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Abstract We present expressions for the energy, linear momentum and angular
momentum carried away from an isolated system by gravitational radiation based
on spin-weighted spherical harmonics decomposition of the Weyl scalar Ψ4. We
also show that the expressions derived are equivalent to the common expressions
obtained when using a framework based on perturbations of a Schwazschild back-
ground. The main idea is to collect together all the different expressions in a uni-
form and consistent way. The formulae presented here are directly applicable to
the calculation of the radiated energy, linear momentum and angular momentum
starting from the gravitational waveforms which are typically extracted from nu-
merical simulations.

Keywords Gravitational waves, Energy and momenta, Multipole expansions,
Numerical relativity

1 Introduction

Gravitational waves are one of the most important predictions of General Relativ-
ity. Though such gravitational radiation has not yet been detected directly, there
is strong indirect evidence for its existence in the form of the now famous binary
pulsar PSR 1913+16, whose change in orbital period over time matches to very
high accuracy the value predicted by General Relativity as a consequence of the
emission of gravitational waves [1; 2]. Moreover, there is every reason to believe
that the new generation of large interferometric observatories (LIGO, VIRGO,
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GEO 600, TAMA) will finally succeed in detecting gravitational radiation within
the next few years. Also, gravitational waves are one of the most important phys-
ical phenomena associated with the presence of strong and dynamic gravitational
fields, and as such they are of great interest in numerical relativity.

Gravitational radiation can carry energy and momentum away from an isolated
system, and it also encodes important information about the physical properties of
the system itself. The prediction of the gravitational wave signal coming from the
inspiral collision of two compact objects has been one of the main themes in nu-
merical relativity over the years, as such predictions can be used as templates that
can significantly improve the possibility of detection. Nevertheless, it was not un-
til a couple of years ago that it was finally possible to perform long-term stable
numerical simulations of binary black hole spacetimes [3; 4; 5; 6; 7]. In this way,
numerical simulations have now reached a stage where it is finally possible to ex-
tract important astrophysical information from the collision of two black holes.
For instance, it has now become possible to compute the so-called “kick” of the
final black hole, i.e., the non-zero final velocity of the merged black hole, see,
e.g., [8; 9] and references therein (we have not attempted to give a complete list
of references here since this field is so active at the moment that such an attempt
would almost certainly become obsolete within a few weeks). This non-zero final
velocity is a consequence of the fact that in non-symmetric situations the emitted
gravitational waves carry linear momentum with them. Similarly, the spin of the
final black hole can also be computed by subtracting the angular momentum car-
ried away by gravitational waves from the initial ADM angular momentum of the
spacetime.

Historically, there have been two main approaches to the extraction of grav-
itational wave information from a numerical simulation. For a number of years the
traditional approach has been based on the theory of perturbations of a Schwarzschild
spacetime, developed originally by Regge and Wheeler [10], Zerilli [11], and a
number of other authors, and later recast as a gauge invariant framework by Mon-
crief [12]. In recent years, however, it has become increasingly common in nu-
merical relativity to describe gravitational waves in terms of the components of
the Weyl curvature tensor with respect to a frame of null vectors [13], using what
is known as the Newman–Penrose formalism [14]. In this paper we obtain in a
simple way general expressions for the energy, linear momentum and angular mo-
mentum carried away by gravitational waves using the spin-weighted spherical
harmonics decomposition of the components of the Weyl curvature tensor. We
also compare these expressions with the more common expressions used in nu-
merical relativity which are based on the theory of gauge invariant perturbations
of Schwarzschild [15] (see, e.g. [9; 16]). Though most of the main ideas and
results presented here are known, our aim is to collect all relevant expressions
together using a consistent set of conventions and definitions.

This paper is organized as follows. In Sect. 2 we summarize the general expres-
sion for the energy and momenta of gravitational waves in the transverse-traceless
(TT) gauge. In Sect. 3 we obtain the general expressions for the energy and mo-
menta using the Weyl scalars and the spin-weighted spherical harmonics. Later, in
Sect. 4 we briefly discuss some of the ideas behind the theory of perturbations of
a Schwarszchild black hole and we obtain again the general expression for energy
and momenta in terms of the gauge invariant “master” functions (Ψeven,Ψodd) and
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(Qeven,Qodd). We conclude in Sect. 5. In addition, in A we discuss some important
properties of the spin-weighted spherical harmonics.

2 Gravitational waves and the physics in them encoded

Let us start by considering a small perturbation hµν to a flat background metric
g̊µν , such that the full metric is given by

gµν = g̊µν +hµν , (1)

where |hµν |� 1. Knowing that the gravitational field has only two degrees of free-
dom, we can choose a gauge such that there are only two unknown functions, h+

and h×, that represent the two possible polarizations of the gravitational waves.
That is, we work in the so-called transverse-traceless (TT) gauge in which im-
poses the conditions h0α = hi

i = hi j
| j = 0 (where the bar denotes covariant deriva-

tive with respect to the background metric). The perturbation tensor then has the
form

hT T
µν =

0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (2)

where we have assumed that we have a plane wave propagating along the z axis.
Moreover, we will be considering only outgoing waves which means that the func-
tional dependence on r and t of the metric perturbations is of the form f (r− t)/r,
so that asymptotically one has ∂rh∼−∂th≡−ḣ. Furthermore, for large r the ra-
diation can always be locally approximated as a plane wave, so that the angular
derivatives can be neglected when compared with radial derivatives (but one must
be careful when one deals with quantities that do not involve radial derivatives
such as the angular momentum, see below).

Having described the properties of the metric perturbation hµν , we proceed to
find the flux of energy and momentum carried away by the gravitational waves.
The most straightforward way is to use the Isaacson stress-energy tensor (for de-
tails see, e.g. [17]), which describes the energy and momentum associated with
the gravitational waves averaged over a few wavelengths using the so-called short
wavelength approximation (one must remember that in general relativity there is
no local expression for the energy and momentum of the gravitational field). In
the TT gauge, and in a locally inertial frame, the Isaacson stress-energy tensor is
given by

Tµν =
1

32π

〈
∂µ hT T

i j ∂ν hT T
i j
〉
, (3)

where 〈 〉 denotes an average over several wavelengths, and where a summation
over the repeated indices (i, j) is implied. Using the explicit form of the hT T

i j in
terms of h+ and h×, the Isaacson stress-energy tensor can be rewritten as

Tµν =
1

16π

〈
∂µ h+

∂ν h+ +∂µ h×∂ν h×
〉
, (4)
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or equivalently (here and in what follows z̄ will denote the complex conjugate of
z)

Tµν =
1

16π
Re
〈
∂µ H∂ν H̄

〉
, (5)

with H := h+− ih×, and where Re(z) denotes the real part of z.
We can now use Eq. (5) to find the flux of energy and momentum carried away

by the gravitational waves. Consider first the flux of energy along the direction i,
which is given in general by T 0i. In particular, the energy flux of the gravitational
waves along the radial direction will then be given in local Cartesian coordinates
by

dE
dt dA

= T 0r =
1

16π
Re
〈
∂

0H∂
rH̄
〉

=− 1
16π

Re〈∂tH∂rH̄〉 , (6)

with dA the area element normal to the radial direction. Using now the relation
∂rh =−ḣ mentioned above, we can rewrite this as

dE
dt dA

=
1

16π

〈
Ḣ ˙̄H

〉
=

1
16π

〈
|Ḣ|2

〉
. (7)

If we want the total flux of energy leaving the system at a given time we need to
integrate over the sphere to find

dE
dt

= lim
r→∞

r2

16π

∮
|Ḣ|2dΩ , (8)

where we have taken dA = r2 dΩ , with dΩ the standard solid angle element, and
where the limit of infinite radius has been introduced since the Isaacson stress-
energy tensor is only valid in the weak field approximation. Notice also that we
have dropped the averaging since the integral over the sphere is already performing
an average over space, plus the expression above is usually integrated over time
to find the total energy radiated which again eliminates the need to take a time
average.

Consider next the flux of linear momentum which corresponds to the spatial
components of the stress-energy tensor T i j. The flux of momentum i along the
radial direction will then be given by

dPi

dt dA
= Tir =

1
16π

Re〈∂iH∂rH̄〉=
1

16π
li
〈
|Ḣ|2

〉
, (9)

where in the last inequality we have used the fact that asymptotically ∂iH'
(xi/r)∂rH (i.e., we are ignoring angular derivatives), and also the relation between
the radial and temporal derivatives for outgoing waves. The vector l introduced
above is the unit radial vector in flat space,

l = x/r = (sinθ cosϕ,sinθ sinϕ,cosθ). (10)

The total flux of momentum leaving the system will again be given by an integral
over the sphere as

dPi

dt
= lim

r→∞

r2

16π

∮
li |Ḣ|2 dΩ . (11)
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Finally, we consider the flux of angular momentum. Locally, the flux of the i
component of the angular momentum along the radial direction should correspond
to εi jkx jT kr with εi jk the three-dimensional Levi–Civita antisymmetric tensor (this
is just r×p in three-dimensional notation). However, in the case of gravitational
waves, this expression is in fact wrong since the averaging procedure that is used
to derive the Isaacson stress-energy tensor ignores terms that go as 1/r3, and it is
precisely such terms that contribute to the flux of angular momentum. A correct
expression for the flux of angular momentum due to gravitational waves was first
derived by DeWitt in 1971, and in the TT gauge has the form (see, e.g. [15])

dJi

dt dA
=

1
32π

ε
i jk (x j ∂khab +2δa j hbk)∂rhab. (12)

The last expression can be rewritten in more compact form if we introduce the
angular vectors ξ i associated to rotations around the three coordinate axis. These
vectors are Killing fields of the flat metric, and in Cartesian coordinates have com-
ponents given by ξ k

i = εi
jkx j (where ξ k

i represents the k component of the vector
ξ i). In terms of the vectors ξ i the flux of angular momentum can now be written
as

dJi

dt
=− lim

r→∞

r2

32π

∮ (
£ξihab

)
∂thab dΩ , (13)

where £ξihab is the Lie derivative of hab with respect to ξ i, and where we have
again taken ∂rh =−∂th for outgoing waves. The appearance of the Lie derivative
is to be expected on physical grounds, since for rotational symmetry around a
given axis (£ξihab = 0), one should find that the corresponding angular momentum
flux vanishes.

In order to write the angular momentum flux in terms of H as we have done
with the flux of energy and linear momentum, one must now carefully consider
the action of the Lie derivative on the perturbed metric. The easiest way to do this
is to work in spherical coordinates (r,θ ,ϕ), in which case the angular vectors have
components

ξ x = (0,−sinϕ,−cosϕ cotθ) , (14)
ξ y = (0,cosϕ,−sinϕ cotθ) , (15)
ξ z = (0,0,1) . (16)

It is clear that the vector ξ z corresponds to one of the vectors of the coordinate
basis, which implies that Lie derivatives along it reduce to simple partial deriva-
tives. To calculate the Lie derivatives in the other directions it is convenient to
first introduce the two complex angular vectors ξ± := ξ x± iξ y. Furthermore, we
will introduce an orthonormal spherical basis (êr, êθ , êϕ), and define the two unit
complex vectors ê± := 1/

√
2
(
êθ ∓ i êϕ

)
. One can then show with some algebraic

equations that the Lie derivative of ê± with respect to ξ± is given by

£ξ±ea
± =∓

(
i e±iϕ cscθ

)
ea
±. (17)
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Let us now rewrite the metric perturbation hab in the TT gauge in terms of the
orthonormal basis as:

hab = h+ [(êθ )a(êθ )b− (êϕ)a(êϕ)b
]

+h×
[
(êθ )a(êϕ)b +(êϕ)a(êθ )b

]
= H (ê−)a(ê−)b + H̄ (ê+)a(ê+)b. (18)

We are now in a position to calculate the Lie derivative of hab with respect to
ξ±. One finds,

£ξ±hab = (ê−)a(ê−)b Ĵ±H +(ê+)a(ê+)b Ĵ±H̄, (19)

where we have defined the operators

Ĵ± := ξ
a
±∂a− i s e±iϕ cscθ

= e±iϕ [±i∂θ − cotθ ∂ϕ − i scscθ
]
, (20)

with s the spin weight of the function on which the operator is acting: s =−2 for
H, and s = +2 for H̄ (see A). The last result implies that

(£ξ±hab)∂thab = Ĵ±H ∂tH̄ + Ĵ±H̄ ∂tH = 2Re
{

Ĵ±H ∂tH̄
}
, (21)

from which we find

(£ξxhab)∂thab = 2Re
{

ĴxH ∂tH̄
}
, (22)

(£ξyhab)∂thab = 2Re
{

ĴyH ∂tH̄
}
. (23)

Collecting the results, the flux of angular momentum becomes

dJi

dt
=− lim

r→∞

r2

16π
Re
∮

ĴiH ∂tH̄ dΩ , (24)

with the angular momentum operators Ĵi defined as

Ĵx =
1
2
(
Ĵ+ + Ĵ−

)
= −sinϕ ∂θ − cosϕ

(
cotθ ∂ϕ − i scscθ

)
,

Ĵy = − i
2
(
Ĵ+− Ĵ−

)
= +cosϕ ∂θ − sinϕ

(
cotθ ∂ϕ − i scscθ

)
,

Ĵz = ∂ϕ . (25)

Notice that, except for a factor of −ih̄, these are just the quantum mechanical
angular momentum operators with the correct spin weight [18].

We now have expressions for the radiated energy, linear momentum, and an-
gular momentum (more details on the derivation of these expressions can be found
in [19]). However, it turns out that the TT coefficients h+ and h× are not trivial
to obtain from a numerical simulation. One of the reasons for this is that during
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a numerical simulation one obtains the full spacetime metric, and not the back-
ground spacetime plus a separate perturbation. One therefore needs to relate these
metric perturbations to some geometric quantities, preferably scalars, that can be
obtained directly from the available data. In the following Section, we will con-
centrate on one such quantity that turns out to be ideal for extracting gravitational
wave information, namely the Weyl scalar Ψ4.

3 The Weyl scalar Ψ4

3.1 Definition of Ψ4

It is well known that the scalars needed to completely characterize a given space-
time can be expressed as projections onto a null tetrad of the Weyl tensor. These
scalars, known as the Weyl scalars, have several interesting properties. For in-
stance, for a suitable chosen tetrad, they can be related directly to the gravitational
waves at null infinity. We will be interested mainly in the Weyl scalar Ψ4, which is
associated with outgoing gravitational radiation and is defined as

Ψ4 := Cαβ µν kα m̄β kµ m̄ν , (26)

with Cαβ µν the Weyl tensor and where kµ and m̄µ are two vectors of a null tetrad
constructed from the orthonormal spherical basis in the following way
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lµ :=
1√
2

(
êµ

t + êµ
r
)
,

kµ :=
1√
2

(
êµ

t − êµ
r
)
,

(27)
mµ :=

1√
2

(
êµ

θ
+ iêµ

ϕ

)
,

m̄µ :=
1√
2

(
êµ

θ
− iêµ

ϕ

)
,

where the vectors êµ

t , êµ
r , êµ

θ
, and êµ

ϕ are the usual orthonormal basis induced by
the spherical coordinates. The Weyl scalars (Ψ0,Ψ1,Ψ2,Ψ3) are similarly defined
as different contractions of the Weyl tensor with the null tetrad.

It turns out that the complex quantity H = h+− ih×, defined in the previous
Section, can in fact also be written in terms of the Weyl scalar Ψ4. In order to see
this notice first that if we are in vacuum far from the source of the gravitational
waves the Weyl and Riemann tensors coincide (the Ricci tensor vanishes). Using
now the standard expression for the Riemann tensor in the linearized approxima-
tion one can easily show that, for outgoing plane waves in the TT gauge traveling
along the r direction, Ψ4 takes the simple form

Ψ4 =−
(
ḧ+− i ḧ×

)
=−Ḧ, (28)

while all the other Weyl scalars vanish. This implies that for outgoing gravitational
waves we can write

H =−
t∫

−∞

t ′∫
−∞

Ψ4 dt ′′dt ′. (29)

3.2 Radiated energy and momentum

We can now use Eq. (29) to rewrite the expressions for the radiated energy and
momentum derived in the previous Section directly in term of Ψ4.1 However, be-
fore
doing this it is convenient to project Ψ4 onto the sphere and describe its angular
dependence in terms of the spin-weighted spherical harmonics sY l,m (see A). One
can easily show that Ψ4 has spin weight s =−2, so that we can expand it as

Ψ4 =
∞

∑
l=2

l

∑
m=−l

Al,m
(
−2Y l,m(θ ,φ)

)
, (30)

with Al,m the expansion coefficients given by

Al,m =
∮

Ψ4

(
−2Ȳ l,m(θ ,φ)

)
dΩ . (31)

1 The expressions for the radiated energy, linear momentum and z component of the angular
momentum in terms of Ψ4 (without the multipole expansion) can be found in [13].
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Notice that since we are expanding over the harmonics of spin-weight s =−2, the
sum over l starts at l = 2 (the sY l,m are only defined for l ≥ |s|). To simplify the
notation, from now on we will drop the limits on the summations and will always
assume that the sum over l starts at 2, while the sum over m goes from −l to l.
For summations involving coefficients with indices l′ = l±1 and m′ = m±1 one
should only remember that the corresponding coefficients vanish whenever l′ < 2
and |m′|> l.

In order to calculate the total flux of energy leaving the system we can now
use (8) together with the relation between H and Ψ4, Eq. (29), to find

dE
dt

= lim
r→∞

r2

16π

∮ ∣∣∣∣∣∣
t∫

−∞

Ψ4 dt ′

∣∣∣∣∣∣
2

dΩ . (32)

Using now the orthogonality of the sY l,m, we can rewrite the radiated energy as

dE
dt

= lim
r→∞

r2

16π
∑
l,m

∣∣∣∣∣∣
t∫

−∞

Al,m dt ′

∣∣∣∣∣∣
2

. (33)

In a similar way, we can express the linear momentum radiated in terms of Ψ4 and
the Al,m coefficients. Using the expression for the radiated momentum, Eq. (11),
and again Eq. (29), we obtain

dPi

dt
= lim

r→∞

r2

16π

∮
li

∣∣∣∣∣∣
t∫

−∞

Ψ4 dt ′

∣∣∣∣∣∣
2

dΩ . (34)

Substituting now the multipole expansion of Ψ4 we find

dPi

dt
= lim

r→∞

r2

16π
∑
l,m

∑
l′,m′

∮
li
(
−2Y l,m

)(
−2Ȳ l′,m′

)
dΩ

×
t∫

−∞

Al,m dt ′
t∫

−∞

Āl′,m′ dt ′. (35)

In order to calculate the integral over the sphere, notice first that the compo-
nents of the radial unit vector li can be expressed in terms of scalar (i.e., spin zero)
spherical harmonics as
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lx = sinθ cosϕ =

√
2π

3
[
Y 1,−1−Y 1,1] , (36)

ly = sinθ sinϕ = i

√
2π

3
[
Y 1,−1 +Y 1,1] , (37)

lz = cosθ = 2
√

π

3
Y 1,0. (38)

We then see that the flux of linear momentum involves integrals over three spin-
weighted spherical harmonics. Such integrals are given in terms of the Wigner
3-lm symbols with l3 = 1, and are also explicitly given in A.

Instead of Px and Py it turns out to be easier to work with the complex quantity
P+ := Px + iPy. After a straightforward, but rather long, calculation one finally
arrives at the following expressions for the flux of linear momentum

dP+

dt
= lim

r→∞

r2

8π
∑
l,m

t∫
−∞

dt ′Al,m

×
t∫

−∞

dt ′
(

al,m Āl,m+1 +bl,−m Āl−1,m+1− bl+1,m+1 Āl+1,m+1
)

, (39)

dPz

dt
= lim

r→∞

r2

16π
∑
l,m

t∫
−∞

dt ′Al,m
t∫

−∞

dt ′
(

cl,m Āl,m+dl,m Āl−1,m+dl+1,m Āl+1,m
)
,

(40)

where the coefficients (al,m,bl,m,cl,m,dl,m) are given by

al,m =

√
(l−m)(l +m+1)

l (l +1)
, (41)

bl,m =
1
2 l

√
(l−2)(l +2)(l +m)(l +m−1)

(2l−1)(2l +1)
, (42)

cl,m =
2m

l (l +1)
, (43)

dl,m =
1
l

√
(l−2)(l +2)(l−m)(l +m)

(2l−1)(2l +1)
. (44)

Finally, for the flux of angular momentum we go back to Eq. (24) to obtain

dJi

dt
= − lim

r→∞

r2

16π
Re


∮  t∫

−∞

Ψ̄4 dt ′

× Ĵi

 t∫
−∞

t ′∫
−∞

Ψ4 dt ′′dt ′

dΩ

 . (45)
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Expressing Ψ4 in terms of its multipole expansion and integrating over the sphere
we now find

dJi

dt
= − lim

r→∞

r2

16π
Re

∑
l,m

∑
l′m′

t∫
−∞

Āl′,m′ dt ′

×
t∫

−∞

t ′∫
−∞

Al,m dt ′′dt ′×
∮

−2Ȳ l′,m′ Ĵi

(
−2Y l,m

)
dΩ

 , (46)

where the action of the angular momentum operators Ĵi on the spin-weighted
spherical harmonics is given in A. We again obtain integrals that involve products
of two spin-weighted spherical harmonics which satisfy the usual orthonormaliza-
tion relations. One can then easily find the following expressions for the angular
momentum carried by the gravitational waves

dJx

dt
= − lim

r→∞

i r2

32π
Im

∑
l,m

t∫
−∞

t ′∫
−∞

Al,m dt ′′dt ′

×
t∫

−∞

(
fl,m Āl,m+1 + fl,−m Āl,m−1

)dt ′, (47)

dJy

dt
= − lim

r→∞

r2

32π
Re

∑
l,m

t∫
−∞

t ′∫
−∞

Al,m dt ′′dt ′

×
t∫

−∞

(
fl,m Āl,m+1− fl,−m Āl,m−1

)dt ′, (48)

dJz

dt
= − lim

r→∞

ir2

16π
Im

∑
l,m

m
t∫

−∞

t ′∫
−∞

Al,m dt ′dt ′′
t∫

−∞

Āl,m dt ′

 , (49)

with

fl,m :=
√

(l−m)(l +m+1)

=
√

l(l +1)−m(m+1), (50)

and where we use the convention that Im(a+ ib) = ib, for a and b real. These last
expressions have also been recently derived following a different route by Lousto
and Zlochower in [20]. The different factor of 1/4 between our expression and the
expressions of [20] is due to a different normalization of the null tetrad used to
define Ψ4.



12 M. Ruiz et al.

4 Black hole perturbation theory

In order to relate the expressions for the radiated energy and momentum in terms
of the Weyl scalar Ψ4 to the standard ones in terms of gauge invariant perturba-
tions, we will present here a brief discussion of some of the ideas behind the theory
of perturbations of a Schwarzschild black hole (a more detailed discussion can be
seen in, e.g. [21; 22; 23]).

4.1 Multipole expansion

Consider a metric of the form (1), with the background metric g̊µν given by the
Schwarzschild metric in standard coordinates:

g̊µν dxµ dxν = f (r)dt2 +
1

f (r)
dr2 + r2 dΩ

2, (51)

with f (r) = (1− 2M/r). Because of the spherical symmetry of the background,
it is convenient to think of the full spacetime as the product of a Lorentzian two-
dimensional manifold M2 associated to the coordinates (t,r), and the two-sphere
of unit radius S2 associated to (θ ,ϕ):

ds2 = gAB dxAdxB + r2
Ωab dxadxb, (52)

where Ωab is the metric on S2: Ωab = diag(1,sin2
θ). Here, and in what follows,

we will use upper case indices (A,B, . . .) to represent the coordinates in M2, and
lower case indices (a,b, . . .) for coordinates in S2. We will also distinguish co-
variant derivatives in the full spacetime from covariant derivatives in the subman-
ifolds: ∇µ will represent covariant derivatives in spacetime, while DA and Da will
denote covariant derivatives in M2 and S2, respectively.

We will now consider an expansion of the metric perturbation hµν in multi-
poles using spherical harmonics Y l,m(θ ,ϕ). Such a decomposition naturally sep-
arates the perturbation into even (or axial) modes and odd (or polar) modes: even
modes are those that transform as (−1)l under a parity transformation (θ ,φ) →
(π−θ ,π +φ), while odd modes transform instead as (−1)l+1.

In order to decompose hµν one further needs to introduce the scalar, vector
and tensor harmonics (these tensorial properties refer only to transformations in
the unit sphere). Scalar harmonics are the usual functions Y l,m. Vector harmonics,
on the other hand, come in two different types. The even vector harmonics are
simply defined as the gradient of the scalar harmonics on the sphere

Y l,m
a := DaY l,m, (53)

while the odd vector harmonics are

X l,m
a :=−εa

bDbY l,m =−εac Ω
cbDbY l,m, (54)

where εab is the Levi–Civita tensor on the two-sphere (εθϕ = −εϕθ = Ω 1/2 =
sinθ ).
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Similarly, one can define tensor harmonics of even and odd type. Even tensor
harmonics can be constructed in two ways, either by multiplying the scalar har-
monics with the angular metric Ωab, or by taking a second covariant derivative of
the Y l,m. However, it turns out that these functions do not form a linearly indepen-
dent set. Instead of the DaDbY l,m it is better to use the so-called “Zerilli–Mathews”
tensor harmonics (see, e.g. [21]) defined as

Zl,m
ab := DaDbY l,m +

1
2

l (l +1)ΩabY l,m. (55)

It is easy to show that this tensor is traceless, which implies that the resultant func-
tions are linearly independent. Odd parity tensor harmonics, on the other hand, can
be constructed in only one way, namely

X l,m
ab =

1
2

(
DaX l,m

b +DbX l,m
a

)
. (56)

Having defined the vector and tensor harmonics, the perturbed metric is ex-
panded in multipoles, and separated into its even sector given by(

hl,m
AB

)
even

= H l,m
AB Y l,m, (57)(

hl,m
Ab

)
even

= H l,m
A Y l,m

b , (58)(
hl,m

ab

)
even

= r2
(

Kl,m
ΩabY l,m +Gl,mZl,m

ab

)
, (59)

notice that for the case l = 1 the tensor Zl,m
ab vanishes, and the odd sector is given

by (
hl,m

AB

)
odd

= 0, (60)(
hl,m

Ab

)
odd

= hl,m
A X l,m

b , (61)(
hl,m

ab

)
odd

= hl,m X l,m
ab , (62)

where the coefficients (H l,m
AB ,H l,m

A ,Kl,m,Gl,m,hl,m
A ,hl,m) are in general the func-

tions of r and t.
Notice that, since Y 00 is a constant, both vector and tensor harmonics vanish

for l = 0. On the other hand, for l = 1 the vector harmonics do not vanish, but the
tensor harmonics can still be easily shown to vanish from the explicit expressions
for Y 1,m. This means that vector harmonics are only non-zero for l ≥ 1, and tensor
harmonics for l ≥ 2. The scalar mode with l = 0 can be interpreted as a variation
in the mass of the Schwarzschild spacetime, while the even mode with l = 1 is
just gauge and can be removed under a suitable transformation [22; 23; 24]. On
the other hand, the odd mode with l = 1 can be interpreted as an infinitesimal
angular momentum contribution, i.e., a “Kerr” mode (a detailed discussion about
this point can be found in [23]). We will therefore only be interested in modes
with l ≥ 2, just as it happened with the expansion of Ψ4.



14 M. Ruiz et al.

4.2 Gauge invariant perturbations

As we have seen, even parity perturbations are characterized by the coefficients
(H l,m

AB ,H l,m
A ,Kl,m,Gl,m). These coefficients are clearly coordinate dependent, and

in particular change under infinitesimal coordinate transformations of the form
xµ → xµ +ξ µ , with |ξ µ | � 1. However, it turns out that one can construct gauge
invariant combinations of coefficients. Two such invariant combinations are (for
details see, e.g. [21; 22; 25])

K̃l,m := Kl,m +
1
2

l(l +1)Gl,m− 2
r

rA
ε

l,m
A , (63)

H̃ l,m
AB := H l,m

AB −DAε
l,m
B −DBε

l,m
A , (64)

with ε
l,m
A := H l,m

A −r2DAGl,m/2. In terms of the gauge invariant perturbations K̃l,m

and H̃ l,m
AB one defines the so-called “Zerilli–Moncrief master function” as

Ψ
l,m

even :=
2r
L

[
K̃l,m +

2rA

Λ

(
rB H̃ l,m

AB − r DAK̃l,m
)]

, (65)

where L := l(l +1), Λ := (l−1)(l +2)+6M/r, and rA := DAr. This quantity can
be shown to obey a simple wavelike equation known as the “Zerilli equation” [11],
though we will not go into such details here.

One can also construct a gauge invariant quantity for the case of odd perturba-
tions in the following way (again, see, e.g. [21; 22; 25])

h̃l,m
A := hl,m

A − 1
2

r2 DA

(
hl,m

r2

)
. (66)

In terms of h̃l,m
A one now defines the “Cunningham–Price–Moncrief master func-

tion” as

Ψ
l,m

odd :=
2r εAB

(l−1)(l +2)

[
DAh̃l,m

B − 2rA

r
h̃l,m

B

]
=

2r εAB

(l−1)(l +2)

[
DAhl,m

B − 2rA

r
hl,m

B

]
. (67)

The second equality shows that Ψodd in fact depends only on hA and not on h
(the contributions from h cancel when contracted with the εAB), but it is neverthe-
less gauge invariant. Again, using the perturbed vacuum Einstein field equations
one can show that Ψodd obeys a simple wavelike equation known as the “Regge–
Wheeler equation” [10].

4.3 Gravitational radiation in the TT gauge

The advantage of using the gauge invariant quantities introduced above is that they
can be naturally related to the gravitational waves in the TT gauge.

Consider first the even parity perturbations. If asymptotically we approach the
TT gauge then we will find that hAB and hAb decay much faster than hab. According
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to the multiple expansion we can then ignore the coefficients H l,m
AB and H l,m

A , and
concentrate only on Kl,m and Gl,m. Considering a local orthonormal basis aligned
with the angular directions one then finds that

(h+)l,m
even =

Gl,m

2

(
Zl,m

θθ
−

Zl,m
ϕϕ

sin2
θ

)
, (68)

(h×)l,m
even = Gl,m

(
Zl,m

θϕ

sinθ

)
. (69)

On the other hand, from the traceless condition one finds that K = 0. In that case
the Zerilli–Moncrief function (65) simplifies to Ψ

l,m
even = r Gl,m, which implies that

the contribution from even perturbations to the TT metric functions can be written
in terms of Ψeven as

(h+)l,m
even =

Ψ
l,m

even

2r

(
Zl,m

θθ
−

Zl,m
ϕϕ

sin2
θ

)

=
Ψ

l,m
even

r

[
∂ 2

∂θ 2 +
1
2

l(l +1)
]

Y l,m, (70)

(h×)l,m
even =

Ψ
l,m

even

r

(
Zl,m

θϕ

sinθ

)

=
Ψ

l,m
even

r

(
im

sinθ

)[
∂

∂θ
− cotθ

]
Y l,m, (71)

where we used the fact that ∂ϕY l,m = imY l,m.
Consider now the odd perturbations. We find,

(h+)l,m
odd =

hl,m

2r2

(
X l,m

θθ
−

X l,m
ϕϕ

sin2
θ

)
, (72)

(h×)l,m
odd =

hl,m

r2

(
X l,m

θϕ

sinθ

)
. (73)

We now need to relate hl,m to Ψ
l,m

odd . In this case, however, we cannot just ignore
hl,m

A in favor of hl,m, since from the definition of Ψ
l,m

odd we see that it in fact depends
only on hl,m

A and not on hl,m. Nevertheless, in the TT gauge these quantities are
related to each other. In order to see this, consider the transverse condition on
hµa, ∇µ hµa = 0. Using the multipole expansion, and calculating explicitly the
divergence of X l,m

ab , one finds that this condition implies

DA
(

r2 hl,m
A

)
=

1
2

(l−1)(l +2)hl,m. (74)
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Remembering now that in the TT gauge one has the extra freedom of taking hµν

to be purely spatial, plus the fact that asymptotically the metric gAB is just the
Minkowski metric, the previous expression reduces to

∂r

(
r2hl,m

r

)
=

1
2

(l−1)(l +2)hl,m. (75)

In the same limit one can also rewrite expression (67) for Ψ
l,m

odd as

Ψ
l,m

odd =
2r

(l−1)(l +2)
∂thl,m

r . (76)

Collecting results we find that

∂r

(
rΨ

l,m
odd

)
= ∂thl,m. (77)

Since for an outgoing wave we have ∂th
l,m
r ∼−∂rh

l,m
r , we can integrate the above

expression to find
hl,m ∼−rΨ

l,m
odd . (78)

We can then rewrite the odd metric perturbations as

(h+)l,m
odd = −

Ψ
l,m

odd
2r

(
X l,m

θθ
−

X l,m
ϕϕ

sin2
θ

)

= −
Ψ

l,m
odd
r

(
im

sinθ

)[
∂

∂θ
− cotθ

]
Y l,m, (79)

(h×)l,m
odd = −

Ψ
l,m

odd
r

(
X l,m

θϕ

sinθ

)

=
Ψ

l,m
odd
r

[
∂ 2

∂θ 2 +
1
2

l(l +1)
]

Y l,m. (80)

The full TT coefficients h+ and h× then take the form

h+ =
1

2r ∑
l,m

[
Ψ

l,m
even

(
Zl,m

θθ
−

Zl,m
ϕϕ

sin2
θ

)
−Ψ

l,m
odd

(
X l,m

θθ
−

X l,m
ϕϕ

sin2
θ

)]
, (81)

h× =
1
r ∑

l,m

[
Ψ

l,m
even

(
Zl,m

θϕ

sinθ

)
−Ψ

l,m
odd

(
X l,m

θϕ

sinθ

)]
. (82)

Notice that while the functions (Ψ l,m
even,Ψ

l,m
even) are in general complex, the TT

coefficients h+ and h× must be real. Using the properties of the spherical harmon-
ics under complex conjugation one can easily show that this implies

Ψ̄
l,m

even = (−1)m
Ψ

l,−m
even , Ψ̄

l,m
odd = (−1)m

Ψ
l,−m

odd . (83)
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One can also rewrite the expressions above in terms of spin-weighted spherical
harmonics. In order to do this it is in fact more convenient to consider the complex
combination H, for which we find

H =
1

2r ∑
l,m

√
(l +2)!
(l−2)!

(Ψeven + iΨodd) −2Y l,m. (84)

At this point it is important to mention one very common convention used
in numerical relativity. We start by considering a different odd master function
originally introduced by Moncrief [12]:

Ql,m
M :=

2rAh̃l,m
A

r

=
2rA

r

(
hl,m

A − 1
2

DAhl,m +
rA

r
hl,m
)

. (85)

Notice that with this definition Ql,m
M is clearly scalar and gauge invariant. The

Moncrief function just defined has traditionally been the most common choice to
study the odd perturbations of Schwarzschild, and because of this many numeri-
cal implementations use this function instead of Ψ

l,m
odd . It is possible to show that

asymptotically, and in the TT gauge, Ql,m
M reduces to

Ql,m
M ∼−∂tΨ

l,m
odd . (86)

One finally introduces the following rescaling

Ql,m
even :=

√
(l +2)!

2(l−2)!
Ψ

l,m
even, (87)

Ql,m
odd :=

√
(l +2)!

2(l−2)!
Ql,m

M . (88)

In terms of Ql,m
even and Ql,m

odd, one now finds for the complex quantity H:

H =
1√
2r ∑

l,m

Ql,m
even− i

t∫
−∞

Ql,m
odd dt ′

 −2Y l,m. (89)

4.4 Radiated energy and momentum

Just as we did for the case of Ψ4, we can now express the radiated energy, linear
momentum and angular momentum in terms of the master functions (Ψ l,m

even,Ψ
l,m

odd )
and/or (Ql,m

even,Q
l,m
odd). There are two ways in which one can do these calculations.

One approach is to substitute directly equations (84) and (89) into the expressions
for the radiated energy and momentum. It is much easier, however, to start from
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the expressions for the radiated energy and momentum in terms of the multipole
expansion of Ψ4, and relate the coefficients Al,m to (Ψ l,m

even,Ψ
l,m

odd ) and (Ql,m
even,Q

l,m
odd).

Comparing the multipole expansion for Ψ4 with the expansions for the metric
perturbations, and using the fact asymptotically Ψ4 =−Ḧ, we find

Al,m = − 1
2r

√
(l +2)!
(l−2)!

(
Ψ̈

l,m
even + iΨ̈ l,m

odd

)
= − 1√

2 r

(
Q̈l,m

even− i Q̇l,m
odd

)
. (90)

Using this, one can translate expressions in terms of the Al,m directly into expres-
sions in terms of (Ψ l,m

even,Ψ
l,m

odd ) and/or (Ql,m
even,Q

l,m
odd).

Let us consider first the radiated energy. Using equations (33) and (90), one
immediately obtains

dE
dt

=
1

64π
∑
l,m

(l +2)!
(l−2)!

(∣∣∣Ψ̇ l,m
even

∣∣∣2 +
∣∣∣Ψ̇ l,m

odd

∣∣∣2)
=

1
32π

∑
l,m

(∣∣∣Q̇l,m
even

∣∣∣2 +
∣∣∣Ql,m

odd

∣∣∣2) , (91)

where, in order to derive these expressions one must use the fact that, as a conse-
quence of (83),

∑
m

(
Ψ̇

l,m
even

˙̄
Ψ

l,m
odd −

˙̄
Ψ

l,m
evenΨ̇

l,m
odd

)
= 0. (92)

For the linear momentum we start from Eqs. (39)–(40), and again use (90). The
calculation is now considerably longer, and in order to simplify the expressions
one must make use several times of (83) (or its equivalent in terms of the Q’s).
The final result is

dP+

dt
=

1
8π

∑
l,m

[
ial,m Q̇l,m

even Q̄l,m+1
odd

−bl+1,m+1

(
Q̇l,m

even
˙̄Ql+1,m+1

even +Ql,m
odd Q̄l+1,m+1

odd

)]
, (93)

dPz

dt
=

1
16π

∑
l,m

[
i cl,m Q̇l,m

even Q̄l,m
odd

+dl+1,m

(
Q̇l,m

even
˙̄Ql+1,m

even +Ql,m
odd Q̄l+1,m

odd

)]
, (94)

with the coefficients (al,m,bl,m,cl,m,dl,m) the same as before. The last expressions
are written only in terms of (Ql,m

even,Q
l,m
odd), but it is trivial to rewrite them in terms

of (Ψ l,m
even,Ψ

l,m
odd ). These expressions can be easily shown to be equivalent to those

recently derived by Pollney et al. in [9], and by Sopuerta et al. in [16], (but one
must be careful when comparing with the first reference, as their sums over m go
only from 0 to l).
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In a similar way we can obtain expressions for the radiated angular momentum
staring from Eqs. (47)–(49). One now finds, using some algebraic equations that,

dJx

dt
=

i
32π

Im∑
l,m

fl,m

(
Q̄l,m

even Q̇l,m+1
even + P̄l,m

odd Ql,m+1
odd

)
, (95)

dJy

dt
= − 1

32π
Re∑

l,m
fl,m

(
Q̄l,m

even Q̇l,m+1
even + P̄l,m

oddQl,m+1
odd

)
, (96)

dJz

dt
=

i
32π

∑
l,m

m
(

Q̇l,m
even Q̄l,m

even +Ql,m
odd P̄l,m

odd

)
, (97)

where we have defined

Pl,m
odd :=

t∫
−∞

Ql,m
odd dt ′, (98)

and where again the coefficients fl,m are the same as before. Notice that the ex-
pressions for dJx/dt and dJy/dt are manifestly real. For dJz/dt the term inside the
sum can be easily shown to be purely imaginary, so that the final result is also real.

Equivalent expressions to the set of Eqs. (33), (39)–(40) and (47)–(49) for the
energy and momenta carried away by gravitational waves in terms of Ψ4, or the
set (91), (93)–(94) and (95)–(97) in terms of gauge invariant perturbations, were
derived by Thorne in [15]. One can directly relate them to the results presented
here by noticing
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that

Al,m =
1√
2r

[
(l+2)Il,m− i

(
(l+2)Sl,m

)]
,

(99)
Āl,m =

(−1)m
√

2r

[
(l+2)Il,−m + i

(
(l+2)Sl,−m

)]
,

where in Thorne’s notation Il,m(t − r) is the mass multipole momenta of the ra-
diation field, Sl,m(t − r) is the current multipole momenta, and where (l)Il,m and
(l)Sl,m denote the lth time derivative of these quantities.

As a final comment, notice that in order to simplify the notation in this Section
we have not explicitly introduced the limit of infinite radius. Nevertheless, this
limit should be understood since all the results are valid only in the weak field
approximation.

5 Conclusions

In this paper we have considered explicit expressions for the energy, linear mo-
mentum and angular momentum radiated by an isolated system in the form of
gravitational waves. Starting from a small perturbation hµν a background metric
g̊µν , and working in the transverse-traceless gauge, we have reviewed the standard
expressions for the radiated energy and momentum based on the Isaacson stress–
energy tensor. Introducing the Weyl scalar Ψ4 and its multipole expansion in terms
of spin-weighted spherical harmonics, we have computed explicit expressions for
the radiated energy and momentum in terms of the expansion coefficients Al,m. Fi-
nally, we have also presented multipole expansions in terms of the gauge invariant
perturbations of a Schwarzschild spacetime. In particular, the expressions in terms
of the expansion of the Weyl scalar Ψ4 have the advantage of avoiding the need for
separating out a Schwarzschild “background” in standard coordinates from a nu-
merically generated spacetime that can be in an arbitrary gauge. Nevertheless, one
still needs to find a suitable tetrad to calculate the scalar Ψ4, and as yet there is no
standard procedure to find it (though some recent progress has been made on this
issue, see, e.g. [26]). However, as long as one chooses a tetrad that approaches the
standard outgoing null tetrad in flat space for large r the asymptotic expressions
will be correct.

Although most of the expressions derived here are known, as far as we know
they have never appeared together in the literature. We have taken great care to
explain the origin of all relevant expressions, using clear and consistent conven-
tions and definitions. We believe that having all these expressions together will
be extremely useful when calculating radiated energy and momenta from numer-
ical simulations of astrophysical systems. As a final comment, we have at our
disposal a Mathematica script to find the energy and momenta carried by gravita-
tional waves, and would be happy to provide it to interested readers upon request.
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A Spin-weighted spherical harmonics

In this appendix we will discuss some important properties of the spin-weighted spherical har-
monics. Spin-weighted spherical harmonics where first introduced by Newman and Penrose [27]
for the study of gravitational radiation, but they can also be used to study solutions of the
Maxwell equations, the Dirac equation, or in fact dynamical equations for fields of arbitrary
spin.

Consider a complex function f on the sphere that might correspond to some combination
of components of a tensorial (or spinorial) object in the orthonormal basis (êr, êθ , êϕ ) induced
by the spherical coordinates (r,θ ,ϕ). We will say that f has spin weight s if, under a rotation
of the angular basis (êθ , êϕ ) by an angle ψ , it transforms as f → e−isψ f . A trivial example is
a scalar function whose spin weight is clearly zero. A more interesting example corresponds
to a three-dimensional vector v with components (vr̂,vθ̂ ,vφ̂ ). Notice that these components are
different from those in the coordinate basis (which is not orthonormal), and are related to them
through (vr̂,vθ̂ ,vφ̂ ) = (vr,rvθ ,r sinθ vφ ) . Define now two unit complex vectors as

ê± :=
(
êθ ∓ iêϕ

)
/
√

2. (100)

The vector v can then be written as

v = v0êr + v+ê+ + v−ê−, (101)

where v0 := vr̂, v± := (vθ̂ ± ivφ̂ )/
√

2. By considering a rotation of the vectors (êθ , êϕ ) by an
angle ψ it is now easy to see that v0 has spin weight zero, while the spin weight of v± is ±1.

The spin-weighted spherical harmonics, denoted by sȲ l,m(θ ,ϕ), form a basis for the space
of functions with definite spin weight s. They can be introduced in a number of different ways.
One can start by defining the operators

ð f := −sins
θ

(
∂θ +

i
sinθ

∂ϕ

)(
f sin−s

θ
)

= −
(

∂θ +
i

sinθ
∂ϕ − scotθ

)
f , (102)

ð̄ f := −sin−s
θ

(
∂θ −

i
sinθ

∂ϕ

)
( f sins

θ)

= −
(

∂θ −
i

sinθ
∂ϕ + scotθ

)
f , (103)

where s is the spin weight of f . The spin-weighted spherical harmonics are then defined for
|m| ≤ l and l ≥ |s| in terms of the standard spherical harmonics as

sY l,m :=
[
(l− s)!
(l + s)!

]1/2

ðs
(

Y l,m
)

, s≥ 0, (104)

sY l,m := (−1)s
[
(l + s)!
(l− s)!

]1/2

ð̄−s
(

Y l,m
)

, s≤ 0. (105)

In particular we have 0Y l,m = Y l,m. The above definition implies that

ð
(

sY l,m
)

= +[(l− s)(l + s+1)]1/2
s+1Y l,m, (106)

ð̄
(

sY l,m
)

= − [(l + s)(l− s+1)]1/2
s−1Y l,m. (107)

Because of this, ð and ð̄ are known as the spin raising and spin lowering operators. One also
finds that

ð̄ð
(

sY l,m
)

= − [l(l +1)− s(s+1)] sY l,m, (108)

ðð̄
(

sY l,m
)

= − [l(l +1)− s(s−1)] sY l,m, (109)
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so the sY l,m are eigenfunctions of the operators ð̄ð and ðð̄, which are generalizations of the
Laplace operator on the sphere L2:

L2 f :=
1

sinθ
∂θ (sinθ ∂θ f )+

1
sin2

θ
∂

2
ϕ f . (110)

For a function with zero spin weight we in fact find that L2 f = ð̄ð f = ðð̄ f .
One can also find generalizations of the standard angular momentum operators for the case

of non-zero spin weight by looking for operators Ĵz and Ĵ± such that (here we are ignoring the
factor −ih̄ that normally appears in quantum mechanics) [18]

Ĵz sY l,m = im sY l,m, (111)

Ĵ± sY l,m = i [(l∓m)(l +1±m)]1/2
sY l,m±1. (112)

One then finds that such operators must have the form

Ĵz = ∂ϕ , (113)

Ĵ± = e±iϕ [±i∂θ − cotθ ∂ϕ − i s cscθ
]
. (114)

The operators for the x and y components of the angular momentum are then simply obtained
from Ĵ± = Ĵx± iĴy, so that we find:

Ĵx =
(
Ĵ+ + Ĵ−

)
/2, Ĵy =−i

(
Ĵ+− Ĵ−

)
/2, (115)

There are several important properties of the spin-weighted spherical harmonics that can
be obtained directly from their definition. In the first place, one can show that the complex
conjugate of sY l,m is given by

sȲ l,m(θ ,ϕ) = (−1)s+m
−sY l,−m(θ ,ϕ). (116)

Also, the different sY l,m are orthonormal:∮
sY l,m(θ ,ϕ) s′Ȳ

l′,m′(θ ,ϕ)dΩ = δss′δll′δmm′ , (117)

The integral of three spin-weighted spherical harmonics is also frequently needed, for ex-
ample in the calculation of the momentum flux of gravitational waves, and can be expressed in
general as∮

s1Y l1,m1(θ ,ϕ) s2Y l2,m2(θ ,ϕ) s3Y l3,m3(θ ,ϕ)dΩ

=
[
(2l1+1)(2l2+1)(2l3+1)

4π

]1/2( l1 l2 l3
−s1 −s2 −s3

)(
l1 l2 l3
m1 m2 m3

)
. (118)

The above expression involves the Wigner 3-lm symbols, which are related to the standard
Clebsch–Gordan coefficients 〈l1,m1, l2,m2| j3,m3〉 through(

l1 l2 l3
m1 m2 m3

)
=

(−1)l1−l2−m3

√
2 l3 +1

〈l1,m1, l2,m2|l3,−m3〉 . (119)

The Clebsch–Gordan coefficients arise from the addition of angular momentum in quantum
mechanics, and correspond to the coefficients of the expansion of an eigenstate |L,M〉 with total
angular momentum L and projection M, in terms of a basis formed by the product of the indi-
vidual eigenstates |l1,m1〉 |l2,m2〉. These coefficients have some important symmetries, though
these symmetries are easier to express in terms of the 3-lm symbols. In particular, the 3-lm
symbols are invariant under an even permutation of columns, and pick up a factor (−1)l1+l2+l3
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under an odd permutation. Also, changing the sign of all three m’s again introduces a factor of
(−1)l1+l2+l3 .

A closed expression for the Clebsch–Gordan coefficients was first found by Wigner (see,
e.g. [28]). This expression is somewhat simpler when written in terms of the 3-lm symbols and
has the form(

l1 l2 l3
m1 m2 m3

)
= (−1)l1−m1 δm1+m2,−m3

×
[
(l1 + l2− l3)! (l1 + l3− l2)! (l2 + l3− l1)! (l3 +m3)! (l3−m3)!
(l1 + l2 + l3 +1)! (l1 +m1)! (l1−m1)! (l2 +m2)! (l2−m2)!

]1/2

×∑
k≥0

(−1)k

k!

[
(l2 + l3 +m1− k)! (l1−m1 + k)!

(l3− l1 + l2− k)! (l3−m3− k)! (l1− l2 +m3 + k)!

]
. (120)

In the above expression the sum runs over all values of k for which the arguments inside
the factorials are non-negative. Also, if the particular combination of {li,mi} is such that the
arguments of the factorials outside of the sum are negative, then the corresponding coefficient
vanishes. A more symmetric (though longer) expression that is equivalent to (120) was later
derived by Racah [29], but we will not write it here.

In the general case equation (120) is rather complicated, but this is not a serious problem
as one can find tables of the most common coefficients in the literature, and even web-based
“Clebsch–Gordan calculators”. Moreover, in some special cases the coefficients simplify con-
siderably. For example, in the case when m1 = l1, m2 = l2 and l3 = m3 = l1 + l2 one finds(

l1 l2 l1 + l2
l1 l2 l1 + l2

)
=

1√
2(l1 + l2)+1

. (121)

Another particularly interesting case corresponds to taking l3 = m3 = 0 (i.e., zero total angular
momentum in quantum mechanics). In that case we find(

l1 l2 0
m1 m2 0

)
= 〈l1,m1, l2,m2|0,0〉

=
(−1)l1−m1
√

2l1 +1
δl1,l2 δm1,−m2 . (122)

The cases with l3 = 1 are also interesting as they appear in the expression for the linear
momentum carried by gravitational waves. One finds, in particular(

l1 l2 1
m1 m2 0

)
= (−1)l1−m1 δm1+m2,0

[
2m1 δl1,l2√

(2l1 +2)(2l1 +1)(2l1)

+δl1,l2+1

√
(l1 +m1)(l1−m1)

l1 (2l1 +1)(2l1−1)

−δl1+1,l2

√
(l2−m2)(l2 +m2)

l2 (2l2 +1)(2l2−1)

]
, (123)

(
l1 l2 1
m1 m2 ±1

)
= (−1)l1−m1 δm1+m2,∓1

[
±δl1,l2

√
(l1∓m1)(l1∓m2)

l1 (2l1 +2)(2l1 +1)

+δl1,l2+1

√
(l1∓m1)(l1±m2)

2l1 (2l1 +1)(2l1−1)

+δl1+1,l2

√
(l2∓m2)(l2±m1)

2l2 (2l2 +1)(2l2−1)

]
. (124)
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