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RELATIVISTIC - COULOMB SCATTERING*
By E. H. pE GrooT** AND TH. W. RUNGROK
Institute for Theoretical Physics, Princetonplein- 5, P.O. Box 80.006, 3508 TA Utrecht, The Netherlands
(Received August 7,-1985)

Despite the extensive literature about Coulomb scattering a few problems remain
to be solved. Especially the divergence of the phase of the Coulomb wave function is a-source
of difficulties. Although they have been overcome, not’only in the Schrédinger equation,
but also in the Dirac equation, a correct treatment in the framework of a relativistic two-body
theory was still lacking. Recoil effects in particular were never taken into account, although
for high values of the nuclear charge they might be important. Z-values close to ope hundred
are beginning to play a role in high-energy scattering of heavy ions, so that a relativistic
two-body theory is called for. Of the many existing quasi-potential theories which could be
used for this purpose, we decided to choose the one proposed by us ten years ago. Since the
theory can be cast into a form which is almost identical to the nonrelativistic theory, it is
possible to take advantage of the known exact solution for this case. In the last section we
present our results and compare them with those of the Dirac equation. Also the difference
in cross sections for positively and- negatively charged projectiles is mentioned there.

PACS numbers: 11.10.Qr

1. Introduction

When trying to give a correct theory for Rutherford scattering it is not easy to avoid
all pitfalls. It is known that the exact scattering amplitude differs from the Born ampli-
tude by a mere phase factor, so that lowest order perturbatiofi theory already gives the
exact expression for the differential cross section. However, the calculation of this phase
factor, using an expansion in partial waves, leads-to a divergent series. The history of the
efforts.to. overcome or to ignore this difficulty was written by Marquez. [1].

Another way to obtain the correct phase factor is to treat the Coulomb potential as
the limit of a Yukawa potential with infinite range. This method was first used by Dalitz 2],
who showed for the Dirac equation that divergences in the perturbation series should
be considered as arising from the expansion of a phase factor, with a phase which

* A preliminary version of this paper was presented by one of us (Th.W.R.) at the XXV Cracow
Schoo! ‘of Theoretical Physics in Zakopane, Poland, June 2-14, 1985.
** On leave of absence from the University of Bielefeld, GFR.
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approaches infinity with the range of the potential. Therefore this infinity is harmless.
For the Klein-Gordon equation the same was shown by Kang and Brown [3].

Still another method to obtain the scattering amplitude was given by Schwinger [4],
who derived an exact formula for the Green’s function, which is finite as long as the energy
is off-shell. Later in this paper we will use Schwinger’s method for the scattering amplitude.

In the approaches mentioned so far the reduced mass was used to account for the
two-body character of the problem. For particles described by the Schrédinger equation
this is certainly correct. For the Dirac and Klein-Gordon equation, however, it is doubtful
whether this procedure gives a good approximation, especially for hlgh-energy scattering
of heavy ions, when recoil effects may become important.

Therefore a relativistic two-body theory is called for. Although many of such so called
quasi-potential theories exist, we prefer the formulation we introduced many years ago
[5]. A detailed discussion of this theory was presented recently [6] and we will therefore
restrict ourselves to a short exposition of the main features. This will be the content of the
next section.

So far the theory was applied to the effect of unitarity on multiparticle production
[5], to the fine structure of the hydrogen spectrum [7] and to the binding of electrons to
heavy ions [8].

In the present paper we will use the same theory to describe relativistic Coulomb
scattering of two charged particles. Special attention will be paid to the problem of the
infinite phase.

2. Resumé of ROM

In this section we will give a brief exposition of our theory [5, 6] for relativistic quantum
mechanical systems, which we call RQM.

Let M, be the scattering amplitude for a transition from a state j to a state a. In this
paper we will restrict ourselves to the case where not only f but also « is a two-particle
state, given for instance by the four-momenta « = (k,, k,). A summation over states will
be abbreviated as

[ = | dkydk,6(kE — M?)O(KS(k3 — m*)B(KS) .. )

so that the particles always remain on their mass shell, even for intermediate states.
The scattering amplitudes are normalised in such a way that the total cross section
is given by

o(B) = @ ) *'——J.“\'Iaﬁ!264(P —Py), ¥))

2\//(3, M?

where P, and P, are the total four-momentum of « and B, where A(x, y, 2) = x*+y? + 22
—2xy—2yz—2xz and where s = (P, % Py)*.
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Unitarity of the S-matrix is expressed by

M}—Mp, = 2mi [ MygM, 0,(P,—P,) for P,= P, )
7

As the Lorentz invariant generalisation of the Lippmann-Schwinger equation we now
choose (P is the four-momentum of the initial state):

Mg (P) = Vg, ——yj Ve L (PYM ,(P), “)

where the potential ¥, and the propagator L,(P) are Lorentz invariant and must be chosen
in such a way that the nonrelativistic limit can be recovered and the potential is hermitian
V;; = V,5. Also the unitarity in the form of Eq. (3) must be a consequence of Eq. (4).
This can be guaranteed by choosing L,(P) properly. In-order to show this we write Eq. (4)
as M = V—-VLM, with V+ = V,; From this follows

MM = ~-M'L'V+V'LM = —M*L*(M+VLM)+(M* +M"L'V)LM
= M*(L—-L)M.

This is just the expression of Eq. (3) for unitarity, provided the imaginary part of the
propagator is given by

Im L(P,) = n8,(P,—P,). (5)

In order to satisfy this relation and at the same time to fix the real part, we choose the
following manifestly Lorentz invariant dispersion relation for the propagator

o0

2xd
L(P) = f x—zl)ffi_z} 34(P,—xP). (6)

0

Since the total velocity of the state is equal to the three-momentum divided by the energy,
we see from the d,-function in Eq. (6) that

V, = B,JPO = xPB|xP® = P|P° = V.

Therefore the intermediate states y in Eq. (4) all have the same velocity as the initial state.
This conservation of velocity replaces the conservation of three-momentum in other quasi-
-potential equations. In figure 1 we show in which respect the sets of allowed intermediate
states for this relativistic theory and for the nonrelativistic case are different from each
other. It also demonstrates that the nonrelativistic theory is recovered when the velocity
of light goes to infinity.

In order to define the potential as a function of relativistic invariant variables we consid-
er Fig. 2. Usually the square of the momentum transfer in the upper and in the lower
vertex are defined by ¢, = (g, —k,)? and 1,.= (g,—k,)*. If in the interaction the four-
-momentum is conserved, then ¢, and ¢, are equal. In our approach, however, we do not
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M.m

Fig. 1. The heavy lines show the allowed momenta in the relativistic and in the nonrelativistic case. (M+ m)?

= Min P2
r Y
Q1' k1.
s" (VD '
9, k2, M

Fig. 2. Interaction as occurring in Eq. (4). The intermediate state ¥ is off four-momentum shell

have energy-momentum conservation in the intermediate states and consequently #, # 7,.
Instead we keep the particles on the mass shell and go off the four-momentum shell in
a way which treats energy and momentum on the same footing. According to the new
conservation law the velocity of the intermediate state is the same as of the initial state.

This is expressed by k, +k, = x(q,+4¢,). From this follows

Vs = ks +ko)? = x V(g +az)* = x V5",

g0 that

ky+k, _ q,+4;
\/S' \/S”
Defining
~ q, ky 2
t, = Vs'’s ( —;) and 1 —\/s"'(-——
1 Jsll \/sl 2

NIL - Vs

)

2
ki) , @®
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it is seen from Eq. (7) that 7, = 7, = t. For s’ = s’ this definition coincides with the usual
t-variable. An invariant form of the potential is therefore obtained by assuming it to be
a function only of the variables s, 5"/ and 7.

In particular it was shown [6-8] that for the attractive Coulomh interaction the na.
tential is given by

- 2o0mM R X
V(t) = s with o= 5+. )

With this potential the fine structure of the hydrogen spectrum [7] and the binding of
electrons to heavy ions [8] was calculated before.

In the present paper we want to apply this theory to Coulomb scattering. Since,
however, the nonrelativistic theory will be at the basis of our considerations, we will first
discuss the connection between the two theories.

3. The relation with the nonrelativistic theory

We begin by reminding the reader of the Lippmann-Schwinger equation for the scatter-
ing of two particles with masses M and m and reduced mass u = Mm/(M+m):

V(E k"MK, klko)

Mg(K', klko) = V(k"k)—Z!if Kkl dk'"’. (10)
From the solution the differential cross section is calculated as
do 5 2 1 P2 . e 7 ;
o = —— = P MK, B)*  with K| = K, (1)
dcos @

where Mye(k', k) = lim Myg(K, klko). If we try to solve Eq. (10) by way of an expansion
ko (%]
in spherical waves:

Myg(K', kiko) = Y, (21+1)P(cos O)MI™(K', klko), (12)
=0
the partial wave amplitudes have to satisfy
MYk, klko) = V(K k)-Snuf

0

2 12

m ViK', K YME (K", kiko), (13)
P e

where the relation between V,(k’, k) and V(K’'—k) is the same as betwéen M}® and M.
Phase shifts are defined by

i3

- Ak sin &, 14

Mk, klk) =
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Now in order to find the relation with our amplitude My, of Eq. (4), we again expand in
spherical waves:

4mM
s’y s

Mﬁa

z 21+ 1)M (s, 5)Py(cos 6), {13

where 0 is the scattering angle in the rest system and

[A(s M2, m*)i(s; M2, m2)]1/2

s's

(s’, 8) =

(16)

The potential ¥V}, is expanded in the same way as in Eq. (15) with coefficients ¥(s’, s).
For these-partial wave amplitudes the following equation holds “[6]

Vi(s', s"YM(s"", sisp)ds"’
. . (s s , 17
i, s1s0) i(s', s)—dnm J \,/).(s", M3 m )(s —So—le) '( )

M+m)?
The phase shifts are defined by
M(s, sls) = \_/%1‘!@@ ¢ sin 3, (18)
while the differential cross section is
o= 20T (19
dcos 0 s

with M, given by Eq. (15) for s’ = s.
The resemblance between Egs. (13) and (17) is striking and can almost be turned into
an identity by defining M, and V] as follows:

M(s', s|sq) = FM(K', klk,) and V(s', s) = FV(K', k), (20)
with

\/k’

F=—" [l(s M2, m?)(s, M?, m¥)]"4, 1

The relation between s and k& and between s’ and k' is

Mm m/M

=(M 2 2 : [ M 2 2 : = = 22
s=(M+ml’+k*v; s'=(M+m)’+k'’lv; v DTrm) ~ AT mM) (22)
and similarly for s, and k.
Eq.-(17) then turns into
! 7 ! k"zdk" I7 ’ tINRA X H .
MK, klko) = Vi(K', k)—8mp POz ViK', K YM (K", kikq). (23)

0
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Since this equation is of exactly the same form as Eq. (13) we deduce from Eq. (12) that

M(K', klko) = Y (214 1)P,(cos O)M(K', kiko) (29)
{

can be found as the solution of the equation

. o o £, V(K R DHME”, klk
M(k,’ k[k()) = V(k’3 k)‘—Zﬂ dk“ ( n2) (2 . | 0)‘
k ’_ko—le

(25)

which differs from the nonrelativistic Eq. (10) only in that the potential is not a function
of the difference k' —k, so that it is nonlocal.
Using Eqgs. (15), (20) and (24) the relation with the original amplitude M, becomes

8u «/E’?&

b = [i(s", M2, m3)i(s, M?, m?)]'7* M(E Flko) (26)

This gives for the differential cross section 6f Eq. (19):

o = R2aSPAIME, KIk)2,  with K| = k] = k, @n
and
4= ak?s _ 4us _ 1+Kk*Mm
A, MEm?) s—(M—m)® 1+k¥H4p?

(28)

The relation between V(E’, k) and V(?) is the same as between M (E’, k lko) and Mp,. Inserting.
Eq. (9) this gives

ao(M+m)  [A(s', M2, m>i(s, M2, m*)]"*

V(E’a ’-é) = —_— 29
4n* VK'ks's t 29)
in which ¢ must be read as
f = to(s’, s)+1(s’, s) cos 6, (30)
with 1 given by Eq. (16) and where
-1
to(s', 5) = [s's = (M2 +m?) (s’ +5)+(M* —m*)?]. 31)

2/s's

This potential seems to be comj)letely different from the nonrelativistic potential V(k’—k)

occurring in Eq. (10), which for the Coulomb interaction ¥(r) = — —a~_is given by
r
VE—F) = —— [ @D T piar = — 22 (32)
2n)? 2n |k — k|
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However, it is possible to show that V(k’ k) and V(k’ k) are closely related and that for
low energy they become identical. For that purpose we make a change of variables from k to

-

- k
z= m’ (33)
which can be interpreted as the velocity of a particle with mass 2y and momentum k. In
the same way we»define z, = ——mk0—~ . The quantities s, A(s, M2, m?), t,(s', s) and
NI

7(s’, 5) can all be expressed in terms of these new variables. After substitution into Eq. (29)
this gives the following form of the potential:

L« [a=2Ha-zP*

V(E,2) = - s 34
(Z z 271,2(2”)2 IZI_ZIZ ( )
If in the nonrelativistic potential of Eq. (32) we substitute k ='2p§, we obtain
T, o a 1
VE-3) = - SEpl (35)

202 Q2u)* |2’ -z

which for low energies is the same as Eq. (34).

- In order to bring Egs. (10) and (25) in the simplest possible form, we once more define
new scattering amplitudes as a function of the variables of Eq. (33) for the full relativistic
case and as a function of z = E/Zu for the nonrelativistic equation. By writing

FIR, Rk = 2 [(1=2%) (1= P46, Fzo) 36)
and
Myr(E', Elko) = Z Gnr(@'s Z\20), 37
the equations (25) and (10) become
i [ GG, Fizo)dE!
GG 2'izo) = _5_1:;'2 T 2:: . 12«?;2 ',(z'['zoidzg—ie) 3%)
and
GrnG, 320 = M;—{sz + %2:&_%(2"2 :,','f”f: . (39)
The difference between the two equations is twofold:
a) The coupling constant is reduced 'from_ o to
& =a(l—2z2) = i o. (40)

k3 +4u®
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b) In Eq. (38) the integration is restricted to 1z''| < 1 (which is indicated by an asterisk),
while in the nonrelativistic case of Eq. (39) there is no such restriction.
Finally the differential cross sections calculated with these amplitudes are

_ %q@* 14k Mm

o AT iG(Z', zl2)I? (41)
and
2na’ - -2
ONR = —-“?— . lGNR(z N ZIZ)I . (42)

Before applying these formulae, however, a common correction factor must be applied
to the scattering amplitudes, which takes into account that the asymptotic states are not
really plane waves. This factor will be given in the next section.

4. The nonrelativistic equation

Since the real problem of solving Eq. (38) is so close to the nonrelativistic scattering
problem of Eq. (39), we will first address ourselves to the latter. In doing so we will use
the method of Schwinger [4] for the calculation of the Green’s function.

We first consider the function G(z, z’|z,), which, for positive real values of z, is defined
by the equation

-,

G(E", z'|z,)dz"’

G = .
(Z Z lzl) ‘2 211: |Z n (Z"2+Z%)

43

Later the function Gyg(Z, 7'1z,) is then obtained by analytic continuation of G(Z, Z'|z,)
to the complex value z, = —izs+e.

We apply a stereographic projection onto the surface of a four-dimensional sphere
with unit radius, by introducing the variables
22,2 23 —2z?

’ éo = 5
22422 22 +22

= E=04+8=1 (44)

and similarly for the primed variables. Defining H(&, &'|z;) by

GG, 3)2)) = 2721 +E0) (L+EDH(E, E'12,), @5)
Eq. (43) reduces to
, 1 H N’ vt .,
HE, &z, = "2%??*555[7%2%%9"“’ (46)

where f = —2%— and dQ'’ = sin? u sin 8 dud0d¢ is the surface element of this four-dimen-
- 1

sional sphere with &, = cos u and # and ¢ the polar and azimuthal angles of z''. Since
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this equation is manifestly O(4)-symmetric, a solution can be obtained by expanding in
spherical harmonics Y,;,,(¢), which are properly normalised, i.e.,

j Yr:m(é)y;l‘l’m’(é)dg = 5nn’6ll'5mm" (47)

Some of the series which are going to occur do not converge, however. For that reagbn
we consider H(&, €'|z,) as the limit of another function,

H(fa 6,121) = hni Hq(é’ élizl)’ (48)
et

which is defined by the equation

H(¢&, &zy) =

1 1 B J H(E", &'l2,)dQ" @)

TR (-0 reC—8) | 27 ) (I-0P+eG-E )
With the help of
1 1 Qn_l * '
2? ‘ (I_Q)2+Q(§_€l)2 = Z __n_ Y;tlm(é)xllm(é ) (50)

nlm

this function is found to be given by

n—1
Ha(éi zf'lzl) = - Z n——gﬁ@;——l Yntm(é)yn?m(é')' (51)
nlm
1
n=1 n-1
Using ““*I——T _1_ JQ—_I— LA P et =_Jx"’”'1dx, we
n—pfo" no n(n-Be" ) n  nn-p n—p

obtain

x Fdx

1
ey— L _ B
H(E, E'zy) = 2n3(E—E')? 2n2J(1—x)2+X(5—§I)2 .
0

(52)

This is also equal to

1
d 1

— 2 -1
-

1 s dfe N\
e A (S o
(V]
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In the analytic continuation to the point z; = —iz,+¢ the parameter f is to be replaced

by = in withn = 2—“— . The quantity (£ —£’)? occurring in the integral (53) can be written
. Zo

as (£—-¢)* = 6! with

5= — (zz—zg—is)(z'z—z(z,-—is). (54)

4z2|z-z'|*

In the next section it will be seen that for the calculation of the differential cross section
in the relativistic case at least one of the vectors z and z’ will have a length equal to z,.

1 2
This implies that we need the integral of Eq. (53) only for § — 0. Therefore (:/—_ - \/32)
X

can always be neglected with respect to 51, except for very small x, when it can be replaced
by x~!. The integral can then be evaluated and we find

- ot g
H(z,z'|zp) = — —5
Az Ziz0) 2n*  sinh 7y

for 6-0. (55)

Using Bq. (45) the nonrelativistic amplitude can now be calculated either fully on-shell,
ie., |Z| = |2'| = z,, gving G&g, or half-on-shell, i.e., |2| = z, and |z'| > z, or 2’| = z,
and |z] > z,, giving Gig. Writinge = 4225, where & now is a dimensionless positive infinite-
- simal number, the functions GLz and Gry are found to be

- . -1 - in log 4707 nn =\ — 2
Gi , ! = ey jz=z'|2 . — )z i 56
ne(Z, 2'120) 2z —7 2 e sinh 77 @ (56)

for |z| = |z'| = z, and
1 it log Lo nn

- in log ———— .
Gre(Z, Z'|20) = —5—— Z-712 - @)™ (57
NR(Z 2 lzo) 272212—2,‘2 e (sinh n") ( ) )

for |z| = z,, but z'2 > 22,
The differential cross section for nonrelativistic scattering is proportional to G2

T
It was argued, however, by Schwinger [4] that the factor 1

belongs to the asymptotic
n

in- and outgoing states, which are not plane waves, and should therefore be omitted.
Although the phase of (£) 2" = ¢~ 2""!°¢¢ becomes infinite for & — 0, it does not contribute
to the cross section and neither does the other exponential in Eq. (56)..In this way we
obtain the well known result that the remaining part of Gig is equal to the square of the
Born-amplitude.

The conclusion is that also for the relativistic case, to be treated in the next section,

a factor s_;" should be omitted from the fully on-shell amplitude.
1 nn
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5. The relativistic equation
We begin by writing Eq. (38) in operator form
G,= K—KPG, = K-G.P.K, (58)

in which the matrix elements of K are given by

. -1
K ™= T Y T
GIKEY = 5=z (59)
and P, is a diagonal operator in the z-representation, which vanishes outside the sphere
1z} = ¢:

. _(z=Z")0(c— |2
z|Pz') =& ( T

z C—zy—ig

(60)

For Eq. (38) the value of the cut-off is ¢ = 1, while for ¢ = ¢’ = o0 Eq. (58) reduces to the
nonrelativistic Eq. (39), provided we there replace « by & (Eq. (40)) and take z, as

s (M+m)?
ko \/so (M +m) 61

2 = ——— = .
* Jidta  Nso—(M—m)?

The same replacements should be made in Egs. (56) and (57), so that n becomes
&
= 62
n 370 (62)

We now want to derive an equation for G, in which X is replaced by G. = Gyg.
The motivation is that in this way the difficulties connected with the diverging phase factor
(the infrared catastrophe) are located and can easily be taken care of through Egs. (56)
and (57). Using Eq. (58) we derive

(1-6.P)G, = 1-GP)K(1-P.K,) = G(1-P.G,.),
from which follows immediately
G, = G.—G(P.~P.)G,,
or with ¢ —» 1'and ¢ o0o:

Gz, 2" 120)Grr(Z"", Z'l20) |, ,,
: s dz"". (63)

2o

G(z,2'|20) = Gar(3, 2'|20) + 8

z
jz7i>1

The term ie in the denominator of the integrand could be omitted because z5 < 1 and
z'’?2 > 1 in the whole integration region.
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We have not been able to solve this equation. We did, however, evaluate the first
two terms in the Born series, at least for |z| = |z’| = z,, which is required for the calcula-
tion of the differential cross section in this approximation. For this case we find

Gll:k(—z: Elzo)(}gn(&, E'fzo) -

Gz, 2'120) = Gir(z, 2'1zo) +8& 3 dp, (64)
U _Zo

Je}>1

in which Gz and G&y are the fully on shell and half on shell nonrelativistic amplitudes
as given in Egs. (56) and (57), but with the new definitions of z, and 5. Substituting these
amplitudes we find for G as a function of z, and of the angle § between z and Z':

_ n"(é)—Ziq [ 2iq log S & 7”]8“

G(0, zo) =
©, z0) sinh gy | 8a2%z38%. T4t “Jmhn

H(O, Zo)] (65)
in which S = sin 3 6 and

P L P Ea L dv
H(®, zo) = . F e (66)

(v ~25) (0 —23) * lz—2* - '~

Jol>1

As mentioned before the factor in front of the brackets in Eq. (65) should be omitted whea
the differential cross section as given in Eq. (41) is calculated. Taking only the first term
inside the brackets, and using the relations between z,, k and s as given in Eqgs. (22) and
(23), we obtain in Born approximation

s 8na’M?*m3s
= "3 2 32\ (67)
sin® 1 6 - 4%(s, M*, m?)
In the nonrelativistic limit this reduces to
2 .
o
O'B = T ’ 68
N 2u®(Pm)* sin* Lo (68)

which is the Rutherford formula. In this expression P is the momentum of the particle
with mass m in the system in which the other particle with mass M is at rest. As a function
of the invariant variable s it.is given by P = \/}.(s, M2 m?)2M.

The correction to the Born cross section of Eq. (67) is given by R = (¢ —¢®)/c® and
upon substitution of Eq. (65) is found to be

8 3.2 o
Rz—ﬂsinz%()- ‘e {Re H - cos (1 log sin®  6)
T sinh 7n
+Im H - sin(n log sin® § 6)} (69)
with
_ a(1—z3) (70)

2z
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The calculation of this R depends on our ability to evaluate the integral of Eq. (66)
for H(0, z,). For zero energy, i.e. for |z|2 = |2'|* = z& = 0 it is easily found to be equal to

4n
H(@6,2zy = 0) = 3 (71)
For low energies we find in this way
4Po® ) e™ 21
R= - sin® 3 0 - — - cos (i log sin® £ 6), (72)
3m sinh 7y

with = am/P and P as before. For low velocities P/m of the projectile particle n therefore
will be large and R will have many oscillations as a function of 0. The amplitude, however,
will be very small if « = 1/137. It will become larger if the target particle carries a charge
Z > 1. Then o must be replaced by Zx and P need not be too small in order to get a larger
value of 7.

For higher energies we see from Eq. (70) that # becomes smaller, so that the oscilla-
tions will disappear. In this case it may be a good approximation to replace the phase
factor in the integral of Eq. (66) by unity. The function H(#, z,) can then again be calculated
in closed form. The result is

/1 g+1
H(S, Zo) = 4—2—3—S—2 {log C- log (q_—\—l) +SF(0, Zo)} s (73)

1
with S =sin 60, C =cos 30, ¢ = -;—(zo+ —)‘and

29,
(g—x)(g+1)
F(8, zo) = @+0@-1) (74)

(1-x3)/x?=C?

This function can be expressed in terms of dilogarithms, but a numerical calculation is more
reliable. For high energies z, goes to 1,  goes to zero and the correction factor behaves as

32
R~ — a—nsinzéo. (75)

It is therefore in the intermediate energy range that the effect is largest.

For a repulsive Coulomb intéraction the sign of # is changed. Because of the factor
e™ the correction R is reduced drastically in this case.

The results of our calculations, based on Egs. (69) and (73), are shown in the next
section.
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6. Summary and conclusions

For high energies and large scattering angles the elastic collision of protons or anti-
-protons with heavy nuclei is dominated by nuclear forces. Only for small angles and not
too high energies the Coulomb interaction plays an important rdle. Relativistic effects may
nevertheless be important and are therefore taken into account in this paper, neglecting
hadronic interactions altogether. )

Electron scattering by a point charge was calculated by Fradkin, Weber and Hammer
[9], who used the single particle Dirac theory to incorporate relativity. Virtually no two-
-particle theory of the quasi-potential type has been applied to the problem of Coulomb
scattering so far. Especially the difficulties connected with the infinite phase shift and the
distortion of the asymptotic plane waves have not been discussed in this framework.

Returning to a relativistic two-particle theory which we formulated many years ago
{5], we now calculated the corrections to the Rutherford formula for the differential cross
section. As the authors of reference [9], we also find corrections which are oscillatory in
the scattering angle. Figures 3 and 4 show this effect for the scattering of anti-protons on
a Ca- or Ag nucleus. Rather pronounced oscillations occur at low energy, but the magni-
tude of the corrections is largest at intermediate energies. In comparing figures 3 and 4
it is seen that a higher nuclear charge gives a larger correction factor. Extensive calcula-
tions, however, are needed for still higher charges, when third order effects become im-
portant,

New effects are expected for the scattering of positively charged particles. Due to the
repulsion the correction factor should, and indeed is much smaller than in the attractive
case, as can be seen in figure 5 for proton-Ag scattering.

The authors are grateful for the many times they attended the Cracow summerschool
in Zakopane. One of us (E.H.de G.) thanks the Institute of Theoretical Physics in Utrecht
for the hospitality extended to him.
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