INDICES FOR PLETHYSMS OF REPRESENTATIONS OF LIE SUPERALGEBRAS

Joris Van der Jeugt Faculty of Mathematical Studies The University Southampton SO9 5NH (U.K.)

1. INDICES FOR REPRESENTATIONS OF LIE ALGEBRAS

Let G be a simple Lie algebra over the complex numbers C, and $H \subset G$ a Cartan subalgebra. Let ρ be a representation of G in a finite-dimensional vector space V. Then we have the weight space decomposition for V:

$$\nabla = \bigoplus_{\lambda} \nabla_{\lambda} \quad (\lambda \in H^{\bigstar}), \qquad (1)$$

where

$$\mathbf{v}_{\lambda} = \{ \mathbf{v} \in \mathbf{V} \mid \rho(\mathbf{h}) \mathbf{v} = \lambda(\mathbf{h}) \mathbf{v} , \forall \mathbf{h} \in \mathbf{H}^{\mathsf{T}} \}.$$
(2)

If $V \neq \{0\}$ then λ is called a weight of ρ and V_{λ} is the weight space associated to λ . For the Lie algebra G there exists a nondegenerate invariant symmetric bilinear form <,>, which induces a non-degenerate form <,> on H^{*}. This form is positive definite on H^{*}_R, the real span of the simple roots of G. The index of order 2n (n \in N) of ρ is then defined by ^{1,2}

$$I_{\rho}^{(2n)} = \sum_{\lambda} \langle \lambda, \lambda \rangle^{n} , \qquad (3)$$

where the summation is over all weights of ρ (including multiplicity). If V is an irreducible highest weight module V(A), then the index (3) is denoted by $I_A^{(2n)}$. Note that

$$I_{\Lambda}^{(0)} = \dim V(\Lambda) = N_{\Lambda},$$

$$I_{\Lambda}^{(2)} = N_{\Lambda} < C_{2}(\Lambda) > ,$$
(4)

where the latter symbol is the eigenvalue of the second-order C_{asimir} operator on V(A). The second-order index is in fact proportional to Dynkin's index.^{3,4)} Indices for highest weight representations V(Λ) can be calculated explicitly and are polynomial expressions in terms of the components of the highest weight Λ .^{1,2}) These indices satisfy some very elegant properties that are useful in e.g. decomposing tensor products or determining a branching to a subalgebra. For example, if the tensor product of V(Λ_1) and V(Λ_2) decomposes as follows:

$$\mathbb{V}(\Lambda_1) \otimes \mathbb{V}(\Lambda_2) = \bigoplus_{\Lambda} \mathbb{V}(\Lambda)$$
(5)

then

 $N_2 I_{\Lambda_1} + N_1 I_{\Lambda_2} = \sum_{\Lambda} I_{\Lambda} , \qquad (6)$

where $N_i = \dim V(\Lambda_i)$ and I_{Λ} is the second-order index (we drop the superscript (2n) if n=1). Equation (6), and eventually some higher order equations, can actually help to determine the decomposition (5) once Λ_1 and Λ_2 are given.¹⁾

It is the purpose of this paper to show that similar quantities can be defined for Lie superalgebras, with equally useful properties.

2. LIE SUPERALGEBRAS

Let $L = L_{\overline{0}} \oplus L_{\overline{1}}$ be a basic classical Lie superalgebra, i.e. one of the series A(m,n), B(m,n), C(n), D(m,n), D(2,1; α), G(3) or F(4),⁵⁾ and H a Cartan subalgebra of L. For a finite-dimensional representation ρ of L in V = V_{\overline{0}} \oplus V_{\overline{1}}, we have again the weight space decomposition (1), where now λ is called an even (resp. odd) weight if $V_{\lambda} \subset V_{\overline{0}}$ (resp. $V_{\overline{1}}$).

For L there exists again a non-degenerate invariant supersymmetric bilinear form <,>, which induces a non-degenerate form <,> on H^{*}.⁶ However, this form is not positive definite on H^{*}_R, and would therefore violate all the useful properties needed for a meaningful theory of indices.⁷ Hence, for this purpose we define a different form (,) on H^{*}. Since H is also the Cartan subalgebra of L₀, and L₀ is a reductive Lie algebra, we can take for (,) the form associated to the non-degenerate invariant bilinear form on L₀.⁷ This new inner product on H^{*} is now positive definite on H^{*}_R and can be used in order to define indices for Lie superalgebras.

3. INDICES FOR LIE SUPERALGEBRAS

For a representation V of L with weights λ we define the (second-order) index and superindex as follows:

$$I = \sum_{\lambda} (\lambda, \lambda) , \qquad (7)$$

$$S = \sum_{\lambda} (-1)^{\sigma(\lambda)} (\lambda, \lambda) , \qquad (8)$$

where $\sigma(\lambda)=\overline{0}$ ($\overline{1}$) if λ is even (odd). If V is an irreducible highest weight module V(Λ), the index and superindex are denoted by I_{Λ} and S_{Λ}. When L is of type I (A(m,n), m≠n, or C(n)), then L_{$\overline{0}$} contains a one-dimensional center z. We define the anomaly and superanomaly of V by

$$A = \sum_{\lambda} \lambda(z), \qquad A^{S} = \sum_{\lambda} (-1)^{\sigma(\lambda)} \lambda(z) . \qquad (9)$$

In (7)-(9), the summation is always over all weights λ of V. When $L_{\overline{0}}$ contains no center z, A and A^S are equal to zero.

For two representations $V(\Lambda_1)$ and $V(\Lambda_2)$ with dimensions N_1 , N_2 , superdimensions⁸) N_1^S , N_2^S , and decomposition rule

$$v(\Lambda_1) \otimes v(\Lambda_2) = \sum_{\lambda} v(\Lambda) , \qquad (10)$$

we have the following properties:

$$\sum_{\Lambda} I_{\Lambda} = N_{2} I_{\Lambda_{1}} + N_{1} I_{\Lambda_{2}} + 2A_{\Lambda_{1}} A_{\Lambda_{2}}, \qquad (11)$$

$$\sum_{\Lambda} S_{\Lambda} = N_2^S S_{\Lambda_1} + N_1^S S_{\Lambda_2} + 2A_{\Lambda_1}^S A_{\Lambda_2}^S .$$
(12)

These equations, the counterparts of (6), are also very useful in studying decompositions.⁷⁾

4. INDICES FOR PLETHYSMS

A plethysm²⁾ for a Lie algebra G is the component of the direct ^{product} of n copies of some representation ρ of G in V whose permutation symmetry is described by a Young tableau. For example, if the ^{representation} ρ is denoted by \Box , then the product of two copies of ρ allow the following plethysm:

$$\Box \otimes \Box = \Box + \Box \tag{13}$$

(note that these Young tableau are not describing any particular representation; \Box can be any representation ρ). The elements of (13) are determined by

$$\Box : x \otimes y + y \otimes x, \qquad (x, y \in V) \qquad (14)$$

$$\Box : x \otimes y - y \otimes x.$$

Clearly, the elements in (14) describe invariant subspaces of V under the action of ρ (but if \Box is irreducible, \Box and \Box are not necessarily irreducible).

When ρ is a representation of a Lie superalgebra L in some vector space V = V₀ \oplus V₁, it is very easy to check that the following subspaces of V \otimes V are invariant under the action of ρ :

$$\Box : \mathbf{x} \otimes \mathbf{y} + (-1)^{\xi \eta} \mathbf{y} \otimes \mathbf{x} ,$$

$$(\mathbf{x} \in \mathbf{v}_{\xi}, \mathbf{y} \in \mathbf{v}_{\eta})$$

$$(15)$$

$$(15)$$

One notes from (14) that the 'supersymmetry' class 🖽 is in fact equal to:

$$\Box = \Phi \nabla \times 1 + \Phi \times \Box + 1 \times \Pi, \qquad (16)$$

where 0 or 1 refers to even or odd vectors of V. Then a plethysm or supersymmetry class of n copies of a representation ρ of L is again described by a Young tableau, but the permutation symmetry for odd vectors is conjugate to that for even vectors. For example, the Young tableau \square for $V = V_{\overline{0}} \oplus V_{\overline{1}}$, where $V_{\overline{0}}$ and $V_{\overline{1}}$ are considered as two separate $L_{\overline{0}}$ -modules, is then equal to

Hence, for the supersymmetry class corresponding to \square , we need to take the conjugate of every tableau with labels 1 in (17) :

~ `

Every plethysm describes an invariant subspace in the direct product of n copies of some representation \Box of L.

Now there exist several formulae⁷⁾ relating (super)dimension, (super)index and (super)anomaly of a plethysm to that of the original representation \Box , e.g.

$$I_{\Box} = N_{\Box}I_{\Box} + 2 S_{\Box} + A_{\Box}^{2},$$

$$I_{\Box} = N_{\Box}I_{\Box} - 2 S_{\Box} + A_{\Box}^{2}.$$
(19)

These expressions enable one to calculate the previously mentioned quantities for a plethysm. The knowledge of such quantities for plethysms are then very useful in the study of plethysms, in particular in order to recognize their constituents.

REFERENCES

- Patera, J., Sharp, R.T., and Winternitz, P., J. Math. Phys. <u>17</u>, 1972 (1976); J. Math. Phys. 18, 1519 (1977).
- McKay, J., Patera, J., and Sharp, R.T., J. Math. Phys. <u>22</u>, 2770 (1981).
- Dynkin, E.B., Math. Sb. <u>30</u>, 349 (1952); also Am. Math. Transl.
 <u>6</u>, 111 (1957).
- 4. Patera, J., Nuovo Cimento A46, 637 (1966).
- ⁵. Kac, V.G., Adv. Math. 26, 8 (1977).
- ⁶. Kac, V.G., in Lecture Notes in Mathematics vol. 676, 597 (1978).
- 7. Morel, B., Patera, J., Sharp, R.T., and Van der Jeugt, J., J. Math. Phys. 28, 1673 (1987).
- ⁸. Scheunert, M., Lecture Notes in Mathematics vol <u>716</u> (1979).