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Abstract. In this paper, we have studied the general evolution of spherical over-densities for
thawing class of scalar field dark energy (DE) models. We have considered the scalar fields
having canonical as well as non-canonical kinetic energy (particularly the Born-Infeld form of
kinectic term) with various type of potentials, and also investigated the situation where DE is
homogeneous as well as the case where DE virializes together with matter (inhomogeneous). Our
study has shown that models with linear potential, in particular, can have significant deviation
from the ΛCDM model in terms of density contrast at the time of virialization, and further
study of the cluster number counts has shown that the total cluster number counts of different
DE models can have substantial deviation from ΛCDM, and this deviation is most significant
for all the models we have considered.

1. Introduction

One of the most significant discoveries in cosmology in recent years is the fact that our Universe
is currently going through an accelerated expansion phase. This late time acceleration of the
Universe can be due to the presence of an exotic fluid with large negative pressure known
as dark energy (DE) or due to the modification of gravity itself. Inclusion of cosmological
constant as DE is a minimal way to explain this late time acceleration, and also allowed by
all cosmological observations. But this ΛCDM model is plagued with fine tuning and cosmic
coincidence problems. Scalar field models mimicking a variable Λ can alleviate the fine tuning
and coincidence problems and provide an interesting alternative to cosmological constant. These
scalar field models are broadly classified into two categories depending upon the form of their
potentials: Fast roll and slow roll models termed as freezing and thawing models in the literature
[1]. Among these, thawing scalar field models are particularly interesting as they can naturally
mimic equation of state very close to w ∼ −1, which is preferred by all the observational data.

On the other hand, from the recent studies of the large scale structure surveys, it is found
that DE, not only affects background expansion rate and the distance-redshift relation, but
also affects the growth of structure in the universe. Hence, DE is expected to have an impact
on observables such as cluster number counts and lensing statistics. Therefore, the studies of
galaxy clusters would provide a useful tool to constrain the model parameters and would help to
infer the properties of dark energy by discriminating among the different dark energy models. In
order to understand accurately the effect of DE on the clustering properties of matter, one has to
perform N-body simulations, but here, we try to understand it by considering the semi-analytical
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approach, called a spherical collapsed model. This model (first developed by Gunn and Gott
[2]) is the simplest and the most fundamental tool for understanding the non-linear clustering of
matter. It describes how a small spherical over-density decouples from the background evolution,
slows down, then eventually turns around reaching the maximum radius and begins to collapse.
After that, it virializes forming a bound system. In this series, we have calculated the matter
density contrast at virialization and the cluster number counts with the thawing type of scalar
field DE models [1] and compare the results with the corresponding ΛCDM model.

2. Details

2.1. Background evolution

We have considered a flat, homogeneous and isotropic background universe driven by non-
relativistic matter and DE of thawing type, i.e., Ωφ + Ωm = 1. These thawing type DE models
are characterized by the fact that in the early universe the scalar field is frozen by very large
Hubble damping, and the scalar field starts evolving slowly down its potential at the later time.
So, the equation of state w(a) = pφ/ρφ initially starts with w = −1 and slowly departs from
it in the later time. We have considered both ordinary scalar field with canonical kinetic term
as well as tachyon type scalar field having Born-Infeld type kinectic term, which are minimally
coupled to the gravity sector. The equations of motion for the canonical scalar field and the
tachyon field are given by:

φ̈ + 3Hφ + dV/dφ = 0, and φ̈ + 3Hφ̇(1 − φ̇2) +
dV/dφ

V
(1 − φ̇2) = 0 (1)

respectively. (For details, see [3, 4].) H is the Hubble parameter, which describes the
background expansion. Here, the energy density of DE is represented as ρφ = ρφ0f(a) with

f(a) = exp
[
3
∫ 1
a

(
1+w(u)

u

)
du

]
. We have considered various types of potentials: e.g., V = φ,

V = φ2, V = eφ and V = φ−2 as well as the Pseudo Nambu-Goldstone-Boson (PNGB) model,
which is characterized by the potential V (φ) = m4[cos(φ/f) + 1], with f = 1. The Hubble
parameter is given by:

H2 =

(
ȧ

a

)2

=
8πG

3
(ρm + ρφ). (2)

Here, ρm = ρm0a
−3 is the background matter density, and ρφ represents the DE density.

2.2. The spherical collapse model

The dynamics of a spherical region of radius r(t) evolving in a cosmologically expanding
background in the presence of DE is governed by the Raychaudury equation:

r̈

r
= −4πG

[(
w(r) +

1

3

)
ρφc +

1

3
ρmc

]
, (3)

where subscript “c” denotes inside the spherical over-densities. It is easier to solve the equations
after normalizing at the turn-around point (denoted by subscript “t”). Therefore, with new
variables x = a

at
and y = r

rt
, the equation of background evolution H, and that of the spherical

perturbation, given in Eq. (2) become:

ẋ2 = Ht
2Ωm,t[Ωm(x)x]−1, and ÿ = −

H2
tΩm,t

2

[
ζ

y2
+

1 − Ωm,t

Ωm,t
yI(x, y)

]
, (4)

where

I(x, y) =

{
[1 + 3w(r(y))] f(r(y))

f(at)
Clustered DE

[1 + 3w(x)] f(x) Homogeneous DE.
(5)
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Figure 1. The non-linear den-
sity contrast at virialization vs.
the collapse redshift (Zcoll) for
Ωm0 = 0.25. In each figure,
solid, dashed and dotdashed repre-
sent inhomogeneous, homogeneous
and ΛCDM models respectively.
PNGB model is also compared with
ΛCDM model in the last figure.

Here, ζ is the matter density contrast at turn-around, and we have calculated it from the above
equations by applying the boundary conditions (dy/dx)x=1 = 0, yx=0 = 0, and yx=1 = 1 (See
the details in [5]). Typically, the scalar fields have extremely small masses (∼ H0 value in natural
units), which is necessary for having nearly flat potentials at present day. Due to this, the scale
of fluctuations for these scalar fields is extremely large, making it a smoothly distributed field
within the horizon scale. So, it is safe to assume DE to be homogeneous. But it is still interesting
to consider the case, where the DE clusters along with the dark matter and avoid the energy
non-conservation problem examined in [6]. Hence, we have assumed both the cases.

In general, the spherical collapse formalism leads to a point singularity as the final state
of the system. But physically, the objects go through a virialization process and stabilize to
a finite size. Such process of virialization is not built in the spherical collpase formalism, but
we have to put it by hand in order to ensure virialization. First of all, the total energy (TE)
has to be conserved always, i.e., TE at the time of turn-around is equal to that at the time of
virialization. At the turn-around, only the potential energy contributes, since ṙ = 0, whereas,
at the virialization, the virial theorem holds. Further, we have investigated two specific cases:

• In inhomogeneous DE case, we have assumed that DE virializes together with the matter.
i.e., The virial theorem holds for the total kinetic and potential energy of the system. Then,
applying the energy conservation together with this, we have obtained a cubic equation of
the ratio between the final (virial) rf and the turn-around radius rt, defined as the collapse
factor λ =

rf

rt
[5] as:

2n1λ
3
− (2 + n2)λ + 1 = 0, (6)

where n1 = −(3w(af ) + 1)
Ωφ0f(af )

ζΩm0a−3

t

, and n2 = −(3w(at) + 1)
Ωφ0f(at)

ζΩm0a−3

t

.

• In homogeneous DE case, we have assumed DE does not virialize inside the cluster. Its
only effect is to contribute to the potential energy of the system. Similarly, applying the
energy conservation, we have obtained λ for the homogeneous DE models.

After knowing ζ and λ, one can easily calculate the density contrast at virialization: Δvir =
ρmc,f

ρm,f
= ζ

λ3

(
af

at

)3
, assuming that at the collapse point, the system has virialized fully. The

relation between af and at is determined from the condition that the time needed to collapse is
twice the turn-around time.
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Figure 2. The total number counts
N vs. Z, integrated over mass (from
Mmin = 2 ∗ 1014M�) for a survey
area of 10000 square degree. All
the models are normalized to the
same number density of haloes today.
Upper panel: The canonical scalar field
models with homogeneous (left) and
inhomogeneous DE cases (right).Lower

panels: The tachyon scalar field models
with homogeneous and inhomogeneous
dark energy cases in the left and
right panels respectively. The different
potentials correspond to the different
line types. The concordance ΛCDM
model (black solid line) is also plotted
for comparison.

2.3. Number counts

The number of clusters in a redshift interval dz, above a given minimum (threshold) M = Mmin

is obtained from dn(M,z)/dM as:

dN

dz
(M > Mmin) = fsky

dV

dz

∫
∞

Mmin

dM
dn

dM
(M,z) = −fsky

dV

dz

∫
∞

Mmin

dM
ρm0

M

d ln σ(M,z)

dM
f(σ),

(7)
where fsky is the fraction of the sky being observed and dV

dz
is the comoving volume element.

For numerical computation, the upper limit of integration in Eq. (7) is replaced by
some finite mass value Mmax. f(σ(z)) is the Sheth-Torman mass function [7]. σ2(R) =
D(a)
2π2

∫
∞

0 k3P (k)W 2(kR)dk
k

is the dispersion of the density field on a given comoving scale R,

containing mass M = 4πρm0R(M)3/3. We have normalized the growth function such that
D(a) = 1 at the present epoch. Assuming that the baryon density parameter ΩB0 � ΩCDM,0,
the CDM power spectrum can be approximated by P (k) ∝ kT 2(k), and we have used T (k),
Eisenstein and Hu’s transfer function [8]. The effects of DE in the halo mass function come
through the growth function D(a) and the linear density contrast δc at the collapsed redshift.
Using WMAP-7 data, we have normalized the power spectrum by setting σ8(ΛCDM) = 0.80.
We have set the other cosmological parameters as: Ωm0 = 0.25, Ωφ0 = 0.75, h = 0.72, ΩB0 =
0.0456, and ns = 1. (For details, see [9].)

3. Results and conclusion

In Figure 1, we have shown that although, all the models become indistinguishable for objects
collapsing earlier, for objects collapsing around present time, some of the thawing models deviate
significantly from the CDM model. The deviations are enhanced in the homogeneous DE
case, where matter only virializes inside the cluster. This shows that inhomogeneous DE acts
against the matter clustering. But, as the model is quite non-linear, it is difficult to predict the
percentage of effects coming from the background and from DE clustering.

Thawing models with linear potential can have significant deviation from CDM model. One
can see from Figure 2 that there exists significant difference in the number counts between
different DE models considered, and the difference is most significant around z ∼ 0.5 to 1. More
specifically, seeing the top-left panel of Figure 2, the difference in number counts between ΛCDM
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and V = φ homogeneous scalar field model is ∼ 2000 at z ∼ 0.7, which is significantly larger than
the statistical uncertainties (would be ∼ 100 for the surveys like eROSITA and WFXT). Hence,
the cluster number counts can be used for discriminating between different models. Although,
this is a simplified approach to study the non-linear evolution of matter over-densities inside the
cluster, and is not applicable to actual physical situation, it gives some interesting insight into
the non-linear clustering of matter in the presence of thawing class of DE models. Given the
fact that a large number of cluster surveys are currently ongoing as well as a number of future
surveys are being planned, this can be a smoking gun to distinguish different dark energy models
from ΛCDM. A proper analysis of how to constrain the models would involve error estimates
of the parameters with a combination of different observational data sets, e.g., cluster counts,
CMBR, BAO, etc.
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