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ABSTRACT

Kinetic inductance detectors for measuring the polarization of

the cosmic microwave background

Daniel Flanigan

Kinetic inductance detectors (KIDs) are superconducting thin-film microresonators that are sensitive

photon detectors. These detectors are a candidate for the next generation of experiments designed to

measure the polarization of the cosmic microwave background (CMB). I discuss the basic theory

needed to understand the response of a KID to light, focusing on the dynamics of the quasiparticle

system. I derive an equation that describes the dynamics of the quasiparticle number, solve it in

a simplified form not previously published, and show that it can describe the dynamic response

of a detector. Magnetic flux vortices in a superconducting thin film can be a significant source of

dissipation, and I demonstrate some techniques to prevent their formation. Based on the presented

theory, I derive a corrected version of a widely-used equation for the quasiparticle recombination

noise in a KID. I show that a KID consisting of a lumped-element resonator can be sensitive enough

to be limited by photon noise, which is the fundamental limit for photometry, at a level of optical

loading below levels in ground-based CMB experiments. Finally, I describe an ongoing project to

develop multichroic KID pixels that are each sensitive to two linear polarization states in two spectral

bands, intended for the next generation of CMB experiments. I show that a prototype 23-pixel array

can detect millimeter-wave light, and present characterization measurements of the detectors.
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Chapter 1

Introduction and notation

This thesis deals with the physics and design of sensitive superconducting detectors called kinetic

inductance detectors (KIDs). The detectors discussed here are designed to be used in future

experiments to measure the polarization of the cosmic microwave background (CMB). In Chapter 2,

I give a brief introduction to cosmology, focusing on the the properties of the CMB and on the

experiments that measure it. This chapter is intended to motivate the detector research described in

later chapters, and it contains no new results. In Chapter 3, I introduce kinetic inductance detectors

and discuss the basic theory needed to understand their response to light, focusing on the dynamics

of the quasiparticle system. I derive an equation that describes the dynamics of the quasiparticle

number, solve it in a simplified form not previously published, and show that it can describe the

dynamic response of a detector. Chapter 4 deals with non-ideal sources of dissipation that can occur

in superconducting resonators, degrading their performance as detectors. I show that magnetic flux

vortices in a superconducting thin film can be a significant source of dissipation, and demonstrate

some techniques to prevent their formation. This chapter includes published work (Flanigan et al.

[1]) in which we measured the relationship between magnetic field and dissipation due to vortices

in a KID. Chapter 5 is concerned with noise sources and KID sensitivity. Based on the theory

presented in Chapter 3, I derive a corrected version of a widely-used equation for the quasiparticle

recombination noise in a KID. I show that a KID consisting of a lumped-element resonator can be

1



Table 1.1: Physical constants.

Symbol Meaning

c0 The speed of light in vacuum

Z0 The impedance of vacuum

h The Planck constant

~ The reduced Planck constant, h/2π

kB The Boltzmann constant

e The elementary charge (positive)

Φ0 The superconducting flux quantum

Table 1.2: General symbols.

Symbol Meaning

Γ A macroscopic (extensive) rate of some process in a given volume

γ A microscopic (intensive) rate per unit volume

ν An “optical” frequency, used for millimeter-wave light around 100 GHz

f A microwave frequency, used for readout tones around 1 GHz

ϕ An “audio” frequency, used for detector time-ordered data around 1 kHz

sensitive enough to be limited by photon noise, which is the fundamental limit for photometry, at

a level of optical loading below levels in ground-based CMB experiments. This chapter includes

published work (Flanigan et al. [2]) in which we measured photon noise using a KID. Chapter 6

describes an ongoing project to develop multichroic KID pixels that are each sensitive to two linear

polarization states in two spectral bands, intended for the next generation of CMB experiments. I

show that a prototype 23-pixel array can detect millimeter-wave light, and present characterization

measurements of the detectors. This chapter includes material from two papers (Johnson et al. [3,

4]) that discuss the results of the project. In the Appendices, I discuss connections to earlier work,

derive some of the equations presented in the main text, and present more information about the

hardware used in the experiments.

Tables 1.1, 1.2, 1.3, and 1.4 present the important symbols. I have attempted to define all

symbols where they are first used in the text. In many places I use an over-bar to denote a steady-state

2



quantity that does not vary in time, and a δ prefix to denote the time-dependent difference from the

steady-state value. For example, δNqp(t) = Nqp(t) − Nqp denotes a time-dependent deviation from

the steady-state number of quasiparticle excitations in a superconductor. Except where noted, I use

SI units.

3



Table 1.3: Symbols related to condensed matter: solids, superconductivity, and phonons.

Symbol Meaning

∆ (∆0) The superconductor gap energy (at zero temperature)

Tc The critical temperature of a superconductor

ξ0 The superconducting coherence length

λ The superconducting penetration depth

Nqp The number of quasiparticles in a given region

nqp The number of quasiparticles per unit volume

Ω The energy of a phonon

ε The energy of a Bloch state

εF The Fermi energy

ξ The energy of a Bloch state, measured from the Fermi energy

vF The Fermi velocity

ρ The reduced quasiparticle density of states

N0 The single-spin density of electron states at the Fermi energy

Ns The single-spin density of quasiparticle states

VBCS The BCS potential energy

R The intrinsic quasiparticle recombination constant

R The effective quasiparticle recombination constant, including phonon trapping

S The single-quasiparticle decay constant

τR The average recombination lifetime of a single quasiparticle

τqp The relaxation time of a small perturbation to the quasiparticle density

τ0 The characteristic electron-phonon interaction time

τs The quasiparticle-phonon scattering time

τbr The phonon pair-breaking time

τes The phonon escape time from a film

F The phonon trapping factor

ℓ The electron mean-free path

F The quasiparticle occupancy (“distribution function”)

σn The conductivity in the normal state just above Tc

σ1 The real part of the complex conductivity

σ2 The imaginary part of the complex conductivity

Γ The imaginary part of the quasiparticle energy

∆2 The imaginary part of the gap energy

Vuc The volume of a unit cell in a crystal

4



Table 1.4: Symbols related to resonators and kinetic inductance detectors.

Symbol Meaning

fr The resonance frequency

f̺ The readout tone frequency

s The fractional resonance frequency shift from the fiducial, or zero temperature, case

x The fractional detuning of the resonance frequency from the readout frequency

Q A resonator quality factor: Qα ≡ Λ
−1
α for all subscripts α

Λ A resonator inverse quality factor, or loss: Λα ≡ Q−1
α for all subscripts α

A A parameter that quantifies the asymmetry of a resonance

ζ The exponent in the dependence of the surface impedance on film thickness

α The effective kinetic inductance fraction

χqp The ratio of the quasiparticle loss to the total loss

ξr The frequency-dependent resonator transfer function

ηpb The photon pair-breaking efficiency

q The average number of quasiparticles excited per absorbed photon
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Chapter 2

The cosmic microwave background

The cosmic microwave background (CMB) gives us our earliest view of the universe: most of

the CMB photons we observe today last scattered about 380,000 years after the universe began,

during a cosmological epoch called recombination. Over the half century since the first detection,

in 1965 [5], observations of the CMB have become increasingly precise and have informed much

of our understanding of cosmology. In this chapter I give an overview of CMB cosmology and

CMB experiments in order to motivate the detector research described in later chapters. Section 2.1

contains a brief history of the universe that focuses on the CMB and includes current experimental

results. In Section 2.2, I discuss the CMB from an experimental perspective: the goals of future

experiments, the characteristics of measured signals, and the requirements for detectors.

2.1 Physics

2.1.1 Before recombination

The standard cosmological model, which contains a small number of free parameters and assumptions,

is able to describe most astrophysical measurements [6–8]. The available evidence supports a picture

of a flat early universe that was very hot and dense, and was filled with a nearly homogeneous and

6



Figure 2.1: A map of the CMB temperature anisotropies using data from the Planck satellite combined with other

measurements [9]. The color scale corresponds to the intensity deviations in units of temperature difference from the

CMB mean temperature. The angular resolution is 5’. The CMB dipole due to our peculiar velocity has been removed,

and galactic signals have been subtracted using observations at multiple frequencies, except for a small region in the

galactic plane where the data has been generated randomly.

isotropic soup of fundamental particles: the hot Big Bang. Figure 2.1 shows a recent measurement

of the angular anisotropies of the CMB intensity (or temperature), which is an indirect picture of the

primordial density perturbations. As the CMB temperature today is about 3 K, the peak fractional

deviations are only about 10−4 and the root-mean-square deviations are an order of magnitude

smaller.

General relativity predicts the expansion rate of space, given its energy content. On large

scales, the expansion of a flat universe can be described by a single dimensionless parameter: the

scale factor a. The scale factor has increased monotonically over the history of the universe as we

understand it, and is conventionally set to 1 today. The evolution of the various components of the

energy density depend in turn on the scale factor. The energy density in matter goes as a−3, since

the number of particles is conserved as the physical volume increases. According to the standard
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model of cosmology, only 5% of the current energy density of the universe is in the form of matter

that is described by the standard model of particle physics. An additional 25% is in the form of cold

dark matter that seems to not to interact electromagnetically. Nearly all the remainder is in the form

of dark energy, and observations are consistent with a cosmological constant that is independent of

a. The energy density in radiation, meaning photons and relativistic massive particles, goes as a−4;

the additional factor of a arises from the cosmological redshift, or the stretching of each mode as

space expands. While radiation dominated the energy density of the early universe, it is negligible

today. The scale factor is closely related to the redshift z = λob/λem − 1 = a−1 − 1, where λob and

λem are respectively the observed and emitted wavelengths of light.

Starting from the highest temperatures of which we have some experimental understanding, our

observations support a picture of a universe that continually expands and cools while matter forms

bound states of progressively lower energy and the components of radiation successively decouple.

The most widely studied models for even earlier times describe a period of nearly-instantaneous

expansion called cosmic inflation [10]. In order for such expansion to occur, inflationary models

require adding one or more fields to the standard model of particle physics. Since such fields are

not observed today they must have decayed into more familiar fields at early times, and quantum

fluctuations in the inflationary fields could have seeded the primordial density perturbations. A

generic prediction of inflation is a gravitational wave background that, if sufficiently large, would

produce a characteristic imprint in the CMB. Current experiments are searching for this imprint.

At very early times the temperature would have been too high for baryons to form, so this matter

may have been in the form of the quark-gluon plasma that is studied through heavy-ion collisions in

particle colliders [11]. Around this time, some unknown process resulted in an excess of what we

call matter over antimatter. As the temperature decreased below that necessary for pair-production

of baryons and anti-baryons, these mutually annihilated, leaving an excess of baryons. When the

temperature reached 1 MeV, when the universe was about 1 s old, the neutrinos decoupled. Next,

the electrons and positrons annihilated, leaving a universe that apparently contains no net charge
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Figure 2.2: Planck measurements of the CMB temperature power spectrum. The gray points are measured, unbinned,

without error bars. (One low outlier at high ℓ is not visible.) The red curve is the prediction of the Planck 2015

best-fit cosmology. Measurements from ground-based experiments with larger primary apertures extend to much higher

multipoles. The inset shows the low-ℓ data on a linear scale, with error bars.

and no antimatter.

By applying our understanding of nuclear physics to the conditions in the early universe, we

can predict the relative abundances of light nuclei, which would have formed when the temperature

dropped to around 0.1 MeV. The predictions of this model of Big Bang nucleosynthesis agree well

(except for 7Li) with current measurements of light elements corrected for processing in stars [12].

After the end of nucleosynthesis, the composition of the plasma did not change much until

recombination began. The initial perturbations were almost the same at all scales, but evolved

differently. In over-dense regions, increased gravitational attraction competed with increased

radiation pressure from higher temperatures, and the plasma thus supported acoustic oscillations.
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During this phase, when the temperature was of order 10 eV, the energy density of radiation dropped

below that of matter.

2.1.2 During recombination

Because of the large excess of photons over baryons, hydrogen did not form until the temperature had

dropped to around 0.25 eV, far below the hydrogen binding energy. As recombination proceeded, over

about 100,000 years, the universe became increasingly transparent. Toward the end of recombination,

the mean free path for photons became so large that they no longer scattered. Perturbations in the

primordial plasma were thus frozen in, and we observe them today in the CMB. It turns out that

the excess gravitational redshift for photons leaving over-dense regions outweighs the increased

brightness due to the higher temperatures there, so colder regions observed today in the CMB

correspond to hotter, higher density regions during recombination.

Cosmological models that assume isotropy and homogeneity can make only statistical predictions

for fluctuations in the CMB. Just as the spectral density is useful for characterizing time-stationary

signals, the angular power spectrum of the CMB anisotropies is useful for comparing statistical

predictions to measurements. Since we measure the CMB on the celestial sphere, the angular

power spectrum is computed using spherical harmonics characterized by the multipole moment ℓ.

Power at a given ℓ corresponds to fluctuations at an angular scale of about 180°/ℓ, which in turn

corresponds to a length scale at recombination. Figure 2.2 shows the angular power spectrum of the

CMB temperature anisotropies. The first peak in the temperature power spectrum, at ℓ ∼ 200, or 1°,

corresponds to the mode that reached its first maximum at recombination.

The CMB is also weakly linearly polarized, with the polarized intensity a few orders of

magnitude more faint than the temperature anisotropies. This linear polarization is produced by the

density perturbations present during recombination: a quadrupole intensity perturbation oriented

perpendicular to the line of sight produces net linear polarization along the line of sight due to

elastic (Thomson) scattering. The standard model predicts no circular polarization in the CMB, and
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measurements so far have produced only upper limits [13]. The polarization of the CMB can thus be

described by a pseudovector field on the celestial sphere. Since there is no preferred orientation for

the polarization field, it is useful to decompose it into an curl-free (even-parity) E-mode component

and a divergence-free (odd-parity) B-mode component. The density perturbations produce only

E-mode polarization, which has been measured by many experiments. The angular power spectrum

of the E-modes measured by Planck is shown in Figure 2.3.
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Figure 2.3: Recent measurements of the CMB E-mode and B-mode power spectra. The E-mode data are from the 2015

Planck release. (Data at the lowest and highest multipoles, where the error bars are large, are not shown.) The B-mode

data were released by ACTPol [14], BICEP2/Keck Array [15], Polarbear [16], and SPTPol [17]. Data sets binned in

other units have been converted to the displayed units using the center bin value, which is only approximately correct.

Where bins widths were available, these are shown by the horizontal bars; otherwise, a single point shows the center

bin. The theory curves were calculated with CAMB [18]: the solid black line and solid gray lines use the Planck 2015

best-fit cosmology [19], and the dashed and dotted gray lines also include a nonzero tensor-to-scalar ratio r .

Gravitational waves decay as the universe expands, and any that were produced by inflation

would be undetectable today. However, gravitational waves present during recombination would

have imprinted a primordial B-mode signature in the CMB. The amplitude of these perturbations is

commonly modeled by adding one parameter, the tensor-to-scalar ratio r, to the standard model.

Figure 2.3 shows the angular power spectrum of the B-modes measured by recent experiments as
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well as theoretical predictions for several values of r . Larger values of r correspond to larger signals

in the B-mode power spectrum, and this primordial signal could be measurable at large angular

scales. However, the amplitude of the inflationary signal is not well-constrained by theory, and could

be too small to measure even if inflation occurred. The data points from the BICEP2 and Keck

Array experiments show an excess B-mode signal at low multipoles, but this signal is dominated by

galactic dust [20]. The current upper limit from CMB data is r < 0.09 at 95% confidence [15].

2.1.3 After recombination

After recombination, the baryons are almost entirely in the form of neutral hydrogen and helium.

The CMB photons thus pass freely through the universe as the over-dense regions slowly collapse

into the structure we see today. Although the CMB no longer exchanges much energy with matter,

the gravitational redshift turns out to preserve the shape of the black body curve, and the CMB

remains a nearly-perfect black body at a temperature inversely proportional to the scale factor.

Today, the CMB temperature is reduced by a factor of the redshift at recombination, approximately

1100, to TCMB = 2.7255 K ± 0.0006 K [21]. Figure 2.4 shows the spectrum of the CMB measured

by the FIRAS instrument on the COBE satellite. For a black body at the CMB temperature the

peak of the brightness spectral density occurs near frequency ν = 160 GHz, and the occupancy

n(ν) = [exp(hν/kBTCMB) − 1]−1 drops below 1 above ν ≈ 40 GHz.

The CMB we detect today originates from a distant last-scattering surface, and it has been

altered during the subsequent history of the universe. CMB photons do not interact much during the

so-called cosmic dark ages, until the first stars form and begin to emit photons that have sufficient

energy to reionize the neutral gases. However, even after reionization, only a small fraction of CMB

photons scatter. Weak gravitational lensing converts E-mode polarization into B-mode polarization

at an amplitude that can be calculated from the known evolution of the matter distribution since

recombination. In Figure 2.3, the B-mode measurements at smaller angular scales are roughly

consistent with the expected amplitude due to lensing.
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Figure 2.4: The CMB monopole spectrum from the FIRAS instrument on the COBE satellite [22, 23]. (Upper) The

blue points are measured (with error bars that are too small to be visible), and the gray line is the black body curve given

in the legend. (Lower) Residuals from the upper panel. The blue points are the measured data minus the model.

2.2 Experiment

2.2.1 Goals

Current CMB mapping experiments focus on polarization in order to improve on the measurements

shown in Figure 2.3. A major goal is to search for the signature of primordial B-modes produced

by inflation, which would give valuable information about physics at higher energies than we can

currently probe. Another major experimental goal is to constrain the sum of the masses of all

neutrino species, which is possible because all of the constituents of the primordial plasma affect the
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CMB [24]. By contrast, neutrino oscillation experiments are sensitive to differences in the squares

of the neutrino masses.

Since the CMB photons traverse nearly the entire visible universe, signals from closer sources

are called foregrounds. Polarized galactic foregrounds are brighter than the CMB polarization at

most frequencies, and this is a major experimental challenge. Overcoming it requires measurements

in different frequency bands around the CMB peak in order to model and subtract the foreground

signals. The multichroic pixels described in Chapter 6 can each simultaneously measure two linear

polarization states in two spectral bands.

2.2.2 Signals

In a typical band containing the 160 GHz peak of the CMB spectrum, a detector on a space-based

instrument with very cold optics would absorb about 0.1 pW, or 109 photons/s. The load in a

ground-based instrument might be three orders of magnitude greater because the atmosphere is

emissive in the millimeter-wave region and is much hotter than the CMB. In both cases, the time

between photon arrivals is much less than the response time of the detector, which thus measures

only the average photon flux.

The fractional anisotropies of the CMB intensity are of order 10−5, so the linearity and dynamic

range requirements will be set by other, larger signals. Experiments may observe bright calibrators,

such as planets or artificial linearly polarized sources used to measure detector polarization angles.

Ground-based experiments must also contend with atmospheric fluctuations: even at the dry,

high-altitude sites that are used for ground-based CMB observations, the atmosphere is much

brighter than the CMB, with a typical effective Rayleigh-Jeans temperature of several tens of kelvin.

In principle, a CMB telescope could point at a particular location on the sky, average down the

noise to the desired level, then move to another location. In practice, this is not done because slow

drifts in the instrument response produce systematic effects that are difficult to correct. Thus, a

telescope typically scans repeatedly over the same patch of sky and revisits any given point many
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times. (For polarimetry, it is useful to scan the same point on the sky from different instrument

orientations, as this tends to average down some systematic errors.) To reduce the demands on

detector linearity, ground-based instruments often perform such scans at a constant elevation to

maintain a constant load from the atmosphere.

Beams in existing instruments are designed to be approximately Gaussian with an angular

diameter from about 1′ [25] to 30′ [26], typically limited by diffraction at the primary aperture.

The beam acts as a filter: information on scales much smaller then the beam is averaged out. As a

detector scans across the sky, modes at different angular scales are modulated at different frequencies

in the time-ordered data. A mode with angular wavelength λ will appear in the time-ordered data of

a detector scanning the sky with angular velocity Ûθ at audio frequency ϕ = Ûθ/λ, and the beam will

create a low-pass filter in the frequency domain. To avoid the difficulty of deconvolving the detector

response from the time-ordered data, the detector bandwidth should be significantly greater than the

bandwidth of this filter.

CMB polarimeters may use a modulator to separate the intensity signal from the fainter

polarization signal in the frequency domain. For example, a spinning half-wave plate will cause a

constant polarization signal to appear in a power detector, or “square-law” detector, at four times its

rotation frequency. Modulation of the polarization at 10 Hz has been demonstrated to work in a

ground-based experiment [27], and a prototype superconducting bearing system exists that could

modulate at 40 Hz or more [28]. The spectral density of detector data is typically red below a “knee”

frequency at 0.1 Hz to 10 Hz due to fluctuations in the atmospheric signal or in the detector system

itself. Thus, modulation may shift the polarization signal to a frequency band where the data is less

contaminated by red noise.

The CMB anisotropies of current interest are faint in the sense that significant time may be

needed to measure them, even when the only noise is due to the randomness of photon arrival times.

Existing detectors have sensitivity near this photon-noise limit, even in space, where the CMB may

be the main contribution to the total detected power.
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2.2.3 Detectors

We can extract criteria for CMB detectors from the preceding discussion. The detectors must be

sufficiently linear to not distort the measured signals; the exact requirement will depend on the

calibration strategy, and nonlinearity may be mitigated by injecting calibration signals. The ideal

noise level is less than the photon noise under the expected optical load, which depends on the

instrument design and location. The detector noise requirements are progressively more stringent

for ground-based, balloon-borne, and space-based instruments. The detector bandwidth should

be sufficiently large to accommodate all signals of interest without excessive distortion. For an

instrument without polarization modulation that scans slowly, a bandwidth of 10 Hz or less might

be sufficient. Using either a continuous calibration signal or a fast polarization modulator might

increase the bandwidth requirement by an order of magnitude.

The detector technologies that have shown competitive sensitivity for CMB experiments all

operate at temperatures below about 1 K. For the cryogenic requirements, and thus the cost, to

be manageable, it must be possible to read out many of these cryogenic detectors using a small

number of wires. Techniques in use include time-division multiplexing, in which many detectors on

a common wire are interrogated sequentially using switches, and frequency-division multiplexing,

in which many detectors on a common wire are interrogated simultaneously using signals at unique

frequencies that are somehow filtered so that each signal interacts with only one detector.

When the noise added by a detector is less than the photon noise, the only way to significantly

increase the mapping speed of a detector array is to increase the number of detectors. Most current

suborbital experiments use transition-edge sensor (TES) bolometers. The motivation for the work

done in this thesis is that the kinetic inductance detector (KID), which naturally lends itself to

frequency multiplexing, may offer an easier route to deploying larger arrays. Current ground-based

experiments use thousands of detectors, and proposed experiments will use tens or hundreds of

thousands of detectors [29].
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Chapter 3

Kinetic inductance detectors: basic theory

A KID is a superconducting thin-film microresonator in which the resonator itself is a detector [30].

The detection is performed by using a microwave tone at the KID resonance frequency to measure

changes in the electrodynamic response of the film, which is altered by deposited energy. Figure 3.1

shows the basic multiplexing concept. Each detector has a unique resonance frequency, and

electronics similar to software-defined radio are able generate and analyze hundreds to thousands of

tones simultaneously, allowing many detectors to be multiplexed.

C
c

Z
0

Z
0

Z
0

Z
0

out

2V

LNA

C
c

Z
0

C
c

Z
0

Z
0

Each niobium section

has a unique length,

so each resonator

has a unique

resonant frequency.

The aluminum section

length is the same for

each MKID in the array.

L
1

L
2

L
n

L L L
The transmission line

width, the gap width,

and the �lm thickness

is the same for all MKIDS.

Figure 3.1: A schematic that shows how KIDs are read out and multiplexed. The annotation refers specifically to the

KIDs that are discussed in Chapter 6, which are made from aluminum and niobium. The tones are generated at left,

propagate past the detectors, and are amplified at right by the low-noise amplifier (LNA).

Figure 3.2 shows how a KID responds to an increase in illumination: the resonance frequency
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decreases, and the internal dissipation increases. The changes shown in the plot were due to a

change in the temperature of a black body load that illuminated the detectors.
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Figure 3.2: The amplitude and phase of the forward transmission past a resonator, plotted versus frequency, taken at

two different levels of illumination from a beam-filling black body source. The blue (red) points were taken with the

source at 3.3 K (5 K). The small points are the data, the lines are a fit to a resonator model, and the large points mark the

resonance frequencies extracted from the fits.

In this chapter I introduce the theory that is necessary to understand the response of a KID to

light. Section 3.1 contains a quick introduction to the necessary elements of the BCS theory of

superconductivity and the superconducting ground state. In Section 3.2, I discuss the generation,

scattering, decay, and diffusion of the quasiparticle excitations of a superconductor. In Section 3.3, I

discuss superconductor electrodynamics, focusing on the effect of the quasiparticles. In Section 3.4,

I introduce a framework for describing the non-equilibrium state of a superconducting thin film as a

small perturbation to the ground state. In Section 3.5, I introduce a simplified description of the film

in terms of only the total number of quasiparticles, then use this model to motivate and solve the

equations that describe the dynamics of the quasiparticle system. In Section 3.6, I discuss a generic

model for a shunt-coupled resonator and use it to describe the lumped-element and transmission-line

resonators used for the KIDs in this thesis. In Section 3.7, I use the results from previous sections to

derive the response equations for a detector, starting with the absorption of light and ending with the

electrical signal that is recorded by the electronics.
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3.1 The BCS theory and the ground state

3.1.1 The Cooper pair condensate

In the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [31, 32], the superconducting

ground state can be described in terms of individual-electron (Bloch) states occupied in pairs

with opposite momentum and spin, called Cooper pairs [33]. These Cooper pairs form due to a

phonon-mediated attractive potential VBCS between electrons that are within the Debye energy ΩD of

the Fermi energy. The coherence length ξ0 ∼ ~vF/kBTc, where vF is the Fermi velocity and Tc is the

critical temperature for the superconducting phase, corresponds to the minimum size of a Cooper

pair as dictated by the uncertainty principle. For elemental superconductors the coherence length is

much greater than the mean spacing between conduction electrons. While it is more accurate to

think of correlations extending over a distance ξ0, a naive model of the pair condensate is sufficient

for the calculations in this thesis.

In a normal metal at temperature T = 0, by definition, no states with energy greater than the

Fermi energy εF are occupied. However, in a superconducting metal, even at T = 0, some states

within an energy range approximately kBTc above the Fermi energy remain populated. The increase

in kinetic energy compared to the normal state is outweighed by the decrease in potential energy

due to the pairing.

One of the most striking features of the transition to the superconducting state is the Meissner

effect, in which, as the temperature is reduced below Tc, a screening supercurrent develops to expel

any magnetic field from the interior of a bulk superconductor. This screening is quantified by the

penetration depth λ, which is the distance from a surface over which the screening supercurrent

causes magnetic fields to decay in the bulk. In the phenomenological London theory, developed

long before the BCS theory, the penetration depth at zero temperature is

λL =

(
c0ms

Z0nsq
2
s

)1/2

, (3.1)
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where c0 is the speed of light in vacuum, Z0 is the impedance of vacuum, and ms, ns, and qs are

respectively the mass, density, and charge of the superconducting carriers. The aluminum films

used for the detectors discussed in this thesis are 10 nm to 50 nm thick, while the bulk penetration

depth for aluminum at low temperature and low frequency is about 50 nm [34, 35], so the fields

completely enter these films. The penetration depth is closely related to the reactive part of the

superconductor’s surface impedance Zs, discussed in Section 3.3.3 below.

In a BCS superconductor below Tc, there is a minimum energy ∆, called the gap energy, for

excitations from the ground state. These excitations are important for the electrodynamic behavior

of a KID, and are discussed in detail later. In the in the weak-coupling limit of BCS theory, where

N0VucVBCS ≪ 1, the critical temperature Tc is proportional to the zero temperature gap energy ∆0.

Here, N0 is the single spin density of states at the Fermi energy and Vuc is the volume of a unit cell.

The relationship is ∆0 = 1.76 kBTc, and the numerical factor is accurate to about 20% in actual

elemental superconductors [36].

3.1.2 Fiducial parameters

In our current experimental setup we measure the transition temperature either by observing the

change in film resistance using a standard four-wire scheme or by observing changes in microwave

transmission through the transmission line on a chip containing resonators. In 10 nm to 50 nm thick

aluminum films we typically measure Tc slightly elevated from the bulk value of 1.2 K by 0.1 K to

0.2 K, in agreement with other measurements of thin aluminum films [37]. Although we are not

yet able to directly measure ∆, measurements of the gap in thin aluminum films have also shown

enhancement above the bulk value [38], and in the absence of a gap measurement we typically

assume that the BCS relation remains valid. Note that some relevant quantities vary exponentially

with the ratio of the gap to the temperature, so a small uncertainty in the gap energy may lead to a

much larger uncertainty in predictions of such quantities.

As shown in Table 3.1, the two types of KIDs I discuss here have very different typical resonance
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frequencies. In both cases, h f /∆ ≪ 1. If Tb is the bath temperature of the detectors, then for

the single-polarization lumped-element KIDs h f1p/kBTb ≪ 1, while for the multichroic co-planar

waveguide KIDs h fmc/kBTb ≈ 1. This distinction is not practically important for the readout photon

occupancy, because the readout power is always sufficiently high to produce an occupancy much

greater than one.

Table 3.1: Fiducial energies, temperatures, and frequencies: Tc is close to the critical temperature we typically measure

in aluminum films; Tb is a typical bath temperature; f1p is a typical resonance frequency for the single-polarization

lumped-element KIDs used in experiments discussed in Chapters 4 and 5; fmc is a typical resonance frequency for

the multichroic CPW KIDs discussed in Chapter 6. I use these values for numerical estimates, including the slightly

elevated gap and critical temperature.

Parameter J µeV GHz K

∆0 3.16 × 10−23 197.16 47.67 2.288

Tc 1.79 × 10−23 112.03 27.09 1.300

fmc 1.99 × 10−24 12.41 3.00 0.144

Tb 1.79 × 10−24 11.20 2.71 0.130

f1p 6.63 × 10−26 0.41 0.10 0.005

KIDs have been made from numerous materials, some of which are not well-described by the

BCS theory. However, the KIDs discussed in this work are made either from only aluminum or from

both aluminum and niobium, both of which are BCS superconductors. Throughout this thesis, when

making numerical estimates, I use typical material parameters for aluminum and niobium given in

Table 3.2 along with the fiducial values given in Table 3.1, including the slightly elevated values of

Tc and ∆ that we typically measure. These should give reasonable descriptions of the detectors we

have tested.

Table 3.2: Parameters of superconducting metals used in this thesis. See Table 1.3 for the symbol definitions. Values

are from Kaplan et al. [39] except where noted.

Parameter Unit Aluminum Niobium

Tc (bulk) K 1.19 9.2

N0 eV−1 µm−3 1.74 × 1010 [40] 8.52 × 1010 [41]

τ0 ns 438 0.149
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3.1.3 Radiation detection using superconductors

For a KID absorbing pair-breaking radiation, the cutoff (lowest detectable) frequency is

νc = 2∆/h ≈ 3.5 kBTc/h ≈ 74 GHz (Tc/1 K) . (3.2)

To minimize the rate of thermal excitations, KIDs must be operated at a low bath temperature. If Tb

is the practically achievable bath temperature for a large detector array designed to detect photons

with frequency ν, the superconducting energy gap must satisfy

hν/2 > ∆ ≫ kBTb. (3.3)

Fortunately, this is currently possible over at least part of the frequency range relevant for CMB

observations. Aluminum can be used to detect pair-breaking photons with frequencies above

νc ≈ 100 GHz. Refrigeration using adiabatic demagnetization or helium dilution allows for cooling

of large arrays to temperatures Tb ≈ 0.1 K ∼ Tc/10, sufficiently low that thermal excitations are

negligible. This allows KIDs to achieve, in principle, the fundamental sensitivity limit set by the

statistics of photon arrival.

3.2 Quasiparticle excitations

3.2.1 The quasiparticle density of states

The quasiparticle excitations that are orthogonal to the ground state are neither lone electron nor hole

excitations, but are superpositions of excitations on both sides of the Fermi surface. These excitations

are commonly called Bogoliubov quasiparticles, and I refer to them simply as quasiparticles. They

have spin 1/2 and thus obey Fermi statistics. Their canonical decay mechanism is to rejoin the

condensate by recombining in pairs to form a Cooper pair and emitting a phonon. Other decay
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channels are discussed below.

Because of the gap, there are no low-energy states into which the constituents of the Cooper

pairs can individually scatter, and a supercurrent can thus flow with no resistance, at least at zero

frequency. However, like the conduction electrons of the normal metal, the quasiparticles experience

lossy scattering. Thus, the conductivity at nonzero frequencies, while typically much higher than

in even an excellent normal conductor, is finite. A KID detects radiation essentially by measuring

these excitations through their effect on the surface impedance of the superconductor at microwave

frequencies.

The energy of a Bloch state with wavevector k is εk = ~
2k2/2m for an electron mass m. If

ξk = εk − εF is the same energy relative to the Fermi energy εF, then the energy of a quasiparticle

with wavevector k is

Ek =

(
ξ2k + ∆

2
)1/2

, (3.4)

which is positive for excitations on both the “electron” branch outside the Fermi surface, with ξ > 0,

and the “hole” branch inside the Fermi surface, with ξ < 0. This relationship between the Bloch

state energy and the quasiparticle energy is plotted in Figure 3.3(a).

The range of energies involved forming the superconducting state is small compared to the Fermi

energy. Because the normal metal density of states does not change much over this range of energies,

it is conventional to take it to be constant and to define N0 to be the number of electron states of one

spin per unit energy per unit volume at the Fermi energy. The BCS density of states arises from the

relationship between the quasiparticle energy E and the Bloch energy ξ:

dE = d
(
ξ2 + ∆2

)1/2

=

ξ dξ(
ξ2 + ∆2

)1/2
, (3.5)

so

dξ =
E dE(

E2 − ∆2
)1/2
. (3.6)
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Figure 3.3: (a) The BCS quasiparticle energy E versus the Bloch state energy ξ in units of the gap. Here, the Fermi

energy is at ξ = 0. (b) The reduced density of states ρ versus the quasiparticle energy E in units of the gap. For display,

the three density of states curves have all been broadened by adding small imaginary parts to the gap: ∆→ ∆ − i∆2.

The gray horizontal line shows ρ = 1, which is the asymptotic value at high E .

The density of quasiparticle states is thus

Ns(E) = N0
dξ

dE
= N0

E

(E2 − ∆2)1/2
≡ N0ρ(E), (3.7)

where ρ is the normalized (or reduced) density of states. There is a one-to-one correspondence

between the Bloch states and the quasiparticle states, so the total number of states is the same as

for the normal metal. The quasiparticle density of states versus quasiparticle energy is plotted in

Figure 3.3(b).

While the BCS density of states has a singularity at E = ∆, in an actual superconductor this

singularity will be smeared out at least slightly. A supercurrent, always present in an operating KID

due to the readout tone, causes some broadening of the density of states [42], as may granularity [43],

disorder [44], and impurities [45, 46] in the film. Such broadening of the density of states is often
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modeled, at least for energies near the gap, by writing the BCS reduced density of states as

ρ(E) = Re

{
E

(E2 − ∆2)1/2

}
(3.8)

and introducing a small imaginary part to either the quasiparticle energy E → E − iΓ [43] or the

gap energy ∆→ ∆ − i∆2 [47]. Figure 3.3(b) shows density-of-states curves calculated using the

latter procedure. Both of these expressions describe a nonzero density of states for energies E < ∆.

The density of states may be measured in tunneling experiments, for example, but since we have

not performed such experiments I will assume it changes little from the BCS form. Although the

density of states may be identically zero below some energy Emin, with ∆ ≥ Emin > 0, I will allow

for the possibility of sub-gap states by writing integrals over quasiparticle energy with their lower

limit set to 0, taking the cutoff to be present in the density of states.

In superconductor out of thermal equilibrium, the quasiparticle occupancy may differ between

pairs of wavevectors on either side of the Fermi surface that correspond to quasiparticle states with

the same energy, and may also differ between two spin states with the same wavevector. Fortunately,

we can ignore these distinctions. The relevant quasiparticle excitation mechanisms, namely photons

and phonons, populate both branches and both spin states equally on average [36]. In the absence of

spin injection and external magnetic fields, we do not expect significant splitting of the density of

states for opposite spin directions [48]. Thus, we can adequately describe the quasiparticle system

using an occupancy function F(E) that has the same dependence on the quasiparticle energy for

both branches and for both spin directions. In thermal equilibrium at temperature T , the occupancy

is F(E,T) = [exp(E/kBT) + 1]−1, the Fermi-Dirac function. However, KIDs are typically operated

out of equilibrium.

The quasiparticle density for an arbitrary F(E) is

nqp = 4N0

∫ ∞

0

dE ρ(E)F(E), (3.9)
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where one factor of two comes from the branches on either side of the Fermi energy, and the other

comes from a sum over spins. At low temperatures the gap will be close to its zero-temperature

value ∆0, and the Fermi-Dirac occupancy is approximately F(E) ≈ exp(−E/kBT). Then, as derived

in Appendix B, the quasiparticle density is

nqp(T) = 4N0∆0K1(∆0/kBT) ≈ 4N0∆0

(
πkBT

2∆0

)1/2

exp

(
−
∆0

kBT

)
, (3.10)

where K1 is the first-order modified Bessel function of the second kind. These approximate

expressions are plotted in Figure 3.4. The quantity N0∆0 frequently appears (usually with a prefactor

of 2 or 4) as a characteristic quasiparticle density. For aluminum, N0∆0 ≈ 3.4 × 106 µm−3, which is

much larger than a typical operating density. The quasiparticle density is discussed in more detail

in Section 3.5, where it replaces the occupancy as the quantity used to describe the quasiparticle

system.
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T / Tc
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K1( /kBT)
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Figure 3.4: The reduced thermal quasiparticle density versus reduced temperature, from Equation 3.10. The gap ∆ here

is taken to be equal to its value at T = 0, which at higher temperatures is not a good approximation.

The quasiparticles affect the gap energy, which decreases as the quasiparticle density increases.
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The BCS theory gives an implicit equation for the gap:

1 = N0VucVBCS

∫ ∞

∆

dE ρ(E)
1 − 2F(E)

E
, (3.11)

where the gap appears in both the lower limit of the integral and in the quasiparticle energy. (The

unit cell volume appears here because I use N0 to mean the number of single-spin normal-metal

states per unit energy per unit volume at the Fermi energy.) In Section 3.4 I discuss a method for

obtaining approximate equations for the gap. Even in an illuminated KID, the number of excitations

will generally be sufficiently small that the gap will not vary much from its value at zero temperature.

3.2.2 Generation

The quasiparticle excitations must occur in pairs, since the energy reduction is due to the pairing,

so a particle that deposits energy greater than 2∆ (the spectroscopic gap) can break one or more

Cooper pairs, exciting quasiparticles that eventually recombine into Cooper pairs or decay by other

means. Phonons with energy Ω > 2∆ that enter the film from the substrate may also break pairs.

As we will see later, the detector sensitivity may be increased by using a high readout tone

power. Although the readout photons individually have energies much less than the gap (see

Table 3.1), a quasiparticle that absorbs many quanta and is excited to an energy above 3∆may scatter

inelastically and create a phonon that is sufficiently energetic to break a pair. KID experiments that

use careful shielding to reduce quasiparticle generation due to stray light nevertheless observe more

quasiparticles than the thermal equilibrium value, and some of this excess is typically attributed to

readout generation [49, 50].

3.2.3 Pair recombination

Quasiparticles have finite lifetimes and may decay in various ways. For elemental BCS supercon-

ductors, the most relevant process involves two quasiparticles with energies E1, E2 ≥ ∆ recombining
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into a Cooper pair with the emission of a phonon with energy Ω = E1 + E2 ≥ 2∆. (Since a photon

can break a Cooper pair and excite quasiparticles, the reverse process of recombination with photon

emission is possible. However, because the final density of states corresponding to this process is

much smaller than the density of states for phonon emission, the radiative lifetime is much longer

and this process is negligible [51].)

Kaplan et al. [39] derive a low-temperature equilibrium pair-recombination time, given for a

quasiparticle with E = ∆0 by

τ−1
R = τ

−1
0 π

1/2

(
2∆0

kBTc

)5/2 (
T

Tc

)1/2

exp

(
−
∆0

kBT

)
, (3.12)

where τ0 is the characteristic electron-phonon interaction time defined in the same reference. The

recombination rate for a given total energy is proportional to the phonon density of states at that

energy, which increases with increasing energy [52]. Thus, quasiparticles with higher energies have

shorter lifetimes. Comparing Equation 3.12 to Equation 3.10 shows that, in thermal equilibrium, the

inverse recombination lifetime is proportional to the quasiparticle density:

τ−1
R = τ

−1
0

(
2∆0

kBTc

)3 nqp

4N0∆0

. (3.13)

The proportionality

R ≡

(
2∆0

kBTc

)3

(4N0∆0τ0)
−1 (3.14)

is the quasiparticle recombination constant [53]. Using values for aluminum from Table 3.2 gives

R = 7.8 µm3 s−1. The recombination constant will actually change as the gap energy varies with

quasiparticle density [54, 55], but I will neglect this dependence. The recombination rate per unit

volume is thus quadratic in the quasiparticle density:

γR ≡ τ−1
R nqp = Rn2

qp. (3.15)
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Since recombination involves quasiparticles interacting in pairs, it is not surprising that the rate for

Nqp quasiparticles goes as
(Nqp

2

)
∝ N2

qp to leading order [54].

In thermal equilibrium, if quasiparticles are generated at a rate γG(T) per unit volume and the

only quasiparticle decay process is recombination with phonon emission, then the rate equation for

the quasiparticle density is

0 =
dnqp

dt
= γG(T) − Rnqp(T)

2. (3.16)

Then, using Equation 3.10, the low-temperature thermal generation rate is

γG(T) =
4N0∆0

τ0

(
2∆0

kBTc

)3

K1(∆0/kBT)2 ≈
4N0∆0

τ0

(
2∆0

kBTc

)3
πkBT

2∆0

exp

(
−

2∆0

kBT

)
. (3.17)

At sufficiently low temperatures the total thermal generation rate will become negligible compared

to other sources. This reduces the effect of fluctuations in the generation rate cause by temperature

fluctuations, which are common in a moving telescope.

3.2.4 Phonons

While the various generation process act to create an occupancy that exceeds the thermal value,

scattering processes act to restore the quasiparticle system to equilibrium. Kaplan et al. [39] derive

a thermal equilibrium quasiparticle-phonon scattering time given by

τ−1
s = τ

−1
0 Γ

(
7
2

)
ζ

(
7
2

) (
kBTc

2∆0

)1/2 (
T

Tc

)7/2

, (3.18)

where Γ is the Gamma function and ζ is the Riemann zeta function. Assuming the BCS weak-

coupling relation, the numerical factors work out to Γ(7/2)ζ(7/2)/3.521/2 ≈ 1.996. A quasiparticle

at the gap edge cannot scatter and emit a phonon, because there no available quasiparticle states

with lower energy, but at higher energies the scattering rate rapidly increases.

A phonon produced by quasiparticle recombination has sufficient energy to break another Cooper
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pair in the same superconductor. Such a phonon will quickly encounter the film-substrate interface,

but the acoustic match between superconducting films and typical crystalline substrates tends to be

poor, so phonons are likely to reflect on each encounter with the interface [56]. These facts will

significantly modify the results of the preceding section.

Chang and Scalapino [52] calculate a time τbr ∼ 100 ps for a sufficiently energetic phonon to

break a pair, which is much less than both the inelastic scattering time and the anharmonic decay

time [57]. They also calculate a phonon escape time

τes =
4d

ηs
, (3.19)

where d is the film thickness, s is the speed of sound, and η is the transmission probability per

encounter, which may be quite small [56]. Using d = 40 nm and s = 6.4 × 103 m s−1 [52] gives

τes = 25 ps/η.

A recombination phonon must leave the film for the quasiparticle number to decrease, so the

effective recombination lifetime of the quasiparticles is increased by a phonon-trapping factor [58]

F =

(
τ−1

es

τ−1
es + τ

−1
br

)−1

= 1 +
τes

τbr

, (3.20)

where F−1 is the probability for a phonon to escape the film instead of breaking a pair. Depending

on the composition and thickness of the film and substrate, and the details of their interface, this

probability may range from just above 0 to just less than 1. Since both the pair-breaking and escape

times are much less than the quasiparticle recombination time τR, which is usually 1 µs to 1000 µs

in the superconductors used for KIDs, the time spent as a phonon is negligible and nearly all of the

energy resides in the quasiparticles [55]. Phonons, produced by scattering or otherwise, for which

Ω < 2∆ are subject to the same phonon trapping effect, but this is less important because these

phonons cannot break pairs.

To capture the relevant effects of phonon trapping, we may replace the recombination constant R
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by an effective recombination constant R = R/F in Equations 3.15 and 3.16. (Note that the thermal

density of quasiparticles is independent of F: the effective quasiparticle recombination lifetime

is increased by a factor F, but the thermal generation rate due to pair-breaking thermal phonons

entering from the substrate is decreased by the same factor.) Because F is material-dependent

and difficult to calculate [53], the fundamental quasiparticle recombination time τR, and thus the

characteristic electron-phonon time τ0, are not experimentally accessible from measurements of

KIDs.

This model ignores the phonon population in the substrate. The anharmonic decay time is

very long in silicon [59], so phonons that do escape from the film cannot necessarily be neglected

unless they are efficiently destroyed. de Visser [60] shows data (in Appendix B) consistent with a

large population of recombination phonons in the substrate forming the bottleneck for relaxation

of the quasiparticle system. Patel et al. [61] show that pair-breaking phonons can propagate for

several millimeters across a chip, and that they are absorbed by normal metal regions. Phonons

that escape from one detector and are absorbed in another could cause spurious response, an effect

called crosstalk.

3.2.5 Single-quasiparticle decay

In addition to canonical recombination in pairs with phonon emission, quasiparticles may also decay

through processes that decrease their number by 1. For these processes, the total decay rate per unit

volume is proportional to the quasiparticle density.

For example, magnetic flux vortices act as quasiparticle sinks [62, 63]. The gap energy is

reduced inside a vortex, so a quasiparticle that diffuses into one may scatter inelastically to an energy

below the gap energy outside. It will thus remain trapped inside the vortex, and when it eventually

recombines with another quasiparticle the resulting phonon energy may be less than 2∆, insufficient

to break a pair outside the vortex. Quasiparticles may also become trapped in local defects [64] or

in normal metal regions in contact with the superconductor [65, 66].
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The decay rate per unit volume due to all such single-quasiparticle sources can be written

γS =
∑
α

Sαnqp ≡ Snqp, (3.21)

where S is the sum of the decay constants for the individual processes. These processes may be

useful for detector engineering, but they are not necessary to describe most of the behavior of the

KIDs discussed in this work.

3.2.6 Inhomogeneity and diffusion

While the quasiparticles are collective excitations of electrons near the Fermi surface, their typical

velocities are much less than the Fermi velocity vF. In fact, the velocity of a quasiparticle with

E = ∆ is zero. The BCS relationship between quasiparticle group velocity vg and quasiparticle

energy E is

vg =
∂Ep

∂p
=

ξp

Ep

p

m
, (3.22)

where p and m are the electron momentum and mass. The energy range where the quasiparticle

occupancy is nonzero is a small fraction of the Fermi energy, so we take p/m = vF. Then,

vg(E) = vF

(
1 −
∆

2

E2

)1/2

. (3.23)

As shown in Figure 3.5, the group velocity rapidly increases with increasing quasiparticle energy to

a significant fraction of the Fermi velocity.

The quasiparticle diffusion coefficient Dqp is related to the normal-state diffusion coefficient Dn

by

Dqp =

〈
vg

〉
vF

Dn, (3.24)

where
〈
vg

〉
is the group velocity averaged over all quasiparticles [67]. The rapid variation of the
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Figure 3.5: The quasiparticle group velocity normalized to the Fermi velocity versus quasiparticle energy normalized to

the gap energy. The blue curve is universal. The vertical lines correspond to the energy of the gap plus one readout

photon for the two fiducial readout frequencies, assuming the fiducial value for the gap energy. We expect the first peaks

in the occupancy to occur at these energies.

group velocity with energy makes it difficult to estimate the quasiparticle diffusion coefficient

without a good estimate of the nonequilibrium occupancy. Assuming only pair recombination is

relevant, a typical diffusion distance is then (DqpFτR)
1/2. This is usually long enough to reduce the

problem to two dimensions.

With nqp(t, x) the position-dependent density and ∇2 the Laplacian, both in two dimensions,

Equation 3.45 becomes

∂nqp(t, x)

∂t
= γG(t, x) + Dqp∇

2nqp(t, x) − Rnqp(t, x)
2 − Snqp(t, x). (3.25)

Solutions of similar equations have been attempted [63, 68]. However, when modeling detector

response we will assume that the quasiparticle density is homogeneous in some volume V. This will

allow us to switch freely between quasiparticle density nqp and number Nqp = Vnqp. The readout

signal will tend to produce peaks in the occupancy at energies that are greater than the gap by integer
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multiples of the readout photon energy. Thus, we expect more rapid diffusion than the thermal

average quasiparticle velocity would suggest. Additionally, since the local recombination time

increases rapidly with decreasing density, those quasiparticles that diffuse away from a high-density

region may travel much farther than the typical diffusion length in higher-density regions. In hybrid

KIDs, in which quasiparticles are trapped in a high-current region, diffusion tends to equalize the

density. In single-metal KIDs, such as the all-aluminum lumped-element devices discussed here,

quasiparticles that diffuse into low-current regions of the capacitors are effectively lost.

3.3 Electrodynamics

3.3.1 The two-fluid model

A simple model that gives qualitatively correct results for the electrodynamics of a superconductor

involves treating the Cooper pair condensate and the quasiparticle excitations as two fluids with

different behavior. Using a Drude model, the quasiparticles are treated as normal electrons with

a scattering time τn, while the condensate is treated by taking its scattering time to be infinite.

This requires extending Ohm’s law J = σE to a complex conductivity σ = σ1 − iσ2. For angular

frequencies ω such that ωτn ≪ 1 and ~ω < 2∆, this leads to [36]

σ1(ω) =
πnse

2

2m
δ(ω) +

nne2τn

m
; (3.26)

σ2(ω) =
nse

2

mω
, (3.27)

where nn,s are respectively the densities of the normal and superconducting fluids, and δ is the delta

function. This model predicts perfect conductivity only at zero frequencies, and some dissipation at

nonzero frequencies whenever excitations are present. It also predicts a large kinetic inductance,

an effect which is negligible in normal metals: a significant amount of energy from the field is

converted into the kinetic energy of the superconducting fluid (that is, the Cooper pairs) and is then
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released when the field changes direction. This effect causes the supercurrent to lag the electric

field. While these conclusions are useful, to describe KID response we need a more sophisticated

model based on the BCS theory.

3.3.2 The Mattis-Bardeen theory

Mattis and Bardeen [69] derived expressions for the relationship between the current density and

vector potential for normal metals and, starting from the BCS theory, for superconducting metals.

Their most general expression involves a spatial integral because the response is non-local. However,

in the extreme anomalous limit, where the penetration depth λ is much less than the coherence

length ξ0, they derive equations that are effectively local. These expressions should also be valid for

the aluminum films discussed in this thesis, which are sufficiently thin that scattering at the film

interfaces limits the mean free path ℓ to a length of order d, the film thickness. The ratios of the real

and imaginary parts of the complex conductivity to the normal state conductivity σn are

σ1

σn

=

2

h f

∫ ∞

∆

dE [F(E) − F(E + h f )]
E2
+ ∆

2
+ h f E

[E2 − ∆2]1/2[(E + h f )2 − ∆2]1/2

+

1

h f

∫ −∆

∆−h f

dE [1 − 2F(E + h f )]
E2
+ ∆

2
+ h f E

[E2 − ∆2]1/2[(E + h f )2 − ∆2]1/2
;

(3.28)

and

σ2

σn

=

1

h f

∫
∆

∆−h f ;−∆

dE [1 − 2F(E + h f )]
E2
+ ∆

2
+ h f E

[∆2 − E2]1/2[(E + h f )2 − ∆2]1/2
. (3.29)

For h f < 2∆, the second integral in Equation 3.28 is not present and the lower limit of the integral

in Equation 3.29 is ∆ − h f > −∆, while for h f > 2∆ the lower limit of this integral is −∆. At

temperature T = 0 no quasiparticles are excited, so F = 0 and σ1(T = 0) = 0; as derived in

Appendix B, σ2(T = 0) = π∆0σn/h f . The zero-temperature frequency dependence is the same as

in the two-fluid model, but this is not true at nonzero temperatures.
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3.3.3 Surface impedance

The complex conductivity describes the local response of the current density to an applied field.

However, the relationship between the fields at the metal surface and the complex conductivity has

additional dependence on geometry. These effects can be described using the surface impedance

Zs = Rs + iXs, where Rs is the surface resistance and Xs is the surface reactance. The relationship

between the surface reactance and the kinetic inductance is Xs = 2π f Lk. If λ is the effective

penetration depth at T = 0, then the surface impedance is purely reactive:

Zs(0) = iXs(0) = 2πiZ0 f λ/c0. (3.30)

The effective penetration depth, which depends on the geometry, is much less than the free space

wavelength, so the surface reactance is much less than the vacuum impedance.

Changes in the complex conductivity alter the surface impedance. In some simple cases this

relationship can be written [70]

Zs = Zs(0)

(
σ

σ(0)

)−ζ
= Zs(0)

(
1 + i
σ − σ(0)

σ2(0)

)−ζ
. (3.31)

Under the conditions discussed in this work, both the real and imaginary parts of [σ − σ(0)]/σ2(0)

will turn out to be small, so we can use a first-order approximation for the relationship between a

shift in the conductivity and a shift in the surface impedance:

Zs ≈ Zs(0)

(
1 − ζ

σ − σ(0)

σ(0)

)
= Zs(0)

(
1 − iζ

σ − σ(0)

σ2(0)

)
. (3.32)

The shift from the zero-temperature surface impedance is thus

Zs − Zs(0) = Rs + i[Xs − Xs(0)] = ζXs(0)

(
σ1 − i[σ2 − σ2(0)]

σ2(0)

)
. (3.33)
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We see that the first-order approximation allows us to separate real and imaginary components

cleanly:

Rs = ζXs(0)
σ1

σ2(0)
;

Xs − Xs(0) = −ζXs(0)
σ2 − σ2(0)

σ2(0)
.

(3.34)

These equations are used later to calculate detector responsivity.

In the thin film, local limit discussed above, where the electron mean free path is limited by

diffusive scattering at the surfaces, ζ = 1; also in this limit, the zero-temperature surface impedance

is Zs(0) = i/σ2(0)d, where d is the film thickness [70]. This leads to a simple relationship between

the surface impedance and complex conductivity:

Zs =
1

dσ
≈
σ1

dσ2
2

+

i

dσ2

, (3.35)

using σ1/σ2 ≪ 1, which is true at low temperatures.

3.4 Nonequilibrium perturbations to the ground state

3.4.1 Nonequilibrium occupancy

Ideally, the temperature of a KID will be sufficiently low that the optical illumination will create

quasiparticle excitations far in excess of thermal values. The strong readout signal will also tend

to shift the occupancy to higher energies and may also break pairs. Thus, an operating KID may

be far from thermal equilibrium, and there is strong evidence that nonequilibrium effects must be

considered to understand even the qualitative behavior of KIDs in some regimes [71, 72].

The Mattis-Bardeen equations (3.28 and 3.29) allow us to calculate the complex conductivity

with knowledge of the quasiparticle occupancy. However, for a film out of equilibrium, the occupancy

is not directly specified by the experimental conditions. Instead, the independent quantities are the
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rates at which optical photons, readout photons, and phonons from the substrate are incident on the

resonator. The equations for the shift in the gap energy, the quasiparticle density, and the complex

conductivity all involve the quasiparticle occupancy, and must be determined self-consistently. This

problem is difficult to solve analytically. Numerical solutions of kinetic equations for the coupled

non-equilibrium quasiparticle and phonon occupancies [52, 73] have been produced by at least two

groups [72, 74], but such code has not been made publicly available. One important result of the

simulations is that the occupancy develops large peaks at energies that exceed the gap by integer

multiples of the readout photon energy, as quasiparticles absorb readout photons.

3.4.2 First-order response functions

To handle nonequilibrium effects perturbatively, I follow Zmuidzinas [70] and obtain expressions

for the response of the superconducting film that are correct to first order in F, which is taken to be

determined by the experimental conditions. If C(0) is the value at T = 0 (where no quasiparticles are

excited) of some quantity that depends on the quasiparticle occupancy, then the first-order response

function KC(E) is given by

C − C(0) ≈

∫ ∞

0

dE KC(E)F(E) = 〈KC |F〉 , (3.36)

using Dirac inner product notation. (The response functions will turn out to be proportional to the

superconducting density of states.) Note that these first-order expressions describe the shifts from

the zero-temperature values: nqp, σ1, and Rs vanish at T = 0, while ∆, σ2, and Xs do not. In this

section I give the response functions for the gap, the quasiparticle number, and the conductivity of

the film, and evaluate the integrals for a thermal occupancy. See Appendix B for the derivations.

The response function for the gap is

K∆ = −
2∆0(

E2 − ∆2
0

)1/2
= −

2∆0ρ0(E)

E
, (3.37)
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where ∆0 is the value of the gap at T = 0 and ρ0 is the reduced density of states using this gap

value. This response function is negative because quasiparticles reduce the gap. The reduction

effect rapidly decreases with increasing quasiparticle energy.

From Equation 3.9, we can read off the response function for the quasiparticle density:

Knqp
= 4N0 Re




E(
E2 − ∆2

0

)1/2



≡ 4N0ρ0(E). (3.38)

The zero-temperature gap ∆0 appears here because the shift in the gap produces a second-order

effect.

The response function for the real part of the conductivity is

Kσ1
(E) =

2σnρ0(E)

h f

[
ρ0(E + h f )

(
1 +

∆
2
0

E(E + h f )

)
− ρ0(E − h f )

(
1 +

∆
2
0

(E − h f )E

)]
. (3.39)

For a thermal occupancy,

〈
Kσ1

��F(T)〉
σn

=

4∆0

h f
exp

(
−
∆0

kBT

)
sinh

(
h f

2kBT

)
K0

(
h f

2kBT

)
, (3.40)

where K0 is the zero-order modified Bessel function of the second kind, not to be confused with a

response function.

The response function for the imaginary part of the conductivity is

Kσ2
(E) = −

2σnρ0(E)

h f

[
π∆0

E
+

(
1 +

∆
2
0

E(E − h f )

)
H(∆0 + h f − E)(E − h f )

[∆2
0
− (E − h f )2]1/2

]
, (3.41)

where H is the unit step function. For a thermal occupancy,

〈
Kσ2

��F(T)〉
σn

= −
2π∆0

h f

[
K0

(
∆0

kBT

)
+ exp

(
−
∆0

kBT

)
exp

(
−

h f

2kBT

)
I0

(
h f

2kBT

)]
, (3.42)
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where I0 is the zero-order modified Bessel function of the first kind.
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Figure 3.6: The first-order response functions for the real and imaginary parts of the conductivity at fmc = 3.0 GHz

versus energy in units of the gap, and a thermal occupancy. The left axis shows Equations 3.39 and 3.41 multiplied

by constants to make them dimensionless. For display, the density of states factors have been broadened using

∆2/∆0 = 0.0002. The right axis shows a thermal occupancy at a typical KID operating temperature. Figure B.1 shows

the same quantities at a much lower frequency, where the peaks in the response functions are closer together.

These expressions for Kσ1
and Kσ2

are plotted for two different frequencies in Figures 3.6

and B.1. The absorption of readout photons by the quasiparticle system may decrease the occupancy

at the gap and increase it at integer multiples of the readout photon energy. While Kσ2
is negative

for quasiparticles at all energies, Kσ1
is positive for frequencies near the gap but is negative for

quasiparticles with energies higher than the gap plus one readout photon. Shifting a quasiparticle

from ∆0 to ∆0 + h f will have a minor effect on σ2, but will flip the sign of its effect on σ1. Thus,

we expect the readout signal to have a larger effect on the dissipation in a resonator than on its

resonance frequency.

To discuss perturbations around a steady-state situation in Section 3.7, I use these response

functions with the additional proportional-perturbation assumption, namely, that perturbations δF

to the occupancy are proportional to the steady-state occupancy F. If the perturbation varies in

time, then δF(E, t)/F(E) = ǫ(t) for all energies E , where ǫ(t) ≪ 1 (usually) is the fractional size

of the perturbation. This assumption is not necessarily true, especially for larger perturbations,
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but it greatly simplifies calculations because, as discussed in Section 3.5, it allows us to write all

perturbations in terms of perturbations to the quasiparticle number.

If C − C(0) = 〈KC |F〉 is the shift in some quantity C from the zero-temperature value C(0)

resulting from the occupancy F, and if δC(t) = 〈KC |δF(t)〉 is the perturbation to the steady-state

value resulting from a perturbation δF(t) to F, we have

ǫ(t) =
δF(E, t)

F(E)
=

〈KC |δF(t)〉〈
KC

���F〉 =

δC(t)

C − C(0)
. (3.43)

That is, the fractional perturbations to all such quantities are equal. Equivalently, the derivative of

one first-order quantity with respect to another equals the ratio of the shifts from the zero temperature

values:

δA(t)

δB(t)
=

〈KA |δF(t)〉

〈KB |δF(t)〉
=

〈KA |F〉

〈KB |F〉
=

A − A(0)

B − B(0)
, (3.44)

which is constant in time.

3.5 The quasiparticle number model

In this section I discuss the steady-state and dynamical behavior of the quasiparticle system using only

the density of quasiparticles nqp =
〈
Knqp

��F〉
instead of the function F(E). The key results are the rate

equation for the quasiparticle density (Equation 3.45) and its solutions in steady-state (Equation 3.47)

and for time-dependent perturbations (Equation 3.54). A new phenomenological quantity emerges:

the quasiparticle relaxation time τqp, which describes the decay of small perturbations to the density.

Using Equation 3.15 (with phonon trapping included) and Equation 3.21, the rate equation for

the evolution of a homogeneous quasiparticle density is

dnqp(t)

dt
= γG(t) − γR(t) − γS(t) = γG(t) − Rnqp(t)

2 − Snqp(t). (3.45)

The first term is the total generation rate per unit volume. The second and third terms are, respectively,
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Figure 3.7: The decay of perturbations to the quasiparticle density versus time. The steady-state density is nqp =

1000 µm−3, the effective recombination constant is R = 3.9 µm3 s−1 using fiducial values for aluminum with a phonon

trapping factor F = 2, and the single-quasiparticle decay constant S is zero. The resulting quasiparticle relaxation time

is τqp = 127 µs. Large positive perturbations to the steady-state density can be caused by high-energy photons or other

energetic particles. Large negative perturbations are not expected to occur normally, but they could be created by an

abrupt increase in a constant level of illumination. There is a significant difference in behavior of the two solutions with

initial conditions of opposite sign. Because the sign of the quadratic term in Equation 3.48 is always negative, large

negative perturbations initially relax more slowly to the steady-state value than large positive perturbations, and this

distinction vanishes when the perturbation is small.

the decay rates per unit volume due to quasiparticle recombination in pairs with phonon emission

(including phonon trapping) and due to single-quasiparticle decay. See Appendix A for discussion

of similar rate equations.
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3.5.1 Steady-state

For a constant generation rate γG(t) = γG, the time derivative is zero and solving the quadratic

equation

0 = γG − Rn2
qp − Snqp (3.46)

gives the steady-state quasiparticle density

nqp =

[(
S

2R

)2

+

γG

R

]1/2

−
S

2R
. (3.47)

When single-quasiparticle decay is negligible, as we expect to be the case in an illuminated KID,

the steady-state density is simply nqp =
(
γG/R

)1/2
. This square-root behavior causes the detector

response to be inherently nonlinear for large signals.

3.5.2 Dynamics

To understand the behavior of perturbations around the steady-state density, it is convenient to rewrite

Equation 3.45 in terms of δnqp(t) = nqp(t) − nqp and δγG(t) = γG(t) − γG. Using Equation 3.46 to

cancel most of the steady-state values gives

dnqp(t)

dt
=

dδnqp(t)

dt
= γG + δγG(t) − R

(
n2

qp + 2nqpδnqp(t) + δnqp(t)
2
)
− S

(
nqp + δnqp(t)

)
= δγG(t) − Rδnqp(t)

2 −
(
2Rnqp + S

)
δnqp(t),

≡ δγG(t) − Rδnqp(t)
2 − τ−1

qp δnqp(t).

(3.48)

Here, τqp is the quasiparticle relaxation time, which can be expressed in several useful forms using

Equation 3.47:

τqp =
(
2Rnqp + S

)−1
=

(
2γG

nqp

− S

)−1

=

(
4RγG + S

2
)−1/2

=

∂nqp

∂γG

. (3.49)
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The relaxation time is important both as a probe of the microscopic physics and as a detector

parameter to be optimized. Before discussing it at length, I examine the behavior of solutions to

Equation 3.48 in two different limits that are relevant to detector operation.

First, consider small perturbations δγG to the generation rate that maintain the density close

to the steady-state value. The quadratic term will be much smaller than the linear term when a

perturbation δnqp is sufficiently small to satisfy

1 ≫ Rτqp |δnqp | =
|δnqp |

2nqp + S/R
. (3.50)

Thus, perturbations that are significantly smaller than the steady-state density are always small, and

larger perturbations may also be small if single-quasiparticle decay is significant. Assume that the

generation rate may vary around the mean value but that we can neglect the quadratic term. Since

the optical generation rate is proportional to the absorbed power, this situation corresponds to a KID

detecting a small, time-varying signal, as in CMB observation. Defining Fourier transforms of the

time-dependent quantities

δnqp(t) =

∫ ∞

−∞

dϕ exp(2πiϕt) δnqp(ϕ) and δγG(t) =

∫ ∞

−∞

dϕ exp(2πiϕt) δγG(ϕ), (3.51)

a Fourier solution to the linearized form of Equation 3.48 is

δnqp(ϕ) =
τqp

1 + 2πiϕτqp

δγG(ϕ). (3.52)

As expected, the low-frequency limit of this equation equals the derivative of the steady-state density:

lim
ϕ→0

δnqp(ϕ)

δγG(ϕ)
= τqp =

∂nqp

∂γG

. (3.53)

The response to small, time-varying signals has single-pole behavior with a cutoff frequency

ϕqp = (2πτqp)
−1. This indicates that the spectral density of the quasiparticle density (or number)
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fluctuations has a Lorentzian shape with a bandwidth set by the relaxation time.

Second, consider a sudden perturbation δnqp(0) that is sufficiently large that we can neglect

fluctuations in the generation rate and set δγG = 0. This is a reasonable description of a KID that

absorbs a high-energy photon or is hit by a cosmic ray, both of which may quickly generate a large

number of quasiparticles. (There is no physical process that is expected to instantly annihilate a large

number of quasiparticles. However, immediately after an abrupt increase in an otherwise constant

illumination rate the initial perturbation would be negative, though it must satisfy δnqp(0) > −nqp.)

In this limit, the solution for t > 0 is

δnqp(t) =
δnqp(0)

1 + [1 + Rτqpδnqp(0)][exp
(
t/τqp

)
− 1]
. (3.54)

Even for large perturbations where Rτqp δnqp(0) ≫ 1, after a time of order τqp the system will

have recovered to an excess density δnqp ∼ (Rτqp)
−1
= 2nqp + S/R. When a perturbation satisfies

Rτqp |δnqp(t)| ≪ 1, either initially or after some decay, the behavior of the solution at later times is

exponential decay to the steady-state value, which is also the solution of the rate equation when the

quadratic term is negligible. This extremely rapid decay from large density perturbations is a major

advantage for CMB observation, since such perturbations are likely to render the data useless until

the density approaches the steady-state value.

Figure 3.8 shows a fit of Equation 3.54 to time-ordered data from one of the co-planar waveguide

KIDs described in Chapter 6. The detector was illuminated by light from an electronic millimeter-

wave source described in Section 5.5 and Appendix C.2. The data shows the response as the

illumination is turned off. (More of this data set is shown in Figure 6.18.) The quasiparticle

relaxation time given in the legend is extracted from the fit. It should be possible to measure R by

combining careful measurements of detector response to thermal quasiparticles with measurements

at different illumination levels.
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Figure 3.8: Time-ordered data showing the detuning response as a millimeter-wave signal is turned off, and a fit to

Equation 3.48 multiplied by a constant. The quantity plotted on the vertical axis is the response of the detector expressed

as a fractional shift in the resonance frequency, discussed in Section 3.6 below.

3.5.3 The quasiparticle relaxation time

From the expression τqp =
(
4RγG + S

2
)−1/2

, we see that the relaxation time depends on all

the microscopic creation and annihilation processes: γG is the sum of generation rates from all

sources, R = R/F involves pair recombination modified by phonon trapping, and S includes all

single-quasiparticle decay sources. The two solutions to the rate equation discussed above illustrate

the two common methods for measuring τqp directly. One method, shown in Figure 3.8, involves

fitting the decay back to steady-state in order to extract the time constant governing the exponential

tail of the decay. Another method involves fitting the roll-off in the spectral density of time-ordered

data, which requires the quasiparticle noise to be measurable. Both of these methods require the

quasiparticle bandwidth ϕqp to be much less than either the bandwidth of the resonator or the

bandwidth of the readout system.

The exponential temperature dependence of the thermal generation rate makes it possible to

reduce it to very low levels. At sufficiently low temperatures, some other generation source may
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Figure 3.9: The quasiparticle relaxation time versus bath temperature, showing saturation at low temperature. The device

tested was an aluminum lumped-element KID. Because the resonator bandwidth of these devices was comparable to the

quasiparticle bandwidth, I performed these measurements at a frequency corresponding to a higher order resonance.

The relaxation time was extracted by fitting the exponential tail of the decay of the detector response to a pulse from an

LED. This data set was published in McCarrick et al. [80].

dominate, such as readout photons or optical photons leaking into a nominally sealed package. When

the total generation rate becomes constant as the temperature is further reduced, τqp will saturate, or

remain constant at some maximum value [75]. Alternatively, if some single-quasiparticle decay

channel becomes dominant at sufficiently low density, τqp will saturate because the decay rate per

quasiparticle is independent of the density. Merely observing saturation does not allow us to identify

its cause.

Several studies [76–79] have shown that ambient radiation from the experimental volume can leak

into a sealed metal package, but that the resulting quasiparticle generation can be made negligible by

using line filters on the coaxial cables entering the package, coating the inside of the package with

an infrared absorbing material, enclosing the package in a metal box with absorbing material on the

inside, and sealing the seams in the package with metal tape. Studies that have fully implemented

such enhanced shielding typically measure relaxation times of several ms [50, 76] in aluminum

devices.
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Figure 3.9 shows measurements of the quasiparticle relaxation time versus bath temperature.

The device was an aluminum lumped-element KID tested inside a sealed aluminum package (a

“dark” test) that was enclosed in a copper box containing a chunk of highly absorbent material. The

quasiparticle relaxation time saturates at 0.5 ms. This is the longest time we have observed in any

experiment but is less than was achieved in the studies with better shielding. In other experiments,

we have regularly used aluminum or copper tape to seal the seams in packages but have not generally

used other shielding. Thus, even in our dark measurements, saturation is likely to be caused by

background quasiparticle generation due to stray light. In experiments where detectors are tested

optically, the detectors are exposed the much higher ambient light level in the experimental volume,

which is typically of order 3 K.

It may be possible to measure the relaxation time indirectly, using steady-state measurements,

but this requires careful interpretation. Assume that constant power P excites quasiparticles with

average energy close to ∆ in a superconductor occupying volume V. Then, energy conservation

yields

P/V = γG∆ =
(
γR + γS

)
∆ = ∆nqp/τ, (3.55)

for some time τ. What is the relationship between τ and the relaxation time τqp? Using Equation 3.45,

τ−1
=

γR + γS

nqp

= Rnqp + S. (3.56)

Comparing this to τ−1
qp = 2Rnqp + S, we see that the relationship between these times depends on

the balance between pair recombination and single-quasiparticle decay. In particular, the equation

P = ∆nqp/τqp is correct only when pair recombination is negligible. In the opposite limit, where

single-quasiparticle decay is negligible, the relationship is τqp = τ/2. The factor of two arises from

linearization of the quadratic recombination term.

This illustrates the confusing point that there are several “lifetimes” associated with the

quasiparticle system. The pair-recombination lifetime τR is not directly accessible to typical
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experiments using superconducting resonators. Instead, these measure FτR, the effective lifetime of

a single quasiparticle, extended due to the phonon trapping effect discussed in Section 3.2.4. If

single-quasiparticle decay is negligible than this latter quantity equals τ in the energy conservation

equation above, and it could be measured in steady-state experiments. The relaxation time τqp is the

quantity extracted from dynamic experiments that measure pulse decay or quasiparticle bandwidth.

3.6 Resonators

3.6.1 A generic model for a shunt-coupled resonator

To understand KID response we need to understand how the behavior of a superconducting resonator

will change when the surface impedance shifts in some region of the resonator. A specific resonator

geometry can be analyzed using circuit concepts such as capacitance and inductance. However,

since many different resonator geometries can be used for KIDs, I begin by introducing a generic

resonator model.

The two relevant frequencies are the fixed readout tone frequency f̺ and the variable resonance

frequency fr. There are advantages to using lower readout frequencies, so KIDs are typically read

out at their fundamental resonance. Decreasing this frequency generally requires more area, which

is a precious quantity at the focal plane of a telescope.

In order to compare resonators with very different resonance frequencies, it is more convenient

to use dimensionless variables. The fractional frequency shift is s = 1 − fr/ f 0
r , where f 0

r is the

resonance frequency in some fiducial state, such as temperature approaching zero. One could

measure this shift directly by tracking the resonance frequency in real time. However, our readout

system can measure this shift directly only by sweeping the readout tone across a resonance, as

shown in Figures 3.2 and 3.10. This method is slow, and we thus measure s only in steady-state. A

simple readout technique is to sweep a tone across a resonance, use a resonator model to determine

the resonance frequency, then set a single tone at this frequency and sample rapidly. With this
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technique, the dimensionless quantity measured when obtaining time-ordered data is the fractional

frequency detuning x = f̺/ fr − 1 of the resonance frequency from the readout frequency. We set f̺

as close to fr as the readout electronics allow, and typically x < 10−5. The fractional frequency shift

and the detuning are clearly closely related: to a very good approximation, a shift δs corresponds

to an equal shift δx. Generally, I will use s when describing steady-state measurements and will

use x when describing time-ordered data. The signs of these parameters are chosen so that when

the resonance frequency fr decreases, as it does under increasing illumination, the dimensionless

parameter increases.

Additional parameters characterize the flow of energy in the resonator. The quality factor of a

resonator is defined to be the ratio of energy stored to the energy lost per radian of oscillation. The

latter equals the power lost divided by the angular oscillation frequency, which is typically very

close to the resonance frequency, so the resonator quality factor is

Qr =
2π frEstored

Pout

. (3.57)

We distinguish between two mechanisms for energy loss: Pout includes both dissipation internal to

the resonator and loss due to radiation back onto the feedline:

Q−1
r ≡ Λr = Λc + Λi ≡ Q−1

c +Q−1
i , (3.58)

where Λ = Q−1 is a notational convenience I will use repeatedly. The inverse quality factor, which I

refer to as a “loss,” is easier to work with, but quality factors are conventional.

Thus, the internal loss Λi = Q−1
i characterizes dissipation in the resonator, and an increase in

the quasiparticle number causes the internal loss to increase. As discussed further in Chapter 4,

the internal loss also includes various non-ideal sources of loss, such as dissipation in dielectrics,

radiation into free space, and dissipation caused by vortices in the superconducting film. The

coupling loss Λc = Q−1
c characterizes the coupling strength between the resonator and the feedline.
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An additional nuisance parameter, the asymmetry parameter A, is necessary to characterize a

commonly-occurring resonance asymmetry that can be caused either by parasitic coupling between

the resonator and the feedline or by an impedance mismatch between the feedline and the transmission

lines to which it connects [81]. For a symmetric resonance, A = 0.

KIDs are read out in the in the shunt-coupled configuration shown in Figure 3.1. It is convenient

to express the measured transmission past the resonators in terms of the forward scattering parameter

S21 = V2/V1, where V1 and V2 are the complex voltages on the feedline of, respectively, the wave

propagating toward the resonators and the wave arriving at the low-noise amplifier. (The readout

system actually records this quantity multiplied by the complex gain G of the system: R21 = GS21.)

In terms of the parameters defined above, the forward scattering response due to one resonator is

S21( f̺, fr,Λi,Λc, A) = 1 −
1 + iA

1 + (Λi + 2ix)/Λc

, (3.59)

which is equivalent to the more familiar form [70]

S21( f̺, fr,Qr,Qc, A) = 1 −
Qr(1 + iA)/Qc

1 + 2iQrx
. (3.60)

Figure 3.10 shows forward scattering data with the readout tone swept across the resonance frequency

and a fit to Equation 3.59. In time-ordered data collected at a fixed readout frequency the quantities

that vary in time are Λi and fr (and thus x), while Λc and A do not vary.

3.6.2 The effective kinetic inductance fraction

To model KID response, we must relate changes in the resonator parameters introduced above

to changes in the film surface impedance in the region where quasiparticles are generated. The

two resonator geometries used in this thesis are lumped-element resonators and quarter-wave

transmission-line resonators.

We begin with the simpler case of a lumped-element resonator. Figures 4.1 and 5.1 show
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Figure 3.10: Complex transmission data from a frequency sweep across a resonance. The resonator model given

in Equation 3.59 was fit to the data, and the points were normalized by dividing out the system gain. The device is

an aluminum CPW resonator with a resonance frequency near 3.5 GHz. In both panels, the purple (yellow) points

correspond to the low (high) end of the frequency sweep, which spans 2.0 MHz. (a) The frequency sweep data

and model in the complex S21 plane. The + symbols mark (0, 0) and (0, 1), which the model constrains the data

to approach far from the resonance. The internal loss is Λi = 8.9 × 10−6
= 1/1.1 × 105, and the coupling loss is

Λc = 3.2 × 10−5
= 1/3.1 × 104. This resonance has a relatively large value of the asymmetry parameter A = 0.3, which

causes the resonance circle to be rotated and expanded. (b) The same data and model plotted versus frequency, with

amplitude on the left axis and phase on the right axis. Because of the large asymmetry, the resonance frequency does

not appear to be at the center of the amplitude or phase curves.

drawings of aluminum lumped-element resonators, which consist of a meandered inductive trace and

an interdigital capacitor that are both electrically short at the resonance frequency. For these devices,

the resonance frequency is fr = (2π)−1(LC)−1/2 where L is the total inductance of the resonator and

C is its total capacitance. The total inductance L = Lg + Lk is the sum of the geometric inductance

Lg and the kinetic inductance Lk, where Xs = 2π f Lk. The response to an inductance shift in some

region is weighted by the square of the current in that region [82, 83]. For these resonators, the

current is approximately constant along the inductive meander and is very small in the capacitor.

Assume that quasiparticles cause a homogeneous shift in the surface impedance of the inductor.

Then, a small shift in the kinetic inductance Lk − Lk(0) from the zero-temperature value Lk(0)
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produces a new resonance frequency

fr ≈ fr(0)

(
1 −

Lk − Lk(0)

2[Lg + Lk(0)]

)
≡ fr(0)

(
1 −
α

2

Lk − Lk(0)

Lk(0)

)
. (3.61)

Here, the effective kinetic inductance fraction is

α =
Lk(0)

Lg + Lk(0)
=

Xs(0)

Xg + Xs(0)
, (3.62)

where Xg = 2π f Lg. In this simple case, the effective kinetic inductance fraction actually equals the

ratio of the kinetic inductance to the total inductance, but this is not true when the surface impedance

does not shift homogeneously.

The corresponding fractional frequency shift is

s =
α

2

Xs − Xs(0)

Xs(0)
. (3.63)

The approximations used here should be quite good in practice: for the lumped-element detectors

discussed in Chapter 5, the total fractional frequency shift between no illumination and very high

illumination is s < 10−3. Thus, all three of the frequencies f̺, fr, and fr(0) are very close to each

other so α can be treated as a constant.

Attributing all dissipation that occurs within the film to quasiparticles, the quasiparticle loss

is [70]

Λqp = Q−1
qp = α

Rs

Xs(0)
. (3.64)

The hybrid co-planar waveguide (CPW) KIDs discussed in Chapter 6 consist of two different

sections of CPW in series. The section closest to the transmission line is made from a high-gap

superconductor in which no quasiparticles are excited. The other section consists of an aluminum

center strip that is electrically connected to the high-gap superconductor center strip at one end and

to the ground plane at the other end. The total length is a quarter wavelength at the fundamental
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resonance frequency. The quasiparticles are confined to the aluminum region of the center strip,

called the active region, where the current is highest. Thus, only the surface impedance in the active

region is altered. For these resonators we can use the same equations as above with the geometric

complications folded into the effective kinetic inductance fraction [83].

3.7 Detector response and responsivity

In the quasiparticle number model, the response of a KID to light is determined by the following chain

of relations. First, the optical power absorbed by the detector is the product of the incident power

and the optical efficiency. Second, the absorbed power, photon energy, and material parameters

determine the optical quasiparticle generation rate. Third, the total quasiparticle generation rate

and the various quasiparticle decay channels determine the quasiparticle number. Fourth, the

quasiparticle number determines the complex conductivity. Fifth, the complex conductivity and

resonator geometry determine the surface impedance. Sixth, the surface impedance and resonator

geometry determine the resonance frequency and quality factors of the resonator. Seventh, the

resonator parameters and readout tone frequency determine the forward scattering parameter that is

measured by the readout electronics. This is a long list, but most of these relationships turn out to

be simple. I use response to mean the shift in some quantity from the zero-illumination case and use

responsivity to mean the derivative at a particular operation point.

3.7.1 Photodetection

If the incident optical power at some reference plane is PI and the optical power absorbed in the

active region of the detector is Po, then the optical efficiency ηI for power at this plane relates them:

Po = ηIPI. (3.65)
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The responsivity is

∂Po

∂PI

= ηI. (3.66)

The process by which the absorption occurs depends on the detector architecture. In the lumped-

element KIDs discussed in Chapters 4 and 5, millimeter-wave light is concentrated by a feed

horn onto a meandering inductor that forms the sensing region of the detector. For the co-planar

waveguide KIDs discussed in Chapter 6, the light is coupled through a feedhorn into a planar

ortho-mode transducer (OMT) antenna, and routed through millimeter-wave circuitry into the

high-current (shorted) end of a quarter-wave CPW resonator. Chapter 5 discusses a method for

obtaining the optical efficiency, and thus the absorbed power, from measurements of the noise level.
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Figure 3.11: A sketch of the number of quasiparticles excited per photon and the pair-breaking efficiency, both plotted

versus photon frequency and photon energy in units of the gap. The values on the upper horizontal axis are universal,

while the frequency values on the lower horizontal axis are calculated for a BCS superconductor with the bulk aluminum

Tc = 1.2 K. For hν > 4∆, the phonon trapping factor F affects the fraction of photon energy that is converted into

quasiparticles. Figure 4 of Guruswamy et al. [84] shows a theoretical calculation of ηpb that suggests 0.4 < ηpb < 0.6 at

higher energies. The choice made here of ηpb = 0.5 corresponds to a phonon trapping factor F ∼ 3. Figure 2 of de

Visser et al. [85] shows a measurement of ηpb that qualitatively agrees with this figure.
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3.7.2 Optical quasiparticle generation

As the optical power Po is absorbed in the active region of the KID, each absorbed photon generates

q ≥ 2 quasiparticles on average. The number of quasiparticles excited by a given photon with

hν ≥ 4∆ may vary, and for very high-energy photons the details of the down-conversion process

are complex [57]. For KIDs designed to resolve the energy of single photons, the variation of the

created quasiparticle number is a fundamental source of noise [82]. However, this variation is not

important for photometric detectors, which do not resolve individual photon arrivals. The variance

of the quasiparticle number under steady illumination will turn out to be linear in q, so we can

obtain correct results for the noise while considering only the average number of excitations per

photon. Most of the measurements presented here are made using photon energies hν & 2∆, where

q = 2 exactly.

In the KID literature one often encounters the pair-breaking efficiency

ηpb =
q
〈
Eqp

〉
hν

≈
q∆

hν
, (3.67)

where
〈
Eqp

〉
& ∆ is the average quasiparticle energy. Approximately, ηpb is the fraction of photon

energy that is converted into energy in the steady-state quasiparticle system. Figure 3.11 is a sketch

of q and ηpb for photon energies hν near the spectroscopic gap. For hν < 2∆, no quasiparticles are

excited because the excitations must be created in pairs. For 2∆ < hν < 4∆, each photon excites

exactly two quasiparticles and the remaining energy is converted into phonons that do not have

sufficient energy to break additional pairs. For 4∆ < hν each photon may break more than one pair,

and approximately half the photon energy is converted into quasiparticles. The value ηpb ≈ 0.6

is commonly used. However, as discussed in detail by Guruswamy et al. [84], ηpb depends on

the details of phonon trapping: it is lower when the phonon trapping factor is lower because a

high-energy phonon is more likely to escape before depositing its energy in the quasiparticle system.

Thus, if a detector absorbs optical power Po from photons with frequency ν, the optical
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quasiparticle generation rate is

Γo =
qPo

hν
=

ηpbPo

∆
, (3.68)

and the responsivity is

∂Γo

∂Po

=

q

hν
=

ηpb

∆
. (3.69)

3.7.3 Quasiparticle number

It is difficult to uniformly illuminate the active (sensing) region of a KID, so the generation rate is

likely to vary with position. Nevertheless, we now assume that diffusion equalizes the quasiparticle

density within the active region of the resonator. This allows us to use the results of Section 3.5

with the quasiparticle density replaced by the quasiparticle number Nqp = Vnqp, where V is the

active volume. The quasiparticle number depends on the total generation rate ΓG = γGV, which

accounts for all generation sources, such as absorption of optical photons, readout photons, and

thermal phonons:

ΓG = Γo + Γ̺ + Γt. (3.70)

We expect these rates to be approximately independent so that ∂Nqp

/
∂Γo = ∂Nqp

/
∂ΓG .

The steady-state quasiparticle number is given by Equation 3.47 multiplied by V:

Nqp =

((
VS

2R

)2

+

VΓG

R

)1/2

−
VS

2R
, (3.71)

with Nqp = (VΓG/R)
1/2 when single-quasiparticle decay is negligible.

The corresponding responsivity to slow perturbations around this number is given by Equa-

tion 3.49:

∂Nqp

∂ΓG

= τqp =

(
2RNqp

V
+ S

)−1

=

(
2ΓG

Nqp

− S

)−1

=

(
4RΓG

V
+ S2

)−1/2

. (3.72)

This equation is valid only for perturbations that occur on time scales much larger than τqp. To
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describe faster perturbations, we may define δNqp(t) = Nqp(t) − Nqp and δΓG(t) = ΓG(t) − ΓG, and

the corresponding Fourier transforms

δNqp(t) =

∫ ∞

−∞

dϕ exp(2πiϕt) δNqp(ϕ) and δΓG(t) =

∫ ∞

−∞

dϕ exp(2πiϕt) δΓG(ϕ). (3.73)

The solution is just Equation 3.52 multiplied by the active volume V:

δNqp(ϕ) =
τqp

1 + 2πiϕτqp

δΓG(ϕ). (3.74)

As shown above, the optical generation rate Γo is proportional to the absorbed optical power Po; as

shown below, the quantities measured by the KID readout system are proportional to Nqp. Thus,

when optical generation dominates, we expect the detector response to go as P
1/2
o and the responsivity

to go as P
−1/2
o . The data shown in Figure 5.2 behave according to this prediction.

3.7.4 Complex conductivity

The complex conductivity σ for an arbitrary quasiparticle occupancy F(E) is determined by the

Mattis-Bardeen equations, given in Section 3.3.2. KIDs should be operated at T ≪ Tc and should

be designed so that, under the highest expected illumination, both real and imaginary parts of the

change in the complex conductivity remain small compared to the zero temperature value:

σ − σ(0)

σ2(0)
=

〈Kσ1
|F〉 − i 〈Kσ2

|F〉

σ2(0)
, (3.75)

where σ2(0) = π∆0σn/h f . To use analytic results for the conductivity response, I will assume

that F remains sufficiently small that the first-order approximations discussed in Section 3.4 and

Appendix B remain accurate. As shown by Figures 3.6 and B.1, the response functions for the

components of the conductivity are quite different, so an arbitrary perturbation to the occupancy

could cause unrelated shifts in σ1 and σ2. We avoid this complication using the assumption, also
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introduced in Section 3.4, that perturbations δF are proportional to F. In this case, the responsivity

is

δσ

δNqp

=

〈Kσ |δF〉

〈KNqp
|δF〉

=

〈Kσ |F〉

〈KNqp
|F〉
=

σ − σ(0)

Nqp

. (3.76)

Taking real and imaginary parts gives

δσ1

δNqp

=

〈Kσ1
|F〉

〈KNqp
|F〉

and
δσ2

δNqp

=

〈Kσ2
|F〉

〈KNqp
|F〉
. (3.77)

When the quasiparticle number increases, the real part of the conductivity increases and the

imaginary part decreases.
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Figure 3.12: The normalized response ratios of the real and imaginary conductivity to the thermal quasiparticle density.

The vertical gray line marks the fiducial bath temperature, assuming fiducial values for aluminum.

We can express the ratios of the real and imaginary components of the conductivity response to

the quasiparticle density response in dimensionless form (using the same normalization constants,

up to a sign, as Zmuidzinas [70]):

Υσ1
[F] =

〈Kσ1
|F〉 /σ2(0)

〈Knqp
|F〉 /2N0∆0

;

Υσ2
[F] =

〈Kσ2
|F〉 /σ2(0)

〈Knqp
|F〉 /2N0∆0

.

(3.78)

59



These functions must be calculated numerically for an arbitrary occupancy. For a thermal occupancy

we can use Equations 3.10, 3.40, and 3.42 to obtain

Υσ1
(T) =

(
8∆0

π3kBT

)1/2

sinh

(
h f

2kBT

)
K0

(
h f

2kBT

)
(3.79)

and

Υσ2
(T) = −

[
1 +

(
2∆0

πkBT

)1/2

exp

(
−

h f

2kBT

)
I0

(
h f

2kBT

)]
. (3.80)

These functions are plotted in Figure 3.12 for the fiducial readout frequencies. The imaginary

part of the conductivity responds much more to quasiparticles than the real part. Additionally,

at the fiducial bath temperature, the ratio of the reactive response to the dissipative response

β(T, f ) ≡ |Υσ2
(T, f )/Υσ1

(T, f )| is nearly 30 at f1p, while it is only about 3 at fmc. These predictions

will turn out to be approximately true even under optical illumination.

Finally, combining Equation 3.77 with Equation 3.78 gives

∂σ1

∂Nqp

=

σ2(0)

2N0∆0V
Υσ1

[F] (3.81)

and

∂σ2

∂Nqp

=

σ2(0)

2N0∆0V
Υσ2

[F]. (3.82)

Because Υσ2
is negative, the imaginary part of the complex conductivity decreases with increasing

quasiparticle number.

3.7.5 Surface impedance

Taking derivatives of the first-order expressions in Equation 3.34 leads to

∂Rs

∂σ1

=

ζXs(0)

σ2(0)
, (3.83)
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and

∂Xs

∂σ2

= −
ζXs(0)

σ2(0)
. (3.84)

3.7.6 Resonator parameters

From Section 3.6, we have

Λqp =
αRs

Xs(0)
(3.85)

and

s =
α

2

Xs − Xs(0)

Xs(0)
. (3.86)

The responsivities are thus

∂Λqp

∂Rs

=

α

Xs(0)
(3.87)

and

∂x

∂Xs

=

∂s

∂Xs

=

α

2Xs(0)
. (3.88)

3.7.7 The forward scattering parameter

When the resonator parameters Λi(t) and x(t) change slowly, the S21 response is given by the partial

derivatives in the obvious way:

ΣΛi
≡
∂S21

∂Λi

=

(1 + iA)Λc

(Λc + Λi + 2ix)2
=

(1 − S21)
2

(1 + iA)Λc

(3.89)

and

Σx ≡
∂S21

∂x
= 2i
∂S21

∂Λi

=

(2i − 2A)Λc

(Λc + Λi + 2ix)2
=

2i(1 − S21)
2

(1 + iA)Λc

. (3.90)

Factoring these equations shows that the response is maximized when x = 0 and when Λi = Λc [70].

When x = 0 and A = 0, S21 and ΣΛi
are purely real, while Σx is purely imaginary. The partial

derivatives are orthogonal even when these conditions are not satisfied, and they correspond to
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Figure 3.13: Theoretical predictions for the S21 response to an increase in the quasiparticle number. The parameter

β = −Υσ2
/Υσ1

= 2δx/δΛi determines the trajectory of the response in the complex S21 plane.

directions that are tangent to and normal to the resonance circle.

The forward scattering parameter does not react instantly to changes in the resonator parameters,

and this effect can be accounted for using a resonator transfer function ξr. When x = 0, the Fourier

domain transfer function is just a single-pole low-pass filter with the same shape as the resonator [70,

83]: ξr(ϕ) = (1 + iϕ/ϕr)
−1, where ϕ is the signal frequency and ϕr = frΛr/2 is the resonator

bandwidth, which is half its linewidth. The resonator bandwidth is generally much larger than the

quasiparticle bandwidth. However, the lumped-element resonators discussed in Chapters 4 and 5

have unusually low resonance frequencies and low internal loss, and for these resonators the two

bandwidths are similar.
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3.7.8 Summary
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Figure 3.14: MKIDArray02-0001: the change in internal loss and fractional frequency shift versus temperature for a

multichroic 3410 MHz resonator. Here, δΛi = Λi − Λ
min
i . The points are the measured data, and the corresponding

lines are Equation 3.91 for the internal loss and Equation 3.92 for the fractional frequency shift, both evaluated using

fiducial parameters and an effective kinetic inductance fraction α = 0.2.

We can now combine equations from the preceding sections to obtain the detector response and

responsivity. The steady-state quasiparticle loss is

Λqp =
α

Xs(0)

ζXs(0)

σ2(0)
σ1 =

αζ

σ2(0)
〈Kσ1

|F〉 , (3.91)

and the steady-state fractional frequency shift is

s =
α

2Xs(0)

(
−
ζXs(0)

σ2(0)

)
[σ2 − σ2(0)] = −

αζ

2σ2(0)
〈Kσ2

|F〉 . (3.92)

(Recall that Kσ2
is negative.) Figure 3.14 shows the above equations, calculated for a thermal

occupancy, along with data from a multichroic CPW KID. The theory and data agree within about a

factor of two, but the behavior of this resonator appears to be significantly affected by two-level

systems in nearby dielectrics. (See Section 4.1 and Section 6.7.)
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To describe time-dependent perturbations around these values, caused by δF(t), we can write

δΛqp(t) =
∂Λqp

∂Rs

∂Rs

∂σ1

δσ1(t) =
αζ

σ2(0)
〈Kσ1

|δF(t)〉

=

αζ

σ2(0)

〈Kσ1
|F〉

〈KNqp
|F〉

〈KNqp
|δF(t)〉

=

αζΥσ1

2N0∆0V
δNqp(t),

(3.93)

where Υσ1
= Υσ1

[F], and

δx(t) =
∂x

∂Xs

∂Xs

∂σ2

δσ2(t) = −
αζ

2σ2(0)
〈Kσ2

|δF(t)〉

= −
αζ

2σ2(0)

〈Kσ2
|F〉

〈KNqp
|F〉

〈KNqp
|δF(t)〉

= −
αζΥσ2

4N0∆0V
δNqp(t),

(3.94)

where Υσ2
= Υσ2

[F] and δσ2 = σ2 − σ2. Since Υσ2
is negative, both δΛi and δx increase when the

quasiparticle number increases. Finally, we can relate the quasiparticle number to the generation rate,

which is proportional to the absorbed power. The steady-state values will be set by the steady-state

generation rate ΓG. As above, consider small perturbations δΓG(t) = ΓG(t) − ΓG around this rate.

Then, given the frequency-domain perturbation δΓG(ϕ), the frequency-domain quasiparticle loss

response is

δΛqp(ϕ) =
αζΥσ1

2N0∆0V

τqp

1 + 2πiϕτqp

δΓG(ϕ). (3.95)

Similarly, the frequency-domain detuning response is

δx(ϕ) = −
αζΥσ2

4N0∆0V

τqp

1 + 2πiϕτqp

δΓG(ϕ). (3.96)
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When the perturbations in the generation rate are due to incident optical power PI, we can use

δΓG(ϕ) =
qηI

hν
δPI(ϕ). (3.97)

These equations describe the quasiparticle loss, but the resonator behavior depends on the total

internal loss. Using Λqp = χqpΛi, the forward scattering response can be included straightforwardly.

As discussed below, we usually use the resonator model to obtainΛi and x, which is more convenient

than working with S21.

3.7.9 Time-ordered data

To extract the time-ordered data in terms of the resonator parameters from the raw R21(t) data, we fit

a model to the data that includes a background factor multiplying Equation 3.59. Dividing by the

background model gives S21(t). We assume that the internal loss Λi and detuning x vary in time,

while the coupling-related parameters Λc and A do not change. Then, the resonator parameters are

given by the real and imaginary parts of the equation

Λi(t) + 2ix(t) = Λc

(
1 + iA

1 − S21(t)
− 1

)
. (3.98)

Figure 3.15 shows some time-ordered data extracted using this procedure. This method ignores the

resonator transfer function, so it might become less accurate at high frequencies, especially if the

resonator is significantly detuned.
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Figure 3.15: Time-ordered data showing the response to millimeter-wave light. The device is an aluminum lumped-

element KID that was used for the published research described in Chapter 5. The output of the millimeter-wave source

was chopped at 122 Hz. The entire time series is about 4 s and is sampled at 31 kHz. (a) The real and imaginary parts

of S21. The gray line is the resonator model, the small black points are all the data, and the red points are calculated

by averaging all points separated by one period of the signal used to chop the source. The few points that are widely

separated from the rest, to the upper right, were probably caused by a cosmic ray impact. (b) The time-varying resonator

parameters versus time. Only 0.1 s of data is shown. The detuning response is much larger than the loss response, as

expected for a device with such a low resonance frequency.
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Chapter 4

Sources of loss

The number of KIDs that can be multiplexed depends on the bandwidth needed by each resonator

and the total bandwidth of the readout electronics. The resonator linewidth – that is, the full-width,

half-maximum bandwidth – is br = Λr fr. To avoid resonance collisions and minimize electronic

crosstalk one might design for adjacent resonance frequencies to be separated by at least 5 times br.

For reasonable multiplexing, one might require Λr = Λi +Λc < 10−4, corresponding to Qr > 104. If

the resonators are designed so thatΛc ≈ Λi under the expected optical load, this givesΛi . 5 × 10−5.

The device sensitivity is improved when the quasiparticle loss dominates the total internal loss so

that χqp approaches 1.

The total internal loss is the sum of all the relevant loss terms:

Λi = Λqp + Λsub + ΛTLS + Λnf + Λv + · · · , (4.1)

where the terms shown here correspond respectively to quasiparticle loss (Section 3.7), loss due

to the bulk dielectric substrate and due to two-level systems on nearby surfaces (Section 4.1), loss

caused by near-field coupling to normal metal (Section 4.2), and loss due to magnetic flux vortices

(Section 4.3). Another possible source of loss is radiation, which may propagate either into the

substrate or into free space [70, 86]. From the above design requirements, we see that the sum of all
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non-quasiparticle loss terms should satisfy Λi − Λqp ≪ 5 × 10−5.

4.1 Dielectrics

KIDs are typically fabricated on single-crystal dielectrics with very low loss, such as sapphire and

intrinsic silicon. With careful fabrication and shielding, aluminum co-planar waveguide resonators

on sapphire have achieved Λi ≈ 10−6 at single-photon readout levels, and as low as Λi ≈ 10−7 at

higher readout power, which suppresses the dielectric loss [87]. With one exception, all of the

resonators discussed in this thesis are fabricated on high-resistivity, float-zone silicon substrates.

Thus, we can neglect the loss due to the bulk substrate except possibly under dark conditions,

where the quasiparticle loss is extremely low. (The exception to the above is the prototype 23-pixel

multichroic KID array discussed in Section 6.7, which is fabricated on a silicon-on-insulator wafer

that contains a silicon oxide layer and a lower-resistivity thick handling wafer.)

Two-level systems (TLS) that occur in amorphous dielectrics at interfaces, such as surface oxides,

are a more significant source of loss in superconducting resonators [88–93]. The loss due to TLS is

given by

ΛTLS = ΛTLS,0
tanh (h f /kBT)[

1 + (Pi/P∗)β/2
]1/2

(4.2)

where ΛTLS,0 is the low-power loss, Pi is the power flow into the resonator, P∗ is a critical power that

depends on the TLS physics, and the exponent β ≈ 1.6 − 2 depends on the resonator geometry [92].

The critical power is much less than the power levels typically used with KIDs, so we expect

ΛTLS ∝ P−0.5
̺ or a slightly weaker dependence [70].

The loss contributed by dielectrics in a given region depends on the fraction of electric field

energy in that region. Using the definition of the quality factor (or its inverse) we can write

Λdielectric =

∑
i

Λi =

∑
i

αi tan δi, (4.3)
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where the index i refers to different dielectrics that occupy different regions, the participation ratio

αi equals the fraction of total electric energy in the volume occupied by the ith dielectric, and tan δi

is the intrinsic loss tangent for that dielectric [89]. Assuming that the losses are small enough

not to perturb the field configuration, one can extract the participation ratio for a dielectric using

electromagnetic simulations that use several different loss tangents for that dielectric, and fitting the

results.

4.2 Near-field coupling

In an early generation of aluminum lumped-element resonators on intrinsic silicon, we measured

internal loss Λi ≈ 2.5 × 10−5
= 1/40 000, which was significantly lower than expected [80]. At

several millimeters on a side, these devices were much larger than the substrate thickness of about

0.5 mm. (This large area was required to produce resonance frequencies around 100 MHz.) These

devices were tested in packages machined from oxygen-free, high conductivity copper with gold

plating. The model we developed was that the resonator fields were still sufficiently large at the

surface of the package, on the opposite side of the substrate, to produce dissipation due to the

interaction with the relatively lossy normal metal.

To test this idea, we fabricated subsequent packages from aluminum alloys (mostly 6061-T6

and QC-10) that we measured to superconduct near the bulk aluminum transition temperature of

1.2 K. Lumped-element resonators tested in these packages had much lower internal loss, typically

10−6 < Λi < 10−5, indicating that switching to aluminum had greatly reduced the dissipation.

Additional evidence for this theory came from later observations that all-niobium lumped element

resonators with large capacitors responded to temperature changes well below 1 K, qualitatively as

expected for aluminum, while co-planar waveguide (CPW) resonators fabricated on the same wafer

did not respond to such temperature changes. This is consistent with the CPW fields being more

strongly confined, due to the ground plane, and thus interacting less with the material beyond the

substrate. Goetz et al. [94] showed that this source of loss may also occur in CPW resonators if the
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Figure 4.1: Photographs and drawings of the magnetic flux vortex experiment. Left: A photograph of the detector

module tested in this study. The package lid is removed and the KID array is visible. Metal clips, not shown here, are

used to hold the KID array in place. Center: A scale drawing of the lumped-element KID in the blue box on the left.

Right: Detail of the center panel, showing all of the trace widths used in the resonator. Our hypothesis is that the

ambient magnetic field in the experimental volume was sufficiently strong to create vortices in the widest (12 µm) trace,

causing unexpectedly high loss.

substrate is sufficiently thin and the material on the opposite side is sufficiently lossy.

Quantifying the loss in the early experiments was complicated by the fact that the aluminum

may have also improved the magnetic shielding around the detectors. We did not perform additional

experiments to conclusively attribute the excess loss to near-field coupling instead of the magnetic

flux vortices discussed in the following section. Superconducting aluminum is expected to have

much lower thermal conductivity than copper, due to the absence of an electronic contribution, but

we have seen no evidence that the thermal conductivity is insufficient.

4.3 Magnetic flux vortices

This section describes an experiment we performed in order to better understand anomalous loss

in lumped-element resonators. This research was published as D. Flanigan et al., “Magnetic

field dependence of the internal quality factor and noise performance of lumped-element kinetic

inductance detectors,” Applied Physics Letters 109, 143503 (2016).
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4.3.1 Introduction

The suitability of KIDs as a detector technology for photometry depends in part on the fact that

they can exhibit high resonator quality factors Qr. By tuning each resonator to a unique frequency

and taking advantage of the narrow bandwidth corresponding to high Qr, hundreds or thousands of

KIDs may be read out on the same feed line using frequency division multiplexing. To maintain

excellent noise performance and multiplexing capability, it is desirable for the internal loss to be

dominated by quasiparticles.

Before incorporating magnetic shielding in the cryostat used to test detectors, we sometimes

observed internal quality factors significantly lower than expected. The packages we use to test

KIDs are made from aluminum, a type-I superconductor, which should expel external magnetic

fields when superconducting and thus could function as a magnetic shield. Indeed, after the system

is cooled well below the bulk aluminum critical temperature of 1.2 K, the KIDs do not detectably

respond to externally applied magnetic fields, regardless of their internal quality factors. However,

thin films of type-I superconductors permit magnetic flux entry in the form of vortices [95, 96].

These vortices produce loss in thin-film superconducting resonators [68, 92, 97–102] because an

alternating current in a thin-film trace produces an oscillating Lorentz force on a vortex, and the

vortex motion is dissipative [97].

We developed the following hypothesis to explain the excess loss: since the thin film used in the

KID has a critical temperature Tc = 1.4 K, and thus transitions before the package when the system

is cooled, vortices formed in the un-shielded film become trapped there and persist when the package

becomes superconducting as the system is cooled far below Tc. The presence of vortices at the

KID operating temperature (about 150 mK) would depend on the field present when the aluminum

film transitions. We tested this hypothesis by varying the strength of the ambient field at 1.4 K and

measuring Qi at the KID operating temperature.
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4.3.2 Experiment

The resonators used in this study are lumped-element kinetic inductance detectors [103] lithograph-

ically patterned from a 20 nm thick aluminum film on a 500 µm thick high-resistivity, float-zone

silicon substrate. They were designed for astrophysical measurements at millimeter wavelengths.

The detectors tested in this study were not optically illuminated and were instead mounted inside a

light-tight aluminum package with copper tape covering the seam to prevent light leaks. The package

was machined from QC-10, an aluminum alloy for which we have measured a critical temperature

near that of bulk aluminum (1.2 K). The left panel of Figure 4.1 is a photograph of the KID array in

the package. Fourteen resonators were patterned in this array. For this study we focused on just three

of these resonators, with resonance frequencies fr of 78 MHz, 116 MHz and 161 MHz. The center

and right panels of Figure 4.1 are drawings of one resonator that show the various trace widths used

in different regions. The width of the traces is important here because magnetic flux vortices will

form at lower field magnitudes in wider traces. Figure C.6 is a photograph of the cryostat used in

this experiment. Inside the cryostat, the package was mounted to a gold-plated copper plate that is

thermally connected to the cold stage of an adiabatic demagnetization refrigerator (ADR) backed by

a helium pulse tube cooler.

The ambient magnetic field of the room in the region of the package was measured to be

downward to within 10° of vertical. We do not consider any effect of the in-plane component of the

magnetic field and refer hereafter to only the vertical component of the field, which is normal to the

aluminum film. All reported fields were measured using a gaussmeter (Lake Shore model 425) that

uses a calibrated single-axis Hall probe (Lake Shore model HMMA-2504-VR). Taking the upward

direction to be positive, the ambient field is Ba = −30 ± 1 µT. While collecting data over several

weeks we frequently measured the ambient field near the cryostat, and observed changes within a

range of a few µT. Since these variations are small compared to the range of applied fields, we did

not attempt to correct for them.

We created a magnetic field normal to the KIDs using an array of seven small NdFeB permanent
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Figure 4.2: The measured magnetic field of the magnet array versus distance along its center axis. The fit is acceptable

over the range of distances used in the experiment, shown by the vertical gray lines. The labels refer to the orientation of

the field produced by the array.

magnets mounted outside the cryostat. The magnets were arranged in a triangular lattice 70 mm in

diameter in order to produce an approximately uniform field at the detector array, which is 28 mm by

13 mm. The lateral variation in the field was measured to be less than 10%. As shown in Figure 4.2,

the normal component of the magnet array field Bm(d) was measured as a function of distance d

from the plane of the magnets along the center axis. In both orientations, the data were fit to the

model

Bm(d) = ad−3
+ b, (4.4)

as expected for the on-axis field of a dipole plus a possible offset. The offsets resulting from the fits

are a few µT.

To record a data set, we first establish a magnetic field configuration by positioning the magnet

array some chosen distance from the KID array. The cryostat shells are aluminum (well above

its Tc), the cold stage plate is gold-plated copper, and the other materials near the package are

non-magnetic, except where noted below. Thus, the ambient magnetic field and the field from the
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Figure 4.3: The points are forward scattering parameter S21 data from sweeps of the readout tone across the 161 MHz

resonance. The data have been normalized to 1 off-resonance using the fits to the resonator model, which are plotted as

lines. The color bar shows the calculated field B in which the resonator was cooled.

permanent magnets should enter the cryostat unaltered. The total magnetic field that we calculate is

B(d) = Ba + Bm(d), using the fits of Equation 4.4. After setting the field, we cycle the ADR, let the

package and KID array cool well below Tc, regulate the temperature of the package at 153 ± 4 mK,

then collect data. For each resonator we first, using a ROACH-based readout, sweep the readout

tone frequency across the resonance and fit the data to the resonator model in Equation 3.59, then set

the readout tone to the resonance frequency obtained from the fit and collect time-ordered data for

30 s. The data set yields a value for Qi and a noise spectrum for that magnetic field configuration.

All measurements were recorded using a constant readout tone power of approximately −100 dBm

on the feedline, below the onset of nonlinear effects in the resonators. This process was repeated

for a range of distances. For comparison, we also recorded data with a five-sided mu-metal shield

surrounding the cryostat. The contribution of the ambient field to the interior of the mu-metal shield

was measured to be less than 1 µT, and we take it to be zero when the shield is used.
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4.3.3 Results

Figure 4.3 shows the behavior of one resonator as Bm is varied. At higher field magnitudes, fr and

Qi both decrease, while Qc does not change. As shown in Figure 4.4, the loss minimum for all

three resonators occurs over a range of fields centered near B = 0, and the loss increases as the field

magnitude departs from this central value. This result is consistent with previous studies of vortices

in thin films, which have generally found that increasing field magnitude creates both higher vortex

density in narrow strips and higher loss in resonators. Direct imaging of the field near narrow strips

of thin-film niobium [104] and YBCO [105] has shown that few or no vortices enter the strip below

a threshold field magnitude Bth, which varies with the trace width w approximately as Bth ∼ Φ0w
−2,

where Φ0 is the flux quantum. Measurements of the vortex-induced loss in aluminum and rhenium

thin-film resonators cooled in a magnetic field normal to the film showed that the field had no effect

on the loss below a threshold magnitude, and that well above this level the loss was approximately

proportional to the excess magnitude above the threshold [97]. The entry of even a single vortex

into a region of high current flow in a resonator can cause significant loss [68].

In Figure 4.4, the center of the low-loss region is offset from zero by about 25 µT. We believe

that this offset is caused by fields not included in the calculation of B. First, during the course of

these measurements we discovered that the stainless steel Heli-Coil inserts in the millikelvin stage

plate are magnetized. While this Heli-Coil field is not constant across the KID array, its magnitude

and direction approximately account for the observed offset. Second, while the ADR is well-shielded

with Vanadium Permendur, it produces a strong field and some leakage is possible. To estimate the

stray field from the ADR, we conducted a separate measurement of the vertical component of the

field Ba + BADR. Because our Hall probe cannot operate at cryogenic temperatures we made the

field measurement 6 cm below the package just outside the cryostat. When the current through the

ADR magnet is at its peak and the package is at 3 K, the ADR field is detectable. However, BADR

decreases during the ADR cycle because the current in the coil decreases, and the measured field

returns to within the measurement uncertainty of Ba when the package reaches 1.4 K, indicating that
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Figure 4.4: The inverse internal quality factor versus magnetic field (Ba + Bm), plotted for three resonators. The vertical

gray line marks the field condition when a mu-metal magnetic shield is placed around the cryostat and no magnet array

is applied. The dotted black line marks the field condition with no magnetic shield present and no magnet array. The

points to the left of the dotted black line were recorded with the magnet array polarity reversed so that it augmented

the ambient field. The minimum is likely shifted away from zero because the Heli-Coil inserts in the cold plate of the

cryostat can produce a field of about 25 µT.

BADR is small at the relevant point in the cycle. Our conclusion is that the ADR field could produce

a shift in the center of the low-loss region shown in Figure 4.4, but it is likely to be a smaller source

of systematic error than field from the Heli-Coil inserts.

Interpreting the offset in this way, the threshold field for vortex entry is Bth ≈ 30 µT. As shown

in Figure 4.1, the widest traces in these resonators are 12 µm; these are located only where the

coupling capacitor runs along part of the much larger capacitor that sets the resonance frequency.

The threshold field for this width is expected to be Φ0w
−2
= 14 µT (up to a factor that is theoretically

expected to be of order unity). Since these wider traces are near the junction with the inductor, most

of the current will flow through them on the way into the 8 µm wide interdigital capacitor tines, so

we expect vortex entry here to produce loss. Previous measurements of similar lumped-element

resonators with a maximum trace width of 8 µm consistently exhibited high Qi [80]. The crucial

difference seems to be that the 12 µm trace in these devices permits vortex entry at a threshold field

less than the ambient field, while the 8 µm traces did not.
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Figure 4.5: The spectral density of the fractional frequency detuning time series data from the 161 MHz resonator. The

color scale corresponds to the magnetic field (Ba + Bm). To more clearly show the trend at low frequencies, the lowest

15 harmonics of the 1.412 Hz pulse tube cooler frequency have been masked in all of the spectra. The color bar is the

same as Figure 4.3.

In SQUIDs, the presence of vortices is known to produce flux noise with a typical 1/ f spectral

density [106]. To investigate the possibility of vortices producing excess noise in the resonators,

we decomposed the on-resonance time-ordered data into two real time series corresponding to

the fractional frequency shift x(t) and inverse internal quality factor, or internal loss, Q−1
i (t). The

spectral density Sxx(ϕ) of the x(t) data is shown in Figure 4.5. Larger field magnitudes correspond

to higher loss, and thus a higher amplifier noise level. Besides this expected effect of lower Qi,

we see no evidence for additional contributions to the noise due to the presence of vortices. Only

amplifier noise is visible in the internal loss fluctuation spectra (not shown here).

To verify that the superconducting detector package is an effective magnetic shield when cold,

we altered the magnetic field after the package had fully cooled and looked for changes in Qi and fr.

We cooled the package in an initial field condition near the center of the low-loss region in Figure 4.4,

collected the nominal data set, moved the magnet array to establish a new high-field condition at the

package, and then collected a second data set. Between these data sets, neither Qi nor fr changed

significantly, indicating that the perturbation in the applied magnetic field condition did not affect

the resonators either through vortex entry or kinetic inductance non-linearity [70, 107]. Note that
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these second points are not shown in Figure 4.4. The observation that some vortices remain in the

film even when the package is shielding the resonators is consistent with the hysteretic magnetization

curves observed in field-cooled type-I thin films [108, 109] and with hysteretic loss observed in

niobium thin-film resonators [100]. We can use a result of Stan et al. [104] to estimate the number

of vortices N present just below Tc in a trace of width w = 12 µm and length ℓ = 1000 µm (this

length varies substantially between resonators): N ≈ (B − Bth)wℓ/Φ0 ∼ 300 at the highest field

magnitudes.

4.3.4 Discussion

When the system is at the operating temperature, the superconducting aluminum package provides

some magnetic shielding. This could be useful for detectors deployed on a telescope, which may be

required to move through the Earth’s field. However, our results show that additional shielding is

necessary to prevent vortex creation when the module passes through the superconducting transition.

A detector package made from a type-I superconductor with a Tc higher than that of the film should

be more effective.

The mu-metal magnetic shield surrounding the cryostat greatly attenuates external fields, but

hardware elements such as Heli-Coil inserts or nickel-plated connectors, which are commonly used

near the detector package inside the cryostat, could produce magnetic fields strong enough to yield

vortices [92, 102].

The devices themselves may be modified to reduce vortex formation by adding flux-trapping

holes [99, 102] or by using a fractal geometry [101]. To cancel the ambient field, it may be more

convenient to use a Helmholtz coil instead of permanent magnets [68, 97, 98, 100]. Finally, heating

the KID arrays inside the superconducting package to the point where the aluminum film becomes

normal would cause the vortices to dissipate, and they should not reappear if the package remains

superconducting during this process.
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Chapter 5

Sensitivity and noise

As discussed in Section 2.2.2, detectors that measure the CMB must make high-sensitivity

measurements of faint signals at low audio frequencies. The sensitivity of photometric detectors

like those discussed in this thesis is a question of signal-to-noise: for a given measurement time,

what is the ratio of detected power to the standard deviation of the mean of this power? This ratio

determines how long it takes to measure a given fractional anisotropy at some point on the sky. In

this chapter, I use the responsivity equations derived in Section 3.7 to compare the relevant noise

sources and illustrate their variation with variables such as optical load, detector temperature, and

readout power.

In Section 5.1, I discuss the generation noise due the randomness of photon arrival, which is the

dominant noise source for an ideal photometric detector. In Section 5.2, I discuss the fundamental

noise due to random generation and recombination of quasiparticles, using the quasiparticle number

model introduced in Chapter 3. In Section 5.3, I discuss noise due to two-level systems (TLSs) in

dielectrics on interfaces near a resonator, which cause fluctuations in the dielectric constant and

thus frequency noise. In Section 5.4, I discuss noise caused by the electronics used to read out

the detectors, especially the cryogenic amplifier. Finally, Section 5.5 contains published research

describing measurements of photon noise in a lumped-element KID.
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5.1 Photon noise and noise-equivalent power

A hypothetical noiseless detector that measures a light source with a constant brightness will still

measure fluctuations due to the randomness of photon arrival times. This photon noise is the

fundamental noise source for photometry. Consider a detector for photons with frequency ν that

occupy some effective optical bandwidth B ≪ ν. The occupancy of the photon state is n and the

band-average detection efficiency is η. Then, the average detection rate, which equals the probability

per unit time for photon detection, is

κ = ηnB. (5.1)

Measuring this average photon arrival rate (or, equivalently, the power) is the goal of photometry.

The variance of the mean of the detected photon rate after detection time τ is [110]

σ2
κ = τ

−1Bηn(1 + ηn) = τ−1
(
κ + κ2/B

)
. (5.2)

The first term here is due to photon quantization and is called the shot noise. The second term is due

to correlations between photon arrival times due to the Bose statistics of the photons, and it is called

the wave noise or photon-bunching noise. (The variance of the thermal occupancy of a photon

mode is σ2
n = n + n2.) Despite this connection to particle statistics, the wave noise term actually

describes the classical noise level, as it dominates at high power. It can be thought of as being due

to beating between nearby Fourier components of a classical signal that occupies the bandwidth

B. More accurate formalisms for calculating the photon noise involve integrals over the optical

band [110]. Going beyond the narrowband approximation requires knowledge of the absorption

spectrum, so B as used here is an effective bandwidth.

If photon noise is the only noise source, then the signal-to-noise ratio is

κ

σκ
=

(
τB

1 + (ηn)−1

)1/2

. (5.3)
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When ηn ≪ 1 increasing η increases the signal-to-noise, but when ηn ≫ 1, the signal-to-noise is

independent of the efficiency.

The signal-to-noise ratio increases with increasing optical bandwidth, but CMB experiments are

generally not able to improve their sensitivity in this way. For CMB measurements from the ground,

the observation bands are constrained to lie between strong atmospheric emission lines. Even for

satellite missions that do not see the atmosphere, there is still a tension between increasing B and

obtaining independent measurements of the sky at different frequencies, in order to characterize

Galactic foregrounds.

We can convert the variance of the mean of the detected photon flux into the variance of the

mean of the detected power using ∂P/∂κ = hν:

σ2
P = τ

−1(hνP + P2/B). (5.4)

A common figure of merit for the sensitivity of a photometric detector is the noise-equivalent power

(NEP), defined to be the standard error of the mean in the inferred optical power at a given point in

the optical system after τ = 0.5 s of averaging. Inserting this value in the above equation gives

NEP2
γ = 2hνP + 2P2/B. (5.5)

For the measurements presented later in this chapter, we must relate the NEP to the spectral

density SPP, which can be estimated as the Fourier transform of the time-ordered data in units of

power. When discussing detector noise data I use spectral density to mean the single-sided power

spectral density. That is, the integral of the spectral density over positive frequencies is the variance

of the mean. Using Parseval’s theorem, one can show that NEP2
= (∂x/∂P )−2W2, where x is the

quantity that the detector measures and W2 is the white component of the spectral density of x(t).

In Section 5.5, I will present measurements of NEP obtained by measuring the white component of

the detector noise.
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The NEP is a measure of random error at a particular location in the system. Consider two

locations in an optical system, labeled A and B, with A downstream of B. The optical power P at

these locations is related by PA = ηBPB with ηB ≤ 1. Then, given the variance of the mean of PA,

the variance of the mean of PB is larger by a factor of η−2
B

. When the reference point is the power

absorbed in a detector, the corresponding NEP is sometimes called an electrical NEP. The NEP

referenced to a source plane is sometimes called an optical NEP.

5.2 Quasiparticle generation and recombination noise

In the quasiparticle number model discussed in Chapter 3, the response of a detector is proportional

to the number of excitations. Fluctuations in this number are the fundamental source of noise. In

this chapter I use results from Section 3.5 along with a simple model for shot noise to derive results

for the spectrum of the fluctuations in the quasiparticle number. I consider the same generation

sources discussed in Section 3.2.2, namely, phonons entering from the substrate, optical photons,

and readout photons.

Consider a situation in which the quasiparticle number fluctuates about a steady-state value, so

that the total average decay rate equals the total average generation rate:

RN
2

qp/V + SNqp = ΓR + ΓS = ΓG, (5.6)

where ΓG is the total average generation rate, and all rates are defined to be positive. Each process

has a corresponding shot size, which is the number of quasiparticles that are created or annihilated

in each event. I take the shot size for thermal generation to be 2, since the devices are operated

at temperature T ≪ 2∆/kB and thus phonons with enough energy to break multiple Cooper pairs

should be rare. The average number of quasiparticles q ≥ 2 generated by an optical photon depends

on the ratio of the photon and gap energies, as discussed in Section 3.7.1. I assume that the shot size

is also 2 for pair-breaking by readout photons. Finally, quasiparticles may tunnel individually into a
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superconductor from another metal, with a shot size of 1. For the formation of a single Cooper pair

through recombination with phonon emission the shot size is again 2, while it is 1 for all of the

single-quasiparticle decay processes discussed in Section 3.2.5.

For the remainder of this chapter I will assume that the single-quasiparticle processes are

negligible, which seems to be the case in our devices except, possibly, when they are tested dark.

(See Section 3.5.3.) With this assumption, all of the relevant processes except possibly optical

generation have a shot size of 2. For aluminum films illuminated by 150 GHz radiation this shot

size is 2 as well.

Consider a current I = kκ consisting of flow events that occur at an average rate κ, where each

event corresponds to the flow of k particles. Assume that the current I is stationary and that the

events are uncorrelated. (From this point on I will not write the over-bars, since all of the rates here

are steady-state rates.) Then, for positive frequencies the single-sided spectral density of the current

equals the Poisson value

SI I = 2kI = 2k2κ, (5.7)

with units of current squared per hertz. For example, the familiar expression for the single-sided

spectral density of fluctuations in an electric current is

SI I = 2eI = 2e2κ, (5.8)

where e is the unit charge. There are corrections to this simple expression that depend on the

statistics of the particles involved [111], but we can ignore these except where noted.

Returning to the case of quasiparticle generation and decay, the current in this case is Γ, the

shot size k depends on the process, and the event rate is κ = Γ/k. The spectral density of the

quasiparticle recombination rate, for which the shot size is 2, is

SΓRΓR
= 2 · 2 · ΓR. = 4ΓR. (5.9)
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The results for thermal generation and readout generation, which also have a shot size of 2, are very

similar:

SΓtΓt
= 4Γt; (5.10)

SΓ̺Γ̺ = 4Γ̺. (5.11)

Using a result from the previous section, for optically-excited quasiparticles generated at a rate Γo

with shot size q, the spectral density is

SΓoΓo
= 2qΓo + 2Γ2

o/B. (5.12)

The first term is the expected shot noise term, while the second term appears because the photon

arrival times are correlated. An ideal detector would add a noise level less than this photon noise

contribution, which is the fundamental lower limit for the measurement noise.

These generation and decay processes are uncorrelated, so the spectral density of the detector

noise is given by their sum. The response of a KID is proportional to the number of quasiparticles, not

the generation rate, and the spectral densities of these are related by the square of ∂Nqp

/
∂ΓG = τqp.

The spectral density of the quasiparticle number is

SNqpNqp
= τ2

qp

(
2qΓo + 2Γ2

o/B + 4Γt + 4Γ̺ + 4ΓR

)
. (5.13)

To make contact with other work, consider the equilibrium state, in which only thermal generation

and pair recombination occur. Then, ΓR = ΓG = Γt, and

SNqpNqp
= 8τ2

qpΓG = 4τqpNqp, (5.14)

where we used Nqp = 2ΓGτqp from Equation 3.72 with S = 0. Recall the result of Section 3.5 that

fluctuations in the quasiparticle system are rolled off at a frequency ϕqp = (2πτqp)
−1. If we insert
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this frequency dependence by hand, we obtain

SNqpNqp
(ϕ) =

4τqpNqp

1 + (2πϕτqp)2
. (5.15)

This matches the result given by Wilson and Prober [112], who derived this equation and compared

it to measurements of quasiparticle number fluctuations in thermal equilibrium.

The steady-state generation and recombination rates must balance: ΓR = ΓG = Γo + Γt + Γ̺, so

each generation process has a corresponding recombination contribution. There is noise associated

with energy entering the detector, and there is additional noise associated with this energy leaving it.

In the thermal equilibrium case, the two noise contributions are necessarily equal because the shot

sizes are the same.

We can obtain additional insight by writing everything in terms of the generation rates. Using

τ2
qp = (4RΓG/V)−1, again from Equation 3.72 (still ignoring single-quasiparticle generation and

decay), results in

SNqpNqp
=

(2q + 4)Γo + 2Γ2
o/B + 8Γt + 8Γ̺

4RΓG/V

=

V

R

(q/2 + 1)Γo + Γ
2
o/2B + 2Γt + 2Γ̺

Γo + Γt + Γ̺
.

(5.16)

If optical generation dominates, which is the ideal case, this reduces to

SNqpNqp
=

V

R

(
q/2 + 1 +

Γo

2B

)
. (5.17)

If the wave noise term is negligible or not present, then the quasiparticle noise is constant. This

surprising prediction is observed in the data presented in Section 5.5. Figure 5.2(a) shows fractional

frequency noise spectra taken with varying illumination levels from a coherent source, for which

the photon arrival times are uncorrelated and the wave noise term is absent. Table 5.2 gives

the parameters extracted from the fits. The detuning spectral density Sxx is proportional to the
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quasiparticle number spectral density. The white component of Sxx varies only by a factor of

two, while the generation rate varies by a factor of 29 pW/0.08 pW ∼ 400. In contrast, the white

component of the fractional frequency noise spectra shown in Figure 5.2(b) and summarized in

Table 5.1 does increase with increasing chaotic illumination, due to the wave noise.

Ignoring the wave noise term, the ratio of the photon noise to the recombination noise is q/2 ≥ 1.

Thus, the total recombination noise may be negligible when q ≫ 2, but not when q & 2, as in this

work. There may be an advantage to using materials with a smaller gap energy to increase q, if the

detectors can still be cooled sufficiently to keep thermal generation negligible.

Finally, we can relate the quasiparticle recombination noise to NEP, referenced to incident power,

using ∂PI/∂ΓG = hν/ηIq:

NEP2
I,R =

(
hν

ηIq

)2

SΓRΓR
. (5.18)

If optical generation dominates, so that ΓR = ΓG = Γo, then we can express this in terms of the

incident power:

NEP2
I,R =

(
hν

ηIq

)2

4Γo =
2

q

2hνPI

ηI
=

4∆0PI

ηpbηI
, (5.19)

where we absorbed one factor of ηI into PI = Po/ηI. In the middle expression, we again see

that the ratio of the photon shot noise to the recombination noise equals q/2. An expression for

recombination noise that equals half the latter expression above has appeared in the literature [50, 80,

113–115]. Because we use this equation as part of the NEP model in the measurements discussed in

Section 5.5, we are unable to empirically demonstrate here that the equation given here is correct.

5.3 Two-level system noise

The noise sources discussed above are fundamental to KID detection and measurement. An

important non-ideal noise source is the two-level systems that were discussed in Section 4.1 in terms

of the loss they produce. These TLS have an electric dipole moment and thus may affect the local

dielectric constant. Fluctuations in the dielectric constant near the resonator affect the resonance
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frequency, and thus TLS noise is most usefully expressed in terms of a detuning spectral density

STLS ≡ Sxx,TLS. The TLS spectral density is found to obey

STLS(ϕ, Pi) ∝ ϕ
−1/2(1 + Pi/P∗)

−1/2,

where, as in Section 4.1, Pi is the internal readout power and the critical power P∗ is small compared

to the readout power levels typically used with KIDs [70, 88, 91, 116, 117]. The TLS noise may thus

be reduced by increasing the readout power. As the power increases, the resonance will eventually

bifurcate. The maximum readout power that can be used depends on how deep into this regime it is

possible to operate the detector. Measurements in this state are more difficult to interpret, and the

laboratory measurements shown here are obtained with the readout power below the bifurcation

level, to ensure that the linear resonator model fits well.

One unfortunate property of TLS noise is that its spectral density in units of generation rate or

NEP actually increases with absorbed power. The reason for this is that a factor of τqp appears in the

derivative ∂x/∂Po , so

NEP2
TLS = STLS

(
∂x

∂Po

)−2

∝ τ−2
qp STLS ∝ PoSxx . (5.20)

Thus, unless the internal power is increased, the squared NEP due to TLS will increase linearly

with absorbed power, like the shot noise. This fact is important for the calibration measurement

discussed in the next section, which depends critically on modeling the behavior of this linear term

in the squared NEP.

5.4 Readout noise

The final noise source I consider here is due to the readout system. The low-noise amplifier produces

voltage noise that appears isotropically in S21 units as kBTN/2P̺, where TN is the noise temperature
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of the amplifier, and P̺ is the readout power. The amplifier noise is fixed in voltage units, but we

measure the voltage ratio S21. Thus, the amplifier noise decreases with increasing readout power.

It can be converted into other units using the derivatives given in Section 3.7. Note that since

|Σx/ΣΛi
| = 2, the amplifier noise appears 4 times smaller in Sxx than in SΛiΛi

, which we thus often

normalize so that amplifier noise is equal in both quadratures.

5.5 Measuring photon noise with KIDs

Research in this section was published as D. Flanigan et al., “Photon noise from chaotic and coherent

millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance

detectors,” Applied Physics Letters 108, 083504 (2016). The notation and some of the equations

have been modified to harmonize with the rest of this thesis, and some of the supplemental material

has been moved to previous sections of this chapter. The figures, tables, analysis, and conclusions

match the published version.

In this experiment, the detectors are illuminated by a millimeter-wave source that uses an active

multiplier chain to produce radiation from 140 GHz to 160 GHz. We feed the multiplier with

either amplified broadband noise or a continuous-wave tone from a microwave signal generator.

We demonstrate that the detector response over a 40 dB range of source power is well-described

by a simple model that considers the number of quasiparticles. The detector noise-equivalent

power is dominated by photon noise when the absorbed power is greater than approximately 1 pW,

which corresponds to NEP ≈ 2 × 10−17 W Hz−1/2, referenced to absorbed power. At higher source

power levels we observe the relationships between noise and power expected from the photon

statistics of the source signal: NEP ∝ P for broadband (chaotic) illumination and NEP ∝ P1/2 for

continuous-wave (coherent) illumination.
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5.5.1 Introduction

A kinetic inductance detector [30] (KID) is a thin-film superconducting resonator designed to

detect photons that break Cooper pairs. This detector technology is being developed for a range

of applications across the electromagnetic spectrum. Our devices are being developed for cosmic

microwave background (CMB) studies.

The randomness of photon arrivals sets the fundamental sensitivity limit for radiation detection.

In recent years, several groups have used spectrally-filtered thermal sources to perform laboratory

measurements of both aluminum and titanium nitride KIDs that demonstrate sensitivity limited by

photon noise [50, 113–115, 118]. Here, we use an electronic source to demonstrate photon-noise

limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors [103]

(LEKIDs) sensitive to a 40 GHz spectral band centered on 150 GHz.

5.5.2 Experiment
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Figure 5.1: Experiment schematics. (a) The millimeter-wave source components. (b) The source and cryogenic setup.

(c) A cross-section of an array element. The inner conical flare and fused silica layer are designed for impedance

matching. (d) The lumped circuit elements of one LEKID.

The array of devices used in this study was fabricated by patterning a 20 nm aluminum

film on a high-resistivity crystalline silicon substrate, with twenty detectors per array. Each
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resonator comprises lithographed structures that behave electrically as lumped elements, namely an

interdigitated capacitor and an inductive meander that is also the photon absorber. Schematics of a

detector and the horn coupling scheme are shown in Figure 5.1. These devices were fabricated at

STAR Cryoelectronics using the same lithographic mask used to pattern the devices described in

a previous study [80]. The same processing steps were used in this study except that the silicon

wafer was immersed in hydrofluoric acid prior to aluminum deposition in order to clean and

hydrogen-terminate the silicon surface to reduce oxide formation. We measure a superconducting

transition temperature Tc = 1.39 K. The resonance frequencies are 95 MHz < fr < 195 MHz.

Under the lowest loading conditions the internal quality factors are Qi ≈ 5 × 105
= 1/2 × 10−6. The

coupling quality factors are Qc ≈ 5 × 104
= 1/2 × 10−5. The volume of each inductive meander is

1870 µm3, assuming nominal film thickness. The detector bath temperature is 120 ± 1 mK, obtained

in a cryostat using an adiabatic demagnetization refrigerator backed by a helium pulse tube cooler.

Detector readout is performed with a homodyne system using a cryogenic SiGe low-noise amplifier

and open-source digital signal-processing hardware [80, 119]. All the data shown are from a single

representative detector with fr = 164 MHz, and were taken at a constant readout tone power of

approximately −100 dBm on the feedline. The package that contains the detector chip is machined

from QC-10, which is an aluminum alloy known to superconduct at the bath temperature used here.

Millimeter-wave source

Figure 5.1(a) is a schematic of the millimeter-wave source, located outside the cryostat. Within

the source, the output of a 12× active multiplier chain passes through two variable waveguide

attenuators that allow the output power to be controlled over a range of more than 50 dB. Table C.1

lists the primary components of the source.

The output spectrum is controlled by a band-pass filter with a sharp roll-off outside its passband

of 140 GHz to 160 GHz. Within this passband, the source can produce radiation in two modes. In

broadband mode, amplified noise is multiplied into a broadband chaotic signal. In continuous-wave
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mode, a multiplied tone from a signal generator approximates a monochromatic coherent signal.

We have measured the source output in both modes using a Fourier transform spectrometer; these

measurements show that in broadband mode the power is constant within a factor of two across

the output band, and in continuous-wave mode it appears monochromatic with negligible higher

harmonics.

Figure 5.1(b) shows the signal path from the source through the cryostat to the detectors. The

source output is split using a waveguide directional coupler that sends 99% of the power into a

calibrated, isolator-coupled zero-bias diode power detector (ZBD), the voltage output of which is

recorded using a lock-in amplifier. The remaining 1% of the power travels through a vacuum window

and into the cryostat through WR6 waveguide. A piece of Teflon at 4 K inserted into the waveguide

absorbs room-temperature thermal radiation. Two mirrors transform the output of a conical horn

into a collimated beam. A 6.4 mm thick slab of microwave absorber (Eccosorb MF-110), regulated

at 2 K during these measurements, attenuates incoming signals and provides a stable background

load. A metal-mesh filter at the detector apertures defines the upper edge of the detector band at

170 GHz. The lower edge of the band at 130 GHz is defined by the cutoff frequency of a 1.35 mm

diameter circular waveguide in the detector package. We note that the source output is within the

single-mode bandwidth of both WR6 waveguide and the circular waveguide. The radiation from the

source incident on the detector horns is linearly polarized, and the electric field is aligned with the

long elements of the inductive meanders in the detectors.

5.5.3 Results

Figure 5.2 shows the main results of this work. All power values in this figure refer to the power

from the source absorbed by the detector: PA = ηSPS, where PS is measured by the ZBD. Before

calibration, the efficiency ηS is known only approximately from measurements and simulations of

the components between the source and the detector. We accurately determine ηS, and thus the

absorbed source power, by measuring the relationship between emitted source power and detector
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Figure 5.2: Primary results of the experiment. (a) Spectral density Sx of detector time-ordered data versus frequency

under continuous-wave illumination with ν = 148 GHz (solid lines), and the result of fitting the data to Equation 5.22

(dashed lines). At high power the red noise component is dominated by fluctuations from the signal generator that feeds

the multiplier; these fluctuations are correlated among detectors. (b) Spectral density under broadband illumination,

and fits of Equation 5.22. The spikes above 400 Hz are pickup from a fan in the source. The red noise below 100 Hz at

low source power in both modes is produced by vibrations from the pulse tube cooler that vanish when it is turned

off. The detector white noise levels from the fits are used to calculate NEP values. (c) Fractional frequency response

versus absorbed power in both source modes. The error bars are statistical errors from the resonator fits. We use the

finite-difference derivative of these response data to calculate the NEP. The dashed black line and solid gray line are

guides that show how the response scales at both low and high absorbed power. (d) Noise-equivalent power versus

absorbed power in both source modes. All data points and lines are referenced to absorbed power. The error bars are

propagated statistical errors from the finite difference derivative and the detector noise fits. The solid green line is the

sum of the quadratic and linear terms in the fit of Equation 5.26 to the broadband NEP2 data. The dotted green line

is the quadratic term, which is the photon wave noise contribution. The dashed green line is the linear term, which

contains equal contributions from photon shot noise and quasiparticle recombination noise. The broadband frequency

used is ν = 150 GHz, near the band center. The solid brown line (nearly coincident with dashed green) is the linear term

in the fit of Equation 5.26 to the continuous-wave NEP2 data, in which the quadratic term is omitted.

92



noise. This calibration relies on the assumption that all components between the source output

and detector are linear: we have linearized the ZBD response at the higher power levels, all other

components are passive, and we assume that filter heating is negligible. To perform the calibration

we use measurements of the noise-equivalent power (NEP), defined as the standard error of the mean

in the inferred optical power at a given point in the optical system after 0.5 s of integration [110,

120]. We calculate the NEP using measurements of the detector noise and responsivity.

Detector response

At each source power level, to determine the resonance frequency and the quality factors we

sweep the readout tone generator frequency f̺ across a resonance and fit a resonator model to the

forward scattering parameter S21( f̺) data [80]. Figure 5.2(c) shows the detector response to source

power in both broadband and continuous-wave modes. At low source power in both modes the

fractional frequency shift s(PA) = fr(0)/ fr(PA) − 1 is approximately linear in power, while at high

power s ∝ P
1/2

A
. This behavior is described by a model in which the fractional frequency shift is

proportional to the number of quasiparticles:

Nqp = [V(Γ0 + ΓS)/R]
1/2 , (5.21)

from Equation 3.71. Here, ΓS ∝ PA is the rate of quasiparticle generation due to absorbed source

photons and Γ0 is the constant generation rate due to other effects (such as absorption of ambient

photons and thermal phonons). We calculate the responsivity dx/dPS at each source power level

with a finite-difference derivative that uses the fractional frequency response at adjacent power

levels.

Detector noise

To measure detector noise we record time-ordered data S21( f̺ = fr). Using the resonator model

from the fit to the frequency sweep we convert these data into units of detuning x, then calculate the
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single-sided spectral density Sx(ϕ). Figures 5.2(a) and 5.2(b) show the measured noise spectra and

fits to the following model:

Sx(ϕ) = W2 1 + (ϕk/ϕ)
α

1 + (ϕ/ϕc)2
+ A2, (5.22)

where the free parameters are the detector white noise W2, the red noise knee frequency ϕk, the

spectral index α, the cutoff frequency ϕc, and the amplifier noise A2. This model treats the detector

noise as the sum of a white noise process with spectral density W2 and a red noise process with

spectral density R2
= W2(ϕk/ϕ)

α, both rolled off at ϕc.

The detector bandwidth of about 1 kHz corresponds to a limiting time constant τ = (2πϕc)
−1

that is approximately equal to both the resonator ring-down time τr = Qr/π fr and the expected

quasiparticle relaxation time τqp for aluminum. Both of these time constants are expected to decrease

as the absorbed optical power increases, as observed in the data.

To model the detector noise, we first consider noise sources independent of the quasiparticle

system. White noise due to the cryogenic amplifier dominates at frequencies well above the

detector bandwidth, and we account for it in the model for the noise spectra. Two-level systems

(TLS) in amorphous dielectric surface layers located near the resonator produce fluctuations in the

local dielectric constant and thus in fr [91]. In a separate experiment, described in Section 5.5.5,

we determined that TLS noise is negligible at the readout power level (−100 dBm) used in the

measurements presented here and thus do not include it in the noise model. The chosen readout

power level is high enough to suppress TLS noise but is not so high that nonlinear effects due to

resonator bifurcation become significant.

The remaining noise sources involve fluctuations in the quasiparticle system: generation by

optical photons, readout photons, and thermal phonons, as well as quasiparticle recombination, e.g.

via phonon emission. All of these sources are expected to produce white noise that rolls off at

the frequency corresponding to the larger of τr and τqp [70]. We expect readout generation to be

negligible at high source power, and treat it as constant. (Where present, the photon wave noise

introduces correlations between photon arrival times. This noise has a bandwidth equal to the

94



20 GHz bandwidth of the absorbed broadband radiation, so it is also expected to appear white in the

detector audio band [110].)

NEP model

The NEP model includes theoretical expectations for photon noise and quasiparticle recombination

noise. We denote by n the mean photon occupancy of a single spatial/polarization mode of the

electromagnetic field with frequency ν. For example, for a thermal source at temperature T the

occupancy is n = [exp(hν/kBT) − 1]−1, where h is Planck’s constant and kB is Boltzmann’s constant.

If we assume that the radiation occupies an effective optical bandwidth B ≪ ν sufficiently narrow

that quantities such as occupancy and absorption efficiency can be treated as constant, then the

power from this mode that is absorbed by a detector with absorption efficiency η is PA = ηnBhν. If

the source is thermal then the contribution of photon noise to the NEP is given by [110]

NEP2
A,γ = 2ηn(1 + ηn)B(hν)2 = 2hνPA + 2P2

A/B, (5.23)

which is referenced to absorbed power. We refer respectively to these two terms as shot noise

and wave noise, following Hanbury Brown and Twiss [121]. If the source is monochromatic with

perfect temporal coherence then only the shot noise term is present regardless of the occupancy:

this behavior represents a key difference between a quantum coherent state and a quantum-statistical

thermal state of the field [122, 123]. For a thermal source, if ηn ≪ 1 the shot noise dominates,

which is typical in optical astronomy; if ηn ≫ 1 the wave noise dominates, which is typical in radio

astronomy.

We measure power at the output of the source and detector NEP referenced to the same point.

Referencing the photon NEP to the source output gives

NEP2
S,γ = NEP2

A,γ/η
2
S = 2hνPS/ηS + 2P2

S/B. (5.24)
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The presence of the efficiency ηS in the linear term of this equation enables extraction of the absorbed

source power.

Previous studies that calculated the absorption efficiency of a KID by measuring the scaling of

photon shot noise with optical power have used superconducting films with transition temperatures

similar to the film used here but larger photon energies [50, 113–115]. Here, the photons have

energies hν & 2∆, where ∆ is the superconducting energy gap, so each photon excites only two

quasiparticles close to the gap; in this limit the quasiparticle recombination noise is significant. The

recombination noise contribution to NEPA is

NEP2
A,R = 4∆PA/ηpb (5.25)

where ηpb is the pair-breaking efficiency. For photon energies 2∆ < hν < 4∆, de Visser et al.

[85] found ηpb ≈ 2∆/hν, in agreement with theoretical predictions from Guruswamy et al. [84].

Using this value, the recombination NEP equals the shot noise term in the photon NEP. This

is expected based on the symmetry between uncorrelated pair-breaking events and uncorrelated

pair-recombination events. Finally, we introduce a small constant term NEP0 to account for noise

sources independent of source power, such as TLS noise and quasiparticle generation-recombination

noise from thermal phonons, readout photons, and ambient photons.

To calculate the detector NEPA, which is shown in Figure 5.2(d), we use the measured fractional

frequency shift x (unitless), the measured fractional frequency noise power Sx (1 / Hz), and the

source power PS (watts) as measured with a calibrated zero-bias diode (ZBD) mounted on the

directional coupler outside the cryostat (see Figure 1). The source power absorbed by the detector

is related to PS by PA = ηSPS where ηS is an overall system efficiency from the source output to

the detector that includes the transmission through the directional coupler, the attenuation of the

stainless steel waveguide, the geometrical dilution due to the internal optics, the loss in the Eccosorb,

and the detector absorption efficiency. To compute the responsivity to changes in the source power,

we plot x versus PS and calculate the slope of this curve dx/dPS at each PS using a finite difference
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algorithm. We use this responsivity to convert the fractional frequency noise measurements (Sx)

to NEPS. Note that for NEPS we use only the white noise component, W , obtained by fitting

Equation 5.22 to each Sx measurement. Thus, NEPS = W/(dx/dPS ). To convert PS to PA we need

to determine ηS. The complete theoretical model for NEPS is

NEP2
S = (NEP2

A,0 + NEP2
A,R + NEP2

A,γ)/η
2
S

= NEP2
A,0/η

2
S + [2(2hνPA) + 2P2

A/B]/η2
S

= NEP2
S,0 + 4hνPS/ηS + 2P2

S/B,

(5.26)

which is the sum of the aforementioned noise contributions. The right-hand side of this equation is

quadratic in PS with unknown quantities NEPS,0, ηS, and effective optical bandwidth B. The limiting

NEPS,0 is discussed below. We fit Equation 5.26 to the broadband data using center frequency

ν = 150 GHz and obtain ηS = 8.50 × 10−7(1 ± 0.09) and B = 13 GHz. The quadratic term is not

expected to be present for coherent illumination because the source should produce only shot noise,

so we fit Equation 5.26 to the continuous-wave data omitting the third term. Here, ν = 148 GHz and

we obtain ηS = 1.12 × 10−6(1± 0.04). As a final step, we convert PS to PA using the ηS values from

the model fitting and produce Figures 5.2(c) and 5.2(d). Note that because the broadband source

involves contributions from the full source output bandwidth, it is not surprising that the measured

ηS values differ between the continuous-wave and broadband modes by more than the statistical

error bars.

5.5.4 Discussion

Figure 5.2(d) shows that photon noise dominates under broadband illumination when PA & 1 pW,

which corresponds to NEPA ≈ 2 × 10−17 W Hz−1/2. At high power in each source mode we observe

the expected relationship between noise and power: in broadband mode NEP ∝ P because the

quadratic wave noise term dominates, while in continuous-wave mode NEP ∝ P1/2 because the

quadratic term is not present. This behavior is a clear signature of photon noise.
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Note that the the NEPA values reported have the amplifier noise contribution subtracted because

the white noise parameter W2 in Equation 5.22 describes the noise power above the amplifier noise

A2. Here, subtracting the amplifier noise yields an accurate estimate of the detector performance

because, alternatively, the amplifier noise can be suppressed to a negligible level by increasing the

readout power. We verified both approaches yield the same NEPA versus PA result but chose to

report the amplifier-noise-subtracted results.

At low absorbed source power levels in both modes, where PA < 0.1 pW, NEPA levels off to

NEP0. The values of NEP0 extracted from both of the aforementioned fits are approximately 5

to 6 × 10−18 W Hz−1/2. To explain this leveling-off effect, we model the background loading as

emission from a black body at 2 K, which is the temperature of the Eccosorb in front of the feed horn

apertures. Assuming center frequency ν = 150 GHz, measured filter transmission ηF(ν) = 0.94,

optical efficiency ηI = 0.7 (obtained from electromagnetic simulations), and detector bandwidth

Bfull = 40 GHz, then the radiative loading from the Eccosorb is

PA = ηIn(ν, 2 K)hνBfull = 0.08 pW.

This loading level is close to the observed knee in the curves in Figure 5.2(d). Adding an equal

recombination noise contribution to the corresponding photon NEP results in

NEPA = (2 · 2hνPA)
1/2
= 5.6 × 10−18 W Hz−1/2, (5.27)

which is close to the observed NEP0 value. Therefore, the observed limiting NEPA is consistent

with this model of the expected background loading.

Analysis of data from twelve detectors yielded similar results to those shown in Figure 5.2(d),

with the photon noise starting to dominate between 0.5 and 1 pW. We conclude that these detectors

become limited by photon noise at absorbed power levels lower than the background power levels

already measured by ground-based CMB polarimeters [26].
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5.5.5 Supplemental material

The contents of this section were presented as supplemental material for the published paper. The

content that is specific to the paper is retained here, while the more general content has been moved

earlier in this chapter.

Two-level system noise

At low temperatures we see evidence for TLS effects in measurements of resonance frequency versus

bath temperature, which depart from the Mattis-Bardeen prediction, and in the fact that the internal

quality factors increase with increasing readout power. The connection between these steady-state

TLS effects and TLS noise is not fully understood. The method we used to estimate the TLS noise

contribution is described in this section. We conclude that TLS noise is negligible and thus do not

include it explicitly in the analysis of the NEP.

The importance of modeling TLS noise to avoid a systematic error in this measurement is

explained in Section 5.3. The TLS contribution to the spectral density is given by Equation 5.3.

The experiment described in the main text is performed with constant readout power P̺ on the

feedline, and we expect the TLS noise level to vary as P
−1/2
i
= (χaP̺)

−1/2, where χa ≤ 1/2, which

can be calculated from the resonator parameters, is the fraction of readout power that flows into the

resonator [70].

In order to estimate the TLS contribution to the NEP, we performed a separate experiment in

which we attempted to make the TLS noise as prominent as possible. Three key aspects differ from

the experiment described in the main text: the horn apertures were covered with aluminum tape to

minimize optical loading; the readout power was approximately −112 dBm, 12 dB lower than in the

primary experiment; in order to remove noise due to vibrations caused by the pulse tube cooler, we

turned it off to record time-ordered data while the adiabatic demagnetization refrigerator continued

to regulate the bath temperature at 120 mK.

Figure 5.3(a) shows the detuning spectral density taken under these dark conditions and a fit
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Figure 5.3: (a) Amplifier-subtracted dark noise data for the same detector characterized in the main text. The dashed

line shows a fit to the same model used in the main text, except that here the spectral index is fixed to α = 0.5 to match a

possible TLS contribution. To show the detector noise more clearly, the amplifier noise value obtained from the fit has

been subtracted from the data and fit curves. The dotted line shows the possible TLS contribution, assumed to roll off

with the same time constant obtained from the fit. (b) Amplifier-subtracted illuminated continuous-wave noise data.

The solid lines shown here are the lowest and highest power curves from Figure 5.2(a), and the dashed lines are the

same fits shown in the main text, except that the amplifier noise values obtained from the fits have been subtracted from

the data and fit curves. The dotted lines are the inferred TLS contribution to the illuminated spectra, scaled from the fit

value in panel (a) by a factor (Pi,dark/Pi)
1/2. The TLS contribution in this case decreases as source power increases.

used to extract a possible TLS noise contribution. Figure 5.3(b) shows that this TLS contribution is

negligible when adjusted for the increased readout power used in the primary experiment.

Spectral density fitting

In this section we provide details of the procedure used to fit the spectral density to Equation 5.22.

To estimate the spectral density of the time-ordered fractional frequency shift data we first use

Welch’s average periodogram method with the data split into 16 equal non-overlapping chunks.

This produces a single-sided spectral density that is the average of 16 spectra. We estimate the

variance of point j with value Sj by σ2
j
= S2

j
/16. We then bin this spectrum using bin widths that

increase with frequency, and propagate the errors by adding the variances in quadrature. These
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Table 5.1: Broadband best-fit parameters with uncertainties. At high power, because the noise is very close to white, the

red noise contribution is negligible and the parameters (ϕk and α) that describe the red noise are poorly constrained; the

white noise W2 is still well constrained.

PA A2/10−18 Hz−1 W2/10−18 Hz−1 ϕk/Hz α ϕc/kHz

30.4 pW 5.2 ± 0.1 10.0 ± 0.2 0 ± 20 1 ± 6 3.0 ± 0.1

22.1 pW 3.9 ± 0.1 7.7 ± 0.1 11 ± 3 1.9 ± 0.9 2.9 ± 0.1

13.5 pW 2.67 ± 0.06 5.3 ± 0.1 7 ± 4 1.0 ± 0.5 2.7 ± 0.1

7.76 pW 1.38 ± 0.03 3.81 ± 0.08 12 ± 3 1.2 ± 0.4 2.48 ± 0.08

3.88 pW 0.82 ± 0.02 2.4 ± 0.1 9 ± 4 0.8 ± 0.3 2.34 ± 0.10

1.49 pW 0.481 ± 0.007 1.73 ± 0.05 14 ± 3 1.2 ± 0.3 1.80 ± 0.05

556 fW 0.309 ± 0.005 1.11 ± 0.04 13 ± 3 1.0 ± 0.3 1.70 ± 0.06

147 fW 0.229 ± 0.002 0.98 ± 0.03 21 ± 2 1.2 ± 0.2 1.29 ± 0.03

37.6 fW 0.201 ± 0.002 0.69 ± 0.09 60 ± 20 0.7 ± 0.1 1.24 ± 0.07

8.42 fW 0.247 ± 0.002 0.77 ± 0.08 60 ± 20 0.7 ± 0.1 1.14 ± 0.05

2.79 fW 0.213 ± 0.002 0.89 ± 0.05 34 ± 5 1.0 ± 0.2 1.06 ± 0.04

Table 5.2: Continuous-wave best-fit parameters with uncertainties.

PA A2/10−18 Hz−1 W2/10−18 Hz−1 ϕk/Hz α ϕc/kHz

29.0 pW 4.89 ± 0.06 1.3 ± 0.1 330 ± 40 1.46 ± 0.05 2.5 ± 0.4

18.1 pW 3.20 ± 0.04 1.46 ± 0.09 270 ± 30 1.33 ± 0.05 2.6 ± 0.3

9.72 pW 1.82 ± 0.03 1.27 ± 0.07 220 ± 30 1.28 ± 0.06 2.4 ± 0.2

4.89 pW 0.98 ± 0.01 1.22 ± 0.05 160 ± 20 1.25 ± 0.06 2.2 ± 0.1

1.93 pW 0.462 ± 0.006 0.97 ± 0.04 100 ± 10 1.09 ± 0.07 1.83 ± 0.07

573 fW 0.288 ± 0.003 0.87 ± 0.04 52 ± 7 1.1 ± 0.1 1.56 ± 0.05

176 fW 0.244 ± 0.003 0.88 ± 0.06 37 ± 8 0.9 ± 0.2 1.29 ± 0.05

48.7 fW 0.219 ± 0.002 0.82 ± 0.05 39 ± 7 1.0 ± 0.1 1.21 ± 0.05

13.0 fW 0.210 ± 0.002 0.7 ± 0.2 40 ± 40 0.6 ± 0.2 1.17 ± 0.08

2.09 fW 0.235 ± 0.002 0.85 ± 0.08 40 ± 10 0.8 ± 0.2 1.13 ± 0.05

binned spectra are plotted in Figures 5.2(a) and 5.2(b).

This binning and averaging procedure produces χ2 distributed data with 2 × 16 × nk degrees of

freedom, where nk is the number of points that are averaged in bin k. The resulting distribution

closely approximates a Gaussian distribution [124], even for nk = 1. To fit the model to the data we
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use a least-squares fitting routine with the squared residual at each frequency point weighted by the

inverse of the variance in that bin. Only data at frequencies above 10 Hz is used in the fits. This

model will over-describe the data if the spectrum has no red noise or no white noise component, in

which case the uncertainties on the remaining parameters would be underestimated. The resulting

best-fit parameters are listed in Tables 5.1 and 5.2.

102



Chapter 6

Multichroic detectors

This chapter describes a project to develop arrays of polarization-sensitive, multichroic KID pixels

for future CMB experiments. These detectors are designed to help separate foreground signals from

CMB signals by measuring two spectral bands simultaneously. One band is primarily for detecting

the CMB, so it is centered on 150 GHz, near the peak of the CMB black body spectrum. The other

band is primarily for detecting Galactic dust signals, so it is centered on 235 GHz, where the dust

emission is brighter than the CMB. Some of the material in this chapter was published in Johnson

et al. [3] and Johnson et al. [4].

6.1 Overview

The pixels are each sensitive to two linear polarization states in two spectral bands, so there are four

KIDs per pixel. Each pixel consists of a feedhorn, waveguide, and ortho-mode transducer (OMT)

antenna that together couple light from free space onto the chip; microstrip (MS) millimeter-wave

circuits that filter and route the light; and four hybrid aluminum-niobium co-planar waveguide

(CPW) KIDs that detect the light. Figure 6.1 shows drawings of the design.

Our design was based on detectors that were developed for [125–127] and deployed on [128, 129]

the Advanced ACTPol experiment [130], which is a CMB polarization experiment on the Atacama
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Figure 6.1: (Left) A drawing of the multichroic detector module. The upper panel shows a cross-section of the entire

module. The detector wafer (blue) is enclosed between the two aluminum pieces (brown and gray). Light enters the

feedhorns at the top and propagates down the circular waveguide. The lower panel shows detail of the area where light

couples to the OMT antennas, which from this perspective would appear on the underside of the blue membranes. The

bosses that extend the waveguide toward the wafer from both sides form chokes that reduce lateral leakage of light. The

backshorts terminate the waveguides and improve the optical coupling. (Right) A drawing of one multichroic pixel.

The two opposing OMT probe pairs (green) in the center of the pixel are sensitive to orthogonal linear polarization

states. The band-pass filters and hybrid (180°) tee, which are microstrip components, create the two spectral bands and

combine the signals to select the desired waveguide mode. The slotline transition couples the light from the microstrip

circuitry into the aluminum CPW sensing region of one of the quarter-wavelength CPW KIDs. The region of the KIDs

drawn in red is the same in each pixel, while the region drawn in blue varies in order to set the resonance frequency. The

resonators are weakly coupled to the feedline, shown in gray, by the short lengths (“elbow couplers”) of transmission

line that run parallel to it. This figure was published in Johnson et al. [4].

Cosmology Telescope (ACT) in northern Chile [25]. Our goal was to replace the bolometers used

by ACTPol with KIDs. For reasons described below, we chose to use silicon-on-insulator (SOI)

wafers instead of the dielectrics used in the ACTPol design. We also chose to replace the ring-loaded

ACTPol feedhorns with conical feedhorns, for simplicity of fabrication. Thus, the initial design

tasks were as follows. First, to re-optimize the feedhorn coupling scheme and millimeter-wave

circuitry for SOI. Second, to develop a circuit to couple the optical radiation from the microstrip

circuitry to the KID CPW center strip. Third, to design and draw CPW resonators with suitable

resonance frequencies within the available chip area. Fourth, to design a metal package to enclose

the wafer using the new optical design. The first two tasks were done by collaborators, and the latter
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two were primarily my responsibilities.

6.2 Optical coupling

In our prototype design, a conical horn with a 4.66 mm diameter aperture and a 15° flare angle

is used to feed each pixel. Each horn feeds a 1.49 mm diameter circular waveguide that is made

approximately 9 mm long to ensure that evanescent low-frequency modes do not reach the detectors.

A broadband planar waveguide probe OMT on a thin membrane separates orthogonal linear

polarizations. The orientation of the OMT defines a polarimeter axis that is independent of

frequency. Chokes on both sides of the membrane reduce lateral leakage into the module. A

backshort behind the membrane reflects light that was not absorbed on the first pass, which improves

the optical coupling. Figure 6.1 shows detail of these structures.

Figure 6.2: Simulations of the spectral bands for the multichroic KID pixels. This figure was published in Johnson et al.

[3].

The output of each waveguide probe is CPW, so a broadband CPW-to-MS transition composed
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of seven alternating sections couples light to the on-chip MS circuitry. A diplexer consisting

of two sets of five-pole resonant-stub MS band-pass filters splits the light into the two spectral

bands, 125 GHz to 170 GHz and 190 GHz to 280 GHz. The results of end-to-end electromagnetic

simulations, shown in Figure 6.2, indicate that the expected absorption efficiency is approximately

0.9 across the 150 GHz and the 235 GHz spectral bands. Circular waveguide supports multiple

modes over this fractional bandwidth of 2.25:1, but only the TE11 mode has desirable polarization

properties. This mode couples to opposite fins of the OMT with a 180° phase shift, while the next

highest order mode, which also couples efficiently to the OMT probes, has a 0° phase shift. A 180°

hybrid combines the light from each probe pair within a single spectral band, and the path lengths

from the probes to the inputs of the hybrid are designed to be identical. To ensure single-mode

performance, the sum port of the hybrid is terminated in a resistive gold microstrip, while the

difference port is connected to the KID using a broadband coupling circuit that is described below.

To re-optimize the feedhorn coupling and the millimeter-wave circuitry, our collaborators at the

University of Michigan performed electromagnetic simulation of the components using ANSYS

HFSS software [131] and Sonnet EM software [132].

Figure 6.3: A schematic of the microstrip-to-coplanar-waveguide coupler for the multichroic KID project. This figure

was published in Johnson et al. [3]
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Our collaborators at Arizona State University designed a MS-to-CPW coupler and optimized

it using Sonnet simulations that are described by Surdi [133]. Figure 6.3 is a schematic of the

coupler. Millimeter-wave light coming from the microstrip output of the 180° hybrid is evenly

divided in-phase onto two microstrip branches that each have twice the impedance of the input.

Each branch feeds a standard broadband microstrip-to-slotline transition that couples the light into a

slotline formed in the ground plane. The two slotlines come together and meet the CPW gaps in the

aluminum section of the MKID.

6.3 Prototype resonators: simulation and testing

Since the millimeter-wave circuitry required a niobium ground plane, a hybrid KID design was a

natural choice. A hybrid KID is made from two superconductors with different gap energies. One

superconductor, the active metal, must have a spectroscopic gap below the photon energy so that

optical photons can break pairs in this region of the resonator. The other superconductor, the inactive

metal, should have a higher gap so that optically excited quasiparticles in the active region remain

trapped there. In the design presented here, in which optical photons propagate on transmission

lines made from the inactive metal, its spectroscopic gap must be higher than the photon energy so

that these photons can propagate without loss. Optically-excited quasiparticles are trapped in the

active region since their energies are less than the gap in the inactive metal.

We chose to use CPW resonators with an aluminum active region because hybrid CPW KIDs

(using aluminum and niobium-titanium-nitride) have demonstrated excellent sensitivity [113, 114,

134] and have been incorporated into large arrays [135]. The ACTPol OMTs were fabricated on

a low-stress silicon nitride (SiNx) membrane formed by etching away the silicon wafer beneath.

Because amorphous dielectrics tend to produce excess loss (Section 4.1) and noise (Section 5.3) in

KIDs, we decided to avoid using a silicon nitride membrane. Instead, we planned to use a SOI wafer

that consists of a thin crystalline silicon device layer above a thin silicon oxide (SiO2) layer above a

thick crystalline silicon handle layer that provides mechanical support. The membrane would be

107



formed by etching away the dielectrics beneath the device layer. Lossy dielectrics underneath the

KIDs would also be etched away as required.

While transmission-line resonators are a common choice for KIDs, when this project began my

group had designed and fabricated only lumped-element resonators. The starting point for analysis

of a CPW resonator is that the structure supports a quasi-transverse electromagnetic (quasi-TEM)

mode. The wave speed c for this mode can be approximated using the average dielectric constant of

the substrate ǫsubstrate and of vacuum [136]:

c = c0

(
1 + ǫsubstrate

2

)−1/2

, (6.1)

where c0 is the speed of light in vacuum. Silicon has dielectric constant ǫ = 11.9 at microwave

frequencies. The length of a quarter-wavelength resonator with a given resonance frequency fr is

thus

ℓ = λ/4 = fr/4c. (6.2)

The wave speed is reduced if the CPW is made from a superconducting structure with significant

kinetic inductance, and the resonance frequency shifts accordingly:

fr = (1 − α)1/2 fr(α = 0). (6.3)

The effective kinetic inductance fraction α is not trivial to calculate for hybrid resonators. Gao [83]

discusses the effective kinetic inductance fraction of superconducting CPW resonators in detail.

I used electromagnetic simulations [132] to simulate hybrid quarter-wavelength CPW resonators

in order to validate the design and estimate the effective kinetic inductance fraction. To find the

resonance frequencies quickly I used a three-port method [137], which involves inserting a third port

in the CPW center trace where it meets the ground plane, in addition to the two ports on the feedline.

Our heterodyne system can read out resonances up to about 4 GHz. As discussed in Chapter 3, the

fractional frequency response is enhanced at lower resonance frequencies, so I targeted frequencies
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around 3 GHz. In order to achieve the desired resonance frequencies in the limited area that was

available, it was necessary to fold the resonators into the shape shown in Figure 6.4, which is a

photograph of a fabricated resonator. This exact geometry was too computationally expensive to

simulate, but my simulations of simplified resonator geometries indicated that the effective kinetic

inductance fraction was around 20%. The simulations also indicated that the participation ratio (see

Section 4.1) of the buried oxide layer was of order 1%.

Figure 6.4: MKIDArray01-0101: a photograph of one resonator, showing the area available in one corner of a pixel.

The ground plane appears green, and the exposed silicon is gray. The orange structure is silicon nitride that is used

for the microstrip circuitry and is removed from around the KIDs. The horizontal transmission line that crosses the

photograph is the feedline. The area below the photo border is occupied by another resonator in the same pixel, and the

area to the right of the photo border is occupied by a resonator in the adjacent pixel. Photo courtesy of Brad Johnson.

Using input from the simulations, I drew and tested prototype CPW resonators in order to

explore resonator designs and provide feedback to collaborators on fabrication issues such as film

quality. Figure 6.5 shows a drawing of a chip with eight CPW resonators and a photograph of a

small aluminum package I designed that containing a chip fabricated by our colleagues at Stanford

University. All of the prototype resonators consisted of either one or two films on high-resistivity,

float-zone silicon substrates, so they involved a small number of fabrication steps.
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20 mm

Figure 6.5: (Left) A photograph of a chip with eight prototype CPW KIDs in a small aluminum package designed for

dark testing. (Right) A drawing of an eight-resonator chip that contains four different resonator types that are designed

to test different aspects of the design. The tan area is niobium, the red area is aluminum, and the white areas are exposed

substrate. This figure was published in Johnson et al. [3].

Some tests were performed in a cryostat that had no magnetic shielding, and early generations of

prototype resonators had high internal loss. After we recognized that the magnetic shielding was

insufficient, we obtained sheets of a nickel-iron-cobalt alloy (similar to mu-metal) and formed them

by hand into a small box with end caps. We tested the next generation of all-niobium resonators

inside this box. While this material had not been validated for cryogenic use, we obtained much

lower internal loss Λi ∼ 2.5 × 10−6
= 1/(4 × 105). This result suggested that vortices had caused

some of the loss in previous generations of resonators.

The simulations and prototype resonators included the slot structures on the ground plane layer

of the MS-to-CPW coupler, which are visible in Figure 6.5. Our conclusion from simulations and

measurements was that the slotline sections, which are electrically short at the KID resonance

frequencies, did not have a significant effect on the resonators.

The initial KID design called for the active region to consist of a 40 nm strip of aluminum

deposited on top of the 200 nm niobium ground plane layer. To ensure continuity of the aluminum,

the plan was to use a niobium etch that produced a sloped transition between the top of the niobium

and the exposed silicon. Due to difficulties in developing a high-yield fabrication process for
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the aluminum-over-niobium design, we explored a new fabrication process. This niobium-over-

aluminum process involved first depositing the aluminum followed immediately by the niobium

without breaking vacuum, to avoid oxide formation. Then, the niobium was etched from the CPW

gaps and from the active region. Finally, the aluminum was etched from the CPW gaps. The

resulting structure consists of a niobium-aluminum bilayer everywhere except for the active region,

which is only aluminum. Despite the continuity of the aluminum, the gap energy in the aluminum

underneath the niobium should be significantly elevated due to the proximity effect, and the structure

is expected to trap quasiparticles in the active region. Prototype niobium-over-aluminum resonators

had high loss under dark conditions, typically 2.5 × 10−5 < Λi < 2 × 10−4, corresponding to

40 000 > Qi > 5000. We have not yet been able to determine whether this loss is due to vortices,

to the fabrication process, or to effects inherent to the bilayer. The two 23-pixel wafers described

below were fabricated with niobium-over-aluminum bilayers.

6.4 The 23-pixel design

Our collaborators at Stanford University used the structures resulting from the electromagnetic

simulations and arranged them to produce a layout for the millimeter-wave circuitry. Using input

from my simulations and from the prototype resonators, I designed 92 KID resonators and a feedline

to add to this layout. Figure 6.6 is a drawing of the resulting 23-pixel design.

Each KID on a given feedline requires a unique resonance frequency, so some part of each KID

must be unique. The chips containing eight prototype resonators had a square footprint 10 mm

on a side, which could be flashed using a single photomask. In order to fabricate the much larger

23-pixel (92-resonator) array using a reasonable number of photomasks, we fixed the lengths of the

active regions and set each resonance frequency by tuning the length of the inactive region using

a “trombone slide” structure. In both Figure 6.1 and Figure 6.6, the KIDs are drawn in both red

and blue. The red areas are identical between all pixels, while the blue areas vary between pixels

because the trombone slide overlaps the fixed region by different amounts and produces a different
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Figure 6.6: A drawing of the multichroic 23-pixel array. The pixel centers are separated by 4.8 mm and the chip is

approximately 30 mm on each side. There are two pixel polarization axes that differ by 45° and alternate along the rows.

The feedline meanders between the pixels and is connected to external transmission lines using the bond pads at right.

The four gray ovals are alignment slots that are etched in the silicon. Precisely machined bosses on the holder protrude

into these slots and align the chip to within about 10 µm, while allowing for differential thermal contraction between the

silicon and aluminum.

total length for each KID.

The geometry of the active CPW section was determined based on both the simulations of the

MS-to-CPW coupling and on simulations that indicated that nearly all of the millimeter wave light

would be absorbed over a length of about 2 mm. The aluminum center strip in the active region is

4 µm wide, and the gaps to the niobium-over aluminum ground plane are 5 µm wide. The active

region is 2.1 mm long for the 150 GHz detectors and is 2.7 mm long for the 235 GHz detectors. The

aluminum strip is longer for the 235 GHz detectors because we anticipate they will receive more

power from the sky, so their volume needs to be larger to maintain equal dissipation. The geometry

of the inactive section, made from the niobium-over-aluminum bilayer, has a length range of 8.8 mm

to 10.4 mm. The end of the resonator near the readout transmission line supports the largest electric
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fields and is therefore most susceptible to TLS effects [70, 90, 91]. To reduce these effects, the

inactive center strip is 10 µm wide and the gaps to the ground plane are 30 µm wide. The geometry

of the elbow coupler that runs along the transmission line is the same as the rest of the inactive CPW.

The feedline is CPW with a 20 µm center strip and 12 µm gaps to the ground plane. It is designed to

match the 50 Ω impedance of the boards that carry signals to and from the coaxial connectors and

the chip.

The exact lengths were calculated for each resonator assuming the effective dielectric constant

discussed above and an effective kinetic inductance fraction of 20% for all resonators, which is an

approximation. Because the 235 GHz detectors have longer active sections, their inactive sections are

proportionally longer, and they have lower resonance frequencies than the 150 GHz detectors. The

low-frequency 235 GHz detectors are in the lower left of each pixel, and their resonance frequencies

span 2542 MHz to 2634 MHz. The high-frequency 235 GHz detectors are in the lower right of each

pixel, and their resonance frequencies span 2664 MHz to 2756 MHz. The low-frequency 150 GHz

detectors are in the upper right of each pixel, and their resonance frequencies span 2786 MHz to

2878 MHz. The high-frequency 150 GHz detectors are in the upper left of each pixel, and their

resonance frequencies span 2908 GHz to 3000 GHz. The bands were separated by 30 MHz in order

to reduce frequency collisions. The total bandwidth of about 460 MHz allows all 92 resonators in

the array to be read out simultaneously using our heterodyne system if the local oscillator frequency

is placed between the two middle bands.

6.5 Fabrication

All of the arrays were fabricated by our collaborators at Stanford University. The first 23-pixel

KID array was fabricated on SOI wafers 100 mm in diameter. Each SOI wafer consists of a 5 µm

thick float-zone silicon (> 10 kΩ cm resistivity) device layer and a 350 µm thick silicon handle wafer

held together by a 0.5 µm thick buried oxide layer. An aluminum-niobium bilayer is first deposited

on the device layer. The aluminum is 40 nm thick and the niobium is 200 nm thick. This bilayer
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Table 6.1: The stack-up for the first multichroic detector array on a SOI wafer. The direction of light propagation is from

the bottom of the table to the top. Because the thick silicon handle wafer and silicon oxide layer are etched away from

under the OMTs, the light first encounters the thin silicon device layer. HTO: hot thermal oxide.

Material Thickness/µm Notes

Al bulk lid with back-shorts

vacuum varies from metal on wafer to package bulk metal

Au 0.1 180° tee termination and heat sink wirebond pads

Nb 0.4 microstrip: filters, hybrids, coupler; feedline cross-overs

SiNx 0.35 not present above the resonators or feedline

Nb 0.2 ground plane: resonators, feedline, OMTs

Al 0.04 ground plane and KID active region

Si (intrinsic 〈100〉) 5 resistivity > 104
Ω cm, float-zone; thickness ±0.5 µm

SiO2 (wet HTO) 0.5 thickness ±5%

Si (P / boron 〈100〉) 350 resistivity 1Ω cm to 10Ω cm; thickness ±5 µm

Al bulk holder with feedhorns and circular waveguides

forms the ground plane, and is patterned to produce the OMTs, some millimeter-wave circuitry,

the coupler slotlines and KIDs, and the feedline. A 350 nm thick film of silicon nitride (SiNx)

is deposited on top of the bilayer, followed by a 400 nm thick niobium film. The silicon nitride

serves as the electrically insulating dielectric material in the microstrip, and the niobium film is

patterned to form the microstrip circuit that includes the band-pass filters and the 180° hybrids. Our

design uses cross-unders [127] in the microstrip circuit rather than cross-overs, which decreases the

number of required fabrication steps. A gold film is deposited and patterned on top of the silicon

nitride to construct the termination resistor at the sum port of the 180° hybrid. The silicon nitride is

removed near the KIDs to reduce loss and two-level system noise. The niobium is removed from the

approximately 2 mm long sensing section of the center line of the KIDs, leaving only the aluminum.

To form the membrane and alignment slots, the thick silicon handle wafer is removed using deep

reactive ion etching (DRIE), and the buried oxide layer is then removed using hydrogen fluoride

(HF) vapor. To reduce TLS noise and loss, these dielectrics are also removed from underneath the

high-field section of the KIDs. Table 6.1 summarizes the fabrication stack-up.
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6.6 MKIDArray01-0101: a 23-pixel array on intrinsic silicon

In order to test fabrication steps and the resonator design, we produced an engineering array on a

monolithic 500 µm thick high-resistivity, float-zone silicon wafer. This engineering wafer, which we

called MKIDArray01, was not optimized for millimeter-wave coupling because the substrate was

too thick. I tested chip 0101 from this wafer in a simplified version of the aluminum horn package

with no horns, chokes, or backshorts. Figure 6.7 shows a photograph of this array in a dark holder,

as well as a holder with conical horns that was used later on for optical testing. The package was

enclosed in a box made from magnetic shielding material.

�lter

attachment

probe tones

in

horn array

probe tones

out to LNA

10 mm

Figure 6.7: Photographs of the holder, showing the conical horns, and of MKIDArray01-0101 in a dark holder.

Figure 6.8 shows the result of sweeping readout tones from 1.8 GHz to 4.0 GHz and recording

the complex forward scattering parameter S21. All 92 designed resonances seemed to be present,

along with some additional resonances that did not respond much to temperature changes and thus

could be box modes or resonances involving the ground plane. The KID resonances appeared

slightly above the nominal resonance frequencies, indicating that the effective kinetic inductance

fractions were slightly less than the 20% estimate used to calculate the resonator lengths.

The scatter in the measured resonance frequencies, apparent in the frequency sweep, is due to a

known effect. The elbow coupler radiates onto the feedline both the quasi-TEM mode, in which
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the ground planes have the same voltage, and a so-called slotline mode, in which the ground plane

voltages are different. The slotline mode can be trapped on the chip and develop standing waves,

which affect both the coupling strength and the location of the resonance frequency. This effect can

be mitigated by electrically connecting the ground planes of the CPW [138, 139]. We designed

cross-overs to address this issue, but did not include them in the photomask set used for the wafers

described in this thesis because the fabrication process was not yet developed.
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Figure 6.8: MKIDArray01-0101: a wide frequency sweep showing many resonance dips. The vertical gray lines show

the nominal resonance frequencies.

We fit the resonances identified in the frequency sweep to the model given in Section 3.6 to

determine the internal and coupling quality factors for many of the resonators on the array. Figure 6.9

shows a histogram of the result. The coupling quality factors show wide scatter that is expected

in the absence of cross-overs. The internal quality factors are clustered just below Qi ∼ 20 000,

corresponding to Λi ∼ 5 × 10−5. Although the magnetic shielding has improved, the loss values

are similar to those obtained in the prototype niobium-over-aluminum resonators, suggesting that

vortices are not dominating the loss. The internal loss was nearly independent of readout power, so

TLS loss is unlikely to be significant.

The response of seven resonators to varying bath temperature is shown in Figure 6.10. The
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Figure 6.9: MKIDArray01-0101: a histogram of resonator quality factors.

central five resonators respond qualitatively as expected for resonators containing aluminum. The

leftmost and rightmost resonators, which seem not to be KIDs, barely respond to the temperature

change.

0.0 0.2 0.4

0

100

200

300

400

500

106
i

1992 MHz

0.0 0.2 0.4

2584 MHz

0.0 0.2 0.4

2695 MHz

0.0 0.2 0.4

temperature / K

2798 MHz

0.0 0.2 0.4

2916 MHz

0.0 0.2 0.4

2988 MHz

0.0 0.2 0.4

3864 MHz

0

500

1000

1500

2000

2500

106 s

Figure 6.10: MKIDArray01-0101: response to changing bath temperature for seven resonators. The left axes all share

the same limits, and show internal loss Λi. The right axes all share the same limits, which are much larger, and show the

fractional frequency shift s(T) from the maximum measured resonance frequency f max
r .

The critical temperature was measured to be, using the through transmission on the bilayer

feedline, Tc = 8.3 K, somewhat reduced from the value of 9.3 K for bulk niobium. The resonators

become too lossy to measure as the chip temperature approaches the critical temperature of aluminum,

so the aluminum film transition temperature is unknown.
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6.7 MKIDArray02-0001: a 23-pixel array on SOI

Figure 6.11: MKIDArray02-0001: a photograph of the first 23-pixel chip on a silicon-on-insulator wafer in a package I

designed for optical testing. Photo courtesy of Brad Johnson.

This wafer, which we called MKIDArray02, was the first to be fabricated using SOI. I tested

one 23-pixel chip from this wafer, number 0001. The dielectrics were removed from underneath

the elbow couplers, which is the area of highest electric field. Figure C.5 is a photograph of the

cryostat that shows the experimental configuration and the optical components I used to illuminate

the detectors. I used both the Eccosorb black body source and the electronic millimeter-wave source

for these first optical tests. Figure 6.12 shows wide frequency sweeps at two temperatures, which

were used to distinguish between KIDs and spurious resonances. I was able to identify 66 of the 92

expected KID resonances, as well as a number of additional resonances that do not seem to be KIDs.

I measured in detail a subset of 34 resonances, several of which subsequently turned out not to

be KIDs. Data from these resonances is shown in Figures 6.13, 6.14, 6.15, and 6.16. In some cases,

data cuts reduced the number of analyzed resonators below 34.

Figure 6.13 shows the quality factors extracted from fitting this group of resonances at a bath

temperature of 0.19 K, which was used for most data collection. (Due to a cryogenic problem, I

used a somewhat higher bath temperature than normal.) Many of the the other resonances were

very shallow or were difficult to analyze due to frequency collisions. The internal quality factors
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Figure 6.12: MKIDArray02-0001: wide frequency sweeps at two temperatures. The red data points were acquired

with the package temperature at 0.2 K, while the blue data points were acquired at 0.8 K. Aluminum is relatively lossy

at the higher temperature, so resonances that produce a transmission dip at this temperature must not be KIDs. The

gray vertical lines show the nominal resonance frequencies. The brown vertical lines show the frequencies of spurious

resonances that remained at the higher temperature. The green vertical lines show the frequencies of resonances that

vanished at the higher temperature and are thus likely to be KIDs.
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Figure 6.13: MKIDArray02-0001: Qi and Qc versus frequency.

are similar to those found on the engineering array. The coupling quality factors are several times

higher than on the engineering array, probably because the removal of the dielectrics under the

elbow coupler reduces the capacitance between it and the feedline. The coupling strength can easily

be increased by lengthening the section of elbow coupler parallel to the feedline or by moving it

closer to the feedline. The combination of low coupling strength and high internal loss makes the
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resonances wide and shallow, mostly less than 1 dB deep. Such resonances are difficult to distinguish

from the ripple in the background transmission. It is thus likely that more resonances are present

than I was able to identify.
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Figure 6.14: MKIDArray02-0001: response to changing bath temperature. The minimum value of the internal loss for

each detector has been subtracted, and the left axis shows the change in loss. The right axis shows fractional frequency

shift s.

Measurements of the response of the same 34 resonators to changing bath temperature are

shown in Figure 6.14. At high temperatures, both Λi and s increase with increasing temperature, as

expected. The low-temperature increase in s as the temperature decreases is a signature of TLS

effects, and is sometimes called “back-bending.”

Figure 6.15 shows the response of the internal and coupling loss to changing readout power.

The observed decrease in Λi with increasing readout power is a signature of TLS loss. This occurs

because the TLS become saturated [70]. Because the internal loss of the resonators fabricated on

intrinsic silicon was nearly independent of readout power, the buried oxide layer in this array is the

likely culprit. As usual, the coupling strength Λc is independent of readout power.

I tested the response of the same set of detectors to a change in the temperature of a black body

load. This load is the slab of Eccosorb, a material that is black at millimeter wavelengths, that is

shown in Figure C.5. The thickness is such that the slab is nearly opaque, and the transverse extent

is sufficient to fill the detector feed horn beams. The slab has an anti-reflection coating of etched
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Figure 6.15: MKIDArray02-0001: response to changing readout power. The left plot shows internal loss, and the right

plot shows coupling loss.
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Figure 6.16: MKIDArray02-0001: response of 29 resonators to changing black body temperature.

Teflon. I measured the resonators with the black body at 3.3 K, the base temperature of the slab,

and at 5.0 K, heating the slab using a resistor attached to the slab support structure. The changes in

the internal loss and coupling loss are shown in Figure 6.16. The brown vertical lines mark the

locations of the spurious resonances that were identified later. These resonances respond either

anomalously or not at all the the black body. The identified KID resonances mostly shift similarly,

with the fractional frequency shift s = δ fr/ fr somewhat higher than the internal loss shift δΛi, as

expected. The fractional frequency shift is about 4 parts per million per degree kelvin.
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I chose one resonator to analyze in more detail. This resonator has a resonance frequency

fr = 3410 MHz and it is thus likely to be a 150 GHz detector. The internal loss and coupling loss are

Λi = 8.14 × 10−5
= 1/(1.23 × 104) (6.4)

Λc = 1.92 × 10−5
= 1/(5.22 × 104). (6.5)

This internal loss is typical for the array, while the coupling loss is lower than average, which makes

the resonance deeper and easier to measure. The resonator bandwidth is

ϕr = fr(Λi + Λc)/2 = 170 kHz, (6.6)

which is higher than the Nyquist frequency of 125 kHz. The quasiparticle relaxation time was

extracted under similar conditions from the fit in Figure 3.8, and the corresponding quasiparticle

bandwidth is ϕqp = 1/(2πτqp) = 920 Hz. Figure 3.14 shows the response of this resonator to

changing bath temperature. The interpretation of the results is complicated by what appear to be

TLS effects on both the internal loss and fractional frequency shift.

Figure 6.17 shows noise data measured at a bath temperature of 0.16 K with no optical

illumination except for the black body at its 3.3 K base temperature. The spectral density SΛiΛi
of

the internal loss data falls off rapidly below 100 Hz to the amplifier noise level and is then white out

to the roll-off due to an anti-aliasing filter. The temperature regulation was particularly unstable in

this cooldown, and the stage temperature often fluctuated by up to 1 mK, much more than normal.

Some of the noise is thus likely to be produced by changes in the thermal quasiparticle generation

rate. The excess seen in the spectral density Sxx of the detuning data may be caused by TLS noise,

but more tests would be required to determine the different contributions.

Figure 6.18 shows the response of this detector to a chopped signal from the millimeter wave

source described in Section 5.5 and in Appendix C. The source was used in broadband mode,

producing a chaotic signal from 140 GHz to 160 GHz. Comparing the data to the black body
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Figure 6.17: MKIDArray02-0001: noise spectra for the 3410 MHz resonator. The plotted data are estimates of the

power spectral densities of x(t) and Λi(t) extracted from 33 s of time-ordered data. The normalization of the internal

loss spectrum is chosen so that the amplifier noise has the same amplitude in both spectral densities. The roll-off at the

highest frequencies is due to an anti-aliasing filter in the readout firmware.

response indicates that the source signal amplitude corresponds to about a 1 K change. The decay

portion of the data shown in the right panel was used for the fit shown in Figure 3.8.

I made preliminary measurements of the polarization response of the detectors using the

cryogenic sapphire half-wave plate (HWP) shown in Figure C.5. The HWP was rotated using a

cryogenic motor. Data taken at 100 different HWP angles, corresponding to a full rotation, is shown

in Figure 6.19. The temperature regulation ended halfway through data acquisition and the stage

warmed by about 50 mK by the end. The increased thermal quasiparticle density is the likely cause

of the decrease in response toward the right of the plot. Nevertheless, the modulation period of one

quarter rotation matches expectations. The modulation depth is about 50%, where one would expect

100% for a perfectly linearly polarized signal measured by an ideal detector. This may be caused by

non-ideal aspects of either the light illuminating the detectors or the detectors themselves, and these

possibilities are not mutually exclusive. First, the illumination may not be perfectly linear. The HWP

acts ideally only at a single frequency close to 150 GHz. As the optical frequency departs from this

the polarization will become elliptical, and an ideal detector will measure cross-polarization. The

horn apertures in the package may not be in the far field of the waveguide horn that illuminates them,
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Figure 6.18: (Left) Time-ordered detuning data from the 3410 MHz resonator. One time series was taken with the

millimeter-wave source off. The other was taken with the signal chopped at 122 Hz using a switch in the source. Both

time series have been decimated by a factor of 64 to remove high-frequency amplifier noise. (Right) The entire 33 s time

series of chopped data, part of which is shown in the left panel, has been folded down to a single period by averaging all

samples that are separated by one period.

they are not illuminated perfectly on-axis, and reflections in the optical system complicate analysis.

Second, even if the incoming signal and polarization analyzer were ideal, crosstalk between detectors

could also reduce the modulation depth. The resonators are designed so that nearest neighbors

in frequency are separated by at least the pixel-to-pixel spacing of 4.8 mm, and the CPW ground

plane strongly confines the fields, so direct electromagnetic coupling is unlikely to be significant.

Independent of the physical spacing, resonators that are spaced too closely in frequency compared

to their bandwidth will couple to each other through the feedline. The relatively high internal loss

on this array produces low total resonator quality factors and thus wider resonator bandwidths.

Crosstalk may be significantly reduced by connecting the ground planes of the CPW feedline [139],

which was not done on this chip. The chokes shown in Figure 6.1 are designed to suppress light

leakage into the module cavities, which could cause incoming signals to illuminate several KIDs on

a pixel. Propagation of substrate modes can be mitigated by using a superconducting mesh with a

lower gap than the sensing metal [135, 140]. Such a mesh will also reduce crosstalk due to phonons

produced by pair recombination, which can propagate significant distances across a chip [61].
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Figure 6.19: MKIDArray02-0001: half-wave plate data for the 3410 MHz resonator. Each blue point is the peak-to-peak

amplitude of the time-ordered detuning data at that HWP angle with the source chopped at 122 Hz, with statistical error

bars. The amplitude was calculated from about 1 s of time-ordered data that was folded to a single period of the chop

signal, as in the right panel of Figure 6.18. The red line is a fit to an offset sine with a period of one quarter HWP

rotation, which is the expected modulation period.

6.8 Conclusions and future work

The encouraging results of these first optical tests validate the basic design. They demonstrate that

the millimeter-wave circuitry – including the MS-to-CPW coupler, which we had not previously

tested – can couple light from the waveguide into the KIDs, that the KIDs respond to light, and that

the pixels have some ability to discriminate between linear polarization states.

Adding the ground plane straps should improve the uniformity of the resonance frequency

spacing, reduce scatter in the coupling quality factors, and reduce crosstalk. The coupling strength

may be increased to better match the internal loss by lengthening the elbow couplers or by bringing

them closer to the feedline. If TLS effects are indeed significant, they may be mitigated by removing

more of the dielectrics from beneath the resonators. The source of the loss that limits the internal

quality factors may be investigated further both by fabricating more resonators using bilayer films

and by comparing the internal loss between resonators fabricated on SOI wafers and on intrinsic

silicon wafers. Future tests with a millimeter-wave source for the 235 GHz band will test the spectral

discrimination.
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Straightforward improvements in the experimental setup, in the pixel design, and in fabrication

could lead to a deployment-quality detector array. Figure 6.20 shows a concept drawing of a

169-pixel (676-KID) array of these multichroic pixels that could be used in future CMB polarization

experiments.

Figure 6.20: A drawing of a prototype 169-pixel multichroic detector array.
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Appendix A

Connections to other work

This appendix is intended to facilitate comparison between the results presented here and other

works on quasiparticle dynamics. In a quasiparticle number model like the one used here, all of the

dynamical results can be derived from the rate equation for the quasiparticle density. Table A.1

summarizes the equivalences between variables that can be inferred by comparing the rate equations

given here. Zmuidzinas [70] gives for the recombination rate

Γr =

N2
qp

2N∗τmax

+

Nqp

τmax

, (A.1)

where Nqp is the quasiparticle number and N∗ and τmax are constants. For bare recombination,

Wilson and Prober [112] give

dN

dt
= 2

(
ΓG −

1

2

R

vol
N2

)
, (A.2)

where ΓG is the generation event rate, R is the recombination constant and N is the number of

quasiparticles. When they include the phonon system, they derive a modified equation that includes

an effective recombination constant R∗
= R/Fω, equivalent to R here. Wang et al. [63] use

dxqp

dt
= −r x2

qp − sxqp + g, (A.3)
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Table A.1: Connections between notation used in this thesis and in other works.

This thesis Zmuidzinas [70] Wilson and Prober [112] Wang et al. [63]

τqp τqp τ∗r τss

R (2n∗τmax)
−1 R∗ ncpr

S τ−1
max Γt s

N0 N0 D(εF)/2

F Fω F

where xqp = nqp/ncp, nqp is the density of quasiparticles and ncp is the density of Cooper pairs. The

number of Cooper pairs is not given explicitly but can be inferred to be equal to ncp = N0∆0 in the

notation used here by comparing their expression for the recombination constant r with Equation 3.14

for R. Their solution to their rate equation is equivalent to the solution to Equation 3.45 given here.

Writing the equation in terms of perturbations to the steady-state density, as is done here, results in a

simpler solution and a straightforward treatment of small perturbations.
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Appendix B

First-order response functions

In the approximation scheme introduced by Zmuidzinas [70] and discussed in Section 3.4, the

quasiparticle occupancy F(E) is treated as given. For calculating the response of a KID, the

interesting properties of the superconducting state depend on both the gap and the occupancy;

however, the gap also depends on the occupancy and must be determined in a self-consistent manner.

To treat this complication approximately, consider only quantities that are proportional to F, which

is used as a small parameter, and write equations that are self-consistent to first order.

For a thermal (Fermi-Dirac) occupancy F(E,T) = [exp(E/kBT) + 1]−1 at a temperature such

that kBT/∆0 ≪ 1, we can make the approximation F(E,T) ≈ exp(−E/kBT) as long as there are no

states too far below the gap. This allows the integrals of the first-order quantities to be performed

analytically.

Gap energy

To derive the first-order response function for the gap, start with the BCS self-consistency equa-

tion [36]

1 = VBCS

∑
k

1 − 2Fk(
ξ2

k
+ ∆2

)1/2
, (B.1)
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where ξk = εk − εF is the Bloch state energy measured from the Fermi energy εF, and Fk is the

occupancy of the quasiparticle state with energy Ek =
(
ξ2

k
+ ∆

2
)1/2

. The sum is over all wavevectors

k such that

|ξk | < ξc ∼ ξD, (B.2)

the Debye energy. Because εD ≫ ∆ ≫ kBT , we have F(E = ξD) = 0 and we can take the limits of

the corresponding integral to be infinite:

1 = N0VucVBCS

∫ ∞

−∞

dξ
1 − 2F

(
E = [ξ2 + ∆2]1/2

)
(ξ2 + ∆2)1/2

. (B.3)

Expand around the zero-temperature value ∆0, using δ∆ = ∆ − ∆0:

1

(ξ2 + ∆2)1/2
=

1

(ξ2 + ∆2
0
)1/2

−
∆0

(ξ2 + ∆2
0
)3/2
δ∆ + O

(
δ∆2

)
. (B.4)

Assume that the occupancy is small so that the term linear in F is already first-order. The first-order

self-consistency equation is then

1 = N0VucVBCS

∫ ∞

−∞

dξ
©«

1

(ξ2 + ∆2
0
)1/2

−
∆0

(ξ2 + ∆2
0
)3/2
δ∆ −

2F
(
E = [ξ2 + ∆2

0
]1/2

)
(ξ2 + ∆2

0
)1/2

ª®®¬
(B.5)

∴ 0 = δ∆

∫ ∞

−∞

dξ
©«

∆0

(ξ2 + ∆2
0
)3/2
+

2F
(
E = [ξ2 + ∆2

0
]1/2

)
(ξ2 + ∆2

0
)1/2

ª®®¬
, (B.6)

since the left-hand side and the first term define ∆0. With z = ξ/∆0,

1

∆0

∫ ∞

−∞

dz

(z2
+ 1)3/2

=

2

∆0

, (B.7)
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so the shift in the gap is

δ∆ = −
∆0

2

∫ ∞

−∞

dξ
2F

(
E = [ξ2 + ∆2

0
]1/2

)
(ξ2 + ∆2

0
)1/2

. (B.8)

Use the fact that the integrand is even and change variables to E = (ξ2 + ∆2
0
):

δ∆ = −2∆0

∫ ∞

∆0

dE
F(E)

(E2 − ∆2
0
)1/2
. (B.9)

Thus, the first-order response function is

K∆(E) = −
2∆0

(E2 − ∆2
0
)1/2
= −

2∆0ρ0(E)

E
, (B.10)

where ρ0 = E(E2 − ∆2
0
)−1/2 is the reduced density of states at zero temperature.

For a thermal occupancy, using the above low-temperature approximation and the dimensionless

variable z = E/∆0, the first-order shift in the gap is

〈K∆ |F(T)〉 = −2∆0

∫ ∞

∆0

dE
exp(−E/kBT)

(E2 − ∆2
0
)1/2

(B.11)

= −2∆0

∫ ∞

1

dz
exp(−∆0z/kBT)

(z2 − 1)1/2
(B.12)

= −2∆0K0

(
∆0

kBT

)
, (B.13)

where K0 is the zero-order modified Bessel function of the second kind.
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Quasiparticle density

The first-order response function for the quasiparticle density (or number) follows simply from the

definitions. With the same notation and expanded limits as above,

nqp = 2N0

∫ ∞

−∞

dξ F
(
E = (ξ2 + ∆2)1/2

)
. (B.14)

As above, the integrand is already first-order so we neglect the shift in the gap and set ∆ = ∆0.

Changing variables and using the symmetry,

nqp ≈
〈
Knqp

��F〉
=

∫ ∞

∆0

dE
4N0E

(E2 − ∆2
0
)1/2

F(E). (B.15)

Including the cutoff in the density of states, the first-order response function is simply

Knqp
(E) = 4N0ρ0(E), (B.16)

which we would have obtained by naively replacing ∆ with ∆0 in Equation 3.9.

For a thermal occupancy, with the usual approximation, we have

〈
Knqp

��F(T)〉 = 4N0

∫ ∞

∆0

dE
E exp(−E/kBT)

(E2 − ∆2
0
)1/2

. (B.17)

This integral is done by Thomas et al. [40], who give

nqp(T) = 4N0∆0K1(∆0/kBT) ≈ 4N0∆0

(
πkBT

2∆0

)1/2

exp

(
−
∆0

kBT

)
, (B.18)

which is Equation 3.10 in the main text.
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Figure B.1: The first-order response functions for the real and imaginary parts of the conductivity at f1p = 0.1 GHz

versus energy in units of the gap, and a thermal occupancy. The left axis shows Equations 3.39 and 3.41 multiplied

by constants to make them dimensionless. For display, the density of states factors have been broadened using

∆2/∆0 = 0.0002. The right axis shows a thermal occupancy at a typical KID operating temperature. Figure 3.6 shows

the same quantities at a much higher frequency, where the peaks in the response functions are farther apart.

Complex conductivity

In calculating the first-order response functions for the complex conductivity at the readout frequency

f we can assume that h f /2∆ ≪ 1. The expressions for Kσ1
and Kσ2

are plotted for two different

frequencies in Figures 3.6 and B.1.

For the real part of the conductivity, start with Equation 3.28. In this limit, only the first term is

present:

σ1( f )

σn

=

2

h f

∫ ∞

∆

dE [F(E) − F(E + h f )]
E2
+ ∆

2
+ h f E

[E2 − ∆2]1/2[(E + h f )2 − ∆2]1/2
. (B.19)

For brevity, and to anticipate possible broadening, rewrite the integrand using the density of states:

σ1( f )

σn

=

2

h f

∫ ∞

∆

dE [F(E) − F(E + h f )] ρ(E)ρ(E + h f )

(
1 +

∆
2

E(E + h f )

)
. (B.20)

The entire integrand is proportional to the occupancy, so σ1(T = 0) = 0 and we may neglect the
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first-order shift in the gap, which would appear at second order, and set ∆ = ∆0. If we write the

density of states in the form ρ0(E) = Re
{
E(E2 − ∆2

0
)−1/2

}
, we can change variables in the second

term and combine the integrals, setting both lower limits to 0:

σ1( f )

σn

=

2

h f

∫ ∞

0

dE F(E)

[
ρ0(E)ρ0(E + h f )

(
1 +

∆
2
0

E(E + h f )

)

− ρ0(E − h f )ρ0(E)

(
1 +

∆
2
0

(E − h f )E

) ]
.

(B.21)

(This change of variables should not cause problems unless there are states far below the gap, close

to E = 0.) We can now read off the first-order response function:

Kσ1
(E) =

2σnρ0(E)

h f

[
ρ0(E + h f )

(
1 +

∆
2
0

E(E + h f )

)
− ρ0(E − h f )

(
1 +

∆
2
0

(E − h f )E

)]
, (B.22)

which matches Equation 3.39. To calculate
〈
Kσ1

��F(T)〉 for a thermal occupancy F(T) at low

temperature, start from Equation B.19, and, following Barends [141], change to a dimensionless

variable

z =
2

h f

(
E − ∆0 +

h f

2

)
. (B.23)

Then, using D = 2∆0/h f ≫ 1 so that E = (h f /2)(z + D − 1),

〈
Kσ1

��F(T)〉
σn

= 2 sinh

(
h f

2kBT

)
exp

(
−
∆0

kBT

) ∫ ∞

1

exp

(
−

h f z

2kBT

)

×
z2
+ 2Dz + 2D2 − 1

[2D(z − 1) + (z − 1)2]1/2[2D(z + 1) + (z + 1)2]1/2
dz

≈ 2 sinh

(
h f

2kBT

)
exp

(
−
∆0

kBT

) ∫ ∞

1

exp

(
−

h f z

2kBT

)
D

(z − 1)1/2(z + 1)1/2
dz .

(B.24)

The exponential falls off rapidly, so the weight is highest near z & 1. We thus neglect all terms in

the numerator except 2D2. In the denominator, (z − 1)2 is negligible near z = 1 where the weight is

highest. For z ≈ 2D, where (z ± 1)2 becomes significant, the argument of the exponential is negative

and large (2∆0/kBT ≫ 1), so we can also neglect these terms. In this form, the integral can be done
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analytically, as above, with the result

〈
Kσ1

��F(T)〉
σn

=

4∆0

h f
exp

(
−
∆0

kBT

)
sinh

(
h f

2kBT

)
K0

(
h f

2kBT

)
. (B.25)

The derivation of the first-order response function for the imaginary part of the conductivity

proceeds similarly, starting from Equation 3.29 with the lower bound appropriate for h f /2∆ < 1:

σ2

σn

=

1

h f

∫
∆

∆−h f

dE [1 − 2F(E + h f )]
E(E + h f ) + ∆2

[∆2 − E2]1/2[(E + h f )2 − ∆2]1/2
. (B.26)

The occupancy does not appear in the first term, so the zero-temperature value is nonzero. Using

the same dimensionless variables as above,

σ2(T = 0)

σn

=

∫ 1

−1

dz

2

z2
+ 2Dz + 2D2 − 1

[2D(1 − z) − (1 − z)2]1/2[2D(1 + z) + (1 + z)2]1/2

≈

∫ 1

−1

dz
D/2

(1 − z)1/2(1 + z)1/2
.

(B.27)

As before, we retain only the largest term in the numerator. The integrand is singular at both limits,

and we neglect (z ± 1)2 in the denominator because the other terms dominate near the limits. With

the substitution θ = arccos(−z), we obtain

σ2(T = 0)

σn

=

π∆0

h f
. (B.28)

The second term in Equation B.26 is linear in F, so again we set ∆ = ∆0 in this term. However, the

first term also produces a first-order contribution because the shift in the gap appears at this order:
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∆ = ∆0 + 〈K∆ |F〉. Using Equation B.10, factoring the second term, and changing limits gives

σ2 − σ2(T = 0)

σn

=

π 〈K∆ |F〉

h f
−

2

h f

∫
∆+h f

∆

dE F(E)
(E − h f )E + ∆2

[∆2 − (E − h f )2]1/2[E2 − ∆2]1/2

=

∫ ∞

0

dE F(E)

(
−

2π∆0ρ0(E)

h f E

)

+

∫ ∞

0

dE F(E)

(
−

2ρ0(E)

h f

) (
1 +

∆
2
0

E(E − h f )

)

×
H(∆0 + h f − E)(E − h f )

[∆2
0
− (E − h f )2]1/2

,

(B.29)

where H is the unit step function, which produces the cutoff at the upper limit. In both integrals,

the cutoff at the appropriate lower limit is presumably determined by the density of states. The

singularity at E = ∆0 + h f can be broadened in a non-rigorous way by replacing the final fraction

containing the step function with

Re

[
E − h f

[∆2
0
− (E − h f )2]1/2

]
, (B.30)

as was done for display in the figures. The response function is thus

Kσ2
(E) = −

2σnρ0(E)

h f

[
π∆0

E
+

(
1 +

∆
2
0

E(E − h f )

)
H(∆0 + h f − E)(E − h f )

[∆2
0
− (E − h f )2]1/2

]
, (B.31)

matching Equation 3.41. For a thermal occupancy, we make the usual approximation. The first

term involves the integral for the gap shift, given by Equation B.13. In the second term, start with

Equation B.26, and set ∆ = ∆0:

〈
Kσ2

��F(T)〉
σn

=

π 〈K∆ |F(T)〉

h f

−
2

h f

∫
∆0

∆0−h f

dE
exp(−[E + h f ]/kBT) (E(E + h f ) + ∆2

0
)

[∆2
0
− E2]1/2[(E + h f )2 − ∆2

0
]1/2

.

(B.32)
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Use the same dimensionless variables as above and make the same approximations:

〈
Kσ2

��F(T)〉
σn

= −
2π∆0

h f
K0

(
∆0

kBT

)

− exp

(
−
∆0

kBT

)
exp

(
−

h f

2kBT

)

×

∫ 1

−1

dz
exp (−h f z/2kBT) (z2

+ 2Dz + 2D2 − 1)

[2D(1 − z) − (1 − z)2]1/2[2D(1 + z) + (1 + z)2]1/2

≈ −
2π∆0

h f
K0

(
∆0

kBT

)

− exp

(
−
∆0

kBT

)
exp

(
−

h f

2kBT

) ∫ 1

−1

dz
D exp (−h f z/2kBT)

(1 − z)1/2(1 + z)1/2
.

(B.33)

Using θ = arccos(−z) and

I0(a) =
1

π

∫ π

0

dθ exp[a cos(θ)], (B.34)

where I0 is the zero-order modified Bessel function of the first kind, we obtain

〈
Kσ2

��F(T)〉
σn

= −
2π∆0

h f

[
K0

(
∆0

kBT

)
+ exp

(
−
∆0

kBT

)
exp

(
−

h f

2kBT

)
I0

(
h f

2kBT

)]
, (B.35)

matching Equation 3.42.
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Appendix C

Hardware

C.1 KID readout
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Figure C.1: A schematic of the ROACH-1 baseband readout system, including components in the cryostat. This system

is capable of measuring resonances below approximately 200 MHz. This figure was published in McCarrick et al. [80].
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Figure C.2: A schematic of the ROACH-2 heterodyne readout system, including components in the cryostat. This

system is capable of measuring resonances between approximately 700 MHz to 4000 MHz. This figure was published

in Johnson et al. [3].
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Figure C.3: (Left) A photograph of the ROACH-2 board. (Right) A photograph of the analog electronics box for the

heterodyne readout system, including the local oscillator (LO). This figure was published in Johnson et al. [3].
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C.2 Millimeter-wave source

Table C.1: Primary components of the millimeter-wave source. The terminator and amplifiers are built-in components,

but are used only in broadband mode, in which they produce broadband noise. In continuous-wave mode, we instead

use an external microwave signal generator that feeds the input to the PIN switch.

Component Vendor Part Number

50 Ω terminator Minicircuits ANNE-50X

High gain amplifiers Spacek Labs SG134-40-17

PIN switch Narda S213D

Active multiplier Millitech AMC-05

Variable attenuators Custom Microwave VA6R

Band-pass filter Pacific Millimeter 14020

Directional coupler Millitech CL3-006

Zero-bias diode power detector Virginia Diodes, Inc. WR6.5-ZBD

Figure C.4: A photograph of the electronic millimeter-wave source.
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C.3 Cryostat

Figure C.5: The interior of a cryostat used for detector testing, in its “half-wave plate” configuration. Light from an

electronic millimeter-wave source propagates down the rectangular waveguide and exits the feed horn. The cryogenic

half-wave plate may rotate the polarization axis. The motor rotates the half-wave plate. The Eccosorb slab is nearly

opaque and provides a beam-filling black body load with a temperature that can be controlled using the heater. This

configuration is similar to that used for the optical testing of detectors described in Section 6.7.
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Figure C.6: The interior of a cryostat used for detector testing, in its “optics box” configuration. Light from an

electronic millimeter-wave source propagates down the rectangular waveguide and exits the feed horn. The optics box

contains mirrors (not visible) that convert the horn beam into a plane wave that illuminates the top of the detector

package. The Eccosorb slab is nearly opaque and provides a beam-filling black body load with a temperature that can be

controlled using the heater. The experiment described in Section 5.5 used a similar configuration to that shown here.

The experiment described in Section 4.3 was performed with the package attached to the 0.1 K, as shown here, but the

optics box was removed and the magnet array was placed beneath the package, outside the cryostat shells that have been

removed for this photograph.
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