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Abstract 

Verification and validation (V&V) of computer codes and models used in simulations are two aspects of the 
scientific practice of high importance that recently have been discussed widely by philosophers of science. While 
verification is predominantly associated with the correctness of the way a model is represented by a computer 
code or algorithm, validation more often refers to the model’s relation to the real world and its intended use. 
Because complex simulations are generally opaque to a practitioner, the Duhem problem can arise with 
verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish 
whether a coding error or the model’s general inadequacy to its target should be blamed in the case of a failure. I 
argue that a clear distinction between computer modeling and simulation has to be made to disentangle 
verification and validation. Drawing on that distinction, I suggest to associate modeling with verification and 
simulation, which shares common epistemic strategies with experimentation, with validation. To explain the 
reasons for their entanglement in practice, I propose a Weberian ideal-typical model of modeling and simulation 
as roles in practice. I examine an approach to mitigate the Duhem problem for verification and validation that is 
generally applicable in practice and is based on differences in epistemic strategies and scopes. Based on this 
analysis, I suggest two strategies to increase the reliability of simulation results, namely, avoiding alterations of 
verified models at the validation stage as well as performing simulations of the same target system using two or 
more different models. In response to E.Winsberg’s claim that verification and validation are entangled I argue 
that deploying the methodology proposed in this work it is possible to mitigate inseparability of V&V in many if 
not all domains where modeling and simulation are used. 
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Introduction 
Computer modeling and simulations, their epistemological value (Frigg/Reiss, 2009) as well as their analogies 
and differences with experimentation long have been the subject of lively debates in the philosophy of science 
(Humphreys, 2004; Winsberg, 2010; Weisberg, 2013; Parke, 2014; Parker, 2009; Morrison, 2009; Morrison, 
2015; Barberousse, 2009). Simulation often has been regarded as being an intermediate between experimenting 
and theorizing and even displaced from the center of knowledge production as well as enhancing human cognitive 
capacities (Durán 2018). Many of the strategies experimentalists use to obtain reliable results also have been 
found in simulationists’ practice. At the same time, some authors argue that simulation is a type of theorizing or 
construction of representative models. Based on a view (Suppes 1960, 290) of mathematical models as sets of 
objects and relations as well as their operations, I consider a distinction between the former in simulation, which 
I call objects or object structures, and the latter I call processes. I suggest that a similar distinction can also be 
made between simulation and modeling that is actually reflected in practice. In such a view, simulation of an 
application can be related to experimenting with structures representing ideal objects; in such a sense, simulation 
is a type of experimenting, and all experimental strategies (Franklin, 2012) apply to it directly. However, in 
modeling, the focus is on creating the embedded models of processes down to the level of the most elementary 
ones occurring in the target system. In this sense, modeling is a type of theorizing, and all the strategies applicable 
to the development of theories are employed in modeling. Thought experiments can be attributed to a special 
epistemologically interesting case of theoretical work; however, this kind of epistemic practice is 
methodologically different from the creation of the mental model (which is how theorizing is understood in this 
work). We concede that computer simulations, while methodologically similar to thought experiments, 
nevertheless can be deemed epistemically superior than the latter (Chandrasekharan, 2012). It seems plausible 
that, particularly due to the distinction between modeling and simulation made above, a distinction of the same 
kind should be made between the verification and the validation of computer models, the former being grounded 
on practices and strategies of modeling, while the latter is grounded in simulation. 
Among approaches to definitions of modeling and computer simulations, one can identify two most frequently 
occurring definitions in the literature; those terms either are used interchangeably without assigning them 
unambiguous and explicit definitions or in a way that simulation represents a subset of more universal modeling 
practices. For example, the definition of simulation by E. Winsberg is manifold; he describes it both as “the kind 
of “theorizing” […], the construction of local, representative models,” and experimenting with a computer 
(Winsberg, 2010); he also associates simulation with a model itself as those used in simulation. In (Keller 2003, 
204), it is also argued that “computer simulation is … directed toward eliciting the implications of well-formulated 
theoretical models”, relating it to greater extent to theory. P. Humphreys gives computer simulation a definition 
of numerical experimenting (which is close to one of Winsberg’s characterizations): “a computer simulation is 
any computer-implemented method for exploring the properties of mathematical models”; he also calls simulation 
a computational device, producing solutions to the model (Humphreys, 1991). S. Peck argues that “simulation 
can be viewed as another kind of experimental system” (Peck, 2004, 530). M. Morrison (Morrison, 2009, 55) also 
relates simulation to numerical experimentation and contends that “computer plus simulation programme 
functions as the apparatus”. Some accounts even characterize computer simulations as “material experiments in 
a straightforward sense” (Parker, 2009, 495) because they are performed on a digital computer (which is a material 
system), while others argue that the physicality of processes in a computer does not explain why simulations 
generate new data (Barberousse, 2009, 573).  
There is also ambiguity in the definitions of modeling. For example, (Morrison, 2009, 47) suggests that “the 
computational resources of simulation […] make[] it different from modeling” and ascribes simulation to “a type 
of “enhanced” modeling” (Morrison, 2015, 226). I concur that “we have no justifiable reason to assume that, in 
these types of cases, experiment and simulation are methodologically or epistemically different” (Morrison, 2009, 
43) including in the sense that simulations can surprise as akin to experiments (Parke, 2014), however, in this
paper I attempt to contest the view that similation can be seen as modeling. M. Weisberg delineates modeling as
“the indirect study of real-world systems via the construction and the analysis of models” (Weisberg, 2013). Here,
modeling stands not only for building models but also for their analysis, which can also be understood as exploring
their properties. In the former case, it has much in common with the way Winsberg defines simulation, and in the
latter, how both Winsberg and Humphreys characterize simulation in the sense of numerical experimentation are



similar. This latter interpretation is also supported by Weisberg’s description of simulation as “computing the 
behavior of the model using a particular set of initial conditions” (Weisberg, 2013). 
One of the first and most cited denotations of simulation (not necessary computational) was given by S. Hartmann, 
who wrote that “a simulation imitates one process by another process” (Hartmann, 1996). While this definition 
apparently encompasses both modeling and simulation as described by the aforementioned authors, one clearly 
can envision that it is necessary to both construct the imitating process to accomplish such a simulation (or a code 
(a computer-implemented algorithm) in the case of computer simulation) and explore its behavior (run the 
computer code with a particular set of input parameters or perform many runs with the parameters covering all 
the parameter space of the problem). ((Winsberg, 2010) also describes simulation as one run of a computer code, 
which is similar to our understanding of simulation). Even if we look into the construction of a computational 
code of the imitating process, we can clearly discriminate between embedded elementary (or lower-level) 
processes (like the interaction of a particle with a nucleus) and composite processes (heat release in an irradiated 
water tank, radiation propagation and attenuation in matter) that are constructed by embedding low-level ones 
into a more general framework. 
Rather than (Hartmann 1996, 83), who defines a process as solely some object or system whose state changes in 
time, I distinguish between a simulated object as a model of a complex concrete or ideal system in a particular 
state (used in a particular application) and the elementary (or lower-level) embedded processes in it as evolving 
in time consequences of states of its subsystems. In such a case, the process in a concrete complex system under 
scrutiny (application) is imitated by another process in simulation, while the imitating process model and 
constituting it entrenched components are created by modelers; thus, simulationists design models of concrete 
applications out of pre-verified lower-level models-components and experimentally explore the behavior of such 
imitating models. In this approach, verification is associated with modeling, i.e., the creation of models, while 
validation is associated with experimenting with the applications premised on implemented more elementary 
models. Additionally, contrary to (Weisberg 2013, 24), who distinguishes concrete models, mathematical models, 
and computational models, in our view, every mathematical model can be associated with a computational 
representation, whereas there cannot be a computational model without a possibility to present it in a mathematical 
structural form. Here, I will consider computational mathematical models, i.e., mathematical models and their 
computational representations that are used in simulations; both types of models described above — the composite 
and the lower-level elementary ones — belong to this type of model.  
 
Modelers and simulationists as roles in scientific practice 
As an example from particle physics, a model of particle interaction with another particle or a nucleus is more 
elementary (associated with a lower level) than that of its interaction with a block of material, where the particle 
encounters sometimes hundreds of other particles and takes part in a multitude of interactions of different kinds. 
The reason for this relative simplicity is that an elementary process occurs at a lower level of system organization. 
Building higher-level structural models can be recognized as a separate kind of activity and expertise (epistemic 
scope) from both running simulation code and the construction of models of elementary processes; however, from 
the point of view of scientific practice, those practitioners who run simulations can also be involved either in the 
building of structural models or adjusting existing ones to their needs in their different roles. This allows 
considering modelers and simulationists as ideal types in the Weberian sense, as will be described below, which 
is one of the reasons I discuss the higher-level structural model construction as a part of simulations. 
One possible way to elucidate the necessary distinction is to scrutinize epistemic scopes of practitioners in the 
field. Counterintuitively, an increase in the level of model organization does not always entail a respective 
increase in complexity and the scope of required knowledge but instead shifts the scope of that knowledge; such 
an increase usually implies alterations in the scope. A modeler of processes, who is supposed to build his or her 
lower-level models, has to be familiar and able to apply all the mathematical structures pertinent to the models he 
or she builds down to the level of the most elementary laws (which can be phenomenological). In contrast, 
simulationists who are not process modelers and thus construct and apply higher-level (simulation) models of 
composite applications often are not required to have an extensive acquaintance with the lower-level structures 
of models that the underlying elementary processes are based upon; their concern is that the models they use be 



well verified by the modelers who create them4. Lower-level models are usually provided to them in the form of 
ready-to-use computational procedure units suitable for incorporation into more complex composite models. 
Examples can be those modelers who create models of interactions of particles with other particles and nuclei 
(for particle beam interaction codes), developers of models of dark matter particles for cosmological simulations 
or creators of cloud models for climate simulations. Rather than that, simulationists have to envision the structure 
and macroscopic designs of the complex system they intend to construct. Simulationists also have a general 
comprehension of how the relevant model parameters affect the behavior of the modeled system and explore the 
influence of those parameters. Examples can serve those who develop energy deposition codes for accelerator 
applications (that incorporate models for interactions of individual particles with nuclei), simulations of evolution 
of galaxies (that incorporate interactions of dark matter particles), or climate, for instance, weather front 
simulations (that incorporate models of clouds). Therefore, the epistemologically hierarchical relation between 
simulationists and modelers resembles that of experimentalists and instrumentalists in experimental practices 
(Pronskikh, 2018).  
Thus, there exists an apparent controversy in the previously discussed definitions of modeling and simulation, 
leaving room for more rigorous characterizations of both domains capable of addressing whether simulation is 
the construction of a model, is computing behavior, or both (the entire computational study of a particular system). 
I argue that such controversy nevertheless can be resolved provided that one considers differences in both aspects 
of the practices (construction of elementary models, construction of composite models, their explorations) and 
the epistemic scopes of the corresponding practitioners (knowledge of how to construct elementary process 
models on the one hand and knowledge of how to construct a real-world target model based on a set of prebuilt 
embedded elementary models and numerical experimentation on the other hand). This latter construction of a 
“real-world” higher-level target model can comprise carrying out many individual runs of a simulation code, 
supplying it with different sets of input parameters. Based on the discussion above, I suggest a resolution of the 
controversy by defining modeling as a creation of computational mathematical models of elementary processes 
and by defining simulation as a creation of composite computational models (those embedding elementary 
models) in the course of numerical experimentation. 
A study of radiation effects, which required the modeling of quadrupole magnets and their field in the LHC 
accelerator (LHC, 2004), can serve an example of this distinction. To describe and study the propagation of 
protons in a complex magnetic field of an accelerator, one needs to ascribe magnetic fields to individual magnets, 
dipoles, quadruples, etc. that altogether constitute the entire magnetic system of the accelerator and create its 
magnetic optics. The magnets are characterized by shapes, sizes, and relative arrangements and altogether 
represent the organization of the accelerator’s technical real-world at its highest-order scale. The construction and 
study of the accelerator’s computational model thus can be regarded as simulation. In the course of such a 
simulation (model creation and particle propagation numerical study), practitioners usually run computer models 
a multitude of times and supply them with various sets of parameters to cover all the parameter space under 
scrutiny and thus to meet an optimal regime. As I shall discuss in the next paragraphs, such a simulation is 
grounded in strategies that possess many features of experimental rather than theoretical practice, and such an 
ascription of experimental strategies to simulation rather than modeling constitutes an essential part of my further 
argument. However, construction of a composite accelerator model relies in turn on incorporating elementary 
models of magnetic field creation by charged particles that are governed by Maxwellian equations. Maxwellian 
law is the lowest, the most elementary level of the accelerator system organization, and its computational 
implementation serves as a building block of the higher-level simulation model of the entire accelerator. However, 
a representation and solution of Maxwellian equations constitute inferences pertinent to theoretical strategies. 
Therefore, development of computational procedures calculating solutions of equations of electrodynamics for 
an arbitrary set of initial conditions is deemed modeling for the purpose of my argument. In the practitioners’ 
sense, the expertise required for creating models for arbitrary magnetic fields is different from that utilizing the 
models of fields to simulate particle transport in concrete accelerators both epistemologically (different epistemic 
scopes), and methodologically. 
 
Applicability of the epistemology of experimentation 
                                                
4	Similar	to	how	the	use	of	a	TV	set	or	a	phone	does	not	require	knowledge	of	its	internal	organization.	



 
Based on the distinction made above between simulation and modeling, an ascription of experimental strategies 
(Franklin 2012) to simulation rather than modeling in the aforementioned sense can be made. Simulationists as 
higher-level model designers employ common sense considerations to verify that their results are consistent; 
however, more often, they validate (or “benchmark”) their results (or outputs) against experimental or 
observational “real-world” data as well as other simulation methods (computer codes). For example, a complex 
magnetic field produced by a complex accelerator structure sometimes can also be measured experimentally and 
compared to a simulation output. Nevertheless, matching their outputs to analytical solutions is not generally 
available to them due to both the complexity and opacity (Humphreys, 2004) of the systems they simulate and 
the differences in their epistemic scope with modelers. It is, however, possible for modelers, who create models 
of elementary processes, for instance, to obtain an analytical solution of a lower-level problem of electrodynamics 
for a simple magnetic structure and then verify how its computational representation is programmed; for such 
models, either other computational models or analytical solutions usually exist for comparison.  
Another method frequently used to increase confidence that the apparatus works properly is to vary one of the 
parameters of the system under scrutiny, such as adding ink to a sample and observing the predicted color change 
under a microscope. (Winsberg, 2010) discusses that simulationists also vary parameters of the model and check 
whether the system responds in accordance with their expectations. However, by virtue of the distinction between 
the two scales (modeling and simulation ones), one can see that such an approach is possible only for 
simulationists working with high-level models of composite objects and processes, and in this respect, it is similar 
to conventional experimentation. For instance, a simulationist can vary the distances between individual dipole 
and quadruple magnets in an accelerator arrangement to see the response, such as whether the agreement with the 
measured field strength becomes better or worse (I shall refer to this example when discussing validation 
experiments). One more example is that of varying density or material composition in a model sample irradiated 
by certain particles and then matching the simulated energy release to that measured in a calorimetric experiment. 
However, models of elementary processes (eventually contributing to a heat production) are verified by modelers 
akin to theories in a different manner than complex applications, i.e., parameter variations cannot suffice to argue 
for their validity. The latter strategy again is conceivable for elementary (low-level) modeling of processes at the 
stage of computer implementation to verify if the model is coded suitably. That stage, nevertheless, cannot be 
referred to as the simulation (high-level) model construction itself. Here, simulation is considered not only as 
“enhanced modeling” but also a domain of different scale and scope than the computer modeling. 
 
One more way that Franklin’s experimental epistemic strategy (Winsberg 2010, 44) is similar to that used in 
simulations is measuring the same observable with a different kind of apparatus; in simulations, that strategy 
correlates with simulating the same system using two or more different models. According to the distinction 
between simulation and modeling, such a strategy cannot be applied to modeling elementary processes and 
elaborating such models as another instrumental theoretical model to be as valid, as the previous one is supposed 
to reproduce the same set of empirical data as the first one and not necessarily the predictions outside the relevant 
data range. Rather than in modeling, parameters of higher-level models in simulation are varied exactly in the 
way as it is done in experimentation, assuming different models to be different “apparatuses”. Particle beam 
dynamics in accelerators, for example, can be simulated by independent simulation codes, such as MAD (Deniau 
2018), which is used to simulate beam dynamics and optimize beam optics, or Synergia (Spentzouris 2004), which 
simulates collective effects, including space charge and wake fields in the machine. These codes exploit 
completely different high-level concepts and assumptions (and can be associated with two different apparatuses 
in experimentation). Nevertheless, all the codes used in the field reveal identical understandings of the low-level 
Maxwellian electrodynamics, which belong to the scope of modeling of lower-level processes. 
 In the case of different models of the same “real-world” object, such as different accelerator (or climate) 
codes supplied with sets of input parameters (lattices or subgrids), these are different representations of the same 
“real-world” object; however, they refer to different model objects — sets of structural models implemented based 
on different assumptions. The correspondence between these different models and the “real-world” model is not 
obvious, as the simulation models can employ various abstractions and idealizations (Humphreys, 2004) and, 
more importantly, models of processes may contain many different fictitious assumptions (like the artificial 
viscosity model (Winsberg, 2010, 14)) or even be in a contradiction with experience and underlying physical laws 



(such as the Arakawa operator (Lenhard, 2007)). From this point of view, an important way to increase confidence 
in simulation results is to investigate models based on as many differences as possible, or at least an independent 
model, including representations of the process under scrutiny, through different approaches to describing the 
same reference process by imitating one; neither of the models can be thought of as per se more relevant. That is, 
why the experimental strategy of comparing simulations employing different higher-level model representations 
and different sets of incorporated low-level models of processes is a common practice to increase the reliability 
of simulation results. Agreement of the simulation results obtained with two or more different models of the same 
target process or system can serve as an indication of the adequacy of the simulation and its relevance and 
reliability. 
 
Modeler and simulationist as ideal types 
 
Despite substantial differences in epistemic scope and strategies as well as their relation to different organizational 
scales, simulation and modeling are evidently distinct; they are often intertwined in the scientific practice. This 
outcome implies that individual practitioners often are engaged in both kinds of activities. The Weberian theory 
of ideal types (Weber, 1949, 49) can be involved to represent this. Let us assume that the simulationist and 
modeler are two ideal types whose differences on epistemic and ontological grounds are discussed extensively 
throughout this paper. One more important ideal type is an IT expert, whose expertise comprises computer 
programming and competent operation. Virtually, a practitioner can belong solely to any of these ideal types; 
however, more often his or her function encompasses all three domains in one way or another. 

 

Figure 1. Triangle of the ideal types in simulation practice (vertices of the triangle) and the 
expertise of an actual practitioner (the dot inside the triangle). 

 
There is, therefore, one more significant similarity between experiments and simulations, which results from the 
distinction discussed above. Experimentation requires detailed knowledge of the underlying instrumental and 
technical theories on which the functioning of the apparatus is based for the sake of data interpretation regarding 
high-level theories. However, being encoded in computational procedures, elementary process models can serve 
as examples of procedural knowledge; in addition to their representational role, they can function as recipes of 
how one can calculate a quantity, i.e., an instruction of how to obtain an answer to a particular question by means 
of either applying it computationally or supplying it as a set of input instructions to a computer code. 
 These procedural models are circulated between modelers and simulationists; therefore, simulationists, to 
investigate a model of simulations, have to choose models of processes and composite models (simulations) and 
construct out of them as a composite application whose properties they intend to explore. Thus, the epistemic 
scope of the simulation of a thunderstorm does not necessarily encompass interactions of individual molecules in 
a cloud, and the knowledge required to simulate interactions of a particle within a chunk of material does not 
necessarily encompass that of interactions of individual particles with individual nuclei, provided simulationists 
possess necessary elementary models as prebuilt and pre-verified by modelers elaborated computational 
procedures. This explains why a simulationist can practice higher-level simulations successfully despite being 
“ignorant of aspects of how [lower-level procedure] was programmed or how it works” (Parke, 2014). 
Once we distinguish modelers of processes from simulationists who numerically experiment with those models, 
as well as notice that the boundaries between these roles tend to blur in practice, one can try to draw a schematic 

IT	expert 

Simulationist Process	modeler 



representation of the roles involved in the production of simulation results (Figure 1). In simulation, having 
acquired all the necessary models (codes, lattices, and input decks), an advanced IT user can start experimenting 
with them and producing new results. I define here an IT expert as one whose computer literacy is sufficient to 
engage with computer systems — codes, programming languages, and operating systems — which is usually 
comprehensible by an experienced practitioner from a technical professional field who, for a particular reason, 
demands turning to simulations; this could be someone, for instance, without a background in meteorology 
simulating a thunderstorm or a background in particle interactions attempting to simulate particle propagation in 
matter. 
However, there is a long distance between applying ready sets of procedures and competently experimenting with 
models — simulation — because one needs to comprehend what kind of models of processes exert the effects 
found in outputs in the course of simulations. Such an understanding is crucial for simulationists to be able to 
adequately interpret outputs, that is, why a practitioner needs to communicate with modelers on the way from an 
IT user to an experienced simulationist. Modelers provide models of lower-level processes with access to a limited 
parameter space of variables, not implying the knowledge of models’ internal mathematical structures. Modelers 
can also create and provide beginner simulationists with example decks (sets of model parameters for process 
models used), lattices and subgrids (structural object models), representing solutions of simple problems, which 
serve as aids in learning how to understand and use models. An actual practitioner (see Figure 1) can be 
represented by a simulationist A, instructed by a modeler B and an IT expert C, with all three being separate roles. 
B provides A with “low-level” process models (usually in the form of procedures) and instructions on how to use 
them, and C provides A with supplementary computer codes (scripts) and instructions on how to employ them. 
Another path in Figure 1, that from an IT user to a process modeler, usually occurs through more specialized 
education and communication with modelers. Structure modeling skills require design thinking and geometric 
imagination as discussed above and can be acquired through practice as well as more formal education. However, 
modelers of processes are usually required certain IT skills to develop their procedures. In the course of their 
everyday practice, they often engage in construction of low-level models of processes and incorporate those 
models in the composite simulations of higher-level “real-world” systems and applications. Certain IT expertise 
is needed to accomplish this outcome. Thus, an actual modeler of low-level processes often is also a “higher-
level” simulationist, whereas a simulationist, even starting as a pure ideal type, usually acquires certain 
interactional expertise (Gorman, 2010) in understanding low-level models through communication with modelers 
of processes. Nevertheless, even concurrent and alternate practicing “low-level” modeling and “higher-level” 
simulation roles do not entail epistemic entanglement; therefore, note that distinction is essential for 
differentiation between verification and validation. 
 
Verification and its relation to modeling 
Verification can be defined as the process of determining whether a computational representation approximates 
the solutions to the differential equations of the mathematical model of a process (in the case of Monte Carlo 
models, in particular). Verification (code verification) usually is understood as either code verification, i.e., search 
for and fix mistakes in a computer code or solution verification (estimating solution errors and accuracy of the 
code input and output). The AIAA standard (AIAA, 1998) defines verification as “the process of determining that 
a model implementation accurately represents the developer’s conceptual description of the model and the 
solution to the model”. What actually is verified, according to that definition, is that an already constructed model 
is implemented correctly in the code (accurately solved), as the code is a computational representation of such a 
model (its conceptual description). Due to the previously discussed applicability of inference to low-level 
elementary process models, analytical checks of both the algorithm implementation and the solution are available 
in most cases. However, the definition of verification can be extended. To verify model’s implementation, in 
addition to comparing it to an analytical solution, one can also verify correctness of the computational code using 
methods of software engineering and (in the cases when analytical solutions are unavailable) comparing the 
results produced by the model algorithm at different stages to the solutions produced by independent 
implementations in other computational systems which are verified independently. The example of the latter can 
be the verification of how calculation of certain integrals is implemented in the model code by comparing 
intermediate results to the integrals calculated, for instance, to those obtained by applying the conventional tools, 



like the Mathematica code.  
 
The inference requirement turns out to be in agreement with a practitioner’s statement that “verification addresses 
mathematics” (Oberkampf, 2004). Even in the cases when elementary process theories are semi-
phenomenological and are based on empirical data, those data are acquired, and low-level process model 
adjustments are performed in separate and independent studies, outside the context and scope of a particular high-
level context under scrutiny. The availability of such checks and tools as well as the inference strategy supports 
the association of verification with modeling in the sense discussed in this work. Referring to the aforementioned 
studies, solutions of Maxwellian electrodynamics equations can be matched step by step with outputs of the 
computational procedure; thus, its implementation is verified. Therefore, I suggest that the conventional 
verification is applicable to the “low-level” elementary process model building defined as modeling in this work. 
 
Validation and its connections to simulation 
 
Rather than the verification that is defined as the process of determining whether or not the output of simulation 
approximates the correct solutions to the differential equations of the original model, validation can be described 
as determining whether the chosen model is a good representation of the real-world system (Winsberg, 2010, 19). 
These two activities are separable not only in practice but also on epistemic grounds. With the above definition, 
verification clearly falls within the scope of modeling, which is a kind of theorizing. In contrast, validation refers 
to the study of how well a model implemented by modelers in a particular code is capable of describing a real-
world system. For example, matching outputs to analytical (or any sort of independent solutions) solutions is not 
generally available to simulationists due to the complexity of the systems they simulate and the difference in their 
epistemic scopes with modelers. This outcome is possible for modelers, however, who work on models of 
elementary processes; for such models, either other models or analytical solutions or conventional tools often 
exist for comparison.  
Rather than verification, validation is defined by AIAA as “the process of determining the degree to which a 
model is an accurate representation of the real world from the perspective of the intended uses of the model.” 
(AIAA, 1998) Such a description implies that the reference is a “real-world” object and that an analytical solution 
is not generally available because the system under scrutiny belongs to the higher level of system organization 
(for example, accelerator or climate). There is one additional important feature of validation is its relation to 
experimental data. For such a system as an accelerator, simulation outputs are matched with empirical results for 
the target system itself or its smaller copy (prototype). In the latter case, experimenting with such a copy, with 
the aim to obtain data for simulation code validation, is called a validation experiment. A definition of physics as 
an experimental science (i.e., heavily relying on empirical data) allows understanding the practitioners’ statement 
that “validation addresses physics” (Oberkampf, 2004). Simulation, defined in this work as numerical 
experimentation with composite models of “real-world” objects, involving experimentation with parameters of 
computational code and other strategies common with experimentation (as discussed above), has certain 
connections with validation.  
Referring to an example discussed in previous paragraphs, one needs to validate the simulation code versus the 
data obtained in the measurements of heat release in simple objects made of pure materials using certain particles 
with well-defined energies and distributions (validation experiments) to simulate heat release in a composite 
object irradiated by various particles. The low-level elementary process models in the form of pre-built procedures 
invoked by the higher-level simulation code are not tested at the simulation stage (including validation), belonging 
to a different epistemic scope, and are not modified at that stage. Its relation to higher-level objects and its reliance 
on experimental data as well as the applicability of experimental strategies, allows us to associate simulation as 
defined in this work with validation. Such a correlation implies that higher-level simulation codes are validated 
rather than verified in the conventional sense. This does not exclude searches and fixes of algorithmic errors; 
however, the unavailability of analytic solutions, inferences, and independent conventional analogs makes them 
insufficient in the absence of experimental strategies. 
 
Role of calibration 



Calibration or “the process of adjusting numerical or physical modeling parameters in the computational model 
for the purpose of improving agreement with real-world data” (AIAA, 1998) is one of the experimental strategies 
of exceptional importance in simulations and requires particular attention given the definitions of simulation and 
modeling proposed in this work. In simulation, as well as conventional experimentation, Franklin’s description 
of calibration is also applicable: “a legitimate and important factor, [which] may even be decisive, in determining 
the validity of an experimental result” [Franklin, 1994]. From the practitioners’ viewpoint, it is employed when 
“validation is not feasible or practical,” (Oberkampf, 2004) and purports adjusting computational model 
parameters so that the outputs match empirical data for a well-understood (or standard) case (a validation 
experiment can serve an example). An agreement of model outputs with the standard case suggests that the use 
of that model in a novel context may also be conceivable. Bearing on the distinction in system organization levels 
and epistemic scopes discussed here, one has to differentiate simulation (higher-level) model parameters clearly, 
which are subject to alterations in the course of calibration, and elementary process (low-level) parameters, which 
are not. Oversight of this rule in certain cases can entail entanglement as discussed below. 
 
Entanglement arguments 
A number of arguments have arisen that support the viewpoint that verification and validation are entangled 
(Winsberg, 2014). For instance, (Jebeile, 2012) argues that verification and validation are “two phases [that] 
cannot be performed distinctively” and thus are entangled. One of the examples that can illuminate such an 
entanglement has been examined by (Lenhard, 2007) as implementation of the “Arakawa operator” (this example 
was shortly discussed above). (Jebeile, 2012; Lenhard, 2007) note a possibility of introducing distortions in the 
system behavior through so-called discretization schemes5, when differential equations of a mathematical model 
are converted to difference (algebraic) equations with the aim of more convenient programming of a computer 
code. Given the distinction discussed in this work, a plausible approach to alleviate harm of the discretization and 
similar errors is to methodologically separate the construction of such discretization schemes (low-level epistemic 
scope of modeling) from the application of such schemes for the simulation of higher-level models. I do not assert 
that it is always practically feasible and concede that such entanglement can occur in certain practical cases; 
however, I maintain that verification and validation can be differentiated when scopes and strategies are separable 
and distinct. Distinction of scopes allows preventing “model success due to piecemeal adjustment” (Winsberg, 
2010), which causes the entanglement or the Duhem problem for verification and validation. As an example, 
when a simulationist embarks upon a simulation of climate, for example, a thunderstorm, they have to have a 
stable model of clouds beforehand; that model of clouds and its tuning parameters should not be modified (or 
tinkered with in any possible way) in order to achieve a better agreement with any particular climate context. 
Otherwise, even if such a tinkering gives better agreement for a certain set of empirical data (the one used for 
model tuning), in other contexts the simulation that embeds such tuned parameters will perform worse or even 
fail. Also, in nuclear and particle physics, if one simulated energy deposition by a particle beam in a collimator 
of an accelerator, one should not tweak the parameters of an embedded lower level models (for example, nuclear 
density or spallation model) in order to achieve a better agreement with the heating of a particular collimator. 
Otherwise, the simulation code tuned in such a way will not be applicable to other tasks like the energy deposition 
by other particles, their energies or in other types of targets. The models of clouds or nuclei in the examples above 
were verified (and, sometimes, validated) using relevant procedures and data sets with well-defined uncertainties, 
and their modification in the context of a particular higher-level application is unacceptable not to compromise 
the overall quality of the simulation code. 
Ascribing validation of a computational mathematical model of a process to modeling as establishing and proving 
a mutual relationship between a mathematical model and its computational representation (such as the quality of 
the discretization), one can distinguish it from validation as experimenting with objects involving process models 
as provided by modelers. I concede that while the elementary processes occurring in the course of simulation are 
epistemically opaque (Humphreys 2004, 147-148), to simulationists, they do produce new knowledge that is not 
contained in the underlying process models (and, therefore, can surprise us (Parke, 2014); however, all the details 
of the processes taking place in a simulated system are not analytically predictable. However, the implementation 
of an equation in a computer code can be verified either analytically or using conventional tools or software 
                                                
5	In	accelerator	beam	dynamics	simulations,	similar	uncertainties	often	are	associated	with	the	so-called	“symplecticity”.		



engineering approaches, even if the equation in question is physically unrealistic (Arakawa operator). Software 
engineering methods can be applied to verify model’s computer implementation, which is an unambiguous 
translation of a mathematical structure to an algorithmic programming language. As the examples above suggest, 
simulation and modeling are different methodologically and are not necessarily entangled; the problem to 
distinguish whether the model or its computational representation that fails the case of a discrepancy between a 
simulation output and the real-world data can be addressed with a clearer epistemic and methodological 
distinction between them. 
I suggest that models of lower-level processes, their computer implementation, and their code verification are 
open to direct inspection by modelers (theorists); practically relevant methods also exist to estimate numerical 
solution errors at this stage. However, I concur that simulation is epistemically opaque but is a numerical-
experimental practice (different epistemic scope) and proceeds through Franklin’s epistemic strategies of 
experimentation as discussed above and thus does not need to be open but rather properly calibrated comparably 
to an experimental apparatus. Therefore, epistemic opacity claim is not relevant for modeling as defined in this 
work and, although true for simulation, does not bring about a verification and validation entanglement with 
necessity in general. 
 
Separability of stages in Complex Simulations 
 
To argue for the inseparability of the verification and validation stages—as well as looping in modifications of 
lower-level model elements, on the one hand, and, on the other hand, model adjustments to empirical data—, 
Winsberg (157) suggested the following life cycle for a typical complex model in climate sciences: 

1. M1 (Model 1) is created based on well-established physical principles. 
2. M1 is discretized and implemented computationally using S1 (Scheme 1). 
3. Outputs of S1 are compared to empirical data. 
4. If there is a lack of agreement, either M1 or S1 are changed based on parametrization, physical intuition, 

phenomenology, etc. 
5. Model M2 is discretized with S2. 
6. The process is repeated starting from Step 3. 
7. Eventually, the model is sanctioned. 

 
Several points can now be clarified based on the arguments developed in this work. First, both M1 and S2 can be 
verified in the sense that their computational implementations can be checked separately by modelers using 
analytical solutions, conventional tools, or software engineering methods, as suggested in the previous sections. 
Second, the above scheme suggests that M2 and M1 are independent despite being embedded in the same larger 
system. At one stage, a model of the smallest individual constituents and their interactions with others is 
developed; at the next stage, these constituents are embedded into models of interactions on a larger scale. This 
is also easy to imagine in the context of climate science. A model of a weather front (M2) must embed models of 
individual clouds (M1). Meanwhile, individual measurements taken by many meteorologists are required for the 
very existence of the concept of a weather front (Galison 2003). This paper’s argument does not deny that 
entanglement may arise in certain cases; it does, however, suggest that the parametrizations for M1 and M2 are 
different and, in several discussed contexts, can be validated (i.e., their parameters empirically chosen) separately, 
without resorting to piecemeal adjustments. To accomplish this, step 6, which involves such adjustments and 
entanglement—an enforced procedure—must be avoided. 
For instance, weather simulations can comprise two scales in which a small grid size allows for a description of 
each possible cloud system on the globe, cloud system models are embedded within a simulation of the weather 
that we experience on another scale (for instance, a thunderstorm). The same logic applies to multiscale 
nanoscience simulations where higher level models rely on embedded lower level ones. It can also be applied to 
cosmological simulations in which models of particles of dark matter are created at the lower level (each of which 
represents, for instance, 200 billion solar masses), and the evolution of large-scale galaxies in the universe 
containing 8.6 billion such particles is simulated at the higher level (Trujillo-Gomez 2011). Hence, in most 
domains where large scale simulations are used—nuclear and particle physics, nanoscience, cosmology, climate 
science, etc.: 1) M1 and M2 are not independent but are either included in a larger model or embedded in one 



another, 2) M1 and M2 can be verified separately and validated using separate sets of empirical data, and 3) The 
“back and forth” model (in which the empirical sample intended for M2 validation is used to adjust M1) can lead 
to entanglement and should be avoided whenever possible. To return to the climate science example, one should 
use the empirical data of individual clouds to validate cloud modes and then use weather front data to validate the 
weather front model. However, while adjusting weather front model parameters, one should not tweak the 
individual cloud model parameters obtained at the previous step even if that improves the overall agreement with 
the data. This is because, while it can improve the fit to the available data, it will generate worse results when 
applied beyond the scope of the available empirical data set. 
This paper does not argue that such separate validations are always sufficient to provide sets of parameters that 
ensure the best fit for all available data sets; such a separate parameter determination may not be universal. 
Nevertheless, I argue that because of alleviated entanglement, such parametrizations can be more robust. 
Although piecemeal adjustments yield better sets of entangled parameters that allow for a description of the 
systems used for validating the models, separate validations of M1 and M2 (i.e., the absence of Step 6 in the 
aforementioned scheme) can offer parametrizations that permit models to be extrapolated to the range of 
parameter values that go beyond those used to validate the models. 
 
Hence, the proposed life cycle of a complex simulation (which, in most cases, can be realized practically, as 
described, for example, in the section “Entanglement Arguments”) is as follows: 

1. M1 is created on well-established lower-level physical principles. 
2. M1 is verified (the code is checked and any available intermediate analytical solutions are taken advantage 

of). 
3. M1 is discretized and implemented using S1. 
4. S1 is verified (the code is checked and any available intermediate analytical solutions are taken advantage 

of). 
5. The outputs of S1 are compared to the empirical data set E1 (validated). 
6. M2 is created (sometimes by embedding pre-validated M1) (in the form of S1). 
7. M2 is verified (the code is checked and any available intermediate analytical solutions are taken advantage 

of). 
8. M2 is discretized and implemented using S2 (embedded S1 remains intact). 
9. S2 is verified (the code is checked and any available intermediate analytical solutions are taken advantage 

of). 
10. Outputs of S2 are compared to the empirical data set E2 (validated). 
11. M2 is modified to better accommodate E2. Return to Step 6. 
12. Eventually, the model is sanctioned. 

Although in the practice of simulation in constructing models often follows the “back and forth” model in many 
domains—in the sense that parametrizations, phenomenology and intuitions are added at each iteration repeatedly 
over the course of the construction—I argue that separating the stages of model creation as well as the well-
established, lower-level elements of models, and the levels that are variable and adjustable to particular contexts, 
is not only possible but also methodologically necessary. The apparent separation can often be achieved in most 
large-scale simulations despite many of them relying either on various grid parametrizations, like cloud models 
in climate science or parameterizations of stars in cosmological models, or on deploying fictions akin to force 
softening and viscosity because validation of different scales relies on non-overlapping sets of data. My proposal 
is consistent with Hasse and Lenhard (Hasse 2017), who maintain that “the adjustment of parameters limits the 
applicability of models. The model will often only be useful for describing scenarios which are not “too far away” 
from the scenarios that were used for the fit.” They argue that “the question how far a model carries beyond the 
range where it was parameterized is closely related to the quality of the theory behind it “. Separate 
parametrization of different levels such as M1 and M1 suggested in this work is intended not to compromise the 
quality of the theory by excessive parametrizations through piecemeal adjustments. 
 
Conclusion 
 



This paper shows that verification and validation entanglement is not indispensable and, although it can arise in 
certain practically relevant cases, not universal. To justify this argument, I suggest that a distinction be drawn 
between modeling (defined here as construction of low-level mathematical computer models of processes) and 
simulation (construction of higher-level models of composite objects and processes assisted by numerical 
experimentation). These two aspects differ in their epistemic scope, the former implying theorizing with the 
involvement of inference and reliance on analytical approaches, conventional tools, or software engineering 
methods, and the latter suggesting numerical experimentation based on Franklin’s epistemic strategies. I contend 
that such a distinction, whenever practically feasible, can mitigate the implications of the Duhem problem for 
verification and validation. I show that despite being epistemically distinct, modeling and simulation constitute 
roles and ideal types in practice, and can be performed by the same practitioners. The latter often entails their 
“role entanglement.” I suggest that for this distinction to hold, as well as to mitigate both the verification and 
validation entanglement and “piecemeal adjustment” of models undermining reliability, low-level elementary 
process models that have undergone verification must not be altered in the course of higher-level validation.  
I argue that such a separability can be achieved in many domains wherein simulation and modeling are deployed. 
Because of the methodological affinity of simulation to experimentation, simulation in the sense proposed in this 
work (i.e., running simulation code) with two or more different models, which serve different representations of 
the same target system, can be considered tantamount to different experiments with the same target system. 
Therefore, simulations with several different models that yield consistent results can be considered a strategy 
aimed at increasing the reliability of results. 
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