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Abstract

These are the lecture notes of a mini–course of three lessons on

Hilbert spaces taught by the author at the First German–Serbian

Summer School of Modern Mathematical Physics in Sokobanja, Yu-

goslavia, 13–25 August, 2001. The main objective was to present the

fundamental definitions and results and their proofs from the theory

of Hilbert spaces that are needed in applications to quantum physics.

In order to make this paper self–contained, Section 1 was added; it

contains well–known basic results from linear algebra and functional

analysis.

1 Notations, Basic Definitions and Well–Known

Results

In this section, we give the notations that will be used throughout. Fur-

thermore, we shall list the basic definitions and concepts from the theory of

linear spaces, metric spaces, linear metric spaces and normed spaces, and

deal with the most important results in these fields. Since all of them are

well known, we shall only give the proofs of results that are directly applied

in the theory of Hilbert spaces.
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Throughout, let IN, IR and |C denote the sets of positive integers, real

and complex numbers, respectively. For n ∈ IN, let IRn and |Cn be the sets

of n–tuples x = (x1, x2, . . . , xn) of real and complex numbers. If S is a set

then |S| denotes the cardinality of S. We write ℵ0 for the cardinality of

the set IN.

In the proof of Theorem 4.8, we need

Theorem 1.1 The Cantor–Bernstein Theorem

If each of two sets allows a one–to–one map into the other, then the sets

are of equal cardinality.

We shall frequently make use of Hölder’s and Minkowski’s inequalities.

Theorem 1.2 Hölder’s and Minkowski’s Inequalities

Let a1, a2, . . . , an, b1, b2, . . . , bn ∈ |C.

(a) If p > 1 and q = p/(p − 1) then

n∑
k=1

|akbk| ≤
(

n∑
k=1

|ak|p
)1/p

·
(

n∑
k=1

|bk|q
)1/q

(1)

(Hölder’s inequality).

(b) If 1 ≤ p < ∞ then(
n∑

k=1

|ak + bk|q
)1/p

≤
(

n∑
k=1

|ak|p
)1/p

+

(
n∑

k=1

|bk|p
)1/p

(2)

(Minkowski’s inequality).

1.1 Partially ordered sets and the axiom of transfinite in-

duction

A partially ordered set is a set for which a transitive and reflexive binary

relation is defined. We shall write a ≥ b to denote that the ordered pair

(a, b) is in relation. Our definition requires that

if a ≥ b and b ≥ c then a ≥ c (transitivity)

353



and

a ≥ a for all a (reflexivity).

Finally a ≤ b means b ≥ a. The most obvious example is IR, taking a ≥ b

with its usual meaning.

Example 1.3 In IR 2 we define (x, y) ≥ (u, v) to mean x ≥ u and y ≥ v.

Let A be a collection of subsets of a set S. For A, B ∈ A, we define A ≥ B

to mean A ⊂ B. This ordering is called ordering by inclusion.

We see from Example 1.3 that a partially ordered set may have in-

comparable elements; (5, 2) and (4, 3) are incomparable. We call a and b

comparable if either a ≥ b or b ≥ a; otherwise they are incomparable.

A partially ordered set is called totally ordered if the ordering is anti-

symmetric, that is

a ≥ b and b ≥ a together imply a = b,

and all elements are comparable.

A chain is a totally ordered subset of a partially ordered set. For exam-

ple, in IR, any set is a chain. In Example 1.3, the set {(n, n) : n = 1, 2, . . .}
is a chain, also {(t, t + 1) : t ∈ IR}. A maximal chain is one not properly

included in any chain. The chain {(n, n) : n+1, 2, . . .} is not maximal, since

it is included in {(t, t) : t ∈ IR}. This latter chain is maximal. The chain

{(t, t + 1) : t ∈ IR} is maximal in Example 1.3. These two maximal chains

are incomparable (neither includes the other), thus neither is a maximum

(or largest) chain.

Axiom of transfinite induction. Every partially ordered set includes

a maximal chain.

This axiom can also be expressed in the form

Theorem 1.4 Every chain is included in a maximal chain.
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1.2 Linear spaces and linear maps

The concepts of linear spaces and linear maps are fundamental in many

fields of mathematics. Linear spaces are nonempty sets which are given an

algebraic structure.

Let IF denote a field throughout, in general IF = |C, the field of complex

numbers, or IF = IR, the field of real numbers.

First we give the definition of a linear or vector space.

Definition 1.5 Let IF be a field. A linear space or vector space V

(over IF) is a set for which are defined an addition + : (V × V ) → V ,

+(v, w) = v + w for all v, w ∈ V and a multiplication by scalars · : (IF ×
V ) → V , ·(λ, v) = λv for all λ ∈ IF and for all v ∈ V , such that V is

an Abelian group with respect to + and the following distributive laws are

satisfied for all λ, μ ∈ IF and all v, w ∈ V

(D.1) λ(v + w) = λv + λw

(D.2) (λ + μ)v = λv + μv

(D.3) (λμ)v = λ(μv)

(D.4) 1v = v for the unit element of IF

The elements of a linear space V over a field IF are called vectors and the

elements of IF are referred to as scalars.

A subset S of a linear space is called convex if λs + μt ∈ S for all s, t ∈ S

and all scalars λ, μ ≥ 0 with λ + μ = 1.

A subset S of a linear space V is called linear subspace of V if it is a

linear space with the same operations and scalars as V , that is, if s, t ∈ S

and λ ∈ IF imply s + t ∈ S and λs ∈ S.
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Usually the operation of an Abelian group is denoted by + in which

case the neutral element is denoted by 0.

Example 1.6 (a) On IRn we define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) for all x, y ∈ IRn

λx = (λx1, λx2, . . . , λxn) for all x ∈ IRn and all λ ∈ IR.

Then IRn is a linear space over IR. Similarly |Cn becomes a linear space

over |C. Let p > 0 and Cp = {x ∈ IRn :
∑n

k=1 |xk|p ≤ 1}. Then Cp is a

convex set if and only if p ≥ 1. If p ≥ 1, let x, y ∈ C and λ, μ ≥ 0 satisfy

λ + μ = 1. Then, by Minkowski’s inequality
(

n∑
k=1

|λxk + μyk|p
)1/p

≤ λ

(
n∑

k=1

|xk|p
)1/p

+ μ

(
n∑

k=1

|yk|p
)1/p

≤ 1,

hence λx + μy ∈ Cp. If 0 < p < 1, we consider x = e(1) = (1, 0, . . . , 0), y =

e(2) = (0, 1, 0, . . . , 0) ∈ Cp. Then z = (1/2)(x+y) 	∈ Cp, since
∑n

k=1 |zk|p =

2−p+1 > 1.

(b) Let M be a set, V be a linear space over IF and V M denote the set

of all functions from M to V . We define f + g and λf for all f, g ∈ V M

and for all λ ∈ IF by

(f + g)(m) = f(m) + g(m) and (λf)(m) = λf(m) for all m ∈ M.

Then V M is a linear space over IF. In particular, let M = IN and V = |C.

Then ω = |CIN = {x = (xk)∞k=1 : xk ∈ |C for all k}, the set of all complex

sequences, is a linear space with

x + y = (xk + yk)∞k=1 and λx = (λxk)∞k=1 for all x, y ∈ ω and all λ ∈ |C.

Let 1 ≤ p < ∞. We put �p = {x ∈ ω : x ∈ ω :
∑∞

k=1 |xk|p < ∞}. Then �p

is a linear subspace of ω; this follows from Minkowski’s inequality.

Let C[0, 1] denote the set of all continuous real–valued functions on the
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interval [0, 1]. Then [0, 1] is a linear subspace of IR[0,1].

Let 1 ≤ p < ∞ and Lp[0, 1] be the set of all Lebesgue measurable functions

f on the interval [0, 1] such that
∫ 1
0 |f |p < ∞. Then Lp[0, 1] is a linear

space.

Let S be a subset of a linear space V . A linear combination of S is

an element
∑n

k=1 λksk where λ1, λ2, . . . , λn ∈ IF and s1, s2, . . . , sn ∈ S are

distinct. Any linear combination with at least one nonzero scalar coefficient

is called nontrivial; 0 is the trivial linear combination of every set, for

the empty set, this is taken as a convention. The set S is called linearly

dependent if 0 is a nontrivial linear combination of S; otherwise it is called

linearly independent. The set of all linear combinations of S is called span

of S denoted by spanS; S is said to span a set T if T ⊂ spanS.

We observe that linear combinations are finite sums. By definition,

a set S in a linear space is linearly independent if and only if, whenever

s1, s2, . . . , sn ∈ S, λ1, λ2, . . . , λn ∈ IF and
∑n

k=1 λksk = 0 then λ1 = λ2 =

. . . = λn = 0. A set is linearly independent, if each finite subset is. Every

subset of a linearly independent set is linearly independent.

Example 1.7 (a) In |Cn, the set B = {e(k) : k = 1, 2, . . . , n} of vectors with

e
(k)
k = 1 and e

(k)
j = 0 for j 	= k is linearly independent, and spanB =

|Cn. The set B ∪ {e} with e = (1, 1, . . . , 1) is linearly dependent, since

e −∑n
k=1 e(k) = 0 is a nontrivial linear combination of B.

(b) Let M = [0, 1]. For each t ∈ M , we define ft ∈ V M by ft(t) = 1

and ft(x) = 0 for x ∈ M \ {t}. Then B = {ft : t ∈ M} is linearly

independent, for if ft1 , ft2 , . . . , ftn ∈ B and λ1, λ2, . . . , λn are scalars, then∑n
k=1 λkftk = 0 means

∑n
k=1 λkftk(x) = 0 for all x ∈ M . If we choose

x = tj for j = 1, 2, . . . then

n∑
k=1

λkftk(tj) = λj = 0 for j = 1, 2, . . . , n.
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Let g ∈ V M be defined by g(x) = 1 for all x ∈ M . Then g ∈ V M \
spanB, and so B does not span V M . In particular, we consider the set

B = {e(n) : n = 1, 2, . . .} in ω where, for each n, e(n) is the sequence with

e
(n)
n = 1 and e

(n)
k = 0 for k 	= n. Then B is linearly independent, and

e = (1, 1, . . .) ∈ ω \ spanB.

An algebraic or Hamel basis for a linear space V is a linearly independent

set which spans V .

Example 1.8 (a) The set B = {e(1), e(2), . . . , e(n)} is an algebraic basis for
|Cn.

(b) The set B = {e(n) : n = 1, 2, . . .} is not an algebraic basis for ω since

e ∈ ω \ spanB.

Theorem 1.9 Every linear space has an algebraic basis. Any two algebraic

bases of a linear space are in a one–to–one correspondence.

In view of Theorem 1.9, we define the algebraic or Hamel dimension

of a linear space as the cardinality of its algebraic basis. The algebraic or

Hamel dimension of a set in a linear space is defined to be the algebraic

dimension of its span.

Now we study linear maps which naturally arise in connection with

linear spaces.

Definition 1.10 Let V and W be linear spaces over the same field IF. A

map f : V → W is said to be a linear map or a homomorphism, if for

all u, v ∈ V and all λ ∈ IF,

f(u + v) = f(u) + f(v) (additivity)

and

f(λv) = λf(v) (homogenity);
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the set of all linear maps from V to W is denoted by L(V, W ). If V is a

linear space over |C and W = |C, we write V # = L(V, |C) and each f ∈ V #

is called a linear functional on V . Similarly, if V is a linear space over IR

and W = IR, we write V #
IR = L(V, IR) and each f ∈ V #

IR is called a real

linear functional on V .

A one–to–one linear map is called an isomorphism into. We say that two

linear spaces are isomorphic if there is an isomorphism from each onto

the other.

Example 1.11 (a) Let P be the linear space of polynomials. Then D : P →
P, the differentiation operator, is linear.

(b) Let �∞ = {x ∈ ω : sup |xk| < ∞} and c0 = {x ∈ ω : limk→∞ xk = 0}
denote the sets of bounded and null sequences. Then the map f : �∞ → c0

defined by f(x) = (xk/k)∞k=1 for all x = (xk)∞k=1 ∈ �∞ is linear. The

function g : c0 → c0 defined by g(x) = (x2
k)

∞
k=1 for all x = (xk)∞k=1 ∈ c0 is

not linear.

Theorem 1.12 An additive map f is rational homogeneous, that is

f(λv) = λf(v) for all rational λ and all vectors v.

Proof. Since f is additive, it follows by induction that

f(mx) = mf(x) for all m ∈ IN and all x ∈ X. (3)

Furthermore f(0) + f(0) = f(0 + 0) = f(0) implies

f(0) = 0, (4)

and f(x) + f(−x) = f(x + (−x)) = f(0) = 0 implies

f(−x) = −f(x) for all x ∈ X. (5)
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Thus, if m ∈ −IN, we put n = −m ∈ IN and obtain from (3) and (5)

f(mx) = f(−nx) = −f(nx) = −nf(x) = mf(x),

hence

f(mx) = mf(x) for all m ∈ ZZ and all ∈ X. (6)

Now let r ∈ QI . Then there are m ∈ ZZ and n ∈ IN such that r = m/n and

f(rx) = 1
n nf(rx) = 1

n f(nrx) = 1
n f(mx)

= m
n f(x) = rf(x) for all x ∈ X.

It turns out in Theorem 1.13 that a linear functional is uniquely de-

termined by its real part. Specifically, let V be a (complex) linear space

and f ∈ V #. We define g and h on V by g(v) =Ref(v) and h(v) =Imf(v)

for all v ∈ V . Thus f(v) = g(v) + ih(v) for each v ∈ V , and g and h are

real–valued, real linear functions.

Theorem 1.13 Let g be a real–valued linear function defined on a (com-

plex) linear space V . Then there exists a unique real–valued function h

defined on V such that f = g + ih ∈ V #.

Proof. First we prove the uniqueness of such h.

We suppose that f = g + ih is linear. Then for any v ∈ V ,

g(iv) + ih(iv) = f(iv) = if(v) = ig(v) − h(v).

Comparing real parts yields h(v) = −g(iv). This shows that h is uniquely

determined and real linear.

Next we show that such an h exists by constructing it.

We define h by h(v) = −g(iv) or all v ∈ V . Let f = g + ih, that is

f(v) = g(v) − ig(iv) for all v ∈ V. (7)
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Clearly f is additive and real linear. Thus we have only to show f(iv) =

if(v) for all v ∈ V . But

f(iv) = g(iv) + ih(iv) = g(iv) − ig(iiv) = g(iv) − ig(−v) = g(iv) + ig(v)

= −h(v) + ig(v) = i(g(v) + ih(v)) = if(v).

1.3 Metric and normed spaces

Metric spaces are sets with a topological structure that arises from the

concept of distance. Continuity of functions and convergence of sequences

can be defined in metric spaces.

Definition 1.14 Let X be a set. A function d : X × X → IR is called a

semimetric if for all x, y, z ∈ X

(D.1) d(x, y) = d(y, x) ≥ 0

(D.2) d(x, x) = 0

(D.3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality);

the number d(x, y) is called the distance between x and y. The set X

together with the semimetric d is called a semimetric space, denoted by

(X, d). A metric on X is a semimetric satisfying

(D.4) d(x, y) > 0 if x 	= y;

the set X together with the metric d is called a metric space.

Example 1.15 (a) The set IR 2 is a semimetric space with d defined by

d(x, y) = |x1 − y1| for all x = (x1, x2), y = (y1, y2) ∈ IR 2.
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(b) The set ω is a metric space with d defined by

d(x, y) =
∞∑

k=1

1
2k

|xk − yk|
|1 + |xk − yk| for all x = (xk)∞k=1, y = (yk)∞k=1 ∈ ω.

(c) The set �∞ of bounded sequences is a metric space with d∞ defined by

d∞(x, y) = sup
k

|xk − yk| for all x = (xk)∞k=1, y = (yk)∞k=1 ∈ �∞.

The sets �p (1 ≤ p < ∞) are metric spaces with dp defined by

dp(x, y) =

( ∞∑
k=1

|xk − yk|p
)1/p

for all x = (xk)∞k=1, y = (yk)∞k=1 ∈ �p;

the triangle inequality follows from Minkowski’s inequality.

(d) The set C[0, 1] is a metric space with d and ρ defined by

d(f, g) = max
x∈[0,1]

|f(x) − g(x)| and ρ(f, g) =
1∫

0

|f(x) − g(x)| dx

for all f, g ∈ C[0, 1].

Let (X, d) be a semimetric space, δ > 0 and x0 ∈ X. By

Uδ(x0) = {x ∈ X : d(x, x0) < δ}

we denote the open δ neighbourhood of x0.

We already mentioned that the concept of convergence can be intro-

duced in semimetric spaces. A sequence (xn)∞n=1 in a semimetric space X

is said to be convergent with limit x, or converge to x, if given any ε > 0

there is n0 = n0(ε) ∈ IN such that xn ∈ Uε(x) for all n ≥ n0; this is de-

noted by xn → x (n → ∞). A Cauchy sequence in a semimetric space is

a sequence (xn)∞n=1 such that to each ε > 0, there corresponds an N ∈ IN

such that d(xm, xn) < ε for all m, n > N . A semimetric space is called

complete if every Cauchy sequence in it is convergent.
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Remark 1.16 (a) It is easy to see that, in a semimetric space, xn → x

(n → ∞) if and only if d(xn, x) → 0 (n → ∞).

(b) It is possible for a sequence in a semimetric space to converge to different

limits. For instance, if d(x, y) = 0 for distinct x and y then the sequence

(xn)∞n=1 with xn = x for all n converges to both x and y. In metric spaces,

however, limits are unique, for if xn → x and xn → y (n → ∞) then

d(x, y) ≤ d(x, xn) + d(xn, y) → 0 (n → ∞) by Part (a), and so d(x, y) = 0

which implies x = y. If a sequence (xn)∞n=1 has a unique limit x we write

limn→∞ xn = x.

Now we introduce the concept of continuity of functions in semimetric

spaces. Let (X, dX) and (Y, dY ) be semimetric spaces. A function f : X →
Y is said to be continuous at x ∈ X if or every ε > 0 there is δ > 0 such

that f(Uδ(x)) ⊂ Uε(f(x)); here, of course, Uδ(x) = {x′ ∈ X : dX(x′, x) <

δ} ⊂ X and Uε(f(x)) = {y ∈ Y : dY (y, f(x)) < ε} ⊂ Y ; f is said to be

continuous on X if it is continuous at each point of X.

Theorem 1.17 Let X and Y be semimetric spaces. A function f : X → Y

is continuous at x ∈ X if and only if f(xn) → f(x) (n → ∞) whenever

(xn)∞n=1 is a sequence in X converging to x.

Let X and Y be semimetric spaces. A function f : X → Y is called

an isometry if it is one–to–one and d(f(x), f(y)) = d(x, y) for all x, y ∈ X.

Two spaces are called isometric if there is an isometry from each into the

other.

A subset S of a semimetric space X is called dense, if given x ∈ X and

ε > 0 there is s ∈ S with d(x, s) < ε. A semimetric space is called separable

if it has a countable dense set in it.

363



1.4 Linear metric spaces

So far we studied linear and semimetric spaces separately. To join the two

concepts, some connection should be assumed between them. The natural

assumption is that the algebraic operations of the linear space should be

continuous with respect to the semimetric.

A useful notion is that of a paranorm. A paranorm is a real function p

defined on a linear space X such that for all x, y ∈ X

(P.1) p(0) = 0

(P.2) p(x) ≥ 0

(P.3) p(−x) = p(x)

(P.4) p(x + y) ≤ p(x) + p(y)

(triangle inequality; continuity of addition)

(P.5) if (λn)∞n=1 is a sequence of scalars with λn → λ (n → ∞)

and (xn)∞n=1 is a sequence of vectors with p(xn − x) → 0

(n → ∞), then p(λnxn − λx) → 0 (n → ∞) (continuity of

multiplication by scalars).

A paranorm p for which p(x) = 0 implies x = 0 is called total.

Example 1.18 A paranorm p defines a semimetric d which is a metric if

and only if p is total. We put d(x, y) = p(x − y) for all x and y. Then

d(x, y) = p(x− y) = p(−(x− y)) = p(y−x) = d(y, x), d(x, x) = p(x−x) =

p(0) ≥ 0 and d(x, y) = p(x− y) = p(x− z + z − y) ≤ p(x− z) + p(z − y) =

d(x, z) + d(z, y).

A semimetric d for a linear space X is said to be invariant if there exists

a paranorm p such that d(x, y) = p(x − y) for all x, y ∈ X. We say that
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the paranorm yields the semimetric and the semimetric comes from the

paranorm. Since p(x) = d(x, 0), a given semimetric comes from at most

one paranorm. Clearly an invariant semimetric d satisfies the equation

d(x + z, y + z) = d(x, y) for all x, y and z, (8)

hence its name. The discrete metric, however, that is the metric d with

d(x, x) = 0 and d(x, y) = 1 for all x 	= y, satisfies equation (8), but is

not an invariant metric. For if we put p(x) = 1 for x 	= 0 and p(0) = 0

and choose λn = 1/n and xn = x 	= 0 for all n, then λn → λ = 0 and

p(xn − x) → 0 (n → ∞), but p(λnxn − λx) = p((1/n)x) = 1 for all n,

that is p(λnxn − λx) 	→ 0 (n → ∞) and multiplication by scalars is not

continuous.

Definition 1.19 A semimetric space which is also a linear space is called

a linear semimetric space, if the semimetric comes from a paranorm;

it is called a linear metric space, if the semimetric comes from a total

paranorm.

The set of all continuous linear functionals on a linear semimetric space

X will be denoted by X ′ and called the dual space of X.

Theorem 1.20 Let X be a linear semimetric space, Y be a linear metric

space and f : X → Y be a continuous additive function. Then f is real

linear.

Proof. By Theorem 1.12, the map f is rational homogeneous. Let

λ ∈ IR and (λn)∞n=1 be a sequence of rationals converging to λ. Then for

any x ∈ X, λnx → λx by (P.5) of the definition of a paranorm. Since f is

continuous this implies

f(λnx) → f(λx) (n → ∞).
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Also λnf(x) → λf(x) (n → ∞) for each x. Since f(λnx) = λnf(x) for each

x ∈ X (n = 1, 2, . . .) and the limits in metric spaces are unique by Remark

1.16, we have

f(λx) = λf(x) for all x ∈ X.

A subset S of a linear semimetric space X is called fundamental if

spanS is dense in X, that is, given any vector x ∈ X and any ε > 0,

there is a linear combination y of S such that d(x, y) < ε. A Schauder

basis of a linear metric space X is a sequence (bn)∞n=1 of elements of X

such that for any vector x ∈ X, there exists a unique sequence (λn)∞n=1

of scalars such that
∑∞

n=1 λnbn = x. Every linear metric space with a

Schauder basis is separable. For a finite–dimensional space the concepts of

Schauder and algebraic basis coincide. Also in φ, the set of all sequences

that terminate in zeros, with the metric of �∞, (e(n))∞n=1 is both a Schauder

and an algebraic basis. In all other interesting cases, however, the concepts

differ. For example, in c0, B = (e(n))∞n=1 is a Schauder basis, but not an

algebraic basis, since spanB = φ and φ is a proper subset of c0. On the

other hand, any algebraic basis of c0 is uncountable, and so is automatically

not a Schauder basis. Whereas every linear space has an algebraic basis,

�∞ has no Schauder basis, since it is not separable.

1.5 Normed spaces

A seminorm is a paranorm which has an additional homogenity property.

Later we shall consider Hilbert spaces as special normed spaces.

Definition 1.21 Let X be a linear space over IF = IR or IF = |C. A map

‖ · ‖ : V → IR is called a seminorm if it satisfies the following conditions

for all vectors x and y and for all scalars λ
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(N.1) ‖x‖ ≥ 0

(N.2) ‖λx‖ = |λ| ‖x‖ (homogenity)

(N.3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality);

a norm is a seminorm which satisfies

(N.4) ‖x‖ > 0 if x 	= 0.

A linear space X with a seminorm is called a seminormed space, and a

linear space with a norm is called a normed space.

Remark 1.22 A seminorm is a paranorm. The conditions (P.1) to (P.4)

of a paranorm are trivial. Condition (P.5) follows from

‖λnxn − λx‖ = ‖λn(xn − x) + (λn − λ)x‖
≤ |λn| ‖xn − x‖ + |λn − λ| ‖x‖ → 0

if λn → λ and ‖xn − x‖ → 0 (n → ∞).

Thus every seminormed space is a linear semimetric space, and the con-

cepts of Cauchy sequences, convergence, continuity and completeness can

be translated from semimetric to seminormed spaces.

A normed space is called Banach space if it is complete with respect to

the metric given by its norm.

Example 1.23 (a) The sets IRn and |Cn are Banach spaces with

‖x‖∞ = max
1≤k≤n

|xk|.

Any two norms ‖ · ‖ and ‖ · ‖′ are equivalent on IRn or |Cn, that is, there

are constants C1 and C2 such that

C1‖x‖ ≤ ‖x‖′ ≤ C2‖x‖ for all x
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(b) Let 1 ≤ p < ∞. Then �p is a Banach space with

‖x‖p =

( ∞∑
k=1

|xk|p
)1/p

for all x ∈ �p.

Also Lp[0, 1] is a Banach space with

‖f‖p =

⎛
⎝ 1∫

0

|f |p
⎞
⎠

1/p

for all f ∈ Lp[0, 1].

The set C[0, 1] is a normed space with

‖f‖ =
1∫

0

|f(x)| dx for all x ∈ C[0, 1]

which is not a Banach space; it is a Banach space with

‖f‖∞ = sup{|f(x)| : x ∈ [0, 1]} for all f ∈ C[0, 1].

Now we turn to bounded linear maps. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be

normed spaces. Then L ∈ L(X, Y ) is called bounded if

‖L‖ = sup{‖L(x)‖Y : ‖x‖X ≤ 1} < ∞; (9)

‖L‖ is said to be the norm of L; the set of all bounded L ∈ L(X, Y ) is

denoted by B(X, Y ). In the special case of Y = |C, we write X∗ = B(X, |C)

for the set of all bounded linear functionals on X. It is well known, that

if X and Y are normed spaces and L ∈ L(X, Y ) then L is bounded if and

only if it is continuous. If X and Y are Banach spaces, then B(X, Y ) is

a Banach space with the norm ‖ · ‖ defined in (9); in particular, X∗ is a

Banach space with ‖ · ‖ defined by

‖f‖ = sup{|f(x)| : ‖x‖ ≤ 1}. (10)

368



A normed space is called uniformly convex if, for any ε > 0, there exists

δ > 0 such that

‖x‖, ‖y‖ ≤ 1 and |x + y‖ > 2 − δ together imply ‖x − y‖ < ε.

If we write the third inequality as ‖(1/2)(x + y)‖ > 1 − δ/2, we see that a

uniformly convex space is one such that if x and y are far apart members of

the unit disk, then their mid–point must be deep within it, since ‖x−y‖ ≥ ε

implies ‖(1/2)(x + y)‖ ≤ 1 − δ/2. Uniform convexity has to do with the

roundness of the unit sphere.

Example 1.24 Let IR2 have the norm ‖(x, y)‖ = |x| + |y|. We choose

e(1) = (1, 0) and e(2) = (0, 1). Then ‖e(1) + e(2)‖ = 2 > 2 − δ for all

δ > 0 while ‖e(1) − e(2)‖ = 2. Thus the space is not uniformly convex.

We close this section with the famous Hahn-Banach extension theorem

which is one of the fundamental theorems in functional analysis. It has ap-

plications in embedding theory, representation theory and existence theory,

as well as in classical analysis.

Theorem 1.25 The Hahn–Banach extension theorem

Let S be a linear subspace of a linear space V , ‖·‖ be a seminorm defined on

V and f ∈ S# with |f(s)| ≤ ‖s‖ for all s ∈ S. Then there is an extension

F ∈ V # of f with |F (v)| ≤ ‖v‖ for all v ∈ V .

The next two corollaries of Theorem 1.25 will be applied in Section 6.

Corollary 1.26 Let X be a seminormed space, S a linear subspace of X

and x ∈ X \ S. Then there exists f ∈ X# with f(x) = 1, f(s) = 0 for all

s ∈ S and ‖f‖ = 1/d(x, S) where d(x, S) = inf{d(x, s) : s ∈ S}; we intend

‖f‖ = ∞ if d(x, S) = 0.

Corollary 1.27 Let X be a seminormed space and x ∈ X with ‖x‖ 	= 0.

Then there is f ∈ X# with f(x) = ‖x‖ and ‖f‖ = 1.
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2 Hilbert Spaces

In this section, we introduce the concept of Hilbert spaces. We shall re-

strict ourselves to a study of Hilbert spaces as a special kind of normed

spaces, namely as Banach spaces with their norms given by inner prod-

ucts. Throughout this section, a linear space will always be understood as

a linear space over |C, unless explicitly stated otherwise.

Definition 2.1 Let V be a linear space. A map < ·, · >: V × V → |C is

called an inner or scalar product if it satisfies the following conditions

for all vectors u, v and w and all scalars λ

(SP.1) < u + v, w >=< u, w > + < v, w >

(SP.2) < λv, w >= λ < v, w >

(SP.3) < w, v >= < v, w > (the complex conjugate)

(SP.4) < v, v > > 0 if v 	= 0

A linear space with an inner product is said to be an inner product space.

Conditions (SP.1) and (SP.2) together mean that an inner product is

linear in its first variable. A real inner product is defined similarly ex-

cept that it is real valued, real linear in its first variable, and satisfies

< v, w >=< w, v > for all vectors v and w. The real case is always similar

and we shall assume it covered.

Example 2.2 As examples of inner products we have, in

(a) the space |Cn,

< x, y >=
n∑

k=1

xkyk
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for all n–tuples x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ |Cn;

(b) the spaces �p for 1 ≤ p ≤ 2,

< x, y >=
∞∑

k=1

xkyk for all sequences x = (xk)∞k=1, y = (yk)∞k=1 ∈ �p;

this series always converges, since

∞∑
k=1

|xkyk| ≤
( ∞∑

k=1

|xk|2
)1/2( ∞∑

k=1

|yk|2
)1/2

by Hölder’s inequality;

(c) the spaces L2[0, 1] and C[0, 1], < f, g >=
1∫
0

f(t)g(t) dt.

(d) Any linear space can be given an inner product. If H is an algebraic

basis and x =
∑

λh, y =
∑

μh, set < x, y >=
∑

λμ̄. (We observe that

only a finite number of scalars are unequal to zero in each sum.)

The next result is very important and can be applied to introduce a

norm on inner product spaces.

Theorem 2.3 Cauchy–Schwarz–Bunyakowski Inequality

Let V be an inner product space. Then

| < v, w > |2 ≤ < v, v >< w, w > for all v, w ∈ V ; (11)

equality holds in (11) if and only if v and w are linearly dependent.

Proof. Since the result is trivial if w = 0, we assume w 	= 0. Let

λ =< w, w > and μ =< v, w >. Then λ ∈ IR, λ > 0 by (SP.4), μ̄ =< w, v >

and

0 ≤ < λv − μw, λv − μw >

=< λv, λv > − < λv, μw > − < μw, λv > + < μw, μw >

= λ2 < v, v > −λμ̄μ − μλμ̄ + μμ̄λ = λ2 < v, v > −λ|μ|2.
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Thus | < v, w > |2 = |μ|2 ≤ λ < v, v >=< v, v >< w, w >, since λ > 0.

If | < v, w > |2 =< v, v >< w, w > then both ends in the above string of

inequalities are zero and so < λv − μw, λv − μw >= 0, hence λv − μw = 0

and λ 	= 0. Thus v and w are linearly dependent.

Conversely if v and w are linearly dependent, we may assume that v, w 	= 0

and then there is μ 	= 0 such that v − μw = 0. This implies

< v, v >= μ < w, v > and < v, w >= μ < w, w >, hence

μ| < v, w > |2 = μ < v, v >< w, w > .

Since μ 	= 0, this implies | < v, w > |2 =< v, v >< w, w >.

We now construct a norm from a given inner product.

Theorem 2.4 Let V be a linear space with inner product < ·, · >. Then

‖v‖ =
√

< v, v > for all v ∈ V (12)

defines a norm on V .

Proof. Obviously ‖v‖ ≥ 0, and ‖v‖ > 0 if v 	= 0. Furthermore ‖λv‖2 =

< λv, λv >= λλ̄ < v, v >= |λ|2‖v‖2, so that ‖λv‖ = |λ| · ‖v‖ for every

scalar λ and every vector v. Finally, by (11)

‖v + w‖2 =< v + w, v + w >

=< v, v > + < v, w > + < w, v > + < w, w >

= ‖v‖2 + 2Re(< v, w >) + ‖w‖2

≤ ‖v‖2 + 2| < v, w > | + ‖w‖2

≤ ‖v‖2 + 2‖v‖ · ‖w‖ + ‖v‖2 = (‖v‖ + ‖w‖)2.
This proves the triangle inequality.

Now we give the definition of a Hilbert space.

Definition 2.5 An inner product space is called Hilbert space if it is a

Banach space with the norm constructed by its inner product as in (12).
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Example 2.6 Every finite dimensional inner product space is a Hilbert spa-

ce. In particular, the space |Cn is a Hilbert space with the Euclidean norm

defined by

‖x‖ = (
n∑

k=1

|xk|2)1/2 for all x = (x1, x2, . . . , xn) ∈ |Cn.

The space �2 is a Hilbert space with its natural norm

‖x‖2 =

( ∞∑
k=1

|xk|2
)1/2

for all sequences x = (xk)∞k=1 ∈ �2.

The space L2[0, 1] is a Hilbert space with ‖f‖2 = (
∫ 1
0 |f |2)1/2 for all f ∈

L2[0, 1].

The fundamental property of an inner product, real or complex, is the

parallelogram law.

Theorem 2.7 Parallelogram Law

Let V be an inner product space and ‖ · ‖ the norm constructed by its inner

product as in (12). Then

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2 for all v, w ∈ V. (13)

Proof. The proof follows from

‖v ± w‖2 =< v ± w, v ± w >= ‖v‖2 ± 2Re(< v, w >) + ‖w‖2.

The parallelogram law is expressed in terms of the norm, the inner

product not occurring explicitly. Any norm not satisfying the parallelogram

law is not derived from an inner product.

Example 2.8 The spaces �p (1 ≤ p < ∞, p 	= 2) are not Hilbert spaces. We

put v = e(1) = (1, 0, 0, . . .) and w = e(2) = (0, 1, 0, . . .). Then, for p 	= 2,

‖v + w‖2
p + ‖v − w‖2

p = 22/p + 22/p 	= 2 + 2 = 2‖v‖2
p + 2‖w‖2

p.

373



Theorem 2.9 Let V be an inner product space, w ∈ V be fixed and f :

V → |C defined by f(v) =< v, w > for all v ∈ V . Then f ∈ V ∗ and

‖f‖ = ‖w‖.

Proof. We mean of course that f is continuous as a function on the

inner product space considered as a normed space.

The linearity of f is an immediate consequence of (SP.1) and (SP.2), and

the continuity follows from (11), since |f(v)| ≤ ‖v‖·‖w‖, and so ‖f‖ ≤ ‖w‖.
Furthermore f(w) = ‖w‖2 also implies ‖f‖ ≥ ‖w‖.

Since < v, w >= < w, v >, it follows that for fixed v ∈ V , the function

g : V → |C defined by g(w) =< v, w > for all w ∈ V is continuous.

Corollary 2.10 Let V be an inner product space. Then

v⊥ = {w ∈ V :< v, w >= 0}

is a closed linear subspace of V .

Proof. It is obvious that v⊥ is a linear subspace of V . That it is closed

follows from the continuity of the function f in Theorem 2.9.

Corollary 2.11 Let V be an inner product space. If
∑

wn is a convergent

series of vectors wn ∈ V , then <
∑

wn, v >=
∑

< wn, v > for all v ∈ V ,

that is < ·, · > is infinitely additive.

Proof. This is an immediate consequence of Theorem 2.9

Some norms are not derived from inner products. A norm derived from

an inner product must satisfy the parallelogram law. The converse of this

is also true.

Theorem 2.12 Jordan–von Neumann

A norm satisfying the parallelogram law is derived from an inner product.
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Proof. (i) First assume that V is a real normed space.

We put

< v, w >=
1
4

(
‖v + w‖2 − ‖v − w‖2

)
for all v, w ∈ V, (14)

and prove show < ·, · > is a real inner product.

It is clear that < v, w >=< w, v > for all v, w ∈ V , and < v, v >= ‖v‖2 > 0

for v 	= 0, that is, (SP.3) and (SP.4) are satisfied.

Now we prove (SP.1). Applying the parallelogram law to u + w and v + w,

u − w and v − w, we obtain

< u, w > + < v, w >= 1
4(‖u + w‖2 + ‖v + w‖2)

−1
4(‖u − w‖2 + ‖v − w‖2)

= 1
8(‖u + w + v + w‖2 + ‖u + w − v − w‖2)

−1
8(‖u − w + v − w‖2 + ‖u − w − v + w‖2)

= 1
8(‖u + v + 2w‖2 − ‖u + v − 2w‖2) = 1

2 < u + v, 2w > .

This proves

< u, w > + < v, w >=
1
2

< u + v, 2w > for all u, v, w ∈ V. (15)

If we put v = 0 in (15), then < u, w >= (1/2) < u, 2w > for all u, w ∈ V .

Replacing u by u + v in this relation and applying (15), we obtain

< u + v, w >=
1
2

< u + v, 2w >=< u, w > + < v, w > for all u, v, w ∈ V.

Thus we have shown (SP.1).

Since < v, w > is an additive function of v for each fixed w which is con-

tinuous by Theorem 2.9, it follows from Theorem 1.20 that it is linear. So

(SP.2) is satisfied. Thus we have shown that < ·, · > is a real inner product.

(ii) Now let V be a complex linear space.

We use relation (14) to define a product which will turn out to be the real

part of an inner product. We put

< v, w >IR=
1
4

(
‖v + w‖2 − ‖v − w‖2

)
for all v, w ∈ V.
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For fixed w, this defines a real–valued, real linear function. By Theorem

1.13, there exists, for each w, a linear function < v, w > of v with

< v, w >IR= Re < v, w >, indeed we have

< v, w >=< v, w >IR −i < iv, w >IR . (16)

Using relation (14), we observe

< iv, v >IR = 1
4
(‖iv + v‖2 − ‖iv − v‖2

)
= 1

4
(‖(1 + i)v‖2 − ‖i(1 + i)v‖2

)
= 1

4
(‖(1 + i)v‖2 − |i| · ‖(1 + i)v‖2

)
= 0,

that is < iv, v >IR= 0 for all v ∈ V . Therefore (16) implies < v, v >=

< v, v >IR= ‖v‖2 for all v ∈ V . It also follows from (14) that < iv, iw >IR=

< v, w >IR for all v, w ∈ V . Finally, making use of this identity, we conclude

< w, v > =< w, v >IR −i < iw, v >IR=< v, w >IR −i < w,−iv >IR

=< v, w >IR +i < iv, w >IR= < v, w > for all v, w ∈ V.

3 The Conjugate Space

We shall deal with a fixed Hilbert space H and investigate the continuous

linear functionals on H. We already know some of them. In Theorem 2.9

we saw that each a ∈ H leads to an f ∈ H∗ by means of the formula

f(x) =< x, a > for all x ∈ H; indeed, ‖f‖ = ‖a‖. We shall see in this

section that all elements of H∗ are of this form; the map from H to H∗ just

described is actually onto. This is the statement of the famous F. Riesz

representation theorem 3.7.

In the proof of Theorem 3.7, we need some results on uniformly convex

spaces.

Theorem 3.1 An inner product space is uniformly convex.
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Proof. Let ε > 0 be given. We choose δ = ε2/4. If ‖v‖, ‖w‖ = 1 and

‖v + w‖ > 2 − δ, then it follows from the parallelogram law that

‖v − w‖2 = 2‖v‖2 + 2‖w‖2 − ‖v + w‖2 ≤ 4 − ‖v + w‖2 ≤ 4 − (2 − δ)2

= 4δ − δ2 < 4δ = ε2.

Example 3.2 The space IR2 with ‖(x, y)‖ =
√

x2 + y2 for all (x, y) ∈ IR2

is uniformly convex.

The space l2 with its natural norm is uniformly convex.

Lemma 3.3 A convex set in an absolutely convex normed space has at

most one point of minimum norm. In other words, let C be a convex subset

of an absolutely convex normed space X and d = inf{‖c‖ : c ∈ C}. Then C

meets the ball B(0, d) = {x ∈ X : ‖x‖ ≤ d} at most once.

Proof. The result is obvious for d = 0. Therefore let d > 0. We

assume that c1, c2 ∈ C are two distinct points with ‖c1‖ = ‖c2‖ = d. Then

c = (1/2)(c1 + c2) ∈ C, since C is convex. Furthermore, X absolutely

convex implies ‖c‖ < d. For if we assume ‖c‖ ≥ d and choose a = (1/d)c1,

b = (1/d)c2 and ε = ‖a − b‖, then ε > 0 since c1 	= c2; moreover ‖a‖ =

‖b‖ = 1 and

‖a + b‖ =
∥∥∥∥1
d
(c1 + c2)

∥∥∥∥ =
1
d
‖c1 + c2‖ ≥ 2 > 2 − δ

for every δ > 0, hence X is not absolutely convex. The existence of c ∈ C

with ‖c‖ < d is a contradiction to the definition of d. Therefore C can at

most contain one point with norm d.

Lemma 3.4 If a sequence (an)∞n=1 in a uniformly convex normed space

satisfies the conditions ‖an‖ → 1 and ‖am + an‖ → 2, then it is a Cauchy

sequence.
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Proof. The condition ‖am + an‖ → 2 means, given δ > 0, there exists

N such that

| ‖am + an‖ − 2 | < δ for all m, n > N. (17)

The proof will be given in two cases.

(i) First we assume ‖an‖ ≤ 1 for all n.

Let ε > 0 be given and δ > 0 be chosen such that the conditions ‖a‖, ‖b‖ ≤
1, ‖a + b‖ > 2 − δ imply ‖a − b‖ < ε. Such a choice is possible, since the

space is uniformly convex. There exists N such that condition (17) holds.

This implies ‖am + an‖ > 2 − δ for all m, n > N and so ‖am − an‖ < ε for

all m, n > N by the choice of δ.

(ii) Since ‖an‖ → 1, we may assume ‖an‖ 	= 0 for all n. Then

2 ≥
∥∥∥∥ an‖an‖ + am‖am‖

∥∥∥∥ =
∥∥∥∥an + am‖an‖ + ‖an‖ − ‖am‖

‖an‖ · ‖am‖ · am

∥∥∥∥
≥ ‖an + am‖ − | ‖an‖ − ‖am‖ |

‖an‖ → 2 as m, n → ∞.

Thus by case (i), (an/‖an‖)∞n=1 is a Cauchy sequence. Hence (an)∞n=1 is also

a Cauchy sequence. To see this, let λn = ‖an‖ for all n, so that λn → 1

(n → ∞). Furthermore, let cn = an/‖an‖ for all n, so that ‖cn‖ = 1 and

(cn)∞n=1 is a Cauchy sequence. Then

‖am − an‖ = ‖λmcm − λncn‖
≤ |λm − 1| · ‖cm‖ + ‖cm − cn‖ + |1 − λn| · ‖cn‖ → 0 as m, n → ∞.

Theorem 3.5 In a uniformly convex Banach space X, every closed convex

set C has a unique element of smallest norm.

Proof. If 0 ∈ C then there is nothing to prove. If 0 	∈ C then

d = inf{‖c‖ : c ∈ C} > 0, since C is closed. Let (cn)∞n=1 be a sequence of

points of C with ‖cn‖ → d (n → ∞). Then for any m and n, ‖cm + cn‖ =

2‖(1/2)(cm +cn)‖ ≥ 2d since (1/2)(cm+cn) ∈ C by the convexity of C, and
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so, since also ‖cn‖ → d (n → ∞), we have ‖cm + cn‖ → 2d (m, n → ∞).

Applying Lemma 3.4 to the sequence (cn/d)∞n=1, we conclude that (cn/d)∞n=1

is a Cauchy sequence, and hence so is (cn)∞n=1. Since X is complete, the

sequence (cn)∞n=1 is convergent, cn → c (n → ∞), say. Then c ∈ C, since C

is closed, and ‖c‖ = d. That the element of smallest norm is unique follows

from Lemma 3.3.

Corollary 3.6 A nonzero continuous linear functional f on a uniformly

convex Banach space X assumes its maximum exactly once on the unit disk.

Proof. We apply Theorem 3.5 to the set C = {x ∈ X : f(x) = ‖f‖}.
Now we are able to prove the famous F. Riesz representation theorem

which is one of the most important results in the theory of Hilbert spaces.

Theorem 3.7 The F. Riesz representation theorem

Let f ∈ H∗. Then there exists a unique vector a ∈ H with

f(x) =< x, a > for all x ∈ H; moreover, ‖a‖ = ‖f‖.

Proof. We may assume f 	= 0.

(i) First we show the uniqueness of the representation

If such an a ∈ H exists then it will be unique. For < x, a >=< x, b > for

all x ∈ H implies < x, a − b >= 0 for all x ∈ H. In particular, we have

< a − b, a − b >= 0, hence a = b.

(ii) Now we show the existence of the representation and ‖f‖ = ‖a‖
Since H is uniformly convex by Theorem 3.1, f assumes its maximum

at some point b on the unit disk by Corollary 3.6. Then ‖b‖ = 1 and

f(b) = ‖f‖, by the definition of ‖f‖. We put a = ‖f‖b. Then

f(a) = ‖f‖f(b) = ‖f‖2 and ‖a‖ = ‖f‖. (18)
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(iii) Finally we show f(x) =< x, a > for all x ∈ H.

Let f⊥ = {x ∈ H : f(x) = 0}. First we observe that

‖a + λy‖ ≥ ‖a‖ for all y ∈ f⊥ and all scalars λ. (19)

This follows from Lemma 3.3, since f⊥ is a linear subspace, S = a + f⊥ is

a convex set, and so S has at most one point of minimum norm, namely a.

Therefore

< a, y >= 0 for all y ∈ f⊥.

To see this, we may assume ‖y‖ = 1. Then by (19)

0 ≤ ‖a− < a, y > y‖2 − ‖a‖2 = −| < a, y > |2, and so < a, y >= 0.

Hence we have shown

f(y) = 0 implies < y, a >= 0. (20)

It follows from (20) that there exists a scalar λ such that

< x, a >= λf(x) for all x ∈ H. (21)

To see this, let c 	∈ f⊥ and put

λ =
< c, a >

f(c)
.

Let x ∈ H be given and put

y = x − f(x)
f(c)

· c.

Then f(y) = 0 and (20) implies

< x, a >=< y, a > +
f(x)
f(c)

< c, a >= λf(x).

This shows (21). Putting x = a in (21) and using (19), we obtain

‖a‖2 = λf(a) = λ‖f‖2, hence λ = 1.

As an immediate consequence of the F. Riesz representation theorem

we obtain
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Corollary 3.8 Let H be a Hilbert space and T : H → H∗ defined by

Ta = fa where fa : H → |C is given by fa(x) =< x, a > (x ∈ H).

Then T is a conjugate–linear isometry onto.

Proof. By Theorem 3.7, T is an isometry onto. Let a, b ∈ H and λ be

a scalar. Then, for all x ∈ H,

T (a + b)(x) = fa+b(x) =< x, a + b >=< x, a > + < x, b >

= fa(x) + fb(x) = (Ta)(x) + (Tb)(x) = (Ta + Tb)(x),

hence T (a + b) = Ta + Tb, and

T (λa)(x) = fλa(x) =< x, λa >= λ < x, a >= λfa(x)

= λ(Ta)(x) = (λTa)(x),

hence T (λa) = λTa.

4 Orthonormal Sets in Inner Product Spaces

The material of the next two sections is a generalization of parts of Fourier

analysis, and, at the same time, of the study of Euclidean spaces. The

underlying concept is that of orthogonality.

The following will illustrate the geometric meaning of the scalar product

in IR2. Let v and w be nonzero vectors in IR2. Then

‖w − v‖2 = ‖v‖2 + ‖w‖2 − 2 < v, w > .

On the other hand, by the cosine law, the angle φ between v and w satisfies

‖w − v‖2 = ‖v‖2 + ‖w‖2 − 2‖v‖ ‖w‖ cos φ.

Thus < v, w >= ‖v‖ ‖w‖ cos φ. If ‖v‖ = 1, then < v, w >= ‖w‖ cos φ,

that is < v, w > is the length of the projection of w on the straight line
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in the direction of the vector v. So, if V is a real inner product space and

v, w ∈ V \ {0} then the angle φ between v and w is defined by

cos φ =
< v, w >

‖v‖ ‖w‖ with φ ∈ [0, π).

This leads to

Definition 4.1 Let V be an inner product space, and v, w ∈ V \ {0}. If

< v, w >= 0, then v and w are said to be orthogonal; we denote this

by v ⊥ w. If v ⊥ w and ‖v‖ = ‖w‖ = 1 then v and w are said to be

orthonormal. A subset M of V is said to be orthogonal, if x ⊥ y for

all distinct members x and y of M ; it is said to be orthonormal, if it is

orthogonal and ‖x‖ = 1 for all x ∈ M .

Example 4.2 (a) In |Cn, the set {e(1), e(2), . . . , e(n)} is an orthonormal set.

(b) In �2, the set {e(n) : n ∈ IN} is an orthonormal set.

(c) Let C[ − π, π] be given the real inner product

< f, g >=
π∫

−π

f(t)g(t) dt for all f, g ∈ C[ − π, π]

and the functions sn (n = 1, 2, . . .) be defined by sn(t) = (1/
√

π) sin nt.

Then the set {sn : n ∈ IN} is an orthonormal set.

If the class of orthonormal sets is ordered by inclusion, we may take a

maximal chain by the axiom of transfinite induction. Thus we have, taking

the union of the maximal chain, that there exists a maximal orthonormal set

in any inner product space. An orthonormal set is maximal if there exists

no vector except 0 which is orthogonal to all its members. If an orthonormal

set is fundamental then it is maximal. The sets in Example 4.2 (a) and (b)

are maximal, the set in Example 4.2 (c) is not, since cos ⊥ sn for all n.

The next result shows that a linearly independent set can always be

orthonormalized.
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Theorem 4.3 The Gram–Schmidt orthogonalization process

Let S = {sk : 1 ≤ k ≤ n} (n ∈ IN) be a linearly independent set in an inner

product space. Then there exists an orthonormal set B = {bk : 1 ≤ k ≤ n}
such that, for each k with 1 ≤ k ≤ n, the vector bk is a linear combination of

the set {s1, s2, . . . , sk}, that is, for each k there are scalars λkj (1 ≤ j ≤ k)

such that

bk =
k∑

j=1

λkjsj . (22)

Proof. Since S is a linearly independent set, sk 	= 0 for all k. We put

b1 =
s1

‖s1‖ , hence λ11 =
1

‖s1‖ .

Now we assume that, for some k ≥ 1, the orthonormal vectors bj (1 ≤ j ≤
k) have been determined to satisfy (22). Then we put

b̃k+1 =
k∑

j=1

λ̃k+1,jbj − sk+1. (23)

Since each vector bj is a linear combination of {s1, s2, . . . , sj}, the sum is a

linear combination of {s1, s2, . . . , sk}, and by the linear independence of the

set {s1, s2, . . . , sk+1}, we have b̃k+1 	= 0. Now the orthogonality condition

yields

0 =< b̃k+1, bm >=<
k∑

j=1
λ̃k+1,jbj , bm > − < sk+1, bm >

=
k∑

j=1
λ̃k+1,j < bj , bm > − < sk+1, bm >= λ̃k+1,m− < sk+1, bm >

for 1 ≤ m ≤ k, that is

λ̃k+1,j =< sk+1, bj > for 1 ≤ j ≤ k. (24)

If we choose the scalars λ̃k+1,j (1 ≤ j ≤ k) as in (24) then b̃k+1 ⊥
{b1, b2, . . . , bn}. Now we put

bk+1 =
b̃k+1

‖b̃k+1‖
=

1
‖b̃k+1‖

⎛
⎝ k∑

j+1

< sn+1, bj > bj − sk+1

⎞
⎠ .
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If we substitute the linear combinations (22) for b1, b2, . . . , bk in this repre-

sentation, then bk+1 also has a representation (22) and

λk+1,k+1 = − 1
‖b̃k+1‖

.

Example 4.4 We consider C[ − 1, 1] with the inner product

< f, g >=
1∫

−1

f(t)g(t) dt for all f, g ∈ C[ − 1, 1]

and the set S = {pn : n ∈ IN0} of powers pn(t) = tn (t ∈ [ − 1, 1]). From

Theorem 4.3, we obtain

L̃0(t) =
√

1
2 , L̃1(t) =

√
3
2 t, L̃2(t) =

√
5
3
(
3
2 t2 − 1

2
)

,

L̃3(t) =
√

7
2
(
5
2 t3 − 3

2 t
)

, . . . .

Each L̃n is a polynomial of degree n; the polynomial Ln with

Ln(t) =

√
2

2n + 1
L̃n(t)

are called Legendre polynomials.

Similarly, the Gram–Schmidt process applied to S on C[ − 1, 1] with the

inner product

< f, g >=
1∫

−1

f(t)g(t)w(t) dt where w(t) > 0 on [ − 1, 1]

yields the Chebyshev polynomials of first and second kind for

w(t) =
√

1 − t2 and w(t) =
1√

1 − t2
.

The Hermite and Laguerre polynomials Hn and Ln are obtained by applying

the Gram–Schmidt orthogonalization process to the sets {tn exp (−t2/2) :

n = 0, 1, . . .} on L2(−∞,∞) and {tn exp (−t/2) : n = 0, 1, . . .} on L2(0,∞),

respectively
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Now we consider a generalization of the classical Fourier coefficients.

Definition 4.5 Let S be an orthonormal set in an inner product space V .

For each v ∈ V , the set {< v, s >: s ∈ S} is called the set of orthogonal

coefficients of v (relative to S).

The familiar Fourier coefficients are a special case of orthogonal coeffi-

cients. In Example 4.2 (c), we have

< f, sn >=
1√
π

π∫
−π

f(t) sin nt dt for f ∈ C[ − π, π].

Theorem 4.6 Let S be an orthonormal set in an inner product space V

and v ∈ V . Then < v, s >= 0 for all but a countable set of s ∈ S, moreover,

arranging those s with < v, s >	= 0 in a sequence (sn)∞n=1, then

∞∑
n=1

| < v, sn > |2 ≤ ‖v‖2 (Bessel’s inequality). (25)

Furthermore, we have v =
∑∞

n=1 < v, sn > sn if and only if v satisfies

∞∑
n=1

| < v, sn > |2 = ‖v‖2 (Parseval’s relation). (26)

Proof. (i) First let S = {s1, s2, . . . , sn} be a finite orthonormal set.

Given v ∈ V , we put λk =< v, sk > for k = 1, 2, . . . , n and obtain

< v −
n∑

k=1
λksk, v −

n∑
k=1

λksk >

= ‖v‖2− < v,
n∑

k=1
λksk > − <

n∑
k=1

λksk, v > + <
n∑

k=1
λksk,

n∑
j=1

λjsj >

= ‖v‖2 −
n∑

k=1
λk < v, sk > −

n∑
k=1

λk < sk, v > +
n∑

k=1

n∑
j=1

λkλj < sk, sj >

= ‖v‖2 −
n∑

k=1
λkλk −

n∑
k=1

λkλk +
n∑

k=1
λkλk = ‖v‖2 −

n∑
k=1

|λk|2,

hence

0 ≤
∥∥∥∥∥v −

n∑
k=1

λksk

∥∥∥∥∥
2

= ‖v‖2 −
n∑

k=1

|λk|2, (27)
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and so
n∑

k=1

| < v, sk > |2 ≤ ‖v‖2. (28)

(ii) Now let S = {sn : n ∈ IN} be a countable orthonormal set.

Then inequality (28) holds for any n, so (λk)∞k=1 ∈ �2 where λk = < v, sk >

for k = 1, 2, . . ., and
∑∞

k=1 |λk|2 ≤ ‖v‖2.

(iii) Finally let S be an uncountable set.

Let v ∈ V and ε > 0 be given. We put Tε = {s ∈ S :< v, s > > ε}. Let

s1, s2, . . . , sn be distinct members of the set Tε. Then

‖v‖ ≥
n∑

k=1

| < v, sk > |2 ≥ nε2,

hence n ≤ ‖v‖2/ε2. Therefore, the set Tε is finite, and consequently the set

{s ∈ S :< v, s >	= 0} =
∞⋂

n=1

T1/n

is countable. Thus we have proved Bessel’s inequality.

(iv) Finally we show Parseval’s relation.

First we assume v =
∑∞

k=1 < v, sk > sk. Letting n → ∞ in (27) and taking

into account that (λk)∞k=1 ∈ �2, we conclude

0 =

∥∥∥∥∥v −
∞∑

k=1

λksk

∥∥∥∥∥
2

= ‖v‖2 −
∞∑

k=1

|λk|2,

and (26) holds. Conversely, if (26) holds, then letting n → ∞ again in (27),

we conclude ‖v −∑∞
k=1 λksk‖2 = 0, hence v =

∑∞
k=1 λksk.

Remark 4.7 If S = {sn : n ∈ IN} is an orthonormal set then

lim
n→∞ < v, sn >= 0 for all v.

If specialized to Example 4.2 (c), this yields a special case of the Riemann–

Lebesgue lemma.
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Theorem 4.8 Any two maximal orthonormal sets in an inner product

space V are in a one–to–one correspondence.

Proof. (i) First we assume that there exists a finite maximal orthonor-

mal set S = {s1, s2, . . . , sn}.
Given any v ∈ V , let w = v −∑n

k=1 < v, sk > sk. Then, for each j,

< w, sj >=< v, sj > − <
n∑

k=1

< v, sk > sk, sj >=< v, sj > − < v, sj >= 0.

This implies w = 0 by the maximality of S. Thus V = spanS. Also S is

linearly independent. Therefore S is an algebraic basis of V . Any other

maximal orthonormal set, being linearly independent, has no more than n

elements nor can it have fewer, since we can apply the above argument to

it.

(ii) Now we assume that there are two maximal orthonormal sets B and H

in V .

For each b ∈ B, let Hb = {h ∈ H :< b, h > 	= 0}. Every member of H occurs

in at least one set Hb. For otherwise, if there were h ∈ H with h /∈ Hb for

all b, then < b, h >= 0 for all b ∈ B, a contradiction to the maximality

of B. By Theorem 4.6, each set Hb is finite or countable. Hence, since

H =
⋃

b∈B Hb as just proved, |H| ≤ |B|ℵ0 = |B|. By symmetry, also

|B| ≤ |H|. The result now follows from the Cantor–Bernstein theorem.

In view of Theorem 4.8, we may define the dimension of an inner prod-

uct space.

Definition 4.9 The dimension of an inner product space is the car-

dinality of one of its maximal orthonormal sets.

Finite dimensional and infinite dimensional are unambiguous, since a

finite maximal orthonormal set is an algebraic basis and if there exists an

infinite orthonormal set, the space has infinite algebraic dimension.
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Example 4.10 The dimension of �2 is ℵ0, since {e(n) : n ∈ IN} is a maximal

orthonormal set.

5 Orthonormal Sets in Hilbert Spaces

The assumption of completeness allows the results of the preceding section

to be put in a more satisfactory form.

Theorem 5.1 Let B be an orthonormal set in a Hilbert space H and a ∈ H

be given. Then the orthogonal series
∑

b∈B < a, b > b is convergent.

If a′ =
∑

b∈B < a, b > b, then (a − a′) ⊥ B, that means (a − a′) ⊥
b for all b ∈ B.

It is understood that the countable set of those b ∈ B for which <

a, b >	= 0 (cf. Theorem 4.6) is arranged in a sequence. The value of the

sum does not depend on this arrangement.

Proof. We fix a ∈ H. Let S = {bn ∈ B :< a, bn >	= 0}. We put

λn =< a, bn > for n = 1, 2, . . .. If S = ∅, the result is trivial. Otherwise,

for any p, q ∈ IN with q > p, we have
∥∥∥∥∥∥

q∑
k=p

λkbk

∥∥∥∥∥∥
2

=
q∑

k=p

|λk|2. (29)

Since (λk)∞k=1 ∈ �2 by Bessel’s inequality, we see that (
∑n

k=1 λkbk)∞n=1 is a

Cauchy sequence, hence convergent by the completeness of H. Let a′ =∑∞
k=1 λkbk. Then a′ has the same orthogonal coefficients as a, for, if b 	∈ S,

then < a′, b >= 0 =< a, b >, and for each n

< a′, bn >=
∞∑

k=1

λk < bk, bn >= λn =< a, bn > .

In particular < a − a′, b >= 0 for all b ∈ B, that is a − a′ ⊥ B. Now

we assume that a” is the sum obtained in the above construction by some
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other ordering of the elements of B which are not orthogonal to a. Both

a′ and a” are infinite linear combinations of B. Moreover, a” has the same

orthogonal coefficients as a, hence as a′. This implies (a′ − a”) ⊥ B and so

(a′ − a”) ⊥ (a′ − a”), since a′ − a” is a linear combination of B. Therefore

a′ − a” = 0.

Corollary 5.2 Any maximal orthogonal subset of a Hilbert space is a ba-

sis for the space in the sense that every vector is a unique infinite linear

combination of the subset.

Theorem 5.3 A Hilbert space has countable (or finite) dimension if and

only if it is separable.

Proof. (i) First we assume that the dimension is uncountable.

Let B be an uncountable orthonormal set. For each b ∈ B, the set

U1/2(b) = {x ∈ H : ‖x − b‖ < 1/2}

satisfies U1/2(b) ∩ B = {b}, for if b′ ∈ B and b ⊥ b′, then ‖b − b′‖2 =

‖b‖2 + ‖b‖2 = 2. Thus there is an uncountable set of sets U1/2(b) in the

Hilbert space, and so the space is not separable.

(ii) Now we assume that the dimension is countable or finite.

Then the space has a Schauder basis and so is separable.

Remark 5.4 We have encountered three different types of bases, algebraic,

Schauder bases and bases in a Hilbert space. These concepts should not

be mixed.

An algebraic basis BV of a linear space V is a linearly independent set

which spans the space that is, every element v of V is a unique finite linear

combination of the set BV .

A Schauder basis BX for a linear metric space X is a sequence (bn)∞n=1

such that for every x ∈ X there exists a uniquely defined sequence (λ)∞n=1
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of scalars such that x =
∑∞

n=1 λnbn.

Finally a basis BH of a Hilbert space H is a maximal orthonormal set, such

that every x ∈ H is a unique infinite linear combination of BH .

For finite dimensional Hilbert spaces the three concepts are the same. Every

linear space has an algebraic basis, the space �∞ of all bounded sequences has

no Schauder basis. An orthonormal basis of a Hilbert space with countable

dimension is a Schauder basis.

Theorem 5.5 Let {bn : n ∈ IN} be an orthonormal set in a Hilbert space

H and (λn)∞n=1 ∈ �2.Then the series
∑∞

n=1 λnbn is convergent, and its or-

thogonal coefficients are λn.

Conversely, if λn are the orthogonal coefficients of some vector then (λn)∞n=1

∈ �2.

Proof. (i) First we assume (λn)∞n=1 ∈ �2.

For p, q ∈ IN with q > p, we have (29). Thus (
∑n

k=1 λkbk)∞n=1 is a Cauchy

sequence, hence convergent.

(ii) The converse part follows from Bessel’s inequality (25).

Example 5.6 The specialization of Theorem 5.5 to L2[ − π, π] and the

trigonometric system is called the Riesz-Fischer theorem.

Theorem 5.7 Two Hilbert spaces H1 and H2 with the same dimension are

congruent, that is there is an isomorphism T : H1 → H2 such that

‖T (a)‖ = ‖a‖ for all a ∈ H1.

Proof. Let B1 and B2 be bases with the same cardinality of H1 and

H2. We assume that f : B1 → B2 is a one–to–one correspondence from B1

onto B2. Given a ∈ H1, we have a =
∑

b∈B1
< a, b > b, where at most a

countable number of coefficients < a, b >	= 0 in the sum by Theorem 4.6.
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We put T (a) =
∑

b∈B1
< a, b > f(b). This series converges by Theorem

5.5. We have T |B1 = f , for the restriction of T on B, and it follows that

‖T (a)‖2 =
∑

b∈B1

| < a, b > |2 = ‖a‖2

by Parseval’s relation (26). Therefore T is norm preserving. Obviously it is

linear, thus it is an isometry. Finally, let a2 ∈ H2 be given. Then as before

∑
b∈B2

| < a, b > |2 < ∞.

This implies a1 =
∑

b∈B2
< a, b > f−1(b) ∈ H1, and

T (a1) = T

( ∑
b∈B2

< a, b > f−1(b)

)

=
∑

b∈B2

< a, b > f(f−1(b)) =
∑

b∈B2

< a, b > b = a.

This shows that T is onto.

As an immediate consequence of Theorem 5.7 we obtain

Corollary 5.8 Every n–dimensional Hilbert space is congruent with |Cn

(or IRn). Every infinite dimensional separable Hilbert space is congruent

with �2.

Corollary 5.9 Every Hilbert space is congruent with its dual space.

Proof. Let H be a Hilbert space and H∗ be its dual space. By Corollary

3.8, the map T : H → H∗ with

T (a) = fa where fa : H → |C is given by fa(x) =< x, a > (x ∈ H)

is a conjugate–linear isometry onto. If f, g ∈ H∗ correspond to a, b ∈ H

then < f, g >=< b, a >. Let F be a maximal orthonormal set in H∗, and B

be the set in H corresponding to F under the given correspondence between

H∗ and H. Then obviously B is orthonormal. Moreover it is maximal, for
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if a ⊥ B, then we consider f ∈ H∗ corresponding to a. Clearly f ⊥ F and

so f = 0 by the maximality of F . Thus a = 0. Therefore H and H∗ have

the same dimension and consequently they are congruent by Theorem 5.7.

6 Operators on Hilbert Spaces

In this section we study some properties of bounded operators and their

adjoint operators.

Let H be a Hilbert space. A continuous linear map from H into itself

is called a bounded operator; we write B[H] = B(H, H); B[H] is a Banach

space. The members of B[H] may be multiplied by composition. If S, T ∈
B[H], then ST is defined by (ST )a = S(Ta) for all a ∈ H. Then ST ∈
B[H], indeed

‖ST‖ ≤ ‖S‖ ‖T‖, (30)

since

‖(ST )a‖ = ‖S(Ta)‖ ≤ ‖S‖ ‖Ta‖ ≤ ‖S‖ ‖T‖ ‖a‖ for all a ∈ H.

Relation (30) is referred to as the multiplicative property of the norm.

Now we introduce adjoint operators. First we consider the more general

case of adjoint operators of linear operators between semimetric spaces.

Let X and Y be linear semimetric spaces and T ∈ B(X, Y ). The map

T ∗ : Y ′ → X ′ defined by T ∗f = f ◦ T for all f ∈ Y ′ is called the adjoint of

T .

We have to show that T ∗f ∈ X ′ for all f ∈ Y ′. First we observe that

(T ∗f)(x) = f(Tx) for all f ∈ Y ′ and for all x ∈ X,

T ∗f is a functional on X and its value at x ∈ X is f(Tx) by definition.
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Since, for all x, x′ ∈ X and all scalars λ,

(T ∗f)(x + x′) = (f(T (x + x′)) = f(Tx + Tx′)

= f(Tx) + f(Tx′) = (T ∗f)(x) + (T ∗f)(x′)

and

(T ∗f)(λx) = f(T (λx)) = f(λTx) = λf(Tx) = λ(T ∗f)(x),

it follows that T ∗f ∈ X#. Finally T ∗f = f ◦ T is the composition of two

continuous functions, hence T ∗f ∈ X ′.

Example 6.1 Let c0 = {x ∈ ω : limk→∞ xk = 0} be the space of all null

sequences, a normed space with ‖x‖∞ = supk |xk| for all x ∈ c0. We define

the map T : c0 → c0 by

Tx = (xk/k)∞k=1 for all x = (xk)∞k=1 ∈ c0.

Then ‖T‖ = 1, since

‖Tx‖∞ = sup
k

∣∣∣∣1kxk

∣∣∣∣ ≤ ‖x‖∞ for all x ∈ c0

and ‖Te(1)‖∞ = ‖e(1)‖∞ = 1. Furthermore, T is one–to–one, but not onto,

since Tx 	= (
√

k)∞k=0 for all x ∈ c0. The range of T is dense, since it

includes φ, the set of all finite sequences. We may consider T ∗ : �1 → �1,

since c∗0 = �1, that means, every sequence b ∈ �1 defines an f ∈ c∗0 if we put

f(x) =
∞∑

k=1

bkxk for all x ∈ c0, (31)

and conversely, for each f ∈ c∗0, there is a sequence b ∈ �1 such that (31)

holds. If b ∈ �1 corresponds to f ∈ c∗0, then, for all x ∈ c0,

(T ∗f)(x) = f(Tx) =
∞∑

k=1

bk
xk

k
=

∞∑
k=0

bk

k
xk,

hence T ∗(x) corresponds to the sequence (bk/k)∞k=1.
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A map T between seminormed spaces is said to be norm increasing if

‖Tx‖ ≥ ‖x‖ for all x.

Theorem 6.2 Let X, Y and Z be seminormed spaces, T, T1 ∈ B(X, Y )

and T2 ∈ B(Y, Z).

(a) Then T ∗ ∈ B(Y ∗, X∗) and

‖T ∗‖ = ‖T‖.

(b)The adjoint operator T ∗ is one–to–one if and only if the range of T is

dense.

(c) If X is complete, Y is a normed space and T is norm increasing, then

T ∗ is one–to–one if and only if T is onto.

(d) We have (T2T1)∗ = T ∗
1 T ∗

2 .

Proof. (a) (i) First we show that T ∗ ∈ L(Y ∗, X∗).

Let f, g ∈ Y ∗ and λ be a scalar. Then for all x ∈ X

(T ∗(f + g))(x) = (f + g)(Tx) = f(Tx) + g(Tx)

= (T ∗f)(x) + (T ∗g)(x) = (T ∗f + T ∗g)(x)

and

(T ∗(λf))(x) = (λf)(Tx) = λf(Tx) = λ(T ∗f)(x),

hence T ∗(f + g) = T ∗f + T ∗g and T ∗(λf) = λT ∗f .

(ii) Now we show ‖T ∗‖ = ‖T‖.
For all x ∈ X and all f ∈ Y ∗, we have

|(T ∗f)(x)| = |f(Tx)| ≤ ‖f‖ · ‖Tx‖ ≤ ‖f‖ · ‖T‖ · ‖x‖.

hence

‖T ∗f‖ ≤ ‖f‖ · ‖T‖ and so ‖T ∗‖ ≤ ‖T‖.
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To prove the converse inequality, we observe that, by the definition of ‖T‖,
given ε > 0, there is x ∈ X with ‖x‖ ≤ 1 and

‖Tx‖ > ‖T‖ − ε.

Furthermore, by Corollary 1.27 there is f ∈ Y ∗ with ‖f‖ = 1 and f(Tx) =

‖Tx‖. Then

(T ∗f)(x) = f(Tx) = ‖Tx‖ > ‖T‖ − ε and ‖x‖ ≤ 1,

hence ‖T ∗f‖ ≥ ‖T‖ − ε, and since ‖f‖ = 1, we have

‖T ∗‖ ≥ ‖T ∗f‖ ≥ ‖T‖ − ε.

Since ε > 0 was arbitrary, it follows that ‖T ∗‖ ≥ ‖T‖.
(b) First we assume that T ∗ is one–to–one.

It is sufficient to show that the range T (X) of T is fundamental, since it is

obviously a linear subspace of Y . For this, by Corollary 1.26, it is sufficient

to prove that any f ∈ Y ∗ with f(y) = 0 for all y ∈ T (X) is identically

zero. Let f ∈ Y ∗ and f(y) = 0 for all y ∈ T (X). Then, for all x ∈ X,

(T ∗f)(x) = f(Tx) = 0, since T (x) ∈ T (X). Thus T ∗f = 0, and so f ≡ 0,

since T ∗ is one–to–one.

Now we assume that T (X) is dense.

If T ∗f = 0 then f(Tx) = (T ∗f)(x) = 0 for all x ∈ X. Thus f(y) = 0 for

all y ∈ T (X), and so f ≡ 0, since T (X) is dense.

(c) First we assume that T is onto.

Then the range of T is dense and T ∗ is one–to–one by Part (b).

Now we assume that T ∗ is one–to–one.

Let y ∈ Y be given. Since the range of T is dense by Part (b), we can find

a sequence (yn)∞n=1 in T (X) with yn → y (n → ∞). Furthermore, for each

n, there is xn ∈ X with yn = T (xn). Since T is norm increasing,

‖xp − xq‖ ≤ ‖T (xp − xq)‖ = ‖yp − yq‖ for all p, q ∈ IN,
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and so (xn)∞n=1 is a Cauchy sequence in X which converges by the com-

pleteness of X, say xn → x (n → ∞). Then Txn → Tx (n → ∞), by the

continuity of T , and Txn = yn → y (n → ∞) together imply T (x) = y,

since Y is a normed space. Thus we have shown that T is onto.

(d) First we observe that T2T1 : X → Z and (T2T1)∗ : Z∗ → X∗ is given

by
((T2T1)∗h)(x) = h(T2T1x) = h(T2(T1x)) = (T ∗

2 h)(T1x)

= (T ∗
1 (T ∗

2 (h))(x) = (T ∗
1 T ∗

2 (h))(x)

for all h ∈ Z∗ and for all x ∈ X.

Since this is true for all x ∈ X, we have (T2T1)∗h = (T ∗
1 T ∗

2 )h, and from this

we conclude (T2T1)∗ = T ∗
1 T ∗

2 .

Now we consider Hilbert spaces.

Let T ∈ B[H]. Then the adjoint map T ∗ : H∗ → H∗ is given by

(T ∗g)x = g(Tx) for all g ∈ H∗ and for all x ∈ H.

If b ∈ H is the representative of g ∈ H∗ (cf. Theorem 3.7), that is

g(x) =< x, b > for all x ∈ H,

then we define

T ∗b to be T ∗g,

and we have

< x, T ∗b >=< Tx, b > for all x ∈ H.

This relation defines T ∗ ∈ B[H], moreover, it defines T ∗ uniquely, for

< x, T#b >=< Tx, b > for all x, b ∈ H implies

< x, T#b >=< x, T ∗b > for all x, b ∈ H,

hence T#b = T ∗b for all b ∈ H, and so T# = T ∗.
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Let X and Y be seminormed spaces. The map ∗ : B(X, Y ) → B(Y ∗, X∗)

is linear. For if T1, T2, T ∈ B(X, Y ) and λ ∈ |C then, for all g ∈ Y ∗ and for

all x ∈ X

((T1 + T2)∗g)x = g((T1 + T2)x) = g(T1x + T2x)

= g(T1x) + g(T2x) = (T ∗
1 g)x + (T ∗

2 g)x = (T ∗
1 g + T ∗

2 g)x,

hence

(T1 + T2)∗g = T ∗
1 g + T ∗

2 g = (T ∗
1 + T ∗

2 )g for all g ∈ Y ∗,

and so

(T1 + T2)∗ = T ∗
1 + T ∗

2 ,

and similarly

(λT )∗ = λT ∗.

Now we consider bounded operators on Hilbert spaces.

Since the identification from H∗ to H is conjugate linear, the map ∗ is

conjugate linear, that is for bounded operators on H, we have

(T1 + λT2)∗ = T ∗
1 + λT ∗

2 .

We also have

T ∗∗ = T for all T ∈ B[H],

since, for all a, b ∈ H,

< a, T ∗∗b >=< T ∗a, b >= < b, T ∗a > = < Tb, a > =< a, Tb >

and the adjoint is unique, this implies that the adjoint of T ∗ is T . Because of

the property that T ∗∗ = T , the map ∗ : B[H] → B[H] is called involution.

Furthermore, for all a ∈ H and all g ∈ H∗,

|(T ∗g)a| = |g(Ta)| ≤ ‖g‖ ‖Ta‖ ≤ ‖g‖ ‖T‖ ‖a‖

implies

‖T ∗g‖ ≤ ‖T‖ ‖g‖ for all g ∈ H∗,
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and so

‖T ∗‖ ≤ ‖T‖.

Replacing T by T ∗ and using T ∗∗ = T , we also have

‖T‖‖T ∗∗‖ ≤ ‖T ∗‖.

Thus we have shown

‖T ∗‖ = ‖T‖. (32)

(We already know this from Theorem 6.2 (a), but now, for Hilbert

spaces, the proof is much simpler.)

Theorem 6.3 Let H be a Hilbert space and T ∈ B[H]. Then

‖T ∗T‖ = ‖T‖2.

Proof. By the multiplicative property and (32)

‖T ∗T‖ ≤ ‖T ∗‖ ‖T‖ = ‖T‖2.

On the other hand, for any a ∈ H,

‖Ta‖2 =< Ta, Ta >=< a, T ∗Ta >≤ ‖a|| ‖T ∗Ta‖ ≤ ‖a‖2 ‖T ∗T‖,

and this implies

‖Ta‖ ≤
√
‖T ∗T‖ ‖a‖, hence ‖T‖ ≤

√
‖T ∗T‖.

Definition 6.4 An operator T ∈ B[H] is said to have an inverse T −1 in

B[H] if there exists T−1 ∈ B[H] such that

T−1T = TT−1 = I, the identity operator.

A bounded operator T is said to be self–adjoint or Hermitian if T ∗ = T .
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Theorem 6.5 For every T ∈ B[H], the operator I + T ∗T has an inverse

in B[H].

Proof. By Theorem 6.2 (c), it suffices to show that I + T ∗T is norm

increasing, since this implies that it is one–to–one. Let a ∈ H be given.

Then

‖(I + T ∗T )a‖ ‖a‖ ≥< (I + T ∗T )a, a >= < a, a > + < T ∗Ta, a >

= ‖a‖2+ < Ta, Ta >≥ ‖a‖2.

This implies ‖(I + T ∗T )a‖ ≥ ‖a‖.

Definition 6.6 The spectrum σ(T ) of a bounded operator T is the

set of all scalars λ such that the operator T − λI has no inverse. A scalar

λ is called a characteristic value of T if there exists a vector a 	= 0 such

that Ta = λa; then a is called characteristic vector corresponding to

λ.

Each characteristic value lies in the spectrum, since (λI − T )a = 0, so

λI − T is not one–to–one.

Example 6.7 We define T ∈ B[�2] by

Ta = (0, a1, a2, . . .) for all a = (ak)∞k=1 ∈ �2.

Then T is not onto, since e(1) 	∈ T (�2). Thus T has no inverse, and so

0 ∈ σ(T ). But 0 is not a characteristic value, since T is one–to–one.

It turns out that the characteristic values of self–adjoint operators are

always reals, and that characteristic vectors of different characteristic values

of a self–adjoint operator are orthogonal.
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Theorem 6.8 Let V be an inner product space, S ⊂ V and T : S → V a

function satisfying

< Ta, b >=< a, Tb > for all a, b ∈ S.

Then the characteristic values of T are reals and two characteristic vectors

in S corresponding to two different characteristic values of T are orthogo-

nal.

Proof. If λ is a characteristic value, and a a characteristic vector of T ,

then

λ‖a‖2 =< λa, a >=< Ta, a >=< a, Ta >=< a, λa >= λ‖a‖2,

and so λ ∈ IR, since a 	= 0.

Now let Ta = λa, Tb = μb, λ 	= μ and a, b 	= 0. Then λ, μ ∈ IR and

λ < a, b > =< λa, b >=< Ta, b >=< a, Tb >=< a, μb >

= μ < a, b >

implies < a, b >= 0.

Example 6.9 Let V = C[0, 1]. We fix f, g, h ∈ V with h(x) > 0 on [0, 1]

and define

< a, b >=
1∫

0

a(t)b(t)h(t) dt for all a, b ∈ V.

Let the subset S of V consist of those a ∈ V such that

D(f · a′) ∈ V ;

(here D means the derivative and a′ is the derivative of a) and such that

a(0)f(0) = a(1)f(1) = 0.

Finally let

Ta = (D(f · a′) + g · a)/h.
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Then < Ta, b >=< a, Tb > for all a, b ∈ S, for

< a, Tb > =
1∫
0

a(t)Tb(t)h(t) dt

=
1∫
0

a(t) d
dt(f(t)b′(t)) dt +

1∫
0

a(t)g(t)b(t) dt

= a(t)f(t)b′(t)|10 −
1∫
0

a′(t)f(t)b′(t) dt +
1∫
0

a(t)g(t)b(t) dt

=
1∫
0
(a(t)g(t)b(t) − a′(t)f(t)b′(t)) dt

and the result follows, since this is symmetric in a and b. We now apply

Theorem 6.8 to the differential equation

D[f(x)y′] + (g(x) − λh(x))y = 0

with boundary conditions

f(0)y(0) = f(1)y(1) = 0.

The result is that if a and b are solutions corresponding to distinct values

of λ then
1∫

0

a(x)b(x)h(x) dx = 0.

As a special case, consider y”−λy = 0 with y(0) = y(1) = 0. If λ 	= −n2π2

(n ∈ IN) then the only solution is y = 0. For λ = n2π2, we have y = sinnx.

The conclusion is
1∫

0

sin mx sin nx dx = 0 if m 	= n.
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Nǐs, Vǐsegradska 33, 18000 Nǐs, Yugoslavia
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