα . This establishes
(3.29). By the existence of contraction, we immediately obtain that

lim
ε→0

∫

γ : m→Ad∗
gm

Lμ ds =
∫

γε : m→Ad∗ ε
�ε(g)

m

Lε
μ ds . (3.37)

Thus, we have just shown (3.23).
This completes the proof. ��

4 Two classes of contractions

We exhibit here two types of contractions that can be implemented on any matrix
Lie group and which encompass most of the contractions with a diagonal contraction
matrix Uε. First note that in the limit ε → 0, the important terms in the matrix Uε will
be the lowest powers in ε. Notice also that ε is arbitrary, so only the relative scaling
between terms is important. From these considerations, we will study the following
two forms of the contraction matrices Uε.

UIW = εId + (1 − ε)u (4.1)

Uanti−IW = ε2Id + ε(1 − ε)u , (4.2)

where u is a matrix to be determined and does not depend on ε. The first contraction
is the classical Inönü–Wigner contraction, and the second will be called the anti-
Inönü–Wigner contraction for reasons that will become obvious soon. First, we need
to define a particular decomposition of the Lie algebra.

Definition 4.1 For a diagonal matrix u of dimension n = dim(g1), define the two
subspaces of V = R

n , the underlying vector space of g1 by
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uVN = 0 and uV = VR . (4.3)

Furthermore, these subspaces satisfy

g1 = VN ⊕ VR . (4.4)

We now want to derive a geometrical condition on u that will ensure that we obtain
a contraction. For this, we will need the following object.

Definition 4.2 (IW-tensor). We the following 2-tensor

T [u](ξ, η) := u2[ξ, η] − u ([uξ, η] + [ξ, uη]) + [uξ, uη] , (4.5)

that we will call the IW-tensor.

In the case when T [u](ξ, η) = 0, it reduces to the well-known Nijenhuis tensor of
complex geometry.

We introduce the following conditions on u in terms of this tensor and the subspaces
defined above.

Theorem 4.3 The following conditions on u give a valid Lie algebra contraction for
a choice of splitting g1 = VN ⊕ VR if

(1) T [u](ξ, η) ∈ VR, UIW is an Inönü–Wigner contraction, or
(2) T [u](ξ, η) ∈ VN , Uanti−IW is an anti-Inönü–Wigner contraction.

Proof We begin by proving the IW contraction condition by rewriting

UIW = (1 − ε)(λId + u) ,

where λ = ε
1−ε

converges to 0 when ε → 0. We first rewrite the Lie bracket using
(4.2) to get

U−1[Uξ, Uη] = U−1
{

λ2[ξ, η] + λ ([uξ, η] + [ξ, uη]) + [uξ, uη]
}

. (4.6)

We then have to ensure that the inner term is in VR , where U is invertible in the
limit ε → 0. First notice that from the definition of the contraction (4.2) we have the
relation U−1(λζ ) = ζ − U−1uζ for an arbitrary element ζ ∈ g. We can thus rewrite
the previous equation as

U−1[Uξ, Uη] = λ[ξ, η] + [uξ, η] + [ξ, uη]
+ U−1 {−λu[ξ, η] − u ([uξ, η] + [ξ, uη]) + [uξ, uη]}

= λ[ξ, η] + [uξ, η] + [ξ, uη] − u[ξ, η]
+ U−1

{

u2[ξ, η] − u ([uξ, η] + [ξ, uη]) + [uξ, uη]
}

.
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This computation assumes that u is diagonal, and will not apply for more general
contractions. Then, as U−1 is only defined on VR in the limit ε → 0, to the condition
for u to be a valid contraction, i.e. for the limit ε → 0 to exist translates to the condition
on the IW-tensor,

T [u](ξ, η) ∈ VR . (4.7)

The new Lie bracket is

[ξ, η]0 = [ξ, η]′ + u−1T [u](ξ, η) , (4.8)

where we defined

[ξ, η]′ := [uξ, η] + [ξ, uη] − u[ξ, η] (4.9)

T [u](η, ξ) = [uξ, uη] − u[ξ, η]′ . (4.10)

We now turn to the condition for the anti-IW contraction where we can still use the
equivalent formulation

Uanti−IW = ε(λI d + u) , (4.11)

where λ = ε
1−ε

. We then follow the same procedure as before. We first expand the
bracket using (4.11) to get

U−1[Uξ, Uη] = U−1
{

ε2α
(

λ2[ξ, η] + λ ([uξ, η] + [ξ, uη]) + [uξ, uη]
)}

.

(4.12)

We now have the relation U−1(ελζ ) = ζ − U−1(εuζ ), so we can rewrite

U−1[Uξ, Uη] = ε (λ[ξ, η] + [uξ, η] + [ξ, uη])
+ U−1

{

ε2 (−λu[ξ, η] − u ([uξ, η] + [ξ, uη]) + [uξ, uη])
}

= ε (λ[ξ, η] + [uξ, η] + [ξ, uη] − εu[ξ, η])
+ U−1

{

ε2
(

u2[ξ, η] − u ([uξ, η] + [ξ, uη]) + [uξ, uη]
)}

.

We can go further in the computation to extract non-vanishing terms by using the
relation U−1(ελ(ελ−1ζ )) = ελ−1ζ − U−1(εuελ−1ζ ) to get

U−1[Uξ, Uη] = ε (λ[ξ, η] + [uξ, η] + [ξ, uη] − εu[ξ, η])
+ ελ−1

(

u2[ξ, η] − u ([uξ, η] + [ξ, uη]) + [uξ, uη]
)

+ U−1
{

ε2λ−1u
(

u2[ξ, η] − u ([uξ, η] + [ξ, uη]) + [uξ, uη]
)}

.
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Note that λ ∝ ε when ε → 0, thus the limit ε → 0 in the previous equation gives the
new Lie bracket only in terms of the IW-tensor

[ξ, η]0 = T [u](ξ, η) . (4.13)

In this case, the condition for existence of the contraction is given by

T [u](ξ, η) ∈ VN . (4.14)

��
We can make a couple of interesting remarks at this point.

(1) If T [u](ξ, η) = 0,∀ξ, η ∈ g, then the contracted Lie algebra is isomorphic to
the original Lie algebra and u is a Nijenhuis tensor. This can be seen by the fact
that T [u](ξ, η) = 0 is equivalent to [uξ, uη] = u[ξ, η]′, and thus, u defines a
homomorphism of Lie algebras between [·, ·] and [·, ·]0 = [·, ·]′.

(2) If [ξ, η]′ = 0,∀ξ, η ∈ g, u is a derivation of the Lie algebra g as it will satisfy
the Leibniz rule u[ξ, η] = [uξ, η] + [ξ, uη]. The new bracket is then simply
[ξ, η]0 = u−1[uξ, uη], but this would also mean that u is invertible everywhere,
and thus, the two Lie algebras would be isomorphic.

From these two remarks we get that in order to have a contraction, u must not be a
homomorphism of Lie algebras nor a derivation of Lie algebras.

We can even go further and give an extra condition on the splitting, as well the type
of Lie algebra that results from the contraction.

Theorem 4.4 Given a finite-dimensional complex Lie algebra g1, for any subspace u
of a subalgebra of g1, let VR = u yield an IWS contraction to a semi-direct algebra
and let VN = u yield an anti-IWS contraction to a nilpotent Lie algebra.

Proof Let us first look at the anti-IWS contractions. Let VN ⊂ p, so that we have
[VN , VN ] ⊂ VN and VN are nilpotent. One can easily check that T [u](ξN , ηN ) = 0,
and that

T [u](ξR, ηR) = −[ξR, ηR]R + [ξR, ηR] = [ξR, ηR]N ⊂ VN .

The last commutation trivially gives T [u](ξN , ηR) = [ξN , ηR]R − [ξN , ηR]R = 0.
We thus have that if VN ⊂ b, then the contraction is anti-IWS.

We now look at the IWS contractions. We first have T [u](ξR, ηR) = 0 and then
T [u](ξR, ηR) = [ξR, ηR]R ⊂ VR and T [u](ξN , ηR) = 0.This gives the corresponding
result. ��
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