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In this talk, I will review the physics behind the measured large transverse single-spin
asymmetries (SSAs) of cross sections with large momentum transfers in high energy col-
lisions, and the twist-3 mechanism to generate the SSAs in perturbative QCD. I will also
discuss the connection between the twist-3 collinear factorization approach and the trans-
verse momentum dependent factorization approach to SSAs.

1 Introduction
Transverse single-spin asymmetry (SSA), AN ≡ (σ(sT )−σ(−sT ))/(σ(sT )+σ(−sT )), is defined
as the ratio of the difference and the sum of the cross sections when the spin of one of the
identified hadron sT is flipped. Large SSAs of cross sections with a large momentum transfer
in high energy collisions were once thought impossible in QCD [1]. With over 30 years of
experimental as well as theoretical efforts, large SSAs are not only possible in QCD, but also
carry extremely valuable information on the motion and structure of quarks and gluons inside
a transversely polarized hadron. In this talk, I will briefly review our current understanding of
the physics that is responsible for generating the measured large SSAs of cross sections with
large momentum transfers in high energy collisions.

2 QCD factorization approaches to SSAs
Two complementary QCD-based approaches have been proposed to analyze the physics be-
hind the measured SSAs: the transverse momentum dependent (TMD) factorization approach
[2, 3, 4, 5, 6, 7] and the collinear factorization approach [8, 9, 10, 11, 12, 13, 14, 15]. In the TMD
factorization approach, the asymmetry was attributed to the spin and transverse momentum
correlation between the identified hadron and the active parton, and represented by the TMD
parton distribution or fragmentation function. For example, the Sivers effect (Sivers function)
[2] represents how hadron spin influences parton’s transverse motion inside a transversely po-
larized hadron, while the Collins effect (Collins function) [3] describes how parton’s transverse
spin affects the parton’s hadronization. On the other hand, in the collinear factorization ap-
proach, all active partons’ transverse momenta are integrated into the collinear distributions,
and the explicit spin-transverse momentum correlation in the TMD approach is now included
into the high twist collinear parton distributions or fragmentation functions. The asymmetry
in the collinear factorization approach is represented by twist-3 collinear parton distributions or
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fragmentation functions, which carry the net effect of spin-transverse momentum correlations
generated by QCD color Lorentz force [16]. The TMD factorization approach is more suitable
for evaluating the SSAs of scattering processes with two very different momentum transfers,
Q1 � Q2 & ΛQCD, where the Q2 is sensitive to the active parton’s transverse momentum, while
the collinear factorization approach is more relevant to the SSAs of scattering cross sections
with all observed momentum transfers hard and comparable: Qi ∼ Q� ΛQCD. Although the
two approaches each have their own kinematic domain of validity, they are consistent with each
other in the perturbative regime where they both apply[17, 18].

Both factorization approaches necessarily introduce a factorization scale, µ � ΛQCD, to
separate the calculable short-distance perturbative dynamics from the long-distance nonper-
turbative physics of the observed cross sections or the asymmetries. Since the physical observ-
ables, the cross sections or the asymmetries, are independent of the choice of the factorization
scale, the scale dependence of the nonperturbative distributions, either TMD distributions or
twist-3 collinear distributions, must match the scale dependence of corresponding perturbative
hard parts. That is, the factorization scale dependence of the nonperturbative distributions
is perturbatively calculable and is a prediction of QCD perturbation theory when µ � ΛQCD.
For example, the scale dependence of the leading power parton distributions obeys DGLAP
evolution equations whose evolution kernels are perturbatively calculable, and has been very
successfully tested when the scale varies from a few GeV to the hundreds of GeV. The scale
dependence of the Sivers function was recently evaluated [19, 20], while the scale dependence
of twist-3 correlation functions and fragmentation functions were derived by several groups
[21, 22, 23, 24, 25, 26, 27, 28]. In the rest of this talk, I will concentrate on the discussion of
the collinear factorization approach to SSAs.

3 Collinear factorization approach to SSAs
With one large momentum transfer Q, the hard scattering is localized to a distance scale of 1/Q.
Since pulling an extra physically polarized parton from the colliding hadron into the localized
collision point is suppressed by a power of 1/Q, the cross section for a hadron A to scatter off
a hadron B can be expanded in a power series in 1/Q,

σAB(Q,~s) = σLP
AB(Q,~s) +

Qs
Q
σNLP
AB (Q,~s) + ... (1)

≈ HLP
ab ⊗ fa/A ⊗ fb/B +

Qs
Q
HNLP
ab ⊗ Ta/A ⊗ fb/B + ... (2)

where Q2
s represents a characteristic scale of the power corrections. The leading power contri-

bution to the cross section can be factorized into a convolution of a localized and perturbatively
calculable hard part HLP

ab from the collision between partons a and b, and the universal twist-2
collinear parton distribution functions (PDFs), fa/A (and fb/B), to find a parton of flavor a (and
b) from the colliding hadron A (and B), as indicated in Eq. (2), and does not contribute to
the SSA [1]. The leading contribution to SSAs in QCD collinear factorization approach comes
from the quantum interference between a partonic scattering amplitude with one active parton
and that with an active two-parton composite state [8, 9]. Such a quantum interference can be
represented by the universal twist-3 quark-gluon correlation functions, and whose contribution
is effectively the first power correction to the spin-dependent cross section and can be perturba-
tively factorized as in Eq. (2) [29]. Although the power correction to the cross section is formally
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suppressed by a power of 1/Q, its contribution to SSAs could be significant in a certain part
of the phase space, such as forward region of the polarized hadron from the derivative of the
correlation functions, d

dxTa/h(x, x), which is a natural feature of twist-3 contributions[9]. The
predictive power of the approach relies on the universality and our knowledge of the twist-3
correlation functions and fragmentation functions.

For SSAs of single particle inclusive cross section: A(pA, s⊥) + B(pB) → h(p) + X, there
could be three potential sources of contributions [10],

AN ∝ σAB→h(Q, s⊥)− σAB→h(Q,−s⊥)

∝ T (3)
a/A(s⊥)⊗ fb/B ⊗H

(S)
ab→c ⊗Dh/c (3)

+ δqa/A(s⊥)⊗
[
T (σ)(3)
b/B ⊗H(BM)

ab→c ⊗Dh/c + fb/B ⊗H
(C)
ab→c ⊗D

(3)
h/c

]
where T (3)

a/A and T (σ)(3)
b/B are twist-3 quark-gluon correlation functions of a transversely polarized

hadron and that of an unpolarized hadron, respectively, and D(3)
h/c are twist-3 quark-gluon

fragmentation functions. The T (3)
a/A take care of the hadron spin flip of the first term, while

the twist-2 quark transversity distributions δqa/A(s⊥) take care of the hadron spin flip of the
second and the third term. The superscripts, S, BM and C, of partonic hard parts indicate that
the first, second, and third term corresponds to, respectively, the sources of SSAs for Sivers,
Boer-Mulders, and Collins contribution in the TMD factorization approach.

The first term in Eq. (3) and the twist-3 quark-gluon correlation functions have been sys-
tematically studied and compared with data on SSAs, while limited effort has been devoted to
the second and third term. With the potential sign conflict between the twist-3 quark-gluon
correlation function directly extracted from data on SSAs in hadronic collisions and those in-
directly derived from the moments of measured Sivers functions [30], it is very important to
investigate the contributions to the SSAs from the second and third term in Eq. (3).

4 Evolution of twist-3 correlation functions
Much of the predictive power of perturbative QCD calculation relies on the factorization and
the universality of non-perturbative distributions. An immediate consequence of the QCD
factorization formalism for physical observables is that the factorization scale dependence of
these universal non-perturbative distributions is also universal and perturbatively calculable,
and is a prediction of perturbative QCD dynamics.

A complete and close set of evolution equations for the twist-3 quark-gluon and gluon-gluon
correlation functions of a transversely polarized hadron, which are relevant to SSAs, was de-
rived in terms of Feynman diagram approach [21], as well as in terms of the ultra-violet (UV)
renormalization of composite operators defining the correlation functions [24]. Leading order
evolution kernels for the correlation functions, relevant to the so-called gluonic pole contribu-
tions [9], were derived by several groups [21, 22, 23, 24, 26]. An apparent discrepancy between
the Feynman diagram approach and that based on the UV renormalization was recently resolved
[25, 27]. Leading order kernels for the distributions, relevant to the fermionic pole contribution
[9], were recently derived [26].

In addition, the leading order flavor non-singlet evolution kernels for the twist-3 quark-gluon
correlation function T (σ)

q,F of a unpolarized hadron were derived [22, 27]. Leading order evolution
kernels for twist-3 fragmentation functions are also available [28].
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5 Summary
The collinear QCD factorization approach to the phenomena of SSAs of cross sections with one
large momentum transfer has been well-developed in last thirty years. With the systematic
derivation of evolution equations and kernels, the QCD description of the SSAs in terms of the
collinear factorization approach is now much more mature. With more future data from RHIC
spin program, the SSAs could provide new quantitatively tests of QCD dynamics that could
not be explored by measurements of spin-averaged cross sections.

I thank Z.-B. Kang and G. Sterman for useful discussions. This work was supported in part
by the US Department of Energy, Office of Science, under Contract No. DE-AC02-98CH10886.
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