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Abstract

This note discusses simulation results of several important RPC performance characteris-
tics. We discuss single gap RPCs with 2mm gap that are used in ATLAS and LHCb. Signal
formation as well as the dependence of the time resolution on amplifier characteristics and
noise are discussed. The signal propagation along the RPC strips, ideal termination net-
works and crosstalk are analyzed in detail. Primary ionization was calculated with HEED
[1], the electrical RPC parameters and fields were calculated with MAXWELL [2]. The
signal propagation was simulated with PSPICE [3] and MATHEMATICA [4].
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Chapter 1

Introduction

RPCs are heavily used in LHC experiments. The hostile rate environment puts severe
demands on all LHC detectors. Therefore a detailed understanding of the detectors is very
useful. The approximate RPC geometry used in ATLAS and LHCb is shown in Figure
1.1 [5] [6]. A simple avalanche model was used to study signal characteristics and time
resolution. Directly induced crosstalk was studied by calculating the weighting fields of the
strips with Maxwell. This note discusses the RPC as a inhomogeneous multi-conductor
transmission line which was shown to be a good model [7]. We discuss ideal termination
networks and electrical crosstalk by using a very powerful matrix formalism for transmission
lines.

ε=102mm Bakelite  

Strip−Strip Distance 2mm

2 mm Gas Gap

Ground Plane  Signal Strip 25mm x 50um
200um Pet 
ε= 3.3

Guard Strip 0.5mmx50um 

Figure 1.1 : RPC geometry used for this study. A gas gap of 2 mm is formed by two 2mm
Bakelite plates with a volume resistivity of 109−1011 Ωcm. Two graphite layers with a resistance
of about 1 MΩ/square are used to apply the voltage of about 10 kV supplying the electric field of
50 kV/cm in the gas gap. A polyethylene foil isolates the graphite plates. On top of the foil there
are readout strips that transport the induced signal to the amplifiers at the end of the lines. A
guard strip is used in order to reduce the strip-strip capacitance. The ε of the Bakelite is around
10 and losses in the Bakelite can be neglected up to 150 MHz [7].
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Chapter 2

Signal Characteristics

In this section we study the signal shapes for a 2 mm RPC filled with an C2H2F4/i-
C4H10/SF6 mixture operated at a voltage of 10 kV, i.e. an electric field of 50 kV/cm
[9].

2.1 Gas Properties

Figure 2.1 shows a HEED [1] simulation of the number of electrons deposited by a 10 GeV
muon in the 2mm gap for the gas mixture C2H2F4/i-C4H10/SF6 95/4/1. We find a most
probable value of 30 electrons.

A drift-velocity of 100µm/ns was assumed. This number is not very crucial for the simula-
tion procedure since the time resolution is strictly proportional to the driftvelocity around
this value, so if the driftvelocity turns out to be different we just scale the result. With
the assumption of 100µm/ns the maximum electron drift time (signal duration) is 20 ns.

The calculation of the Townsend coefficient is usually not very reliable, so we have to
somehow extract it from measurements. If the above numbers were correct we could naively
just tune the Townsend coefficient until the measured charge distribution agrees with the
simulated one. By this estimation we arrive at a Townsend coefficient of 90-100 cm−1. In
reality we have however two additional effects entering the game, attachment and space
charge.

The attachment coefficient is also not known very well. However the effect for our study
will only be a smaller effective Townsend coefficient, so it doesn’t play a role.

Space charge effects are more important but difficult to simulate since the space charge
dynamically changes during the avalanche development. In this simulation we neglect
the space charge effect which leads to a exponential charge distribution which is observed
for RPCs in avalanche mode. At the working point of 10 kV however the RPCs show a
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Figure 2.1 : Primary electrons in a gas gap of 2mm for C2H2F4/i-C4H10/SF6 95/4/1 calculated
by HEED. The most probable value is around 30.

more ’Landau’ or ’Gaussian’ like distribution [8] which indicates that the RPCs work in a
saturated avalanche regime i.e. the avalanches are space charge limited. This simulation
will therefore not completely describe the real situation. The details will be discussed later.

2.2 Induced Signal

Using the primary charge deposit from HEED, the driftvelocity v and the Townsend coef-
ficient α we can calculate the signal time development. In a wire chamber the avalanches
happen very close to the wire, so the signal has a very fast, short electron component and
a long tail from the ion movement that induces most of the total charge. In an RPC the
situation is entirely different. The avalanche region is equal to the entire gas gap and the
ions move quite slowly, so for our studies we completely neglect the ion part of the signal.
To find the induced signal we first have to calculate the weighting field of the strip.

Fig. 2.2 shows the weighting field (Ew) for signal and a guard strip with the geometry
described in the previous chapter. Since the weighting field varies only weakly across the
gas gap we can assume a constant weighting field in the gas gap. Depending on the polarity
of the High Voltage the avalanche happens either close or far from the strip so the weighting
field is either given by the solid or the dotted line in Fig. 2.2.

First we consider a particle crossing the chamber in the center of the strip, the weighting
field corresponds to 3.74V/cm, there is no signal induced on the neighboring strip. If a
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Figure 2.2 : Weighting field for the signal strip and the guard strip for the geometry described
in the previous chapter. The solid line shows the weighting field in the gas gap close to the strips,
the dotted line shows the weighting field far from the strips. In the center of the strip we find
Ew=3.75 cm−1. The signal induced on the guard strip can also be significant.

single electron is moving in the gas gap we find an induced current of

I = Ewve0 = 6 pA (2.1)

If we simulate the time development of the entire avalanche we find an induced current of

I(t) = Ewve0N(t) (2.2)

where N(t) is the number of electrons present at time t. To estimate the order of magnitude
we assume N0 = 30 electrons deposited in the gas gap at equal distances. Every electron
will now start an avalanche according to N(t) = eαvt until all the electrons hit the end of
the gap. So on average we find

N(t) =
N0∑
n=0

eαvtΘ[
d

v
(1− n

N0
)− t] I(t) = Ewe0vN(t) (2.3)

The total induced charge i.e. the integrated signal evaluates to

Q =
∫

I(t)dt =
Ewe0

α
(Ntot −N0) Ntot =

1− eαd

1− e
αd
N0

(2.4)

where Ntot is the total number of electrons produced in the gap. For 30 primary electrons
and α = 90, 100, 110 this gives 8×107, 5.1×108, 3.3×109 electrons and an induced charge
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Figure 2.3 : The left plot shows the total avalanche charge for different primary ionizations and
Townsend coefficients. The right plot shows the ratio between induced and produced charge. E.g.
for a Townsend coefficient of 96 we find a total avalanche charge of 40 pC and a total induced
charge of 1.52 pC.

of 0.53, 3.1, 18.1 pC. Figure 2.3 shows the total produced and induced charge for different
primary ionization numbers.

From the above formula we see that the ratio between total produced and total induced
charge depends on the Townsend coefficient which seems not intuitive. To discuss this
point let’s assume an avalanche in the center of a strip. There is no induced signal on
the other strips and we can consider the RPC as a two electrode system (strip, ground).
In a two electrode system it holds that the induced signals on the two electrodes are
equal size and opposite polarity, and that the total induced charge on each electrode is
equal to the total produced charge. The signal shown above is however only the electron
component, we neglected the ion component since the current is very small. The rule
about the total induced charge holds only for the signals induced by ions+electrons. If the
Townsend coefficient is higher there are more electrons produced close to the anode plane
and therefore the total charge induced by the electrons is reduced relative to the charge
induced by the ions. This is the reason for the dependence on the Townsend coefficient.

The local average of the above signal is given by

I(t) = Ewe0vN0(1 +
1

2N0
− td

v
)eαvt (2.5)

Figure 2.4 shows this current signal calculated with Equation 2.3 for the two different
Townsend coefficients and the average of 500 Monte Carlo events. Figure 2.5 finally shows
the examples of four Monte Carlo events for a Townsend coefficient of 110.
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Figure 2.4 : The top figures show signals calculated from Eq. 2.3 for two different Townsend
Coefficients. The solid line shows the averaged signal from Equation 2.5. The bottom figure
shows the average of 500 MC simulated signals together with the function from Equation 2.5 for
α = 110 cm−1, v= 100 µm/ns, 2 mm gap and Weighting Field of 3.75 V/cm. We see that the
function is a good approximation of the average RPC signal.
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Figure 2.5 : Four MC events for α = 110 cm−1. We see that the pulseheight fluctuations are
very large.



Chapter 3

Frontend Electronics

We characterize the front-end electronics by it’s delta response f(t), i.e. the front end
output signal for a delta function input. For our discussion we assume a delta response of
the form

h(s) =
n−nenn!τ

(1 + sτ)n+1
→ f(t) = n−nen

(
t

τ

)n

e−
t
τ (3.1)

where tp = nτ is the peaking time and n corresponds to the number of integration stages.
The delta response is normalized to one. Figure 3.1 shows the two functions for different
peaking times. The output g(t) of the front-end for a general current input i(t) can be
computed by convoluting with the delta response

g(t) =
∫ t

0
f(t− t′)i(t′)dt′ (3.2)

The equivalent noise charge due to serial and parallel noise is given by [10]

ENC2 =
1

2
e2

nC2
∫ ∞

−∞
f ′(t)2dt +

1

2
i2n

∫ ∞

−∞
f(t)2dt (3.3)

where f(t) is the front-end electronics delta response normalized to give and output voltage
peak of unity for an input current delta function of charge unity. C is the total capaci-
tance at the front-end input (detector capacitance+ trace capacitance + amplifier input
capacitance). en and in are the spectral series and parallel noise densities. These values
depend on the front-end chip technology and design. If we would be free to chose the delta
response f(t) the ENC becomes a minimum for the function

f(t)opt = e−
|t|
τc τc =

en

in
C ENCmin =

√
eninC (3.4)

For optimum ENC it is therefore desired to have a delta-response close to this one. For
any given delta-response with a given peaking time tp the above integral will evaluate to

ENC2 =
1

2
e2

nC2

(
atp

i2n
e2

nC2
+

b

tp

)
(3.5)
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Figure 3.1 : The left figure shows the front-end delta response for different peaking times. The
right figure shows the transfer function. In order to achieve the same sensitivity for the slower
amplifier the gain has to be higher.

where a and b depend on the shape of the delta response. The peaking time for minimum
noise and the ENC minimum are then given by

tp = τc

√
b

a
ENCmin = 4

√
ab
√

eninC (3.6)

so in order to minimize the noise, the delta response shape should be such that the product
ab is close to 1, which is the case for symmetric delta responses. (The choice of the optimum
peaking time will however be determined by time resolution requirements). For the delta
response 3.1 the integral evaluates to

a = (
e

2n
)2n(2n− 1)! b = (

e

2n
)2n(n2(2n− 1)! + 2n3(2n− 2)!− n(2n)!) (3.7)

the optimum peaking time is given by

tENC
p = τc

√
b

a
= 1, 1.15, 1.34, 1.51, 1.67τc for n = 1, 2, 3, 4, 5 (3.8)

and the noise at the minimum is given by

4
√

ab = 1.35, 1.21, 1.17, 1.16, 1.15 for n = 1, 2, 3, 4, 5 (3.9)

We see that for a delta function consisting of 5 integrations the ENC is only 15% higher
that the optimum case.

Finally we want to plug in numbers for the RPC. In case we terminate the strips properly
the strip capacitance has no effect. Neglecting the amplifier input capacitance and trace
capacitances we have

i2n =
4kT

Rp
(3.10)
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Figure 3.2 : The left plot shows the parallel noise ENC for Rp = 25Ω for different peaking
times and integration numbers which applies for an RPC with perfect termination. The right
plot shows the series ENC for Cstrip = 100 pF for different serial noise resistances which applies for
an unterminated RPC strip. In the unterminated scheme the ENC scales with the capacitance.

where Rp is the impedance of the RPC strip and we find an ENC of

ENCp =

√√√√1

2

(
e

2n

)2n

(2n− 1)!
4kT

Rp
tp (3.11)

If we assume a very short RPC (< 40cm) we don’t terminate the strips at all. In that case
we can neglect the parallel noise and we only have serial noise which depends on the strip
capacitance. The serial spectral noise density is given by

en = 4kTRS (3.12)

where RS is the series noise resistance which depends on the amplifier design and we find

ENCs = C

√√√√1

2
(

e

2n
)2n(n2(2n− 1)! + 2n3(2n− 2)!− n(2n)!)

4kTRS

tp
(3.13)

Figure 3.2 shows these numbers for different amplifier parameters. We see that in terms of
noise the terminated RPC favours short peaking time while the unterminated RPC favours
long peaking time.



Chapter 4

Time Resolution

The RPC time resolution for different peaking times was studied by simulating MC signals
as described in chapter 2 and convoluting them with the front-end delta response. For this
study we chose a preamp with n = 3, a sensitivity of 1mV/fC, and a parallel noise resistance
of 25 Ω. We chose Townsend coefficients of 90, 95 and 100 cm−1 which gives a total charge
that should be close to our working point. Figure 4.1 shows an example of a pulse-height
distribution and induced charge distribution. As discussed earlier the distributions have
exponential shape because space charge effects where neglected while measurements at the
working point show a more ’Landau’ like distribution i.e. in reality space charge effect
play a role. We should however expect that the time resolution dependence on the peaking
time should be reduced in that case since the fluctuations are smaller. The numbers here
should therefore be pessimistic. This however has to be checked experimentally.

We chose three different peaking times: 3, 10 and 15 ns. Figure 4.2 shows the time res-
olution and efficiency for the different Townsend coefficients. We find three important
points:

• Plotting the time resolution versus threshold (in units of % of average pulseheight)
we see no difference for α = 90, 95, 100 cm−1.

• For a given threshold (in units of % of average pulseheight) the ’hit-efficiency’ i.e.
the probability that a signal crosses the threshold independent of the peaking time.

• The only difference for the three different Townsend coefficients is the signal to noise
ratio i.e. the minimum possible threshold. However, due to crosstalk effects we have
to use a threshold around 5% of the average signal.

• At a threshold of 5% of the average signal we find a time resolution of 1.2, 1.5, 1.8 ns
for peaking times of 3,10,15 ns.

14
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Figure 4.1 : The left plot shows the total induced charge for α = 95 which gives an average
of 1.43 pC. The right plot shows the corresponding pulseheight distribution for tp = 10 ns and a
preamp sensitivity 1mV/fC. We find an average pulseheight of 1.45 V.
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Figure 4.2 : Time resolution and efficiency for different peaking times and Townsend coefficients.
The open circles show the 5× noise level, i.e. the minimum possible threshold.



Chapter 5

Directly induced Crosstalk

In order to find the directly induced crosstalk i.e. the signal induced on the neighbouring
strip if a particle crosses at a strip position X we normalize the weighting field of Fig. 2.2
and move the origin of the X-axis to the point between the strips (5.1). We see that for a
particle passing the RPC in between two strips, the signal induced on both strips is 40%
of the signal induced on a strip when the particle is passing through the center of a strip.

The second plot in Fig. 5.1 shows the crosstalk for a given threshold. If we set the threshold
to 5% of the average signal we find a hit of the strip even if a particle crosses 3(4.5)mm
from the strip.

From these curves we can calculate the average cluster size due to direct signal induction
for different thresholds. For uniform illumination of the RPC we find

clustersize = 1 +
2∆x(thr)

w
(5.1)

were ∆x is the distance from the edge of the strip at which both strips still fire and w is the
width of the strip which for this formula has to be ≥ 2.5 cm. Figure 5.2 finally shows these
numbers for different thresholds. If we set the threshold to 1% of the average signal we
find a cluster size of 1.46(1.624). For a threshold of 5% we find a cluster size of 1.25(1.35).

We see that in order to keep the cluster size below 1.2 we have to keep the threshold above
5% of the average signal.

17
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Chapter 6

General Discussion of Transmission
Lines

There are several programs for simulation of transmission lines. In order to discuss the
general features it is however essential to analyze the analytic solutions of the transmission
line problem. In this context we also have to carefully define all the parameters that
we use to describe the RPC. An excellent overview of the theory of Multi Conductor
Transmission Lines is given in [12]. We will first write down the formal solutions of the
transmission line problem and define all the necessary parameters. Then we will apply this
formalism to a RPC with a single strip in order to discuss signal reflections, attenuation and
distortion. After that we will study a RPC with two strips to discuss crosstalk and ideal
termination networks. After that we apply the formalism to the N-conductor transmission
line, representing the entire RPC. Although the general solutions are very mathematical the
formalism very powerful for the discussion of general features and results of transmission
lines as we will see later.

Our RPC is a two dimensional transmission line consisting of N signal lines and one
reference line (ground line). The equations describing the most general 2-dimensional
(N + 1) conductor transmission line in the TEM approximation [12] are

∂

∂z
V(z, t) = −R̂I(z, t)− L̂

∂

∂t
I(z, t) (6.1)

∂

∂z
I(z, t) = −ĜV(z, t)− Ĉ

∂

∂t
V(z, t) (6.2)

where

19
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V(z, t) =




V1(z, t)
.
.
.

VN (z, t)




I(z, t) =




I1(z, t)
.
.
.

IN(z, t)




(6.3)

are the currents and voltages at position z of the N conductors. The N × N matrices
Ĉ, L̂, R̂, Ĝ are the ’per unit length parameters’ of Capacitance, Inductance, Resistance
and Conductance. They are defined by the geometry and materials of the transmission
line and completely determine the line characteristics. For the RPC case we calculate them
with Maxwell [2].

6.1 The Matrices R̂, L̂, Ĝ, Ĉ

A transmission line is completely determined by four matrices that contain the ’per unit
length’ parameters. Here we will discuss their properties and frequency dependencies.

6.1.1 Resistance Matrix R̂

If the signal lines are perfect conductors, the resistance matrix is zero. If the signal lines
have resistances of ri Ω/m and the reference conductor has a resistance of r0 Ω/m the
resistance matrix for low frequencies is given by

R̂ =




r1 + r0 r0 . r0

r0 r2 + r0 . r0

. . . .
r0 r0 . rn + r0


 (6.4)

The RPC strips are made of aluminium (σ = 3.8 × 108 S/m). The ground resistance r0

is negligible and for low frequencies the the resistances for the signal strip and the guard
strip are 0.002Ω/m and 0.1Ω/m which can be neglected as well.

For higher frequencies the line resistance increases as
√

f due to the well known
skin effect i.e. the fact that the current flows close to the conductor surface. The skin
depth (of a planar conductor) is given by

δ =
1√

πfµσ
(6.5)
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Figure 6.1 : The left plot shows the skin depth versus frequency for Copper and Aluminium.
The right plot shows the approximate resistance versus frequency for signal and guard strip.

where f is the frequency, µ the magnetic permeability of the conductor and σ is the
conductivity of the conductor. The current density in the conductor decreases as e−x/δ

where x is the distance from the conductor surface. We expect that the skin effect starts
to play a role when the skin depth becomes equal to the smallest dimension of the conductor
which in our case is the thickness of 50 µm. We approximate the resistance as

R =
1

σwt
δ <

t

2
R =

1

2δσ(w + t)
δ >

t

2
(6.6)

where w is the width and t is the thickness of the strip. The results are shown in Figure
6.1.

6.1.2 Capacitance Matrix Ĉ

The capacitance matrix Ĉ is defined as

Ĉ =



∑N

k=1 C1k −C12 . −C1N

−C21
∑N

k=1 C2k . −C2N

. . . .
−CN1 −CN2 .

∑N
k=1 CNk


 (6.7)

where Cij i 6= j is the mutual capacitance between conductor i and j and Cii is the
capacitance of conductor i to the reference conductor. The capacitances are given by the
conductor geometry and the dielectrics surrounding the conductors. Since the dielectric
constants are in general not frequency dependent below ≈ 1GHz the capacitance matrix
is constant for our application.
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6.1.3 Inductance Matrix L̂

The Inductance Matrix L̂ contains the self inductances Lii of the signal lines and the
mutual inductances Lij between the conductors.

L̂ =




L11 L12 . L1N

L21 L22 . L2N

. . . .
LN1 LN2 . LNN


 (6.8)

The values depend on the conductor geometry and the magnetic permeability of the sur-
rounding materials. The inductances are constant for low frequencies and they decrease as
1/
√

f for higher frequencies due to an effect that is strongly linked to the skin effect. It
approximately holds that for high frequencies the inductance is given by r(f)/f where r is
the resistance.

6.1.4 Conductance Matrix Ĝ

The Conductance Matrix Ĝ relates the transverse conduction currents passing between
the conductors to their voltages. It is defined by

Ĝ =



∑N

k=1 G1k −G12 . −G1N

−G21
∑N

k=1 G2k . −G2N

. . . .
−GN1 −GN2 .

∑N
k=1 GNk


 (6.9)

where Gij i 6= j relate the currents between conductors i and j to their voltage difference
and Gii relate the currents to ground to their voltage differences. The matrix is constant
if the surrounding medium has a constant conductivity σ. A frequency dependence is
introduced by an imaginary part of the electric permittivity.

6.1.5 Properties of R̂, L̂, Ĝ, Ĉ

The matrices L̂, Ĝ, Ĉ are symmetric and positive definite. If the medium surrounding the
conductors is homogeneous with parameters σ, ε, µ and the conductors are lossless we have
the relations

L̂Ĉ = ĈL̂ = µε1̂ L̂Ĝ = ĜL̂ = µσ1̂ (6.10)

where 1/
√

µε is the propagation velocity of the waves.
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6.2 Formal General Frequency Domain Solution

Substituting
V(z, t) = V(z)eiωt I(z, t) = I(z)eiωt (6.11)

into 6.1 6.2 and decoupling the equations they simplify to

d2

dz2
V(z) = ẐŶV(z)

d2

dz2
I(z) = ŶẐI(z) with Ẑ = R̂ + iωL̂ Ŷ = Ĝ + iωĈ

the Ẑ the ’per unit length’ impedance matrix and Ŷ the ’per unit length’ admittance
matrix (not to be confused with the characteristic impedance and admittance matrix).
The equations are second order linear coupled differential equations that can be solved by
diagonalizing the matrix ŶẐ as

T̂−1(ŶẐ)T = γ̂2 γ̂2 =




γ2
1 0 . 0
0 γ2

2 . 0
. . . .
0 0 . γ2

N


 (6.12)

where γ2
n are the eigenvalues of (ŶẐ) and T̂ is the matrix containing the corresponding

normalized eigenvectors. The general solution of the transmission line equations is then
given by

I(z) = T̂(e−γ̂zI+ + eγ̂zI−) V(z) = ẐCT̂(e−γ̂zI+ − eγ̂zI−) (6.13)

where

e±γ̂z =




e±γ1z 0 . 0
0 e±γ2z . 0
. . . .
0 0 . e±γN z


 (6.14)

and we define

ẐC =

√(
ẐŶ−1

)
= ẐT̂γ̂−1T̂−1 ŶC = Ẑ−1

C (6.15)

with ẐC the characteristic impedance matrix and ŶC the characteristic admittance
matrix. The two vectors I+ and I− contain 2N constants that will be determined by
boundary conditions on the two ends of each of the N lines and the signal sources on the
line. Note that the solution is still completely general!
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6.3 Formal Lossless Time Domain Solution

If the transmission line is lossless i.e. R̂ and Ĝ are negligible, the solutions are independent
of the frequency and we can write down the explicit time domain solution. The differential
equations to be solved are

d2

dz2
V(z, t) = L̂Ĉ

d2

dt2
V(z, t)

d2

dz2
I(z, t) = ĈL̂

d2

dt2
I(z, t) (6.16)

with the general solution

I(z, t) =




I1(z, t)
.
.
.

IN (z, t)




= T̂(




I+
1 (t− z

v1
)

.

.

.
I+
N (t− z

vN
)




+




I−1 (t + z
v1

)

.

.

.
I−N(t + z

vN
)




) (6.17)

V(z, t) =




V1(z, t)
.
.
.

Vn(z, t)




= ẐCT̂(




I+
1 (t− z

v1
)

.

.

.
I+
N (t− z

vN
)



−




I−1 (t + z
v1

)

.

.

.
I−N (t + z

vN
)




) (6.18)

where the I+
n (x) and I−n (x) are 2N arbitrary functions and

T̂−1(ĈL̂)T̂ = v̂−2 ẐC = L̂T̂v̂T̂−1 (6.19)

with

v̂−2 =




1
v2
1

0 . 0

0 1
v2
2

. 0

. . . .
0 0 . 1

v2
N


 v̂ =




v1 0 . 0
0 v2 . 0
. . . .
0 0 . vN


 (6.20)

The individual functions represent pulses that are running along the lines in positive and
negative direction without changing their shape. Note that the signal propagation happens
with N different velocities. Only if the line is homogeneous i.e. if L̂Ĉ = 1

v2 1̂ there is only
one propagation velocity v. The form of these functions will be determined by the line
excitation mechanism and the line boundaries.
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6.4 Boundary Conditions, Reflection Matrix

The 2N constants in the solution 6.13 or the 2N functions in solution 6.17 and 6.18 are
defined by the networks at the end of the lines at z = 0 and z = L and the signal
sources. Let’s look at the left line end z = 0 (Fig. 6.2). We interconnect (’load’) all the
N conductors with resistors, capacitors, inductors i.e. we assume the most general linear
network at z = 0. If znm n 6= m is the impedance of the network between line n and line
m and znn is the impedance of the network between line n and the reference conductor
(ground), the voltages and currents at the line end are related by

V(0, t) = ẐLI(0, t) ẐL = Ŷ−1
L Y L

nm = − 1

znm
n 6= m Y L

nn =
N∑

m=1

1

znm
(6.21)

where we define ẐL as the load impedance matrix. If we e.g. connect all the conductors
with a resistor R to ground and don’t interconnect them, the load impedance matrix is
a diagonal matrix with the R as diagonal elements. If we interconnect lines the matrix
has off-diagonal elements that have to be calculated from the above equations. The same
relations are of course true for the other line end at z = L.

It can be shown that the forward and backward running voltage waves at a line end loaded
by ZL are connected by the reflection coefficient matrix Γ̂L according to

V− = Γ̂LV
+ Γ̂L = (ẐL − ẐC)(ẐL + ẐC)−1 (6.22)

The voltage V at the line end is then given by

V = V+ + V− = (1̂ + Γ̂L)V+ (6.23)

In the next section we will discuss the current pulse excitation at some position z = z0 of a
single strip of a lossless transmission line with N +1 conductors. This represents the RPC
case.

I3(0,t)

z22z11 z33

z23z12

GND

z=0

z13

V3(0,t)V1(0,t) V2(0,t)

I1(0,1) I2(0,t)

Figure 6.2 : Line end loaded with a general impedance network.
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6.5 Current Pulse Excitation of a Lossless Line

This scenario is most important for the real RPC application where the avalanches in the
gas gap induce a current signal on a strip. We assume an induced signal I0(t) on strip n
at position z0 along the RPC strip. Substituting into 6.17 we find the equation




0
.

I0(t)
.
0




= T̂(




I+
1 (t− z0

v1
)

.

.

.
I+
N (t− z0

vN
)




+




I−1 (t + z0

v1
)

.

.

.
I−N(t + z0

vN
)




) (6.24)

which defines the 2N functions and we find the general solution

I(z, t) =
1

2
T̂(




t−1
1n I0(t− z−z0

v1
)

t−1
2n I0(t− z−z0

v2
)

.

.
t−1
NnI0(t− z−z0

vN
)




+




t−1
1n I0(t + z−z0

v1
)

t−1
2n I0(t + z−z0

v2
)

.

.
t−1
NnI0(t + z−z0

vN
)




) (6.25)

where the t−1
nm are the elements of the matrix T̂−1. This solution shows that there are two

pulses running symmetrically to the left and the right from the point z0. The current pulse
running along one conductor is a superposition of N times the same pulse-shape running
with different velocities vn. Therefore we have signal dispersion even for the lossless case.

One side of the RPC we want to terminate, the other side we want to read with an amplifier.
Equation 6.22 shows that in order to avoid reflections on one line end we have to load the
line such that ẐL = ẐC . Using 6.21 we find the termination resistors as

ŶC = Ẑ−1
C Rnm = − 1

Y C
nm

n 6= m
1

Rnn
=

m=N∑
m=0

Y C
mn (6.26)

where Rnn are the resistors between conductor n and ground and Rnm are the resistors
between conductor n and m. We see that we eliminate reflections only of we interconnect
all conductors with resistors. We’ll discuss examples later.

For now we assume the far end of the RPC to be terminated. The other end of the RPC
is read out by amplifiers connected to each line. To keep the discussion general we assume
that the lines are also interconnected with resistors. From the preamp input resistance
and the interconnection resistors we can calculate the load impedance matrix ẐP on the
amplifier side with Eq. 6.21. The voltage and current at the line end are then given by
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V(L, t) = ẐP ẐC(ẐP + ẐC)−1T̂




t−1
1n I0(t− L−z0

v1
)

t−1
2n I0(t− L−z0

v2
)

.

.
t−1
NnI0(t− L−z0

vN
)




I(L, t) = Ẑ−1
P V(L, t) (6.27)

V(L, t) is the voltage at the preamp inputs, the current through the preamps is simply
given by Iamp = 1

Rin
V(L, t) where Rin is the amplifier input resistance. (The current I(L, t)

in the above expression is not the current through the amplifier but the current at the line
end which is only equal to Iamp if the lines are not interconnected.) This is the most general
result for a lossless transmission line. The result is true for every line length. The rest of
this note will discuss the consequences of the above formula. Here we will examine a few
limiting cases to draw general conclusions.

6.5.1 Homogeneous or Short Terminated RPC

In a homogeneous RPC all the propagation velocities are the same and the results simplifies
to

V(L, t) = ẐP ẐC(ẐP + ẐC)−1




0
.
0

I0(t− L−z0

v
)

0
.
0




I(L, t) = Ẑ−1
P V(L, t) (6.28)

This result is also valid for a short unterminated RPC since there is not enough time for the
pulses to disperse. From this we learn that the signal and crosstalk pulses will have exactly
the same shape as the original induced signal. The relative pulse-heights of the strips are

given by the nth column of the matrix ẐP ẐC(ẐP + ẐC)−1. The crosstalk is independent of
the amplifier peaking time. If the transmission line is homogeneous (which is not the case
for the RPC) the crosstalk is also independent of the distance of the induced signal from
the amplifier.

If we adjust the preamp input resistance and interconnecting resistors such that ẐP = ẐC
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i.e. if we also ideally terminate the preamp side, the solution is given by

V(L, t) =
1

2
ẐC




0
.
0

I0(t− L−z0

v
)

0
.
0




I(L, t) = Ẑ−1
P V(L, t) (6.29)

The crosstalk is then given by the ratio of the cross impedances ZC
nj n 6= j to the impedance

of the signal line ZC
nn. This is however not the scenario giving the smallest crosstalk.

If we don’t interconnect the lines on the amplifier side but just connect each line to the
preamp it holds that ẐP = Diag(Rin, Rin, ...., Rin) where Rin is the preamp input resistance,
or ẐP = Diag(Rin, R, Rin, R, ...., R, Rin) if we use a guard strip with a resistance R to
ground. It can be shown that off-diagonal elements in the matrix ẐP will always increase
the crosstalk i.e. we don’t want to interconnect the lines on the preamp side.

In case the amplifier input resistance is Rin = 0 we have ẐP = 0, V(L, t) = 0 and

I(L, t) = (0, 0, ..., I0(t− z−z0

v
), ..., 0)T (6.30)

i.e. we measure exactly the pulse induced on line n and zero on all the other lines. The
whole scenario looks the following: If a current is induced at point z = z0, half of it runs
to the left and half of it to the right. The pulse running to the left is terminated on the
left end, the pulse running to the right is totally negatively reflected and we measure the
difference i.e. the entire current signal. The reflection again runs to the left where it is
terminated. This way we measure the maximum signal with minimum crosstalk – it is the
desired scenario.

6.5.2 Inhomogeneous or Long Terminated RPC

For a long RPC the signals will disperse as they run along the strips and the pulse-shapes
will change. The crosstalk will always increase as a function of distance from the amplifier
and will only be equal to the numbers from above in the limit of very long preamp peaking
times. To discuss this fact let’s look again at amplifiers with input resistance Rin = 0. The
general solution is given by

I(L, t) = T̂




t−1
1n I0(t− L−z0

v1
)

t−1
2n I0(t− L−z0

v2
)

.

.
t−1
NnI0(t− L−z0

vN
)




(6.31)
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The crosstalk will not be zero as above, but since all the individual pulses have the same
shape is holds that

∫
I(L, t)dt = (0, 0, ...,

∫
I0(t− z−z0

v
)dt, ..., 0)T (6.32)

i.e in case Rin = 0 the crosstalk signals are perfectly bipolar. The total charge on all
neighbours is zero. All the induced charge is measured on conductor n. From this we learn
that the crosstalk will be less if the peaking time is longer. (This is of course only true for
long RPCs. For short strips there is not enough time for dispersion and the crosstalk will
be independent of the peaking time.) Therefore we will try to chose the longest possible
preamp peaking time that is still compatible with our timing requirements. We also see
that the crosstalk will be position dependent since for a pulse far from the preamp side the
individual modes will disperse by a larger amount.

6.5.3 Short Unterminated RPC

In case the RPC strips are short i.e. the pulse-width is longer than the propagation time,
we can omit the termination and leave the ’far end’ open. If we interconnect the lines on
the preamp side such that it represents ideal termination the measured signals will again
have the same shape as the original signal and the result is independent of the amplifier
peaking time. The crosstalk is given by the relative magnitude of the impedance matrix
elements. If we however omit the interconnections of the lines and just connect amplifiers
with lowest possible input resistance we can reduce the crosstalk. However now we will
have multiple reflections since both line ends are not ideally terminated, the pulse-shape
will be different and the crosstalk becomes again peaking time dependent. If we imagine
that we use amplifiers with input resistance of Rin = 0 Ω (or very high) the signal will be
reflected back and forth forever and the system becomes unstable. In the unterminated
RPC we therefore want the amplifier impedance as close as possible to the impedance of
the signal strip. Since we don’t interconnect the lines we have multiple reflections and the
signal shapes will be different from the induced signal.
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6.6 Geometry independent Conclusion on RPC Sig-

nal Propagation

• The RPC signal acts as an ideal current source on an RPC strip.

• The RPC is modelled as a lossless inhomogeneous multi-conductor transmission line.
The signal propagation happens in N modes where N is the number of RPC strips.
This means that the signal is propagating along the strips as a superposition of N
pulses that have the same shape as the original signal and travel with N different
velocities. The signal experiences ’modal dispersion’.

• In order to avoid reflections for long RPC strips the RPC has to be terminated at the
characteristic impedance of the transmission line which is theoretically only possible
if one interconnects all the strips with resistors i.e. one needs N × (N − 1) resistors.

• On the preamp side we want the lowest possible impedance since in that case the
reflection coefficient matrix becomes Γ̂ = Diag(−1,−1, ....,−1) and the measured
signal becomes maximal. The reflection is then absorbed at the terminated end.

• If the amplifier input impedance is zero the crosstalk signals on the neighbouring
strips are strictly bipolar i.e the total measured charge is zero. Therefore the crosstalk
will be smaller for long peaking times and low input impedances (this is only true
for long strips).

• For a signal that is induced far from the preamp, the different modes have more time
to disperse i.e. we expect that the crosstalk increases with the distance from the
amplifier.

• It can be shown that interconnecting the strips on the preamp side will always increase
the crosstalk.

• For a ’short’ terminated RPC (where short means that the modes don’t run apart
too far) the measured signal on the ’hit’ strip and the crosstalk signals have exactly
the same shape as the original induced signal.

• In terms of noise, an ideally terminated RPC is equal to a set of resistors equal to
the characteristic impedance, i.e. the RPC represents a parallel noise source.

• Since for a short RPC reflections are not as issue we can leave the termination out.
If the lines are not interconnected at the preamp side (which is desired for crosstalk)
the the measured signal does not have the same shape as the induced signal because
of the multiple reflections. It will be shown later that in that case the amplifier input
impedance should be close to the impedance of the strip in order to avoid instabilities.

• In terms of noise the unterminated RPC represents a serial noise source.



Chapter 7

Electrical Crosstalk in RPCs

In order to discuss all the the different effects in RPC detectors we first analyze a RPC with
a single strip to discuss attenuation and reflections. Then we’ll discuss a homogeneous and
inhomogeneous RPC with two strips to examine modes and termination networks. Then
we finally discuss a N-conductor transmission line representing the RPC. A modal analysis
of RPC crosstalk is presented in [11].

7.1 Single Strip RPC

An example of a transmission line representing an RPC with a single strip is shown in Figure
7.1. The ’per unit length’ matrices are scalars R, G, L, C. We will keep the discussion still
general to see the effects of the different parameters. We will insert the values only at the
end.

It holds that

LC = µεeff
r G =

µ(σeff + ωεeff
i )

L
(7.1)

ε=102mm Bakelite  

2.25

2 mm Gas Gap

Ground Plane  Signal Strip 25mm x 50um
200um Pet 
ε=

Figure 7.1 : RPC with a single signal strip.
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We find the characteristic parameters

ZC =

√
R + iωL

G + iωC
Γ1 =

ZC − R1

ZC + R1
Γ2 =

ZC − R2

ZC + R2
(7.2)

As we see the reflection factor is in general frequency dependent, so it is not possible to
terminate all waves with a passive resistor. Only in the high frequency limit ZL reaches a
constant real value. The ’eigenvalue’ is

γ =
√

(R + iωL)(G + iωC) = α + iβ (7.3)

with

α =

√
1

2
(
√

(G2 + ω2C2)(R2 + ω2L2) + RG− ω2LC) (7.4)

β =

√
1

2
(
√

(G2 + ω2C2)(R2 + ω2L2)−RG + ω2LC) (7.5)

The general solution is then

I(z, t) = (e−(α+iβ)I+ + e(α+iβ)I−)eiωt V (z, t) = ZC(e−(α+iβ)I+ − e(α+iβ)I−)eiωt

(7.6)

The two constants I+ and I− will be determined by boundary conditions. We see that
α leads to frequency dependent exponential attenuation (even if L, C, G, R themselves are
independent of frequency). The factor β defines the propagation velocity i.e. v = ω/β
which also depends on the frequency. This leads to dispersion of pulses. Only if R and G
are zero we don’t have attenuation. R is zero if the signal line is a perfect conductor. From
(7.1) we see that G is zero if the conductivity of the medium is zero and the imaginary
part of the permittivity is zero.

In case R << ωL and G = 0 (which is a good approximation for the RPC) the factors α
and β can be approximated by

α =
1

2

R

ZC

β =
ω

v
(7.7)

so in this approximation the propagation velocity is the same for all frequencies and the
the attenuation length is given by the ratio of ’per unit length’ resistance and characteristic
impedance. Since the typical strip impedance is around 20 Ω and since in the frequency
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range < 1 GHz the strip resistance R is < 1 Ω the attenuation length is > 50 m, so we can
completely neglect the losses. In that case we have

α = 0 β = ω
√

LC =
ω

v
(7.8)

where v is the phase velocity of the waves which is equal for all frequencies. The charac-

teristic impedance becomes constant and is equal to ZC =
√

L
C

.

From here we continue with the lossless case. The parameters for the transmission line in
Fig. 7.1 are

C = 205 pF/m L = 89.3 nH/m → ZC = 20.87 Ω v = 2.34× 108 m/s (7.9)

The RPC pulse acts as a current source I0(t) somewhere along the strip. The general
solution for the lossless case is well known

I(z, t) =
1

2
(I0(t− z−z0

v
) + I0(t + z−z0

v
)) V (z, t) =

1

2
ZC(I0(t− z−z0

v
)− I0(t + z−z0

v
))

so half the current pulse is running to the left and half to the right. At the line ends the
voltage pulses are reflected according to the reflection coefficients determined by the loads.
For a long RPC we want to terminate the strip on one side in order to avoid reflections,
i.e. we want R2 = ZC . On the preamp side the measured current pulse is

I(t) =
ZC

ZC + R1
I0(t− z−z0

v
) (7.10)

The measured pulse-shape is exactly equal to the original induced current. We see that for
input resistance of 0Ω the measured current is equal to the induced current, the reflection
coefficient is −1 and the reflection is absorbed again on the terminated side. This result is
true for every line length.

For short strips i.e. if the preamp peaking time is longer than the propagation time, we
don’t have to terminate the strip at the far end and we can look at a different scenario.
We can use a quasi-static approximation where we concentrate all the ’parameters’ C and
L in on element (Fig. 7.2). This represents the circuit for the damped harmonic oscillator.
For a strip of length l we can express the total capacitance and inductance as

C =
l

vZC
L =

lZC

v
ZC =

√
L

C

and the approximate delta responses become

g(t) =
1

R1C
e
− t

R1C R1 >> 2ZC g(t) =
1√
LC

e−
R1
2L

t sin
t√
LC

R1 << 2ZC (7.11)
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i1i C

L

R1

Figure 7.2 : Equivalent circuit for a short lossless RPC strip.

For R1 ≥ 2ZC the circuit shows critical damping and there is no oscillation but only
exponential attenuation. The signal is ’integrated’ and the pulse-width is increased. For
R1 ≤ 2ZC there is an oscillation that is damped with a time constant of τ = 2L

R1
= 2Z

R1
T

where T is the propagation delay along the strip length. Also this is an unwanted effect.
Therefore we want the preamp input impedance to be close to the characteristic strip
impedance in case we don’t terminate the strip on the ’far side’ i.e. we want to terminate
the strip with the preamp.

It is interesting to see how these expressions from Eq. 7.11 come out of the exact transmis-
sion line solution. If we assume a current signal in the center of the strip we can calculate
the exact solution by multiply reflecting the two current pulses that run to the right and
the left. The signal is the given by the sum

I(t) =
1

2
(1 + Γ1)(1 + Γ2)

ZC

R1

N∑
n=0

(Γ1Γ2)
nI0(t− 2nT ) (7.12)

with T = l/v and N = t/2T . For a short strip we can now replace the sum by an integral

N∑
n=0

(Γ1Γ2)
nI0(t− 2nT ) ≈ 1

2T

∫ t

0
eln(Γ1Γ2) t−x

T I0(x)dx (7.13)

If we set Γ2 = 1 (unterminated end) and if Γ1 > 0 which is the case for R1 > ZC

ln(Γ1Γ2) ≈ −2
ZC

R1
and

1

2
(1 + Γ1)(1 + Γ2)

ZC

R1
≈ 2Z

R1
(7.14)

and 7.11 becomes equal to 7.12. If ZC < R the reflection coefficient Γ1 is negative and we
replace (−1)n by sin(nπ + π

2
)

I(t) =
1

2
(1 + Γ1)(1 + Γ2)

ZC

R1

N∑
n=0

sin(nπ +
π

2
)(Γ1Γ2)

nI0(t− 2nT ) (7.15)

which again becomes equal to Eq. 7.11 after replacing the sum by an integral.
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7.2 Homogeneous Double Strip Line

Figure 7.3 shows an example of a transmission line with two strips. The dielectric properties
are equal in the entire area where the waves propagate. We call this type of transmission
line homogeneous. For this type of transmission line it holds that

L̂Ĉ =
1

v2
ẐC = vL̂ (7.16)

i.e. there is only one propagation velocity. The transmission line is fully described by the
characteristic impedance matrix and the propagation velocity v which are calculated from
from Maxwell. We find

Ĉ =

(
126 6.4
6.4 126

)
pF/m L =

(
88.4 4.47
4.47 88.4

)
nH/m→ (7.17)

ẐC =

(
Z11 Z12

Z21 Z22

)
=

(
26.5 1.34
1.34 26.5

)
Ω v = 3× 108 m/s (7.18)

Since the matrix L̂Ĉ is already diagonal the matrix T̂ is undefined and any set of two
orthonormal vectors will do for it. The general solution for a current pulse I0(t) at position
z = z0 on conductor 1 following Eq. 6.25

(
I1(z, t)
I2(z, t)

)
=

1

2

(
I0(t− z−z0

c
) + I0(t + z−z0

c
)

0

)
(7.19)

and for the voltage pulses

(
V1(z, t)
V2(z, t)

)
=

1

2

(
Z11

Z12

)
I0(t− z−z0

c
) +

1

2

(
Z11

Z12

)
I0(t + z−z0

c
) (7.20)

Strip−Strip Distance 2mm

Ground Plane  Signal Strip 25mm x 50um

Figure 7.3 : Homogeneous transmission line with two strips
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These two voltage waves are now running with velocity v to the left and to the right. At
the line ends they will be reflected according to the networks connected to the line end.

First we want to terminate one end such that there is no reflection. The reflection coefficient
at the line end is given by

Γ̂L =

(
Γ11 Γ12

Γ21 Γ22

)
=

ẐL − ẐC

ẐL + ẐC

(7.21)

The reflection matrix is zero if the load impedance is equal to the characteristic impedance.
Let’s now calculate the resistor values that give Γ̂L = 0. According to Equation 6.26 we
find

R11 = R22 = 27.8 Ω R12 = 522.7 Ω (7.22)

Only if we interconnect all the lines we avoid reflections (Figure 7.4). The other side of the
strips we finally want to read out with an amplifier of input resistance R. Since the lines
are not interconnected the load impedance matrix is a diagonal matrix with R as diagonal
elements. The measured current is given by Eq. 6.27 and evaluates to

(
I1(t)
I2(t)

)
=

ẐC

ẐP + ẐC

(
I0(t− z−z0

c
)

0

)
(7.23)

=
1

R2 + 2RZ11 + Z2
11 − Z2

12

(
RZ11 + Z2

11 − Z2
12

RZ12

)
I0(t− z−z0

c
) (7.24)

so we find a crosstalk of

I2(t)

I1(t)
=

RZ12

RZ11 + Z2
11 − Z2

12

(7.25)

Ω 28 Ω28 Ω523

Figure 7.4 : In order terminate the strips properly we have to interconnect all the lines.
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Figure 7.5 : The left figure shows the pulse-height on both strips. The right figure shows the
crosstalk. We see that crosstalk is zero if the input resistance is zero.

which is illustrated in Figure 7.5. The measured signals on both strips have exactly the
same shape as the original induced signal. The crosstalk is zero if the preamp input
resistance is zero. In that case we measure exactly the induced current signal. In order
to keep the crosstalk small we want the ratio Z12/Z11 to be small. It can be easily shown
that by interconnecting the strips with a resistor the crosstalk is always increasing.
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7.3 Double Strip RPC

An RPC with two strips is shown in Figure 7.6. The transmission line is inhomogeneous
and the parameters calculated from Maxwell are

Ĉ =

(
216 −30
−30 216

)
pF/cm L̂ =

(
88.4 4.47
4.47 88.4

)
nH/m ⇒ (7.26)

Ẑ =

(
20.4 1.93
1.93 20.4

)
Ω/m T̂ =

1√
2

(
1 1
−1 1

)
(7.27)

v1 = 2.2× 108 m/s v2 = 2.4× 108 m/s (7.28)

The ideal termination for one side of the RPC gives the values

R11 = R22 = 22.3 Ω R12 = 213.7 Ω (7.29)

The effect of the two modes with different propagation velocities is illustrated in Figure 7.7.
In general the signal is a superposition of the two modes and we therefore find dispersion.
We will see that this dispersion plays a significant role for the crosstalk of long strips.

Exciting the RPC as before by putting a current I0(t) on strip one at position z = z0 we
get the general solution

(
I1(z, t)
I2(z, t)

)
=

1

4

(
I0(t− z−z0

v1
) + I0(t− z−z0

v2
)

−I0(t− z−z0

v1
) + I0(t− z−z0

v2
)

)
+

1

4

(
I0(t + z−z0

v1
) + I0(t + z−z0

v2
)

−I0(t + z−z0

v1
) + I0(t + z−z0

v2
)

)

We see that this time the wave propagation happens in two different waves with two
different velocities i.e. in different ’modes’. The longer the pulse is travelling the more the
waves will run apart. This effect is called ’modal dispersion’ and is illustrated in Figure
7.8.

ε=102mm Bakelite  

 Signal Strip 25mm x 50um

2 mm Gas Gap

Ground Plane

Strip−Strip Distance 2mm

200um Pet 
ε= 3.3

Figure 7.6 : RPC with two strips.
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Mode 2

Strip 2

Strip 1

Strip 2

Strip 1

v1

v1

v2

v2

Mode 1

Figure 7.7 : This Figure shows the two modes of the symmetric RPC with two strips. The
relative pulse-heights for the given mode are determined by the eigenvectors. In our example
they have the same pulse-height. In general a signal is the superposition of the modes which
leads to dispersion.
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Figure 7.8 : This Figure shows the effect of a current pulse on one strip at position 0. The
left plot shows the signal strip. One can see that the two ’modes’ are running apart after some
distance. The right plot shows the signal travelling on the neighbouring strip. At the position
where the signal is induced the crosstalk signal is zero, as the modes are running apart the
crosstalk from the two becomes visible. The integral over the crosstalk current wave is zero.
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Figure 7.9 : The left plot shows the crosstalk for a short terminated RPC. The crosstalk signal
has the same shape as the induced signal and is independent of the peaking time. Comparing
with the homogeneous RPC we see that the Bakelite increases the crosstalk by a factor 2. The
right plot shows the unterminated short RPC. The crosstalk signal has a different shape from
the original signal. The crosstalk decreases for longer peaking times. The vertical line shows the
strip impedance which is the desired value for the preamp input resistance in the unterminated
scenario.

The current measured on the readout side for preamps with input resistance R is given by

(
I1

I2

)
=

1

2
c1

(
RZ11 + Z2

11 − Z2
12 RZ12

RZ12 RZ11 + Z2
11 − Z2

12

)(
I0(t + z−z0

v1
) + I0(t + z−z0

v2
)

−I0(t + z−z0

v1
) + I0(t + z−z0

v2
)

)

c1 =
1

R2 + 2RZ11 + Z2
11 − Z2

12

If the strip is short we can neglect the different propagation times, the crosstalk is again
given by Eq. 7.25 and is illustrated in Figure 7.9. In that case the crosstalk is independent
of the peaking time and the crosstalk signal has the same shape as the actual induced signal.
If we omit the termination the the crosstalk becomes again peaking time dependent.

The result for long RPC strips is illustrated in Figure 7.10. We find a very strong depen-
dence of the crosstalk on the peaking time and the distance.
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Figure 7.10 : Crosstalk for different peaking times, distances from the preamp and input re-
sistances 0,10,20,30,40,50 Ω. The further the pulse is from the preamp side the more the modes
disperse which increases the crosstalk.
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7.4 Double Strip RPC with Guard Strip

In order to reduce the crosstalk we can try to put a guard strip between the two signal
strips as shown in Fig. 7.11. The characteristic parameters are now given by

Ĉ =


 225 −20 −21.6
−20 46.5 −20
−21.6 −20 225


 pF/cm L̂ =


 88.3 4.47 4.6

4.47 526 36.3
4.6 36.3 88.3


 nH/m ⇒

(7.30)

Ẑ =


 20.4 9.2 2

9.2 111 9.2
2 9.2 20.4


 Ω T̂ =


 −0.43 0.707 0.706

0.79 0 0.0041
−0.43 0.707 0.706


 (7.31)

v1 = 2.01× 108 m/s v2 = 2.2× 108 m/s v3 = 2.4× 108 m/s (7.32)

For the ideal termination we find

R11 = R33 = 22.7 R22 = 582 R12 = 252 R13 = 319 Ω (7.33)

which is illustrated in Figure 7.12. On the preamp side we ground the guard strip. Figure
7.13 shows the crosstalk versus distance of the hit from the preamp for different peaking
times and a input resistance of 25Ω. For comparison the result without guard strip is
plotted. Although the crosstalk is reduced by about 30% for short distances the relative
difference becomes smaller since the slopes of the curves are the same. Finally the crosstalk
for the short terminated and unterminated RPC is shown in Fig. 7.14.

ε=102mm Bakelite  

 Signal Strip 25mm x 50um

2 mm Gas Gap

Ground Plane

Guard Strip 0.5mmx50um 

Strip−Strip Distance 2mm

200um Pet 
ε= 3.3

Figure 7.11 : RPC with two strips and one guard strip.
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Figure 7.12 : In order terminate the strips properly we have to interconnect all the lines.
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Figure 7.13 : Crosstalk versus distance from the preamp for the RPC with guard strip. The thin
lines show the results from the RPC without guard strip for comparison. The relative difference
becomes marginal for long strips.
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Figure 7.14 : Crosstalk for a short terminated (left) and short unterminated RPC (right). For
explanation see Fig. 7.9.
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7.5 RPC with Many Strips

Finally we can investigate the crosstalk for an RPC with many strips (Fig. 1.1). Ca-
pacitances < 0.1 pF/m, inductances < 0.1 nH/m and resistances < 0.1 Ω are set to zero.
Resistances > 1 MΩ are set to ∞. The underlined numbers are the diagonal values. R̂ is
the matrix containing the resistors for ideal termination.

Ĉ =




. . . . . .

. . . . . .

. . . . . .

. . . . . .

. 0 0 . . .

. −20 −21.7 . . .

. 46.4 −20 0 0 .

. −20 245.1 −20 −21.7 .

. 0 −20 46.4 −20 .

. 0 −21.7 −20 245.1 .

. 0 0 0 −20 .

. 0 0 0 −21.7 .

. 0 0 0 0 .

. . . . . .

. . . . . .

. . . . . .

. . . . . .




pF/m L̂ =




. . . . . .

. 0.1 0 0 0 .

. 0.76 0.1 0 0 .

. 1.86 0.23 0.1 0 .

. 14.7 1.86 0.76 0.1 .

. 35.8 4.52 1.86 0.23 .

. 525.5 35.8 14.7 1.86 .

. 35.8 87.2 35.8 4.52 .

. 14.7 35.8 525.5 35.8 .

. 1.86 4.52 35.8 87.2 .

. 0.76 1.86 14.7 35.8 .

. 0.1 0.23 1.86 4.52 .

. 0 0.1 0.76 1.86 .

. 0 0 0.1 0.23 .

. 0 0 0 0.1 .

. 0 0 0 0 .

. . . . . .




nH/m

ẐC =




. . . . . .

. . . . . .

. 0.1 0 0 0 .

. 0.39 0.1 0 0 .

. 0.85 0.19 0.1 0 .

. 4.03 0.85 0.39 0.1 .

. 8.94 1.86 0.85 0.19 .

. 110.9 8.93 4.03 0.85 .

. 8.94 19.9 8.94 1.86 .

. 4.03 8.93 110.9 8.93 .

. 0.85 1.86 8.94 19.9 .

. 0.39 0.85 4.03 8.93 .

. 0.1 0.19 0.85 1.86 .

. 0 0.1 0.39 0.85 .

. 0 0 0.1 0.19 .

. 0 0 0 0.1 .

. 0 0 0 0 .

. . . . . .




Ω R̂ =




. . . . . .

. ∞ ∞ ∞ ∞ .

. ∞ 269966 ∞ ∞ .

. ∞ ∞ ∞ ∞ .

. 245851 25218 ∞ 269966 .

. ∞ 246005 ∞ ∞ .

. 251.8 322.9 245851 25218 .

. 584.3 251.8 ∞ 246005 .

. 251.8 24.9 251.8 322.9 .

. ∞ 251.8 584.3 251.8 .

. 245851 322.9 251.8 24.9 .

. ∞ 246005 ∞ 251.8 .

. ∞ 25218 245851 322.9 .

. ∞ ∞ ∞ 246005 .

. ∞ 26966 ∞ 25218 .

. ∞ ∞ ∞ ∞ .

. . . . 26966 .

. . . . ∞ .




Ω
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Figure 7.15 : Ideal termination for the RPC with many strips. All other interconnections are
> 25 kΩ and have negligible effect.

The velocities of the modes range from 2.0 to 2.5×108 m/s. The capacitive coupling between
signal strips that are not direct neighbours is negligible. The capacitance of signal strip
and guard strip to ground is given by the sum of the columns in the capacitance matrix
(Eq. 6.7) and evaluates to 161.8 and 6.7 pF/m. The resistances for ideal termination are
given by the matrix R̂ and are represented in Figure 7.15.

Figure 7.16 shows pulse-shapes for different distances from the preamp side. As discussed
before the crosstalk increases and changes shape as a function of distance from the preamp
side. The figure also shows the pulses for the scenario where the guard strips are grounded
on both ends and there are no interconnections on the ’far end’. In that case we find
reflections as expected.

The crosstalk to the first and the second neighbour is shown in Fig. 7.17. We find a very
strong dependence on the peaking time. The numbers are very similar to the RPC model
with only two strips and a guard strip. This is expected because the coupling between
strips that are not direct neighbours is negligible.

For preamp input resistances > 20 Ω the crosstalk dependence on the resistance is very
small. The dependence on the peaking time for long strips is however significant.
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Figure 7.16 : The top two figures show the RPC pulse together with the crosstalk to the first
neighbour at two different distances from the preamp. We see that the shape changes. If the
particle crosses the RPC close to the preamp side the pulse-shape is the same as the original one.
For events further from the preamp the crosstalk increases and becomes bipolar. The bottom
figure shows an event where the RPC strips are terminated at 25Ω, the intermediate strips are
grounded on both sides and the strips are not interconnected. As expected we find reflections.



48

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

0 0.5 1 1.5 2 2.5 3

Rin=25 Ω
Rin=50 Ω tp=3ns

tp=10ns

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3

Rin=25 Ω
Rin=50 Ω

tp=3ns

tp=10ns

Figure 7.17 : Crosstalk to the first and second neighbour for different peaking times and preamp
input resistances. In the limit of very long peaking times the dependence on the distance would
vanish and the curves would be flat. The crosstalk to the second neighbour happens entirely
through the first neighbour and not through direct coupling.



49

7.6 Short RPC with Many Strips

Here we want to study the short unterminated RPC since it is very important for the
application in LHCb. In this approximation we have to know only the capacitances which
we find from MAXWELL as

CS = 161.8 pF/m CG = 6.7 pF/m CSG = 19.9 pF/m CSS = 21.7 pF/m (7.34)

where CS is the capacitance of strip to ground, CG is the capacitance of the guard to ground,
CSG is the capacitance between strip and guard and CSS is the strip-strip capacitance. If the
guard strip is grounded the equivalent circuit describing the RPC is very simple as shown
in Fig. 7.18. The effective capacitance to ground is C = CS + 2CSG = 201.6 pF/m. The
capacitance determining the serial noise is given by Cnoise = CS+2(CSG+CSS) = 245 pF/m.

For a RPC of 30 cm length the numbers are C = 60.5 pF, CSS = 6.5 pF. The crosstalk for
this RPC is shown in Figure 7.19.

We see that the crosstalk is smaller for long peaking times. Since the unterminated RPC is
a serial noise source the noise will also be smaller for long peaking times. The crosstalk is
approximately proportional to CSS . This capacitance can be reduced by a more optimized
geometry.

R1C R1C R1C

i

R1C

Css Css Css Css Css

Figure 7.18 : Equivalent circuit for the short unterminated RPC. C = CS + 2CSG.
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Figure 7.19 : Crosstalk for an unterminated 30 cm RPC. The left plot shows the crosstalk to
the first neighbour, the right plot shows the crosstalk to the second neighbour.
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7.7 Conclusions

• RPCs with two Bakelite plates forming a 2mm gas gap where studied in detail.

• An avalanche model neglecting space charge effects indicates that for a total induced
signal charge of about 1.5 pC an frontend electronics peaking time of 10 ns would still
give a time resolution < 2 ns.

• For 2.5 cm readout strips and a threshold of 5-10% of the average signal we find a
cluster size of about 1.2 from direct signal induction.

• For crosstalk studies the RPC was modelled as a lossless inhomogeneous multi-
conductor transmission line.

• To terminate the RPC properly on one end one has to interconnect the signal lines.

• In case one side is ideally terminated the measured signal shape is equal to the original
induced signal shape.

• For RPC signals induced close to the preamp side the crosstalk signal has the same
shape as the original signal and the amount of crosstalk depends only on the preamp
input resistance (not on the peaking time). In the limit of Rin = 0 the crosstalk is
zero.

• The crosstalk is a strong function of the distance from the amplifier due to modal
dispersion. Therefore the crosstalk signal shape depends on the distance of the in-
duced signal from the preamp and the amount of crosstalk also depends on the
preamp peaking time. In the limit of very long peaking time the crosstalk becomes
independent of the distance.

• If the RPC is short the ’far end’ termination can be omitted and the preamp input
resistance should be close to the impedance of the signal strip. The amount of
crosstalk decreases for long peaking times.

• The RPC model discussed in this note gives the following crosstalk numbers: For a
preamp input resistance of 25 Ω and a peaking time of 3 ns the crosstalk increases
from 4% to 14% at a distance of 0 to 2m from the amplifier. For a peaking time of
10 ns the crosstalk at 0m is the same and reduces to 8% at 2m.

Thanks to Giovanni Carboni for interesting discussions concerning the crosstalk models
and for providing an RPC. Thanks to Roberto Messi for interesting discussions in the
testbeam.
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