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Abstract 
 

In particle accelerators, scattered protons with energies close to the incident particles 
may travel considerable distances with the beam before impacting on accelerator 
components downstream. To analyze such problems, angular deflection and energy 
loss of scattered particles are the main quantities to be simulated since these lead to 
changes in the beam’s phase space distribution and particle loss. Simple 
approximations for nuclear scattering processes causing limited energy loss to high-
energy protons traversing matter are developed which are suitable for rapid estimates 
and reduced-description Monte Carlo simulations. The implications for proton loss in 
the Large Hadron Collider due to nuclear scattering on collimation crystals are 
discussed. 
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1.   Introduction 
 

Nuclear scattering processes causing limited energy loss to high-energy protons traversing 
matter are of interest in many applications. In high-energy particle accelerators, scattered protons 
with energies close to the incident particles may travel considerable distances with the beam before 
randomly impacting on accelerator components downstream. This spreads radiation and may damage 
sensitive equipment like superconducting magnets. Angular deflection and energy loss of scattered 
particles are the main quantities to be simulated since these lead to changes in the beam’s phase space 
distribution and particle loss. Although very complete Monte Carlo codes exist for calculating proton-
matter interactions in detail [1-3], one often requires simple estimates of cross sections, interaction 
lengths, root mean square (rms) scattering angles, and average energy loss as a function of atomic 
weight and proton momentum. Simplified proton scattering formulas are not collected in a single 
well-documented reference to our knowledge even though these are regularly needed in many 
applications. In this paper, we develop approximations valuable for rapid estimates and reduced-
description, fast Monte Carlo simulations. We illustrate use of the formulas for calculating nuclear 
scattering losses in proposed crystal collimators for the Large Hadron Collider (LHC). 

 So-called particle-matter “emulation” routines within accelerator tracking codes are used to 
propagate high energy particles over a length of matter in one step to rapidly simulate interactions 
with simple decision-tree formulas and random number generators. Emulation routines are basically 
reduced-description Monte Carlo algorithms in which detailed particle trajectories are replaced by 
macroscopic orbits and only limited information about the outgoing proton is sought. These codes are 
particularly popular in proton-crystal collimation and volume reflection (VR) experiments where 
there is a need for rapid on-line analysis of a circulating proton beam [4]. The single step approach is 
valid because the crystal lengths are typically much less than the nuclear interaction length.  

The basic processes of interest for protons traversing solids are Coulomb scattering 
(primarily from nuclei), energy loss from electron collisions, nuclear elastic scattering, nuclear quasi-
elastic scattering (proton excites nucleus but no particle production), single diffractive inelastic 
scattering (particle production but proton remains intact), and hard nuclear inelastic scattering, which 
typically leads to loss of the incident proton from the beam. Simple formulas for multiple Coulomb 
scattering and energy loss are well documented, such as in the Particle Data Booklet (henceforth 
denoted as the PDB, Ref. 5), and large-angle single Coulomb scattering was discussed long ago in the 
standard text of Jackson [6]. But simplified nuclear scattering formulas are not uniformly 
implemented or documented, and we develop the necessary formulas in this paper. To this end, we 
extract the leading order behavior of nuclear differential and total cross sections in terms of atomic 
weight, proton momentum, and momentum transfer from data and fits in the literature. In each case, 
the nuclear cross sections can be written in terms of the fundamental pp elastic and single diffractive 
cross sections. As an application of the formulas, particle loss in the LHC (7 TeV proton beam) from 
nuclear scattering in crystal collimators is discussed. The magnitude of the nuclear scattering angles 
and energy loss leads to the conclusion that the vast majority of nuclear scattered protons in the 
crystals are lost on the transverse aperture limits of the LHC ring. 

The case of silicon is a useful example to illustrate the relative magnitude of the different 
nuclear scattering processes. Silicon (A= 28, Z = 14, ρ = 2.33 g/cc) is a common crystal for proton 
channeling and volume reflection experiments. From the PDB [5], one finds that the total “nuclear 
collision length” for a proton (or neutron) incident on Si is quoted as λT =70.6 g/cm2. This is a 
density-independent quantity given by A(grams)/(NAσT (cm2)), where A(grams) is the atomic weight, 
NA is Avogadro’s number, and σT (cm2) is the total nuclear cross section. The nuclear collision length 
takes into account scattering from all nuclear processes (p+A → anything). The collision mean free 
path is defined by LT (cm) = λT (g/cm2) /ρ(g/cc), where ρ is the mass density. This gives us the 
probability P for any nuclear interaction (be it elastic or inelastic) over a given crystal length (P = 1- 
exp (-z/LT)). For silicon, one finds that LT (cm) = 30.3 cm and σT = 659 mb, where 1 milli-barn  =   
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10-27 cm2.  The PDB numbers are for protons in the lab energy range of about 100 GeV to a few 
hundred GeV where the cross sections begin to change only logarithmically with lab momentum. The 
other nuclear length from the PDB is the “nuclear interaction length” for Si, λI =106 g/cm2, which 
refers to all inelastic processes (p+A → A′+X). This corresponds to an inelastic mean free path of LI 

(cm) = 45.5 cm and cross section σI = 439 mb. Inelastic processes are the predominant nuclear effect 
for protons traversing a crystal. For a hypothetical 1 cm long crystal, about 2% of the incident beam 
is lost to inelastic scattering. 

 Most inelastic events lead to total loss of the incident proton from the beam, and a spray of 
hadronic states exiting the crystal, much of which impact beamline elements directly downstream. 
But a special subset of inelastic events is due to the so-called “single diffractive” scattering of the 
proton in which the nuclear target is excited to a low-mass state (p+A →  p+A′+X), massive particles 
X are produced, and the incident proton survives, losing only a small amount of energy with a slight 
change in direction. As we show in Section 5, the single diffractive cross section for Si is about 11 
mb at 200 GeV, corresponding to a remarkably small 2.5% of all inelastic events. Finally the 
difference between the total nuclear cross section and the inelastic cross section accounts for all so-
called nuclear “elastic” (p+A → p+A) and “quasi-elastic” events (p+A → p+A* with no particle 
production but A* emits photons or ejects nucleons), σT  - σI  = σel + σQ  = 220 mb. The corresponding 
mean free path is Lel+Q (cm) = 90.8 cm for Si. For a 1 cm long crystal, about 1% of the incident beam 
undergoes elastic plus quasi-elastic scattering with negligible energy loss but some angle deviation. 
Note that 97% of the incident beam participates in no nuclear interactions whatsoever within the 
hypothetical 1 cm long Si crystal at these energies. 

Strictly speaking the results in this paper are for protons traversing an amorphous solid in 
which the particle’s orbit takes it randomly close to nuclei throughout the solid. For crystals a 
complication arises in calculating nuclear interactions when the proton is on a channeling trajectory 
between atomic planes or crosses planes at a small angle. Then the proton can traverse long distances 
without ever coming near a nucleus. The results we present in this paper based on fundamental 
nuclear cross sections can still be used, but one must take into account that the proton sees a lower 
effective density along its trajectory, and the effective mean free path L increases. Experimentally 
one does observe reduced nuclear scattering for these particles. Reduced scattering occurs for angles 
less than about 6θc relative to a crystal plane, where θc is the planar critical channeling angle [7]. For 
larger angles, the average scattering is found to be essentially the same as for an amorphous material. 
In a simulation the first-order correction is to change the local mass density sampled by the particle to 
η(θ) ρ(g/cc), where η(θ) is a smooth function with range 0 < η(θ) ≤ 1 for angles 0 ≤ θ ≤ 6θc, and η(θ) 
= 1 for θ > 6θc.The effect of this is to make the mean free paths longer, but it will not change rms 
angles or rms energy loss calculated for the fundamental scattering mechanisms. 

This paper is organized as follows. In Section 2, we briefly review the formulas for the 
nuclear total and inelastic cross sections at energies above 100 GeV. In Section 3, we describe the 
elastic scattering formulas and make a special separation of multiple and large angle Coulomb 
scattering from the nuclear scattering to simplify the rms angle calculations within a simulation. In 
Section 4, we cover quasi-elastic scattering, which has as its basis the fundamental pp interaction, and 
express the nuclear scattering formulas in terms of the pp elastic cross section. In Section 5, nuclear 
single diffractive scattering is discussed, and formulas for the scattering angle, diffractive mass, and 
proton energy loss in the lab are derived. The technique for using the simplified nuclear scattering 
formulas in a Monte Carlo simulation is described in Section 6, and in Section 7 we apply the 
scattering algorithm to the example of LHC halo beam passing through a crystal collimator. A 
summary of the results is given in the last section, and a sample nuclear scattering code is given in the 
Appendix. 
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2.     Nuclear Total and Inelastic Cross Sections 
 

About two-thirds of all proton nuclear events are inelastic scatterings in which particle 
production occurs, and the incident proton is usually lost from the beam by being transformed into 
other hadronic states, while still conserving charge and baryon number. For fast simulations it is 
important to know the probability of any nuclear reaction occurring (from σT) in a given thickness of 
material and the probability of an inelastic event occurring (from σI) which usually leads to loss of 
the proton. 

The total and inelastic cross sections as functions of atomic weight A and proton laboratory 
momentum p are well known experimentally, and we quote the simple formulas valid for momentum 
above 100 GeV/c and elements from carbon and higher. These two nuclear cross sections are 
commonly parameterized in terms of the total proton-proton cross section. For p ≥ 100 GeV/c, the 
total pp cross section is approximately [8] 

 
                          σT 

pp(mb) = 26.3 + 2.33 ln p(GeV/c).  
 

The total nuclear cross section is approximately σT 
pA = 1.31 A0.77 σT 

pp, and the inelastic cross section 
is σI 

pA = 1.06 A0.71 σT 
pp, using the experimentally determined A dependences. The numerical factors 

are chosen to give the cross sections in the PDB [5] at 200 GeV/c. 
 
3.     Nuclear Elastic Scattering 
 

About a third of all high-energy nuclear events are elastic and quasi-elastic scatterings in 
which no particle production occurs, and the proton is simply deflected by the nucleus.  Nuclear 
elastic scattering involves a “coherent” interaction of the proton with the whole nucleus while quasi-
elastic scattering (also called incoherent scattering) originates from the short distance pp scattering. 
The differential cross section is roughly separable into two contributions from these processes 
according to small and large lab scattering angle θ or equivalently, square of the invariant momentum 
transfer t ≈ - p2 θ2, where p is the lab momentum [9, 10]. Figure 1 summarizes (on a log-linear plot) 
the general behavior of the proton-nucleus cross section versus t. This figure summarizes the 
simplified cross section formulas developed in this paper. The demarcation between elastic and quasi-
elastic behavior is at a momentum transfer t ≈ t0 corresponding to the nuclear radius. Quasi-elastic 
scattering is not distinguishable from elastic scattering at low t unless the photons or nuclear 
fragments from the nuclear excitation are detected. The separation of these two processes is useful for 
deriving simple rms angle formulas, allowing us to approximately separate the scattering physics 
within a simulation.  

As t→0, the elastic cross section becomes dominated by Coulomb scattering, dσ/dt ~ 1/ (p4 
θ4). For fast simulations we want to roughly separate Coulomb and nuclear elastic scattering to 
simplify the algorithms. The demarcation between the Coulomb and nuclear elastic behavior is at a 
momentum transfer t ≈ tC corresponding to the forward (t→0) nuclear elastic and Coulomb scattering 
amplitudes being approximately equal, σT

pA/2h ≈ αZh/πt, where Z is the atomic number, α ≈ 1/137 is 
the fine structure constant, and h is the Planck constant [8]. For silicon, Coulomb scattering 
dominates below -tC ≈ 0.0015 (GeV/c)2. Formulas for Coulomb scattering are available in the 
literature [5, 6, 10], and we quote the relevant results here as needed for the simulations of Section 7. 
The important point for proton-matter simulations is that the total Coulomb cross section is several 
orders of magnitude greater than for nuclear processes. Coulomb collisions are so numerous that they 
are usually treated in the multiple scattering approximation while nuclear processes are treated as 
single events in a simulation. The number of Coulomb collisions is much greater than one for targets 
as thin as 10-3 radiation lengths (down to ~94 microns in Si). There is a high probability for many 
small-angle scatterings, and the distribution of angles due to this multiple Coulomb scattering (MCS) 

 4



is well approximated by a standard Gaussian distribution. The MCS rms angle in each plane over a 
thickness Δz is <θ′ 2>MCS

1/2 ≈ [13.6/p(GeV/c)](Δz/X0)1/2 (1+0.038 ln (Δz/X0))  mrad, where X0 is the 
radiation length (9.36 cm for Si) [5]. The exception is occasional large-angle Coulomb scattering 
which adds a small tail to the Gaussian distribution for plane-projected angles θ′ > 2.5 √2 <θ′ 2>MCS

1/2. 
This separation of the angular distribution into two components is fully described by Jackson [6], and 
his distribution function can be used to simulate large angle single scattering. The single scattering 
distribution is  

 
           Ps(θ′) = 1/(8 ln (204 Z -1/3)) (√2 <θ′ 2>MCS

1/2 /θ′)3.  
 

The total probability for a large angle scattering (includes both signs) greater than 2.5 √2 <θ′ 2>MCS
1/2 

is P = 1/(2.52 8 ln (204 Z -1/3)) ≈ 4.5E-3 for most elements.  
Next we consider the nuclear scattering component. For carbon and higher elements, the total 

nuclear elastic cross section is well approximated by multiplying the proton-proton elastic cross 
section by the atomic weight A of the material, σel 

pA = A σel 
pp . This fits the integrated cross sections 

of Schiz et al [11] to a few percent. The linear A dependence is what we expect for a coherent nuclear 
process in which all nucleons participate in the scattering. In this approximation, all momentum 
dependence is contained in the pp elastic cross section.  The pp cross section is experimentally well 
determined, and for lab momentum above 100 GeV/c is approximated by the form [8] 

 
                 σel 

pp(mb) =  0.175σT 
pp(mb) = 0.175[26.3 + 2.33 ln p(GeV/c)] . 

  
For example at 200 GeV/c, σel 

pp = 6.76 mb and the nuclear elastic cross section for Si is about 189 
mb. This only rises to 208 mb at 1 TeV. The nuclear elastic mean free path is given by Lel (cm) = 
A(grams)/(NA σel 

pA(cm2) ρ(g/cc)), which gives us the probability P for a particle to elastically scatter 
over a given crystal length, P = 1- exp (-z/Lel). For silicon at 200 GeV/c, Lel (cm) = 106 cm. 

To calculate the mean square angular deflection in θ for any particular process, we need the 
differential cross section dσ /dt ≈ (-π/ p2) dσ/dΩ (if no φ dependence) corresponding to that type of 
scattering. The mean square angular deviation is <θ2> = (1/ σ) ∫ θ2 (dσ/dΩ) dΩ. For simple analytic 
estimates or reduced-description simulations, we only need the gross behavior of the differential cross 
section and not the detailed behavior, making sure that our estimate gives the correct total cross 
section. The general behavior of high-energy proton-nucleus cross sections are well illustrated in 
Figure 3 of Van Ginneken [10] for 175 GeV/c protons on different elements. The demarcation 
between the predominantly elastic and quasi-elastic regions in the differential cross section occurs at 
a momentum transfer corresponding roughly to the inverse nuclear radius, √-t0  ≈ √[0.45 /A2/3 

(GeV/c)2] ≈ h/(1.3 Rnuc), where Rnuc ≈ 1.4 A1/3 fermi (f = 10-13 cm).  The cross sections drop off 
exponentially with t but with different slopes for elastic and quasi-elastic scattering. Physically this is 
because elastic scattering has a length scale characteristic of the full nuclear radius while quasi-elastic 
scattering (higher t) is probing the shorter range nature of nucleon-nucleon elastic scattering.  

From the slope fits of Schiz et al [11], a good approximation to the elastic differential cross 
section for the elements from carbon and higher is 

  
                            dσ el 

pA /dt ≈ 12.9 A5/3 σel 
pp exp(12.9A2/3 t)  mb/(GeV/c)2,  

 
where t ≈ -p2 θ2 is defined with a minus sign and is in units of (GeV/c)2. The pre-factors are chosen 
such that upon integrating over t from 0 to -∞, this form yields the above-mentioned total cross 
section σ el 

pA. The slope factor 12.9A2/3 ~ Rnuc
-2 in the exponent is just that expected for the diffractive 

effect of the nuclear radius: larger objects elastically scatter with smaller angles. We have omitted 
any dependence of the slope on center-of-mass energy squared, s, since according to the data from 70 
to 175 GeV/c [10, 11] for carbon and higher, the slopes are only weakly dependent on s (at most a ln 
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s dependence). Given the approximations we have made for dσel
pA/dt we can ignore this correction up 

to the few-TeV scale. The above expression captures the major dependency on proton lab momentum 
(within σel

pp), atomic weight A, and momentum transfer squared t for nuclear elastic scattering. Our 
approximation also omits the diffractive interference effects for the heavier elements (copper and 
higher) associated with the nuclear radius. But this contribution occurs over a very limited t-range 
around t ≈ t0 (see Fig. 3 in Ref. 10), and it has little impact on the calculation of total cross section or 
averages like <θ2>, which are dominated by the cross section peaking at t = 0. 

 The mean square lab angle for nuclear elastic scattering is calculated from the integral <θ2>el 
= (1/σ el 

pA) ∫ θ2 (dσ el 
pA /dΩ) dΩ, and the θ integral is extended from 0 to ∞. Substituting for the 

differential cross section we get 
 

<θ2>el ≈ (1/ A σel 
pp) ∫ θ2 (p2/π) (12.9 A5/3 σel 

pp) exp(-12.9A2/3 p2 θ2) θdθ dφ ≈ 1/ (12.9A2/3 p2) rad2,  
 

where p is the lab momentum in GeV/c. This is the square of the full scattering angle, and if one 
needs the projection on either transverse plane then this is multiplied by 1/2. As an example for 
silicon at 100 GeV, the elastic rms angle for each plane is <θ2>x,y

1/2 = 197 / (A1/3 p(GeV/c)) mrad ≈ 
0.65 mrad. 
 
4.     Nuclear Quasi-Elastic Scattering 
 

Since it does not involve particle production, nuclear quasi-elastic (QE) scattering typically 
results in a negligible energy change (~MeV) for the proton. The nucleus is excited by the proton 
scattering on an internal nucleon, either promoting it to a higher level in the nuclear potential where it 
later emits a photon, or causing nuclear fragments to be ejected out of the nucleus. Quasi-elastic 
scattering has as its basis the fundamental pp elastic interaction, and this can be used to parameterize 
the p-nucleus QE cross section.  

Figure 3 of Van Ginneken [10] contains the key information to extract dσQ 
pA /dt and σQ 

pA. 
The momentum transfer and proton deflection angle for QE scattering are larger than for the coherent 
elastic scattering. Below the ankle break point at t = t0 in the cross section, quasi-elastic scattering 
becomes experimentally difficult to distinguish from elastic scattering, relying on the detection of 
low-energy photons or nuclear fragments emitted by the excited nuclear state. But theoretical and 
experimental information suggest that the QE differential cross section does remain finite as t → 0 
[9]. To capture the general behavior suitable for simple calculation, we parameterize the quasi-elastic 
cross section by an exponential in t continuing smoothly to t = 0. From the slope fits in Ref. 10, a 
good approximation to the differential cross section for the elements from carbon and higher is  

 
                  dσQ 

pA /dt ≈ 10 σQ 
pA exp(10 t)  mb/(GeV/c)2,  

 
where t is defined with a negative sign and is in units of (GeV/c)2. The slope factor b = 10 (GeV/c)-2 
is what we would expect for pp elastic scattering at the 0.1 - 1 TeV/c scale and t of order 0.05 - 0.2 
(GeV/c)2  [8] . We have omitted any ln s dependence in the slope factor, which like the elastic case, is 
a negligible correction within our approximations even up to the few-TeV scale. From the data in 
Refs. 10 and 11 there appears to be no significant A dependence in the slope parameter, consistent 
with the scattering being due to a single pp (or p-n) scattering occurring within the nucleus.  

 An integration of the Van Ginneken curve fits for dσQ 
pA /dt yields the an approximate 

expression for the total cross section σQ 
pA = 0.78 A1/2 σel 

pp, where σel 
pp is the pp elastic cross section. 

The A1/2 dependence indicates that QE scattering is more determined by interactions at the nuclear 
periphery and rather than over the entire disk area (σ~A2/3). As a check we find that this formula is 
consistent with the sum σel + σQ being equal to σT - σI from the PDB [5] for elements from carbon and 
higher at the level of 5%. For example at 200 GeV/c, the total quasi-elastic cross section for Si is 
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calculated to be σQ 
pA ≈ 28 mb. Adding this to the elastic cross section of 189 mb found earlier, we 

find the sum of the elastic and quasi-elastic cross sections agree closely with the PDB average value 
of 220 mb quoted in the Introduction. The nuclear quasi-elastic mean free path is given by LQ (cm) = 
A(grams)/(NA σQ 

pA(cm2) ρ(g/cc)). The mean free path tells us the probability for a particle to quasi-
elastically scatter over a given crystal length (P = 1- exp (-z/LQ)). For silicon at 200 GeV/c, one finds 
that LQ (cm) = 713 cm.  

The mean square lab angle for nuclear quasi-elastic scattering is calculated from the integral 
<θ2>Q = (1/σQ

pA) ∫ θ2 (dσQ
pA/dΩ) dΩ, and the θ integral is extended from 0 to ∞.  Substituting for the 

differential cross section we get  
    

         <θ2>Q  ≈ (1/σQ 
pA ) ∫ θ2 (p2/π) 10 σQ 

pA exp (-10 p2 θ2) θdθ dφ ≈ 1/ (10 p2) rad2 , 
 
where p is in GeV/c. The QE scattering angle is independent of A within our approximations. This is 
the square of the full scattering angle, and if one needs the projection on either transverse plane then 
this is multiplied by 1/2. At 100 GeV the quasi-elastic rms angle for each plane is <θ2>x,y

1/2 = 
224/p(GeV/c) mrad ≈ 2.2 mrad. 
 
5.     Nuclear Single Diffractive Inelastic Scattering 
 

Most inelastic scattering results in a large energy transfer to the nucleus, particle production, 
and a loss of the incident proton. Single diffractive (SD) inelastic scattering involves particle 
production, but the incident proton retains its identity despite losing some energy (p+A → p+A′+X, 
and X= massive particles). It is a rare subset of all inelastic events, typically accounting for a few 
percent of the total inelastic cross section. This scattering is fundamentally a single pp (or pn) 
interaction within the nucleus. The SD pp cross section can be used to parameterize the p-nucleus 
cross section, just as the elastic pp cross section was used to describe QE scattering. 

From Figure 4 in Ref. 10, we extract the approximation for the nuclear SD cross section, 
σSD

pA = A1/2 σSD 
pp, where  

 
            σSD 

pp(mb) = 0.6 (1+36/s) [0.5/(1+ mp
2) + ln (0.1 s/(1+ mp

2))] 
 

is the pp single diffractive cross section (p+p → p+X, and X = massive particles), s = 2 mp(mp+Ep) is 
the center-of-mass (CM) energy in GeV2, and mp is the proton mass in GeV. We have corrected an 
apparent typographical error in Eqn. 12 of Ref. 10. The A1/2 dependence of σSD is a good fit for 
proton lab momentum up to about 10 TeV/c. This A dependence indicates that SD scattering, like the 
QE case, is more determined by interactions at the nuclear periphery. At 200 GeV/c, σSD 

pp ≈ 2.1 mb, 
and for silicon we obtain σSD

pA ≈ 11 mb. The nuclear SD mean free path is LSD (cm) = A(grams)/(NA 

σSD 
pA(cm2) ρ(g/cc)). This tells us the probability for a particle to undergo a single-diffractive 

scattering over a given crystal length (P = 1- exp (-z/LSD)). For silicon at 200 GeV/c, one finds that 
LSD (cm) = 1814 cm. 

The complete SD differential cross section has both a t-dependence and a dependence on the 
mass of the diffractively produced state. This makes the approximations needed for a fast Monte 
Carlo code more complicated. We use the diffractive pp scattering as a guide to the p-nucleus 
scattering cross section dependencies. Experimentally the SD differential cross section for pp varies 
like exp(bt), with the slope b weakly dependent on s (~ log s), and it remains finite all the way down 
to t = 0. There is some dependence of b on the mass M of the diffractively produced state, but for M2 
> 1+ mp

2, which accounts for the vast majority of SD events, the slope factor is approximately 7 
(GeV/c)-2 [8, 10]. We parameterize the SD cross section for p-nucleus scattering versus t by a single 
exponential for all M and continue it to t = 0,  
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                     dσSD 
pA /dt ≈ 7 σSD 

pA exp(7t)  mb/(GeV/c)2,  
 

where t is defined with a negative sign and is in units of (GeV/c)2. All elements are found to have the 
same SD slope factor consistent with the scattering being due to single pp (or p-n) scattering [10]. 

The mean square lab angle for nuclear single diffractive scattering is calculated from the 
integral <θ2>SD = (1/σSD

pA) ∫ θ2 (dσSD
pA/dΩ) dΩ, and the θ integral is extended from 0 to ∞.  

Substituting for the differential cross section we get <θ2>SD ≈ 1/ (7 p2) rad2, where p is in GeV/c. This 
is the square of the full scattering angle, and if one needs the projection on either transverse plane 
then this is multiplied by 1/2. At 100 GeV the single diffractive rms angle for each plane is <θ2>x,y

1/2 
= 267/p(GeV/c) mrad ≈ 2.7 mrad. 
             The more interesting aspect of SD scattering is the energy loss experienced by the incident 
proton as the result of particle production. We use the double differential cross section in Ref. 10 for 
SD pp scattering d2σSD 

pp /dM2 dt integrated over t to calculate the invariant mass M of the produced 
massive particle state. Then we make an approximate transformation to the lab frame assuming small 
angle scattering to obtain the final proton energy. Implicit in this simplified approach is that we omit 
any correlation between energy loss and scattering angle (a next order correction when needed for 
more detailed codes).  
            We do not reproduce Eqn. (10) from Ref. 10 for the pp double differential cross section here, 
which the reader can refer if necessary. Integrating the said expression in t, we obtain the differential 
cross section with respect to the invariant mass squared of the produced state as  
 
                dσSD 

pp /dM2  =  0.6 (1+36/s) (M2 - mp
2) / (1+ mp

2)  mb/(GeV)2 , for M2 ≤ 1+ mp
2 

 and                                  
                dσSD 

pp /dM2  =  0.6 (1+36/s) / M2  mb/(GeV)2 , for M2 ≥ 1+ mp
2. 

 
Here s = 2 mp(mp+Ep) is the CM energy squared in GeV2, and all masses are in GeV. Note the 
differential cross section is 0 for M2 ≤  mp

2, which is the kinematic limit since the final produced state 
must have at least the mass of the original proton. Integrating dσSD 

pp /dM2 from mp
2 up to a limit M2 

= s/10 gives the earlier quoted expression for σSD 
pp. The upper limit comes from the requirement that 

the incident proton remains intact. For M2 > s/10 the probability becomes high that the proton 
changes state, and this is no longer a single-diffractive scattering event [8, 10]. Although the mass 
distribution is not Gaussian, the mean square invariant mass of the SD-produced state (in GeV2) is 
useful for estimating the energy loss of scattered protons,  
 
<M2>SD = (1/σSD

pp) ∫ M2 (dσSD 
pp /dM2) dM2  

 
            = 0.6 (1+36/s) (1/σSD

pp) [0.1s - (1+ mp
2) + (1/3+ mp

2/2) / (1+ mp
2)] 

 
            = [0.1s - (1+ mp

2) + (1/3+ mp
2/2) / (1+ mp

2)] / [0.5/(1+ mp
2) + ln (0.1 s/(1+ mp

2))].   
 

For example at 200 GeV, we find that <M2>SD = 11 GeV2. At energies above 3 TeV, the expression 
can be replaced by its asymptotic limit <M2>SD ≈ 0.1s / ln (0.1 s/(1+ mp

2)), expressed in GeV2, 
accurate to better than 5%. The dependence on the integration cutoff (0.1s) is a direct result of 
kinematically separating out single-diffractive particle production from all other hadronic processes 
that naturally overlap partially in phase space.  

For a given invariant mass of the SD state, we can calculate the final energy of the scattered 
proton in the lab frame. This is standard two-body kinematics with a transformation from the CM to 
lab frame for p+p → p+X. Normally we would have to consider the general case of arbitrary 
scattering angles, but assuming high energies and small scattering angles for the proton, the analysis 
is simplified in the limit of forward scattering. We need only apply conservation of energy and 
longitudinal momentum in the lab frame, neglecting the small transverse momentum, 
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                 E0 ≡ Ei + mp = Ef + Ex       and       pi = pf + px , 
 

where the subscript i refers to the incident proton, subscript f refers to the outgoing proton, and 
subscript x refers to the SD-produced state. We want to solve for the final proton energy Ef in terms 
of Ei , pi , mx , mp, so we rewrite 
 
       (Ei + mp  - Ef)2  =  Ex

2 =   px
2 + mx

2  =  (pi - pf)2 + mx
2  =  (pi - √(Ef 2 - mp

2))2 + mx
2 . 

 
From this we get the quadratic equation:  4 s  Ef 2  -  4 E0 Σ Ef  +  Σ2  +  4 pi

2 mp
2  =  0, where Σ = s + 

mp
2 - mx

2  and s = 2 mp(mp+Ei). The solution for the proton’s final lab energy is 
 
                  Ef = (E0 Σ + [E0

2Σ2 - s (Σ2 + 4 pi
2 mp

2)] 1/2) / 2s . 
 
The second root of the quadratic equation for Ef (the negative sign before square root) is omitted for 
our application since it corresponds to the proton having a very small kinetic energy in the lab frame. 
This is the case of 180-degree (backward) scattering in the CM which within our approximation for 
dσSD 

pA /dt implies an exponentially small scattering probability at such large angles.  
The above expression for Ef is relatively simple for fast calculations, but for high energies 

where s >> mx
2 , mp

2 we expand in powers of m2/s to obtain the very simple formula  
 
                               Ef ≈ Ei - mx

2 /(2mp) + mp/2.  
 
For high energy SD scattering, the proton’s energy loss in the lab frame is ΔE ≈ mx

2/(2mp) - mp/2. As 
an example, for Ei = 200 GeV, we find <M2>SD = 11 GeV2 from our earlier mean square mass 
calculation. For mx

2 = <M2>SD , the expectation value for the proton energy loss in the lab is ΔE = 6 
GeV or about 3% of its initial energy. At 7 TeV, the SD mass squared increases to <M2>SD = 192 
GeV2, and the proton energy loss is 103 GeV or 1.5%. This is an important result for high energy 
channeling, volume reflection, and crystal collimation. It tells us that if the transverse and 
longitudinal acceptances of the proton collider cannot handle a few percent of energy spread, then a 
large fraction of SD scattered protons will be lost from the machine. Asymptotically at high energies 
(> 3TeV) the relative energy loss can be written as ΔE/Ep ≈ <M2>SD /(2mpEp) ≈ 0.1 / ln (0.2 mpEp/(1+ 
mp

2)), which falls off very slowly with proton lab energy. 
The fact that the produced state must have an invariant mass mx

 = M ≥ mp means that care 
must be taken to randomly assign the SD mass in a Monte Carlo simulation. The simulated mass 
taken as a random number does not include values down to zero. We use the standard “inverse 
method” [12, 13] of choosing a random mass M by inverting the cumulative probability integral of 
the differential cross section. This inversion is simple since the integral is an algebraic expression, 
piecewise continuous about the point M2 = 1+ mp

2 where the cross section dσSD 
pp/dM2 changes shape.  

For the low-mass range, the probability integral is integrated from mp
2 to M2 ≤ 1+ mp

2, 
 

        P1 = (1/σSD
pp) ∫ [0.6 (1+36/s) (M2 - mp

2) / (1+ mp
2)] dM2 

 
            = [(0.5 M4 - mp

2 M2 + 0.5 mp
4) / (1+ mp

2)] / [0.5/(1+ mp
2) + ln (0.1 s/(1+ mp

2))].   
 

This is a quadratic equation for M2 with solution 
 
       M2 = mp

2 + {2(1+ mp
2) [0.5/(1+ mp

2) + ln (0.1 s/(1+ mp
2))] P1}1/2 ,  for M2 ≤ 1+ mp

2. 
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The other root with minus sign is not physical since the mass is less than mp. Substituting a sample of 
uniformly distributed random numbers P1 in the range [0, P1max] will simulate the low-mass spectrum 
mp

2 ≤ M2 ≤ 1+ mp
2. The demarcation P1max = [0.5/(1+ mp

2)] / [0.5/(1+ mp
2) + ln (0.1 s/(1+ mp

2))] 
corresponds to the point M2 = 1+ mp

2 where the cross section changes shape. Probabilities P2 in the 
upper range [P1max , 1] correspond to the high-mass range obtained from the cumulative probability 
integral up to M2 ≤ s/10,  
 
       P2 = P1max + (1/σSD

pp) ∫ [0.6 (1+36/s) / M2 ] dM2 
 
           = [0.5/(1+ mp

2) + ln (M2 /(1+ mp
2))]  / [0.5/(1+ mp

2) + ln (0.1 s/(1+ mp
2))].   

 
Inverting this yields the mass formula 
 
M2 = (1+ mp

2) exp{[0.5/(1+ mp
2) + ln (0.1 s/(1+ mp

2))] P2] - 0.5/(1+ mp
2)} ,  for M2 ≥ 1+ mp

2. 
 

Substituting a sample of uniformly distributed random numbers P2 in the range [P1max , 1] will 
simulate the high-mass spectrum 1+mp

2 ≤ M2 ≤ s/10. 
 
6.    Use of Formulas in Simulations 
 

The basic procedure for using these nuclear scattering formulas in a reduced-description 
Monte Carlo simulation is described here. The procedure is particularly simple and robust because in 
a fast emulator code we are only asking for limited information regarding the proton’s deflection and 
energy loss, without regard for details about hadronic final states. As an illustration, we have 
incorporated our algorithm within Yazynin’s proton transport subroutine MOVE_AM of his crystal 
code CRY_AP.FOR [14]. A sample nuclear scattering algorithm in FORTRAN is supplied in the 
Appendix. Our algorithm is intended only as a pedagogical example (in silicon) and can be tailored to 
any proton transport code as desired. We will apply this algorithm in Section 7 to the case of protons 
undergoing crystal volume reflection in the LHC. 

In a typical particle simulation, protons are pushed individually through a length of matter, 
Δz. Independent of any nuclear interactions calculated in the simulation, Coulomb scattering and 
energy loss are performed for every proton over this length. The MCS angle and dE/dx formulas are 
taken from the PDB [5]. To assign any large-angle scattering θ′ > 2.5 √2 <θ′ 2>MCS

1/2 in each plane, 
we use Jackson’s distribution formula Ps(θ′) quoted in Section 3. Using a uniform random number 
generator we first decide if a large-angle scattering occurs in each plane (Prand ≤ 4.5E-3). If so, then 
the projected angle (with random sign) is assigned by applying the inverse method [12, 13] to said 
distribution, θ′ = 2.5 √2 <θ′ 2>MCS

1/2 /(1-P)1/2, where P is a uniform random number excluding 1.  
For each proton entering the solid, we next calculate the probability of any nuclear interaction 

PT = Δz/LT , and using a uniform random number generator we decide if a scattering occurs (Prand1 ≤ 
PT ). Normally no nuclear scattering occurs since PT is a small number, and the particle traverses the 
material with no nuclear interaction. This method saves considerable simulation time as no further 
nuclear calculations are performed for most particles after this test. Practically speaking, one should 
keep Δz short enough that PT is not greater than ~ 0.1 (and incidentally, short enough that Coulomb 
dE/dx energy loss is not too large). If the scattering probability is too high, then one should divide the 
crystal into more than one step to insure that only one scattering is likely to occur in Δz. 

If a nuclear scattering occurs by the above random test, we then decide what type of process 
it is, either inelastic or not. This branch point in the decision-tree is again done with a uniform 
random number, and the event is inelastic if Prand2  ≤  PI / PT  = σI  /σT . If not, it is an elastic or quasi-
elastic event. For this case, we must choose between elastic and the rarer quasi-elastic scattering. The 
QE choice is made if Prand3  ≤  PQ /(Pel+ PQ) = σQ/(σel + σQ), and we assign the angular kick <θ2>Q

1/2 to 
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the outgoing proton, multiplied by a Gaussian-distributed random number and a sign. If the event is 
elastic, then we instead assign the angular kick <θ2>el

1/2. For the inelastic case, we have two choices: 
either the event is a rare single-diffractive (SD) event in which the proton losses some energy, 
survives, and is scattered in angle, or it is the more probable, hard inelastic event in which the proton 
is totally lost from the beam. The SD scattering is a subset of all inelastic events (typically 2-3% of 
all inelastic events), and this choice is made if Prand4  ≤  PSD /PI  = σSD /σI . In this case, the proton SD 
scattering angle is randomly assigned using <θ2>SD 

1/2, and its final energy Ef is calculated from the 
formulas in Section 5 using the randomly assigned mass mx

 = M of the diffractive state.  If it is not an 
SD event, then the proton is terminated at this point in the algorithm. 

 
7.     Implications for Crystal Collimation in the Large Hadron Collider 
 

A high-energy proton collider can stably transport particles within a limited range of 
transverse and longitudinal emittances, called the machine acceptance. The acceptance is limited 
transversely by magnetic focusing strength and vacuum pipe aperture and longitudinally by the radio-
frequency (RF) bucket height that can confine a maximum energy spread. During colliding beam 
operations, protons normally suffer various perturbations that cause them to migrate transversely 
from the beam core to the halo (>5-6 σ). These protons continue to move farther off axis until they 
impact sensitive items like superconducting magnets or are scattered by beam-line components. This 
results in spreading radiation throughout the beam tunnel and heating superconducting magnets. 

To limit the uncontrolled loss of halo protons in the arcs, bent-crystal volume reflection (VR) 
has been proposed for use in the Large Hadron Collider (7 TeV design beam energy) to continuously 
sweep halo particles (rhalo >5σcore , σcore ≈ 0.2 mm) in a controlled fashion into dedicated absorber-
collimators. Halo protons enter a bent silicon crystal, travel to a depth where their angle relative to a 
to a crystal plane is nearly the critical channeling angle (θc), reflect off that plane, and exit along a 
direction opposite to the crystal’s curvature and with a deflection of order θc (≈ 2.5 micro-radian at 7 
TeV in Si). Figure 2 illustrates the volume reflection effect experienced by protons in a bent crystal in 
terms of the standard “triangle-plot” used in crystal experiments, generated with the code CRY_AP 
of Yazynin [14]. The basic VR mechanism has been verified in experiments at the Tevatron and 
CERN SPS [4]. Crystal length and curvature are chosen to give a sufficiently large angular 
acceptance for halo particles. The maximum particle angle (VR acceptance) that will result in volume 
reflection is given by the crystal thickness divided by crystal radius. For an LHC beta function of βf  ≈ 
75 m, halo particles have angles  rhalo / βf   ≈ 13 micro-rad or higher. In the LHC example below we 
use a 5 mm Si crystal with radius 100 m, which gives a very generous 50 micro-rad acceptance. Halo 
beam typically has normalized emittance εN = γε ≥ 100 micron-rad. For comparison, the normalized 
rms emittance of the LHC beam is about 3.8 micron-rad, the core beam divergence is about 2.6 
micro-rad, and the multiple Coulomb scattering angle in 5 mm of Si is about 0.4 micro-rad per plane. 
Coulomb energy loss is completely negligible, being only 3 MeV over the 5 mm crystal. As long as 
most halo protons do not suffer a large-angle nuclear scattering, the VR technique offers promise to 
control beam halo. But any nuclear scattered protons are a new and potentially damaging background 
from this collimation method, and we need good scattering estimates for these. 

For those halo protons that do experience a nuclear interaction in the crystal, we can make 
predictions about their fate within the machine acceptance using the formulas we have developed. 
Losses increase linearly with crystal thickness. For our 5 mm Si crystal about 98% of the incident 
halo protons will suffer no nuclear scattering and will have a good chance of undergoing the intended 
volume reflection. About 2% of  incident halo protons will experience some nuclear interaction 
(somewhat less for particles moving roughly parallel to the crystal planes) in the 5 mm crystal, with 
2/3 of these basically stopped by an inelastic nuclear event and 1/3 having an elastic or quasi-elastic 
scattering but surviving. Within the inelastic events are the rare single-diffractive events in which the 
proton survives, being about 5E-4 of the halo particles incident on the 5 mm crystal at this energy. 
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For 7 TeV protons, the single-diffractive rms scattering angle is about 38 micro-rad, and the 
expected relative energy loss is 1.5E-2. But there is a long tail to the SD mass distribution. The 
largest SD energy loss for a 7 TeV proton is about 10%, corresponding to the upper bound of M2 = 
s/10 put on our approximate SD spectrum. The LHC RF half-bucket height is ΔERF/E = 3.6E-3, and 
the nominal beam energy spread is δE/E = 1E-4. A fraction of SD scattered protons lose so little 
energy that they actually remain within these limits. From the probability formulas in Section 6, the 
fraction of SD protons within the nominal beam spread is about 3%, and the fraction within the rf 
bucket is about 50%. The other half of SD protons may reach the rf cavities but be outside the stable 
longitudinal bucket. These lower energy SD protons will most likely be lost transversely because 
their orbit amplitude σ = [(βf ε+(ηΔp/p)2]1/2 has a large contribution from the dispersive term (η ≈ 1.5 
m). For example the SD beam fraction with Δp/p = 3.6E-3 has βf ε ≈ 1E-5 m2 and ηΔp/p ≈ 5.4E-3 m, 
so these protons will have σ ≈ 6 mm, which is already 30σcore. The more representative SD population 
with the expected energy loss of Δp/p = 1.5E-2 has a beam size σ ≈ 23 mm. Since the LHC vacuum 
screen width is only 37 mm, this lower energy group will be lost with near certainty.  

The elastic and quasi-elastic protons do not have a problem with dispersion, but their 
transverse amplitudes still grow due to scattering angle. Elastic protons are the more problematic 
since they are more plentiful than SD protons and QE protons, being about 0.6% of the halo beam 
incident on the 5 mm crystal. The un-normalized emittance of halo beam is at least ε = (5σcore)2/βavg  ≈ 
1.3E-8 m. The changes in the divergence and un-normalized emittance for the elastic and QE halo 
protons are large: Δθel = 9 micro-rad, Δεel = βf  (Δθel)2 = 6.1E-9 m and ΔθQ = 32 micro-rad, ΔεQ = 
7.7E-8 m, respectively. So the nuclear scattering will immediately move most of these protons farther 
out into the halo and cause them to be randomly lost downstream even faster. 

We have used Yazynin’s crystal emulation code CRY_AP [14] with our new nuclear 
formulas added to his subroutine MOVE_AM to simulate 7 TeV protons traversing a bent crystal 
(sample code in the Appendix). This lets us visualize in angle-space and in phase space the effect of 
the crystal on the halo particles. A hypothetical halo beam slice is arbitrarily located 0.01 mm 
horizontally off axis with a range of angles xp0 from -0.01 mrad to +0.06 mrad. Halo protons traverse 
a 5 mm thick, bent Si crystal with curvature radius of 100 m. When all nuclear processes are turned 
OFF in the simulation, the resulting triangle plot of scattered protons is shown in Figure 3. This plot 
basically shows where better than 98% of the incident halo protons end up in angle space since 
nuclear scattering affects so few protons. The VR particles in the acceptance range xp0 = [0.0, 0.05] 
mrad are apparent by their deflection to the left. The main VR group is centered in the range xpout-
xp0 = [-0.001, -0.005] mrad, with an average VR deflection of 3 micro-rad ≈ 1.2θc. The two 
“amorphous” populations with input angles outside the VR acceptance are evident in the upper and 
lower groupings with no net deflection. The angular spreads of the distributions are due to Coulomb 
scattering and additionally for the VR region, by the variation of a proton’s reflection point off the 
channeling potential. The effect of occasional large-angle Coulomb scattering is evident from the few 
outliers in the angular tails, though most of these are within 10 micro-rad of the VR group. The 
output phase space of the halo beam slice is shown in Figure 4. The vertical line at x = 0.01 mm 
represents the input phase space of the initial beam slice. The horizontal band at xp = 0.05 mrad are 
the volume-captured and channeled protons. The narrow diagonal band proton from xp =0 to 0.05 
mrad are dechanneled protons. The slightly offset VR group is diagonally located at angles xp 
between 0 and 0.05 mrad. This shows the difficulty of cleanly separating VR particles in phase space 
since the VR angle is only a few micro-radians at TeV energies, which is the typical divergence of 
circulating beam in a collider. One option is to use multiple crystals to build up the cumulative 
deflection.   

The previous figures show the ideal case of VR when there is no nuclear scattering. Turning 
ON all nuclear scattering in addition to the Coulomb effects results in the simulated triangle plot 
shown in Figure 5 and the phase space plot in Figure 6. The wide scatter is due to the 0.6% of the 
protons that are nuclear scattered and survive passage through the crystal. In Figure 7 we plot the 
phase space of only these surviving nuclear scattered protons. A few protons are now scattered out to 
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almost 100 micro-radians from the incident halo slice, several times higher than due to large-angle 
Coulomb scattering. An analysis of the particles scattered in the VR acceptance region (xp0 = [0.0, 
0.05] mrad) indicates that about 14% of nuclear scattered protons have small enough output angles to 
remain within the VR group (xpout-xp0 = [-0.001, -0.005] mrad), so they can still be collimated. 
About 15% of the elastics and 9% of the QE and SD protons are scattered into the VR group. The 
remaining 86% of protons are scattered to large angles outside the VR group so they are problematic 
for collimation. Furthermore the single-diffractive protons have significant energy loss (up to a 
maximum of about 10%) making their transport unstable in the LHC arcs. It should be noted that we 
introduced within the main CRY_AP code an algorithm to reduce nuclear scattering for protons 
travelling at small angles to the planes, mentioned in Section 1. Basically when protons are within + - 
3 θc of a plane we omit any nuclear scattering. One could do a more careful approximation for 
reducing the nuclear effects smoothly as a function of angle, but for a fast simulation we want to 
avoid detailed trajectory calculations. For the 100 m curvature crystal, this means that there are 
almost no nuclear interactions for VR protons over about 1.5 mm of the 5 mm crystal. Compared to 
amorphous transport, we find that the nuclear interaction rate is reduced by about 30% for VR 
particles in this crystal. 

 
8.     Summary 
 

We have developed simple approximations for nuclear elastic, quasi-elastic, and single-
diffractive scattering suitable for rapid quantitative estimates and reduced-description Monte Carlo 
codes to simulate proton-matter interactions. For thin silicon targets used in many crystal 
experiments, the actual probability for any nuclear scattering in the amorphous solid is about Δz/LT ≈ 
1 cm/30 cm, so in these situations one is dealing with order one-percent nuclear probabilities for 
incident protons. At the 1 TeV scale, the relative probabilities for the different nuclear processes, 
where the probability for any nuclear scattering is normalized to unity, are given by the ratios: Any 
Scattering (=1): Inelastic (0.66): Elastic (0.30): Quasi-elastic (0.04): Single-Diffractive (0.02). The 
rms deflection angles for each transverse plane as a function of proton momentum are: Nuclear 
Elastic <θ2>x,y

1/2  = 197/(A1/3 p(GeV/c)) mrad, Quasi-elastic <θ2>x,y
1/2 = 224/p(GeV/c) mrad, and 

Single Diffractive <θ2>x,y
1/2 = 267/p(GeV/c) mrad. Finally the expected proton energy loss due to 

single-diffractive particle production at high energies is ΔE/Ep ≈ <M2>SD/(2mpEp) ≈ 0.1 / ln (0.2 
mpEp/(1+ mp

2)), which falls off very slowly with proton lab energy. At TeV scale energies, this means 
the expected SD energy loss is about 1-2%, but a maximum energy loss up to 10% is possible due to 
the tail of the SD mass spectrum. Nuclear scattering angles and energy losses are sufficiently high 
that we conclude that the majority of nuclear scattered protons from a crystal collimator will impact 
the edges of the LHC transverse acceptance. Single-diffractive protons are lost fastest due to their 
large energy loss but elastically scattered protons are more of a problem, being about ten times more 
abundant.  
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APPENDIX: SAMPLE NUCLEAR SCATTERING ALGORITHM 

A sample nuclear scattering algorithm in FORTRAN is supplied here using the formulas developed in 
this paper. As an illustration, we have incorporated our nuclear algorithm within I. Yazynin’s proton 
transport subroutine MOVE_AM of his code CRY_AP.FOR  (used with his permission) [14]. Our 
algorithm is intended only as a pedagogical example (in silicon) and can be tailored to any proton 
transport code as desired.  

 
      SUBROUTINE MOVE_AM_(IS,DZ,RP,ZP,PC,WS) 
C     Interaction p with amorphous target (by approximation) 
C----------------------------------------------------------- 
C      IS -   substance of target                            
C      DZ -   length of target (m)                            
C      R,RP,Z,ZP - coordinates at input of crystal           
C      PC -   momentum of particle*c [GeV]                   
C      WS -   weight of particle                             
C      Author of code before modifications, Version A1, 2008:   I.Yazynin   
C      Large Angle Coulomb scattering added: 4/15/2010, R.J.Noble, SLAC           
C      New nuclear formulas added: 5/7/2010, R.J.Noble  
C----------------------------------------------------------- 
 
C. DES - dE/dx stopping energy 
C. DLRI - radiation length 
 
       COMMON/CRYS/ DLRI(4),DLYI(4),AI(4),DES(4),DLAI(4) 
       COMMON/Nam_Z/  Nam,ZN 
       REAL MSQSD 
 
c  If this particle has already lost all momentum, then exit: 
       IF(.NOT.(PC .GT. 0.)) GO TO 1000 
 
c  Coulomb interaction turned ON? 
    IF(ZN .GT. 0.) THEN 
 
c  Energy lost from ionization process [GeV] 
       PC = PC - DES(IS)*DZ 
C. Multiple Coulomb scattering 
C. DYA - rms of coulomb scattering 
c     Include log length correction (R.J.Noble, 10/9/08) 
 
       CORRMS = 0. 
       IF(.NOT.(DZ.LT.3.8E-12*DLRI(IS))) CORRMS=1.+0.038*LOG(DZ/DLRI(IS)) 
c   MCS plane angle in mrad for this thickness:        
       DYA = (13.6/PC)*SQRT(DZ/DLRI(IS))*CORRMS  
       CALL RANNOR(O1,O2) 
c   Assign MCS angle: 
       RP = RP+DYA*O1 
       ZP = ZP+DYA*O2 
 
C.  Large Angle Coulomb Scattering (R.J.Noble, 4/15/2010) 
c   Check for large angle Coulomb scattering in each plane separately: 
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 IF(.NOT.(RNDM(-1.).LE. 4.5E-3)) GO TO 5 
       PROB1 = RNDM(-1.) 
 IF(PROB1 .EQ. 1.) PROB1 = 0. 
 ALPH1 = 2.5/SQRT(1.-PROB1) 
 
c   Calculate RP angle change (mrad) with random sign: 
 RP = RP+SQRT(2.)*DYA*SIGN(ALPH1,2.*RNDM(-1.)-1.) 
 
    5 CONTINUE 
 IF(.NOT.(RNDM(-1.).LE. 4.5E-3)) GO TO 10 
 PROB2 = RNDM(-1.) 
 IF(PROB2 .EQ. 1.) PROB2 = 0. 
 ALPH2 = 2.5/SQRT(1.-PROB2) 
 
c   Calculate ZP angle change (mrad) with random sign: 
  ZP = ZP+SQRT(2.)*DYA*SIGN(ALPH2,2.*RNDM(-1.)-1.) 
 
   10 CONTINUE 
    ENDIF 
 
c   Nuclear interactions turned ON? 
        IF(NAM .EQ. 0) RETURN 
 
C.  Nuclear interactions algorithm for Si example (R.J.Noble, 5/7/2010). 
 
c   Total pp cross section (mb = 1E-27 cm**2) 
        SIGTPP = 26.3 + 2.33*LOG(PC) 
 
c   Silicon test case: density = 2.33 g/cc, atomic weight = 28. 
         RHO = 2.33 
  ATWT = 28 
c   Total p-nucleus cross section (mb) 
  SIGTOT = 1.31*(ATWT**0.77)*SIGTPP 
c   Mean free path in meters 
  DLTOT = (ATWT/(6.022E-4*SIGTOT*RHO))*0.01 
 
c   Any nuclear scattering?        
         IF(.NOT.(RNDM(-1.) .LE. DZ/DLTOT)) GO TO 1000 
 
c   If nuclear scattering, is it inelastic event? 
c   Inelastic p-nucleus cross section (mb) 
  SIGI = 1.06*(ATWT**0.71)*SIGTPP 
         IF(.NOT.(RNDM(-1.) .LE. SIGI/SIGTOT)) GO TO 200 
 
c   If inelastic, is it a single diffractive event? 
c   CM energy squared of the incident proton (GeV**2): 
        EI = SQRT(0.88+PC**2.) 
        S = 1.876*(0.938+EI) 
c   Single-diffractive pp cross section (mb) 
       SIGSDPP = 0.6*(1.+36./S)*(0.266+LOG(0.05319*S)) 
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c   Single-diffractive p-nucleus cross section (mb) 
       SIGSD = SIGSDPP*SQRT(ATWT) 
       IF(.NOT.(RNDM(-1.) .LE. SIGSD/SIGI)) GO TO 100 
 
c   Calculate SD angle (mrad) and energy loss (GeV) for proton: 
       CALL RANNOR(O1,O2)           ! Gaussian random numbers O1,O2 
       RP = RP+ 267.*O1/PC               ! SD angle in R plane[mr] 
       ZP = ZP+ 267.*O2/PC                ! SD angle in Z plane[mr] 
c   Assign an arbitrary weight to distinguish SD proton in main program: 
 WS = 0.001 
 
c   Calculate mass squared (GeV**2) of the single-diffractive state: 
        DENOM = 0.266+LOG(0.05319*S) 
 Y = RNDM(-1.) 
        IF(Y .GT. 0.266/DENOM) GO TO 20 
        MSQSD = 0.88+SQRT(3.76*DENOM*Y) 
  GO TO 40 
   20 CONTINUE 
         MSQSD = 1.88*EXP(DENOM*Y - 0.266) 
   40 CONTINUE 
 
c   Calculate final proton energy (GeV) and momentum*c (GeV): 
        EF = EI - (MSQSD/1.876) + 0.469 
  PC = SQRT(EF**2. - 0.88) 
        GO TO 110 
 
 100 CONTINUE 
c   If not SD event, Stop proton with hard inelastic event: 
        WS = 0.00001 
  PC = 0. 
 110  CONTINUE 
         GO TO 1000 
 
 200 CONTINUE 
c   Elastic or Quasi-elastic event? 
c   Elastic pp cross section (mb) 
        SIGELPP = 0.175*SIGTPP 
c   Elastic p-nucleus cross section (mb) 
        SIGEL = ATWT*SIGELPP 
c   Quasi-elastic p-nucleus cross section (mb) 
        SIGQ = 0.78*SIGELPP*SQRT(ATWT) 
        IF(.NOT.(RNDM(-1.) .LE. SIGQ/(SIGEL+SIGQ))) GO TO 300 
 
c   Quasi-elastic event: 
c   Calculate QE angle (mrad) for proton: 
       CALL RANNOR(O1,O2)            ! Gaussian random numbers O1,O2 
       RP = RP+ 224.*O1/PC                ! QE angle in R plane[mr] 
       ZP = ZP+ 224.*O2/PC                 ! QE angle in Z plane[mr] 
c   Assign an arbitrary weight to distinguish QE proton in main program: 
 WS = 0.01 
        GO TO 1000 
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300 CONTINUE 
c   Elastic event: 
c   Calculate Elastic angle (mrad) for proton: 
       CALL RANNOR(O1,O2)                               ! Gaussian random numbers O1,O2 
       RP = RP+ (197./(ATWT**0.3333))*O1/PC    ! Elastic angle in R plane[mr] 
       ZP = ZP+ (197./(ATWT**0.3333))*O2/PC     ! Elastic angle in Z plane[mr] 
c   Assign an arbitrary weight to distinguish Elastic proton in main program: 
 WS = 0.1 
 

  1000 CONTINUE 
       RETURN 
       END 

C.************************************************************************** 
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Figure 1.  Simplified proton-nucleus differential cross sections for elastic, quasi-elastic, and single 
diffractive scattering versus -t ≈ p2 θ2 suitable for reduced-description, particle-matter simulations. 
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Figure 2. Simulated “triangle plot” in angle-space illustrating the different crystal channeling 
phenomena experienced by 400 GeV protons traversing a bent Si crystal (thickness 1mm, curvature 
radius 10 m). The vertical axis represents the angle between crystal plane orientation and the beam 
entry angle (0 degrees means crystal planes and beam aligned), and the horizontal axis measures the 
proton scattering angle relative to input angle (0 is no scattering). The diagonal band connecting the 
“Amorphous” and “Channeling” groups represent so-called volume-captured (VC) protons which 
have been scattered into a channel somewhere within the crystal volume. The horizontal band 
beginning at the “Channeling” group consists of dechanneled protons. 
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Figure 3. “Triangle plot” simulation in angle-space showing the different crystal channeling 
phenomena experienced by 7 TeV protons traversing a bent Si crystal, thickness 5 mm, and curvature 
radius 100 m. Nuclear effects are turned OFF and only MCS and large-angle Coulomb scattering are 
included for the 200K protons tracked here. The volume-reflected population is the vertical band 
shifted left at angles xp0 between 0 and 0.05 mrad. The average VR deflection is about 3 micro-rad. 
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Figure 4. Transverse phase space at crystal exit for 7 TeV protons traversing a bent Si crystal, 
thickness 5 mm, and curvature radius 100 m.  Nuclear effects are turned OFF and only MCS and 
large angle Coulomb scattering are included for the 200K protons tracked here. Vertical line at x = 
0.01 mm represents the input phase space of the hypothetical halo beam slice, which has a range of 
angles xp from -0.01 mrad to 0.06 mrad. The volume-reflected population is the diagonal band 
marked VR at angles between 0 and 0.05 mrad. 
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Figure 5. “Triangle plot” simulation in angle-space showing the different crystal channeling 
phenomena experienced by 7 TeV protons traversing a bent Si crystal, thickness 5 mm, and curvature 
radius 100 m. All nuclear and Coulomb effects are turned ON for the 200K protons tracked here. The 
volume-reflected population is the vertical band shifted left at angles xp0 between 0 and 0.05 mrad. 
The average VR deflection is about 3 micro-rad. 
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Figure 6. Transverse phase space at crystal exit for 7 TeV protons traversing a bent Si crystal, 
thickness 5 mm, and curvature radius 100 m.  All nuclear and Coulomb effects are turned ON for the 
200K protons tracked here. Vertical line at x = 0.01 mm represents the input phase space of the 
hypothetical halo beam slice, which has a range of angles xp between -0.01 mrad to 0.06 mrad. The 
volume-reflected population is the diagonal band marked VR at angles between 0 and 0.05 mrad. 
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Figure 7. Transverse phase space at crystal exit showing nuclear scattered 7 TeV protons which 
survive passage through the bent Si crystal, thickness 5 mm, and curvature radius 100 m.  Protons 
which did not undergo a nuclear scattering (fraction 0.985) and any absorbed protons (.0094) are 
omitted from this plot. The scattered beam fraction here is about 0.0056 of the 200K initial protons. 
Vertical line at x = 0.01 mm represents the input phase space of the hypothetical halo beam slice, 
which has a range of angles xp between -0.01 mrad to 0.06 mrad. 
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