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I. INDICES FOR REPRESENTATIONS OF LIE ALGEBRAS 

Let G be a simple Lie algebra over the complex numbers C, and 

HCG a Cartan subalgebra. Let 0 be a representation of G in a 

finite-dimensional vector space V. Then we have the weight space 

decomposition for V: 

V = ® V~ (%ell*), (I) 

where 

V% ={veV I o(h)v= l(h)v , VheH*}. (2) 

If V # {0 }then % is called a weight of 0 and V% is the weight 

space associated to ~. For the Lie algebra G there exists a non- 

degenerate invariant symmetric bilinear form <,> , which induces a 

nOn-degenerate form <,> on H . This form is positive definite on HR, 

the real span of the simple roots of G. The index of order 2n (n 6N) 

of P is then defined by 1,2) 

I (2n) = E <l,%> n , (3) 
P 

Where the summation is over all weights of P (including multipli- 

city). If V is an irreducible highest weight module V(A), then the 

~(2n) Note that index (3) is denoted by i A 

I~ O) = dim V(A) = NA, 
(4) 

I~ 2) = N A <C2(A)> , 

Where the latter symbol is the eigenvalue of the second-order 

Casimir operator on V(A). The second-order index is in fact pro- 

Portional to Dynkin's index. 3'4) Indices for highest weight repre- 
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sentations V(A) can be calculated explicitly and are polynomial ex- 

pressions in terms of the components of the highest weight A. 1"2) " 

These indices satisfy some very elegant properties that are useful in 

e.g. decomposing tensor products or determining a branching to a sub- 

algebra. For example, if the tensor product of V(A l) and V(A 2) decom- 

poses as follows: 

V(AI)@V(A2) = ~V(A) (5) 

then 

N 2 + N] = ~ I A , (6) IA! IA 2 A 

where N.I = dim V(Ai) and I A is the second-order index (we drop the 

superscript (2n) if n=l). Equation (6), and eventually some higher 

order equations, can actually help to determine the decomposition (5) 
l) 

once Al and A 2 are given. 

It is the purpose of this paper to show that similar quantities 

can be defined for Lie superalgebras, with equally useful properties. 

2. LIE SUPERALGEBRAS 

Let L = L~ ~ L T be a basic classical Lie superalgebra, i.e. one 
5) 

of the series A(m,n), B(m,n), C(n), D(m,n), D(2,1;a), G(3) or F(4), 

and H a Cartan subalgebra of L. For a finite-dimensional representa- 

tion p of L in V = V~ ~ V T , we have again the weight space decompo- 

sition (I), where now % is called an even (resp. odd) weight if 

V%cv~ (resp. VT). 

For L there exists again a non-degenerate invariant supersym- 

metric bilinear form <,>, which induces a non-degenerate form <,> 
* 6) * 

on H . However, this form is not positive definite on HR, and would 

therefore violate all the useful properties needed for a meaningful 

theory of indices. 7) Hence, for this purpose we define a different 

form (,) on H Since H is also the Cartan subalgebra of L~, and L~ 

is a reductive Lie algebra, we can take for (,) the form associated 

7) This new inner to the non-degenerate invariant bilinear form on L~. 

product on H is now positive definite on H R and can be used in order 

to define indices for Lie superalgebras. 
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3. INDICES FOR LIE SUPERALGEBRAS 

For a representation V of L with weights % we define the (second- 

order) index and superindex as follows: 

I = ~ (I,I) , (7) 

S = { (-l)°(1)(l,l) , (8) 

where o(l):O (I) if i is even (odd). If V is an irreducible highest 

weight module V(A), the index and superindex are denoted by I A and 

S A. When L is of type I (A(m,n), m#n, or C(n) ), then L~ contains a 

one-dimensional center z. We define the anomaly and superanomaly of 

V by 

A = Z l(z), A s = ~ (-1)°(~)~(z) (9) 

In (7)-(9), the summation is always over all weights % of V. When L~ 

contains no center z, A and A S are equal to zero. 

For two representations V(Al) and V(A 2) with dimensions N I, N2, 

superdimensions 8) S S Nl, N2, and decomposition rule 

V(AI)®V(A 2) = ~ V(A) , (10) 

we have the following properties: 

~I A N 2 + N 1 + , ( l l )  = IAl IA 2 2AAIAA 2 

S S + S S (12) ~ .SA = N 2 SAI + N 1SA2 2AAIAA2 . 

These equations, the counterparts of (6), are also very useful in 

Studying decompositions, 7) 

4. INDICES FOR PLETHYSMS 

A plethysm 2) for a Lie algebra G is the component of the direct 

Product of n copies of some representation P of G in V whose permu- 

tation symmetry is described by a Young tableau. For example, if the 

representati°n O is denoted by D, then the product of two copies of 

0 allow the following plethysm: 
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m~ =~ + B (13) 

(note that the;e Young tableau are not describing any particular repre- 

sentation; [] can be any representation p). The elements of (13) are 

determined by 

Eli : x@y + y~x , 

( x,ye V) (14) 
: x~y - y ~x • 

Clearly, the elements in (14) describe invariant subspaces of V under 

the action of p(but if [] is irreducible, [12 and ~ are not necessa- 

rily irreducible). 

When p is 

space V = V~) 

spaces of V®V 

E]3 : x ~y 

: x@y 

One notes from 

equal to: 

rT7 = l :~. . Ix l  + ~ x ~  + 1 x ~  
w 

a representation of a Lie superalgebra L in some vector 

V T ) it is very easy to check that the following sub- 

are invariant under the action of P: 

+ (-I) Sq y ® x  , 

(xeV~, yevn) (15) 
- (-I) ~n y®x . 

(14) that the ~upersymmetry' class []3 is in fact 

where 0 or I refers to even or odd vectors of V. Then a plethysm or 

supersymmetry class of n copies of a representation p of L is again 

described by a Young tableau, but the permutation symmetry for odd 

(16) 

vectors is conjugate to that for even vectors. For example• the Young 

tableau ~ for V = V~ e v~ , where V~ and V T are considered as two 

separate L~-modules, is then equal to 

Hence, for the supersymmetry class corresponding to 

take the conjugate of every tableau with labels 1 

(17)  

• we need to 

in (17) : 

(18) 
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Every plethysm describes an invariant subspace in the direct product 

of n copies of some representation [] of L. 

Now there exist several formulae 7) relating (super)dimension, 

(super)index and (super)anomaly of a plethysm to that of the ori- 

ginal representation D, e.g. 

I[X] = NOI D + 2 S[] + ~ , 

(I 9) 
I~ = N~D- 2 S D + ~ . 

These expressions enable one to calculate the previously mentioned 

quantities for a plethysm. The knowledge of such quantities for 

plethysms are then very useful in the study of plethysms, in parti- 

cular in order to recognize their constituents. 
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