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Abstract. 

A programme of work is in progress for the construction of 

tables of wave vector selection rules (WVSRs) for all the classical 

space groups. The generaltheory is briefly reviewed and some 

practical considerations which have arisen in the construction of 

these tables are also discussed. The use of induced compatibility 

tables (ICTs) is described and this is illustrated with an example 

taken from the space group F~3m (T~). 
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I_.~. Introduction. 

For many years a considerable amount of energy was expended on 

the determination of the irreducible representations of the classical 

space groups. The principal motivation for studying the irreducible 

representations of the space groups is the fact that they are relevant 

to the quantum-mechanical treatment of particles or quasiparticles in 

a crystalline solid. Suppose that a certain particle or quasiparticle 

belongs to an irreducible representation F i of a space group,,0 ~. 

Then the transformation properties of the wave function ~i of the 

particle, under the symmetry operations of ~, will be those of one 

of a basis <~il of __ri' while the degeneracy of the component 

corresponding energy eigenvalue, Ei, for the particle will be equal 

to the degeneracy of |4" These facts have been widely exploited 

to simplify the calculation of energy eigenvalues, Ei, for ~electr°ns' 

phonons, and magnons in crystalline solids. The labels Ji form 

the basis of a convenient scheme for labelling the eigenvalues E i. 

For our present purposes we shall assume that the irreducible 

representations of all the 230 classical space groups are readily 

available (for references see, for example, Bradley and Cracknell 

(1972)). We shall be concerned with the problem of the reduction of 

the Kronecker products of these representations, that is, with deter- 
kikJ,k 1 

mining the coefficients C~q,'~ - in the decomposition 

r 1 pq,r - 

k i 
(r~ ~) is an irreducible representation_k of the space group ~kinduced 

from the irreducible representation ~i of the little group G ~i p -- • 
The reason for constructing these tables is that the reductions of 

these products enable one to determine selection rules for various 

physical processes involving scattering between quantum-mechanical 

states of particles or quasiparticles in crystalline solids. These 

processes include infra-red absorption, Raman scattering, mignon 

sidebands on optical spectral lines in magnetically-ordered crystals, 

solid-state phase transitions, electron scattering and neutron scatter- 

ing (for further details see Birman and Berenson (1974) and section 7 

of Cracknell (1975)). We do not have sufficient space to discuss 

these processes in detail here. The formal theory of the reduction 

of products of the form given in equation (I) is already available 

and it has been applied to the determination of complete tables of 

the reductions for a few special space groups (references are quoted 
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in section 7.1 of Cracknell (1975)). We have been turning our 

attention to the problem of producing complete tables of these reduct- 

ions for all the space groups. We have found it convenient to divide 

our work into two stages. First, there is the determination of wave 

vector selection rules, that is identifying the (relatively few) values 

of ~l that arise for each given pair of ~i and ~j. Secondly, once 

&i&j,~l this is done, it remains to find the actual coefficients Cpq,r . 

2__~. Theory. 

We shall give a very brief r~sum~ of the necessary theory; 

further details may be found, for example, in section 4.7 of Bradley 

and C~cknell (1972). 

2.1 Wave vector selection ~n~les (W~SRs). 

The values of ~i which may appear on the right-hand side of 

equation (I) are restricted by the condition 

R~i + R~kj ~ E1 (2) 

where {R~I~ ~ and ~R~I~ are elements of ~. The values of 

R~ and R~ are restricted so t~t { R ~  and {R~I ~} form 

quite a small subset of all the elements of the group ~. The allowed 

v~lues of R~ and R~ have to be determined from a detailed er~min- 

ation of certain double-coset decompositions of ~ (see Bradley and 

Cracknell (1972)). Thus the allowed values of R~ are found from 

writing 

and, for each allowed R~ the corresponding allowed values of R} are 

found from the double-coset decomposition 

With the allowed values of R~ and R~ the wave vector selection rules, 

that is the identification of the allowed ~l for a given pair of ~i and 

~j, can be determined by the use of equation (2). In practice the 

restrictions on E~ and R~ are so severe that equation (2) frequently 

leads to only one value of ~l for which the coefficients 

C ~i~j'~l do not automatically vanish. 
pq,r kik~,k 1 

2.2 Determination of coefficients Cpq,~ 

Assuming that the wave vector selection rule for a given ~i and 

kj has been determined, the coefficient C ~i~j'~l pq,r can be obtained by 
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using the formula which is given, for example, on p. 211 of Bradley 

and Cracknell (1972) 

Cpq,r - ~ ~ (Jal/JN~ol)~R.Ivy~ N~@/T~(P (~R,I~-I~J'~{R~ ~r~ 

where {R~l ZW } __ are elements of ~, ~p ([F.IX~) is the character of 

the element @IX} in r~, and Ng# 

Our task is to determine the WVSRs and the coefficients on the 

right-hand side of equation (I) for all possible sets of p, q, ~i' 

and ~j in the decomposition of the left-hand side of equation (I) for 

each of the 230 classical space groups. This involves a very large 

amount of tabulation and all that we can hope to do here is to 

describe some of the difficulties that we have encountered along the 

way and to indicate the form of the results for a few examples. 

2.5 Symmetrized and antisymmetrized powers. 

In addition to the reductions of the ordinary Kronecker products, 

there is also the special case when ~i = k. and p = q. The product 
k i 

~i G) V~ t~), or ~J~i G (Vp ?_ ~m ( the square of (rp T~), can be separated 

into symmetrized and antisymmetrized parts and these symmetrized and 

antisymmetrized squares of space-group representations are of consid- 

erable importance in a number of applications. Symmetrized and 

antisymmetrized cubes, and higher powers, of space-group representat- 

ions can also be considered by an adaptation of the theory already 

outlined (for details see Bradley and Davies (1970), Lewis (1973), 

Gard (1973a, 1973b)). We are also planning to tabulate the results 

of the reductions of symmetrized and antisymmetrized powers of the 

irreducible representations of all the 230 space groups; the extra 

tabulation involved in doing this is quite small since ~i = ~j and 

p=q. 

3. Identification of space-group representations. 

For our purposes it is necessary to have available a set of 

tables of the space-group representations themselves, such tables 

being complete, correct, and in a notation that is unambiguously 

defined. In a paper which is being submitted elsewhere (Davies and 

Cracknell 1975) we have examined the problem of establishing such a 

definitive set of tables. This has involved some synthesis, and 

also some extension, of the work of Miller and Love (1967) and of 

Bradley and Cracknell (1972). To construct unambiguous tables of 
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W~SRs we have found it necessary to include all the special planes 

of symmetry; these were not included in any of the published sets of 

tables of space-group representations. 

4. Determination of wave vector selection rules~ 

If both ~i and kj are wave vectors corresponding to points of 

symmetry, the determination of WVSRs is quite easy and the results for 

any given space group can be presented quite concisely. On the other 

hand, if either ~i or ~j is a wave vector corresponding to a llne or 

plane of symmetry then the allowed vectors ~l in equation (2) will be 

linearly dependent on one or more parameters. If now the parameters 

of either ~i or ~j take on special values or are related to each 

other, then the symmetry of ~l may be increased from a lower to a 

higher member of the sequence: 

general ~, plane of symmetry, line of symmetry, point of symmetry. 

Thus for completeness we need to identify the special values of ~l 

that arise from the use of special values of the parameters. For 

these special values of E1 it will be necessary to re-label the repres- 

entations of ~ associated with E1 in terms of this higher symmetry. 

We illustrate what is involved by considering an example. 

We consider F~3m (T~), which is the space group of the zinc 

blende structure, since this is a space group for which a lot of 

previous relevant work already exists (Birman 1962, 1963, Bradley and 

Davies 1970). We shall follow the notation used by Miller and Love 

(1967) in labelling the space-group representations, although we shall 

follow the notation of Bradley and Davies (1970) in labelling the 

symmetry operations. Suppose we consider the reduction of Kronecker 

products of representations belonging to two different DT (~) wave 

vectors so that 

~i = (0,~,0); ~j = (O,~t,O). (6) 

In general we can assume no special relationship between the values of 

and ~t. By performing the appropriate analysis (see equations 

(3) and (4)) it is straightforward to show that the allowed vectors 

~i may be chosen to be 

(i) (0,~+~l,O) where R~ = E = R~, and ~l is a DT wave vector 

which is different from both ~i and ~j; 

(ii) (0,-~+~',0) where R~ = E, R# = C2x, and ~l is a DT wave 

vector which is different from both~i and ~j; 

(ill) (~,~l,O) where R~ = E, R~ = C~1 , and ~l is an A wave vector, 

which corresponds to a plane of symmetry. 
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The symmetry labels DT and A apply when no restriction is placed on the 

values of ~. and ~(t. However, it is also necessary to consider the 

possibility of a special relationship between ~L and ~s or that 

and ~; may take special values. The possibilities are indicated in 

table I in which the appropriate symmetry labels for the corresponding 

wave vectors~l are also given. One of these special cases, namely 

~/= d~, was included in the tables given by Bradley and Davies (1970). 

o(, #(/ values 

~,~/ unrelated 

and unrestricted 

~1= _ ok 

&l= , ~ , : ~  

&l= - a , =  ¼ 

Table I. 

Stars of possible ~l 

(o, ~,+~',o) (o,- ~,+~/,o) ( ~,, ,,,",o) 
DT DT A 

(0,2,(,,0) (0, O, O) (,:,( ,,,(, ,0) 
DT GM SM 

(0,0,0) (0,-2,:,',, O) ( ,W, ,-,,',, O) 
GM DT SM 

(0,-,}-, O) (0,0,0) (~,4,0) 
X GM SM 

(0,0,0) (0,÷,0) (-~,-~, O) 
GM X SM 

By using the formula in equation (5) one can determine the reduct- 

ion of DTI~ DTJ where I and J may each take any value from I to 5. 

L~t us consider DTI ~a DTI for example; 

DT1am DTI = DTI + 

(6) (6) (6) 
(o, ~,o) (o,&',o) (o,~+~/,o) 

we obtain 

DTI + AI 

(6) (24) 
(o,-~+~/,o) (~ ,~',o) 

(7) 

where the appropriate wave vector is given below each representation 

and no special assumption is made about the values of d. and o(/, 

The numbers in brackets indicate the degeneracies of the induced 

representations (Fki~G), (r~J~G), and (~kl~G). The corresponding 

reductions for the special values of ~ and -(/ can also be determined 

by using equation (5) directly: 

DT1na DTI = DTI + GMI + GM3 + GM4 + SMI + SM2 

(6) (6) (6) ,(1) (2) (3), ~12) (12). 
(o,~,o) (o,,w.,o) (o,2~,o) (o,o~o) (,~.,~,o) 

(8) 
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DT1nm DTI = GEl + GM3 + 

(6) (6) , (1)  (2)  
(o,~ ,o)(o,-~,o) (o,o~o) 

DTI ~ DTI = XI + X3 + GMI 

(6) (6) ~ ,(I) 

(o,~,o) (0,4,0) (o,~,o) 

DTI ~ DTI = GMI + GM3 + 

(6)  (6) (1)  (2) 
(o,-4,o) (0,4,0) (o,o,o) 

5. Induced compatibility tables. 

GM4 + DTI + SMI + SM2 (9) 

(3).  (6)  ,(12) T (12).  
(o,-2,~, ,o) (,,~ , -  ~,o) 

+ GM3 + GM4 + SMI + SM2 (10) 

(2) (3)~ . (12)  (12)j 
I -  

i 1 (o,6,o) (~,-~-,o) 

c-M4 + x1 + x3 + SM1 + SM2 ( 1 1 ) 
(3), . (3)  -. (3),, ,.,.(12) (12).,, 

• 1 (o,-~,o) (-4,~,o) 

If one is toconstruct complete tables of the reductions of all 

the Kronecker products for a space group, one needs to include all the 

equations like equations (8) to (11) giving the reductions for all the 

special ~t, A t values as well as equations like equation (7) for 

the general case. The question which we then had to consider was to 

see whether it is necessary to tabulate explicitly the reduction of 

DT1 ~ DTI for all the special cases of @( and ~s or whether these 

reductions could be deduced in a simple manner from equation (7). It 

happens in fact that it is not necessary to tabulate separately the 

reductions for all the special cases of ~ and M e because they can 

be obtained quite easily from equation (7) using what we may describe 

as "induced compatibility tables", which we call ICTs for short. 

These are not identical with the compatibility tables which one 

normally encounters. However, Raghavacharyulu and Shrestha (1966) 

demonstrated a very useful result. Suppose that G~ is a subgroup 

G ~° tha t  O ~  ~ , 

r olok = F___ 
x r" cxf '  (12) 

and that 

= (13) 

The Frobenius reciprocity theorem th~ enables one to show that 

C~k = CA~. (14) 

The question of degeneracies may be a little puzzling at first 

sight in the understanding of the construction of ICTs using equation 

(14). Suppose that ~o and ~ differ by a small vector ~, so that 

k = k + ~ (15) 

where ~ may be arbitrarily small. The conventional compatibility 
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tables can be regarded as "subduced compatibility tables"; that is, 

they identify C~ in equation (12) in the reduction of the subduced 
k k 

representation ( ~o ~). Since it is the s~ll representations, 

i.e. representations of G~ ° or ~, which are commonly used in the 

group-theoretical labelling of electronic band structures, and of 

phonon dispersion relations etc. it is the subduced compatibility 

tables that are used in this connection. But when we consider the 

reductions of Kronecker products of space-group representations it is 

really the product of the induced representations (r~i~) and 

(~J $~) which we are considering (see equation (I)); that is, we 

require to know C~ in equation (13). ~ecalling that ~ is a 
k ~- k 

subgroup of ~-o, we see that the subduced representation (~o SG~) 
k k 

~y be reducible. Also if (~TTG) is regarded as ((~TQ'°) T G) 
k /~ ~ k ~ ~ 

(~o)--I- may be a reducible representation of~ ~°. That is, a then 

reduction in degeneracies of the irreducible (small) representations 

occurs for ~k as one decreases the symmetry of ~, but a reduction of 

degeneracies also occurs for ( ~ )  as one increases the symmetry 

of ~. Whereas the former is widely appreciated, the latter is 

much less widely appreciated. 

One can illustrate the use of induced compatibility tables very 

easily by showing how they can be used in the case of DTI R DTI for 

F~3m. The conventional compatibility tables for this group are 

given, for example, on page 387 of Miller and Love (1967); we have 

used those tables to construct that part of the induced compatibility 

tables for this group that is relevant to equation (7), see table 2. 

The degeneracies of the induced representations have also been included 

in table 2 for reference. If ~ = ~t equation (7) becomes 

DTI ~ DTI = DTI + (DTIt GM) + (At ~ SM) (16) 

(6) (6) (6) (6) (24) 
(o,~,o) (o,a,o) (o,2~,o) (o,o,o) (~ ,~ ,o )  

and by using table 2 we see that this leads immediately to equation (8). 

One can obtain equations (9), (10), and (11) very easily in a similar 

manner. The important point for our purpose is that although one 

needs to use equation (5) to determine equation (7), one does not then 

need to use equation (5). again to obtain equations (8) - (11). This 

simplifies our task of constructing tables of reductions of Kronecker 

products; it means that 

(i) We only need to tabulate the reductions of (~i~)~(~j~ $~) 
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for general values of ~ and ~l. 

(ii) Reductions for special values of ~ and ~I can be obtained 

by using ICTs. 

(iii) We do not need to tabulate the ICTs explicitly because they can 

be obtained in a trivial manner from the compatibility tables in 

Miller and Love (1967) o 

Table 2. 

DT1 (6) 

GM GMI (I) 

GM3 (2) 
GM4 (3) 

X XI (3) 

X3 (3) 

Part of the induced compatibility tables for F~m. 

DT2 (6) DT3 (6) DT4 (6) DT5 (12) 

GM2 (I) GM4 (3) GM4 (3) GM6 (2) 
GM3 (2) GM5 (3) GM5 (3) GM7 (2) 
GM5 (3) 2GM(8) (2(4)) 
x2 (3) x5 (6) x5 (6) x6 (6) 

x4 (3) x7 (6) 

A1 

SM SMI 

SM2 

The 

involving 

(24) 

(12) 
(12) 

arguments illustrated above can be extended to products 

planes of symmetry. All we need to do is to make some 

additions to the compatibility tables of Miller and Love (1967) to 

cover the additional points, lines, and planes of symmetry that they 

did not include. 

6_~. Conclusion.. 

We are now well advanced in determining WVSRs for the ortho- 

rhombic and cubic space groups and we hope to complete the work for 

the other space groups too within the next few months. 
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