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Abstract

Understanding the cause of the observed accelerating expansion of the universe is

one of the most pressing problems in cosmology. To this end, I investigate two classes

of dark energy models and their cosmological implications. These comprise growing

neutrino quintessence, in which dark energy is coupled to the neutrinos, and models

in which dark energy interacts with dark matter via a pure momentum coupling.

The standard model of cosmology, ΛCDM, is introduced, along with the issues it

faces that motivate the study of alternatives. I also describe the various sources of

cosmological data which provide the basis for stringent tests to be carried out on

cosmological models. Following this I discuss a class of alternatives to ΛCDM known

as dynamical dark energy, with a focus on quintessence and interacting dark energy.

Having discussed the necessary motivation and background, I proceed to present a

study of growing neutrino quintessence cosmologies. Working at the level of the back-

ground equations of motion in the Einstein frame I carry out an analytic calculation

finding important disagreement with previous results. Numerical evolution of the

same equations yields constraints on growing neutrino quintessence cosmologies from

the lack of observation of early dark energy in the Planck Collaboration analysis of

cosmic microwave background data. I also perturb the equations of motion to linear

order in a frame in which the strength of gravity and the particle masses depend on

the dark energy field, with a view to gaining a more detailed understanding of the

model behaviour.

The focus then turns to models in which dark energy interacts with dark matter via a

pure momentum coupling. I review previous work which has found such models to be

capable of easing tensions between early and late probes of structure formation and

present an analytic argument as to why this behaviour occurs. I broaden the analysis

by considering a range of coupling functions and potentials, finding that structure

growth suppression is present for rather generic choices. In particular, a steeper

potential can increase the suppression, without giving rise to an unrealistically small

present-day expansion rate provided the coupling parameter is sufficiently large.

Both models prove promising in addressing some of the outstanding issues with our

current understanding of cosmology, and the present analysis provides improved

prospects for constraining or detecting these types of dark energy in future studies.
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Conventions

In this thesis I adopt the following conventions unless stated otherwise. The space-

time metric has a ‘mostly plus’ signature, (− + ++). Greek indices run from 0 to

3, with the 0th index corresponding to time and the other three corresponding to

space; Latin indices run from 1 to 3. I work in natural units in which c = ~ = 1. All

logarithms in this thesis are natural logarithms and are denoted by ‘log’.

When discussing Friedmann–Lemâıtre–Robertson–Walker space-times I assume zero

spatial curvature. The scale factor is normalised such that a = 1 at the present

epoch. Barred quantities, for example χ̄, refer to spatial averages; χ̄ is homogeneous

and depends only on time. Occasionally I use bars for other purposes; in those cases

I will make this clear.

I employ various notations for differentiation. Partial differentiation of a variable φ

with respect to the space-time co-ordinate xµ is denoted by ∂µφ ≡ ∂φ/∂xµ. Covariant

derivatives are denoted by ∇µ. In Chapter 3 I use subscript comma notation to

refer to partial differentiation with respect to spatial co-ordinates by, for example,

Ψ,i ≡ ∂Ψ/∂xi. In all other instances of subscript comma notation the symbol in the

subscript is the variable being differentiated with respect to, for example V,φ ≡ dV/dφ

for a function V (φ). Differentiation of a dynamical quantity with respect to physical

time is denoted by subscript comma notation as above. Differentiation with respect

to conformal time, τ , is denoted by a dot as follows: φ̇ ≡ dφ/dτ . Differentiation

with respect to the natural logarithm of the scale factor, N ≡ log(a), is denoted by

a prime as follows: φ′ ≡ dφ/dN .

Where there exist multiple correct forms of the pluralisation of a noun, I choose

to adopt the form closest to the common conventions in the English language, as

opposed to the plural inherited from the language from which the noun was borrowed,

even if the latter is the more common choice in scientific writing. For example, while

‘supernovas’ and ‘supernovae’ are both found in the dictionary, I shall favour the

English-style ‘supernovas’ at the expense of the Latin-inspired ‘supernovae’.
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Abbreviations

CDM Cold dark matter

CMB Cosmic microwave background

GNQ Growing neutrino quintessence

MACHO Massive compact halo object

MCMC Markov chain Monte Carlo

PBH Primordial black hole

SZ Sunyaev–Zel’dovich

TRGB Tip of the red-giant branch

WIMP Weakly interacting massive particle
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Chapter 1

Introduction

Questions regarding the origin and development of the universe in which we find

ourselves have intrigued, fascinated, and frustrated humanity for longer than anybody

has been keeping track. The past century, and especially the past few decades, have

seen this ancient subject mature into a rigorous scientific discipline that now provides

us with the tools to build a robust, quantitative understanding of the cosmos. At

the centre of this understanding is the theory of gravity, by far the weakest of the

four fundamental forces, but nevertheless the one which dominates the behaviour

of the universe on large scales due to its infinite range and the fact that, unlike

electromagnetism, contributions to gravity can only accumulate and never cancel out.

For the past century the leading theory of gravity has been Einstein’s general theory

of relativity. I introduce this theory in Section 1.1 and discuss how it can be applied

to the universe as a whole in Section 1.2.

General relativity describes the way in which matter (and other sources of energy

and momentum) affects the curvature of space-time and in turn how the curvature of

space-time affects the motion of matter. In cosmology, the various contributions to

the universe’s energy density dilute in different ways as the universe expands while

also driving that expansion through their gravitational effects. I introduce the basic

idea behind this relationship in Section 1.3 and discuss the history of the universe’s

expansion in Section 1.4.

Excitingly, it has been convincingly demonstrated that the various kinds of

matter contained in the Standard Model of particle physics are not able to explain

the details of the universe’s evolution which we are now able to observe. Indeed,

such matter constitutes only 5% of the total energy density of the universe. 25% is

believed to be an exotic form of matter called cold dark matter, which I introduce in

Section 1.5. The remaining 70% is called dark energy and is even less well understood

than dark matter. Dark energy is most commonly described by a cosmological

constant, introduced in Section 1.1.1, but it can also be described by a dynamical

1



CHAPTER 1. INTRODUCTION

field which evolves as the universe expands and is able to vary in space. This latter

approach will be discussed in some detail in Chapter 2 and is the subject of the

research that has gone into Chapters 3 and 4.

The incredible discoveries that have been made in the field of cosmology would

not have been possible without large amounts of high-quality cosmological data and

sophisticated computational and statistical methods for the analysis of that data.

Two of the most important sources of cosmological data are the background radiation

left over from the hot, dense early universe, and the distribution of galaxies, galaxy

clusters, and even larger structures that form in the late universe. These features,

and approaches to measure and interpret them, are discussed in Section 1.6. In that

section I also introduce inflation, the process believed to have provided the seeds

that grew into the cosmological features that attract such careful study.

Despite this remarkable recent progress, the standard model of cosmology retains

several important question marks. The most obvious of these is perhaps that we do

not have a full understanding of what the dark sector of the universe is even made

of, but the subtler problems are no less worrying. In Section 1.7 I discuss theoretical

difficulties in explaining the small size of the cosmological constant, the apparently

improbable coincidence of the very similar densities of matter and dark energy in

the present epoch, the as-yet unsuccessful search for dark matter, and disagreements

between early- and late-universe measurements when ΛCDM is assumed. The various

problems with the current paradigm motivate the study of alternatives; these are

mentioned briefly in Section 1.8. I end this chapter with an outline for the rest of

the thesis.

1.1 Einstein field equations

Gravitational interactions are central to any attempt to understand the evolution

of the universe and its contents, so we will begin our discussion of the standard

model of cosmology by introducing the theory of gravity upon which it is built. In

Einstein’s general theory of relativity [1], the gravitational force results from the

motion of particles along the geodesics of curved space-time. This curved space-time

is represented by a metric gµν whose dynamics are described by the Einstein field

2



CHAPTER 1. INTRODUCTION

equations2:

Rµν +
1

2
Rgµν =

1

M2
P

Tµν , (1.1)

where Rµν and R are the Ricci tensor and scalar respectively (built from the metric

tensor and its derivatives) and Tµν is the energy–momentum tensor, which contains

information on the matter content of the space-time under consideration. MP is the

reduced Planck mass: MP = (8πG)−1/2, where G is the gravitational constant. The

combination Rµν + (1/2)Rgµν is known as the Einstein tensor.

The divergence of the Einstein tensor is equal to zero by geometric identit-

ies called the Bianchi identities. This immediately means that ∇µT
µ
ν = 0, which

corresponds to conservation of energy and momentum.

General relativity can also be defined at the level of the action. The Einstein–

Hilbert action is given by:

S =

∫
d4x
√−g

(
M2

P

2
R + Lm

)
, (1.2)

where Lm contains the non-gravitational part of the action. Varying Eq. (1.2) with

respect to the metric gµν yields Eq. (1.1), where

Tµν ≡
−2√−g

δ
√−g Lm

δgµν
. (1.3)

1.1.1 Cosmological constant

The simplest modification one can make to Eq. (1.1) is to introduce a constant term

proportional to the metric tensor gµν . This modification, known as a cosmological

constant, maintains the symmetries of the equations, which I have not discussed

here, but are discussed in detail in Ref. [2]. Einstein introduced a term Λgµν to the

Einstein tensor, with the goal of creating static cosmological solutions. It is now

known that the universe is not static but is expanding, so the cosmological constant

was removed again, with Einstein reportedly calling it his greatest mistake. However,

as will be discussed in Section 1.4, the universe’s expansion is accelerating, which

motivates the reintroduction of a cosmological constant. Rather than thinking of it

2The material in this and the two following sections can be found in any introductory textbook
or lecture course on general relativity and cosmology. In particular, the reader is referred to Section 8
of Ref. [2].

3



CHAPTER 1. INTRODUCTION

as a modification to the Einstein tensor, the cosmological constant is often considered

a term in the energy–momentum tensor, where it plays the role of the energy density

of the vacuum, a source of energy even in the absence of matter and radiation.

1.2 Cosmological solutions

There are three broad methods by which the Einstein field equations can be solved.

These are: the assumption of a highly symmetric system such that an exact analytic

solution may be found (see Ref. [3] for a detailed treatment); perturbation theory,

in which an exact solution is expanded upon by deviations that are assumed to be

small (see, for example, Ref. [4] for a review); and by employing numerical methods,

where analytic solutions cannot be obtained, normally involving resource-intensive

computational tools (see Ref. [5] for a review). For cosmological solutions we start

with the first of these methods, employing the so-called cosmological principle. The

cosmological principle states that the universe is homogeneous and isotropic when

viewed on very large scales3. The Friedmann–Lemâıtre–Robertson–Walker metric

is an exact solution to the Einstein field equations that satisfies the cosmological

principle. The most general form of this metric is given by:

ds2 = gµνdx
µdxν = −dt2 + a(t)2dΣ2 , (1.4)

where xµ are the four space-time co-ordinates, Σ are the co-ordinates of a three-

dimensional space of uniform curvature and a(t) is the scale factor, in which all the

space-time dependence of the metric is contained. The scale factor describes the size

of the universe, normalised such that a = 1 in the present epoch. The space described

by Σ can have positive, negative or zero curvature. This is sometimes parametrised

in the following way:

dΣ2 =
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2) , (1.5)

where r, θ, and φ are spherical polar co-ordinates and k is the curvature constant,

which parametrises the spatial geometry. Recent observations find the universe is

very close to being spatially flat [6], so hereafter I shall make this assumption and

3The extent to which this is a valid approximation for the universe in which we live is discussed
in Section 1.6.
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CHAPTER 1. INTRODUCTION

set k = 0.

The evolution of the scale factor can be found by solving the Einstein field equa-

tions where we assume that the energy–momentum tensor consists of a homogeneous,

isotropic perfect fluid with a known equation of state, given by

T νµ =


−ρ(t) 0 0 0

0 p(t) 0 0

0 0 p(t) 0

0 0 0 p(t)

 , (1.6)

where ρ is the density of the fluid and p is its pressure. The equation of state is defined

by w ≡ p/ρ. With the metric tensor given by Eq. (1.4) and the energy–momentum

tensor given by Eq. (1.6), one can show that the Einstein field equations simplify to

the Friedmann equations, given by:

H2 =
ρ

3M2
P

, (1.7)

and

H2
,t = − 1

2M2
P

(ρ+ p) , (1.8)

where H ≡ a,t/a is the Hubble parameter and subscript comma notation denotes

differentiation. There is a third equation that it is convenient to introduce here,

which is the continuity equation:

ρ,t + 3H(ρ+ p) = 0 , (1.9)

which is simply ∇µTµν = 0 for the case of a homogeneous, isotropic perfect fluid.

Note that only two of Eqs. (1.7) to (1.9) are independent. It is often convenient to

choose to work with Eqs. (1.7) and (1.9) as they contain only first derivatives with

respect to time.

1.3 Energy content of the universe

The universe can be modeled as consisting of three different types of fluid: matter,

radiation, and dark energy. For the purposes of this thesis, matter is any fluid with

5



CHAPTER 1. INTRODUCTION

an equation of state of wm = 0, radiation is any fluid with wr = 1/3, and dark energy

is any fluid with wDE < −1/3. For now we will restrict ourselves to wDE = −1, which

is the equation of state of a cosmological constant as introduced in Section 1.1.1.

Physically, a fluid consisting of massive particles moving at speeds much less than the

speed of light, such that 〈v2〉 � 1, will have w ≈ 0, and a fluid consisting of massless

particles (which necessarily move at the speed of light) is described by w = 1/3. Such

species are often called non-relativistic and relativistic respectively. Various physical

mechanisms for obtaining a negative equation of state are discussed in Chapter 2.

For a given equation of state, Eq. (1.9) can be used to find the evolution of the energy

density as a function of the scale factor:

ρm(a) = ρm0a
−3 , (1.10)

ρr(a) = ρr0a
−4 , (1.11)

and

ρDE(a) = ρDE0 , (1.12)

where the subscript 0 denotes the present epoch. The above relations imply that

these three species evolve at different rates as the universe expands, and hence

different cosmological epochs will be characterised by the domination of different

species. In particular, for appropriate values of ρm0, ρr0, and ρDE0, an expanding

universe undergoes first a period of radiation domination, followed by a period of

matter domination since ρr falls more quickly than ρm, and finally a period of dark

energy domination as ρm and ρr both fall below ρDE. As discussed later, our own

universe’s history follows such a progression.

Not only do the energy densities of the contents of the universe depend on

the expansion, but the rate of expansion also depends on the contents, as given

by Eq. (1.7). For a universe that contains only one of the three fluids considered

above, Eq. (1.7) can be exactly solved. One obtains a(t) ∝ t1/2, a(t) ∝ t2/3 and

a(t) ∝ exp(H0t) for a universe containing only radiation, matter or dark energy

respectively. H0 is the present-day value of the Hubble parameter and is known as

the Hubble constant. These expressions can also serve as approximate solutions for a

universe which contains all three species but is temporarily dominated by only one.
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A convenient quantity when discussing the energy content of the universe is the

critical density, which is defined by

ρcrit = 3M2
PH

2 . (1.13)

A spatially flat universe has a total energy density equal to the critical density. We

can now introduce the density parameters Ωi, defined by

Ωi =
ρi
ρcrit

, (1.14)

for each species i. For a spatially flat universe, Ωi is the fraction of the universe’s

energy density accounted for by species i. For a flat universe containing matter,

radiation, and dark energy, the Friedmann equation, Eq. (1.7), becomes

1 = Ωm(a) + Ωr(a) + ΩDE(a) . (1.15)

1.4 The expanding universe

The fact that the universe is expanding has been known for around a century. In

the 1910s, Vesto Slipher published work showing that the spectrums of distant

galaxies were redshifted, implying that they are receding from us [7, 8]. In the 1920s,

Alexander Friedmann and Georges Lemâıtre independently provided a theoretical

understanding of the expansion of the universe by means of solving the Einstein field

equations [9, 10]. In 1929, Edwin Hubble confirmed the expansion, and demonstrated

that the velocity inferred from the redshift of the galaxies was proportional to their

distance from us, inferred from the observed luminosity of ‘standard candles’ such

as supernovas and Cepheid variables [11]. This is known as ‘Hubble’s Law’ and it

can be expressed as v = H0r, where v and r are the relative velocity and separation

of a pair of galaxies, and the constant of proportionality H0 is the Hubble constant

introduced earlier. Since Edwin Hubble’s rough measurement of the Hubble constant,

efforts have been ongoing to measure the expansion rate of the universe as accurately

as possible. This is a particularly interesting question because different methods of

inferring H0 give results that are in tension with one another. I review the various

approaches and the values of H0 they give in Section 1.7.2.
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As well as measuring the present-day rate of expansion, it is of interest to

cosmologists to understand the expansion history. As mentioned in Section 1.3, the

expansion history can help us understand what the universe is composed of. In 1998 it

was convincingly demonstrated that the expansion of the universe is accelerating [12,

13], a discovery that won Adam Riess, Brian Schmidt, and Saul Perlmutter the

Nobel Prize in physics in 2011. Such acceleration is not possible in a matter- or

radiation-dominated universe, but it can occur in a universe dominated by a fluid

with equation of state w < −1/3, such as dark energy. If the dark energy is assumed

to take the form of a cosmological constant then the density parameters of matter

and dark energy can be inferred as Ωm0 = 0.315± 0.007 [6] and ΩΛ0 ≈ 1−Ωm0. (The

contribution to the overall energy density from radiation is very small, O(10−4), in

the present epoch.)

As the universe expands, its temperature drops, meaning that the universe in

the past was hotter and denser than it is today. The very early part of the universe’s

evolution is known as the ‘hot big bang’. As the universe expands and cools, its

changing temperature gives rise to various different physical processes. An important

transition occurred at a temperature of around 3000 K, before which the universe was

opaque to photons due to a very high Thompson scattering rate with free electrons.

Once the temperature was sufficiently low as to allow the formation of neutral hy-

drogen (a process known as recombination), the number of free electrons and hence

the Thompson scattering rate dropped rapidly, causing the photons to decouple from

the baryonic matter4 and pass freely through the universe. This gives rise to the

cosmic microwave background radiation, which is discussed in Section 1.6. Earlier

still, big bang nucleosynthesis took place at a temperature of around 109 K, in which

light nuclei such as deuterium and helium were able to form and remain stable. Con-

tinuing further back in time before nucleosynthesis, early universe processes included

electron-positron annihilation, neutrino decoupling, the quantum chromodynamics

phase transition, the electroweak phase transition, and baryogenesis, believed to be

responsible for the preponderance of matter over antimatter in the universe. See

Ref. [14] for a thorough treatment of the above.

The physics of the very early universe takes place at sufficiently high energies that

our theories of particle physics may need to be modified. An energy scale of particular

4I follow the standard convention in cosmology and astronomy of implicitly including leptons
when I refer to ‘baryonic matter’.
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interest is the Planck scale, MP, beyond which the quantum effects of gravity are

expected to dominate. A full understanding of the physics of the beginning of the

universe will require a quantum theory of gravity, the search for which is a major

unsolved problem in theoretical physics. See Ref. [15] for a pedagogical review of the

search for a quantum theory of gravity and Ref. [16] for a more technical discussion.

1.5 Cold dark matter

There is now a great deal of evidence that the majority of matter in the universe

is dark, in the sense of not emitting electromagnetic radiation. So far, dark matter

has only been observed via its gravitational interactions, its interactions with the

more familiar Standard Model matter being either very weak or non-existent. A brief

discussion of the search for a dark matter candidate is found in Section 1.7.1; in the

present section I do not discuss the fundamental nature of dark matter and focus

instead on the role it plays in cosmology.

Some of the earliest strong evidence for the existence of dark matter came from

the measurement of the rotation of galaxies, pioneered by Vera Rubin, Kent Ford,

and Ken Freeman in the 1960s and 1970s [17, 18]. The radial velocities of galaxies

that are oriented edge-on to us can be measured spectroscopically by measuring the

Doppler shifting of absorption and emission spectrums of stars and interstellar gas.

If the mass of a galaxy were concentrated near its centre, as the luminous matter

appears to be, then Kepler’s laws predict that the velocity of objects near the outer

edge of the galaxy should decrease with the radius as v(r) ∼ r−1/2. Contrary to

this prediction, galactic rotation curves of v(r) consistently show a substantially

higher orbital speed for large r. See Ref. [19] for a review of measurements of galaxy

rotation curves. If Newton’s laws of gravity are correct, the shape of the rotation

curves implies that galaxies are enveloped in halos of dark matter that are much

larger and more massive than the galaxies themselves.

Dark matter can also be observed on larger scales by studying galaxy clusters,

which are gravitationally bound structures containing hundreds to thousands of

galaxies. Efforts in this direction date back to Fritz Zwicky, who in 1933 found that

application of the virial theorem to the Coma cluster predicted about 400 times

the mass that could be seen as luminous matter [20]. More recently, gravitational
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lensing has been employed to measure and map the distribution of the mass of galaxy

clusters. As discussed in Section 1.1, general relativity predicts that the presence of

matter curves space-time. Light follows geodesics of the curved space-time and so

takes a curved path when passing by regions containing a large amount of matter.

By analysing the way in which images of galaxies behind a cluster are distorted,

researchers are able to calculate the total mass present in the cluster [21–24]. As

well as telling us that the total mass in clusters is greater than the luminosity would

suggest, gravitational lensing can be used to identify places where the dark matter

and the baryonic matter have been separated due to interactions between clusters,

as in the case of the ‘Bullet Cluster’ [25], thus providing very strong evidence of the

presence of a large amount of non-baryonic matter.

There are many other sources of evidence for dark matter, some of the most con-

vincing coming from analysis of the cosmic microwave background and the large-scale

structure of the universe, which are introduced in the next section. Measurements

carried out on a wide range of scales and employing many independent techniques,

consistently indicate that around 85% of the matter in the universe is non-baryonic

in nature.

The model of dark matter strongly favoured by the data is so-called ‘cold

dark matter’ (CDM), which was originally published in 1982 by three independ-

ent groups [26–28] and further developed in Ref. [29]. Cold dark matter has an

equation of state wc = 0 while so-called ‘warm’ and ‘hot’ dark matter have w > 0.

Hot dark matter was the first to be proposed historically, since it can be very natur-

ally described by neutrinos which were already known to exist and not interact with

electromagnetism. However, cosmological N-body simulations demonstrate that hot

dark matter does not give rise to sufficient structure formation on small scales to be

consistent with observations [30], while cold dark matter does [31, 32]. Warm dark

matter has not been ruled out but is becoming increasingly tightly constrained [33,

34].

Because the two largest contributions to the cosmic energy density are believed

to be the cosmological constant and cold dark matter, the name ΛCDM is given

to the standard cosmological model. Modern cosmology can test this model, and

deviations from it, very rigorously, as described in the next section.
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1.6 Precision cosmology

The assumptions of homogeneity and isotropy made in Section 1.2, can only take

one so far in understanding the universe. Even on large scales there are small

inhomogneities and anisotropies that can be measured, and on very small scales

these can be very large such that the assumptions of homogeneity and isotropy

completely break down. On all but very small scales, however, the deviations from

the background average are small compared to the magnitude of the background itself

and one can employ perturbation theory as mentioned in Section 1.2. Understanding

the growth of these perturbations, and hence the growth of structure in the universe,

is one of the most important issues for cosmology to address.

1.6.1 Cosmic microwave background

The cosmic microwave background (CMB) (see Ref. [35] for a recent review), dis-

covered in 1965 by Penzias and Wilson [36, 37], is a nearly isotropic blackbody

spectrum of electromagnetic radiation with a temperature of 2.725 K and was the

first major piece of evidence in support of the hot big bang theory described in

Section 1.4. It is believed to consist of radiation emitted during recombination; when

the universe was 380,000 years old it cooled sufficiently that protons and electrons

ceased to be an opaque plasma and formed atoms through which electromagnetic

radiation could pass. This produced a ‘surface of last scattering’ still observable

today. The fluctuations in the temperature of the CMB are only O(10−5) of the

background temperature, but they contain a great deal of information about the

evolution of the early universe.

The temperature peaks in the CMB power spectrum as shown in Fig. 1.1 result

from acoustic oscillations of the tightly coupled baryon–photon fluid prior to photon

decoupling. The odd and even peaks correspond to modes which were under either

compression or rarefaction respectively when decoupling occurred, while the troughs

correspond to the intermediate parts of the oscillation. The presence of dark matter

brings about an enhancement of compression but not of rarefaction, resulting in the

odd-numbered peaks being increased relative to the even-numbered peaks. The oscil-

lations are damped at small scales due to photon diffusion, giving rise to the decaying

tail seen at high l. There are many smaller contributions to the CMB power spectrum
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Figure 1.1: Power spectrum of temperature fluctuations of the cosmic microwave
background. The green curve corresponds to the best-fit prediction of ΛCDM and
the red points represent the results of measurements made by Planck. The broad
green region at low multipole moment is due to cosmic variance, while the error bars
on the red points include only measurement error and do not take account of cosmic
variance. Image reproduced from Ref. [38].

including gravitational lensing of CMB photons as they pass through potential wells

between the surface of last scattering and the point of observation, and Doppler shift-

ing due to relative motions of different parts of the pre-recombination baryon–photon

fluid. There are also spectral distortions such as the Sunyaev–Zel’dovich (SZ) effect,

caused by low-energy CMB photons gaining energy by inverse Compton scattering

with high-energy cluster electrons [39]. Making precise measurements of the CMB

can thus reveal a great deal of information about cosmological parameters, making

it a vitally important area of research.

1.6.2 Cosmic inflation

The observed structure of the CMB raises various issues for the hot big bang model.

Perhaps the most important of these is the origin of the fluctuations that gave rise to

the temperature anisotropies in the CMB. Other issues include the ‘horizon problem’
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and the ‘flatness problem’, which concern why parts of the universe that do not seem

to have been in causal contact have such similar temperatures, and why the universe

is so close to being spatially flat. The inflationary paradigm addresses all of these

questions as well as the ‘monopole problem’ of why the universe does not contain

an abundance of monopoles, expected to be produced by phase transitions in the

early universe. Inflation, first proposed by Alan Guth and Alexei Starobinsky in

1980 [40, 41], posits that there was a period of accelerated expansion very early in

the universe’s history. For a review of inflation, see Ref. [42]. Typical inflationary

models consist of a single scalar field, termed the ‘inflaton’, slowly rolling in a very

flat potential such that it gains a negative pressure. The almost exponential growth

of the universe means that the aforementioned apparently disconnected regions of

the CMB were in fact in thermal contact at an earlier time, and the temperature

fluctuations naturally arise as a result of quantum fluctuations in the inflaton field.

A simple model of inflation has the inflaton φ obeying the field equation:

φ,tt + 3Hφ,t + V,φ = 0 , (1.16)

where V (φ) is the scalar field potential. The inflaton energy density and pressure are

given by:

ρφ =
1

2
φ2
,t + V (φ) , (1.17)

and

pφ =
1

2
φ2
,t − V (φ) , (1.18)

respectively. The Hubble parameter evolves according to the Friedmann equation,

Eq. (1.7), which for a scalar field takes the form:

H2 =
1

3M2
P

[
V (φ) +

1

2
φ2
,t

]
. (1.19)

One can immediately see that if the scalar field energy density is potential dominated,

with V (φ) � φ2
,t, then the equation of state wφ → −1 and the universe expands

at an approximately exponential rate. This feature, known as ‘slow roll’ proves to

be relevant not just for inflation but for scalar field dark energy, which I discuss

in Chapter 2. Unlike dark energy, however, an inflation model must provide a

mechanism for slow roll to end and allow the hot big bang to take place. The process

that occurs at the end of inflation when the inflaton gives way to the Standard Model
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particles is known as reheating [43].

Inflation produces scalar and tensor perturbations with an approximately scale-

invariant spectrum. Deviations from scale invariance in the primordial fluctuations

are constrained by CMB analyses, such as by the Planck Collaboration [44]. The

power spectrum, and possibly higher-order correlations of primordial fluctuations

generated by inflation, depend on the details of the inflation model and are important

for understanding the initial conditions from which the fluctuations in the CMB and

the large-scale structure of the present universe develop.

1.6.3 Large-scale structure

The CMB is not the only precision test of cosmology. Another crucial source of data

is the large-scale structure of the universe, in other words the distribution of matter

on large scales. See Ref. [45] for a review. On small scales matter is organised into

galaxies, which on larger scales comprise galaxy groups, clusters, and superclusters.

On larger scales still there are structures known as sheets, walls, filaments, and vast

empty voids between them [46]. Several of these features are visible in Fig. 1.2.

Large-scale structure forms by gravitational collapse of overdensities. Cold dark

matter, which does not experience pressure nor other non-gravitational forces, forms

stable structures after the transition from radiation domination to matter domination.

After recombination, when the baryons and photons decouple, the baryonic matter

can fall into the potential wells created by the dark matter. This can cause the

baryonic matter to become hot and give rise to astrophysical features such as stars

and galaxies.

A convenient way to analyse the matter distribution is through the matter

power spectrum, which can be defined as the Fourier transform of the matter density

contrast autocorrelation:

P (~k) =

∫
d~r 〈δm(~x) δm(~x+ ~r)〉 e−i~k·~r , (1.20)

where ~r is the separation between two points in space ~x and ~x+ ~r, and the quantity

〈δm(~x) δm(~x+~r)〉 quantifies the correlation between the matter density contrast δm(~x)

at each point. The wavevector is denoted by ~k. The matter density contrast δm(~x)

can be estimated by measuring the galaxy distribution using large-scale structure
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Figure 1.2: Data from the spectroscopic survey 2dF. Each point corresponds to a
galaxy detected by the survey. The distance of a galaxy from us is inferred from
its redshift. Regions containing many closely spaced points correspond to structures
such as clusters, filaments, and walls, while sparsely populated regions are voids.
Image reproduced from Ref. [47].

surveys such as 2dF [48], SDSS [49], DES [50], and CFHTLens [51].

One can take an average over the matter overdensities by defining a length scale

R and filtering δm(~x) by a spherical top-hat window function:

WR(~x) =

1/(4πR3) |~x| < R

0 otherwise .
(1.21)

This allows us to define the quantity:

σ2
R =

∫
d3~k

(2π)3
W 2
R(k)P (~k) , (1.22)

where WR(k) is the Fourier transform of the window function WR(~x), given by

WR(k) =
3

k3R3
[sin(kR)− kR cos(kR)] . (1.23)

In particular, the scale R = 8h−1Mpc is often used, giving rise to the quantity σ8,
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which quantifies matter clustering on the scale of galaxy clusters and is a useful

quantity for the comparison of theory and observations. We will return to these stat-

istical measures in Chapter 4, when we investigate the impact of coupled quintessence

models on the formation of structure.

1.6.4 Numerical simulations

An important aspect of precision cosmology is the use of numerical methods to com-

pute various predictions for cosmological observables for comparison to observation.

Boltzmann codes, discussed in more detail in Chapter 4, allow fast and accurate

calculation of the CMB and matter power spectrums. These are often used in com-

bination with Markov chain Monte Carlo (MCMC) methods to extract cosmological

parameters from datasets using Bayesian statistics [52, 53]. For the study of non-

linear regimes N-body simulations are employed, taking a large number of ‘particles’

which interact gravitationally, letting the system evolve and comparing to observa-

tions [31]. Such methods have been instrumental in understanding how dark matter

affects the formation of structure in the universe.

1.7 Problems with ΛCDM

It must be stressed that the standard cosmological paradigm of a universe with very

little spatial curvature, obeying the Einstein field equations, and consisting mainly

of a cosmological constant and cold dark matter is an extraordinarily successful one.

Not only is it a very simple framework with only six free parameters, but it fits

the available observational evidence very well, from the expansion history of the

universe to the statistical properties of its inhomogeneities and anisotropies. There

are, however, some problems with the ΛCDM model and in this section I briefly

discuss three theoretical and two observational problems that do not yet have widely

accepted solutions.

1.7.1 Theoretical problems

Perhaps the most famous problem in cosmology is the cosmological constant problem.

This is the problem of understanding the magnitude of the cosmological constant
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introduced in Section 1.1.1. Quantum field theory predicts that the vacuum contains

a zero-point energy, a fact that has been confirmed experimentally, for example via its

manifestation in the Casimir effect [54]. The Casimir effect, and other experiments

concerning the vacuum energy density, do not probe the absolute magnitude of

the vacuum energy density. General relativity, on the other hand, predicts that

space-time curves in response to all energy and momentum, and so the vacuum

energy should gravitate. Furthermore, because vacuum energy remains constant

as the universe expands, it should be expected to play the role of a cosmological

constant. Unfortunately, the simplest quantum field theory calculation of the size of

the vacuum energy predicts Λ ∼M4
P, a factor of 10120 larger than the observed value

of the cosmological constant. Supersymmetric theories can reduce this unfathomably

large discrepancy to a factor of 1060, but of course this still constitutes a very serious

problem.

The cosmological constant problem seems at first glance like a fine-tuning prob-

lem, albeit a very severe one. One can introduce a ‘bare’ cosmological constant

whose value is just right to cancel out the vacuum energy contributions from all

the matter fields and leave the observed cosmological constant. However, even this

rather unsatisfying approach is not sufficient, since the exact amount of fine-tuning

depends on the energy cut-off of the theory and is sensitive to the details of unknown

high-energy physics. It has been argued that this radiative instability is the true

crux of the cosmological constant problem, rather than simply an extreme fine-tuning

problem [55]. For more details on the cosmological constant problem, and proposed

solutions, see Refs. [56–60] and references therein.

Another problem related to the size of the cosmological constant is the coin-

cidence problem. This is based on the observation that the dark energy and dark

matter densities are very similar at the present epoch despite evolving at different

rates as described in Section 1.3. Figure 1.3 illustrates the coincidence; the energy

densities of matter and the cosmological constant are different by many orders of

magnitude for the majority of the universe’s evolution, but are almost the same size

today. The coincidence problem motivates the study of dynamical alternatives to

the cosmological constant. If the energy density of dark energy was not constant for

most of the universe’s history but instead decreased in the early universe as matter

and radiation do (for example as a scaling solution [61]), then the present similar

values of ρm and ρDE would not be a coincidence. Such a scenario should also involve
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Figure 1.3: The evolution of the energy densities of matter, radiation, and cosmo-
logical constant dark energy as a function of the scale factor of the universe. The
vertical dotted line denotes the present epoch, at which ρm ≈ ρDE.

a physical mechanism for the dark energy field to switch to being close to constant in

the recent epoch in order to match observations. This scenario is achieved in growing

neutrino quintessence models [62, 63], which are the subject of Chapter 3.

The third theoretical problem I wish to mention concerns the cold dark matter

content of the universe. Under ΛCDM it is very precisely known how much of the

universe dark matter comprises, but we do not at present have a convincing underlying

theory of dark matter. Hypothetical answers to this question have included dense

objects composed of normal baryonic matter that are too cold to emit detectable

radiation (known as massive compact halo objects, or MACHOs) [64, 65], primordial

black holes (PBHs) formed by collapsing overdensities in the early universe [66, 67]5,

hypothetical elementary particles known as axions [68, 69], and so-called weakly

5PBHs are often included under the umbrella term of MACHOs in the literature. Here I reserve
the term ‘MACHO’ for objects composed of baryonic matter.
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interacting massive particles (WIMPs) that would have to be described by some

extension to the Standard Model of particle physics, possibly supersymmetry [70].

All of the above dark matter candidates have difficulties, some greater than

others. Constraints from the CMB and big bang nucleosynthesis mean that MACHOs

(or any other form of dark matter that is baryonic in origin) cannot constitute a

significant fraction of dark matter. The baryon fraction Ωbh
2 is inferred as 0.0224±

0.0001 [6] and 0.0225 ± 0.0015 [71] by CMB measurements and nucleosynthesis

respectively, where h is the Hubble constant in units of 100 km s−1 Mpc−1. This is

significantly lower than the total matter density fraction in the universe, which CMB

measurements find as Ωmh
2 = 0.1430 ± 0.0011 [6], meaning that there is simply

not enough baryonic matter in the universe for baryonic dark matter candidates to

constitute a significant fraction of the dark matter.

Due to incomplete understanding of the physical conditions under which they

might form, PBHs can in principle exist within a very wide mass window. Different

PBH mass ranges are constrained by a wide variety of methods including the gamma

ray background [72], disruption of white dwarf stars [73], gravitational lensing [74–

78], disruption of pulsars [79], gravitational wave measurements [80, 81], and the

CMB [82]. A recent summary of constraints on PBHs can be found in Ref. [83].

Axions and WIMPs are both particles that would require an extension to the

Standard Model of particle physics. Both have been searched for extensively and,

as yet, unsuccessfully. Axion searches such as ADMX [84] involve the interaction

between the axion and electromagnetism. WIMPs, on the other hand, have no

coupling to electromagnetism and must be detected via their Weak force interaction.

This is done in three distinct ways: direct detection, in which a large detector awaits

a collision by a dark matter WIMP as the Earth passes through the dark matter

halo of our galaxy [85]; indirect detection, in which one searches for the products of

WIMP annihilation in regions of high dark matter density [86]; and collider-based

experiments, in which Standard Model particles are collided in the hope of creating

WIMPs [87].

The very strong evidence for the existence of dark matter, combined with the lack

of discovery of a plausible candidate, remains one of the great unanswered questions

in modern cosmology.
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1.7.2 Observational problems

The two issues I wish to discuss here concern tensions between early- and late-

universe measurements. Whether one regards them as problems for ΛCDM or for

the experiments involved is something of a matter of taste, but I include them here

because whether their resolution comes from a better understanding of experimental

systematics or from a modification to the cosmological model, they are certainly

issues in our current understanding of cosmology. The two tensions I wish to discuss

are the ‘H0 tension’ and the ‘σ8 tension’. In both cases, there is data from local,

late-universe, model-independent observations on one hand and data from the CMB

on the other. The latter is highly dependent on the cosmological model, which can

motivate the study of modifications to ΛCDM as a means of resolving the tension.

Tension between measurements of the Hubble constant H0 has received much

attention recently [88]. At the time of writing, the most precise early-universe

measurements of the Hubble constant6 are from the Planck Collaboration [6] and the

Dark Energy Survey [89]7. These measurements give H0 = (67.4± 0.5) km s−1 Mpc−1

and H0 = (67.4+1.1
−1.2) km s−1 Mpc−1 respectively.

Late-universe measurements, however, give significantly larger expansion rates.

One of the most important approaches are ‘distance ladder’ measurements, which em-

ploy standard candles introduced in Section 1.4. See Ref. [93] for a review. As well as

Type Ia supernovas and Cepheid variables already mentioned, the brightest red-giant-

branch stars in a galaxy can also be used as standard candles [91]. This is referred to

as the tip of the red-giant branch (TRGB). Other approaches to measuring the Hubble

constant are strong lensing of distant galaxies [94], interferometry observations of

masers around supermassive black holes [95], and surface brightness fluctuations of

galaxies [96, 97]. A summary of recent measurements of the Hubble parameter is

presented in Fig. 1.4. It can be seen that early-universe predictions of H0 are consist-

ently lower than late-universe observations. An intriguing exception is the Carnegie-

Chicago Hubble Program (CCHP) measurement, which uses a distance ladder method

6I use the word ‘measurement’ here somewhat loosely. A more accurate description might be
‘value of H0 inferred from early-universe observations combined with certain assumptions about the
cosmological model’. In the interest of readability I shall sometimes opt for the briefer description,
even if it is strictly speaking less accurate.

7The Dark Energy Survey data itself is late-universe data of tomographic shear, galaxy–galaxy
lensing and galaxy–galaxy clustering. However, the analysis of Ref. [89] also relies on baryon acoustic
oscillations and big bang nucleosynthesis experiments and the assumption of the ΛCDM model so
it is more appropriate to include it with the Planck result as an early-universe probe of H0.
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Figure 1.4: A compilation of early- and late-universe measurements of the Hubble
constant. The results in this figure come from the following references: Planck:
Ref. [6], DES+BAO+BBN: Ref. [89], SH0ES: Ref. [90], CCHP: Ref. [91], H0LiCOW:
Ref. [92]. The MIRAS, MCP and SBF results have not yet been published but were
reported at a recent workshop [88]. Figure reproduced from Ref. [88] with credit to
Vivien Bonvin.
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based on TRGB and obtains a value of H0 = (69.8±1.9) km s−1 Mpc−1 [91], bridging

the gap between the early-universe predictions and the rest of the late-universe

observations.

The recent measurement of gravitational waves [98], a breakthrough which earned

Rainer Weiss, Kip Thorne, and Barry Barish the 2017 Nobel Prize in physics, has led

to the exciting prospect of gravitational-wave multi-messenger astronomy [99]. One

application of this is using binary neutron-star mergers as ‘standard sirens’ which

can be used to give a measurement of the Hubble constant [100]. At present the

precision of this method is not competitive with other approaches, giving a result

of 70.0+12.0
−8.0 km s−1 Mpc−1, with much larger uncertainties than other methods. It

is an intriguing prospect, however, and future developments in the young field of

gravitational-wave astronomy may allow for much greater precision.

Though it depends on exactly which datasets are included, the tension between

early- and late-universe measurements of the Hubble parameter is around the 5σ

level of significance, and finding a resolution is an important unsolved problem in

cosmology. Proposed explanations for the disagreement include systematic errors in

the data that have not been fully taken into consideration and replacing ΛCDM with

a different cosmological model. Both approaches have their difficulties, however. If

systematic errors are to blame then they would need to be responsible for shifting the

results of several measurements by approximately the same amount, while modifying

ΛCDM is difficult to do in a way that does not sacrifice agreement with other

cosmological observations.

The other major source of tension between early and late cosmology is in struc-

ture formation. This is often quantified by the parameter σ8, introduced in Section 1.6.

Similarly to the measurements of H0 described above, σ8 can be predicted by nu-

merically simulating the evolution of the universe from initial conditions based on

early-universe observations. The latest result from the Planck Collaboration, assum-

ing ΛCDM, is σ8 = 0.811 ± 0.006 [101]. Late-universe measurements of σ8 involve

inferring cluster counts from the SZ effect and weak lensing and generally give lower

values of σ8, corresponding to less structure formation, than CMB measurements as-

suming ΛCDM. However, galaxy clustering is also sensitive to the matter fraction Ωm,

so the parameter S8 ≡ σ8(Ωm/0.3)0.5 is often used instead of σ8 directly. A further

complication is that the mass of clusters as inferred from X-rays is expected to be

biased below the true mass by up to 30% and the inferred value of σ8 is dependent on
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this. Taking a mass bias of 20%, SZ cluster counts give σ8 = 0.77±0.02 [102] while re-

cent weak lensing measurements give S8 = 0.745±0.039 [103], S8 = 0.651±0.058 [104],

and S8 = 0.67 ± 0.03 [105]. This tension, around 2–3 σ, is much less severe than

the Hubble parameter tension discussed above, but finding a solution is still an im-

portant pursuit. In Chapter 4 I discuss a class of modifications to ΛCDM that can

lessen the tension by means of a momentum coupling between dark energy and dark

matter [106].

1.8 Beyond ΛCDM

ΛCDM is an extraordinarily successful cosmological model, agreeing with data from

a wide range of scales and epochs to a remarkable level of precision, and involving

only six free parameters. However, as discussed above, it has several theoretical and

experimental problems that motivate the study of alternative models.

One important class of alternative theories to ΛCDM are so-called modified

gravity theories, in which the fundamental theory of gravity on which the cosmological

model rests is taken not to be general relativity, but some other theory. Approaches

to modified gravity include introducing gravitational fields in addition to the metric

tensor, allowing higher-order derivatives in the equations of motion, and embedding

the theory of gravity in a higher-dimensional framework. See Ref. [107] for a review

of modified gravity and its implications for cosmology.

Another widely studied approach is setting the cosmological constant Λ = 0 and

introducing a dynamical field to play the role of dark energy. This is the approach I

focus on in this thesis.

The rest of this thesis is organised as follows: In Chapter 2 I present a brief

review of dynamical dark energy. In particular, I introduce the coupled quintessence

models studied in Chapters 3 and 4. In Chapter 3 I present work on growing neutrino

quintessence (GNQ) models. I discuss how early dark energy bounds can be used

to constrain GNQ models, detail an analytic calculation finding disagreement with

previous work, and present the linear perturbation equations for a particular GNQ

model. In Chapter 4 I present work on coupled dark energy with a pure momentum

coupling to the dark matter. I review previous work which has found such models

can relieve some of the observational tensions I have introduced in this chapter, and
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present a novel approach to understanding the underlying mechanism by which this

can occur. The focus then turns to generalising the models previously considered to

investigate how generic the effect is. In Chapter 5 I summarise all the work carried

out in this thesis and discuss its broader implications and prospects for future study.
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Chapter 2

Dynamical dark energy

2.1 Introduction

In Chapter 1 I presented an introduction to cosmology, discussing ΛCDM and several

modern methods for measuring and analysing the properties of the universe. ΛCDM is

a remarkably effective paradigm for matching a wide set of cosmological observations.

However, it does suffer from a number of problems. These problems, as well as a few

proposed solutions, were discussed in Chapter 1. In the present chapter I introduce

a broad class of modifications to ΛCDM in which the cosmological constant Λ is

assumed to be equal to zero and dark energy is instead described by a dynamical

field.

The most common choice is to introduce a single scalar field to play the role of

dark energy. Scalar fields arise in many extensions to the Standard Model of particle

physics including string theory, which can make them an attractive dark energy

candidate. They have gained particular interest due to the recently proposed ‘String

Swampland criteria’ which prohibit a cosmological constant and put constraints on

cosmologies involving scalar field dark energy [108, 109].

There are many examples of scalar field dark energy that have been studied in

the literature. The most widely studied example is quintessence [110], in which the

scalar field φ is minimally coupled to gravity and described by the action:

S =

∫
d4x
√−g [−Y − V (φ)] , (2.1)

where Y = (1/2)∇µφ∇µφ is the kinetic term and V (φ) is the scalar field potential.

If the scalar field rolls slowly down the potential its energy density is potential

dominated and it acquires a negative equation of state in a manner analogous to

slow-roll inflation. A more general class of models is K-essence [111], also inspired
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by an inflation model [112], in which the scalar field is described by the action:

S =

∫
d4x
√−g F (Y, φ) . (2.2)

K-essence dark energy models acquire a negative equation of state through the non-

canonical kinetic term F (Y, φ). Another type of scalar field dark energy is tachyonic

dark energy, in which the scalar field is described by the action:

S = −
∫

d4xV (φ)
√
− det(gµν +∇µφ∇νφ) , (2.3)

where V (φ) is the tachyon potential. Tachyonic models of dark energy have an

equation of state which depends on the time derivative of the scalar field, and can

vary smoothly between 0 and −1. The final class of models I wish to mention here

is phantom dark energy, with the action:

S =

∫
d4x
√−g [Y − V (φ)] , (2.4)

which is similar to the quintessence action but with a ‘wrong sign’ kinetic term.

These models give rise to an equation of state wφ < −1. For more detail on these

and other dynamical dark energy models, see Ref. [113] and references therein.

In the next section I present a more detailed discussion of quintessence. I

then introduce interacting dark energy in Section 2.3, in which one posits a non-

gravitational interaction between dark energy and another cosmological species, most

commonly dark matter. In particular, I discuss the classification scheme of Ref. [114]

based on a Lagrangian formulation of interactions between dark energy and a generic

fluid. In Section 2.4 I introduce models in which the dark energy is coupled to the

neutrino sector, called growing neutrino quintessence models, which are the subject

of Chapter 3. Finally, in Section 2.5 I briefly summarise the topics discussed in this

chapter.

2.2 Quintessence

Quintessence, described by the action in Eq. (2.1), involves a scalar field minimally

coupled to gravity with a particular potential that gives rise to accelerated universal
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expansion at late times. As with the simple model of inflation introduced briefly

in Chapter 1, if the gradient of the quintessence potential is sufficiently small, one

can obtain slow roll giving rise to an equation of state close to −1 and accelerated

expansion.

Here I limit the discussion to quintessence scenarios with exponential potentials,

though other potentials have also been widely studied, notably those with the form

of a power law [110]. Consider a scalar field φ which obeys Eq. (1.16) with a potential

of the form V (φ) = Ae−λφ/MP . There are two regimes with particularly interesting

dynamics for cosmological applications. These are λ2 < 2 and λ2 > 3(wd + 1), where

wd is the equation of state of the dominant fluid at a particular epoch. For λ2 < 2, the

potential is sufficiently flat that slow roll occurs and the field gives rise to inflationary

solutions in which the universe expands at an accelerating rate. The other case,

where λ2 > 3(wd + 1), corresponds to scaling solutions, in which the energy density

of the scalar field tracks that of the dominant fluid species [61]. Such solutions are

not able to give rise to accelerated expansion, since wDE = wd and the scalar field

simply acts effectively as a small increase in the radiation or matter density of the

universe.

Combined with a mechanism for ending the scaling regime and producing infla-

tionary behaviour, scaling solutions have an intriguing application in cosmology as a

solution to the coincidence problem. As discussed in Chapter 1, a cosmological con-

stant has the problem that there is no apparent reason why its energy density should

be comparable to that of matter in the present epoch. Scaling solutions partially

solve this problem by ensuring that the dark energy density is a constant fraction of

that of the dominant species as the universe evolves. Furthermore, scaling solutions

have been shown to be attractor solutions, meaning that they do not require finely

tuned initial conditions [61]. The coincidence problem is replaced by the problem

of ending the scaling solution at the appropriate time to give rise to dark energy

domination in the present epoch. This is sometimes known in the literature as the

‘why now?’ problem8.

8Precise definitions of the coincidence problem and the ‘why now?’ problem in the literature
vary, with some authors employing the terms synonymously. In this thesis I follow the terminology
of Ref. [115]. In this terminology the coincidence problem is encountered by models in which
wDE ≈ −1 for a long time in cosmological terms, such as a cosmological constant, and refers to the
coincidence that two species which redshift in such a drastically different way should happen to
be of the same order today. On the other hand, the ‘why now?’ problem is an issue for models in
which the dark energy tracked dark matter and only recently acquired wDE ≈ −1 and refers to the
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One way to bring an end to the scaling regime is to employ a double exponential

potential as in Ref. [116]:

V (φ) = A1e−λ1φ/MP + A2e−λ2φ/MP , (2.5)

where we take A1, A2, λ1, and λ2 to be positive. A potential of the form of Eq. (2.5)

can provide both scaling solutions and inflationary solutions for appropriate choices

of the parameters λ1 and λ2. Suppose, for instance, that λ2
1 > 3(wd + 1) and λ2

2 < 2.

For appropriate choices of A1 and A2, the first term in Eq. (2.5) will dominate in the

early universe when φ is small and the second term will come to dominate in the late

universe as φ grows. Thus, during radiation and matter domination the conditions

for a scaling solution are satisfied since the first term dominates and λ2
1 > 3(wd + 1),

while after the transition into domination by the second term, the conditions for

accelerated expansion are satisfied since λ2
2 < 2. Whilst this approach solves the

coincidence problem, it does not solve the ‘why now?’ problem as the values of A1

and A2 must be chosen to ensure that the transition from the scaling regime to the

dark energy–dominated regime takes place at the appropriate time. In Section 2.4

I introduce growing neutrino quintessence models, which do solve the ‘why now?’

problem by linking the time at which dark energy comes to dominate to the neutrino

mass.

Another issue with scaling solutions is that of early dark energy. If the scalar

field energy density tracks that of the dominant species then it must have a constant

energy density fraction Ωφ during radiation and matter domination. Cosmologies

with this behaviour were studied phenomenologically by Doran and Robbers [117],

who introduced a parametrisation for early dark energy and used it to constrain the

early dark energy fraction using CMB, large-scale structure, and supernova data. The

most recent CMB constraints using Doran and Robbers’s parametrisation require

that the early dark energy fraction is less than 0.0036 at recombination [101]. Due

to the model-independent nature of Doran and Robbers’s approach, it is possible

to apply early dark energy constraints to a wide range of models. In Chapter 3 I

present work that follows this approach, obtaining constraints on growing neutrino

quintessence models by finding the predicted fraction of early dark energy and fitting

to the Doran and Robbers parametrisation.

question of why the dark energy equation of state changed from wDE ≈ 0 to wDE ≈ −1 so recently.
See Section 1.1 of Ref. [115] for more details.
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2.3 Interacting dark energy

In ΛCDM, as well as in the quintessence scenarios I have already discussed, dark

energy and dark matter are independent of each other save for gravitational effects.

There is no fundamental reason why this should be the case, and the consequences

of relaxing this assumption have been widely studied [118–178]. One reason to study

such couplings is that they can provide a solution to the coincidence problem. For a

recent review of interacting dark energy, see Ref. [179].

Traditionally, couplings between dark energy and dark matter are introduced at

the level of the equations of motion, for example:

∇µT (c)
µν = Jν , ∇µT (DE)

µν = −Jν , (2.6)

such that the overall energy–momentum tensor Tµν = T
(c)
µν + T

(DE)
µν is conserved as

usual. Jν is the flow of energy and momentum between dark matter and dark energy.

A notable example was pioneered by Wetterich and Amendola [180–182] in which

Jν = βT (c)∇νφ, where β is a constant and φ is the quintessence field. Other couplings

that have been proposed in the literature include promoting β to be a function of

φ [183, 184], introducing a direct dependence on the expansion rate [127, 185], and

couplings with non-linear dependence on the energy–momentum tensor or the scalar

field gradient [186, 187].

There are several observational tests one can use to put constraints on interacting

dark energy models. A given model can be confronted with observational data on

the expansion history, the CMB, and large-scale structure [121, 123, 132, 137, 141,

145–147, 152, 154, 155, 157–159, 161, 163, 164, 166, 170, 173]. A recently proposed

alternative [188] is to apply the parametrised post-Friedmannian framework developed

for testing theories of modified gravity [189–192] to interacting dark energy. This

framework involves finding the linear scalar modes of Jµ in terms of the metric and

fluid perturbations and a series of coefficients. In this way any given interacting

dark energy model can be described by these coefficients, and observational tests

on the coefficients can in principle constrain multiple models at once, making the

parametrised post-Friedmannian framework for interacting dark energy a potentially

very efficient method for putting constraints on models.

In Ref. [114], a construction was developed using the pull-back formalism for
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fluids to introduce dark energy–dark matter couplings at the level of the action.

Defining the coupling at the level of the action is desirable for several reasons. It is

often a more intuitive way to see the coupling, and it is easier to connect it to more

fundamental physics. Perhaps more importantly, instabilities can often be more easily

identified and avoided, saving time and computation when studying new models. In

the formalism of Ref. [114], the Lagrangian for a fairly general coupled fluid–scalar

system is of the form:

L = L(n, Y, Z, φ) , (2.7)

where n is the fluid number density and

Z = uµ∇µφ (2.8)

is a direct coupling between the gradient of the scalar field and the fluid velocity uµ.

Uncoupled quintessence and K-essence are both special cases in this formalism, with

L = Y + V (φ) + f(n) and L = F (Y, φ) + f(n) respectively. By varying Eq. (2.7)

with respect to gµν , the usual Einstein field equations, Eq. (1.1), are obtained, with

the total energy–momentum tensor given by

Tµν = L,Y∇µφ∇νφ+ (nL,n − ZL,Z)uµuν + (nL,n − L)gµν . (2.9)

Varying with respect to φ yields the scalar field equation:

∇µ(L,Y∇µφ+ L,Zu
µ)− L,φ = 0 . (2.10)

The authors of Ref. [114] stress that the Lagrangian in Eq. (2.7) cannot be interpreted

as a coupled system of two distinct species but describes a single entity. This is made

clear by Eq. (2.9), which cannot be written as the sum of a contribution from the

scalar field and a contribution from the fluid. In order to separate the dark energy

field from the dark matter fluid, they decompose Eq. (2.7) in three distinct ways.

They name the resulting classes of models Types 1, 2, and 3.

According to this classification scheme, a Type 1 model is defined by a Lagrangian

of the form

L(n, Y, Z, φ) = F (Y, φ) + f(n, φ) . (2.11)

As an illustration of a Type 1 model, let us consider F (Y, φ) = Y + V (φ) and
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f(n, φ) = ξ1(n)eα(φ) for some functions V (φ), ξ1(n), and α(φ). In this case one may

write the energy–momentum tensor as a sum of a scalar field contribution T
(φ)
µν and

a fluid contribution T
(c)
µν , which we identify with the cold dark matter fluid:

Tµν = T (φ)
µν + T (c)

µν , (2.12)

where

T (φ)
µν = ∇µφ∇νφ− [Y + V (φ)]gµν , (2.13)

and

T (c)
µν = (ρ+ p)uµuν + pgµν , (2.14)

where we have identified ρ = ξ1(n)eα(φ) as the fluid density and p = [nξ1,n−ξ1(n)]eα(φ)

as the pressure. For cold dark matter we can further impose

nξ1,n − ξ1(n) = 0 , (2.15)

such that its pressure p = 0.

Finally we can relate this to the traditional method of defining interacting dark

energy sketched in Eq. (2.6) by calculating the coupling current Jν = −∇µT
(φ)
µν as

Jν = −ρα,φ∇νφ . (2.16)

If we set α(φ) = −βφ, for constant β, we recover the model studied by Wetterich and

Amendola [180–182]. For a more general treatment of Type 1 models, see Refs. [114,

188].

Type 1 models do not depend on the momentum coupling Z, such that the

coupling between the scalar field and the fluid is only through the density (and

pressure) of the fluid and not through the fluid velocity uµ. In contrast, Type 2 and

Type 3 models do depend on Z, but differ in how the dependence is manifest. Type 2

models are classified by

L(n, Y, Z, φ) = F (Y, φ) + f(n, Z) . (2.17)

For the sake of illustration, let us again consider a simple model with F (Y, φ) =

Y + V (φ) and f(n, Z) = nξ2(Z), where this latter choice depends on the assumption
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that p = 0. As in the case of Type 1, the energy–momentum tensor can be divided

into Eqs. (2.13) and (2.14), with the difference being in how ρ (and p had it not been

set equal to zero) depends on the scalar field. In the Type 2 case, ρ = nξ2(Z). The

coupling current Jν can then be calculated as

Jν = ∇µ[ρξ̃2(Z)uν ]∇νφ , (2.18)

where ξ̃2(Z) has been defined by

ξ2(Z) = exp

[∫
dZ

ξ̃2(Z)

1 + Zξ̃2(Z)

]
. (2.19)

Once again I refer the reader to Ref. [114] for details of the above procedure.

The third and final class of models identified in Ref. [114] is classified by

L(n, Y, Z, φ) = F (Y, Z, φ) + f(n) . (2.20)

Type 3 models have the interesting property that the scalar field and the fluid are

not coupled at the level of the energy density but via a pure momentum coupling.

This gives them interesting cosmological behaviour as I discuss in detail in Chapter 4.

A model with pure momentum transfer between dark matter and dark energy has

previously been studied, known as a ‘dark scattering’ model [193]. However, in the

dark scattering case the coupling was introduced at the level of the equations and it

has been shown that it is in fact distinct from Type 3 interacting dark energy [188].

The energy–momentum tensor for the scalar field in Type 3 models is

T (φ)
µν = F,Y∇µφ∇νφ− Fgµν − ZF,Zuµuν , (2.21)

while that of the fluid is given by Eq. (2.14). The coupling current Jν takes a more

complex form than for Types 1 and 2:

Jν = ∇µ(F,Zu
µ)Dνφ+ F,ZDνZ + ZF,Zu

µ∇µuν , (2.22)

where Dµ = (uµu
ν+δνµ)∇ν . Unlike the coupling currents for Types 1 and 2, Eq. (2.22)

does not depend on the fluid density ρ, meaning that Type 3 models do not allow

energy exchange between dark matter and dark energy.
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As discussed above, Type 1 models were studied extensively in the literature

prior to the classification scheme of Ref. [114] being developed. Types 2 and 3, on the

other hand, only gained attention following their classification. Type 3 models seem

to be the more interesting of these two new avenues because their lack of coupling via

the energy density makes them more easily able to produce the correct background

evolution for a wide range of couplings. Furthermore, Type 3 couplings have been

shown to alleviate the tension between early- and late-universe probes of structure

growth [106], making them a particularly exciting subject for further study. I review

the recent research on Type 3 models in more detail, as well as presenting new results,

in Chapter 4.

2.4 Growing neutrino quintessence

Instead of coupling dark energy to dark matter, one can also introduce a coupling

to the neutrinos. Growing neutrino quintessence (GNQ) is an example of such an

approach. The basic mechanism by which GNQ works is that a coupling between

the dark energy scalar field and the neutrinos brings about a halt in the scalar

field evolution once the neutrinos become non-relativistic in the recent past. Rather

generic potentials can give rise to GNQ; unlike uncoupled quintessence, the scalar

field is not required to roll slowly down the potential because it will be halted by

the neutrino coupling. The main attraction of GNQ models is that they can provide

a solution to the coincidence and ‘why now?’ problems by linking the onset of

dark energy to the neutrino mass. However, GNQ models have the side effect of

introducing an attractive fifth force between the neutrinos that is much stronger than

gravity. This force gives rise to dense neutrino ‘lumps’ that under some circumstances

can have undesired effects on the cosmological evolution. In the remainder of this

section I discuss in more detail the GNQ mechanism, including how it provides a

solution to the coincidence problem, and the implications of the presence of neutrino

lumps. In Chapter 3 I present my work on GNQ models.

The proposal to couple dark energy to the neutrino sector was first made by

Fardon, Nelson, and Weiner in 2004 [115]. They proposed a model of mass-varying

neutrinos, an approach that was pursued by several other authors [194–200] in the

following few years. The model was motivated by the observed similarity between

the neutrino mass and the energy scale of dark energy. Assuming ΛCDM, recent
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measurements indicate that the energy scale of dark energy is [6]

(ρDE)
1
4 = 2.25× 10−3eV . (2.23)

Neutrino masses cannot yet be precisely measured. However, neutrino oscillation

measurements measure mass-squared differences between the different neutrino mass

eigenstates. The most recent measurement of the larger difference is |∆m2
ν | =

(2.32+0.12
−0.08)× 10−3 eV2 [201], from which it can be inferred that at least one neutrino

has a mass of at least 0.05 eV. Cosmological measurements, meanwhile, put an

upper bound on the sum of the neutrino masses. The most recent such bound,

using CMB data and assuming ΛCDM, is
∑
mν < 0.12 eV [6]. Since the present

discussion concerns modifications to ΛCDM, these numbers cannot be taken at face

value. They do, however, provide an approximate indication of the energy scales

under consideration and hence a motivation for mass-varying neutrino models.

In Fardon et al.’s original paper [115], they consider mass-varying neutrinos in a

model-independent way, allowing the neutrino mass mν to be a dynamical field with

some potential V0(mν) which is minimised for a large value of mν . By combining the

energy contribution of the neutrino energy density with that of the potential V0(mν),

and taking the non-relativistic limit, they find an effective potential

V (mν) = mνnν + V0(mν) , (2.24)

where nν is the number density of the neutrinos. They then derive, in a model-

independent way, the equation of state for the neutrino sector as

1 + w = −mνdV0/dmν

V (mν)
, (2.25)

which gives w close to the desired −1 for relatively flat potentials. They note that

the constraints on the flatness of the potential are not as strict as in uncoupled

quintessence scenarios, which I discussed in Section 2.2.

GNQ models were proposed a few years after mass-varying neutrino models by

Amendola, Baldi and Wetterich [62, 63]. These models have a scalar field φ playing

the role of dark energy coupled to the neutrinos in such a way that they provide a

‘trigger’ that causes the scalar field to leave a scaling regime and enter an inflationary

regime. GNQ has also generated considerable interest, mostly involving the study of
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the neutrino ‘lumps’ that are produced by the coupling to the scalar field [202–213].

The GNQ mechanism works by introducing a coupling between the quintessence

field and the neutrinos. The energy density conservation equations are

ρν,t + 3H(ρν + pν) = − β

MP

(ρν − 3pν)φ,t , (2.26)

ρφ,t + 3H(ρφ + pφ) =
β

MP

(ρν − 3pν)φ,t , (2.27)

where the coupling parameter β can in general be some function of φ. Even before

exploring the dynamics of GNQ models one can see from Eqs. (2.26) and (2.27) that

the coupling only plays a role when the neutrinos are non-relativistic, since relativistic

neutrinos have pν ≈ ρν/3 and so the right-hand sides of Eqs. (2.26) and (2.27) are both

negligible such that the standard, uncoupled conservation equations are recovered.

This is the situation at early times, when the neutrino momentum is much greater

than their mass. As the universe cools, the average momentum of the neutrinos

falls, until at late times (typically after a redshift of around five or six [62, 63])

their momentum is much smaller than their mass and they are non-relativistic, with

wν → 0. When this occurs the coupling term in Eqs. (2.26) and (2.27) can no longer

be neglected.

Before the neutrinos become non-relativistic, the scalar field evolves as an or-

dinary quintessence field, rolling down its potential V (φ). As the scalar field evolves,

the neutrino mass grows (for negative β(φ)) as

mν(φ) = m̄ν exp

(
−
∫
β(φ)

MP

dφ

)
, (2.28)

hence the name ‘growing neutrino quintessence’.

As discussed in Section 2.2, a scalar field rolling down a sufficiently steep expo-

nential potential can exhibit a scaling solution whereby its energy density tracks the

energy density of the dominant matter fluid. GNQ provides an elegant mechanism

for ending the scaling regime and producing accelerated expansion. The scalar field

equation can be written as

φ,tt + 3Hφ,t + V,φ −
β

MP

(ρν − 3pν) = 0 . (2.29)

35



CHAPTER 2. DYNAMICAL DARK ENERGY

For an exponential potential V (φ) = Ae−λφ/MP with λ > 2, the scalar field φ will

undergo a scaling solution during radiation and matter domination as demonstrated

in Ref. [61]. During most of this time the neutrinos are relativistic and the last term in

Eq. (2.29) does not contribute. Once the neutrinos become non-relativistic (at a time

which depends on the present-day neutrino mass) the last term in Eq. (2.29) stops

the further evolution of the scalar field, resulting in it redshifting like a cosmological

constant and giving rise to accelerated expansion.

To illustrate the mechanism, let us take β = const and consider the effective

potential consisting of both the original potential V (φ) and the neutrino term:

Veff,φ = V,φ −
β

MP

ρν , (2.30)

where we have neglected the neutrino pressure because we are working in the non-

relativistic limit. Because the neutrino mass depends on φ according to Eq. (2.28),

the energy density ρν evolves as

ρν = ρν0 exp

(
−β(φ− φ0)

MP

)
a−3 , (2.31)

where ρν0 is the present-day neutrino energy density and φ0 is the present-day value

of the scalar field. By substitution of Eq. (2.31) into Eq. (2.30) we obtain

Veff,φ = V,φ −
β

MP

ρν0 exp

(
−β(φ− φ0)

MP

)
a−3 . (2.32)

If we assume an exponential potential V (φ) and integrate Eq. (2.32) with respect to

φ we obtain

Veff(φ) = A exp

(
− λφ
MP

)
+ ρν0 exp

(
−β(φ− φ0)

MP

)
a−3 + const . (2.33)

For sufficiently large values of λ and −β, this effective potential has a global minimum

around which the scalar field oscillates at late times. In the numerical tests of

Amendola et al., these parameters were chosen as λ = 10 and β = −52 [63].

It is also possible to calculate from the background equations of motion a simple

analytic expression for the relationship between the energy densities of the scalar

field and the neutrinos. In the case of constant β, and making the approximation

that β � λ, the present-day density parameter of the scalar field is related to the
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present-day neutrino density parameter Ων0 by [63]

Ωφ0 = −β
λ

Ων0 . (2.34)

Equation (2.34) can be used to find a relation between the energy density of dark

energy and the neutrino mass as follows. The neutrino density parameter is related

to the sum of the neutrino masses by [214]

Ων0 =

∑
mν0

93.14h2 eV
, (2.35)

where h is the present-day Hubble parameter in units of 100 km s−1 Mpc−1. Substi-

tuting Eq. (2.35) into Eq. (2.34) and using Ωi ≡ ρi/ρcrit gives the present-day energy

density of the scalar field as

ρ
1
4
φ0 = 0.81

(
−β
λ

∑
mν0

eV

) 1
4

10−3 eV , (2.36)

where we have set h = 0.72. GNQ is thus able to provide a justification for the small

energy scale of dark energy by relating it to the size of the neutrino masses.

Providing a mechanism to trigger the onset of dark energy and relating the

energy scale of dark energy to a particle physics energy scale are both attractive

features of GNQ. A less attractive feature is the formation of neutrino ‘lumps’. The

coupling between the neutrinos and the scalar induces a fifth force acting only on

the neutrinos. This force takes the form [203]:

~F5 = β~∇δφ , (2.37)

which for large β is much stronger than the gravitational force:

~Fg = ~∇Φν , (2.38)

where Φν is the gravitational potential of the neutrinos. This fifth force gives rise

to non-linear neutrino structures on scales of order 10 Mpc or larger, depending

on the specific model [202]. In some circumstances the lumps can produce strong

backreaction effects [209] whereby the behaviour of the perturbations can influence

the background evolution. This is in stark contrast to the ΛCDM case, in which it has
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been shown that the effects of the perturbations on the background are small [215].

The effect of the backreaction in GNQ models has been studied by a number of

authors [204–213]. In particular, in Ref. [213], two distinct regimes were identified.

When the neutrino masses were taken to be small the neutrino lumps were found to

form and dissolve periodically, and the backreaction effect was small. This behaviour

comes about because as the neutrinos fall into the potential wells created by the

lumps, they are accelerated to relativistic speeds and the fifth force switches off again.

This causes the lumps to dissipate until the neutrinos become non-relativistic once

more, at which point the fifth force switches back on and the neutrino lumps re-form,

once again accelerating them to relativistic speeds. Because the backreaction effects

are small, such a scenario is able to produce a realistic cosmology with a present-day

equation of state close to −1. The authors of Ref. [213] find a threshold present-day

neutrino mass of 0.5 eV; for smaller masses the above process occurs, and the lumps

do not affect observations. For larger neutrino masses, however, the lumps are stable

and realistic cosmologies are difficult to obtain.

2.5 Summary

In this chapter I have discussed a number of models of scalar field dark energy, with

a focus on quintessence and various models in which the dark energy is allowed to

interact non-gravitationally with other species. Uncoupled quintessence can give rise

to two particularly interesting types of behaviour: scaling solutions and inflationary

solutions. Both of these have important applications in cosmology, discussed in

Section 2.2. I then discussed interacting dark energy, in which a coupling is introduced

between dark energy and another species. The coupling is normally introduced at

the level of the equations of motion, but a construction has recently been developed

for defining the coupling at the level of the action [114]. I described this construction

and the three ‘Types’ of interacting dark energy it gives rise to in Section 2.3.

An interesting example of interacting dark energy is growing neutrino quintessence

(GNQ), which can provide a solution to the coincidence problem. In Section 2.4 I

described the mechanism by which GNQ works and discussed the neutrino ‘lumps’

it gives rise to as a by-product.

Having introduced the necessary background on standard cosmology (Chapter 1)

and dynamical dark energy (this chapter), I now proceed to present the research I
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have carried out, on GNQ models in Chapter 3 and Type 3 interacting dark energy

in Chapter 4.
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Chapter 3

Growing neutrino quintessence

3.1 Introduction

While neutrinos play an important role in early-universe cosmology, their impact on

the late universe is relatively minor in ΛCDM. There are some cosmological models,

however, in which neutrinos are given a central role in the late universe by means of

a coupling to the dark energy. One of the major motivations for this is to address

the coincidence problem, discussed in Chapter 1, since an appropriate coupling can

result in the neutrinos acting as a ‘trigger’ that causes the dark energy to become

dominant. There are two main types of models that employ such a coupling: mass-

varying neutrino models [115, 194–200] and growing neutrino quintessence (GNQ)

models [62, 63]. Both classes of models were introduced in Chapter 2; in the present

chapter we focus on GNQ.

As discussed in Chapter 2, GNQ models introduce a coupling between the dark

energy scalar field φ and the neutrinos such that, during the regime in which the

neutrinos are non-relativistic, the neutrino masses increase while φ obeys a scaling

solution. Once the neutrinos become non-relativistic, the neutrino–scalar coupling

results in the end of the scaling solution and the onset of dark energy domination.

As a by-product of the neutrino–scalar coupling, there is an attractive fifth force

acting on the neutrinos which gives rise to non-linear ‘neutrino lumps’ on large scales.

These features have been extensively studied using linear approximation [202, 205],

N-body simulations [208–213], spherical collapse [204], and other methods [203, 206,

207]. The effect the neutrino lumps have on the cosmological history depends on the

masses of neutrinos. As found in Ref. [213], for large neutrino masses the neutrino

lumps can be stable and can lead to significant backreaction effects. For smaller

neutrino masses, however, the neutrino lumps are unstable; they form and dissociate

periodically such that backreaction effects are small.
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In 2015, Christof Wetterich proposed a novel cosmological model that combines

several ingredients including GNQ [216]. The model is an example of ‘quintessential

inflation’, unifying inflation and quintessence by using the same scalar field χ to

describe both. The work is motivated by the approximate scale symmetry exhibited

by both inflation and quintessence, using this to posit the existence of two fixed

points of running dimensionless couplings. One of these is an ultraviolet fixed point

corresponding to the distant past, during inflation, and the other is an infrared fixed

point corresponding to dark energy domination in the distant future. The model is

presented in a frame in which the strength of gravity depends on the scalar field that

plays the role of the inflaton and quintessence field, which results in the universe not

having a beginning, but instead inflation can be extended into the infinite past. This

frame is termed the ‘freeze frame’.

In the Wetterich model all particle masses are generated by breaking of the scale

symmetry. There is an explicit symmetry breaking which results in the primordial

power spectrum not being scale invariant, and also brings about the end of inflation.

There is also spontaneous symmetry breaking which gives rise to the spectrum of

massive particles present today. The model posits a two-stage crossover between the

fixed points. The first stage corresponds to the end of inflation and sees all particles

apart from the neutrinos acquiring their present mass ratios. In the intermediate

region before the second stage of the crossover, the scalar field χ exhibits a scaling

solution, giving rise to early dark energy during the radiation- and matter-dominated

epochs. The neutrino masses increase rapidly in the second stage of the crossover,

becoming non-relativistic at a redshift z ≈ 5 and acting as the trigger event to end

the scaling solution and bring about a transition to dark energy domination. After

this point the neutrino masses also become constant relative to the other particle

masses. In the freeze frame in which the model is presented, none of the particle

masses are constant but increase with the scalar field χ. In fact, in the crossover

region, the particle masses (with the exception of neutrinos) are proportional to χ

and so is the effective Planck mass. Thus it can be more convenient to work in the

Einstein frame, in which the Planck mass and the particle masses take their usual

constant values, with only the neutrino masses increasing. This casts the model in

the usual form for growing neutrino quintessence.

This chapter is organised as follows: I present the action and equations of motion

of the GNQ models we investigate in Section 3.2 and also discuss the meaning of
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conformal frame transformations, making it clear how the Einstein frame and the

freeze frame of the Wetterich model are defined. In Sections 3.3 and 3.4 the focus is

on the scaling solution of radiation and matter domination and the transition brought

about by the neutrinos to dark energy domination. We work in the Einstein frame,

where the Planck mass and particle masses are constant. This work is applicable

to the second stage of the crossover in the Wetterich model but is also generalised

to other GNQ models. Working at the level of the background equations we use

constraints on early dark energy from Planck [101] to constrain model parameters.

In Section 3.5 we work in the freeze frame of the Wetterich model and perturb the

equations of motion to linear order with the intention of carrying out a numerical

analysis of the model using the Code for Anisotropies in the Microwave Background

(CAMB). Finally, in Section 3.6 I summarise our conclusions and discuss the future

outlook of GNQ models.

3.2 Equations of motion

Growing neutrino quintessence models can be described by the following action:

S =

∫
d4x
√−g

[
1

2
M2

PR−
1

2
k2(φ)∇µφ∇µφ− V (φ)

]
+ Sb[Ψb, gµν ] + Sc[Ψc, gµν ] + Sγ[Ψγ, gµν ] + Sν [Ψν , C(φ)2gµν ] , (3.1)

where k2(φ), V (φ), and C(φ) are respectively the kinetic, potential, and neutrino–

scalar coupling functions and must be specified in order to choose a particular model.

Ψb, Ψc, Ψγ, and Ψν correspond to the baryonic, cold dark matter, radiation, and

neutrino fields respectively. The key feature of growing neutrino quintessence models

is the function C(φ), which couples neutrinos to the scalar field and effectively gives

the neutrinos a time-dependent mass given by:

mν(φ) = m̄νC(φ) , (3.2)

where m̄ν is a mass scale. For simplicity we take all neutrino masses to be equal. It

is often convenient to work in terms of the dimensionless function:

β(φ) ≡ −MP
d logC(φ)

dφ
. (3.3)
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By varying the action, Eq. (3.1), with respect to the metric gµν , one obtains the

gravitational field equations:

Rµν+
1

2
Rgµν =

1

M2
P

Tµν+
1

M2
P

[
k2(φ)∇µφ∇νφ−

1

2
k2(φ)∇ρφ∇ρφgµν−V (φ)gµν

]
, (3.4)

and varying with respect to the scalar field φ yields the scalar field equation of motion:

−k2∇µ∇µφ− 1

2
(k2),φ∇µφ∇µφ+ V,φ + β

T
(ν)µ
µ

MP

= 0 . (3.5)

Here Tµν is the total energy–momentum tensor of all species apart from the scalar

field (including neutrinos) and T
(ν)
µν is the energy–momentum tensor of the neutrinos.

As usual, subscript comma notation denotes differentiation.

If we assume a spatially flat Friedmann–Lemâıtre–Robertson–Walker metric of

the form

ds2 = −dt2 + a(t)2δijdx
idxj , (3.6)

and take the scalar field to be homogeneous, then Eqs. (3.4) and (3.5) become:

H2 =
ρ

3M2
P

, (3.7)

H,t = −ρ+ p

2M2
P

, (3.8)

and

φ,tt + 3Hφ,t +
1

2k2
(k2),φφ

2
,t +

1

k2
V,φ −

β

MP

(ρν − 3pν) = 0 , (3.9)

where ρ = ρm + ρν + ργ + ρφ and p = pm + pν + pγ + pφ are the energy density and

pressure of all species. The energy density and pressure of the homogeneous scalar

field are defined as:

ρφ =
k2

2
φ2
,t + V , (3.10)

pφ =
k2

2
φ2
,t − V . (3.11)

Matter and radiation obey the usual conservation equations: ρm,t + 3Hρm = 0

and ργ,t + 4Hργ = 0. However, the neutrinos obey a modified conservation equation

due to their interaction with the scalar field given by Eq. (2.26).
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As discussed in Chapter 2, for most of the Universe’s history, the neutrinos are

highly relativistic and ρν − 3pν ≈ 0 such that the scalar field and the neutrinos are

effectively uncoupled and the scalar field energy density tracks that of the dominant

species. After the neutrinos become non-relativistic the coupling becomes important

and, for large enough |β|, effectively stops the evolution of the scalar field by providing

a force to counter that caused by the gradient of the potential in Eq. (3.9). As a

result, the scalar field’s energy density and pressure are dominated by the potential

and the equation of state wφ ≡ pφ/ρφ approaches −1, which is consistent with

observations [6].

3.2.1 Conformal frames

A conformal transformation, also known as a Weyl transformation, is a local rescaling

of the metric tensor that has the effect of changing length scales but not angles. A

conformal transformation may be written as

g̃µν = Ω2(x)gµν , (3.12)

where gµν is the metric tensor and Ω(x) is a function of space-time, not to be

confused with the energy density parameters. Conformal transformations are useful

when studying modified theories of gravity because one can often use them to cast

a particular theory in a frame in which its equations take a simpler form, making it

easier to study. As an example, let us consider a simple scalar–tensor theory with

the following action:

S =
1

2
M2

P

∫
d4x
√−g

[
φR− ω(φ)

φ
∇µφ∇µφ− 2Λ(φ)

]
+ Sm(Ψ, gµν) . (3.13)

For a review of modified gravity, including the use of conformal transformations and

the interpretation of different conformal frames, see Ref. [107]. The present discussion

is based on Section 3.1 of that review. Equation (3.13) is written in a frame known

as the Jordan frame. The matter part of the action, Sm(Ψ, gµν), is not coupled to

the scalar field φ, which means that test particles follow geodesics of the metric gµν

and particle masses are constant. In this frame, the modification to gravity comes

about due to the factor of φ multiplying the Ricci scalar in the gravitational part

of the action. This gives rise to modified gravitational field equations that depend
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on φ and are more complex to deal with than the standard Einstein equations. The

presence of φ in front of the Ricci scalar is sometimes referred to as a varying Planck

mass. Via a conformal transformation

g̃µν = φgµν , (3.14)

Eq. (3.13) can be recast in the following form:

S =
1

2
M2

P

∫
d4x
√
−g̃ R̃−

∫
d4x
√
−g̃

[
1

2
∇̃µψ∇̃µψ + V (ψ)

]
+ Sm(Ψ, φ−1g̃µν) ,

(3.15)

where all quantities denoted by a tilde are in terms of the metric g̃µν , ψ is a scalar

field related to φ by a field redefinition:

dφ

dψ
= −4φ

√
π

3 + 2ω(φ)
, (3.16)

and the potential V (ψ) is related to Λ(φ) by

V (ψ) = φ−2Λ(φ) . (3.17)

Equation (3.15) is written in the so-called Einstein frame. This frame is notable

because the gravitational field equations take the same form as the Einstein equations

of general relativity. As demonstrated explicitly in Eq. (3.15), the action for the

scalar field ψ may be separated from the gravitational part of the action leaving an

Einstein–Hilbert term. In this frame the modification to gravity comes about by the

presence of the scalar field in the matter part of the action. This results in particles

not following geodesics of the metric g̃µν . This is sometimes described as the particle

masses not being constant and depending on the scalar field. In the Einstein frame,

the energy–momentum tensor is not conserved as it is in general relativity and in

the Jordan frame of a scalar–tensor theory. Instead one has

∇̃µT̃
µ
ν = −T̃ µµ

∇̃νΩ

Ω
. (3.18)

We now apply this understanding of conformal transformations to the Wetterich

model in Ref. [216]. The action for the Wetterich model in the freeze frame is given
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by

S =

∫
d4x
√−g

(
1

2
χ2R− µ2χ2 − 1

2

[
B

(
χ

µ

)
− 6

]
∇ρχ∇ρχ

)
+ Sm , (3.19)

where B(χ/µ) is the ‘kinetial’ and it obeys the flow equation:

µ
∂B

∂µ
=

κσB2

σ + κB
. (3.20)

In Ref. [216], the dimensionless function B is described as running from B−1 → 0

at the ultraviolet fixed point to B → 0 at the infrared fixed point. Meanwhile, the

dimensionless ratio χ/µ runs from 0 at the ultraviolet fixed point to∞ at the infrared

fixed point. Here we will not concern ourselves with the details of the discussion on

running couplings and instead refer the reader to Section II of Ref. [216]. For our

present purposes it suffices to consider the implicit solution to Eq. (3.20) [216]:

B−1 − κ

σ
logB = κ log

( χ
m

)
, (3.21)

where the constant of integration ct has been absorbed in the parameter m = µect .

Here we treat σ, κ, µ, and m as parameters that must be chosen to specify a particular

model. Hereafter we will consider µ to be a constant and the function B(χ/µ) will

be treated as a function of χ only. The parameter m is important for determining

the scale at which the model makes the transition from inflation to post-inflationary

cosmology. During inflation, χ� m, B−1 → 0 such that the first term of Eq. (3.21)

can be neglected, and the kinetic function takes the form B(χ) = (m/χ)σ. After

the end of inflation, χ� m, B → 0 such that the second term of Eq. (3.21) can be

neglected, and the kinetic function takes the form

B(χ) =
1

κ log(χ/m)
. (3.22)

Our analysis concerns only post-inflationary cosmology, so hereafter we shall take

Eq. (3.22) as the form of the kinetic function.

It is taken as an assumption in Ref. [216] that, in the freeze frame, all particle

masses apart from neutrinos are proportional to χ, while the neutrino masses increase

proportional to χ2γ̃+1, where γ̃ = γ̃(χ) can be a function of χ in general. This allows
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us to infer the form of the matter action in Eq. (3.19) as:

Sm = Sb[Ψb, χ
2gµν ] + Sc[Ψc, χ

2gµν ] + Sγ[Ψγ, gµν ] + Sν [Ψν , χ
4γ̃+2gµν ] . (3.23)

Thus we can see that the freeze frame is neither Einstein nor Jordan frame, since

χ is coupled non-minimally both to the gravitational action and the matter action.

In fact there is no Jordan frame for this model, since different parts of the matter

action are coupled to the scalar field in different ways.

By applying the conformal transformation g̃µν = (χ/MP)2gµν , Eq. (3.19) can be

brought into the Einstein frame, Eq. (3.1). Following Ref. [216], we carry out the

field redefinition:

φ =
2MP

λ
log

(
χ

µ

)
, (3.24)

and define the kinetial, potential, and neutrino–scalar coupling function as follows:

k2(φ) =
MPλ

2κ(φ− φ̄)
, (3.25)

V (φ) = M4
P exp

(
− λφ
MP

)
, (3.26)

C(φ) = exp

(
−
∫
β(φ)

MP

dφ

)
, (3.27)

where

φ̄ =
2MP

λ
log

(
m

µ

)
, (3.28)

and

β(φ) = −λγ̃(φ) . (3.29)

The parameter φ̄ can be interpreted as the value of the scalar field at the end of

inflation; in other words when χ = m, φ = φ̄. The dimensionless parameter κ, first

introduced in Eq. (3.20), can be interpreted as setting the size of the kinetial. The

parameter λ does not play a physical role and effectively acts as a dimensionless

scaling for φ. It can be set equal to unity and ignored or used to normalise the

present-day value of the kinetial k2(φ0) = 1 according to convenience.

For our purposes the Einstein frame is a very convenient choice of frame because

the gravitational equations are those of general relativity and, with the exception of
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the neutrinos, all matter particles follow geodesics of the Einstein frame metric, have

constant mass in that frame, and obey the usual energy–momentum conservation

equations as written above. In this frame the neutrinos obey the modified conserva-

tion equation Eq. (2.26), by which they can exchange energy and momentum with

the scalar field φ. As discussed above, this coupling is what gives rise to the GNQ

mechanism by which dark energy becomes dominant in the present epoch. Note

that since photons are massless particles, they follow null geodesics of the metric.

Null geodesics of one metric are null geodesics in any conformally related metric,

so there is no coupling between the scalar field and the photons in any conformal

frame. Another way to see this is to notice that, as massless particles, the trace

of the photon energy–momentum tensor is equal to zero so the right-hand side of

Eq. (3.18) will receive no contribution from the photons irrespective of the choice of

Ω(x).

We work in the Einstein frame, basing our analysis on Eq. (3.1), in Sections 3.3

and 3.4, in which we present our analytic and numerical solutions for the background

evolution of the Wetterich model and other GNQ models. We return to the freeze

frame and Eq. (3.19) in Section 3.5, in which we present the linear perturbation

equations in the Wetterich model and discuss our attempt to solve these using the

Boltzmann code CAMB.

3.3 Approximate analytic solutions

Under certain simplifying assumptions, it is possible to solve the scalar field equation,

Eq. (3.9), analytically. In this section we consider the behaviour of φ before the

neutrinos become non-relativistic, both for an exponential and an inverse power-law

potential. For the exponential case the scalar field evolves linearly with N ≡ log(a)

and there is an approximately constant fraction of early dark energy present. In the

inverse power-law case we find instead that log(φ) evolves linearly with N .

3.3.1 Exponential potential

An approximate analytic solution for the background evolution of the Wetterich

model in the Einstein frame was presented in Section IV of Ref. [216] (based on
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an earlier calculation by the same author in Ref. [180]). We followed closely the

procedure in Ref. [216] and found an important disagreement with their results. In

this section, our version of the calculation is presented, making clear where we differ

from Ref. [216].

Working in the Einstein frame, Eq. (3.1), we first consider a constant kinetic

function k2(φ) = k2
c = const and an exponential potential V (φ) = M4

P exp(−λφ/MP),

where λ is a dimensionless parameter that determines the slope of the potential. At

present we consider only the regime in which the neutrinos are highly relativistic, so

it is not necessary to specify a coupling function C(φ). Before the neutrinos have

become non-relativistic, the model exhibits a scaling solution whereby the energy

density of the scalar field tracks that of the dominant species (radiation or matter,

depending on the epoch) with the result that the energy density fraction of the scalar

field is constant. It is convenient to introduce the energy density of the dominant

species as ρd, which is equal to ργ+ρν in the radiation-dominated epoch and ρm in the

matter-dominated epoch. Since we are considering the epoch in which neutrinos are

highly relativistic, they can be treated simply as radiation along with the photons.

Sufficiently far from matter–radiation equality one can neglect whichever of

matter and radiation is subdominant and write:

ρtot = ρd + ρφ , (3.30)

where the energy density of the dominant species evolves as

ρd ∝ exp(−nN) , (3.31)

where N ≡ log a such that N = 0 at the present time, n = 4 for radiation domination

and n = 3 for matter domination. In the scaling solution,

ρφ ∝ exp(−nN) , (3.32)

and the (constant) energy density fraction of the scalar field is given by

Ωφ =
nk2

c

λ2
. (3.33)

(Note that this Ω refers to an energy density fraction and not the conformal factor
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used in Eq. (3.12).) We will also employ the fraction f defined as:

ρφ ≡ fρd . (3.34)

The scalar field itself obeys the following particular solution of Eq. (3.9)

φ = MP
nN

λ
+ φ̂ , (3.35)

where φ̂ is the value φ would take at N = 0 (though note that this bears no relation

to realistic present-day values of φ since at some point before N = 0 the neutrinos

become important and the scaling solution becomes invalid).

For a slowly varying kinetic function k2(φ) one can expect behaviour that ap-

proximates this scaling solution. To find the deviation from scaling that results, we

allow f to vary as a function of φ:

ρφ = f(φ)ρd , (3.36)

and allow a small deviation δ(N) from the scaling solution result for φ (Eq. (3.35)):

φ = MP
nN

λ
+ φ̂+MPδ(N) . (3.37)

Differentiating Eq. (3.36), one obtains

(log f)′ = (log ρφ)′ − (log ρd)′ , (3.38)

where primes denote differentiation with respect to N . It will be necessary to employ

the ρφ conservation equation, Eq. (2.27) (with pν = ρν/3), as well as the definitions

of ρφ and pφ, Eqs. (3.10) and (3.11). Using N as the time variable, these are given

by:

ρ′φ = −3(ρφ + pφ) , (3.39)

ρφ =
k2H2

2
φ′2 + V , (3.40)

and

pφ =
k2H2

2
φ′2 − V . (3.41)

50



CHAPTER 3. GROWING NEUTRINO QUINTESSENCE

It proves convenient to introduce the constant of proportionality in Eq. (3.31) as

follows:

ρd = ρ∗M4
P exp(−nN − λφ̂/MP) , (3.42)

where ρ∗ is a dimensionless constant. Substituting Eqs. (3.39) to (3.42) into Eq. (3.38)

yields

(log f)′ = −6

(
1− V

ρφ

)
+ n . (3.43)

Now, using Eqs. (3.36), (3.37), and (3.42)

V

ρφ
=

M4
P exp(−λφ/MP)

fρ∗M4
P exp(−nN − λφ̂/MP)

=
1

fρ∗
exp(−λδ) . (3.44)

Hence Eq. (3.43) becomes:

(log f)′ = n− 6 +
6

fρ∗
exp(−λδ) . (3.45)

Differentiating Eq. (3.37) gives

δ′ =
φ′

MP

− n

λ
. (3.46)

Rearranging Eq. (3.40), we write φ′ in terms of ρφ and V :

φ′ =

[
2ρφ
k2H2

(
1− V

ρφ

)] 1
2

, (3.47)

and hence

φ′ = MP

[
6Ωφ

k2

(
1− 1

fρ∗
exp(−λδ)

)] 1
2

, (3.48)

where we have used Eq. (3.44) again. Substituting into Eq. (3.46) yields

δ′ = −n
λ

+

[
6Ωφ

k2

(
1− 1

fρ∗
exp(−λδ)

)] 1
2

. (3.49)

In the case of the scaling solution, in which k2 = const, f = const, and δ = 0,

Eq. (3.45) gives
1

f
=
(

1− n

6

)
ρ∗ . (3.50)

If, however, k2 varies smoothly one may expect only a small deviation from this
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solution. We introduce a function ζ(N) to quantify the deviation of f from the

scaling solution value given by Eq. (3.50):

1

f
=
(

1− n

6

)
ρ∗ exp(−λζ) . (3.51)

Differentiating Eq. (3.51) gives

ζ ′ =
1

λ
(log f)′ , (3.52)

which, using Eq. (3.45), gives

ζ ′ =
1

λ

[
n− 6 +

6

fρ∗
exp(−λδ)

]
. (3.53)

Equations (3.49) and (3.53), both contain the term 1/(fρ∗) exp(−λδ), which using

Eq. (3.51) can be written as

1

fρ∗
exp(−λδ) =

(
1− n

6

)
exp(−λ(δ + ζ)) . (3.54)

Equations (3.49) and (3.53) can now be written as

δ′ = −n
λ

+

[
nΩφ

k2

] 1
2
[
1 +

(
6

n
− 1

)
(1− exp[−λ(δ + ζ)])

] 1
2

, (3.55)

and

ζ ′ =
n− 6

λ
[1− exp(−λ(δ + ζ))] , (3.56)

respectively.

Now we recall Eq. (3.33), but introduce a small deviation u(N), by

Ωφ =
nk2

λ2
(1− u) , (3.57)

and group the small functions δ and ζ through the small function ∆, defined by

∆ =

(
6

n
− 1

)
(1− exp[−λ(δ + ζ)]) . (3.58)
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Differentiating Eq. (3.58), we find

∆′ = λ

(
6

n
− 1

)
exp[−λ(δ + ζ)](δ′ + ζ ′) . (3.59)

We can make use of Eqs. (3.57) and (3.58) to simplify our equations for δ′ and ζ ′,

Eqs. (3.55) and (3.56) as follows:

δ′ =
n

λ

(√
(1− u)(1 + ∆) − 1

)
, (3.60)

ζ ′ = −n
λ

∆ . (3.61)

Substituting Eqs. (3.58), (3.60), and (3.61) into Eq. (3.59) gives

∆′ = [6− n(1 + ∆)](
√

(1− u)(1 + ∆) − 1−∆) . (3.62)

The differential equation for u follows from differentiating Eq. (3.57) and rearranging

as

u′ = (1− u)

[
d log k2

dφ
φ′ − (log Ωφ)′

]
, (3.63)

which in turn yields

u′ = (1− u)

[
MP

d log k2

dφ

(n
λ

+ δ′
)
− λ

1 + f
ζ ′
]
, (3.64)

where we have made use of Eqs. (3.46) and (3.56) and the fact that Ωφ = f/(1 + f).

Equations (3.62) and (3.64) can be compared to Eq. (108) in Ref. [216]. We find two

instances of the factor (1− u) instead of (1 + u), and the second term in Eq. (3.64)

differs by a factor of Ωφ. This latter difference follows through to give an extra factor

of Ωφ in Eq. (3.73) compared to Ref. [216] which, as discussed below, has a crucial

impact on the range of possible values for the parameter κ.

We continue following the procedure of Ref. [216] but with our versions of the

∆ and u equations in order to find an approximate form for u. Using Eqs. (3.60)

and (3.61), Eq. (3.64) can be rewritten as

u′ = (1− u)

[
MPn

λ

d log k2

dφ

√
(1− u)(1 + ∆) +

n

1 + f
∆

]
. (3.65)
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Close to the scaling solution ∆, u, and MP d log k2/dφ are all small. Expanding

Eqs. (3.62) and (3.65) to linear order in small quantities gives

∆′ =
n− 6

2
(∆ + u)

u′ =
nMP

λ

d log k2

dφ
+ n(1− Ωφ)∆ . (3.66)

Setting ∆′ = u′ = 0, we see that this system of equations admits a constant solution:

ū = −∆̄ =
MP

λ(1− Ωφ)

d log k2

dφ
. (3.67)

One can then split u = ū + û and ∆ = ∆̄ + ∆̂ into their N -independent and N -

dependent components. The equations of motion for only the N -dependent parts are

as follows:

∆̂′ =
n− 6

2
(∆̂ + û) (3.68)

û′ = n(1− Ωφ)∆̂ , (3.69)

which can be written in the following form:(
∆̂

û

)′
= A

(
∆̂

û

)
, (3.70)

where

A =
n− 6

2

(
1 1

2n(1−Ωφ)

n−6
0

)
. (3.71)

The real parts of the eigenvalues of the matrix A are both negative, which implies

that the N -dependent parts of ∆ and u decay with N . Thus the solution with u = ū

and ∆ = ∆̄ is approached and it is appropriate to use ū in Eq. (3.57):

Ωφ =
nk2

λ2
(1− ū) . (3.72)

Our result for ū, Eq. (3.67), differs from the corresponding result in Ref. [216] by

a factor of Ωφ. As an example, we consider the particular kinetic function used in

Ref. [216], given by Eq. (3.25) in this thesis. Substituting Eq. (3.25) into Eq. (3.67),
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one obtains

ū = − 2κΩφ

n(1− Ωφ)
. (3.73)

The corresponding result in Ref. [216] is given by

ū = − 2κ

n(1− Ωφ)
, (3.74)

from which it follows that κ must be small compared to 1, in order to give a small

ū and hence produce behaviour close to the scaling solution. However, since Ωφ is

small, we find no such constraint on κ; ū is small automatically in Eq. (3.73).

This has implications for the prospects of constraining the model. A larger value

of κ gives smaller values of the function k2(φ) and hence smaller values of Ωφ [216].

There is a tight upper bound from the Planck experiment on the value of Ωφ at

early times. This can translate into a lower bound on κ, discussed in more detail in

Section 3.4. Based on Eq. (3.74) one would conclude that there are both upper and

lower bounds on κ, which could potentially put a very tight constraint on the model.

However, based on our result for ū, which is small irrespective of the magnitude of

κ, one finds no upper bound on κ. As will be shown in Section 3.4, we can consider

values of κ much larger than the upper bound found in Ref. [216]. Our numerical

results in that section match closely our prediction and there is no evidence of any

approximation breaking down for large κ (see, for example Figs. 3.3 and 3.4).

3.3.2 Inverse power-law potential

An approximate analytic solution can also be found for models with inverse power-law

potentials of the form

V (φ) = M4
PṼ (MP/φ)α , (3.75)

where Ṽ and α are dimensionless constants.

While the neutrinos are relativistic, Eq. (3.9) becomes

φ,tt + 3Hφ,t +
1

2k2
(k2),φφ

2
,t +

1

k2
V,φ = 0 . (3.76)

Using the same kinetic function as for the exponential potential case, Eq. (3.25), but

with λ = 1 and φ̄ = 0 since these parameters relate to the specific model presented
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in Ref. [216], we have

k2(φ) =
MP

2κφ
. (3.77)

For our choice of k2(φ) and V (φ), Eq. (3.76) becomes:

φ,tt + 3Hφ,t −
φ2
,t

2φ
− 2ακM3+α

P Ṽ φ−α = 0 . (3.78)

Using N as the time variable, we have:

H2φ′′ +HH ′φ′ + 3H2φ′ − H2φ′2

2φ
− 2ακM3+α

P Ṽ φ−α = 0 . (3.79)

Finally introducing F via

φ = MP exp(F/MP) , (3.80)

Eq. (3.79) becomes:

F ′′ + F ′2
2MP

+

(
H ′

H
+ 3

)
F ′ − 2ακ

M3
PṼ

H2
exp(−(α + 1)F/MP) = 0 . (3.81)

The Hubble parameter evolves according to H2 = H̃2 exp(−nN), where n = 4

for a radiation-dominated universe, n = 3 for a matter-dominated universe, and H̃

is a normalising factor. Equation (3.81) then becomes:

F ′′ + F ′2
2MP

+
(

3− n

2

)
F ′ − 2ακ

M3
PṼ

H̃2
exp(nN − (α + 1)F/MP) = 0 . (3.82)

Motivated by results from numerical simulation (see Section 3.4), which show linear

solutions for F , we make the following ansatz:

F = qMPN + F̂ , (3.83)

where q is a dimensionless constant and F̂ is the value F would take if this solution

were extrapolated to N = 0.

Under this ansatz Eq. (3.82) becomes:

1

2
q2MP+

(
3− n

2

)
fMP−2ακ

M3
PṼ

H̃2
exp(nN−(α+1)qN−(α+1)F̂/MP) = 0 . (3.84)
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Treating the N -dependent and N -independent parts of the equation separately, we

obtain

q =
n

α + 1
, (3.85)

which, substituting into Eq. (3.84), gives

1

2

(
n

α + 1

)2

+
(

3− n

2

) n

α + 1
− 2ακ

M2
PṼ

H̃2
exp(−(α + 1)F̂/MP) = 0 . (3.86)

Rearranging, we find F̂ as

F̂ = − MP

α + 1
log

{
H̃2

2ακM2
PṼ

[
1

2

(
n

α + 1

)2

+
(

3− n

2

) n

α + 1

]}
. (3.87)

Thus, in contrast to the previous section, we find that inverse power-law poten-

tials admit solutions in which log(φ) evolves linearly with N as opposed to φ evolving

linearly as in the exponential potential case.

It is also instructive to find an expression for the dark energy density fraction.

Substituting our solution for φ (Eqs. (3.80) and (3.83)) into Eq. (3.10) gives the

energy fraction:

Ωφ =
q2

12κ
exp(qN + F̂/MP) +

M2
PṼ

3H̃2
exp(nN − αqN − αF̂/MP) . (3.88)

Recalling Eq. (3.85), one can write

Ωφ =

[
q2

12κ
exp(F̂/MP) +

M2
PṼ

3H̃2
exp(−αF̂/MP)

]
exp(qN) . (3.89)

Thus it turns out that Ωφ is proportional to φ:

Ωφ =

[
q2

12κ
exp(2F̂/MP) +

M2
PṼ

3H̃2
exp((−α + 1)F̂/MP)

]
φ

MP

, (3.90)

where q and F̂ are given by Eqs. (3.85) and (3.87). In contrast to the exponential

case, where there is an approximately constant fraction of early dark energy, here

the fact the dark energy fraction has an exponential dependence on N implies that

at early times (i.e. large negative values of N), it automatically makes a negligible
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contribution to the energy density. These results are confirmed in Section 3.4, with

Figs. 3.6 and 3.7 showing log(φ) and log(Ωφ) evolving linearly with N with a gradient

given by q.

3.4 Numerical background evolution

In addition to the analytic approach laid out in Section 3.3, we numerically solved

the equations of motion. This allows us to confirm the results of Section 3.3 and to

probe the late-universe cosmology that our analytic approach did not capture.

To generate our results we modified the code used by Barreira et al. in Ref. [217],

which the authors kindly shared with us, in turn a modified version of the Boltzmann

code CAMB [218]9. We modified the background part of the code such that it solved

the background equations of motion laid out in Section 3.2.

We consider the following choices for the kinetic, coupling, and potential func-

tions:

Kinetic function:

• k2
c (φ) = const ,

• k2
1(φ) = MPλ

2κ(φ−φ̄)
.

Coupling function:

• βc(φ) = const ,

• β1(φ) = − MP

φc−φ ,

• β2(φ) = −
(

MP

φc−φ

)2

,

• β3(φ) = −γMP

φ
.

Potential function:

• Vexp(φ) = M4
P exp(−λφ/MP) ,

• VIPL(φ) = Ṽ M4
P(MP/φ)α .

9available at https://camb.info
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The motivation for choosing these functions is as follows. In Ref. [216], the

functions k2
1(φ) and Vexp(φ) are used, with β(φ) unspecified. We use this as a starting

point, and we specify β(φ) = β1(φ) as employed in Ref. [213]. We then widen the

scope by choosing other functions that could be expected to give rise to growing

neutrino quintessence behaviour. Inverse power-law potentials have a qualitatively

similar ‘decaying’ form to exponential potentials. The couplings βc, β1, β2, and β3

each correspond to a function C(φ) via Eq. (3.3), or equivalently:

C(φ) = exp

(
− 1

MP

∫
β(φ)dφ

)
. (3.91)

The four functions β(φ) considered here all correspond to a rapidly rising C(φ).

Thus V (φ) and C(φ) give rise to an effective potential for the scalar field that has a

minimum, which is a necessary condition for growing neutrino quintessence.

Section 3.4.1 focuses on k2
1(φ), β1(φ), and Vexp(φ). The scaling solution discussed

in Section 3.3 is verified and a constraint is found on the parameter κ in k2
1(φ) due

to its effect on the amount of early dark energy. In Section 3.4.2 we consider k2
1(φ),

β1(φ), and VIPL(φ), which give rise to qualitatively similar behaviour for the scalar

field φ but do not produce early dark energy. I discuss the various options for β(φ)

in Section 3.4.3.

3.4.1 Exponential potential

In this section I present the results of numerical calculations using Vexp(φ), k2
1(φ), and

β1(φ). During radiation and matter domination φ evolves linearly with N according

to the scaling solution Eq. (3.35). After the neutrinos become non-relativistic, φ

starts to oscillate around the minimum of the effective potential formed by V (φ)

and β(φ) and comes to a halt to behave as an effective cosmological constant. This

behaviour is illustrated in Fig. 3.1.

Figure 3.2 shows the evolution of the equation of state of the scalar field. It

can be seen that it mimics radiation with a value of wφ = 1/3 when the Universe is

radiation dominated, then approaches wφ = 0, mimicking matter when the Universe

is matter dominated, and finally tends towards wφ = −1 after the neutrinos halt the

evolution of the scalar field and it mimics a cosmological constant. The first two

regimes illustrate the scaling solution, where the energy density of the scalar field
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Figure 3.1: The late-time evolution of the scalar field for an exponential potential
Vexp(φ) = M4

P exp(−λφ/MP), kinetic function k2
1(φ) = MPλ/(2κ(φ−φ̄)), and coupling

function β1(φ) = −MP/(φc − φ), with λ = 300, κ = 1.8, φ̄ = 0.0933, and φc = 0.933.
φ̄ is set using Eq. (3.28) with log(m/µ) = 14 as in Ref. [216]; φc is tuned by the code
to produce the correct dark energy density at the present epoch; κ is set to the lower
limit inferred from early dark energy constraints (see Section 3.4.1); and λ, which
does not affect the physics but merely scales φ, has been chosen such that φ does not
exceed the Planck scale.

tracks that of the dominant species as discussed in Section 3.3. This is also illustrated

in Fig. 3.3, in which we have plotted the predictions of the energy density fraction of

the scalar field assuming the scaling solution is exactly satisfied both for radiation

and matter domination. It can be seen that in the early Universe the numerical

result closely follows Ωφ = 4k2(φ)/λ2 and at later times it follows Ωφ = 3k2(φ)/λ2,

with a transition in between, as expected.

Figure 3.4 shows the effect of varying the model parameter κ in k2
1(φ) on the

energy density fraction of the scalar field. Note that the larger the value of κ the

smaller the amount of early dark energy. This agrees with the scaling solution result,

60



CHAPTER 3. GROWING NEUTRINO QUINTESSENCE

14 12 10 8 6 4 2 0

N

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

w
φ

Figure 3.2: The evolution of the equation of state of the scalar field, wφ, for the
same functions and parameters as in Fig. 3.1. The dashed and dotted lines show the
equation of state during radiation and matter domination respectively.
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Figure 3.3: The evolution of the energy density fraction of the scalar field, Ωφ, during
radiation and matter domination (solid line) for the same functions and parameters as
in Fig. 3.1. The dashed and dotted lines respectively show the predicted evolution of
Ωφ, Eq. (3.72), under the assumption of a radiation-dominated and matter-dominated
universe where the scalar field obeys the scaling solution discussed in Section 3.3.

61



CHAPTER 3. GROWING NEUTRINO QUINTESSENCE

14 12 10 8 6 4 2 0

N

0.00

0.02

0.04

0.06

0.08

0.10
Ω
φ

=0.2

=0.5

=1.0

=1.8

=3.0

Planck bound

Figure 3.4: The evolution of the energy density fraction of the scalar field for a range
of values of κ and otherwise the same functions and parameters as in Fig. 3.1. Also
shown is the Planck upper bound on Ωe < 0.0036.

Eq. (3.33) in Section 3.3, since κ is effectively a constant that controls the size of the

kinetic function k2
1(φ) as can be seen in Eq. (3.25).

We find that our numerical results for the evolution of dark energy are well

approximated by the early dark energy parametrisation of Doran and Robbers [117],

in which the dark energy density fraction is parametrised as follows:

ΩDE(a) =
Ω0

DE − Ωe(1− a−3w0)

Ω0
DE + Ω0

ma
3w0

+ Ωe(1− a−3w0) , (3.92)

where Ωe (the fraction of early dark energy) and w0 (the present-day equation of

state) are parameters to be fitted, and Ω0
DE and Ω0

m are the present-day dark energy

and matter fractions. For a given value of κ we carry out a least-squares fitting of

our numerical results to the Doran and Robbers parametrisation to find w0 and Ωe.

The Planck Collaboration [101] finds an upper bound on the parameter Ωe of 0.0036.
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Our results (Fig. 3.4) show that the value of κ required to give rise to this value of

Ωe is κ = 1.8, with larger values of κ resulting in smaller values of Ωe and vice versa.

We therefore find a lower bound on κ of 1.8.

As discussed in Section 3.3, Ref. [216] finds a requirement that κ� 1 in order

to ensure that u, the deviation of Ωφ from the scaling solution at early times, is small.

If this requirement were valid then the model of Ref. [216] would have been ruled out

by the constraints on early dark energy. However, due to our finding in Section 3.3

that u is given by Eq. (3.73) and not Eq. (3.74), we find that there is no requirement

for κ to be small and hence our constraint that κ > 1.8 does not rule out the model.

Varying the parameter λ in the potential merely results in a rescaling of φ and

does not have any effect on the physics. We also studied the case of a constant kinetic

function k2
c and found that it made little difference to the results, as demonstrated

by Fig. 3.5.

3.4.2 Inverse power-law potential

In this section I present the results for models with VIPL(φ), k2
1(φ), and β1(φ), with

κ = 1.8, λ = 1, and φ̄ = 0. We considered several different values of the power α

as shown in Figs. 3.6 and 3.7. For each value of α, an appropriate value of Ṽ was

chosen to produce the correct dark energy density fraction at the present day. For

ease of comparison, the same present-day value of φ was chosen for each value of α,

with φc being tuned in each case to achieve this.

The choice of κ = 1.8 was made for ease of comparison with the exponential

potential, but has no special significance in the inverse power-law case. Larger values

of κ result in an upward shift in φ and a corresponding downward shift in Ωφ.

Compared to the models with exponential potentials already discussed, the

behaviour of models with inverse power-law potentials is not drastically different.

During radiation and matter domination we find that φ evolves exponentially with

N as opposed to linearly as it does for models with Vexp(φ). However, the qualitat-

ive behaviour, of the field increasing as long as neutrinos are relativistic and then

effectively stopping once they become non-relativistic, is still present. Figure 3.6

shows the evolution of the logarithm of the scalar field against N for different inverse

power-law potentials. Before the neutrinos become non-relativistic, log(φ) evolves
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Figure 3.5: The evolution of the energy density fraction of the scalar field for three
choices of the kinetic function. The black solid line corresponds to the varying kinetial
k2

1(φ) for the same choices of functions and parameter values as in Fig. 3.1. The blue
and red dashed lines correspond to constant kinetial, with the value of k2

c chosen to
match the value of k2

1(φ) in the early and late universe respectively. The varying
kinetial results in a slightly larger drop in Ωφ from the early universe to the late
universe than for the constant kinetial case.

approximately linearly with a gradient of n/(α+1) and an intercept of F̂ as predicted

in Eqs. (3.85) and (3.87).

The evolution of the energy density of the scalar field is shown in Fig. 3.7. From

this it is clear that these models do not give rise to early dark energy; looking back

in time, the energy density of the scalar field continues to drop off rapidly. The

constraint on κ that we found for exponential potentials therefore does not apply to

models with inverse power-law potentials.
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Figure 3.6: The evolution of the logarithm of the scalar field for inverse power-
law potentials of the form VIPL(φ) = Ṽ M4

P(MP/φ)α with kinetic function k2
1(φ) =

MP/(2κφ) and coupling function β1(φ) = −MP/(φc − φ). We fix κ = 1.8 and the
parameters Ṽ and φc take different values for different values of α (see text for
details).

3.4.3 Coupling function

In addition to the coupling β1(φ) already considered, we investigated βc, β2(φ), and

β3(φ). None of these choices led to behaviour significantly different to the β1(φ)

case, provided |β| is sufficiently large at the time at which neutrinos become non-

relativistic. This requirement is automatically satisfied for β1(φ) and β2(φ), since as

φ approaches φc, |β(φ)| tends to infinity. The scalar field is never allowed to reach φc,

however, because the neutrino coupling term in the scalar field equation, Eq. (3.9),

always acts to decrease the value of φ. It can be seen that the value of φc in β1(φ)

and β2(φ) determines the present-day value of φ, since the latter will approach ever

closer to it but can never exceed it. This is demonstrated in Fig. 3.1.

For βc and β3(φ) one does not automatically obtain large |β| but it must be set
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Figure 3.7: The evolution of the logarithm of the energy fraction of the scalar field
for the same functions and parameters as in Fig. 3.6.

by an appropriate choice of parameters. In the latter case this means choosing a

large value of γ. The requirement on the size of |β| is illustrated by Eq. (2.34). |β|
determines the ratio of the energy density of the scalar field to that of the neutrinos.

If |β| is too small, the coupling term in Eq. (3.9) will not be large enough to counteract

the potential term and the value of φ will continue to increase. This will result in both

a larger Ων and a smaller Ωφ. The relationship given by Eq. (2.34) is demonstrated

by Fig. 3.8.

3.5 Perturbative analysis

Sections 3.3 and 3.4 presented a background analysis of GNQ models by making the

assumptions of homogeneity and isotropy. However, as discussed in Chapter 1, one

can learn a great deal more about a cosmological model by including perturbations

from homogeneity and isotropy. To this end, in this section I present an analysis
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Figure 3.8: The ratio of the energy densities of the scalar field and the neutrinos for
a constant coupling β = −100λ. In the late universe the ratio oscillates around |β|/λ
as illustrated by the horizontal dotted line.

that goes beyond the background equations studied in Sections 3.3 and 3.4.

In this section I work in the freeze frame of Ref. [216], as introduced in Sec-

tion 3.2.1. In some sense this is a difficult frame in which to work, since it involves

non-minimal couplings to both gravity and matter. However, it has the advantage

of making some of the broader features of the Wetterich model more clear, such as

the presence and properties of the fixed points [216].

By varying the action in Eq. (3.19) with respect to gµν and χ respectively one

can derive the gravitational field equations:

χ2

(
Rµν −

1

2
Rgµν

)
+∇ρ∇ρχ2gµν −∇µ∇νχ

2

+ (B − 6)

(
1

2
∇ρχ∇ρχgµν −∇µχ∇νχ

)
+ µ2χ2gµν = Tµν , (3.93)
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and the scalar field equation:

(B − 6)∇ρ∇ρχ+
1

2
B,χ∇ρχ∇ρχ− 2µ2χ+ χR + qχ = 0 . (3.94)

Substituting the trace of Eq. (3.93) in Eq. (3.94) yields:

∇ρ∇ρχ+
B,χ

2B
∇ρχ∇ρχ+

1

χ
∇ρχ∇ρχ+

2

B
µ2χ =

T ρρ
Bχ
− qχ
B
, (3.95)

where qχ is the variation of the matter action with respect to χ. In the freeze frame

of the Wetterich model, qχ 6= 0 and particle masses can be interpreted as varying

with time and possibly space.

In order to derive the linearised equations of motion we write χ as the sum of a

homogeneous background part and a small inhomogeneous perturbation:

χ→ χ̄+ δχ . (3.96)

We write the metric tensor in the conformal Newtonian gauge, allowing perturbations

Ψ and Φ:

ds2 = a2(τ)[−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdx
idxj] , (3.97)

(where Ψ as defined here is not to be confused with the symbol used to denote

particle wavefunctions in Section 3.2). The energy–momentum tensor can be written

as follows:

[T µν ] =

[
−ρ̄− δρ (ρ̄+ p̄)vi

−(ρ̄+ p̄)vi (p̄+ δp)δij + Σi
j

]
, (3.98)

where Σi
j is the shear stress and vi is the fluid velocity.

Substituting Eqs. (3.96) to (3.98) into Eq. (3.93), and separating into time and

spatial components of µ and ν, yields the linearised gravitational field equations. In

the equations that follow, B̄ ≡ B(χ̄), B̄,χ ≡ B,χ

∣∣
χ=χ̄

, and dots denote differentiation

with respect to conformal time.
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We find the 00 component as:

3(Hχ̄+ ˙̄χ)2 − 1

2
B̄ ˙̄χ2 − µ2a2χ̄2

+ 6H2χ̄δχ+ 6H ˙̄χδχ+ 6Hχ̄ ˙δχ− 6Hχ̄2Φ̇− 6χ̄ ˙̄χΦ̇ + 2χ̄2∆Φ + 6 ˙̄χ ˙δχ

− 2χ̄∆δχ− B̄ ˙̄χ ˙δχ− 1

2
B̄,χ ˙̄χ2δχ− 2µ2a2Ψχ̄2 − 2µ2a2χ̄δχ = ρ̄a2 + 2ρ̄a2Ψ + δρa2 ;

(3.99)

0i components:

2χ̄2(Φ̇,i +HΨ,i) + 2χ̄ ˙̄χΨ,i − 2χ̄ ˙δχ,i + 2Hχ̄δχ,i − (B̄ − 4) ˙̄χδχ,i = (ρ̄+ p̄)vi ; (3.100)

ij components, trace, background only:

−χ̄2(2Ḣ +H2)− 2χ̄ ¨̄χ− 2Hχ̄ ˙̄χ− 1

2
(B̄ − 2) ˙̄χ2 + µ2a2χ̄2 = p̄a2 ; (3.101)

ij components, trace, first order in perturbations:

− (2Ḣ+H2)χ̄δχ− ¨̄χδχ− χ̄δ̈χ−H ˙̄χδχ−Hχ̄ ˙δχ− 1

2
(B̄− 2) ˙̄χ ˙δχ− 1

4
B̄,χ ˙̄χ2δχ+ χ̄2Φ̈

+ χ̄2(H +
˙̄χ

χ̄
)(Ψ̇ + 2Φ̇) +

1

3
χ̄2∆(Ψ− Φ) +

2

3
χ̄∆δχ+ µ2a2χ̄δχ+ µ2a2χ̄2Ψ

=
1

2
δpa2 + p̄a2Ψ ; (3.102)

and finally, ij components, traceless:

χ̄2Φ,ij − χ̄2Ψ,ij − 2χ̄δχ,ij = a2Σij ; (3.103)

The explicit dependence of the matter part of the action on the scalar field is denoted

by qχ:

qχ = −ρm

χ
− (2γ̃ + 1)

(ρν − 3pν)

χ
, (3.104)

which can be expanded to linear order and substituted along with Eqs. (3.96) to (3.98)
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into Eq. (3.95) to yield the linearised scalar field equation:

¨̄χ+ δ̈χ = −2γ̃
(ρ̄ν − 3p̄ν)a

2

B̄χ̄
−

˙̄χ2

χ̄
− 2H ˙̄χ− B̄,χ

2B̄
˙̄χ2 +

2µ2a2χ̄

B̄

− 2γ̃
(δρν − 3δpν)a

2

B̄χ̄
+ ˙̄χ(Ψ̇ + 3Φ̇) +

[
−4γ̃

(ρ̄ν − 3p̄ν)a
2

B̄χ̄
+

4µ2a2χ̄

B̄

]
Ψ

−
(

2H +
2 ˙̄χ

χ̄
+
B̄,χ

B̄
˙̄χ

)
˙δχ+

[
1

2

(
B̄2
,χ

B̄2
− B̄,χχ

B̄
+

2

χ̄2

)
˙̄χ2

+ 2γ̃

(
B̄,χ

B̄
+

1

χ̄

)
(ρ̄ν − 3p̄ν)a

2

B̄χ̄
+

(
−B̄,χ

B̄
+

1

χ̄

)
2
µ2a2χ̄

B̄
+ ∆

]
δχ . (3.105)

The explicit dependence of the matter part of the action on the scalar field χ

results in a modified energy–momentum conservation equation:

∇µT
µ
ν = qχ∇νχ . (3.106)

Because baryons and dark matter do not interact with the neutrinos, this equation

can be separated, allowing us to consider the neutrino fluid equations in isolation:

∇µT
(ν)µ
ν = −(2γ̃ + 1)

(ρν − 3pν)

χ
∇νχ , (3.107)

which at the background level is simply:

˙̄ρν + 3H(ρ̄ν + p̄ν)− (2γ̃ + 1)(ρ̄ν − 3p̄ν)
˙̄χ

χ̄
= 0 , (3.108)

and at linear order produces:

δ̇ν + 3

(
H +

(2γ̃ + 1) ˙̄χ

χ̄

)(
δpν
ρ̄ν
− p̄ν
ρ̄ν
δν

)
− 3

(
1 +

p̄ν
ρ̄ν

)
Φ̇

+

(
1 +

p̄ν
ρ̄ν

)
vi,i −

(2γ̃ + 1)

χ̄

(
1− 3

p̄ν
ρ̄ν

)
˙δχ+

(2γ̃ + 1)

χ̄2

(
1− 3

p̄ν
ρ̄ν

)
˙̄χδχ = 0 , (3.109)

[(
1 +

p̄ν
ρ̄ν

)
vi

]
˙+H

(
1− 3

p̄ν
ρ̄ν

)(
1 +

p̄ν
ρ̄ν

)
vi +

δpν,i
ρ̄ν

+ Σj
(ν)i,j

+

(
1 +

p̄ν
ρ̄ν

)
Ψ,i +

(2γ̃ + 1)

χ̄

(
1− 3

p̄ν
ρ̄ν

)(
˙̄χ

(
1 +

p̄ν
ρ̄ν

)
vi + δχ,i

)
= 0 , (3.110)
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where δν ≡ δρν/ρ̄ν is the neutrino density contrast.

If one neglects the interaction between baryons and photons (which is a reas-

onable approximation at late times when the photon density is negligible), one can

write the matter (baryons and CDM) fluid equations as:

∇µT
(m)µ
ν = −(2γ̃ + 1)

ρm

χ
∇νχ , (3.111)

giving

˙̄ρm + 3Hρ̄m − (2γ̃ + 1)ρ̄m

˙̄χ

χ̄
= 0 , (3.112)

at the background level and

δ̇m − 3Φ̇ + vi,i −
˙δχ

χ̄
+

˙̄χδχ

χ̄2
= 0 , (3.113)

v̇i +Hvi + Ψ,i +
˙̄χvi + δχ,i

χ̄
= 0 , (3.114)

to linear order in perturbations. The photons do not couple to the scalar field and

their fluid equations are not modified.

Equations (3.99), (3.100), (3.102), (3.103), and (3.105) have been confirmed

against a set of gauge-invariant equations [219]. We then translated the gauge-

invariant equations into the synchronous gauge and replaced the corresponding equa-

tions in CAMB with our modified ones. Unfortunately we were unable to produce

a fully functional modified version of the code, possibly due to divergences caused

by nonlinearities in the neutrino perturbations. Upon a more detailed study of the

literature, especially Ref. [213], we concluded that the presence of non-linear neutrino

lumps in growing neutrino quintessence models would render our linear approach

unable to provide useful insight. This motivated us to pursue the Einstein-frame

background analysis presented in Sections 3.3 and 3.4.

3.6 Discussion

Growing neutrino quintessence models offer an elegant solution to the coincidence

problem by allowing dark energy domination to be triggered by the neutrinos becom-

ing non-relativistic. Soon after the mechanism was proposed, however, it was found

71



CHAPTER 3. GROWING NEUTRINO QUINTESSENCE

that it led to an attractive fifth force acting on the neutrinos. This force, mediated

by the quintessence field, is much stronger than gravity and gives rise to non-linear

neutrino lumps on large scales. Most of the research that has gone into GNQ models

has focused on the behaviour of these lumps [202–213]. In this work, however, the

focus has been on the early dark energy fraction implied by GNQ models.

The model presented in Ref. [216] combines the GNQ mechanism with several

other features including inflation. The author carries out an approximate analytic

calculation to find the amount of early dark energy predicted by the model and

compares it to constraints on early dark energy from the Planck Collaboration. They

find a lower bound on the model parameter κ, which controls the scale of the kinetic

term, from the early dark energy constraints and an upper bound on the same

parameter from their calculation. Intriguingly, these bounds are very close together,

meaning that improved measurements of the dark energy fraction present in the early

universe could in principle rule out the model (or alternatively find that early dark

energy is present, which would be even more exciting). Indeed, in Section 3.4.1 I

present an updated lower bound on κ from more recent early dark energy constraints

which exceeds the upper bound found in Ref. [216], which on the face of it rules out

the model. However, in Section 3.3.1 we have also repeated the approximate analytic

procedure of Ref. [216] and found disagreement with their results such that the upper

bound on κ is no longer present. We conclude that the model of Ref. [216] is not

ruled out by early dark energy constraints.

In addition to carrying out a detailed background analysis, both analytically and

numerically on the model in Ref. [216], we have also studied a range of similar GNQ

models by varying the kinetic, potential, and neutrino–scalar coupling functions. An

analytic solution for the dark energy fraction during radiation and matter domination

in the case of an inverse power-law potential is presented in Eq. (3.89), and was

confirmed by the numerical analysis presented in Section 3.4.2. However, we found

that those models do not give rise to early dark energy, so the constraint we found for

the exponential potentials does not apply. Section 3.4.3 discussed the implications

of changing the neutrino–scalar coupling function.

We used our background analysis to demonstrate that the following conditions

must be met to give rise to growing neutrino quintessence:

• V (φ) must have a negative gradient in order to cause the value of the scalar
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field to increase with time. This gradient must be sufficiently steep that φ

reaches large enough values in the late Universe to act as dark energy. Note

that growing neutrino quintessence models such as the ones considered here do

not require that V (φ) be flat in the late Universe, as other quintessence models

often require. The slow evolution of φ necessary for it to mimic a cosmological

constant is achieved by the presence of the neutrino coupling term, not by slow

roll.

• |β(φ)| must be sufficiently large when the neutrinos become non-relativistic

that β(ρν − 3pν) is able to act as a strong enough restoring force to stop the

evolution of φ in Eq. (3.9).

Finally, in Section 3.5 I presented the cosmological equations of motion perturbed

to linear order for the Wetterich model in the freeze frame. Following this was a

discussion of our attempt to implement the equations in a modified version of CAMB.

In this chapter I have explored a range of GNQ models using a number of meth-

ods, with a particular focus on the model proposed by Wetterich in Ref. [216]. GNQ

models have a rich phenomenology and important consequences for the evolution of

the universe.
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Chapter 4

Type 3 interacting dark energy

4.1 Introduction

There is still a great deal that is not known about the dark sector of the universe:

whether dark energy is dynamical or constant, what kind of particle (if any) is respons-

ible for dark matter and what interactions may occur. As discussed in Chapter 2, the

question of whether and how dark energy and dark matter interact with each other

has been the subject of extensive study. The most common approach is to introduce

an interaction term phenomenologically at the level of the equations of motion, but

recently a formalism has been developed for defining the interaction at the level of the

action [114]. This formalism results in classification of interacting dark energy into

three distinct classes, or ‘Types’. Many previously studied interacting dark energy

models were shown to be sub-cases of Type 1, in which the energy density of the

dark matter fluid is coupled to functions of the dark energy scalar field φ. The other

two Types allow couplings between the fluid momentum and the scalar field gradient.

In the Type 3 case such couplings are the only interactions allowed, with no energy

exchange possible between dark matter and dark energy. The analysis of Ref. [114]

found Type 3 models to be less tightly constrained than the other two Types, making

them a particularly interesting case to study. Furthermore, Type 3 models have been

shown to be able to reconcile tension between early- and late-universe probes of the

amount of structure growth in the universe discussed in Chapter 1.

As discussed in Chapter 1, the parameter σ8 is often used to quantify structure

formation. σ8 is the amplitude of fluctuations in the matter density on scales that

correspond to the size of galaxy clusters. As discussed previously, there are many

astrophysical and cosmological probes of σ8, each with its own challenges and po-

tential sources of error. Very broadly, however, different methods of measuring σ8

can be divided into early- and late-universe probes. Early-universe methods involve

constraining cosmological parameters with CMB data and using those to predict
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the amount of structure formation in the late universe. This approach requires the

use of sophisticated numerical techniques such as Boltzmann codes (described in

Section 4.2) to calculate how the universe evolves from the very early universe to

the present epoch. Such an approach is highly sensitive to the model one assumes to

describe the cosmological evolution. Late-universe probes of σ8, on the other hand,

tend to be less model dependent. These involve counting the galaxy clusters that can

be observed, by a variety of techniques from present-day Earth-based observations.

These early- and late-universe probes of σ8 do not agree perfectly, as discussed

in Chapter 1. Early-universe predictions of σ8 are larger than the values inferred

from cluster counts. Specifically, CMB observations, under the assumption that the

cosmological evolution is correctly described by ΛCDM, give σ8 = 0.811± 0.006 [6],

while cluster counts from the SZ effect give σ8 = 0.77± 0.02 [102] and weak lensing

gives values of σ8 ranging from 0.65 to 0.75 [103–105].

In Ref. [106], it was found that Type 3 coupled quintessence models can alleviate

the structure formation tension. The authors noted that this is a particularly exciting

result because it is much more common for the introduction of a coupling between

dark energy and dark matter to exacerbate the tension. The authors considered a

model with the Lagrangian

L =
1

2
∇µφ∇µφ+ Ae−λφ/MP + β0Z

2 , (4.1)

where

Z = uµ∇µφ (4.2)

is the coupling between the CDM momentum and the scalar field gradient and β0

is a dimensionless parameter that determines the strength of the coupling. This is

a very simple example of a Type 3 model. As discussed in Chapter 2, it is possible

in principle for the Lagrangian to be an arbitrary function of φ, Z and ∇µφ∇µφ.

Even sticking to the canonical form for the kinetic term, there are many possible

potential and coupling functions V (φ) and γ(Z) one could choose to consider in place

of Ae−λφ/MP and β0Z
2 respectively. Later in this chapter I discuss the implications

of introducing a double exponential potential and a more general power-law coupling

βn−2Z
n, where βn−2 is no longer dimensionless for n > 2.

The authors of Ref. [106] used a modified version of the Cosmic Linear Aniso-
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tropy Solving System (CLASS) to numerically solve the system of linear perturbation

equations obeyed by a universe in which dark energy is described by the Lagrangian

Eq. (4.1). They demonstrated that the effect of the Type 3 coupling on the CMB is

not important, modifying CTT
l at low l by a few percent depending on the value of

β0, well within the uncertainty due to cosmic variance (left-hand panel of Fig. 2 in

Ref. [106]). The matter power spectrum, on the other hand, was found to display a

modest suppression with respect to uncoupled quintessence for a wide range of β0

(right-hand panel of Fig. 2 in Ref. [106]). To demonstrate the result more rigorously,

the authors carried out a Markov chain Monte Carlo (MCMC) analysis, extract-

ing cosmological parameters for their model from likelihoods provided by Planck

TT data [220, 221], baryon acoustic oscillation data from BOSS [222], type 1a su-

pernovas [223], and Planck SZ cluster counts [102, 224]. When Planck SZ cluster

data was included, they found the Type 3 model was strongly preferred to ΛCDM,

improving the best-fit χ2-value by more than 16.

The work described in this chapter attempts to build on previous work on Type 3

models in three ways:

1. To provide a more detailed physical explanation for why the structure growth

suppression discovered by the authors of Ref. [106] is present, with regard to

the underlying equations of motion,

2. To carry out an investigation into how sensitive such suppression is to the

precise coupling function, by generalising to γ(Z) = βn−2Z
n for n > 2,

3. To study in detail the dependence of the structure growth suppression on the

form of the potential V (φ), including considering double exponential potentials.

Some work has already been done on the second of these. In Ref. [225], the authors

considered a coupling of the form γ(Z) = β1Z
3. The focus of that work was the

variable sound speed of dark energy that results from such a coupling. In this work,

we are more interested in whether and how such a coupling affects the structure

growth suppression studied in detail for the n = 2 case in Ref. [106].

The structure of this chapter is as follows. In Section 4.2, I give a brief overview

of the Boltzmann code CLASS used in this work, including the underlying perturbation

equations and the modifications made by the authors of Ref. [106]. The relevant

cosmological evolution equations for the dark energy scalar field and the CDM fluid
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in the presence of a Type 3 coupling are laid out in Section 4.2.4. In Section 4.3,

I present a physical explanation, by reference to the underlying equations, of the

mechanism by which the Type 3 model studied in Ref. [106] brings about suppression

of structure growth. In Sections 4.4 and 4.5, I explore how universal the growth

suppression is, by generalisation to coupling functions and potentials other than

the quadratic coupling and the single exponential potential studied in Ref. [106].

Section 4.6 contains a summary of our main findings, discussion of the limitations of

our approach, and an appraisal of possible avenues for future research in this area.

4.2 Cosmic Linear Anisotropy Solving System

As discussed in Chapter 1, the evolution of the universe can be approximated as

being homogeneous and isotropic by the Friedmann–Lemâıtre–Robertson–Walker

metric. However, since the universe is not perfectly homogeneous and isotropic, one

can learn more by allowing for perturbations from this approximation. The simplest

extension to the homogeneous background is to allow for linear perturbations. For a

complex system such as the universe, in which a large number of particles interact

both gravitationally via the Einstein field equations and thermodynamically, even

the simple linear approximation is sufficiently involved as to require sophisticated

numerical methods.

In the two and a half decades since the pioneering code COSMICS was developed for

this purpose [226] there have been several publicly available codes released which have

tried to solve the linear cosmological equations of motion as efficiently and precisely

as possible. Some notable examples are CMBFAST [227], CAMB [218] and CMBEASY [228],

collectively referred to as Boltzmann codes. In the work that concerns this chapter,

we used the more recent Cosmic Linear Anisotropy Solving System (CLASS) [229–

232]10. In this section I give a brief overview of the equations solved by CLASS (and

other codes) and how the equations are solved by the code. In what follows I follow

Ma and Bertschinger’s seminal work on cosmological perturbation theory [4].

10available at http://class-code.net
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4.2.1 Equations of motion

The core job of Boltzmann codes is to solve the Einstein equations and the fluid

equations. However, before the appropriate equations can even be written down it is

necessary to choose a gauge in which to work. The two most common choices are the

conformal Newtonian gauge and the synchronous gauge. There are advantages to

both gauges, which Ref. [4] elucidates, and CLASS is capable of using either. However,

since the present section is not intended as a thorough review of perturbation theory

but simply as theoretical background underpinning the work discussed in this chapter,

I shall limit my discussion to the synchronous gauge.

The perturbed synchronous gauge metric can be written as follows:

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj] , (4.3)

where we have assumed zero spatial curvature as discussed in Chapter 1. It is

convenient to decompose the metric perturbation hij into scalar, vector and tensor

parts, since at linear order these three types of perturbation are independent and may

be treated separately (at higher orders in perturbation theory there are cross-terms

and the scalar, vector and tensor perturbations all affect one another). The way in

which this decomposition is typically done is as follows:

hij = hδij + h
‖
ij + h⊥ij + hT

ij , (4.4)

where h is the trace of hij, and constitutes one of the two scalar modes, h
‖
ij represents

the other scalar mode, while the vector and tensor modes are h⊥ij and hT
ij respectively.

hT
ij is transverse, while the divergences of h

‖
ij and h⊥ij are longitudinal and transverse

vectors respectively. To make more explicit that h
‖
ij and h⊥ij represent scalar and

vector modes, they are often written as

h
‖
ij =

(
∂i∂j −

1

3
δij∇2

)
µ , (4.5)

h⊥ij = ∂iAj + ∂jAi , ∂iA
i = 0 , (4.6)

where µ is a scalar and Ai is a divergenceless vector. All calculations in CLASS are

carried out in Fourier space. h(~k, τ) and η(~k, τ) are the Fourier transforms of h(xµ)

and µ(xµ) respectively.
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Once a gauge is chosen, the Einstein field equations as presented in Chapter 1

can be linearised and written as follows:

k2η − 1

2

ȧ

a
ḣ = 4πGa2δT 0

0 , (4.7)

k2η̇ = 4πGa2(ρ̄+ p̄)ϑ , (4.8)

ḧ+ 2
ȧ

a
ḣ− 2k2η = −8πGa2δT ii , (4.9)

ḧ+ 6η̈ + 2
ȧ

a
(ḣ+ 6η̇)− 2k2η = −24πGa2(ρ̄+ p̄)σ , (4.10)

where the energy–momentum tensor Tµν has been decomposed to linear order as

follows:

T 0
0 = −(ρ̄+ δρ) , (4.11)

T 0
i = (ρ̄+ p̄)vi = −T i0 , (4.12)

T ij = (p̄+ δp)δij + Σi
j , (4.13)

and the variables ϑ and σ are defined as

ϑ ≡ ikjvj , (4.14)

and

(ρ̄+ p̄)σ ≡ −
(
k̂ik̂j −

1

3
δij

)
Σij , (4.15)

where k̂ is the unit vector in the direction of ~k. As usual, all bars correspond to

homogeneous background quantities and dots denote differentiation with respect to

conformal time. Σi
j is the anisotropic shear stress of the fluid.

The conservation of energy–momentum is implied by the Einstein equations and

so is not needed to close the system. However, it is more convenient numerically to

employ the fluid equations (derived by linearising energy–momentum conservation)

and the first-order Einstein equations, Eqs. (4.7) and (4.8), foregoing the second-order

Einstein equations, Eqs. (4.9) and (4.10). The fluid equations are:

δ̇ = −(1 + w)

(
ϑ+

ḣ

2

)
− 3

ȧ

a

(
δp

δρ
− w

)
δ , (4.16)
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ϑ̇ = − ȧ
a

(1− 3w)ϑ− ẇ

1 + w
ϑ+

δp/δρ

1 + w
k2δ − k2σ , (4.17)

where w ≡ p/ρ is the equation of state of the fluid and δ ≡ δρ/ρ is the density

contrast. Equation (4.16) is often called the ‘continuity equation’ and Eq. (4.17) is

the relativistic Euler equation. The above equations are valid for a fluid that has no

non-gravitational interactions to other fluids, or for the average of all fluids, but not

for individual fluid species that interact non-gravitationally with one another. The

most common example is in the early universe when the baryons and photons are

tightly coupled. In coupled dark energy models there are also extra terms present in

the dark energy and CDM components in Eqs. (4.16) and (4.17). In Type 3 models,

the most important extra terms are those introduced to the CDM ϑ̇ equation.

Considering Eq. (4.17) reveals an important point about the synchronous gauge,

which is that for uncoupled cold dark matter, which has zero pressure and anisotropic

stress, the velocity of the fluid is equal to zero11. In this gauge, the co-ordinates are

comoving with the CDM fluid. This ceases to be true if one considers warm or hot

dark matter, or if there is a coupling to other species, as in Type 3 models.

4.2.2 Boltzmann equation

For some species, especially when interactions are present, it is necessary to go

beyond Eqs. (4.16) and (4.17) and consider the Boltzmann equation, which governs

the phase-space evolution of the energy–momentum tensor. The energy–momentum

tensor can be written as

Tµν =

∫
dP1dP2dP3

1√−g
PµPν
P 0

f(xi, Pj, τ) , (4.18)

where Pµ is the 4-momentum of the particles whose energy–momentum tensor we

are interested in and f(xi, Pj, τ) is the distribution of those particles in phase space.

Pµ has the property that its spatial part is also the conjugate momenta of the phase

space. The distribution f(xi, Pj, τ) can be divided into a background part and a

perturbed part:

f(xi, Pj, τ) = f0(q)[1 + Ψ(xi, q, nj, τ)] , (4.19)

11Strictly speaking, Eq. (4.17) implies that ϑ for cold dark matter decays exponentially with
conformal time. There is, however, a residual gauge freedom in the synchronous gauge, which is
normally removed by setting ϑ = 0 initially, thus giving ϑ = 0 at all times from Eq. (4.17).
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where q and nj are related to Pj by qnj = apj and Pi = a(δij + hij/2)pj. The

perturbation Ψ(xi, q, nj, τ) evolves in k-space according to the Boltzmann equation:

∂Ψ

∂τ
+ i

q

ε
(~k · n̂)Ψ +

d log f0

d log q

[
η̇ − ḣ+ 6η̇

2
(k̂ · n̂)2

]
=

1

f0

(
∂f

∂τ

)
C

, (4.20)

where (∂f/∂τ)C is an interaction term that takes account of collisions experienced by

the particles described by f . The distribution can be related back to the components

of the energy–momentum tensor by

T 0
0 = −a−4

∫
q2 dq dΩ

√
q2 +m2a2 f0(q) (1 + Ψ) , (4.21)

T 0
i = a−4

∫
q2 dq dΩ q ni f0(q) Ψ , (4.22)

T ij = a−4

∫
q2 dq dΩ

q2ninj√
q2 +m2a2

f0(q) (1 + Ψ) . (4.23)

A Boltzmann code such as CLASS must solve either the fluid equations, Eqs. (4.16)

and (4.17), or the Boltzmann equation, Eq. (4.20), for each individual matter species.

A simple species such as cold dark matter requires the solution only of the fluid

equations (indeed, only one fluid equation in standard cosmology since ϑc = 0)

whereas relativistic species such as neutrinos, where higher-order moments such

as shear become important, require the solution of the full Boltzmann equation.

Baryonic matter has a coupling to photons which results in a Thomson scattering term

(4ρ̄γ/4ρ̄b)aneσT(ϑγ − ϑb) being added to the Euler equation. Prior to recombination

this term can be very large, resulting in the equations being numerically difficult to

solve. In this regime a tight-coupling approximation is adopted, in which the collision

time τc ≡ (aneσT)−1 is assumed to be very small compared to both k−1 and H−1, and

a perturbative expansion is carried out in τc. The photons themselves have perhaps

the most involved behaviour of all the species, experiencing collisions with the baryons

that depend on the polarisation of the photons. Further, as a relativistic species,

the photons exhibit shear and higher-order moments that must be calculated up to

a suitable truncation point. I shall not reproduce the full Boltzmann hierarchy for

individual species here, instead referring to Ref. [4], where the Boltzmann equations

for individual species are laid out in detail both in the synchronous and conformal

Newtonian gauges.
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4.2.3 Implementation in CLASS

In general, Boltzmann codes consist of two stages: first they calculate the time

evolution of physical quantities such as the density contrasts of fluid species, and

then they use this information to generate manageable and useful data such as power

spectrums. In practice, each of these parts typically requires several steps.

CLASS is structured in a modular way, consisting of eleven modules that are

called in order, with each depending only on earlier modules. I briefly describe the

role of each module below; a more detailed overview of the CLASS code can be found

in Ref. [229].

1. input.c interprets the input to CLASS, in the form of exactly one .ini file

and at most one .pre file which are specified when running the code. These

input files contain information such as cosmological parameters and the desired

output spectrums.

2. background.c calculates all background quantities by solving the background

equations of motion and stores them in an interpolation table for other modules

to access.

3. thermodynamics.c computes the evolution of thermodynamical quantities, tak-

ing account of recombination and reionisation and stores these in an interpol-

ation table. Recombination is solved using code based on RECFAST [233] and

reionisation is solved using code based on CAMB [218].

4. perturbations.c solves the fluid equations and Boltzmann equations intro-

duced in Sections 4.2.1 and 4.2.2 to compute the ‘source functions’ S(k, τ)

which are stored in a data structure for use by other modules.

5. bessel.c is an entirely geometrical module, calculating spherical Bessel func-

tions.

6. transfer.c uses the source functions computed by perturbations.c and the

Bessel functions computed by bessel.c to calculate the ‘transfer functions’

∆l(k).

7. primordial.c computes the primordial power spectrums using simple analyt-

ical formulas.
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8. spectra.c uses the primordial power spectrums, source functions and transfer

functions to compute obesrvational power spectrums such as the CMB power

spectrum and the matter power spectrum.

9. nonlinear.c takes the spectrums computed by spectra.c and estimates the

non-linear versions of them.

10. lensing.c takes the unlensed temperature and polarisation CMB spectrums

and uses the CMB lensing potential spectrum to compute lensed CMB spec-

trums.

11. output.c writes the output that has been asked for in input.c in data files.

The main improvements that CLASS claims on its predecessors are improved flex-

ibility and user-friendliness due to the modular structure of the code, making it as

easy as possible to introduce new species or couplings, and three new approximation

schemes which result in improved speed and precision. These are: a baryon–photon

tight-coupling approximation, an ultra-relativistic fluid approximation and a radi-

ation streaming approximation [230].

4.2.4 Type 3 modification

A Type 3 coupling between dark matter and dark energy requires CLASS to be

modified to solve the coupled equations governing the evolution of dark matter and

dark energy as opposed to the default uncoupled ones. The following equations, along

with their derivation, can be found in Ref. [114]. The background evolution of the

CDM energy density remains unmodified as:

˙̄ρc + 3Hρ̄c = 0 , (4.24)

as does the continuity equation:

δ̇c = −k2θc −
1

2
ḣ , (4.25)

where the latter equation is obtained by setting p = 0 in Eq. (4.16). We have also

replaced ϑc, which was defined using the conventions of Ref. [4], with θc, defined
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using the conventions of Ref. [114], according to ϑc = k2θc. The latter convention

will be followed for the remainder of this chapter.

The Euler equation, which was simply θc = 0 without the Type 3 coupling,

becomes

θ̇c +Hθc =
(3Hγ,Z + γ,ZZ

˙̄Z)δφ+ γ,Z ˙δφ

a(ρ̄c − Z̄γ,Z)
, (4.26)

where subscript comma notation denotes differentiation. The background part of Z

is given by Z̄ = − ˙̄φ/a. The background and perturbed scalar field equations are

modified as:

(1− γ,ZZ)( ¨̄φ−H ˙̄φ) + 3aH(γ,Z − Z̄) + a2V,φ = 0 , (4.27)

and

(1− γ,ZZ)(δ̈φ+ 2H ˙δφ)− γ,ZZZ ˙̄Z ˙δφ

+ (k2 + a2V,φφ)δφ+
1

2
( ˙̄φ+ aγ,Z)ḣ+ ak2γ,Zθc = 0 , (4.28)

respectively. The equations governing the evolution of the metric perturbations are

given by Eqs. (4.7) and (4.8) and are not modified by the introduction of a Type 3

coupling.

The authors of Ref. [106] replaced the default equations in CLASS with the above

equations. This required defining Z̄, ˙̄Z and γ(Z) and its derivatives since these

variables do not appear in default CLASS. We further modified the code, which the

authors of Ref. [106] kindly made available to us, by implementing several more

coupling functions, γ(Z), on top of the quadratic one used in Ref. [106] We also

created a simple means by which to add further functions and choose between the

ones already implemented. We have used this modified version of CLASS to compute

the numerical results in this chapter.
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4.3 Semi-analytic explanation of structure growth

suppression

In Ref. [106], it was demonstrated using numerical computation of linear perturb-

ations that a Type 3 coupling of the form γ(Z) = β0Z
2, with a single exponential

potential V (φ) = Ae−λφ/MP could help to reduce the σ8 tension between the CMB

and large-scale structure. In this section I present an analytic explanation for this

behaviour.

In broad terms, the Type 3 coupling affects the scalar field evolution, through a

term (1− γ,ZZ) multiplying the kinetic term (Eq. (4.27)), and the cold dark matter

velocity divergence θc (Eq. (4.26)). Each of these effects has a small impact on the

cold dark matter density contrast δc (Eq. (4.25)), whose statistical properties are

described by the matter power spectrum P (k) and σ8.

In order to reduce the σ8 tension between the CMB and large-scale structure, one

needs a model which predicts a smaller amplitude of matter fluctuations than ΛCDM

does. As will be demonstrated later, the contribution of θc to δc in Eq. (4.25) always

has the opposite sign to the dominant contribution from the metric perturbation

h. Thus, increasing θc reduces the absolute value of δc and so lowers σ8 slightly,

providing the basis for the amelioration of the tension.

In this section we fix the potential parameter λ = 1.22 and set the scalar field

initial conditions as φ̄ini = 10−4 and ˙̄φini = 0 following Ref. [106]. CLASS tunes the

other potential parameter A to fix either the present-day Hubble parameter H0 or

the sound horizon at recombination θs to a desired value. In this section we fix

H0 = 67.3 km s−1 Mpc−1, which is consistent with recent Planck data [6]. In later

sections we fix θs = 0.0104, since this is more directly and precisely measured by

Planck [6], but fixing H0 allows the structure growth suppression to be more easily

understood.

The overall effect of the Type 3 coupling on σ8 is illustrated in Fig. 4.1. The

limit as β0 → 0 corresponds to uncoupled quintessence. One can see that moderately

large values of |β0| give rise to a reduction in σ8 and hence a suppression of structure

growth, while very large |β0| results in an enhancement of structure growth. Note

that we only consider negative values of β0. This is to avoid a ‘wrong sign’ kinetic

term in the scalar field equation as discussed below.
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Figure 4.1: The dependence of σ8 on β0. For moderate values of β0 there is a slight
reduction in σ8 relative to uncoupled quintessence (given by the limit of small |β0|).
For large values of |β0| we see enhancement of σ8 relative to uncoupled quintessence.
The slope of the potential is held fixed at λ = 1.22 and the present-day value of the
Hubble parameter is held fixed at H0 = 67.3 km s−1 Mpc−1.

4.3.1 Effect of the coupling on the background evolution of

the scalar field

Introducing a coupling between the scalar field and the cold dark matter has an effect

on the evolution of both. In the case of Type 3 couplings, the more interesting effect

is on the dark matter, but in order to understand this it is first necessary to consider

the effect that the coupling has on the scalar field φ. Substituting the quadratic

coupling γ(Z) = β0Z
2 into the scalar field equation, Eq. (4.27), gives:

(1− 2β0)( ¨̄φ+ 2H ˙̄φ) + a2V,φ = 0 . (4.29)
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Figure 4.2: The evolution of the time derivative of the background scalar field ˙̄φ with
the scale factor a, for a range of values of the coupling parameter β0, with increasing

|β0| from top to bottom. All values of ˙̄φ have been multiplied by (1−2β0) in order to
illustrate the scaling. Without this, the lines would be separated by many orders of
magnitude. The fact that the lines do not lie exactly on top of one another is due to
the effect of the background expansion rate on the metric perturbation h, described
in Section 4.3.3.2, but this effect is negligible in comparison to the (1− 2β0) scaling.
H0 and λ are held fixed as in Fig. 4.1.

One can see immediately that if the coupling parameter gets too large and positive,

β0 ≥ 0.5, then the model will have problems. In fact there is a strong coupling

problem as β0 → 0.5 and a ghost instability for β0 > 0.5 [114]. To be sure of avoiding

these problems, we consider only negative values of β0. As β0 → 0 one recovers the

case of uncoupled quintessence, and as |β0| grows, any given point in the potential

V (φ) will produce a slower evolution of φ̄, since the larger the (1− 2β0) factor, the

smaller ( ¨̄φ + 2H ˙̄φ) must be for a given a2V,φ. We predict, therefore, that φ̄ and its

derivatives scale as 1/(1− 2β0). This is confirmed by our numerical analysis using

CLASS, as demonstrated in Fig. 4.2.
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Thus one can see that for very large (negative) values of the coupling parameter

β0, the scalar field evolves more slowly, effectively playing the role of a cosmological

constant.

4.3.2 Effect of the coupling on the CDM velocity divergence

The CDM velocity divergence θc evolves according to Eq. (4.26). For a quadratic

coupling one obtains

θ̇c = −Hθc +
−2β0( ¨̄φ+ 2H ˙̄φ)δφ− 2β0

˙̄φ ˙δφ

(ρ̄ca2 − 2β0
˙̄φ2)

. (4.30)

We will now use this equation as the basis for understanding how θc depends on the

coupling on both large and small scales. Figure 4.3 shows the present-day value of

θc as a function of β0 for a range of scales.

4.3.2.1 Large scales

At large scales, small k, the present-day CDM velocity divergence rises and falls with

β0, with a peak at β0 = −100. Equation (4.30) allows us to explain this behaviour.

We established that ˙̄φ scales with β0 like 1/(1−2β0) in Section 4.3.1. On large scales,

δφ and its derivatives also scale in this way. (See Fig. 4.4.) Thus, every term in the

numerator of Eq. (4.30) depends on β0 as β0/(1− 2β0)2, and so does θc itself. This is

illustrated by the solid black line in Fig. 4.3, which is very similar in form to the cyan

and magenta lines, demonstrating the scaling on large scales. The denominator of

Eq. (4.30) does not play an important role, since the first term is always significantly

larger than the second term.

4.3.2.2 Small scales

On small scales, however, δφ and its derivatives do not depend on β0 (apart from

the background effect on the metric perturbation h, described in Section 4.3.3.2).

This is illustrated by the blue line in Fig. 4.4. Thus, the terms in the numerator

of Eq. (4.30) scale as β0/(1− 2β0) as opposed to β0/(1− 2β0)2 as they do for large

scales. This scaling is illustrated by the dashed black line in Fig. 4.3, which closely
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Figure 4.3: The present-day cold dark matter velocity divergence θc as a function of
the coupling parameter β0 for a range of scales k. For small k (large scales), θc scales
with β0 as β0/(1− 2β0)2 (solid black line). As k increases, this dependence starts to
tend towards β0/(1− 2β0) (dashed black line). H0 and λ are held fixed as in Fig. 4.1.

matches the form of the blue line, which corresponds to very small scales. Note

that we cannot necessarily trust the output from CLASS for such very small scales

as k = 1 Mpc−1 because at these scales perturbations grow large enough that the

linear approximation, on which CLASS’s calculations are based, breaks down. It is

worthwhile to include it, however, because it demonstrates the small-scale limit which

is approached even on larger scales where the output of CLASS can be trusted. See

for example the green line in Fig. 4.4, which illustrates that for k = 10−1Mpc−1,

the scalar field perturbation δφ is independent of β0 for all but very large values

|β0| > 104.
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Figure 4.4: The present-day value of the scalar field perturbation δφ as a function
of the coupling parameter β0 for a range of scales k. For large scales (e.g. magenta
line), δφ scales with β0 as 1/(1− 2β0) (black line), while for small scales (e.g. blue
line), δφ is approximately constant with β0 (with a very small sigmoid curve due to
the effect of the background expansion rate on the metric perturbation h, described
in Section 4.3.3.2). H0 and λ are held fixed as in Fig. 4.1.

4.3.3 Effect of the coupling on the CDM density contrast

As discussed in Section 4.2.4, the evolution equation for the CDM density contrast,

Eq. (4.25) is not modified by adding a Type 3 coupling. Both terms in Eq. (4.25)

contribute β0 dependence to the CDM density contrast, and for fixed H0, as we

consider here, the effects are of similar magnitudes. This subsection will demonstrate

how the β0 dependence of θc and h affects the behaviour of the CDM density contrast.

4.3.3.1 Contribution from CDM velocity perturbations

It turns out that the two terms in Eq. (4.25) have opposite signs, and that the

magnitude of the second term is always greater than that of the first (for all k).
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These two facts, combined with the fact that |δc| grows with time, mean that the

larger the value of |θc|, the smaller |δc| will be, because the first term partially cancels

the second term. In Section 4.3.2 it was demonstrated that |θc| took its largest values

for moderate values of β0, with θc → 0 for both β0 → 0 and β0 → −∞.

This is the central mechanism by which Type 3 models of coupled quintessence

bring about a reduction in the predicted structure formation. Models in which cold

dark matter interacts only gravitationally have θc = 0 in the synchronous gauge [4] so

the effect from the second term in Eq. (4.25) is maximal. This is true both in ΛCDM

and uncoupled quintessence but not when a Type 3 coupling is present. However,

before proceeding to show how this affects P (k) and σ8 it is necessary to discuss the

other important mechanism by which the Type 3 coupling affects δc, which is via the

metric perturbation h.

4.3.3.2 Contribution from the metric perturbation

The evolution equation of the metric perturbation h is not modified by the intro-

duction of a Type 3 coupling, but there is still an indirect dependence which comes

about as a result of the modification to the evolution of the background scalar field

φ̄. Here we will discuss the steps necessary to understand the dependence of h on

the coupling.

Energy density of the scalar field The energy density and pressure of the scalar

field are given by [114]

ρ̄φ =
1

2
(1− 2β0)

˙̄φ2

a2
+ V (φ) , (4.31)

and

p̄φ =
1

2
(1− 2β0)

˙̄φ2

a2
− V (φ) , (4.32)

respectively. The energy density of the scalar field obeys the usual conservation

equation

˙̄ρφ + 3H(ρ̄φ + p̄φ) = 0 (4.33)

⇒ ˙̄ρφ = −3H(1− 2β0)
˙̄φ2

a2
. (4.34)
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Figure 4.5: The evolution of the background energy density of the scalar field, ρ̄φ
for a range of values of the coupling parameter β0. For large values of |β0|, the
background energy density of the scalar field is approximately constant, while for
smaller values of |β0|, the density drops with time, leading to larger ρ̄φ in the past
(assuming the present-day value is fixed). Both effects saturate, leading to a sigmoid
curve in β-space. H0 and λ are held fixed as in Fig. 4.1.

As already established in Section 4.3.1, ˙̄φ scales with β0 like 1/(1− 2β0), so it follows

that ˙̄ρφ also scales as 1/(1− 2β0). Thus, for small values of |β0|, ρ̄φ can fall with time

(as any fluid with w > −1 does as the universe expands), but for large values of |β0|,
˙̄ρφ is very small, and ρ̄φ is approximately constant; as alluded to in Section 4.3.1, the

scalar field acts like a cosmological constant for very large values of |β0|. The way

in which the evolution of ρ̄φ depends on the coupling parameter β0 is illustrated by

Fig. 4.5.

If one chooses to fix the Hubble parameter at the present epoch and assumes

a spatially flat universe, then one effectively fixes the energy density of the scalar

field at the present epoch (since the energy densities of matter and radiation are

well constrained). Thus, if ρ̄φ falls with time (for small |β0|), this means that in the
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recent past ρ̄φ was larger than it is today. Similarly, if ρ̄φ is constant (for large |β0|)
then trivially it took its present value in the recent past. Thus, a larger value of |β0|
entails a smaller value of ρ̄φ in the recent past.

Expansion rate Via the Friedmann equation, H2 = ρ̄a2/(3MP
2), a larger ρ̄φ gives

a larger Hubble parameter. Thus, at some point in the recent past, say z = 1,

small |β0| gives rise to large H(z = 1) and large |β0| gives rise to small H(z = 1).

However, it is not the case that one could in principle raise or lower H(z = 1) as

much as one wanted by changing the value of β0 because the effect saturates in both

directions. As |β0| → 0, the 1 in (1− 2β0) becomes dominant and further decreasing

|β0|makes no further difference toH. As |β0| → ∞, however, ˙̄ρφ → 0, ρ̄φ → const and

increasing |β0| further makes no difference to H. In ‘β-space’, H(z = 1) approximates

a downwards sigmoid curve12.

Metric perturbation This small sigmoid curve in the background has a few effects,

but the most important is on δc through the metric perturbation h, which obeys the

standard evolution equation:

ḣ =
1

H

(
a2

MP
2

∑
i

ρ̄(i)δ(i) + 2k2η

)
, (4.35)

where the above equation is obtained by re-arranging Eq. (4.7). The conformal time

τ is not the best time variable to use here, because we wish to compare cases with

different expansion histories at a fixed redshift. Working in terms of the scale factor,

Eq. (4.35) becomes:

dh

da
=

1

ȧ

1

H

(
a2

MP
2

∑
i

ρ̄(i)δ(i) + 2k2η

)
. (4.36)

For the purposes of illustrating the effect of the coupling, it suffices to focus on∑
i ρ̄

(i)δ(i), and in particular on the contribution from matter, which is the largest

12I employ the term ‘sigmoid curve’ in a few instances in this chapter. I use this as a concise way
of describing behaviour where one variable depends on another in such a way that the dependent
variable asymptotically approaches one value for very small values of the independent variable and
another value for very large values of the independent variable. Between these two extremes it
varies smoothly over a limited range of the independent variable with no apparent stationary points.
I do not mean to imply that the results obey the precise mathematical definition for a sigmoid
curve; the term should be taken instead as a qualitative description.
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contribution. We then have:

dh

da
⊃ 1

ȧ

1

H
a2

MP
2
ρ̄mδm . (4.37)

Finally, employing ρ̄m = ρ̄m0a
−3, Eq. (4.37) gives

dh

da
⊃ ρ̄m0δm

a2H2MP
2
, (4.38)

from which we can conclude that, for a particular redshift in the recent past, a larger

value of H (which corresponds to small |β0|) entails a smaller rate of increase of

h, and hence δ̇c (see Eq. (4.25)). Since the absolute value of δc grows with time, a

smaller gradient in the recent past means a smaller value at the present epoch.

Summary Since the dependence of H at a particular redshift on β0 was a sigmoid

curve, it follows that the background contribution to δc is also a sigmoid curve in

β0. Large values of |β0| result in an enhancement of the size of the density contrast

relative to uncoupled quintessence.

Figure 4.6 illustrates the two main effects on the evolution of δc as described

above, at a scale k = 0.12 Mpc−1, by displaying the terms in Eq. (4.25) and δc/τ itself

for comparison. In the early universe both effects are small and none of the terms

depend on β0. However, in the late universe, the metric perturbation ḣ starts to

evolve differently for different β0, with large |β0| resulting in slightly larger |ḣ|. This

plot does not illustrate it, but both of these extremes are ‘plateaus’ in β-space, in

the sense that increasing or decreasing |β0| from its largest or smallest value plotted

in Fig. 4.6 respectively does not further shift the extreme values of h.

At the same time, one can observe θc starting to contribute at late times, with

O(1) values of β0 producing the largest effect. The combination of these two contri-

butions can be seen appearing in the δc/τ evolution (solid lines), with δc(β0 = −10−6)

slightly above δc(β0 = −106) due to the contribution from ḣ, and δc(β0 = −100)

coming slightly above both of them due to the contribution from θc. This ordering

is also seen in Fig. 4.7, looking at k ≈ 10−1 Mpc−1.
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Figure 4.6: The terms of the evolution equation of the CDM density contrast,
Eq. (4.25), along with the density contrast itself divided by the conformal time
τ for comparison (solid lines). The CDM velocity divergence θc is given by dashed
lines and the metric perturbation ḣ is given by dotted lines. In each case we fix
k = 0.12 Mpc−1. H0 and λ are held fixed as in Fig. 4.1.

4.3.4 Effect of the coupling on the matter power spectrum

In order to compare models to observations it is useful to calculate the matter power

spectrum P (k) and its amplitude on the scale of galaxy clusters σ8.

The matter power spectrum at a time t is given by

P (k, t) =
2π2

k3
δm(k, t)2P(k) (4.39)

=
2π2

k3
δm(k, t)2As

(
k

k∗

)ns−1

, (4.40)

where P(k) is the primordial power spectrum P(k) = As(k/k∗)
ns−1. The present-

day matter power spectrum P (k, t0) is denoted by P (k) for compactness. Since the
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Figure 4.7: Linear matter power spectrum P (k) for a model with a coupling
γ(Z) = β0Z

2 relative to the power spectrum for uncoupled quintessence. The Fourier-
transformed window function W8(k) has been schematically superimposed as a grey
solid line to illustrate the part of P (k) which is important for the calculation of σ8.
Note that the values on the y-axis do not pertain to the window function. H0 and λ
are held fixed as in Fig. 4.1.

primordial power spectrum is close to being flat, with ns ≈ 1 [6], the matter power

spectrum P (k) derives all its interesting features from the matter density contrast

δm. In the previous section we presented an approximate analytic justification for

the behaviour of the CDM density contrast δc. Due to the gravitational interaction

between dark matter and baryons (that is, the rest of the matter), their density

contrasts obey δc ≈ δb ≈ δm to a very good approximation. Thus, all the physics

contained in the matter power spectrum has already been illustrated above. The

matter power spectrum is plotted for a range of values of the coupling parameter β0

in Fig. 4.7.

The amplitude of matter fluctuations on the scale of clusters is characterised by
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σ8, given by

σ2
8 =

1

2π2

∫
P (k)W8(k)2k2dk , (4.41)

where W8(k) is the window function WR(k) introduced in Chapter 1, on a scale

R = 8h−1 Mpc. This function has been superimposed on the matter power spectrum

in Fig. 4.7 to illustrate which parts of P (k) contribute to the integral in Eq. (4.41). σ8

contains no physical information not already contained in P (k) but it is a convenient

way to quantify structure formation on a physically relevant scale, and is helpful for

comparison to observation.

The result found in Ref. [106] that σ8 is suppressed in Type 3 models can now

be intuitively understood. Two main effects contribute to the form of the matter

power spectrum for Type 3 models. The first is a general enhancement for large

|β0| relative to small |β0| resulting from the dependence of the metric perturbation

h on the background evolution. The second is a scale-dependent effect due to the

CDM velocity divergence θc that suppresses P (k) most strongly for intermediate

magnitudes of the coupling parameter. These two effects are seen in Fig. 4.7, where

the curves corresponding to large |β0| are above those corresponding to small |β0| for

low k, but as k increases each one drops below uncoupled quintessence at a k that is

larger the larger |β0| is. Thus, any |β0| that gives suppression of P (k) on the scales

which σ8 samples (i.e. around k = 0.1 Mpc−1), results in a corresponding suppression

of σ8 as shown in Fig. 4.1.

4.4 Generalisation of the coupling

Previously we have considered a coupling function of the form γ(Z) = β0Z
2. One can

easily generalise this to couplings of the form γ(Z) = βn−2Z
n. Type 3 models with

cubic couplings γ(Z) = β1Z
3 have already been considered in Ref. [225], in which

the authors demonstrate that Type 3 models in general lead to a varying speed of

sound of dark energy, with the n = 2 case discussed in Ref. [106] and above being

an exception. However, they also conclude that the impact of the varying sound

speed on any cosmological observables is negligible compared to the effects due to the

coupling with dark matter. They note that previous work has found that the sound

speed of dark energy does not leave any observable fingerprints unless it becomes

very small indeed, c2
s ∼ O(10−3) [234–237], while the sound speed for a model with a
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coupling γ(Z) = βn−2Z
n never becomes smaller than c2

s → 1/(n− 1). They find that

the n = 3 coupling gives qualitatively similar results to the n = 2 case as studied in

Ref. [106].

Before embarking on a detailed discussion of the behaviour of general n couplings,

it is worth saying a few words about the dimensions and sign of βn−2. As the

coupling function γ(Z) appears as a term in the Lagrangian it must have mass

dimension 4. The dimensions of Z = uµ∇µφ are mass-squared, so we can see that

for γ(Z) = βn−2Z
n, βn−2 must have mass dimension −2(n− 2). In the CLASS code,

the scalar field is in units of the Planck mass and time is in units of Mpc. Thus, in

what follows, βn−2 will carry units of [Mpc/MP]n−2. Because of the way the coupling

adds β-dependent terms to the kinetic part of the Lagrangian, there is always one

sign of βn−2 that, for large enough |βn−2|, gives rise to a wrong-sign kinetic term

and resulting instability. To avoid this, we always choose to only consider βn−2 with

a sign such that γ(Z) is negative. Since Z is always negative, this means that if

n is even, we consider negative βn−2 and if n is odd, we consider positive βn−2. In

what follows we will for the most part discuss the coupling parameter in terms of its

absolute value |βn−2|.

4.4.1 Effect of the coupling on the scalar field evolution

As with the n = 2 case, the CDM density contrast evolves according to Eq. (4.25).

The Type 3 coupling impacts the CDM density contrast via both θc and h. As with

n = 2, to understand how θc and h depend on the coupling, one must understand

the scalar field evolution. For a power-law coupling γ(Z) = βn−2Z
n, the scalar field

equation, Eq. (4.27), is given by

[1− n(n− 1)βn−2Z̄
n−2]( ¨̄φ−H ˙̄φ) + 3aH(nβn−2Z̄

n−1 − Z̄) + a2V,φ = 0 . (4.42)

Writing everything in terms of φ̄ and its derivatives, using Z̄ = − ˙̄φ/a, one obtains

1− n(n− 1)βn−2

(
−

˙̄φ

a

)n−2
 ¨̄φ+ 2H ˙̄φ

+ n(4− n)aHβn−2

(
−

˙̄φ

a

)n−1

+ a2V,φ = 0 . (4.43)
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To understand the way in which the scalar field evolves, it is instructive to consider

two limits. First, we take the limit in which ˙̄φ is very small. The second term in the

square bracket becomes negligible, as does the third term of the equation. One finds:

¨̄φ+ 2H ˙̄φ+ a2V,φ = 0 , (4.44)

which is simply the scalar field equation for uncoupled quintessence. For a decaying

exponential potential, a scalar field obeying this equation will grow with time, as

will its first derivative. Hence, for early times, ˙̄φ is small and the Type 3 coupling is

negligible. As this effectively uncoupled scalar field evolves, however, the coupling

will become important and one cannot neglect the two terms omitted above. From

Eq. (4.43) it is clear that this will occur earlier in time the larger |βn−2| is. For now

let us ignore the intermediate regime in which all terms are important and make the

assumption that ˙̄φ is large, such that −n(n− 1)βn−2(− ˙̄φ/a)n−2 � 1. In this regime,

Eq. (4.43) becomes

−n(n− 1)βn−2

(
−

˙̄φ

a

)n−2

¨̄φ+ n(4− n)aHβn−2

(
−

˙̄φ

a

)n−1

+ a2V,φ = 0 . (4.45)

Note that for n = 4 the second term in Eq. (4.45) is equal to zero and therefore one

would not neglect the 2H ˙̄φ term in Eq. (4.43). For our present purposes, however, this

distinction is not vital. What is important to note is that, since we are considering the

regime where −n(n−1)βn−2(− ˙̄φ/a)n−2 � 1, Eq. (4.45) predicts a slower evolution of
˙̄φ and hence φ̄ due to the large factor multiplying ¨̄φ. This is similar to the argument

for n = 2, where the factor multiplying ¨̄φ was simply −2β0, the crucial difference

being the time dependence introduced by allowing n > 2.

Thus, a scalar field coupled to cold dark matter by a Type 3 coupling of the form

γ(Z) = βn−2Z
n will evolve like an uncoupled quintessence field at early times when

˙̄φ is small, and then at later times will evolve somewhat slower than an uncoupled

field. The time at which this transition takes place is earlier the larger |βn−2| is, and

the suppression of the evolution of φ̄ is larger the larger |βn−2| is. This behaviour is

demonstrated in Fig. 4.8, for the n = 3 and n = 4 cases. As with n = 2, very large

values for |βn−2| lead to behaviour that mimics a cosmological constant.
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Figure 4.8: The evolution of the conformal time derivative of the scalar field with
the scale factor a for a Type 3 coupling of the form γ(Z) = βn−2Z

n, for different
values of the coupling parameter |βn−2|. At early times the effect of the coupling is

negligible with ˙̄φ evolving like an uncoupled scalar field. At later times, sooner the
larger |βn−2| is, the coupling becomes important and the scalar field evolves more
slowly for large |βn−2|. The slope of the potential is held fixed at λ = 1.22 and the
sound horizon at recombination is held fixed at θs = 0.0104. The units of βn−2 are
(Mpc/MP)n−2.

4.4.2 Effect of the coupling on the metric perturbation

The way in which the coupling affects the metric perturbation h is almost exactly the

same for general n as it was for n = 2 already discussed (see Section 4.3.3.2). To see

why this should be the case, recall that the evolution of the metric perturbation is

impacted via the scalar field background energy density ρ̄φ. The general n couplings

behave similarly to n = 2 in the late universe, with the differences appearing in the

early universe where even large values of the coupling parameter lead to uncoupled

quintessence behaviour. Because the scalar field energy density ρ̄φ is only important

in the late universe, the Type 3 coupling only affects the metric perturbation h in

the late universe. Hence, the argument presented in Section 4.3.3.2 is valid here.

4.4.3 Effect of the coupling on the CDM velocity divergence

The other important way in which the Type 3 coupling affects the CDM density

contrast is via the CDM velocity divergence θc. For a power-law coupling γ(Z) =

100



CHAPTER 4. TYPE 3 INTERACTING DARK ENERGY

βn−2Z
n, Eq. (4.26) can be written as:

θ̇c +Hθc =
nβn−2(a3Z̄n−1δφ)̇

a4(ρ̄c − nβn−2Z̄n)
. (4.46)

As with the n = 2 case, the dependence of the denominator on βn−2 is not crucial

because ρ̄c is always significantly larger than nβn−2Z̄
n. To understand how θc depends

on the coupling parameter, then, it suffices to consider only the numerator.

Recall (Section 4.3.1) the way in which ˙̄φ depends on β0 in the n = 2 case:

˙̄φ ∼ 1

1− 2β0

. (4.47)

In analogy to this one might expect the scaling for general n to look like

˙̄φ ∼ 1

1− n(n− 1)βn−2Z̄n−2
. (4.48)

This relation is of limited use because it contains ˙̄φ on both sides (recall Z̄ = − ˙̄φ/a).

However, as in Section 4.4.1, one can take Eq. (4.48) to two limits. The first is the

n(n− 1)βn−2Z̄
n−2 � 1 limit, where the model behaves like uncoupled quintessence

and ˙̄φ evolves independently of βn−2. The second is the n(n− 1)βn−2Z̄
n−2 � 1 limit,

where
˙̄φ ∼ 1

−n(n− 1)βn−2Z̄n−2
. (4.49)

Employing Z̄ = − ˙̄φ/a, and rearranging,

˙̄φ ∼ |βn−2|−
1

n−1 . (4.50)

The derivation of this relation was not at all rigorous, but it turns out to be correct.

Numerical evolution of the equations as presented in Fig. 4.8 reveals that for suffi-

ciently large |βn−2| and sufficiently late times, ˙̄φ depends on βn−2 in a way consistent

with Eq. (4.50).

Returning to the θc equation, Eq. (4.46), it can now be seen that, for sufficiently

large |βn−2| and sufficiently late times, the factor βn−2Z̄
n−1, should be independent

of the coupling parameter |βn−2|. Thus the |βn−2|-dependence of θc should come

primarily from δφ. However, for sufficiently small values of |βn−2|, Eq. (4.48) tells us

that ˙̄φ should be independent of βn−2 such that the term βn−2Z̄
n−1 is proportional
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Figure 4.9: The present-day value of the scalar field perturbation δφ for a Type 3
coupling γ(Z) = βn−2Z

n as a function of βn−2 for several scales k. As with the
n = 2 case, δφ is independent of |βn−2| for small |βn−2| and falls with |βn−2| for
large |βn−2|. The value of |βn−2| at which the crossover from one regime to the other
occurs is larger for small scales. θs and λ are held fixed as in Fig. 4.8. See Fig. 4.4
for comparison to the n = 2 case.

to to βn−2 as the latter becomes small.

To complete the discussion of the dependence of θc on βn−2, it is necessary to

consider the scalar field perturbation δφ. As with n = 2, the way in which δφ depends

on βn−2 is scale-dependent. Figure 4.9a shows δφ at the present epoch for n = 3, as a

function of β1 for a range of scales k. For small β1, δφ is approximately independent

of β1, while for large β1, δφ ∼ β
−1/2
1 . For large scales (small k) this transition occurs

for very small β1 while for small scales (large k) the transition occurs for large β1.

Figure 4.9b shows how δφ depends on β2 for an n = 4 coupling. Again, for small

|β2|, δφ is approximately constant with β2, but for large |β2|, δφ falls as |β2|−1/3,

again, with the transition occurring later in |β2| on small scales. Note that this is

qualitatively similar to how δφ depends on β0 for the n = 2 coupling as illustrated in

Fig. 4.4. For general n, the scalar field perturbation in the large |βn−2| limit obeys

δφ ∼ |βn−2|−
1

n−1 , (4.51)

which is the same as the late-universe, large |βn−2| dependence of ˙̄φ as shown in

Eq. (4.50).

The discussions above can be combined to explain how the CDM velocity diver-

gence θc depends on the coupling parameter βn−2 for general n. The general features

102



CHAPTER 4. TYPE 3 INTERACTING DARK ENERGY

10-3 10-1 101 103 105 107 109 1011 1013 1015 1017

β1 [Mpc/MP]

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

−
θ c

(a
=

1)

k=10−0 Mpc−1

k=10−1 Mpc−1

k=10−2 Mpc−1

k=10−3 Mpc−1

k=10−4 Mpc−1

(a) n = 3

102 104 106 108 10101012101410161018102010221024102610281030

−β2 [Mpc/MP]2

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

−
θ c

(a
=

1)

k=10−0 Mpc−1

k=10−1 Mpc−1

k=10−2 Mpc−1

k=10−3 Mpc−1

k=10−4 Mpc−1

(b) n = 4

Figure 4.10: The present-day CDM velocity divergence θc for a Type 3 coupling
γ(Z) = βn−2Z

n as a function of βn−2 for several scales k. As with the n = 2 case
(see Fig. 4.3), |θc| drops off for both very large and very small values of |βn−2| with
a peak at around β1 ∼ 104 Mpc/MP for n = 3 and β2 ∼ −108 [Mpc/MP]2 for n = 4.
As with the n = 2 case, the peak is broader and flatter on small scales. θs and λ are
held fixed as in Fig. 4.8.

are as follows: for very small |βn−2|, θc will be approximately proportional to βn−2

due to both ˙̄φ and δφ being approximately constant with βn−2 in this regime. For

very large βn−2, θc will fall as β
−1/(n−1)
n−2 , since this is how δφ depends on βn−2, while

the β-dependence of ˙̄φn−1 is cancelled out by the factor of βn−2 on the numerator

of Eq. (4.46). Between these two regimes, θc will have a broad peak whose breadth

will be larger for small scales than for large scales due to the scale-dependence of the

crossover in δφ(β). These features can be seen in Fig. 4.10 for the n = 3 and n = 4

cases. Again, the θc dependence on βn−2 is qualitatively similar to the n = 2 case, but

it should be noted that there is an extra time dependence present for n > 2 couplings

due to the β-dependence of the time at which the coupling effectively ‘switches on’

described in Section 4.4.1 and illustrated in Fig. 4.8. In terms of θc, the position

of the peak in Fig. 4.10 moves to the left with time. In other words, in the early

universe, large values of β1 produce maximal θc, while in the late universe, relatively

small β1 maximise θc. It turns out that this time dependence does not significantly

affect cosmological observables, however, because the impact of the Type 3 coupling

is only manifest on late-universe features, such as large-scale structure.
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Figure 4.11: The linear matter power spectrum P (k) for a Type 3 model with a
coupling γ(Z) = βn−2Z

n normalised to the matter power spectrum of uncoupled
quintessence. The units of βn−2 are (Mpc/MP)n−2. As with the n = 2 case (Fig. 4.7),
small values of the coupling parameter |βn−2| give rise to small suppression of P (k),
while large values result in enhancement that extends to smaller scales the larger
|βn−2| is. θs and λ are held fixed as in Fig. 4.8.

4.4.4 Summary

In this section we have considered more general power-law Type 3 couplings than

the simple quadratic case explored in Section 4.3. Qualitatively, the impact of the

coupling on structure formation is the same for general n as for n = 2. This is

confirmed by the results illustrated in Figs. 4.11 and 4.12; large |βn−2| gives rise to

behaviour similar to ΛCDM, with a large value of σ8, while intermediate values of

|βn−2| result in σ8 being even smaller than the uncoupled quintessence case, seen in

the |βn−2| → 0 limit.

We can conclude from this that the tendency for Type 3 coupled quintessence

models to give rise to a reduction in the late-universe structure formation is a rather

generic one, applying for all power-law couplings γ(Z) = βn−2Z
n. This section

has omitted discussion of any couplings not of this power-law form. One reason

for this is that the more contrived the coupling we wish to consider the harder it

may be to physically motivate. As we have seen, there is no necessity to contrive a

particular form of the coupling, since even the simplest, quadratic coupling gives rise

to interesting physical behaviour.
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Figure 4.12: The amplitude of matter fluctuations σ8 for a Type 3 coupling with
γ(Z) = βn−2Z

n as a function of βn−2. As with n = 2 (Fig. 4.1), there is slight
suppression relative to uncoupled quintessence for intermediate values of |βn−2|, while
large values give rise to enhancement. θs and λ are held fixed as in Fig. 4.8.

4.5 The role of the scalar field potential

The preceding sections have focused on investigating the effect of changing the

coupling function γ(Z), while keeping the potential V (φ) = Ae−λφ/MP fixed. This

section considers the potential in more detail. In the interest of clarity, we shall

return to a quadratic coupling: γ(Z) = β0Z
2.

As discussed in Chapter 2, the parameter λ is constrained in uncoupled quint-

essence by λ2 < 2 in order to give rise to accelerated expansion [113]. If λ is too

large, the potential is so steep that ˙̄φ becomes large and the equation of state of

the universe is significantly larger than −1. However, for Type 3 couplings, this

requirement is relaxed. As demonstrated in Section 4.3.1, a large value of |β0| acts

somewhat like a friction term, limiting how quickly φ̄ can evolve.

In this section we shall demonstrate that larger values of λ can give rise to

even greater suppression of structure growth than has already been demonstrated.

Combined with the possibility of using the Type 3 coupling to slow the evolution of

the scalar field, this hints at even greater prospects for Type 3 models to ease the σ8

tension than has previously been realised.
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4.5.1 Field redefinition relating potential and coupling

Type 3 couplings of the form γ(Z) = β0Z
2 have the property that, at the background

level, the coupling simply gives rise to a modified kinetic term in the scalar field

equation. For a single exponential potential, the background scalar field obeys

(1− 2β0)( ¨̄φ+ 2H ˙̄φ)− a2Aλe−λφ̄/MP = 0 . (4.52)

The dependence on the coupling can be recast from the kinetic term to the potential

term by a field redefinition:

ψ = (1− 2β0)
1
2φ , (4.53)

giving

(1− 2β0)
1
2 ( ¨̄ψ + 2H ˙̄ψ)− a2Aλ exp

[
− λψ̄

(1− 2β0)
1
2MP

]
= 0 . (4.54)

Defining a new potential constant

λ̃ = λ(1− 2β0)−
1
2 , (4.55)

Eq. (4.54) takes the form of an uncoupled scalar field:

¨̄ψ + 2H ˙̄ψ − a2Aλ̃e−λ̃ψ̄/MP = 0 , (4.56)

where the slope of the potential is reduced by a factor of (1−2β0)1/2 compared to the

case with no coupling, β0 = 0. Thus one can see that potentials with a slope λ so large

as to cause problems in the background evolution for uncoupled quintessence can

be ‘saved’ by a Type 3 coupling with sufficiently large |β0|. The usual quintessence

constraint that λ2 < 2 here applies not to λ but to λ̃.

As discussed in Section 4.4, there is a qualitatively similar picture for couplings

with n > 2, with larger |βn−2| slowing the background scalar field evolution. However,

when n > 2 the scalar field equation is non-linear in ˙̄φ, so the above field redefinition

argument does not apply. Increasing |βn−2| does indeed slow the evolution of φ̄ but

it is not obviously equivalent at the background level to a reduction of the slope of

the potential as in the n = 2 case.
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4.5.2 Effect of changing the slope of a single exponential

potential

In Section 4.5.1 we demonstrated a simple relationship between the coupling para-

meter β0 and the potential parameter λ at the level of the background scalar field

equation. However, that argument revealed nothing about the behaviour of the

perturbations. We ran CLASS for a range of values of λ and β0 in order to analyse

this.

Figure 4.13 shows the value of σ8 as a function of β0 for a range of λ. It can

be seen that steeper potentials can give rise to very large suppression of structure

growth. Note that for very large |β0| all potentials give rise to the same σ8 as they all

approach the ΛCDM limit. For very small |β0|, uncoupled quintessence is approached

and the steeper potentials are not viable as they give rise to too rapid an evolution of

φ̄. This is the reason for the lines corresponding to large λ stopping as |β0| is reduced.

Figure 4.14 shows the present-day value of the Hubble parameter H0 dropping rapidly

as |β0| is reduced. The CLASS code returns an error if H0 < 30 km s−1 Mpc−1.

Even small decreases in H0 are problematic. I discussed in Chapter 1 that

late-universe probes of the present-day Hubble parameter give a larger value than

early-universe probes (see Ref. [88] and references therein), so if H0 is reduced the

tension is exacerbated. However, looking at both Figs. 4.13 and 4.14 together, one

can see that there is a region of parameter space where σ8 can be reduced without

paying the price of reducing H0, for example λ = 3, β0 = −102.

This result tentatively suggests that the prospects for Type 3 models to reconcile

early- and late-universe measurements of structure formation may be even greater

than previously realised. The remainder of this section will explore the mechanism

by which this behaviour comes about.

4.5.2.1 Background

The way in which λ and β0 affect the Hubble parameter is straightforward. It has

already been argued in Section 4.3.3.2 that a larger |β0| gives rise to a smaller ˙̄φ

and hence a more constant ρ̄φ, whereas a smaller |β0| allows φ̄ to evolve and hence

ρ̄φ do drop to smaller values. Via the Friedmann equation this results in a smaller
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Figure 4.13: The amplitude of matter fluctuations σ8 as a function of the coupling
parameter |β0| for a range of potential parameters λ for a quadratic coupling function
γ(Z) = β0Z

2 and an exponential potential V (φ) = Ae−λφ/MP . The sound horizon at
recombination is held fixed at θs = 0.0104.

value of the Hubble parameter in the present epoch13. Increasing λ has a similar

effect to decreasing |β0|; increasing the slope of the potential results in a more rapid

evolution of φ̄ and so a drop in the energy density ρ̄φ and a smaller present-day

Hubble parameter. The reduction in H0 shown in Fig. 4.14 for small |β0| and large

λ is entirely due to this effect. Figure 4.15 illustrates that the present-day value of

the energy density ρ̄φ is decreased both for large λ and small |β0|.

13In Section 4.3.3.2 the present-day Hubble parameter was fixed and we considered changes to
H in the recent past. Here we fix the sound horizon at recombination, θs so the present-day Hubble
parameter is affected by the choice of β0.
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Figure 4.14: The present-day value of the Hubble parameter H0 as a function of
the coupling parameter |β0| for a range of potential parameters λ for a quadratic
coupling function γ(Z) = β0Z

2 and an exponential potential V (φ) = Ae−λφ/MP . The
sound horizon at recombination is held fixed at θs = 0.0104.

4.5.2.2 Structure formation

To understand how structure growth is affected by the potential parameter λ one

needs to consider the CDM velocity divergence. Figure 4.16 shows how the evolution

of θc is affected by the potential parameter λ: larger λ, corresponding to a steeper

potential, results in |θc| rising more rapidly. Larger θc at a given time reduces the

time derivative of the CDM density contrast δc (see Eq. (4.25)), resulting in a smaller

|δc| at the present epoch and hence a reduction of σ8 for large λ as seen in Fig. 4.13.

The λ-dependence of θc can be seen in the θc equation. Substituting for ¨̄φ using

Eq. (4.29), Eq. (4.30) becomes

θ̇c = −Hθc +

2β0
1−2β0

a2V,φδφ− 2β0
˙̄φ ˙δφ

(ρ̄ca2 − 2β0
˙̄φ2)

, (4.57)
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Figure 4.15: The evolution of the background energy density of the scalar field ρ̄φ
for two values of the coupling parameter β0 and the potential parameter λ. Larger
values of λ and smaller values of |β0| both result in a smaller present-day value of ρ̄φ.
The sound horizon at recombination is held fixed at θs = 0.0104.

which, for an exponential potential V (φ) = Ae−λφ/MP , yields

θ̇c = −Hθc +
− 2β0

1−2β0
a2Aλe−λφ/MPδφ− 2β0

˙̄φ ˙δφ

(ρ̄ca2 − 2β0
˙̄φ2)

. (4.58)

Both of the terms in the numerator become larger in magnitude when λ is large.

In the first term this is obvious; in the second it is a consequence of the V,φφ term

in Eq. (4.28). Hence, a large slope λ results in a large (negative) θc leading to a

reduction in δc and a suppression of structure growth.
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Figure 4.16: The evolution of the CDM velocity divergence θc as a function of
the scale factor a for a range of different potential parameters λ with a coupling
parameter β0 = −102, at a scale k = 0.1 Mpc−1. Larger values of λ give rise to larger
|θc|, with the effect saturating in the late universe for λ ≥ 5. The sound horizon at
recombination is held fixed at θs = 0.0104.

4.5.3 Double exponential potentials

Double exponential potentials of the form V (φ) = A1e−λ1φ/MP + A2e−λ2φ/MP can

provide interesting behaviour for uncoupled quintessence, as discussed in Chapter 2.

In this section I discuss double exponential potentials in the context of Type 3 models.

In particular, I argue that in Type 3 models, only the gradient of the potential at a

particular φ value is crucial, and not the overall shape of the potential.

We have already seen that Type 3 models with a large coupling parameter |β0|
result in a ‘slowing’ effect on the scalar field evolution, with extremely large values

giving rise to cosmological constant–like behaviour. This can be seen in our numerical

results in Figs. 4.2 and 4.8 and in the analytic argument laid out in Section 4.5.1.

The consequence of this is that, for sufficiently large |β0|, the scalar field φ does
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not explore a wide range of its potential, and instead is limited to a small region,

even if the potential is very steep. Based on this argument, one can predict that

considering other potential functions, such as double exponentials, will not introduce

any interesting behaviour that is not present in the single exponential case already

considered. We have tested this by investigating several double exponential potentials.

Figure 4.17 shows the evolution of the derivative of the scalar field for three example

potentials. The first is the single exponential case already considered. The second

has λ1 and λ2 of the same sign, similar to the potential proposed in Ref. [116] and

discussed in Chapter 2. The third has λ1 and λ2 of opposite sign similar to the models

discussed in Ref. [238], giving rise to a global minimum into which the scalar field

can fall. For simplicity we have set A1 = A2 in both of the double exponential cases.

It can be seen in Fig. 4.17 that, while the uncoupled scalar field is able to evolve

relatively quickly and is sensitive to the form of the potential, the coupling effectively

stops the scalar field from evolving irrespective of the form of the potential.

The gradient of the scalar field potential certainly plays a key role; this was

demonstrated in Sections 4.5.1 and 4.5.2. However, for sufficiently large |β0|, only the

gradient in the vicinity of the initial value of φ is relevant. The rest of the potential

is never explored by the scalar field and so has no cosmological consequences. There

is a wide range of possibilities for the form of the scalar field potential, which we

have only explored a small part of. However, the argument that the Type 3 coupling

stops the scalar field from evolving rapidly and so the overall form of the potential is

not crucial seems to be a general one. We can conclude from this that the ability for

Type 3 models to ease the σ8 tension is not unique to the single exponential potential

studied in Ref. [106] but should be expected for any potential that is sufficiently

steep.

4.6 Discussion

Unlike most coupled dark energy models that have been studied in the literature,

Type 3 models, as classified at the Lagrangian level in Ref. [114], consist of a coupling

between the momentum of the dark matter and the gradient of the scalar field of

dark energy. It was demonstrated in Ref. [106] using MCMC methods that such

models can ease the tension between early- and late-universe measurements of the

degree of structure formation in the universe.
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Figure 4.17: The evolution of the time derivative of the scalar field with the scale
factor for three different scalar field potentials V (φ). Dashed lines correspond to the
results of setting the coupling parameter β0 = 0. Solid lines (there are three solid
lines almost directly on top of one another) correspond to the results of allowing a
Type 3 coupling with a large coupling parameter β0 = −103. The single exponential
case already studied, with V (φ) = Aeλφ/MP , λ = 1.22, is shown in blue, while two
double exponential potentials of the form V (φ) = A(e−λ1φ/MP + e−λ2φ/MP) are shown
in green and red, with green corresponding to λ1 = 1, λ2 = 5 and red corresponding
to λ1 = 5, λ2 = −3. It can be seen that the uncoupled cases allow the scalar field to
evolve relatively rapidly, with behaviour highly sensitive to the form of the potential.
When the Type 3 couplings are present, however, the scalar field is able to evolve
only very slowly, with the form of the potential having very little impact. The sound
horizon at recombination is held fixed at θs = 0.0104.
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In this chapter I have discussed two novel contributions to the study of Type 3

models. In Section 4.3 I presented a detailed approximate analytic approach to

understand the underlying physics that gives rise to the resulting suppression of

structure growth discovered by Ref. [106]. Then Sections 4.4 and 4.5 embarked on

a generalisation of the model considered in Section 4.3 by considering couplings

other than the quadratic one already considered, and potentials beyond the single

exponential with a fixed slope that was the focus of Section 4.3.

The most interesting feature of Type 3 models that gives rise to their observed

suppression of structure growth is that they exhibit a non-zero velocity divergence

of CDM, θc, which is normally equal to zero in the synchronous gauge. The CDM

density contrast then has a small additional contribution that is not present in the

uncoupled case. This contribution has a sign such that it always reduces the absolute

value of the density contrast, which is equivalent to a suppression of structure growth.

This mechanism was fleshed out in detail in Section 4.3.

A cubic coupling γ(Z) = β1Z
3 has already been considered in the literature [225],

with a focus on the variable sound speed of dark energy that is present in Type 3

models with γ(Z) = βn−2Z
n for n > 2. Our focus, on the other hand, was on any

implications such couplings might have for the growth of structure. We concluded that

the key features are still present: very small couplings recover uncoupled quintessence,

very large couplings mimic ΛCDM in the late universe, and coupling parameters in an

intermediate range give rise to structure growth suppression relative to both extremes.

The key difference is the time-dependence introduced by power-law couplings with

n > 2, which results in the coupling ‘switching on’ at some time; later for small |βn−2|
and earlier for large |βn−2|. Another manifestation of the time-dependence is the

shifting profile of the CDM velocity divergence θc. At early times, |θc| is maximised

for larger |βn−2| while at later times it is maximised for smaller |βn−2|. As far as

we can tell, neither of these time-dependent effects are particularly important, since

most of the interesting behaviour of Type 3 models is manifest in the late universe.

A possible avenue for future research would be to carry out an MCMC analysis

similar to that of Ref. [106] for more general couplings to investigate quantitatively

whether such models have any advantages or disadvantages in terms of fitting the

data compared to the n = 2 case.

Of the two main tensions between early- and late-universe observations, the one

we have considered here, the amount of structure growth, is the less severe. The
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more severe tension is in measurements of the expansion rate of the universe, which

according to our work cannot be addressed by Type 3 models. However, even if we

cannot reduce the H0 tension, we should at least aspire to make it no worse, since

ameliorating a mild tension at the expense of exacerbating a more extreme tension

worsens the fit to the data overall. The results of Section 4.5 suggest that Type 3

models are able to imply a very large suppression of structure formation (at least

down to the level found by presently available late-universe probes [102–105]) without

making the H0 tension worse. The suppression of structure growth is achieved by

setting λ to be large (e.g. λ ∼ 3), whilst any reduction in the expansion rate is

prevented by setting |β0| to be large (|β0| & 102). Investigating whether such choices

of the parameters λ and β0 are favoured by the data would require a more rigorous

analysis such as that carried out in Ref. [106]. Indeed, the posterior distribution for

λ found by Ref. [106] does not appear to be fully contained within the prior, which

only extends as far as 2.1. Extending the prior range to include the larger values of

λ that we have considered here may be an interesting aspect for future study.

As well as looking in more detail at the effect of varying λ for a single exponential

potential, we have briefly considered more general potentials, in the form of double

exponential potentials. Double exponential potentials are of interest for uncoupled

quintessence in two main forms. If both exponents are of the same sign but of different

magnitude then one can have a situation in which the scalar field rolls quickly down

the steeper part in the early universe in the form of a scaling solution [61] before

hitting the flatter part of the potential in the late universe, giving rise to slow roll

and an equation of state close to the observed value of −1 [116]. On the other hand,

if the exponents are of opposite signs then the potential acquires a minimum about

which the scalar field can oscillate, providing another basis for the equation of state

to evolve close to the observationally preferred value [238]. Looking at these types

of potential in the context of Type 3 models, however, we do not find any indication

that their properties are as interesting as they are in uncoupled quintessence. The key

reason for this is that Type 3 models provide a very natural way to slow the evolution

of the scalar field without requiring a shallow slope or a minimum about which to

oscillate. If the coupling parameter β0 has an absolute value that is significantly

greater than unity it provides an effect similar to a friction term, that slows the scalar

field evolution even for a steep potential. It appears simpler and more attractive,

therefore, to content oneself with a single exponential potential than to introduce
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extra degrees of freedom that do not necessarily add any interesting or useful physical

behaviour to the model.

In this chapter I have explored the underlying physical mechanism for the inter-

esting behaviour of Type 3 models and demonstrated the robustness of such behaviour

to changing the form of the coupling function γ(Z) and the scalar field potential

V (φ). I hope that a robust understanding of the underlying physics and its domain

of applicability will help guide future study in this exciting and little-studied field.
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Chapter 5

Conclusions

Understanding the cause of the current period of accelerated universal expansion is

one of the great unanswered questions in cosmology. Assuming Einstein’s general

theory of relativity is the correct theory of gravity, the rate of expansion of the universe

implies that 70% of its present-day energy density is in the form of a negative-pressure

fluid known as dark energy. To improve our theoretical understanding of dark energy

we construct models whose predictions we can test against the extraordinary wealth

of observational data we now have access to. The standard model of cosmology,

ΛCDM, was reviewed in Chapter 1 and describes dark energy as a cosmological

constant. This model fits the data very well but suffers from serious theoretical issues

such as the cosmological constant problem and the coincidence problem. In addition,

there are tensions between early- and late-universe measurements of the present-day

expansion rate H0 and the amplitude of matter fluctuations σ8 when ΛCDM is taken

as the cosmological model. This motivates the study of alternative models of dark

energy such as those I have discussed in this thesis. I have presented research on two

types of dark energy, exploring the extent to which they can address the problems

faced by ΛCDM and investigating whether they might encounter their own problems

in trying to agree with observational data.

Both of the classes of models I have considered are examples of scalar field dark

energy, in which the cosmological constant is assumed to be zero and dark energy is

instead described by a single scalar field which dynamically acquires an appropriate

energy density and pressure to give rise to the observed accelerated expansion. Both

cases are examples of interacting dark energy; a coupling is introduced between

the dark energy scalar field and either neutrinos or dark matter. The theoretical

background for both types of model, as well as more general background on dynamical

dark energy, was presented in Chapter 2.

The first type of dark energy I discussed was growing neutrino quintessence

(GNQ), in which a coupling is introduced between the dark energy scalar field and
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the neutrino sector. This study was the subject of Chapter 3. The motivation for

such couplings is that they can solve the coincidence problem. During radiation

and matter domination the scalar field φ obeys a scaling solution in which it tracks

the energy density of the dominant fluid species. Once the neutrinos become non-

relativistic the coupling causes the scalar field to come to a halt, acquiring a negative

equation of state and producing accelerated expansion. This mechanism produces

early dark energy during the scaling regime, where the scalar field contributes an

approximately constant fraction of the energy density of the universe. We used the

Doran and Robbers parametrisation of early dark energy [117] and constraints from

CMB experiments to constrain a class of GNQ models.

We focused in particular on a model proposed by Wetterich [216], which de-

scribes both inflation and dark energy by the same scalar field, employing the GNQ

mechanism and embedding it in an approach to quantum gravity called crossover

gravity. Wetterich used an approximate analytic treatment of the scaling regime to

derive an upper bound on a model parameter κ that controls the size of the scalar

field kinetic term. He pointed out that CMB constraints on early dark energy also

provide a lower bound on κ such that more precise CMB measurements in the future

may be able to rule out or support the model. Using a modified version of CAMB, we

solved the background evolution equations, applied the most recent CMB measure-

ments and did indeed find that the new lower bound on κ exceeds Wetterich’s upper

bound, apparently ruling out the model. However, we also repeated the analytic

calculation in the scaling regime and found disagreement with Wetterich’s results,

such that the upper bound is not present. Thus we conclude that the model is not

ruled out after all.

We broadened our analysis of the Wetterich model to include related GNQ

models by considering various forms for the kinetic function, scalar field potential,

and neutrino–scalar coupling function. In particular, we considered inverse power-

law potentials both analytically and numerically using our modified version of CAMB.

We found an analytic solution for the evolution of the scalar field energy density in

the radiation- and matter-dominated eras which we were able to confirm with the

numerical solution. We found that there was no early dark energy present and so

the constraints we applied to the exponential potentials do not apply to the inverse

power-law potentials.

In addition to the background analyses discussed above, we calculated for the
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first time the equations of motion to linear order in perturbations for the Wetterich

model. This was intended as the basis of an investigation using CAMB to study

the model in more detail than the background analysis allowed. Ultimately this

approach did not yield results, possibly due to the formation of non-linear neutrino

lumps rendering the linear approximation invalid.

Most of the recent literature on GNQ has studied the neutrino lumps which

form as a consequence of the coupling to the scalar field. While we have found novel

results using a purely background analysis, it is my opinion that there is not much

more to be gained by continuing in this direction, and N-body methods that can

properly take account of the neutrino lumps may prove a more fruitful area for future

research.

The formalism of Ref. [114] provides a powerful framework for building interact-

ing dark energy models and there is no reason why it cannot be applied to couplings

with the neutrinos rather than dark matter. The most widely studied GNQ models

have neutrino–scalar couplings that are sub-cases of Type 1, while Type 2 and 3

couplings between dark energy and neutrinos are very little studied. Ref. [239] invest-

igated a physically motivated neutrino–scalar coupling similar to a Type 3 coupling

and found that such an interaction could solve the coincidence problem while avoid-

ing the formation of neutrino ‘lumps’ that conventional GNQ models suffer from.

It is clear that couplings other than the ‘standard’ GNQ form can have interesting

cosmological consequences that deserve further study.

The second class of models we studied were Type 3 interacting dark energy

models, introduced in Ref. [114]. This research was the subject of Chapter 4. The

classification scheme of Ref. [114] divides interacting dark energy into three Types

according to what couplings between dark energy and dark matter are present in

the Lagrangian. Type 1 includes many previously studied models of interacting dark

energy in which the coupling was introduced phenomenologically in the equations

of motion, while Types 2 and 3 are much less studied. Type 3 models consist of

a pure momentum coupling, resulting in them being less tightly constrained than

Types 1 and 2. Furthermore, they have been shown to be able to alleviate the tension

between early- and late-universe measurements of structure formation, making them

a particularly interesting case to study.

We investigated the mechanism by which the growth of structure is suppressed
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in Type 3 models and presented an explanation for this behaviour with reference to

the underlying equations for a simple quintessence case with an exponential scalar

field potential V (φ) = Ae−λφ and a quadratic coupling γ(Z) = β0Z
2. The velocity

divergence of CDM is increased by the coupling to the gradient of the scalar field,

which brings about a reduction in the density contrast of CDM, corresponding to less

growth of structure. The particular value of the coupling parameter that maximises

the suppression can be inferred from the CDM velocity divergence evolution equation

using simple scaling arguments.

After developing this understanding of the physics of Type 3 models we used

a modified version of CLASS to explore the effect of changing the form of the coup-

ling function to higher powers of Z. This generalisation introduces some new time

dependence into the behaviour of the coupling but does not significantly affect the

consequences for structure formation. We conclude from this that structure growth

suppression is a rather generic feature of Type 3 coupled quintessence. We demon-

strated explicitly the results for cubic and quartic coupling functions.

We also focused on the role of the scalar field potential in the behaviour of

Type 3 coupled quintessence. For a single exponential potential, we found that the

slope, λ, of the potential plays a key role in structure growth suppression. Increasing

λ decreases σ8 but also reduces the present-day expansion rate of the universe H0.

This latter result is to be avoided, since it exacerbates the already large tension

with late-universe measurements of H0. However, the Type 3 coupling can bring

about a slowing effect on the scalar field evolution through a modification to the

kinetic term of the scalar field equation. One can avoid the reduction in H0 by

increasing the coupling parameter to increase the slowing effect on the scalar field.

By varying the potential parameter λ and the coupling parameter β0 one can obtain

solutions in which structure growth is substantially suppressed without bringing

about a reduction in H0. We considered more general scalar field potentials in the

form of double exponential potentials. However, due to the fact that Type 3 couplings

can slow the evolution of the scalar field even for steep potentials, the overall form of

the scalar field potential is often not crucial, since the field will never ‘see’ the parts

of the potential that are far from its initial conditions.

Type 3 interacting dark energy is a very young topic but it is one that holds

great potential for future study. One unanswered question from our work is how

natural are the choices we have made. In the course of our study we have allowed
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the coupling parameter to vary over several orders of magnitude, at times finding

that dimensionless values of |β0| ∼ 102 yield useful or interesting results. We have

not considered questions about how the models we have considered might arise

from a more fundamental theory, so we cannot say definitively whether such values

are reasonable, but the presence of large dimensionless parameters is somewhat

unappealing. Similarly, the use of a large coupling to slow the scalar field evolution

almost to a standstill is attractive from the point of view of obtaining a realistic

present-day expansion rate, but may present a fine-tuning problem. If the scalar field

remains at the same point of its potential for most of the universe’s history, and this

point gives just the right amount of dark energy to bring about the present rate of

expansion, then the question arises as to why the field should have had that initial

value rather than any other. (To be precise, in our analysis with CLASS any fine

tuning would have been in finding the prefactor A of the scalar field potential rather

than in the initial value of the scalar field itself, but the distinction is not crucial.)

It may be the case that power-law couplings with higher order than quadratic might

be useful here. We found that such couplings result in the scalar field evolving like

uncoupled quintessence in the early universe before being slowed in the late universe.

Whether a scenario along these lines could bring about the desired late-universe

behaviour for generic initial conditions would be an interesting subject for future

study.

Another limitation of our work is that we have not used MCMC methods to

compare the predictions of the model to observational data in a rigorous way. Instead

we have run a Boltzmann code for a few choices of parameters and compared the

cosmological observables obtained to the best-fit values found by observations. The

reason for our choice of approach was to illuminate the mechanism by which different

parameter choices affect the output, but a more rigorous comparison with the data is

desirable. Such an analysis for a quadratic coupling and single exponential potential

was carried out in Ref. [106]; future study could build on this and our work by

applying MCMC methods to more general choices of the Type 3 coupling parameter

and scalar field potential.

The fundamental nature of dark energy is unlikely to be discovered in the imme-

diate future. At present there are a great many proposed models whose cosmological

consequences need to be investigated and compared against the increasingly precise

cosmological data available to us. The coupled quintessence scenarios we have stud-

121



CHAPTER 5. CONCLUSIONS

ied in this work have exciting prospects for resolving some of the issues with the

standard cosmological paradigm, and reveal intriguing behaviour that I hope future

study will further illuminate.
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[9] A. Friedmann, ‘Über die Krümmung des Raumes’, Zeitschrift fur Physik,

vol. 10, pp. 377–386, 1922. doi: 10.1007/BF01332580.
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[81] M. Raidal, V. Vaskonen and H. Veermäe, ‘Gravitational waves from primordial

black hole mergers’, Journal of Cosmology and Astroparticle Physics, vol. 1709,

p. 037, 2017. doi: 10.1088/1475-7516/2017/09/037. arXiv: 1707.01480

[astro-ph.CO].
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