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Imaginary Part of the Medium Modified Heavy Quark Potential 
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We have calculated the dissociation of quarkonia through an imaginary potential which is obtained by

correcting both the perturbative and non-perturbative terms of the potential at T=0 through the dielectric

function in real-time formalism. The real-part of the potential becomes stronger and thus makes the

quarkonia more bound whereas the (magnitude) imaginary-part too becomes larger and thus contribute

more to the thermal width, compared to the medium-contribution of the Coulomb term alone. We have

also extended our calculation to anisotropic medium, by calculating the leading anisotropic corrections

to the propagators in Keldysh representation. The presence of anisotropy makes the real-part of the

potential stronger but the imaginary-part is weakened slightly and the competition between them results

in higher dissociation temperatures compared to isotropic medium.
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Introduction

Heavy quarkonium systems have turned out to provide extremely useful probes for the deconfined state of

matter because the force between a heavy quark and its anti-quark, is weakened due to the presence of light

quarks and gluons which leads to the dissociation of quarkonium bound states (Matsui and Satz, 1986).

The medium effects can be envisaged through a temperature-dependent heavy quark potentials and have

been studied over the decades either phenomenologically or through lattice based free-energy calculations

(Mocsy and Petreczky, 2008). Among the recent theoretical developments in the quarkonium studies, the

first-principle calculations of imaginary contributions to the heavy quark potential either due to gluonic

Landau damping (Laineet al., 2007) or due to the singlet to octet transitions etc. (Brambillaet al., 2008),

which describe the decaying of theQQ̄ correlation with its initial state due to scatterings in the plasma
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(Beraudoet al., 2008), are well known. Earlier it was thought that a quarkonium state is dissociated when

the screening becomes so strong that it inhibits the formation of bound states but nowadays a quarkonium

is dissociated at a lower temperature (Laineet al., 2007; Burnieret al., 2008) even though its binding

energy is nonvanishing, rather is overtaken by the Landau-damping induced thermal width (Laineet al.,

2007; Hatsuda, 2013). Although the lattice studies predicts a sizable imaginary component in the potential

(Rothkopfet al., 2009, 2012), it may not be reliable because the necessary quality of the data has not yet

been achieved. One thus needs inadvertent support from the potential models at finite temperature as an

important tool to complement the lattice studies. Since the string-tension does not vanish abruptly at the

deconfinement point (Chenget al., 2008), one should study its effects on heavy quark potential even above

Tc. So we aim here to calculate the imaginary part, in addition to the real part of the potential both in

isotropic and anisotropic medium by correcting the full Cornell potential and not its Coulomb part alone.

The structure of this paper is as follows: We have reviewed the potential introduced in (Agotiyaet al.,

2009) and extended it to the imaginary part of the potential for both the isotropic as well as anisotropic

medium. We have started with propagators and self energies in Keldysh representation and their evaluation

in HTL resummed theory. Then we have studied the dissociation of charmonium and bottomonium states

by calculating their (thermal) widths and binding energies. Finally we conclude our main results.

Potential in a Hot QCD Medium

The medium-modification to the vacuum potential can be obtained by correcting its both short and long-

distance part with a dielectric functionε(p) encoding the effect of deconfinement (Agotiyaet al., 2009).

Fourier transform of potential at vanishing frequency gives the desired non-relativistic potential at finite

temperature.

V (r, T ) =
∫

d3p

(2π)3/2
(eip·r − 1)

V (p)
ε(p)

, (1)

wherethe r-independentterm needed to renormalize the heavy quark free energy is the perturbative free

energy of quarkonium at infinite separation (Dumitruet al., 2009). V (p) is the Fourier transform of the

potential given by:

V (p) = −
√

(2/π)
α

p2
− 4σ√

2πp4
. (2)

ε(p) is the dielectric permittivity given by (Schneider, 2002):

ε(p) =
(

1 +
ΠL(0, p, T )

p2

)
≡

(
1 +

m2
D

p2

)
, (3)

wheremD is thescreeningmass.
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However in the presence of non-perturbative effects, the dependence of the dielectric function on the

Debye mass may get modified. In this work the same (perturbative) screening scale are employed for

both the linear and Coulombic terms which may not look plausible. It would be interesting to see the

effects of different scales for the Coulomb and linear pieces of the T=0 potential in Ref. (Megiaset al.,

2007, 2011) rather than a single one, where the non-perturbative effects have been incorporated beyond the

deconfinement temperature through dimension-two gluon condensates. The difference with their calculation

lies in the large distance limit of the potential and is found more attractive than our potential.

The dielectric permittivity can be calculated once the self energies and propagators are obtained in

HTL resummation theory in the real-time formalism (Carringtonet al., 1999). The gluon self-energy can

be obtained by folding the approximated phase-space distribution in anisotropic medium (Romatschke and

Strickland, 2003) (ξ ¿ 1) as:

faniso(k) = fiso
(√

k2 + ξ(k.n)2
)

andhencethe resummed propagator. The contribution from the quark loop (Dumitruet al., 2009) to the

gluon self energy with external and internal momenta asP (p0,p) andK(k0,k), respectively (withQ =

K − P ):

Πµν(P ) = − i

2
Nfg2

∫
d4K

(2π)4
tr[γµS(Q)γνS(K)]. (4)

In HTL-limit, the quark and gluon loops together give the isotropic part of retarded (advanced) self-

energy (Dumitru, 2009)

ΠL
R,A(iso)(P ) = m2

D

(
p0

2p
ln

p0 + p± iε

p0 − p± iε
− 1

)
, (5)

with theprescriptions+iε (−iε), for the retarded (advanced) self-energies, respectively whereas the anisotropic

part for the retarded (advanced) self energies are

ΠL
R,A(aniso)(P ) =

m2
D

6

(
1 +

3
2

cos 2θp

)
+ ΠL

R(iso)(P )

×
(

cos(2θp)− p0
2

2p2
(1 + 3 cos 2θp)

)
. (6)

Similarly the isotropic and anisotropic terms for the temporal component of the symmetric part are given

by

ΠL
F (iso)(P ) = −2πim2

D

T

p
Θ(p2 − p0

2) ,

ΠL
F (aniso)(P ) =

3
2
πim2

D

T

p

(
sin2 θp +

p2
0

p2
(3 cos2 θp − 1)

)
Θ(p2 − p0

2). (7)
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Thusthe gluon self-energy is found to have both real and imaginary part which are responsible for the

Debye screening and the Landau damping, respectively. The real part of the static potential can be obtained

from the temporal component of retarded (or advanced) propagator (in static limit)

ReD00
R,A(0, p) = − 1

(p2 + m2
D)

+ ξ
m2

D

6(p2 + m2
D)2

(3 cos 2θp − 1) , (8)

while for the imaginary part of the potential, the imaginary part of the temporal component of symmetric

propagator is given by

ImD00
F (0, p) =

−2πTm2
D

p(p2 + m2
D)2

+ ξ

(
3πTm2

D

2p(p2 + m2
D)2

sin2 θp

− 4πTm4
D

p(p2 + m2
D)3

(
sin2 θp − 1

3

))
. (9)

RealPart of the Potential

The real part of the static potential can thus be obtained from eq. (1) by substituting the dielectric permittivity

ε(p) in terms of the physical “11”- component of the gluon propagator. The relation between the dielectric

permittivity and the static limit of the “00”-component of gluon propagator in Coulomb gauge is obtained

from the linear response theory (Kapusta and Gale, 1996):ε
−1

(p) = − limω→0 p2D00
11(ω, p) , where the real

and imaginary parts ofD00
11 can be written as

ReD00
11(ω, p) =

1
2

(
D00

R + D00
A

)
and ImD00

11(ω, p) =
1
2
D00

F . (10)

Thereal-part ofthepotential is then obtained as

ReV(aniso)(r, ξ, T ) =
∫

d3p

(2π)3/2
(eip·r − 1)

(
−

√
(2/π)

α

p2
− 4σ√

2πp4

)
×

p2

[
1

(p2 + m2
D)

− ξm2
D

6(p2 + m2
D)2

(3 cos(2θp)− 1)
]

(11)

whereθp is the anglebetweenr andn (direction of anisotropy). After performing the integration, the

,
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real-part of the potential in anisotropic medium becomes (Thakuret al., 2013)

<Vaniso(r, θr, T ) =
2σ

mD

(
e−r̂ − 1

r̂
+ 1

)
− αmD

(
e−r̂

r̂
+ 1

)
+ ξ

e−r̂

r̂

×
[

2σ

mD

(
er̂ − 1

r̂2
+

r̂2er̂ − 3
3r̂

− 5er̂ − r̂ + 1
12

)

− αmD

2

(
er̂ − 1

r̂2
− 1

r̂
− 2r̂er̂ − r̂ + 3

6

)

+
[

2σ

mD

(
3
er̂ − 1

r̂2
− 3

r̂
− er̂ + r̂ + 5

4

)

− αmD

2

(
3
er̂ − 1

r̂2
− 3

r̂
− r̂ + 3

2

)]
cos 2θr

]

= <Viso(r, T ) + Vtensor(r, θr, T ). (12)

Thus the anisotropy in the momentum space introduces an angular (θr) dependence, in addition to the

inter-particle separation (r), to the real part of the potential. The real potential becomes stronger with the

increase of anisotropy because the (anisotropic) Debye massmD(ξ, T ) (or equivalently angular-dependent

Debye massmD(θr, T )) in an anisotropic medium is always smaller than in an isotropic medium.

Imaginary Part of the Potential: Thermal Width, Γ

The imaginary part of the potential plays an important role in weakening the bound state peak or transform-

ing it to mere threshold enhancement. It leads to a finite width (Γ) for the resonance peak in the spectral

function, which, in turn, determines the dissociation temperature. In recent years the imaginary part with a

momentum-space anisotropy and its effects on the thermal widths of the resonance states have been studied

(Dumitruet al., 2009; Margottaet al., 2011; Dumitru, 2011), with the medium-modification to the perturba-

tive (Coulomb) term only. We follow their work by including the medium corrections to both perturbative

(Coulombic) and non-perturbative (string) terms in a weakly anisotropic medium by the imaginary part of

the dielectric function:

ImV(aniso)(r, ξ, T ) = −
∫

d3p
(2π)3/2

(eip·r − 1)

(
−

√
2
π

α

p2
− 4σ√

2πp4

)
p2

×
[ −πTm2

D

p(p2 + m2
D)2

+ ξ[
3πTm2

D

4p(p2 + m2
D)2

sin2 θp

− 2πTm4
D

p(p2 + m2
D)3

(sin2 θp − 1
3
)
]

≡ ImV1(aniso)(r, ξ, T ) + ImV2(aniso)(r, ξ, T ) , (13)

whereImV1(aniso)(r, ξ, T ) andImV2(aniso)(r, ξ, T ) are the imaginary contributions corresponding to the

Coulombic and linear terms in anisotropic medium, respectively. The contribution due to the perturbative
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term in the leading-order is given by (Dumitruet al., 2009)

ImV1(aniso)(r, ξ, T ) = −αT (φ0(r̂) + ξ [φ1(r̂, θr) + φ2(r̂, θr)]) , (14)

where the functionsφ0(r̂), φ1(r̂, θr) andφ2(r̂, θr) are given by

φ0(r̂) = −αT

(
− r̂2

9
(−4 + 3γE + 3 log r̂)

)

φ1(r̂, θr) =
r̂2

600
[123− 90γE − 90 log r̂ + cos 2θr (−31 + 30γE + 30 log r̂)]

φ2(r̂, θr) =
r̂2

90
(−4 + 3 cos 2θr) (15)

Fig. 1: Imaginary part of the potential for parallel (A) and perpendicular (B) alignment in an anisotropic medium

Similarly the imaginary part due to the non-perturbative (linear) term has also the isotropic and anisotropic

term:

ImV2(aniso)(r, ξ, T ) =
2σT

m2
D

(
ψ0(r̂)− ξ [ψ1(r̂, θr) + ψ2(r̂, θr)]

)
, (16)

A B



ImaginaryPart of the Medium Modified Heavy Quark Potential 81

where the functionsψ0(r̂), ψ1(r̂, θr) andψ2(r̂, θr) are given by

ψ0(r̂) =
r̂2

6
+

(−107 + 60γE + 60 log(r̂)
3600

)
r̂4 + O(r̂5) , (17)

ψ1(r̂, θr) =
r̂2

10
+

(−739 + 420γE + 420 log(r̂))r̂4

39200

+
(
− r̂2

20
+

(176− 105γE − 105 log(r̂))r̂4

14700

)
cos2 θr, (18)

ψ2(r̂, θr) = −4
3

[
7r̂2

120
− 11r̂4

3360
+ O(r̂5)

]

− 4
[
− r̂2

60
+

r̂4

840
+ O(r̂5)

]
cos2 θr , (19)

respectively andγE is the Euler-Gamma constant. Finally the short and long-distance contributions, in the

leading logarithmic order, gives the imaginary part of the potential in the anisotropic medium

Fig. 2: The thermal width for the J/ψ and Υ states in the anisotropic medium

ImV(aniso)(r, θr, T ) = −T

(
αr̂2

3
+

σr̂4

30m2
D

)
log(

1
r̂
)

+ξT

[(
αr̂2

5
+

3σr̂4

140m2
D

)

− cos2 θr

(
αr̂2

10
+

σr̂4

70m2
D

)]
log(

1
r̂
) , (20)
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which is found to be smaller than the isotropic medium and decreases with the increase of anisotropy (shown

in Fig. 1). The imaginary part of the potential, in small-distance limit, is a perturbation to the vacuum

potential and thus provides an estimate for the width (Γ) of a resonance state and can be calculated, in a

first-order perturbation, by folding with the unperturbed (1S) Coulomb wave function

Γ(aniso) =
∫

d3r|Ψ(r)|2
[
αT r̂2 log(

1
r̂
)
(

1
3
− ξ

3− cos 2θr

20

)

+
2σT

m2
D

r̂4 log(
1
r̂
)

1
20

(
1
3
− ξ

2− cos 2θr

14

)]

= T

(
4

αm2
Q

+
12σ

α2m4
Q

)(
1− ξ

2

)
m2

D log
αmQ

2mD
. (21)

Fromthe(Fig. 2) it is clear that the width always increases with the temperature. The non-perturbative string

term, in addition to the Coulomb term, makes the width larger than the earlier result with the perturbative

Coulomb term (Dumitru, 2011) only and thus the damping of the exchanged gluon in the heat bath provides

larger contribution to the dissociation rate. Width becomes smaller in anisotropic medium than in isotropic

medium and gets narrower with the increase of anisotropy becauseΓ is approximately proportional to the

(square) Debye mass and the Debye mass decreases in the anisotropic medium.

Real and Imaginary Binding Energies: Dissociation Temperatures

In order to understand the in-medium properties of the quarkonium states, one need to solve the Schrödinger

equation with both the real and imaginary part of the finite temperature potential. The real part of binding

energy may be obtained from the radial part of the Schrödinger equation (of the isotropic component) plus

the first-order perturbation due to the anisotropic component as

Re Eaniso
bin =

(
mQσ2

m4
D
n2

+ αmD

)
+

2ξ

3
mQσ2

m4
D
n2

, (22)

where the first term is the solution of (radial-part) of the Schrödinger equation with the isotropic part

(ReViso(r̂ À 1, T )) and the second term is due to the anisotropic perturbation of the tensorial compo-

nent (Vtensor(r̂ À 1, θr, T )) calculated from the first-order perturbation theory. The complex potential in

general needs to be dealt with numerically to obtain the real and imaginary binding energies. Here we use

the matrix method to solve the corresponding schrödinger equation (Thakuret al., 2013).
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Table 1: Dissociation temperatures of J/ψ and Υ states for different anisotropies with the Debye mass in leading-order

Method State ξ = 0.0 ξ = 0.3 ξ = 0.6

ReB.E.=Im B.E. J/ψ 2.45 2.46 2.47

Υ 3.40 3.45 3.46

Γ=2B.E. J/ψ 1.40 1.46 1.54

Υ 3.10 3.17 3.26

Fig. 3: Variation of the real and imaginary part of the binding energies for J/ψ and Υ states for different anisotropies

We will now study the dissociation in thermal medium to calculate the dissociation temperature (Td) either

from the intersection of the (real and imaginary) binding energies (Strickland and Bazow, 2012; Margotta

et al., 2011) or from the conservative criterion on the width of the resonance as:Γ ≥ 2Re B.E. (Mocsy

and Petreczky, 2008). Although both definitions are physically equivalent but they are numerically different

(Table 1).

The real and imaginary part of the binding energies for theJ/ψ andΥ states are computed numerically

in Fig. 3 for different values of anisotropies. We have computed the dissociation temperatures at different

anisotropies in Table 1 from these numerical observations.

Conclusion

We have studied the properties of charmonium and bottomonium states with the in-medium modifica-

tions to both perturbative and non-perturbative part of the Cornell potential. The inclusion of the string

term, in an(isotropic) medium, makes the quarkonium states more tight compared to the medium modi-

fication to the Coulomb term alone and increases the magnitude of the imaginary part. The presence of
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string terms broadens the (thermal) width of the states which plays an important role in the dissociation

mechanism. We found that the quarkonium states are dissociated at higher temperature compared to the

medium-consideration of the Coulomb term only. As the (effective) Debye mass in anisotropic medium is

always smaller than that in isotropic medium, both the real and imaginary part of the potential becomes

deeper with the increase of anisotropy and the binding ofQQ̄ pairs becomes more stronger with respect

to their isotropic counterpart. The overall observation is that the dissociation temperature increases with

anisotropy and string term.
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