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Abstract A dressed-quark core contribution to nucleon electromagnetic form fac-
tors is calculated. It is defined by the solution of a Poincaré covariant Faddeev
equation in which dressed-quarks provide the elementary degree of freedom and
correlations between them are expressed via diquarks. The nucleon-photon ver-
tex involves a single parameter; namely, a diquark charge radius. It is argued to
be commensurate with the pion’s charge radius. A comprehensive analysis and
explanation of the form factors is built upon this foundation. A particular feature
of the study is a separation of form factor contributions into those from different
diagram types and correlation sectors, and subsequently a flavour separation for
each of these. Amongst the extensive body of results that one could highlight are:
rn,u

1 > rn,d
1 , owing to the presence of axial-vector quark-quark correlations; and for

both the neutron and proton the ratio of Sachs electric and magnetic form factors
possesses a zero.

1 Introduction

Owing in part to the relatively simple nature of the virtual photon as a probe,
a reliable explanation of electromagnetic form factors provides information on
the distribution of a nucleon’s characterising properties; e.g., total- and angular-
momentum, amongst its QCD constituents. Since contemporary experiments employ
Q2 > M2

N ; i.e., momentum transfers in excess of the nucleon’s mass, a veracious
understanding of the body of extant data requires a Poincaré covariant descrip-
tion of the nucleon. Poincaré covariance and the vector exchange nature of QCD
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guarantee the existence of nonzero quark orbital angular momentum in a hadron’s
rest-frame bound-state amplitude [1; 2].

In fact the challenge is compounded owing, e.g., to the running of the dressed-
quark mass [3; 4; 5; 6; 7; 8]. This entails that a quantum field theoretic treatment of
hadron structure and electromagnetic interactions is generally necessary in order
to provide understanding in terms of QCD’s genuine elementary degrees of free-
dom. The dressed light-quark mass function at infrared momenta is roughly 100
times larger than the current-quark mass. This marked enhancement is a corollary
of dynamical chiral symmetry breaking (DCSB) and owes primarily to a dense
cloud of gluons that clothes a low-momentum quark [9]. (The dressing gluons
also acquire mass dynamically [10].) It means that the Higgs mechanism is largely
irrelevant to the bulk of normal matter in the universe. Instead the single most
important mass generating mechanism for light-quark hadrons is the strong inter-
action effect of DCSB; e.g., one can identify DCSB as being responsible for 98%
of a proton’s mass. It has long been argued that form factors are a sensitive probe
of this effect [11].

Recent years have seen rapid experimental and theoretical progress in the
study of nucleon electromagnetic form factors, which is reviewed, e.g., in Refs. [12;
13]. Despite this, questions remain unanswered, amongst them: can one formu-
late an impulse-like approximation for hadron form factors and, if so, in terms of
which degrees of freedom; is there a valid mapping of form factors into statements
about the distribution of charge and magnetisation within a nucleon; and what role
is played by pseudoscalar mesons in hadron electromagnetic structure and can one
describe this in a quantitative, model-independent fashion? Herein we contribute
to the discussion of these issues.

In Sect. 2 we recapitulate briefly upon a Poincaré covariant Faddeev equation
for the nucleon, in which the primary element is the dressed-quark with its strongly
momentum dependent mass function. The Faddeev equation solution defines a
nucleon’s dressed-quark core. The study of baryons in this way sits squarely
within the ambit of the application of Dyson–Schwinger equations (DSEs) in
QCD [14]. Since the DSEs admit a nonperturbative symmetry-preserving trunca-
tion scheme [15; 16; 17; 18], which, e.g. has enabled the proof of numerous exact
results for pseudoscalar mesons [19; 20; 21; 22], the approach holds particular
promise as a means of unifying the treatment of meson and baryon observables
that preserves all global and local corollaries of DCSB without fine-tuning [23].
The coupling of a photon to the nucleon’s dressed-quark core is detailed in Sect. 3.

In Sect. 4 we discuss the interpretation of form factors and present a perspec-
tive on the circumstances under which the three dimensional Fourier transform of
a Breit-frame Sachs form factor can reasonably be understood in terms of a charge
or magnetisation density.

Sections 5–7 are extensive. They detail our computed results and the under-
standing they provide. All electromagnetic form factors of the proton and neutron
are described along with their decomposition into individual flavour, diagram and
diquark contributions, the meaning of which will subsequently become apparent.

We consider form factor contributions arising from pseudoscalar meson loops
in Sect. 8 and exemplify the manner in which they add to the dressed-quark core
results. We wrap-up in Sect. 9.
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Fig. 1 Poincaré covariant Faddeev equation, Eq. (A.11), employed herein to calculate nucleon
properties. Ψ in Eq. (A.1) is the Faddeev amplitude for a nucleon of total momentum P =
pq + pd . It expresses the relative momentum correlation between the dressed-quark and -
diquarks within the nucleon. The shaded region demarcates the kernel of the Faddeev equation,
Sect. A.2, in which the single line denotes the dressed-quark propagator, Sect. A.2.1; Γ is the
diquark Bethe–Salpeter-like amplitude, Sect. A.2.2; and the double line is the diquark propaga-
tor, Sect. A.2.3

2 Nucleon Model

In quantum field theory a nucleon appears as a pole in a six-point quark Green
function. The pole’s residue is proportional to the nucleon’s Faddeev amplitude,
which is obtained from a Poincaré covariant Faddeev equation that sums all pos-
sible quantum field theoretical exchanges and interactions that can take place
between three dressed-quarks. Canonical normalisation of the Faddeev amplitude
guarantees unit residue for the s-channel nucleon pole in the JP = 1

2
+

three-quark
vacuum polarisation diagram and entails unit charge for the proton.

A tractable truncation of the Faddeev equation is based [24] on the observation
that an interaction which describes mesons also generates diquark correlations
in the colour-3̄ channel [25]. The dominant correlations for ground state octet
and decuplet baryons are scalar (0+) and axial-vector (1+) diquarks because, for
example, the associated mass-scales are smaller than the baryons’ masses [26; 27],
namely (in GeV)

m[ud]0+ = 0.7−0.8, m(uu)1+ = m(ud)1+ = m(dd)1+ = 0.9−1.0. (1)

The kernel of the Faddeev equation is completed by specifying that the quarks
are dressed, with two of the three dressed-quarks correlated always as a colour-3̄
diquark. As illustrated in Fig. 1, binding is then effected by the iterated exchange
of roles between the bystander and diquark-participant quarks.

The Faddeev equation that we employ is explained in Appendix A: Faddeev
Equation. With all its elements specified, as described therein, the equation can be
solved to obtain the nucleon’s mass and amplitude. Owing to Eq. (A.34), in this
calculation the masses of the scalar and axial-vector diquarks are the only variable
parameters. The axial-vector mass is chosen so as to obtain a desired mass for the
∆ ,1 and the scalar mass is subsequently set by requiring a particular nucleon mass.

We have written here of desired rather than experimental mass values because
it is known that the masses of the nucleon and ∆ are materially reduced by pseu-
doscalar meson loop effects. This is detailed in Refs. [28; 29]. Hence, a baryon
represented by the Faddeev equation described above must possess a mass that is
inflated with respect to experiment so as to allow for an additional attractive con-
tribution from the pseudoscalar mesons. As in previous work [30; 31; 32; 33] and
reported in Table 1, we require MN = 1.18 GeV and M∆ = 1.33 GeV. The results
and conclusions of our study are essentially unchanged should even larger masses
and a smaller splitting M∆ −MN be more realistic, a possibility suggested by

1 This is natural because the spin- and isospin-3/2 ∆ contains only an axial-vector diquark.
The relevant Faddeev equation is not different in principle to that for the nucleon. It is described
in Ref. [30].
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Table 1 Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations,
fixed by fitting nucleon and ∆ masses offset to allow for “pion cloud” contributions [28]

MN M∆ m0+ m1+ ω0+ ω1+

1.18 1.33 0.796 0.893 0.56 = 1/(0.35 fm) 0.63 = 1/(0.31 fm)
1.46 0.796 0.56 = 1/(0.35 fm)

We also list ωJP = 1√
2 mJP , the width-parameter in the (qq)JP Bethe–Salpeter amplitude,

Eqs. (A.28) and (A.29): its inverse is an indication of the diquark’s matter radius. Row 3 illus-
trates effects of omitting the 1+-diquark correlation: the ∆ cannot be formed and MN is sig-
nificantly increased. Evidently, the 1+-diquark provides significant attraction in the Faddeev
equation’s kernel

Refs. [23; 34]. The relationship between the ∆–N mass splitting and that between
the axial-vector and scalar diquark correlations is sketched in Ref. [35].

3 Nucleon Electromagnetic Current

The nucleon’s electromagnetic current is

Jµ(P′,P) = ie ū(P′)Λµ(q,P)u(P) , (2)

= ie ū(P′)
(

γµ F1(Q2)+
1

2M
σµν Qν F2(Q2)

)
u(P) , (3)

where P (P′) is the momentum of the incoming (outgoing) nucleon, Q = P′−P,
and F1 and F2 are, respectively, the Dirac and Pauli form factors. They are the
primary calculated quantities, from which one obtains the nucleon’s electric and
magnetic (Sachs) form factors

GE(Q2) = F1(Q2)− Q2

4M2 F2(Q2), GM(Q2) = F1(Q2)+F2(Q2). (4)

Static electromagnetic properties are associated with the behaviour of these
form factors in the neighbourhood of Q2 ' 0. The nucleons’ magnetic moments
are defined through

µn = κn = Gn
M(0), µp = 1+κp = Gp

M(0), (5)

where κN ,N = n, p, are referred to as the anomalous magnetic moments; and the
electric and magnetic rms radii via

r2
p := −6

d
ds

Gp
E(s)

∣∣∣∣
s=0

, r2
n :=−6

d
ds

Gn
E(s)

∣∣∣∣
s=0

, (6)

(rµ

N)2 := −6
d
ds

lnGN
M(s)

∣∣∣∣
s=0

. (7)

In order to calculate the electromagnetic form factors one must know the man-
ner in which the nucleon described in Sect. 2 couples to a photon. That is derived
in Ref. [36], illustrated in Fig. 2 and detailed in Appendix C: Nucleon-Photon
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Fig. 2 Vertex which ensures a conserved current for on-shell nucleons described by the Fad-
deev amplitudes, Ψi, f , described in Sect. 2 and Appendix A: Faddeev Equation. The single line
represents S(p), the dressed-quark propagator, Sect. A.2.1, and the double line, the diquark prop-
agator, Sect. A.2.3; Γ is the diquark Bethe–Salpeter amplitude, Sect. A.2.2; and the remaining
vertices are described in Appendix C: the top left image is Diagram 1; the top right, Diagram 2;
and so on, with the bottom right image, Diagram 6

Vertex. As apparent in that Appendix, the current depends on the electromagnetic
properties of the diquark correlations.

Estimates exist of the size of diquark correlations. For example, a first Fad-
deev equation study of nucleon form factors [37] found a scalar diquark radius of
r[ud]0+ = 0.8rπ , where rπ is the pion charge radius within the same model. One
obtains a similar result in a DSE calculation [38] that provides a good description
of pseudoscalar and vector meson properties; i.e.,

r[ud]0+ ≈ 0.7fm, r(ud)1+ ∼ 0.8fm , (8)

where the last result is an estimate based on the ratio ρ-meson-radius/π-meson-
radius [39; 40]. From another perspective, numerical simulations of quenched
lattice-regularised QCD suggest a scalar-diquark matter-radius [41]

rρ

[ud]0+
= 1.1±0.2fm. (9)

It is thus evident that diquark correlations within a baryon are not pointlike.
Hence, with increasing Q2, interaction diagrams in which the photon resolves a
diquark’s substructure must be suppressed with respect to contributions from dia-
grams that describe a photon interacting with a bystander or exchanged quark.
These latter are the only hard interactions with dressed-quarks allowed in a nucleon.
One can therefore improve in Refs. [31; 32] by introducing a diquark form factor.
This is expressed in Eqs. (C.13), (C.14) and (C.24).

We use a one-parameter dipole because the system involves two quarks. The
parameter is a length-scale that characterises the diquark radius. In the absence of
an explicit calculation of the axial-vector diquark’s radius, we employ the same
value for scalar and axial-vector diquarks. Owing to differences between the for-
mulation of our nucleon model and the DSE truncation employed in Ref. [38],
the values quoted in Eq. (8) provide only a loose constraint on this parameter.
It’s value does not have a large effect on form factors for Q2 . 2GeV2 but does
influence their evolution thereafter. For example, it influences the position of the
zero in Gp

E(Q2): a larger diquark radius shifting the zero further from the origin.
Computations have been analysed with four values: rqq = 0.0,0.4,0.8 and 1.2 fm.
Unless otherwise stated, the results reported herein were obtained with

rqq = 0.8fm. (10)

4 On Interpreting Form Factors

Now that the Faddeev equation and a consistent Ward–Takahashi-identity con-
serving current are completely defined, the calculation of a nucleons’ electromag-
netic form factors is a straightforward numerical exercise. However, in light of
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Refs. [42; 43] we judge it worthwhile to comment on their putative interpretation
in terms of charge and magnetisation densities before presenting our results.

Such an interpretation rests on the existence of a quantitatively reliable expres-
sion for the form factors in terms of a current in which the interacting constituents
are well-defined and distinct, for then the charge and current carrying quanta are
unambiguous. This is achieved through a current of impulse approximation type,
which may include small non-single-particle contributions that arise owing to the
Ward–Takahashi identity.

In QCD the relevant degrees of freedom change as the wavelength of the probe
evolves. This feature is encoded, e.g., in the dressed-quark mass function, which is
discussed in connection with Eq. (A.18). The nature of the mass function is model-
independent and one consequence is that to a long wavelength probe a light-quark
appears to have a large inertial mass ∼350 MeV.

Figure 2 expresses a nucleon current in which the primary degrees of freedom
are dressed-quarks. Along with the Faddeev equation described in Appendix. A,
it is an extension to baryons of the systematic and symmetry preserving rainbow-
ladder truncation of QCD’s DSEs that provides a sound description of pseudoscalar
and vector mesons and, in particular, a veracious description of the pion as both
a Goldstone mode and a bound state of dressed-quarks [14]. It is a valid impulse
approximation, which provides a systematically improvable continuum prediction
for nucleon form factors.

Subject to this understanding the question of whether a connection exists between
the spatial distribution of charge or magnetisation and the three-dimensional Fourier
transform of a Sachs form factor involves a consideration of recoil-corrections
experienced by dressed-quarks. The interpretation is appropriate if recoil cor-
rections are small and can be calculated perturbatively. In that case the relevant
expectation values in quantum mechanics are validly approximated by the Fourier
transform of the Sachs form factor.

Consider the Breit frame and a photon probe with momentum Q = (0,0,q,0).
In the scattering process this momentum is absorbed by the dressed-quarks within
the proton. It is elastic scattering so all the dressed-quarks must recoil together,
which means they can each be considered as absorbing a momentum fraction2

Q/3. The magnitude of a recoil correction is then measured by the mass-squared
scale

sr :=
q2

9
. (11)

We will consider that recoil corrections are small so long as

sr <
1
9

M2(sr), (12)

where M(s) is the dressed-quark mass function. This constraint means

q∼< M
(

q2

9

)
⇒ q∼< 0.4GeV, (13)

2 Faddeev and Bethe–Salpeter amplitudes are peaked at zero relative momentum. Hence, the
domain of greatest support in the impulse approximation calculation is that with each quark
absorbing Q/3. This is demonstrated explicitly, e.g., in Ref. [11].
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a value determined from Eqs. (A.18) to (A.22). This momentum bound corre-
sponds to a length-scale

λ0.1 = 0.49fm = 0.57rp, (14)

where rp is the proton’s charge radius. Hence in the three-dimensional Fourier
transform of a Sachs form factor, recoil corrections are on the order of 10% or less
throughout the domain r ∼> 0.57rp; namely, over 81% of the nucleons’ volume.

In measuring the total charge one must evaluate

QN = lim
a→0

4π

∫
∞

a
dr r2

ρN(r). (15)

It is interesting to reckon the amount of charge that is contained within the domain
on which recoil corrections are not negligible. It is

Q0.1
N = 4π

∫ 0.57rp

0
dr r2

ρN(r). (16)

A Gaußian charge form factor can be used to obtain an algebraic and hence easily
understood estimate; viz.,

Gp(q2) = e−
1
6 q2r2

p , (17)

yields

ρp(r) =
3
√

6π

4π2r3
p

e−3r2/[2r2
p], (18)

from which follows

Q0.1
p = 0.19 . (19)

It is apparent that this region contains only 19% of the proton’s charge. Expressed
another way, the domain on which recoil corrections can be neglected contains
81% of the proton’s charge. (For the neutron’s charge form factor the illustration
can be made using a difference of two Gaußians, each of which may be said to
represent either the u- or d-quark contribution to the form factor.) If instead of
Eq. (12) one were to consider recoil corrections as small for sr < M2(sr)/6, then
the upper bound in Eq. (16) is 0.48rp and the region contains only 12% of the
proton’s charge.

On the other hand, recoil corrections are certainly large and essentially non-
perturbative for

sr & M2(sr)⇒ q & 1GeV, (20)

a momentum boundary which corresponds to lengths

λ1.0 . 0.2fm = 0.23rp. (21)

On this domain no quantum mechanical connection can be made between three-
dimensional Fourier transforms of Sachs form factors and the density distribution
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Fig. 3 Proton’s Dirac form factor. Upper left full result and decomposition according to diagram
classes; lower left flavour breakdown of these contributions, expressed in units of the magnitude
of the relevant quark’s charge; viz., |eu|= 2

3 [1]pt depth5pt width0pt or |ed |= 1
3 . Upper right full

result and decomposition according to diagram diquark content; lower right flavour breakdown
of these contributions. A parametrisation of experimental data [44] is also presented in the upper
left. A full explanation of the notation is provided in Appendix E

of distinct charge and current carriers. It corresponds to 1.2% of the nucleon’s
volume and contains just 1.6% of the proton’s charge.

This analysis elucidates the circumstances under which the three-dimensional
Fourier transform of a Breit-frame Sachs form factor can be viewed as providing a
useful, qualitatively and semi-quantitatively reliable description of the configura-
tion space distribution of a nucleon’s charge or magnetisation over dressed-quarks.
Dressed-quarks are an emergent feature of QCD. The requisite conditions pertain
within 81–99% of a nucleon’s volume. Moreover, notwithstanding any caveats,
Poincaré invariant form factors are always a gauge of a hadron’s structure because
they are a measurable and physical manifestation of the nature of the hadron’s
constituents and the dynamics that binds them together.

5 Calculated Form Factors

In the following two sections we present and discuss the results that our model
of the dressed-quark core produces for nucleon form factors. Importantly, we
made significant modifications to the computer codes used to obtain the results
in Ref. [31]. In addition to that described in Appendix D, which defines a con-
vergent continuation of the Faddeev amplitude into the Breit frame, we succeeded
in reducing execution times by an order of magnitude. These two improvements
enabled us to use a desk-top computer and obtain, within hours, numerically accu-
rate results for the form factors on the domain Q2 ∈ [0,12]GeV2.

In order to explain our results we must introduce our notation. The Pauli, Dirac
and Sachs form factors are all represented by their usual symbols. Hence, the
notation can be introduced by a single example. We choose the proton’s Dirac
form factor, F p

1 , and list the definitions in Appendix E: Form Factor Notation.
It is also worth noting here that our analysis assumes mu = md . Hence the only

difference between the u- and d-quarks is their electric charge. Our equations,
computer codes and results therefore exhibit the following charge symmetry rela-
tions:

edF p,u
i = euFn,d

i , euF p,d
i = edFn,u

i ; i = 1,2. (22)

6 Proton Form Factors

6.1 Dirac Proton

In Fig. 3 we depict the proton’s Dirac form factor and a breakdown into contribu-
tions from various subclasses of diagrams. The figures deserve careful study.
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The upper left panel shows the Q2-evolution of the quark, diquark and exchange
(or two-body) contributions to the form factor. Their Q2 = 0 values measure,
respectively, the probability that the photon interacts with a bystander quark or
a diquark correlation, or acts in association with diquark breakup:

quark−Pp,q
1 = 0.47 : diquark−Pp,c

1 = 0.35 : exchange−Pp,e
1 = 0.18. (23)

These and analogous probabilities are collected in Table 2. For F p
1 the diquark and

exchange contributions switch in importance at Q2 ∼ 3GeV2. Moreover, while
the net result is always positive, the diquark contribution becomes negative at
Q2 ∼ 9GeV2. This panel here, and in kindred figures to follow, also displays a
parametrisation of experimental results [44] for illustrative comparison with our
computation. The manner by which that comparison should be understood is can-
vassed in Sect. 8.

A radius can be associated with each of the form factors. We exemplify its
definition via F p,q

1 ; viz.,

(rp,q
1 )2 :=− 6

F p,q
1 (0)

d
dQ2 F p,q

1 (Q2)
∣∣∣∣
Q2=0

, (24)

and remark that

(rp
1 )2 = Pp,q

1 (rp,q
1 )2 +Pp,c

1 (rp,c
1 )2 +Pp,e

1 (rp,e
1 )2. (25)

The calculated Dirac radii are reported in Table 3. Their values emphasise that so
far as the Dirac form factor is concerned, the diquark component of the nucleon is
softest.

The lower left panel provides a flavour decomposition of the quark, diquark
and exchange contributions to the form factor. While the other two u-quark com-
ponents are positive definite, F p,c,u

1 changes sign at Q2 ∼ 9GeV2. Up quarks are
doubly represented in the proton and from Table 2 it is evident that they are almost
equally likely to be struck by a photon whether a bystander or a diquark partici-
pant. This explains the near equality of the radii associated with each term in the
subclass of these form factor contributions in which a u-quark is struck.

The same is not true for the d-quark, for which the probabilities show that it is
more likely to be struck while a diquark participant. This signals that the d-quark
is less free to move throughout the proton’s volume and hence explains the small
value of rp,c,d

1 .
The upper right panel of Fig. 3 shows the Q2-evolution of the contributions

to F p
1 that involve a scalar diquark, an axial-vector diquark, or one of each. It is

clear from Table 2 that the scalar diquark component of the proton is dominant.
All contributions are positive definite, and the relative strength of the axial-vector
and mixed contributions switches at Q2 ∼ 5GeV2. From Table 3 one reads that
the softest contribution to the proton’s Dirac form factor is provided by diagrams
involving an axial-vector diquark. One can picture this as stemming from the
axial-vector correlation being more massive than the scalar and hence a bystander
quark of any flavour ranges further from a collective centre-of-mass.

The lower right panel provides a flavour decomposition of the diquark con-
tributions just discussed. All u-quark components are positive definite. For the
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Table 2 Probabilities, defined in Appendix E, associated with the F p
1 form factors evaluated at

Q2 = 0

Pp,q
1 Pp,c

1 Pp,e
1 Pp,s

1 Pp,a
1 Pp,m

1

0.474 0.346 0.180 0.602 0.254 0.144

Pp,q,u
1 Pp,c,u

1 Pp,e,u
1 Pp,s,u

1 Pp,a,u
1 Pp,m,u

1

0.441 0.371 0.188 0.561 0.294 0.145

Pp,q,d
1 Pp,c,d

1 Pp,e,d
1 Pp,s,d

1 Pp,a,d
1 Pp,m,d

1

0.345 0.444 0.210 0.437 0.414 0.149

Table 3 Radii associated with F p
1 , defined by analogy with Eq. (24)

rp
1 rp,q

1 rp,c
1 rp,e

1 rp,s
1 rp,a

1 rp,m
1

0.615 0.598 0.673 0.537 0.526 0.766 0.623

rp,u
1 rp,q,u

1 rp,c,u
1 rp,e,u

1 rp,s,u
1 rp,a,u

1 rp,m,u
1

0.617 0.620 0.615 0.614 0.520 0.749 0.656

rp,d
1 rp,q,d

1 rp,c,d
1 rp,e,d

1 rp,s,d
1 rp,a,d

1 rp,m,d
1

0.624 0.696 0.454 0.745 0.494 0.715 0.665

All entries in fm

Table 4 Flavour and diagram breakdown of contributions to the proton’s anomalous magnetic
moment; viz., the F p

2 form factors evaluated at Q2 = 0, measured in magnetons defined by the
calculated nucleon mass, MN

κp κ
q
p κc

p κe
p κs

p κa
p κm

p

1.674 1.445 −0.297 0.526 1.460 0.0556 0.159

κu
p κ

q,u
p κ

c,u
p κ

e,u
p κ

s,u
p κ

a,u
p κ

m,u
p

1.174 1.235 −0.441 0.381 1.199 −0.211 0.187

κd
p κ

q,d
p κ

c,d
p κ

e,d
p κ

s,d
p κ

a,d
p κ

m,d
p

0.500 0.210 0.145 0.145 0.260 0.268 −0.0284

Fig. 4 Proton’s Pauli form factor. Left panel full result and decomposition according to diagram
classes; right panel full result and decomposition according to diagram diquark content. Form
factors are expressed in magnetons defined by the calculated nucleon mass, MN in Table 1. A
parametrisation of experimental data [44] is also presented in the left panel. A full explanation
of the notation is provided in Appendix E

singly-represented d-quark, however, each of the form factors changes sign: F p,s,d
1

becomes positive at Q2 ∼ 8GeV2; F p,a,d
1 at Q2 ∼ 5GeV2; and F p,m,d

1 at Q2 ∼
3GeV2. Axial-vector contributions to the Dirac form factor are the softest in each
flavour sector.

Evident in Table 3 is a notable feature of our calculation; viz.,

rp,d
1 > rp,u

1 . (26)
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Fig. 5 Proton’s Pauli form factor: left panels—flavour breakdown of left panel in Fig. 4; and
right panels—flavour breakdown of right panel in Fig. 4. A full explanation of the notation is
provided in Appendix E

Owing to charge symmetry this entails

rn,u
1 > rn,d

1 , (27)

a result also obtained and explained in Ref. [23]. Equation (26) follows from
the presence of axial-vector diquark correlations in the nucleon. One reads from
Table 2 that the proton’s singly represented d-quark is more likely to be struck
in association with an axial-vector diquark correlation than with a scalar, and
form factor contributions involving an axial-vector diquark are soft. On the other
hand, the doubly-represented u-quark is predominantly linked with harder scalar-
diquark contributions.

6.2 Pauli Proton

In Figs. 4 and 5 we depict the proton’s Pauli form factor and a breakdown into
contributions from various subclasses of diagrams.

The left panel of Fig. 4 shows the Q2-evolution of the quark, diquark and
exchange contributions to the form factor. Listed in Table 4, their Q2 = 0 val-
ues measure, respectively, the contribution to the proton’s anomalous magnetic
moment from the photon interacting with a bystander quark, a diquark or in asso-
ciation with diquark breakup. The net contribution from Diagrams 2 and 4 in
Fig. 2 is negative. This remains the case until Q2 ∼ 9GeV2, at which point the
net diquark contribution changes sign, as was also the case in F p

1 . The Pauli radii
are listed in Table 5, from which it is evident that Diagrams 3, 5 and 6 in Fig. 2
provide the softest contribution.

The left panels in Fig. 5 provide a flavour decomposition of the quark, diquark
and exchange contributions to the proton’s Pauli form factor. We remark that F p,q,u

2
is positive definite whereas F p,c,u

2 changes sign at Q2 & 10GeV2 and F p,e,u
2 at Q2 &

17GeV2. (The latter should be interpreted qualitatively because our calculations
are not truly reliable beyond 12GeV2.) It is evident upon comparison between
Tables 3 and 5 that the pattern exhibited by the Pauli radii is kindred to that of the
Dirac radii, with the origin alike.

The right panel of Fig. 4 shows the Q2-evolution of the contributions to F p
2

that involve a scalar diquark, an axial-vector diquark, or one of each. It is appar-
ent from the figure and Table 4 that diagrams involving the scalar correlation are
dominant on a material Q2 domain. These contributions to a nucleon’s Faddeev
amplitude have the simplest rest-frame spin–angular-momentum structure [2; 45].
We find that the scalar and axial-vector contributions are positive definite whereas
the mixed contribution changes sign at Q2 & 8GeV2. The latter provides a larger
contribution to the proton’s magnetic moment than the axial-vector diagram. One
reads from Table 5 that the softest contribution to the proton’s Pauli form factor
is provided by the axial-vector diquark diagrams. This was also the case for the
Dirac form factor. However, in contrast to F p

1 , the mixed contribution to F p
2 is
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Table 5 Radii associated with F p
2 , defined by analogy with Eq. (24)

rp
2 rp,q

2 rp,c
2 rp,e

2 rp,s
2 rp,a

2 rp,m
2

0.490 0.469 0.456 0.528 0.493 0.596 0.399

rp,u
2 rp,q,u

2 rp,c,u
2 rp,e,u

2 rp,s,u
2 rp,a,u

2 rp,m,u
2

0.449 0.432 0.434 0.485 0.489 0.573 0.399

rp,d
2 rp,q,d

2 rp,c,d
2 rp,e,d

2 rp,s,d
2 rp,a,d

2 rp,m,d
2

0.577 0.644 0.378 0.628 0.511 0.616 0.394

All entries in fm

hardest, a result which owes primarily to Diagram 4 and the simple Ansatz we
have made for the interaction therein; viz., Eq. (C.35).

The right panels of Fig. 5 provide a flavour decomposition of the diquark con-
tributions just discussed. It is curious that κ

a,u
p < 0, a feature which highlights the

presence and role of correlations in the nucleon’s Faddeev amplitude. The asso-
ciated form factor becomes positive at Q2 ≈ 1.5GeV2. The contribution with the
simplest structure, F p,s,u

2 , is positive definite whereas F p,m,u
2 becomes negative at

Q2 & 10GeV2. In association with the proton’s d-quark, the axial-vector diagrams
make a positive definite contribution, the scalar diquark form factor becomes neg-
ative at Q2 ≈ 12GeV2 and the mixed contribution is negative definite but small.

It is apparent from Table 5 that

rp,d
2 > rp,u

2 , (28)

which entails rn,u
2 > rn,d

2 . These orderings are the same as those exhibited by the
Dirac radii, Eq. (26), but the separation in magnitudes is larger. The presence
of axial-vector diquark correlations again plays a large role in producing these
results. We note in addition that rp,u

2 < rp,u
1 and rp,d

2 < rp,d
1 , with the greater reduc-

tion in rp,u
2 . Indeed, it is almost uniformly true that the quark-core Pauli form

factors are harder than their Dirac counterparts. The reduction is marked for rp,a,u
2

and the only exception to the rule is rp,s,d
2 .

6.3 Pauli–Dirac Proton Ratio

In Fig. 6 we plot a weighted ratio of Pauli to Dirac form factors; viz.,

Rp
21(Q̂

2) :=
Q̂2

(ln[Q̂2/Λ̂ 2])2

F p
2 (Q̂2)

F p
1 (Q̂2)

, Q̂2 =
Q2

M2
N

, Λ̂
2 =

Λ 2

M2
N

. (29)

A perturbative analysis that considers effects arising from both the proton’s leading-
and subleading-twist light-cone wave functions, the latter of which represents
quarks with one unit of orbital angular momentum, suggests that this ratio should
be constant for Q2 �Λ 2, where Λ is a mass-scale that is said to correspond to an
upper-bound on the domain of soft momenta [46].
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Fig. 6 Solid curve Calculated dimensionless ratio in Eq. (29) with Λ̂ = 0.44 and MN in Table 1.
Short-dashed line constant at 0.21. Long dashed curve ratio evaluated with the experimental
nucleon mass using the parametrisations in Ref. [44]. Boxes ratio evaluated with data from
Ref. [47]; and circles from Ref. [48]. Dash-dot line constant at 0.15

We analysed our calculated result in this context and found that with Λ̂ = 0.44
this weighted ratio is a constant= 0.21 on Q̂2 ≥ 4.3; by which we mean that the
rms relative error with respect to the straight-line fit is 0.34% with an associated
standard deviation of 0.24%. These numbers increase as the minimum value of Q̂2

included in the fit is decreased and, moreover, the value of Λ̂ comes to depend on
this minimum value.

In the figure we also plot the ratio in Eq. (29) as evaluated from extant exper-
imental data, available on the domain Q̂2 ∈ [3.9,6.3]. Using Λ̂ = 0.44, the result
is described by a constant = 0.15 with rms relative error 1.5% and an associated
standard deviation of 0.98%. It is evident in the figure that on the domain for
which the ratio is well described by a constant, our model produces a result that
lies above the experimental data. This is because thereupon our calculation under-
estimates experimental results for F p

1 by∼15% and overestimates those for F p
2 by

a similar amount. (See Sect. 8 for details).
It is curious that what might appear to be a low mass-scale, Λ = 0.44MN ,

should serve to produce a constant value for the ratio in Eq. (29) [31]. In seeking
to understand the origin of this scale we analysed the pointwise behaviour of our
calculated Faddeev amplitude. The dominant functions are s1,A3,A5, which was
to be expected given the associated Dirac structures [see Eqs. (A.8)–(A.10)]. A
Gaußian can be fitted to the leading Chebyshev moment of each of these functions.
That procedure yields the following widths (in units of MN):

ωs1
1
= 0.48, ωA1

3
= 0.47, ωA1

5
= 0.46. (30)

The similarity between these widths and Λ is notable. It highlights the point that
while Λ per se is not an elemental input to our calculation, such a mass-scale can
arise dynamically as a derivative quantity which may be expressed in the relative-
momentum support of the Faddeev amplitude. A challenge now is to determine
whether an algebraic relationship exists between Λ in Eq. (29) and the widths
characterising the Faddeev amplitude.

6.4 Sachs Proton Electric

In Fig. 7 we present the proton’s Sachs electric form factor and a separation
into contributions from various subclasses of diagrams. While in principle, given
Eq. (4), these panels contain no information that cannot be constructed from mate-
rial already presented, they are nevertheless practically useful and informative.

The upper left panel shows the Q2-evolution of the quark, diquark and exchange
(or two-body) contributions to Gp

E(Q2). Their Q2 = 0 values have precisely the
same value and interpretation as those associated with the Dirac form factor, which
are presented in Table 2. It is notable that the quark contribution; namely, Dia-
gram 1 in Fig. 2, possesses a zero at Q2 ≈ 3.0GeV2. It is only because the diquark
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Fig. 7 Proton’s Sachs electric form factor. Upper left full result and decomposition according to
diagram classes; lower left flavour breakdown of these contributions, expressed in units of the
magnitude of the relevant quark’s charge. Upper right full result and decomposition according
to diagram diquark content; lower right flavour breakdown of these contributions. A parametri-
sation of experimental data [44] is also presented in the upper left panel. A full explanation of
the notation is provided in Appendix E

Table 6 Radii associated with Gp
E , defined by analogy with Eq. (24)

rp
E rp,q

E rp,c
E rp,e

E rp,s
E rp,a

E rp,m
E

0.666 0.681 0.645 0.639 0.613 0.767 0.681

rp,u
E rp,q,u

E rp,c,u
E rp,e,u

E rp,s,u
E rp,a,u

E rp,m,u
E

0.645 0.675 0.583 0.660 0.581 0.733 0.681

rp,d
E rp,q,d

E rp,c,d
E rp,e,d

E rp,s,d
E rp,a,d

E rp,m,d
E

0.573 0.644 0.405 0.706 0.410 0.663 0.679

NB. The value in this table yields MNrp
E = 4.01 cf. experiment [49] MNrp

E = 4.18. Tabulated
entries in fm

contribution remains positive until Q2 ≈ 9.0GeV2 and the exchange contribution
is positive definite that the complete result for Gp

E(Q2) does not exhibit a zero until
Q2 ≈ 8.0GeV2.3 We list the Sachs radii in Table 6. In comparison with the Dirac
radii in Table 3, they are relatively uniform owing to Foldy-term contributions.

The lower left panel provides a flavour decomposition of the quark, diquark
and exchange contributions to the form factor. Once more their Q2 = 0 values have
precisely the same value and interpretation as those associated with the Dirac form
factor. Gp,u

E has a zero at Q2 ≈ 9.0GeV2 and no contribution to Gp,u
E is positive

definite: Gp,q,u
E possesses a zero at Q2 ≈ 3.0GeV2; Gp,c,u

E at Q2 ≈ 10.0GeV2; and
Gp,e,u

E is negative on the domain 4.0∼< Q2
∼< 7.0GeV2. On the other hand, Gp,d

E has
a zero at Q2 ≈ 10.0GeV2 but Gp,q,d

E is negative definite. Gp,c,d
E possesses a zero at

Q2 ≈ 11.0GeV2 and Gp,e,d
E at Q2 ≈ 2.0GeV2. We list the u- and d-quark Sachs

radii in Table 6. Their values are readily computed and understood from Tables 3
and 4.

The upper right panel of Fig. 7 shows the Q2-evolution of the contributions to
Gp

E that involve a scalar diquark, an axial-vector diquark, or one of each. Gp,s
E has

a zero at Q2 ≈ 10.0GeV2 and Gp,a
E at Q2 ≈ 3.0GeV2, whereas Gp,m

E is positive
definite. The lower right panel provides a flavour decomposition of the diquark
contributions. Gp,s,u

E exhibits a zero at Q2 ≈ 10.0GeV2, Gp,a,u
E at Q2 ≈ 5.0GeV2

and Gp,m,u
E is negative on the domain 2.0 ∼< Q2

∼< 6.0GeV2. On the other hand,
Gp,s,d

E passes through zero at Q2 ≈ 11.0GeV2 and Gp,m,d
E at Q2 ≈ 2.0GeV2 but

Gp,a,d
E is negative definite. The associated Sachs radii are listed in Table 6.

3 A zero in Gp
E(Q2) was seen in the light-front constituent-quark model of Ref. [50]. In

Ref. [51] it was shown to be a property of the scalar-diquark Faddeev model of Ref. [37]
but its appearance and location were argued to be dependent on dynamics, consistent with
Refs. [52; 53] and the present study.
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Fig. 8 Proton’s Sachs magnetic form factor. Left full result and decomposition according to
diagram classes; and right full result and decomposition according to diagram diquark content.
Form factors are expressed in magnetons defined by the calculated nucleon mass, MN in Table 1.
A parametrisation of experimental data [44] is also presented in the left panel. A full explanation
of the notation is provided in Appendix E

Fig. 9 Proton’s Sachs magnetic form factor. Left flavour breakdown of contributions in left panel
of Fig. 8. Right flavour breakdown of contributions in right panel of Fig. 8. A full explanation
of the notation is provided in Appendix E

Table 7 Flavour and diagram decomposition of contributions to the proton’s magnetic moment;
viz., the Gp

M form factors evaluated at Q2 = 0, measured in magnetons defined by the calculated
nucleon mass, MN

µp µ
q
p µc

p µe
p µs

p µa
p µm

p

2.674 1.919 0.0495 0.706 2.061 0.311 0.303

µu
p µ

q,u
p µ

c,u
p µ

e,u
p µ

s,u
p µ

a,u
p µ

m,u
p

2.507 1.824 0.0527 0.631 1.947 0.181 0.381

µd
p µ

q,d
p µ

c,d
p µ

e,d
p µ

s,d
p µ

a,d
p µ

m,d
p

0.168 0.210 −0.00322 0.0751 0.115 0.131 −0.0779

Experimentally [49], µp = 2.79

6.5 Sachs Proton Magnetic

In Figs. 8 and 9 we depict the proton’s Sachs magnetic form factor and a separa-
tion into contributions from various subclasses of diagrams. Again, while in prin-
ciple these panels only contain information that can be constructed from material
already presented, they are nonetheless practically useful and informative.

The left panel of Fig. 8 shows the Q2-evolution of the quark, diquark and
exchange contributions to the form factor. Gp

M , Gp,q
M and Gp,e

M are positive definite
and monotonically decreasing. On the other hand, the net contribution from Dia-
grams 2 and 4 in Fig. 2; namely, Gp,c

M , is uniformly small, negative in the vicinity
of Q2 ∼ 0.5GeV2 and again for Q2

∼> 8GeV2. The pattern is qualitatively similar
in the flavour breakdown of these form factors, depicted in the left panels of Fig. 9.

The right panel of Fig. 8 exhibits the Q2-evolution of the contributions to Gp
M

that involve a scalar diquark, an axial-vector diquark, or one of each. All contri-
butions are positive definite, diagrams involving only a scalar diquark are dom-
inant and contributions involving at least one axial-vector diquark are uniformly
of comparable magnitude. The flavour breakdown is contained in the right panels
of Fig. 9: all contributions are positive definite except Gp,m,d

M , which is uniformly
small but becomes positive at Q2 ≈ 9.0GeV2 and remains so until Q2 ≈ 17GeV2.
(NB. The latter should be interpreted qualitatively because the feature appears at
a larger value of Q2 than we consider our computation reliable).

In Table 7 we list the Q2 = 0 values of all the form factors, which measure,
respectively, the contributions to the proton’s magnetic moment. These values can
be obtained from µα

p = Fα
1 (0)Pα

1 + κα
p , where, e.g., α = (p,q),(p,c), etc. The

magnetic radii are listed in Table 8. The general pattern has electric radii exceeding
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Table 8 Radii associated with Gp
M , defined by analogy with Eq. (24)

rp
M rp,q

M rp,c
M rp,e

M rp,s
M rp,a

M rp,m
M

0.540 0.504 1.385 0.531 0.503 0.760 0.534

rp,u
M rp,q,u

M rp,c,u
M rp,e,u

M rp,s,u
M rp,a,u

M rp,m,u
M

0.544 0.500 1.424 0.539 0.502 0.936 0.544

rp,d
M rp,q,d

M rp,c,d
M rp,e,d

M rp,s,d
M rp,a,d

M rp,m,d
M

0.470 0.571 1.749 0.455 0.531 0.486 0.580

NB. The value in this table yields MNrp
M = 3.23 cf. experiment [54] MNrp

M = 3.99. Tabulated
entries in fm

Fig. 10 Result for the normalised ratio of Sachs electric and magnetic form factors computed
with four different diquark radii, r1+ . Data: diamonds [48]; squares [55]; triangles [56]; and
circles [57]

magnetic radii. The few exceptions are easily explained. For example, rp,a,u
E <

rp,a,u
M : this is primarily because F p,a,u

2 (Q2) < 0 and of significant magnitude in the
neighbourhood of Q2 = 0. As already noted, it is curious that this contribution to
the proton’s anomalous magnetic moment is negative.

6.6 Sachs Electric–Magnetic Proton Ratio

We plot µp Gp
E(Q2)/Gp

M(Q2) in Fig. 10 in comparison with contemporary data.
A sensitivity to the proton’s electromagnetic current is evident, here expressed
via the diquarks’ radius. Irrespective of that radius, however, the proton’s electric
form factor possesses a zero and the magnetic form factor is positive definite.
On Q2

∼< 3GeV2 our result lies below experiment. As discussed in Sect. 8, this
can likely be attributed to our omission of so-called pseudoscalar-meson-cloud
contributions.

7 Neutron Form Factors

7.1 Dirac Neutron

In Fig. 11 we depict the neutron’s Dirac form factor and a decomposition into
contributions from various subclasses of diagrams. Owing to charge symmetry,
Eq. (22), it is unnecessary to present a flavour breakdown. For example, with the
normalisation used in our figures, the curve that would be denoted by Fn,u

1 (Q2) is
simply negative-F p,d

1 (Q2) drawn from Fig. 3.
In addition to that of Fn

1 itself, the left panel depicts the Q2-evolution of the
quark, diquark and exchange contributions to this form factor. Fn

1 and Fn,q
1 are

negative definite, and Fn,e
1 is only positive for Q2

∼< 0.5GeV2. On the other hand,
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Fig. 11 Neutron’s Dirac form factor. Left full result and decomposition according to diagram
classes; Right full result and decomposition according to diagram diquark content. A parametri-
sation of experimental data [44] is also presented in the left panel. A full explanation of the
notation is provided in Appendix E

Table 9 Radii associated with Fn
1 , defined by analogy with Eq. (24) except when the form factor

vanishes at Q2 = 0, in which case r2 =−6F ′(Q2 = 0)

rn
1 rn,q

1 rn,c
1 rn,e

1 rn,s
1 rn,a

1 rn,m
1

0.102 0.112 i 0.812 i 1.577 0.595 0.642 1.056

An imaginary result signifies a negative mean-square radius. This convention enables a straight-
forward comparison between the length-scale associated with different radii. All entries in fm

Fig. 12 Neutron’s Pauli form factor. Left full result and decomposition according to diagram
classes; Right full result and decomposition according to diagram diquark content. A parametri-
sation of experimental data [44] is also presented in the left panel. A full explanation of the
notation is provided in Appendix E

the diquark contribution; viz., Fn,d
1 , is positive until Q2 ≈ 12GeV2. The right panel

renders the Q2-dependence of contributions from diagrams containing a scalar
diquark, an axial-vector diquark or one of each. Fn,s

1 is negative definite and Fn,a
1

is negative for Q2
∼> 2GeV2. Fn,m

1 is small at Q2 = 0 (only 3% of the other two
form factors) and negative for Q2

∼> 0.1GeV2. These features reflect: the dominant
role played in the Faddeev amplitude by the positively charged [ud] scalar diquark;
the fact that the u-quark is singly represented and only a bystander in combination
with an axial-vector diquark; and the softness of the diquark correlations, which
ensures that only a bystander quark can participate in the scattering process at
large-Q2.

We list computed Dirac radii connected with the neutron in Table 9. Two
entries are imaginary because the associated form factors have an inflexion point
away from Q2 = 0. We do not currently attribute any real significance to this local
feature, which for the neutron is particularly sensitive to details of the Ansatz
employed for Diagrams 5 and 6 in Fig. 2; namely, the as yet poorly constrained
two-body piece of the current.

7.2 Pauli Neutron

In Fig. 12 we depict the neutron’s Pauli form factor and a decomposition into
contributions from various subclasses of diagrams. Once more, owing to charge
symmetry, Eq. (22), it is unnecessary to present a flavour breakdown. For example,
with the normalisation used in our figures, the curve that would be denoted by
Fn,u

2 (Q2) is simply negative-F p,d
2 (Q2) drawn from Fig. 4.

The left panel depicts the Q2-evolution of Fn
2 itself, and that of the quark,

diquark and exchange contributions to this form factor. Fn
2 , Fn,q

2 and Fn,e
2 are

negative definite on the domain within which we consider our calculations accu-
rate, and Fn,c

2 is negative until Q2 ≈ 12GeV2. The right panel portrays the Q2-
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Table 10 Upper rows: diagram decomposition of contributions to the neutron’s anomalous mag-
netic moment; viz., the Fn

2 form factors evaluated at Q2 = 0, measured in magnetons defined by
the calculated nucleon mass, MN

κn κ
q
n κc

n κe
n κs

n κa
n κm

n

−1.588 −1.038 −0.0686 −0.481 −1.120 −0.430 −0.0368

rn
2 rn,q

2 rn,c
2 rn,e

2 rn,s
2 rn,a

2 rn,m
2

0.533 0.529 0.120 i 0.576 0.500 0.621 0.405

Experimentally [49], µn = −1.91. Lower rows: radii associated with Fn
2 , defined by analogy

with Eq. (24). These entries in fm. An imaginary result signifies a negative mean-squared radius

Fig. 13 Solid circles and solid curve Dimensionless ratio in Eq. (29) calculated for the neutron,
with Λ̂ = 0.44 and MN in Table 1. Dashed curve Right-hand-side of Eq. (31). Experimental
results: down triangles Ref. [58]

dependence of contributions from diagrams containing a scalar diquark, an axial-
vector diquark or one of each. Fn,s

2 and Fn,a
2 are negative definite, and Fn,m

2 is
negative for Q2

∼< 5GeV2 and always small in magnitude. These features are con-
sistent with those of the Dirac form factor.

We list computed anomalous magnetic moments and Pauli radii connected
with the neutron in Table 10. The small value of κd

n may be understood via a
cancellation between d(ud)1+ and u(dd)1+ contributions. Along with the small
value of κT , Eq. (C.36), this explains the size of κm

n . With the exception of the
uniformly small Fn,c

2 , the Pauli radii follow the same pattern as those of the proton.

7.3 Neutron Pauli–Dirac Neutron Ratio

In Fig. 13 we plot the weighted ratio of Pauli to Dirac form factors in Eq. (29) for
the neutron. This ratio is constant for the proton, Fig. 6, however, that is not the
case for the neutron. Moreover, with our calculated neutron form factors there is
no value of Λ̂ for which this ratio assumes a constant value.

The apparent cause of this behaviour is a zero in Fn
2 (Q2) at Q2 ≈ 18GeV2.

This point lies beyond the upper bound of the domain within which we consider
our computation reliable. On the other hand, its presence does influence the evolu-
tion of the ratio. This can be seen by analysing the ratio using Padé approximants
on subdomains of Q2 ∈ [4,12]GeV2, which consistently yields a best fit that pos-
sesses a zero at Q2 ≈ 18GeV2; e.g.,

Rn
21(Q̂

2) :=
Q̂2

(ln Q̂2/Λ̂ 2)2

Fn
2 (Q̂2)

Fn
1 (Q̂2)

=
2.85+0.274Q̂2−0.0409Q̂4

−1+1.93Q̂2
. (31)

It seems therefore that the zero is not simply the result of inaccurate numerical
analysis but either a property of the model itself or an artefact of the numerical
method; namely, the Chebyshev expansion described in Appendix D: Chebyshev
Expansion. We are working to resolve this issue.
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Fig. 14 Neutron’s Sachs electric form factor. Left full result and decomposition according to
diagram classes. Right full result and decomposition according to diagram diquark content. A
parametrisation of experimental data [44] is also presented in the left panel. A complete expla-
nation of the notation is provided in Appendix E

7.4 Sachs Neutron Electric

In Fig. 14 we present the neutron’s Sachs electric form factor and a separation into
contributions from various subclasses of diagrams. Once more, owing to charge
symmetry, Eq. (22), it is unnecessary to present a flavour breakdown. For example,
with the normalisation used in our figures, the curve that would be denoted by
Gn,d

E (Q2) is simply negative-Gp,u
E (Q2) drawn from Fig. 7.

In addition to that of Gn
E itself, the left panel depicts the Q2-evolution of

the quark, diquark and exchange contributions to this form factor. Each exhibits
a zero, with that for the net result lying at Q2 ≈ 11GeV2. In the right panel
we plot the Q2-dependence of contributions from diagrams containing a scalar
diquark, an axial-vector diquark or one of each. Gn,s

E is positive on the domain
Q2 ∈ [0.1,11]GeV2 and Gn,m

E is negative for Q2
∼> 1GeV2, whereas Gn,a

E is posi-
tive definite.

These features are again consistent with intuition. For example, the behaviour
of Gn,q

E . It is negative at small-Q2 because the scalar diquark component of the
Faddeev amplitude is dominant and that is paired with a d-quark bystander in
the neutron. This dressed-quark is responsible for the preponderance of negative
charge at long range. Gn,q

E is positive at large Q2 because Fn
2 dominates on that

domain, which focuses attention on the axial-vector diquark component of the
Faddeev amplitude. The positively charged u-quark is most likely the bystander
quark in these circumstances.

Another interesting illustrative case is provided by Gn,a
E , which is positive defi-

nite. As already noted, the u-quark is the most probable bystander in the neutron’s
axial-vector diquark configuration and this explains the preponderance of positive
charge at small Q2. This plus the fact that the current’s only hard component is
that involving a bystander quark also explains the positive charge at large Q2. The
form factor remains positive in the intermediate region because the term which
could interfere; viz., d[ud]0+ , involves individual charges with smaller magnitude.

We list computed Dirac radii connected with the neutron in Table 9. Two
entries are imaginary because the associated form factors have an inflexion point
away from Q2 = 0. As just explained, such behaviour stems from interference,
mediated by the current, between components in the incoming and outgoing neu-
trons’ Faddeev amplitudes.

7.5 Sachs Neutron Magnetic

In Fig. 15 we present the neutron’s Sachs magnetic form factor and a decom-
position into contributions from various subclasses of diagrams. Again, owing
to charge symmetry, Eq. (22), it is unnecessary to present a flavour breakdown.
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Fig. 15 Neutron’s Sachs magnetic form factor. Left full result and decomposition according to
diagram classes. Right full result and decomposition according to diagram diquark content. A
parametrisation of experimental data [44] is also presented in the left panel. A complete expla-
nation of the notation is provided in Appendix E

Table 11 Upper rows—radii associated with Gn
E , defined by analogy with Eq. (24) except when

the form factor vanishes at Q2 = 0, in which case r2 =−6F ′(Q2 = 0)

rn
E rn,q

E rn,c
E rn,e

E rn,s
E rn,a

E rn,m
E

0.227 i 0.812 0.847 i 1.069 0.961 0.430 0.674

rn
M rn,q

M rn,c
M rn,e

M rn,s
M rn,a

M rn,m
M

0.529 0.513 1.254 0.514 0.507 0.614 0.316

An imaginary result signifies a negative mean-squared radius. NB. The value in this table yields
M2

N(rE
n )2 = −(1.36)2 cf. experiment [49] M2

n (rE
n )2 = −(1.62)2. Lower rows—radii associated

with Gn
M , defined by analogy with Eq. (24): MNrM

n = 3.17 cf. experiment [54] MnrM
n = 4.24.

Tabulated entries in fm

Fig. 16 Result for the normalised ratio of Sachs electric and magnetic form factors for the neu-
tron computed with two different diquark radii. Short-dashed curve parametrisation of Ref. [44].
Down triangles data from Ref. [58]

For example, with the normalisation used in our figures, the curve that would be
denoted by Gn,u

M (Q2) is simply negative-Gp,d
M (Q2) drawn from Fig. 8.

In the left panel we draw the Q2-evolution of Gn
M itself, and that of the quark,

diquark and exchange contributions to this form factor. Gn
M , Gn,q

M and Gn,e
M are neg-

ative definite. On the other hand, Gn,c
M is uniformly small, owing to cancellations

between Fn
1 and Fn

2 . It begins negative, is positive in the vicinity of Q2 = 0.5GeV2

and again for Q2
∼> 10GeV2. The right panel portrays the Q2-dependence of con-

tributions from diagrams containing a scalar diquark, an axial-vector diquark or
one of each. All are negative definite.

We list the computed magnetic radii connected with the neutron in Table 11.
The magnetic moments are the same as the anomalous moments in Table 10. With
the exception of Gn,m

M , which at small Q2 is roughly a factor of five smaller than
Gp,m

M , the neutron radii follow the same pattern as those of the proton.

7.6 Sachs Electric–Magnetic Neutron Ratio

We plot µnGn
E(Q2)/Gn

M(Q2) in Fig. 16. The figure illustrates a quantitative sen-
sitivity of our results to the neutron’s electromagnetic current, here expressed via
the diquarks’ radius. Notwithstanding this, the qualitative features are robust, with
Gn

E(Q2) possessing a zero at Q2
∼> 10GeV2. In contrast to the behaviour in Fig. 10,

here the zero moves to smaller Q2 with increasing diquark radius. The effect of
our omission of meson cloud contributions is again evident at small Q2.
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8 Chiral Corrections

The framework we have described hitherto defines a dressed-quark core contri-
bution to the nucleons’ electromagnetic form factors. As with the mass [28; 29],
the nucleons’ magnetic moments, and charge and magnetic radii receive material
contributions from the so-called pseudoscalar meson cloud [59; 60]. There are two
types of contribution: regularisation-scheme-dependent terms, which are analytic
functions of m in the neighbourhood of vanishing current-quark mass, m = 0; and
nonanalytic scheme-independent terms.

For magnetic moments and radii the leading-order scheme-independent con-
tributions are [61]

(µn/p)
1−loop
NA

mπ'0= ±
g2

AMN

4π2 f 2
π

mπ , (32)

〈r2
n/p〉

1−loop
NA

mπ'0= ±
1+5g2

A
32π2 f 2

π

ln
(

m2
π

M2
N

)
, (33)

〈(rµ

N)2〉1−loop
NA

mπ'0= −
1+5g2

A
32π2 f 2

π

ln
(

m2
π

M2
N

)
+

g2
AMN

16π f 2
π µv

1
mπ

, (34)

where, experimentally, gA = 1.26, fπ = 0.0924 GeV = 1/(2.13fm) and µv = µp−
µn = 4.7. These terms reduce the magnitude of both neutron and proton magnetic
moments, and increase the magnitudes of the radii.

Whilst these scheme-independent terms are important, at physical values of
the pseudoscalar meson masses they do not usually provide the dominant con-
tribution to observables. That arises from the regularisation-parameter-dependent
terms, as is apparent for baryon masses in Ref. [28] and for the pion charge radius
in Ref. [62]. This is particularly significant for the neutron’s charge radius [31]
and for the magnetic moments, in which connection the regularisation-scheme-
dependent terms provide a nonzero contribution in the chiral limit and have the
net effect of increasing |µN |.

Owing to the importance of the chiral loops’ regularisation-parameter-dependent
parts we estimate the corrections using modified formulae, which incorporate
a single parameter that mimics the effect of regularising the integrals; namely
[31; 33; 63],

(µn/p)
1−loopR

=
(

µ
π0
n/p±

g2
AMN

4π2 f 2
π

mπ

)
2
π

arctan
(

λ 3

m3
π

)
, (35)

〈r2
n/p〉

1−loopR
=±

1+5g2
A

32π2 f 2
π

ln
(

m2
π

m2
π +λ 2

)
, (36)

〈(rµ

N)2〉1−loopR
=−

1+5g2
A

32π2 f 2
π

ln
(

m2
π

m2
π +λ 2

)
+

g2
A MN

16π f 2
π µv

1
mπ

2
π

arctan
(

λ

mπ

)
,(37)

wherein µπ0
n/p are the chiral limit values of the meson loop contributions and

λ = 0.3 GeV = 1/[0.66fm] is a regularisation mass-scale. NB. As required phys-
ically, the loop contributions vanish when the meson mass is much larger than the
regularisation scale: very massive states must decouple from low-energy phenom-
ena.



22 I. C. Cloët et al.

Table 12 Quark-core and pseudoscalar meson loop [Eqs. (35)–(37)] contributions to the
moments and radii, calculated at the physical current-quark mass, Eq. (A.23)

µn µp 〈r2
n〉 〈r2

p〉 〈(rµ
n )2〉 〈(rµ

p )2〉

q(qq) −1.59 2.67 −(0.23)2 (0.67)2 (0.53)2 (0.54)2

π-loop −0.40 0.24 −(0.47)2 (0.47)2 (0.61)2 (0.61)2

Total −1.99 2.91 −(0.52)2 (0.82)2 (0.81)2 (0.81)2

Experiment −1.91 2.79 −(0.34)2 (0.88)2 (0.89)2 (0.84)2

The radii are listed in fm2. Experimental values are quoted from Ref. [49], where available, and
otherwise from Ref. [54]

Fig. 17 Difference between our calculated Pauli form factor and the parametrisation of exper-
imental data in Ref. [44], each normalised by the appropriate anomalous magnetic moment at
Q2 = 0: dashed curve proton; solid curve neutron. The Q2 for which the difference reaches 20%
of its peak value is indicated in each case by a vertical dotted line

In Table 12 we exemplify the effect of the corrections in Eqs. (35)–(37) to
nucleon static properties. The quark-core values are collected from Tables 6, 7,
8, 10 and 11 herein. The sensitivity of the neutron’s charge radius is apparent.
In relation to the magnetic moments, a recent estimate from numerical simu-
lations of lattice-regularised QCD [64] gives the following chiral-loop contri-
butions to the nucleons’ magnetic moments at the physical pion mass: µπ

n =
−0.40,µπ

p = 0.24, which are obtained with µπ0
n =−1.05,µπ0

p = 0.88 in Eq. (35).
These results in conjunction with the experimental values point to quark-core mag-
netic moments of µ

q(qq)
n = −1.51,µ

q(qq)
p = 2.55, which compare well with our

computed moments.4
It is plain in Table 12 that pseudoscalar meson loops alter the proton’s mag-

netic radius more than its electric radius. Indeed, without fine tuning, these two
initially rather different radii are brought into agreement. As observed in Ref. [31],
this is important in relation to Fig. 10 because it explains why the quark core result
disagrees with data at small momentum transfers. Namely, in the neighbourhood
of Q2 = 0 one has

µp
Gp

E(Q2)
Gp

M(Q2)
= 1− Q2

6
[
(rp)2− (rµ

p )2] , (38)

and so with rp > rµ
p , as is the case for the quark core contribution, the ratio falls

immediately with increasing Q2. This is the behaviour in Fig. 10. However, exper-
imentally, and with addition of a pseudoscalar meson cloud to our quark core,
rp = rµ

p . Therefore the complete ratio varies little on 0 < Q2 < 0.6 GeV2.
The analysis in this section is rudimentary. Nonetheless it illustrates that the

dressed-quark core defined by our Faddeev equation is uniformly compatible with
augmentation by a sensibly regulated pseudoscalar meson cloud. We emphasise

4 The magnetic moment values in Row 2 of the Table differ slightly (<8%) in magnitude
from those reported in Ref. [33] because an extrapolation is necessary to obtain GM(0) and
herein we’ve used a [0,2] Padé as opposed to a simple quadratic. Were this significant, it could
be corrected by a minor (∼10%) adjustment of µ1+ and κT .
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that by construction our Faddeev equation explicitly excludes all diagrams that
can be associated with that cloud and so a question of overcounting cannot arise.

It is nevertheless reasonable to inquire into the domain of momentum transfer
upon which pseudoscalar meson loops can contribute materially to nucleon form
factors. Regarding this it is relevant to observe that in a meson-nucleon coupled-
channels analysis of the γN → ∆ transition form factors the cloud contributes 50%
of the M1 form factor’s magnitude at Q2 = 0 but is insignificant by Q2 ≈ 2M2

N [65].
We address this question via Fig. 17, which compares our computed dressed-quark
core Pauli form factors with a contemporary parametrisation of experimental data
[44]. The differences depicted are consistent with loop corrections providing a
necessary quantitative contribution that is important until Q2 ≈ 2–3M2

N . An analo-
gous figure for the Dirac form factors presents a comparable picture, although the
differences are an order of magnitude smaller and have longer tails.

9 Epilogue

We described a calculation of a dressed-quark core contribution to nucleon elec-
tromagnetic form factors. This core is defined by the solution of a Poincaré covari-
ant Faddeev equation in which dressed-quarks provide the elementary degree of
freedom and quark-quark correlations are formed therefrom. The two parameters
in the Faddeev equation are diquark masses. They are set by fitting to required
nucleon and ∆ masses. We allowed one parameter in the nucleon-photon vertex;
viz., the diquark charge radius. Contemporary continuum calculations and com-
parison with extant data indicate that this radius should be commensurate with the
pion’s charge radius. From this foundation we provided a comprehensive analysis
and explanation of the form factors.

A feature of our study is the separation of form factor contributions into those
from different diagram types and correlation sectors, and subsequently a flavour
separation for each of these. In this way we obtained, for example, Table 2, which
shows amongst other things that the probability of the photon striking a bystander
quark in the proton is 47%. It also enables us to determine, Eq. (27), that rn,u

1 >

rn,d
1 ; i.e., that the neutron’s u-quark Dirac radius is greater than that of the d-quark,

and explain the result in terms of the presence of axial-vector diquark correlations.
The dressed-quark magnetic radii have the same ordering.

From our extensive body of results we will here highlight just a few more.
For the proton a weighted ratio of Pauli to Dirac form factors is constant on a
domain that begins at Q2/M2

N ≈ 4, Fig. 6. We correlated this behaviour with the
momentum space width of the dominant elements in the proton’s Faddeev ampli-
tude, Eq. (30). On the other hand, the same ratio for the neutron is not constant on
any domain accessible in our calculation, Fig. 13. In addition, the ratio of Sachs
electric and magnetic form factors for the proton exhibits a zero, Fig. 10. Its posi-
tion depends on correlations in the Faddeev amplitude and details of the nucleon-
photon current. Our current best estimate for the zero’s location is Q2 ≈ 8 GeV2.
A similar ratio for the neutron passes through zero at Q2 ≈ 11 GeV2, Fig. 16.

We have defined the nucleon’s dressed-quark core via a Poincaré covariant
Faddeev equation and have seen that pseudoscalar meson loops can be added
in a sensible fashion. The framework is successful and instructive, and unifies
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a phenomenological description of mesons with that of baryons. Yet it is simple
enough to allow access to numerous form factors and large values of momentum
transfer. Importantly, our approach enables one to chart the interplay between the
firmly established and material momentum-dependent dressing of QCD’s elemen-
tary excitations and the observable properties of hadrons. In the near term it will
be applied to nucleon excited states and transition form factors so as to elucidate
their dependence on these fundamental features of QCD. A medium term goal is
to extend Ref. [23] and provide a simultaneous description of meson and baryon
observables using a single interaction in a truncation of QCD’s Dyson–Schwinger
equations that can systematically be improved.
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Appendix A: Faddeev Equation

A.1 General structure

The nucleon is represented by a Faddeev amplitude

Ψ = Ψ1 +Ψ2 +Ψ3, (A.1)

where the subscript identifies the bystander quark and, e.g., Ψ1,2 are obtained from
Ψ3 by a cyclic permutation of all the quark labels. We employ the simplest realistic
representation of Ψ . The spin- and isospin-1/2 nucleon is a sum of scalar and
axial-vector diquark correlations:

Ψ3(pi,αi,τi) = N 0+

3 +N 1+

3 , (A.2)

with (pi,αi,τi) the momentum, spin and isospin labels of the quarks constituting
the bound state, and P = p1 + p2 + p3 the system’s total momentum.

The scalar diquark piece in Eq. (A.2) is

N 0+

3 (pi,αi,τi) =
[

Γ
0+
(

1
2

p[12];K
)]τ1τ2

α1α2

∆
0+

(K)[S (`;P)u(P)]τ3
α3 , (A.3)

where: the spinor satisfies (Appendix B: Euclidean Conventions)

(iγ ·P+M)u(P) = 0 = ū(P)(iγ ·P+M), (A.4)

with M the mass obtained by solving the Faddeev equation, and it is also a spinor
in isospin space with ϕ+ = col(1,0) for the proton and ϕ− = col(0,1) for the
neutron; K = p1 + p2 =: p{12}, p[12] = p1 − p2, ` := (−p{12} + 2p3)/3;∆ 0+

is a
pseudoparticle propagator for the scalar diquark formed from quarks 1 and 2, and
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Γ 0+
is a Bethe–Salpeter-like amplitude describing their relative momentum corre-

lation; and S , a 4×4 Dirac matrix, describes the relative quark-diquark momen-
tum correlation. (S ,Γ 0+

and ∆ 0+
are discussed in Sect. A.2.) The colour anti-

symmetry of Ψ3 is implicit in Γ JP
, with the Levi–Civita tensor, εc1c2c3 , expressed

via the antisymmetric Gell–Mann matrices; viz., defining

{H1 = iλ 7,H2 =−iλ 5,H3 = iλ 2}, (A.5)

then εc1c2c3 = (Hc3)c1c2 . [See Eqs. (A.28), (A.29)].
The axial-vector component in Eq. (A.2) is

N 1+
(pi,αi,τi) =

[
ti

Γ
1+

µ

(
1
2

p[12];K
)]τ1τ2

α1α2
∆

1+

µν (K)[A i
ν(`;P)u(P)]τ3

α3 , (A.6)

where the symmetric isospin-triplet matrices are

t+ =
1√
2
(τ0 + τ

3), t0 = τ
1, t− =

1√
2
(τ0− τ

3), (A.7)

and the other elements in Eq. (A.6) are straightforward generalisations of those in
Eq. (A.3).

The general forms of the matrices S (`;P) and A i
ν(`;P), which describe the

momentum space correlation between the quark and diquark in the nucleon are
described in Refs. [2; 45]. The requirement that S (`;P) represent a positive
energy nucleon entails

S (`;P) = s1(`;P) ID +
(
iγ · ˆ̀− ˆ̀· P̂ ID

)
s2(`;P) , (A.8)

where (ID)rs = δrs, ˆ̀2 = 1, P̂2 = −1. In the nucleon rest frame, s1,2 describe,
respectively, the upper, lower component of the bound-state nucleon’s spinor.
Placing the same constraint on the axial-vector component, one has

A i
ν(`;P) =

6

∑
n=1

pi
n(`;P)γ5An

ν(`;P), i = +,0,− , (A.9)

where ( ˆ̀⊥
ν = ˆ̀

ν + ˆ̀· P̂P̂ν ,γ⊥ν = γν + γ · P̂P̂ν )

A1
ν = γ · ˆ̀⊥P̂ν , A2

ν =−iP̂ν , A3
ν = γ · ˆ̀⊥ ˆ̀⊥,

A4
ν = i ˆ̀⊥

µ , A5
ν = γ⊥ν −A3

ν , A6
ν = iγ⊥ν γ · ˆ̀⊥−A4

ν .
(A.10)

One can now write the Faddeev equation satisfied by Ψ3 as[
S (k;P)u(P)
A i

µ(k;P)u(P)

]
=−4

∫ d4`

(2π)4 M (k, `;P)
[

S (`;P)u(P)
A j

ν (`;P)u(P)

]
. (A.11)

The kernel in Eq. (A.11) is

M (k, `;P) =

[
M00 (M01)

j
ν

(M10)i
µ (M11)

i j
µν

]
, (A.12)
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with

M00 = Γ
0+

(kq− `qq/2;`qq)ST(`qq− kq)Γ̄
0+

(`q− kqq/2;−kqq)S(`q)∆ 0+
(`qq),(A.13)

where: `q = `+ P/3, kq = k + P/3, `qq = −`+ 2P/3, kqq = −k + 2P/3 and the
superscript “T” denotes matrix transpose; and

(M01)
j
ν = t j

Γ
1+

µ (kq− `qq/2;`qq)

×ST(`qq− kq)Γ̄
0+

(`q− kqq/2;−kqq)S(`q)∆
1+

µν (`qq), (A.14)

(M10)i
µ = Γ

0+
(kq− `qq/2;`qq)

×ST(`qq− kq)ti
Γ̄

1+

µ (`q− kqq/2;−kqq)S(`q)∆
0+

(`qq), (A.15)

(M11)
i j
µν = t j

Γ
1+

ρ (kq− `qq/2;`qq)

×ST(`qq− kq)ti
Γ̄

1+

µ (`q− kqq/2;−kqq)S(`q)∆ 1+

ρν (`qq). (A.16)

A.2 Kernel of the Faddeev equation

To complete the Faddeev equations, Eq. (A.11), one must specify the dressed-
quark propagator, the diquark Bethe–Salpeter amplitudes and the diquark propa-
gators.

A.2.1 Dressed-Quark Propagator

The dressed-quark propagator has the general form

S(p) = −iγ · pσV (p2)+σS(p2) = 1/[iγ · pA(p2)+B(p2)] (A.17)

and can be obtained from QCD’s gap equation; namely, the Dyson–Schwinger
equation for the dressed-quark self-energy [5]. It is a longstanding prediction of
DSE studies in QCD that for light-quarks the wave function renormalisation and
dressed-quark mass:

Z(p2) = 1/A(p2), M(p2) = B(p2)/A(p2), (A.18)

respectively, receive strong momentum-dependent corrections at infrared momenta
[3; 4; 5]: Z(p2) is suppressed and M(p2) enhanced. These features are an expres-
sion of dynamical chiral symmetry breaking (DCSB) and, plausibly, of confine-
ment [14]. The enhancement of M(p2) is central to the appearance of a constituent-
quark mass-scale and an existential prerequisite for Goldstone modes. These DSE
predictions are confirmed in numerical simulations of lattice-regularised QCD [6],
and the conditions have been explored under which pointwise agreement between
DSE results and lattice simulations may be obtained [7; 8; 66].

The impact of this infrared dressing on hadron phenomena has long been
emphasised [11] and, while numerical solutions of the quark DSE are now readily
obtained, the utility of an algebraic form for S(p) when calculations require the
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evaluation of numerous multidimensional integrals is self-evident. An efficacious
parametrisation of S(p), which exhibits the features described above, has been
used extensively in hadron studies [67]. It is expressed via

σ̄S(x) = 2m̄F (2(x+ m̄2))+F (b1x)F (b3x) [b0 +b2F (εx)] , (A.19)

σ̄V (x) =
1

x+ m̄2

[
1−F (2(x+ m̄2))

]
, (A.20)

with x = p2/λ 2, m̄ = m/λ ,

F (x) =
1− e−x

x
, (A.21)

σ̄S(x) = λσS(p2) and σ̄V (x) = λ 2σV (p2). The mass-scale, λ = 0.566 GeV, and
parameter values5

m̄ b0 b1 b2 b3
0.00897 0.131 2.90 0.603 0.185 , (A.22)

were fixed in a least-squares fit to light-meson observables [68; 69]. The dimen-
sionless u = d current-quark mass in Eq. (A.22) corresponds to

m = 5.08 MeV =: mphys. (A.23)

The parametrisation yields a Euclidean constituent-quark mass

ME
u,d = 0.33GeV, (A.24)

defined as the solution of p2 = M2(p2).
The ratio ME/m = 65 is one expression of DCSB in the parametrisation of

S(p). It emphasises the dramatic enhancement of the dressed-quark mass function
at infrared momenta. Another is the chiral-limit vacuum quark condensate [11]

−〈q̄q〉0
ζ

= λ
3 3

4π2
b0

b1b3
ln

ζ 2

Λ 2
QCD

, (A.25)

which assumes the value (ΛQCD = 0.2GeV)

−〈q̄q〉0
ζ=1GeV = (0.221GeV)3. (A.26)

A detailed discussion of the vacuum quark condensate in QCD can be found in
Ref. [70; 71]

5 ε = 10−4 in Eq. (A.19) acts only to decouple the large- and intermediate-p2 domains.
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A.2.2 Diquark Bethe–Salpeter Amplitudes

The rainbow-ladder DSE truncation yields asymptotic diquark states in the strong
interaction spectrum. Such states are not observed and their appearance is an arte-
fact of the truncation. Higher-order terms in the quark–quark scattering kernel,
whose analogue in the quark–antiquark channel do not much affect the properties
of vector and flavour non-singlet pseudoscalar mesons, ensure that QCD’s quark–
quark scattering matrix does not exhibit singularities which correspond to asymp-
totic diquark states [18]. Nevertheless, studies with kernels that don’t generate
diquark bound states do support a physical interpretation of the masses, m(qq)JP ,
obtained using the rainbow-ladder truncation: the quantity l(qq)JP = 1/m(qq)JP may
be interpreted as a range over which the diquark correlation can propagate within
a baryon. These observations motivate an Ansatz for the quark-quark scattering
matrix that is employed in deriving the Faddeev equation:

[Mqq(k,q;K)]turs = ∑
JP=0+,1+,...

Γ̄
JP

(k;−K)∆ JP
(K)Γ JP

(q;K). (A.27)

One manner of specifying the Γ JP
in Eq. (A.27) is to employ the solutions

of a rainbow-ladder quark-quark Bethe–Salpeter equation (BSE), as e.g. in Refs.
[23; 27; 38]. Using the properties of the Gell–Mann matrices one finds easily that
Γ JP

C := Γ JP
C† satisfies exactly the same equation as the J−P colour-singlet meson

but for a halving of the coupling strength [25]. This makes clear that the interaction
in the 3̄c(qq) channel is strong and attractive.

A solution of the BSE equation requires a simultaneous solution of the quark-
DSE. However, since we choose to simplify the calculations by parametrising
S(p), we also employ that expedient with Γ JP

, using the following one-parameter
forms:

Γ
0+

(k;K) =
1

N 0+ HaCiγ5iτ2F (k2/ω
2
0+), (A.28)

ti
Γ

1+

µ (k;K) =
1

N 1+ HaiγµCtiF (k2/ω
2
1+), (A.29)

with the normalisation, N JP
, fixed by requiring

2Kµ =
[

∂

∂Qµ

Π(K,Q)
]K2=−m2

JP

Q=K
, (A.30)

Π(K,Q) = tr
∫ d4q

(2π)4 Γ̄ (q;−K)S(q+Q/2)Γ (q;K)ST(−q+Q/2). (A.31)

The Ansätze of Eqs. (A.28), (A.29) retain only that single Dirac-amplitude
which would represent a point particle with the given quantum numbers in a local
Lagrangian density. They are usually the dominant amplitudes in a solution of
the rainbow-ladder BSE for the lowest mass JP diquarks [26; 27] and mesons
[20; 72; 73].
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A.2.3 Diquark Propagators

Solving for the quark–quark scattering matrix using the rainbow-ladder trunca-
tion yields free particle propagators for ∆ JP

in Eq. (A.27). As already noted,
however, higher-order contributions remedy that defect, eliminating asymptotic
diquark states from the spectrum. The attendant modification of ∆ JP

can be mod-
elled efficiently by simple functions that are free-particle-like at spacelike momenta
but pole-free on the timelike axis [18]; namely,6

∆
0+

(K) =
1

m2
0+

F (K2/ω
2
0+), (A.32)

∆
1+

µν (K) =

(
δµν +

Kµ Kν

m2
1+

)
1

m2
1+

F (K2/ω
2
1+), (A.33)

where the two parameters mJP are diquark pseudoparticle masses and ωJP are
widths characterising Γ JP

. Herein we require additionally that

d
dK2

(
1

m2
JP

F (K2/ω
2
JP)

)−1
∣∣∣∣∣∣
K2=0

= 1⇒ ω
2
JP = 1

2
m2

JP , (A.34)

which is a normalisation that accentuates the free-particle-like propagation char-
acteristics of the diquarks within the hadron.

Appendix B: Euclidean Conventions

In our Euclidean formulation:

p ·q =
4

∑
i=1

piqi; (B.1)

{γµ ,γν}= 2δµν ; γ
†
µ = γµ ; σµν = i

2
[γµ ,γν ]; tr[γ5γµ γν γρ γσ ] =−4εµνρσ ,ε1234 = 1.(B.2)

A positive energy spinor satisfies

ū(P,s)(iγ ·P+M) = 0 = (iγ ·P+M)u(P,s), (B.3)

where s =± is the spin label. It is normalised:

ū(P,s)u(P,s) = 2M, (B.4)

and may be expressed explicitly:

u(P,s) =
√

M− iE

(
χs

σ ·P
M− iE

χs

)
, (B.5)

6 These forms satisfy a sufficient condition for confinement because of the associated viola-
tion of reflection positivity. See Sect. 2 of Ref. [14] for a brief discussion.
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with E = i
√

P2 +M2,

χ+ =
(

1
0

)
, χ− =

(
0
1

)
. (B.6)

For the free-particle spinor, ū(P,s) = u(P,s)†γ4.
The spinor can be used to construct a positive energy projection operator:

Λ+(P) :=
1

2M ∑
s=±

u(P,s)ū(P,s) =
1

2M
(−iγ ·P+M) . (B.7)

A negative energy spinor satisfies

v̄(P,s)(iγ ·P−M) = 0 = (iγ ·P−M)v(P,s), (B.8)

and possesses properties and satisfies constraints obtained via obvious analogy
with u(P,s).

A charge-conjugated Bethe–Salpeter amplitude is obtained via

Γ̄ (k;P) = C†
Γ (−k;P)TC, (B.9)

where “T” denotes a transposing of all matrix indices and C = γ2γ4 is the charge
conjugation matrix, C† =−C.

Appendix C: Nucleon–Photon Vertex

In order to explicate the vertex depicted in Fig. 2 we write the scalar and axial-
vector components of the nucleons’ Faddeev amplitudes in the form [cf. Eq. (A.11)]

Ψ(k;P) =
[

Ψ s(k;P)
Ψ k

µ (k;P)

]
=
[

S (k;P)u(P)
A k

µ (k;P)u(P)

]
, k = +,0,−. (C.1)

For explicit calculations, we work in the Breit frame: Pµ = PBF
µ −Qµ/2,P′µ =

PBF
µ +Qµ/2 and PBF

µ =(0,0,0, i
√

M2
n +Q2/4), and write the electromagnetic cur-

rent matrix element as [cf. Eq. (2)]

〈
P′|Ĵem

µ |P
〉

= Λ
+(P′)

[
γµ GE +Mn

PBF
µ

P2
BF

(GE −GM)

]
Λ

+(P), (C.2)

=
∫ d4 p

(2π)4
d4k

(2π)4Ψ̄(−p,P′)Jem
µ (p,P′;k,P)Ψ(k,P). (C.3)

In Fig. 2 we have separated the current, Jem
µ (p,P′;k,P), into a sum of six terms,

each of which we subsequently make precise. NB. Diagrams 1, 2 and 4 are one-
loop integrals, which we evaluate by Gaußian quadrature. The remainder, Dia-
grams 3, 5 and 6, are two-loop integrals, for whose evaluation Monte–Carlo meth-
ods are employed. A technical aspect concerning the computation is described in
Appendix D: Chebyshev Expansion.
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C.1 Diagram 1

This represents the photon coupling directly to the bystander quark. It is expressed
as

Jqu
µ = S(pq)Γ̂

qu
µ (pq;kq)S(kq)

(
∆

0+
(ks)+∆

1+
(ks)
)

(2π)4
δ

4(p− k− η̂Q),(C.4)

where Γ̂
qu

µ (pq;kq) = QqΓµ(pq;kq), with Qq = diag[2/3,−1/3] being the quark
electric charge matrix, and Γµ(pq;kq) is the dressed-quark-photon vertex. In Eq. (C.4)
the momenta are

kq = ηP+ k, pq = ηP′+ p,
kd = η̂P− k, pd = η̂P′− p,

(C.5)

with η + η̂ = 1. The results reported herein were obtained with η = 1/3, which
provides a single quark with one-third of the baryon’s total momentum and is
thus a natural choice. Notably, as our approach is manifestly Poincaré covariant,
the precise value is immaterial so long as the numerical methods preserve that
covariance. Calculations converge most quickly with the natural choice.

It is a necessary condition for current conservation that the quark-photon ver-
tex satisfy the Ward–Takahashi identity:

Qµ iΓµ(`1, `2) = S−1(`1)−S−1(`2), (C.6)

where Q = `1 − `2 is the photon momentum flowing into the vertex. Since the
quark is dressed, Sect. A.2.1, the vertex is not bare; i.e., Γµ(`1, `2) 6= γµ . It can be
obtained by solving an inhomogeneous Bethe–Salpeter equation, which was the
procedure adopted in the DSE calculation that successfully predicted the electro-
magnetic pion form factor [39; 73]. However, since we have parametrised S(p),
we follow Ref. [11] and write [74]

iΓµ(`1, `2) = iΣA(`2
1, `

2
2)γµ +2kµ

[
iγ · kµ ∆A(`2

1, `
2
2)+∆B(`2

1, `
2
2)
]

; (C.7)

with k = (`1 + `2)/2,Q = (`1− `2) and

ΣF(`2
1, `

2
2) = 1

2

[
F(`2

1)+F(`2
2)
]
, ∆F(`2

1, `
2
2) =

F(`2
1)−F(`2

2)
`2

1− `2
2

, (C.8)

where F = A,B; viz., the scalar functions in Eq. (A.17). It is critical that Γµ in
Eq. (C.7) satisfies Eq. (C.6) and very useful that it is completely determined by
the dressed-quark propagator.

C.2 Diagram 2

This figure depicts the photon coupling directly to a diquark correlation. It is
expressed as

Jdq
µ = ∆

i(pd)
[
Γ̂

dq
µ (pd ;kd)

]i j
∆

j(kd)S(kq)(2π)4
δ

4(p− k +ηQ) , (C.9)
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i, j = s,+,0,−, with [Γ̂ dq
µ (pd ;kd)]i j = diag[Q0+Γ 0+

µ ,Q1+Γ 1+
µ ], where Q0+ = 1/3

and Γ 0+
µ is given in Eq. (C.14), and Q1+ = diag[4/3,1/3,−2/3] with Γ 1+

µ given
in Eq. (C.16). Naturally, the diquark propagators match the line to which they are
attached.

In the case of a scalar correlation, the general form of the diquark-photon
vertex is

Γ
0+

µ (`1, `2) = 2kµ f+(k2,k ·Q,Q2)+Qµ f−(k2,k ·Q,Q2) . (C.10)

If one is dealing with an elementary scalar correlation, then the Ward–Takahashi
identity reads:

Qµ Γ
0+

µ (`1, `2) = Π
0+

(`2
1)−Π

0+
(`2

2), Π
JP

(`2) = {∆
JP

(`2)}−1. (C.11)

However, for a composite system of the type we consider this identity is modified;
viz. [75],

Qµ Γ
0+

µ (`1, `2) =
[
Π

0+
(`2

1)−Π
0+

(`2
2)
]

Fqq(Q2) , (C.12)

where

Fqq(Q2) =
1

1+ 1
6 r2

qqQ2
(C.13)

is a form factor describing the distribution of charge within the correlation.
The evaluation of scalar diquark elastic electromagnetic form factors in Ref. [38]

is a first step toward calculating Γ 0+
µ (`1, `2). However, in providing only an on-

shell component, it is insufficient for our requirements. We choose to adapt Eq. (C.7)
to our needs and employ

Γ
0+

µ (`1, `2) = kµ ∆
Π0+ (`2

1, `
2
2)Fqq(Q2) , (C.14)

with the definition of ∆
Π0+ (`2

1, `
2
2) apparent from Eq. (C.8) and the value of rqq

given in Eq. (10).
Equation (C.14) is an Ansatz that satisfies Eq. (C.12), is completely determined

by quantities introduced already and is free of kinematic singularities on the rele-
vant domain. It implements f−≡ 0, which is a requirement for elastic form factors,
and guarantees a valid normalisation of electric charge; viz.,

lim
`′→`

Γ
0+

µ (`′, `) = 2`µ

d
d`2 Π

0+
(`2) `2∼0= 2`µ , (C.15)

owing to Eq. (A.34). NB. We have factored the fractional diquark charge, which
therefore appears subsequently in our calculations as a simple multiplicative fac-
tor.

For the case in which the struck diquark correlation is axial-vector and the
scattering is elastic, the vertex assumes the form [76]: 7

Γ
1+

µαβ
(`1, `2) =−

3

∑
i=1

Γ
[i]

µαβ
(`1, `2), (C.16)

7 If the scattering is inelastic the general form of the vertex involves eight scalar functions
[77]. For simplicity, we ignore the additional structure in this Ansatz.
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with (Tαβ (`) = δαβ − `α`β /`2)

Γ
[1]

µαβ
(`1, `2) = (`1 + `2)µ Tαλ (`1)Tλβ (`2)F1(`2

1, `
2
2), (C.17)

Γ
[2]

µαβ
(`1, `2) =

[
Tµα(`1)Tβρ(`2)`1ρ +Tµβ (`2)Tαρ(`1)`2ρ

]
F2(`2

1, `
2
2),(C.18)

Γ
[3]

µαβ
(`1, `2) =− 1

2m2
1+

(`1 + `2)µ Tαρ(`1)`2ρ Tβλ (`2)`1λ F3(`2
1, `

2
2). (C.19)

This vertex satisfies:

`1αΓ
1+

µαβ
(`1, `2) = 0 = Γ

1+

µαβ
(`1, `2)`2β , (C.20)

which is a general requirement of the elastic electromagnetic vertex of axial-vector
bound states and guarantees that the interaction does not induce a pseudoscalar
component in the axial-vector correlation. We note that the electric, magnetic and
quadrupole form factors of an axial-vector bound state are expressed [76]

G1+

E (Q2) = F1 + 2
3

τ1+G1+

Q (Q2), τ1+ =
Q2

5m2
1+

, (C.21)

G1+

M (Q2) =−F2(Q2), (C.22)

G1+

Q (Q2) = F1(Q2)+F2(Q2)+(1+ τ1+)F3(Q2). (C.23)

Owing to the fact that Γ JP

C := Γ JP
C† satisfies exactly the same Bethe–Salpeter

equation as the J−P colour-singlet meson but for a halving of the coupling strength,
the vector meson form factor calculation in Ref. [40] might become useful as a
guide in understanding the form factors in Eqs. (C.16)–(C.19). However, in pro-
viding only an on-shell component, that information is insufficient for our require-
ments. Hence we employ the following Ansätze:

F1(`2
1, `

2
2) = ∆

Π1+ (`2
1, `

2
2)Fqq(Q2), (C.24)

F2(`2
1, `

2
2) =−F1 +(1− τ1+)(τ1+F1 +1−µ1+)d(τ1+), (C.25)

F3(`2
1, `

2
2) =−(χ1+(1− τ1+)d(τ1+)+F1 +F2)d(τ1+), (C.26)

with d(x) = 1/(1+x)2. This construction ensures a valid electric charge normali-
sation for the axial-vector correlation; viz.,

lim
`′→`

Γ
1+

µαβ
(`′, `) = Tαβ (`)

d
d`2 Π

1+
(`2) `2∼0= Tαβ (`)2`µ , (C.27)

owing to Eq. (A.34), and current conservation

lim
`2→`1

QµΓ
1+

µαβ
(`1, `2) = 0. (C.28)

The diquark’s static electromagnetic properties follow:

G1+

E (0) = 1, G1+

M (0) = µ1+ , G1+

Q (0) =−χ1+ . (C.29)
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For an on-shell or pointlike axial-vector: µ1+ = 2; and χ1+ = 1. In addition,
Eqs. (C.16)–(C.19) with Eqs. (C.24)–(C.26) realise the constraints of Ref. [78];
namely, independent of the values of µ1+ and χ1+ , the form factors assume the
ratios

G1+

E (Q2) : G1+

M (Q2) : G1+

Q (Q2)
Q2→∞

=
(

1− 2
3

τ1+

)
: 2 :−1. (C.30)

It is noteworthy that within a nucleon the diquark correlation is not on-shell.
Hence, in contrast with Ref. [31], we do not assume herein that a point-particle
value for the magnetic moment in Eq. (C.29) serves as a good reference point.
Instead we employ the value determined in Ref. [33]:

µ1+ = 0.37 , (C.31)

which is in accord with that obtained following the approach in Ref. [23]. While
equally one need not employ the point-particle value for χ1+ , changing to χ1+ = 0
has little impact on the results [31]. We therefore stay with χ1+ = 1.

C.3 Diagram 3

This image depicts a photon coupling to the quark that is exchanged as one diquark
breaks up and another is formed. It is expressed as

Jex
µ =−1

2
S(kq)∆ i(kd)Γ i(p1,kd)ST (q)Γ̂ quT

µ (q′,q)ST (q′)Γ̄ jT (p′2, pd)∆ j(pd)S(pq),(C.32)

wherein the vertex Γ̂
qu

µ appeared in Eq. (C.4). While this is the first two-loop dia-
gram we have described, no new elements appear in its specification: the dressed-
quark-photon vertex was discussed in Sect. C.1. In Eq. (C.32) the momenta are

q = η̂P−ηP′− p− k, q′ = η̂P′−ηP− p− k,
p1 = (pq−q)/2, p′2 = (−kq +q′)/2,
p′1 = (pq−q′)/2, p2 = (−kq +q)/2.

(C.33)

It is noteworthy that the process of quark exchange provides the attraction
necessary in the Faddeev equation to bind the nucleon. It also guarantees that the
Faddeev amplitude has the correct antisymmetry under the exchange of any two
dressed-quarks. This key feature is absent in models with elementary (noncompos-
ite) diquarks. The full contribution is obtained by summing over the superscripts
i, j, which can each take the values 0+,1+.

C.4 Diagram 4

This differs from Diagram 2 in expressing the contribution to the nucleons’ form
factors owing to an electromagnetically induced transition between scalar and
axial-vector diquarks. The explicit expression is given by Eq. (C.9) with [Γ̂ dq

µ (pd ;kd)]i= j =
0, and [Γ̂ dq

µ (pd ;kd)]1,2 = ΓSA and [Γ̂ dq
µ (pd ;kd)]2,1 = ΓAS. This transition vertex is
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a rank-2 pseudotensor, kindred to the matrix element describing the ρ γ∗π0 tran-
sition [79], and can therefore be expressed

Γ
γα

SA (`1, `2) =−Γ
γα

AS (`1, `2) =
i

MN
T (`1, `2)εγαρλ `1ρ`2λ , (C.34)

where γ,α are, respectively, the vector indices of the photon and axial-vector
diquark. For simplicity we proceed under the assumption that

T (`1, `2) = κT ; (C.35)

A typical on-shell value for the dimensionless normalisation is κT ∼ 2 [80]. How-
ever, as with µ1+ , we recognise herein that this value is not a useful reference point
because, for the processes described by Fig. 2, κT can be much smaller in magni-
tude. We use the value determined in Ref. [33]:

κT = 0.12. (C.36)

This diagram impacts upon the nucleons’ magnetic form factors [2; 31; 33].

C.5 Diagrams 5 and 6

These two-loop diagrams are the so-called “seagull” terms, which appear as part-
ners to Diagram 3 and arise because binding in the nucleons’ Faddeev equations
is effected by the exchange of a dressed-quark between nonpointlike diquark cor-
relations [36]. The explicit expression for their contribution to the nucleons’ form
factors is

Jsg
µ =

1
2

S(kq)∆ i(kd)
(
X i

µ(pq,q′,kd)ST (q′)Γ̄ jT (p′2, pd)

− Γ
i(p1,kd)ST (q)X̄ j

µ(−kq,−q, pd)
)

∆
j(pd)S(pq), (C.37)

where, again, the superscripts are summed.
The new elements in these diagrams are the couplings of a photon to two

dressed-quarks as they either separate from (Diagram 5) or combine to form (Dia-
gram 6) a diquark correlation. As such they are components of the five point
Schwinger function which describes the coupling of a photon to the quark-quark
scattering kernel. This Schwinger function could be calculated, as is evident from
the computation of analogous Schwinger functions relevant to meson observables
[81]. However, such a calculation provides relevant input only when a uniform
truncation of the DSEs has been employed to calculate each of the elements
described hitherto. We must instead employ an algebraic parametrisation [36],
which for Diagram 5 reads

XJP

µ (k,Q) = eby
4kµ −Qµ

4k ·Q−Q2

[
Γ

JP
(k−Q/2)−Γ

JP
(k)
]

+eex
4kµ +Qµ

4k ·Q+Q2

[
Γ

JP
(k +Q/2)−Γ

JP
(k)
]
, (C.38)
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with k the relative momentum between the quarks in the initial diquark, eby the
electric charge of the quark which becomes the bystander, and eex the charge of
the quark that is reabsorbed into the final diquark. Diagram 6 has

X̄JP

µ (k,Q) = eby
4kµ +Qµ

4k ·Q+Q2

[
Γ̄

JP
(k +Q/2)− Γ̄

JP
(k)
]

+eex
4kµ −Qµ

4k ·Q−Q2

[
Γ̄

JP
(k−Q/2)− Γ̄

JP
(k)
]
, (C.39)

where Γ̄ JP
(`) is the charge-conjugated amplitude, Eq. (B.9). Plainly, these terms

vanish if the diquark correlation is represented by a momentum-independent Bethe–
Salpeter-like amplitude; i.e., the diquark is pointlike.

It is naturally possible to use more complicated Ansätze [23]. However, like
Eq. (C.14), Eqs. (C.38) and (C.39) are simple forms, free of kinematic singularities
and sufficient to ensure the nucleon-photon vertex satisfies the Ward–Takahashi
identity when the composite nucleon is obtained from the Faddeev equation.

Appendix D: Chebyshev Expansion

In solving the Faddeev equation we employ a Chebyshev expansion of the scalar
functions appearing in the Faddeev amplitude and wave function in order to restrain
the use of computer memory. (See, e.g., Ref. [20].) The results herein were obtained
with twelve terms in both. The Chebyshev-expanded functions then define the
Faddeev amplitude that appears and is evaluated in the expressions for the form
factors. Without due care, this can lead to a problem; namely, with increasing Q2

a function can be computed outside the expansion’s domain of convergence.
Consider a function F(k2,k ·P;P2), which represents a term in the Faddeev

amplitude. It is a function of only two variables: k2 and k · P, where k is the
relative quark-diquark momentum, because the total momentum always satisfies
P2 =−M2, where M is the bound-state’s mass. In the bound-state’s rest frame one
can define an angle α through

i|k|M cosα := k ·P. (D.1)

Then, with {Ui(x), j = 1 . . .∞} being Chebyshev polynomials of the second kind,

F(k2,k ·P;−M2) = lim
Nm→∞

Nm

∑
j=0

jF(|k|, iM;−M2)U j(cosβ ) . (D.2)

For any finite Nm the expansion in Eq. (D.2) is a true approximation to the k ·P-
dependence of the function F in the sense that, with increasing Nm, the right-hand-
side (rhs) is uniformly pointwise an increasingly accurate representation of the
function. The lhs of Eq. (D.2) is Poincaré invariant. Hence, in the limit Nm →∞, so
is the rhs. These statements are true so long as cosα defined in Eq. (D.1) satisfies
−1≤ cosα ≤ 1.

In calculating a form factor one must compute the Faddeev amplitude of a
bound-state that is not at rest. In the Breit frame, e.g., the total momentum can be
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written as P = (0,0,±Q/2, iE(Q/2)), where E2(Q/2) = M2 + Q2/4, the bound-
state is moving with three momentum ±Q/2 and

k ·P =±1
2
|k|Qcosθ sinβ + i|k|E(Q)cosβ , (D.3)

with k expressed using the standard definition of hyperspherical coordinates. In
principle, as demonstrated in Ref. [40], this is not a problem in a Poincaré covari-
ant framework. However, it can consume large amounts of computer memory and
time. We therefore proceed by writing

k ·P = i|k|E(Q)
[
∓ iQ

2E(Q)
cosθ sinβ + cosβ

]
=: i|k|E(Q)z, (D.4)

in which case the real and imaginary parts of z are bounded in magnitude by one,
and then define

F(k2,k · (P±Q/2);−M2) =
Nm

∑
j=0

jF(|k|, iE(Q);−M2)U j(z). (D.5)

Appendix E: Form Factor Notation

We represent all form factors by their usual symbols. Hence, the notation can be
introduced via an exemplar; viz., the proton’s Pauli form factor, F p

1 .

• F p,q
1 –Sum of all contributions to F p

1 that can be represented by Diagram 1 in
Fig. 2; i.e., in which the photon interacts with a bystander quark, either u or
d. Pp,q

1 = F p,q
1 (Q2 = 0) gauges the probability that the photon interacts with a

bystander quark.
• F p,c

1 –Sum of all contributions to F p
1 that can be represented by either Dia-

gram 2 or 4; i.e., in which the photon interacts with a diquark correlation, either
scalar or axial-vector, or excites a transition between them. Pp,c

1 = F p,c
1 (Q2 =

0) gauges the probability that the photon interacts with a diquark.
• F p,e

1 –Sum of all contributions to F p
1 that can be represented by one of Dia-

grams 3, 5 or 6; i.e., in which the photon interacts with a diquark in association
with its breakup. Pp,e

1 = F p,e
1 (Q2 = 0) gauges the probability that the photon

acts in association with diquark breakup.
NB. F p,q

1 +F p,c
1 +F p,e

1 = F p
1 .

• F p,u
1 –Sum of all contributions to F p

1 in Fig. 2 that are proportional to the charge
of a u-quark, eu; i.e., the total u-quark contribution F p

1 .
• F p,q,u

1 –Sum of all contributions to F p,u
1 that can be represented by Diagram 1

in Fig. 2; i.e., in which the photon interacts with a bystander u-quark.
• F p,c,u

1 –Sum of all contributions to F p
1 that can be represented by either Dia-

gram 2 or 4 and are proportional to eu; i.e., in which the photon resolves a
u-quark within a diquark correlation.

• F p,e,u
1 –Sum of all contributions to F p,u

1 that can be represented by one of Dia-
grams 3, 5 or 6 and are proportional to eu; i.e., in which the photon interacts
with a u-quark in association with the breakup of a diquark.
NB. F p,q,u

1 + F p,c,u
1 + F p,e,u

1 = F p,u
1 ;F p,u

1 (0) = 2eu;2euPp,α,u
1 := F p,α,u

1 (Q2 =
0),α = q,d,e.
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• F p,d
1 and related functions are defined in direct analogy with those connected

to F p,u
1 .

NB. F p,q,d
1 +F p,c,d

1 +F p,e,d
1 = F p,d

1 ;F p,d
1 (0)= ed ;edPp,α,d

1 := F p,α,d
1 (Q2 = 0),α =

q,d,e.
• F p,s

1 —Sum of all contributions to F p
1 in Fig. 2 that involve a scalar diquark

component in both Ψi and Ψf . Pp,s
1 = F p,s

1 (Q2 = 0) gauges the probability that
the photon interacts with a scalar diquark component of the nucleon.

• F p,a
1 —Sum of all contributions to F p

1 that involve an axial-vector diquark com-
ponent in both Ψi and Ψf . Pp,a

1 = F p,a
1 (Q2 = 0) gauges the probability that the

photon interacts with an axial-vector diquark component of the nucleon.
• F p,m

1 —Sum of all contributions to F p
1 in which the diquark component of Ψi

is different to that in Ψf . Pp,m
1 = F p,m

1 (Q2 = 0) gauges the probability that the
photon induces a transition between diquark components of the incoming and
outgoing nucleon.
NB. F p,s

1 +F p,a
1 +F p,m

1 = F p
1 .

• F p,s,u
1 —Sum of all contributions to F p

1 in Fig. 2 that involve a scalar diquark
component in both Ψi and Ψf , and are proportional to eu; i.e., in which a u-
quark is resolved in the presence of a scalar diquark.

• F p,a,u
1 —Sum of all contributions to F p

1 that involve an axial-vector diquark
component in both Ψi and Ψf , and are proportional to eu.

• F p,m,u
1 —Sum of all contributions to F p

1 that are proportional to eu and in which
the diquark component of Ψi is different to that in Ψf .
NB. F p,s,u

1 +F p,a,u
1 +F p,m,u

1 = F p,u
1 ;2euPp,α,u

1 := F p,α,u
1 (Q2 = 0),α = s,a,m.

• F p,s,d
1 and similar functions are defined in direct analogy with those connected

to F p,s,u
1 .

NB. F p,s,d
1 +F p,a,d

1 +F p,m,d
1 = F p,d

1 ;edPp,α,d
1 := F p,α,d

1 (Q2 = 0),α = s,a,m.
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