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Abstract

The standard cosmological model has been very successful in describing the evolution
of the Universe from the first seconds until today. However, some challenges still remain
concerning the nature of some of its components as well as observationally probing some
of the periods of its expansion. In this thesis we discuss what are probably the three
least known components of the Universe: neutrinos, dark matter, and dark energy.

In particular, concerning the neutrino sector, we place limits on the relic neutrino

asymmetries using some of the latest cosmological data, taking into account the effect

of flavor oscillations. We find that the present bounds are still dominated by the limits

coming from big bang nucleosynthesis, while the limits on the total neutrino mass from

cosmological data are essentially independent of θ13. Moreover, we perform a forecast for

Cosmic Origins Explorer, taken as an example of a future cosmic microwave background

experiment, and find that it could improve the limits on the total lepton asymmetry. We

also consider models of dark energy in which neutrinos interact with the scalar field sup-

posed to be responsible for the acceleration of the Universe, usually implying a variation

of the neutrino masses on cosmological time scales. We propose a parameterization for

the neutrino mass variation that captures the essentials of those scenarios and allows

one to constrain them in a model independent way, that is, without resorting to any

particular scalar field model. Using different datasets we show that the ratio of the mass

variation of the neutrino mass over the current mass is smaller than ≈ 10−2 at 95%

C.L., totally consistent with no mass variation. Finally, we discuss how observations of

the 21-cm line of the atomic hydrogen at the early universe have the potential to probe

the unexplored period between the so-called dark ages and the reionization epoch of

the Universe, and how it can be used to place limits on particle physics properties, in

particular constraints on the mass and self-annihilation cross-section of the dark matter

particles.
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Resumen

El modelo cosmológico estándar ha tenido un gran éxito en la descripción del Uni-
verso desde los primeros segundos de su evolución hasta nuestros d́ıas. Sin embargo,
todav́ıa quedan desaf́ıos respecto a la naturaleza de algunos de sus componentes, aśı
como observacionalmente probar algunos de los peŕıodos de su evolución. En esta tesis
se discuten tres de los componentes probablemente menos comprendidos del Universo:
los neutrinos, la materia oscura y la enerǵıa oscura.

En particular, en relación al sector de los neutrinos, hallamos los ĺımites a las
asimetŕıas primordiales de neutrinos utilizando algunos de los últimos datos cosmológicos
y teniendo en cuenta el efecto de las oscilaciones de sabor. Encontramos que los ĺımites
actuales están todav́ıa dominados por las restricciones que vienen de la nucleośıntesis
del Big Bang, mientras que las cotas cosmológicas a la masa total de los neutrinos son
esencialmente independientes del ángulo de mezcla θ13. Además, llevamos a cabo un
pronóstico para el experimento Cosmic Origins Explorer, tomado como un ejemplo de
un futuro experimento del fondo cósmico de microondas, y encontramos que podŕıa
mejorar los ĺımites actuales sobre la asimetŕıa total. También consideramos modelos de
enerǵıa oscura en los que los neutrinos interactúan con el campo escalar responsable de
la aceleración del Universo, lo que por lo general implica una variación de la masa del
neutrino en escalas de tiempo cosmológicas. Proponemos una parametrización para la
variación de la masa de los neutrinos que captura los elementos esenciales de esos esce-
narios y que permite poner ĺımites de una manera independiente del modelo, es decir,
sin recurrir a ningún modelo particular del campo escalar. Usamos diferentes conjuntos
de datos que muestran que la relación entre la variación de la masa de los neutrinos
sobre la masa actual es menor que ≈ 10−2 a 95% C.L., totalmente en acuerdo con una
masa que permanece constante. Finalmente, describimos cómo las observaciones de la
ĺınea de 21 cm del hidrógeno atómico en el Universo temprano tienen el potencial para
sondear el peŕıodo inexplorado entre la época oscura y la reionización del Universo, y
cómo esas observaciones pueden ser utilizadas para poner ĺımites a propiedades de la
f́ısica de part́ıculas, especialmente sobre la masa y la sección eficaz de auto-aniquilación
de las part́ıculas que constituyen la materia oscura.
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1
Introduction

“And when you look at the sky you know you are looking at stars which

are hundreds and thousands of light-years away from you. And some

of the stars don’t even exist anymore because their light has taken so

long to get to us that they are already dead, or they have exploded

and collapsed into red dwarfs. And that makes you seem very small,

and if you have difficult things in your life it is nice to think that they

are what is called negligible, which means they are so small you don’t

have to take them into account when you are calculating something.”

Mark Haddon, The Curious Incident of the Dog in the Night-Time

Cosmology is the science that aims at studying the origin, structure, and evolu-

tion of the entire Universe. Such an ambitious goal can only be achieved by taking

into account the main physical properties of the Universe at each moment in time.

On the other hand, particle physics deals with the properties and interactions of

the most elementary and smaller constituents of matter, and in principle one could

expect the very small to be not relevant in shaping the properties of the largest

scales of the Universe. However, most of the new and fundamental ideas of the

last decades in cosmology came from the sinergy between the sciences of the very

small and of the very large: the very small can and do play a crucial role when one

is calculating and understanding the Universe.

In this thesis, we describe some of our contributions towards understanding how

the smaller components of the Universe can shape its global evolution on several

cosmological scales and in different ways. In particular, we will discuss three of

the most misterious components of the cosmic recipe: neutrinos, dark matter, and
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dark energy.

For that, in the first technical chapter, Big Bang Cosmology, we describe in

some detail the current cosmological model, known nowadays as the Standard

Cosmological model, as well as its main evidences and some of its problems. In

particular, we will discuss the different epochs that the Universe has been through

since the Big Bang, around 13.7 Gyr ago. Initially, during the radiation dominated

phase, light nuclei, mostly Hydrogen and Helium, are formed, and neutrinos are

known to play a key role in the process of the so-called primordial nucleosynthesis.

As the Universe expands, cold matter in the form of baryon and the hypothetical

dark matter come to dominate the expansion of the Universe. During this epoch,

atoms are formed in the recombination process, releasing the oldest possible picture

of the Universe, the cosmic microwave background. This apparent calmness is

changed when the first stars and luminous sources form under the influence of

gravity, changing once again the behavior of the intergalactic medium. Finally,

when the Universe was around half his current age, a new (and poorly understood)

component, dark energy, changes the dynamics of its expansion. At this point,

the cosmological expansion accelerates, a behavior that might hold forever or not,

depending on the nature of this constituent. After discussing those epochs, we

close this chapter by discussing the age of the Universe in those different models

and the constraints we can place on it.

In the following chapters, we discuss in detail our contributions to understand

some of the open problems in this cosmological scenario. In the chapter entitled

Cosmological Lepton Asymmetry, we study in detail the current limits on leptonic

asymmetries stored in the neutrino sector. This is important not only to help

illuminating the origin of the matter-antimatter asymmetry in the Universe, but

also to understand and constrain the possibility that those asymmetries could play

the role of extra radiation that potentially will be precisely probed in the very near

future.

In chapter 4, Mass-Varying Neutrino Models, we investigate a class of models

for the dark energy in which the accelerated expansion of the Universe is driven

by a scalar field that interacts with neutrinos, causing the masses of the latter

to vary with the cosmological expansion. In particular, we parameterize the mass

variation with the goal to study a set of scenarios in a model-independent way,

and look for cosmological signals of the mass-variation that could help falsifying
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those models. Currently, a few observational options are available for constraining

dark energy models, and therefore looking for indirect ways to probe them like we

do in this chapter is fundamental to reduce the number of possible candidates or

even pinpoint the correct one.

Finally, in the last chapter, Dark matter and the 21-cm global signal, we look

for potential signals of dark matter annihilation on the highly-redshifted 21-cm

line of the Hydrogen atoms. This technique, known as 21-cm cosmology for short,

has the potential to be a game-changer for cosmology and astrophysics, because

it can open a new window to an epoch of the Universe that has never been

explored before. During this time linear perturbations become nonlinear and start

forming the structures that we see in the Universe today. Moreover, concerning

the fundamental particles, we asses the possibility that it might shed some light

on the nature of the dark matter particle, one of most important open problems

in particle physics.

Because of such amount of topics and epochs covered, some topics will not

be reviewed or only briefly mentioned, although they will always be defined before

usage. Examples of that are structure formation issues, briefly touched upon,

important in this thesis for placing constraints on the neutrino masses and for

the evolution of the 21-cm signal, and cosmological perturbation theory, used for

evolving the fluid perturbations that affect CMB and large scale structure.

Concerning the notations used, we tried to use the most standard notations,

although in a new area like dark energy and dark matter, with many ideas appearing

simultaneously, usually there is no such a thing as a standard notation. However, we

hope that the notation will be clear from the context and definitions. Finally, except

for parts of chapter 5, we will use all over the thesis the so-called natural units,

~ = c = kb = 1, and the reduced Planck mass, mp = Mp/
√

8π = 2.436 × 1018

GeV, more convenient for writing the cosmological equations.
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Introducción

“Cuando nos fijamos en el cielo estamos mirando las estrellas que

están a cientos y miles de años luz de distancia. Y algunas de estas

estrellas ni siquiera existen ya, porque su luz ha tardado tanto en llegar

a nosotros que ya han muerto, o han explotado y colapsaron a enanas

rojas. Y eso te hace parecer muy pequeño, y si tienes cosas dif́ıciles en

tu vida es agradable pensar que son lo que se llaman insignificantes, o

sea, que son tan pequeñas que no hay que tenerlas en cuenta cuando

se calcula algo.”

Mark Haddon, El curioso incidente del perro a medianoche

La cosmoloǵıa es la ciencia que pretende estudiar el origen, la estructura y evo-

lución del Universo. Un objetivo tan ambicioso sólo puede llevarse a cabo tomando

en cuenta las principales propiedades f́ısicas del universo en cada momento. Por

otra parte, la f́ısica de part́ıculas se ocupa de las propiedades e interacciones de

los componentes más elementales y más pequeños de la materia, y en principio se

podŕıa esperar que lo “muy pequeño” podŕıa no ser relevante para las propiedades

de las escalas más grandes del Universo. Sin embargo, la mayoŕıa de las ideas nue-

vas y fundamentales de las últimas décadas en la cosmoloǵıa vino de la sinergia

entre las ciencias de lo muy pequeño y de lo muy grande: es decir, lo muy pe-

queño puede desempeñar, y desempeña, un papel crucial cuando se está tratando

de calcular y comprender el Universo.

En esta tesis, se describen algunas de nuestras contribuciones a la compren-

sión de cómo los componentes más pequeños del Universo puede dar forma a su

evolución en diferentes escalas cosmológicas y de diversas maneras. En particular,
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vamos a considerar tres de los componentes más misteriosos de la receta cósmica:

los neutrinos, la materia oscura y la enerǵıa oscura.

Para ello, en el primer caṕıtulo, Big Bang Cosmology, se describe en detalle

el modelo cosmológico actual, conocido actualmente como el modelo cosmológico

estándar, aśı como sus principales evidencias y algunos de sus problemas. En parti-

cular, vamos a describir las diferentes épocas del Universo desde el Big Bang, hace

alrededor de 13700 millones de años. Inicialmente, durante la fase dominada por

la radiación, se forman núcleos ligeros, principalmente hidrógeno y helio, y se sabe

que los neutrinos juegan un papel clave en el proceso de la nucleośıntesis primor-

dial. A medida que el Universo se expande, la materia fŕıa en forma de bariones y

la hipotética materia oscura pasan a dominar la expansión del Universo. Durante

esta época, los átomos se forman en el proceso de recombinación, liberando aśı la

imagen más antigua posible del Universo, el llamado fondo cósmico de microondas.

Esta calma aparente cambia cuando las primeras estrellas y las fuentes luminosas

se forman bajo la influencia de la gravedad, cambiando una vez más el compor-

tamiento del medio intergaláctico. Finalmente, cuando el Universo teńıa alrededor

de la mitad de su edad actual, un nuevo (y poco conocido) componente, la enerǵıa

oscura, cambia la dinámica de la expansión del Universo. En este punto, comienza

a acelerarse su expansión, un comportamiento que pueda mantener siempre o no,

dependiendo de la naturaleza de este componente. Después de describir aquellas

épocas, cerramos este caṕıtulo hablando de la edad del Universo en los diferentes

modelos y las restricciones que puede colocar sobre su valor.

En los siguientes caṕıtulos, discutimos en detalle nuestras contribuciones para

entender algunos de los problemas abiertos en este escenario cosmológico. En el

caṕıtulo titulado Cosmological Lepton Asymmetry se estudian en detalle los ĺımites

actuales sobre las asimetŕıas leptónicas almacenadas en el sector de los neutrinos.

Esto es importante no sólo para ayudar a iluminar el origen de la asimetŕıa entre

materia y antimateria en el Universo, sino también para comprender y limitar la

posibilidad de que esas asimetŕıas puedan desempeñar el papel de una radiación

adicional que potencialmente puede probarse en un futuro muy próximo.

En el caṕıtulo 4, Mass-Varying Neutrino Models, se investiga una clase de mo-

delos para la enerǵıa oscura en la que la expansión acelerada del Universo es debida

a un campo escalar que interactúa con los neutrinos, haciendo que las masas de

esas part́ıculas vaŕıen con la expansión cosmológica. En particular, parametrizamos
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la variación de la masa con el objetivo de estudiar un conjunto de escenarios de

una manera independiente del modelo, y buscamos señales cosmológicas de dicha

variación que podŕıan ayudar a la verificación de estos modelos. En la actualidad,

se dispone de pocas opciones observacionales para restringir los modelos de enerǵıa

oscura, y por lo tanto buscar formas indirectas para sondearlos como lo hacemos

en este caṕıtulo es fundamental para reducir el número de posibles candidatos o

incluso determinar el modelo más correcto.

Finalmente, en el último caṕıtulo, Dark Matter and the Global 21-cm Signal,

buscamos señales potenciales de la aniquilación de materia oscura en el el estudio

de la ĺınea de 21 cm de los átomos de hidrógeno. Esta técnica, conocida como

cosmoloǵıa de 21-cm, tiene el potencial de ser muy importante para la cosmoloǵıa y

la astrof́ısica en un futuro no muy distante, ya que puede abrir una nueva ventana a

una época del Universo que nunca ha sido explorada antes. Durante este tiempo, las

perturbaciones lineales se tornan no lineales, formando las estructuras que vemos

en el Universo actual. Por otra parte, con relación a las part́ıculas elementales,

estudiamos la posibilidad de que dicha técnica podŕıa arrojar algo de luz sobre la

naturaleza de la part́ıcula de la materia oscura, uno de los problemas abiertos más

importantes en la f́ısica de part́ıculas actual.

Debido a tal cantidad de temas y épocas cubiertos, algunos sólo serán mencio-

nados brevemente, a pesar de que siempre se definirán antes de su uso. Algunos

ejemplos son las cuestiones de la formación de estructuras, importante en esta

tesis para imponer limitaciones a las masas de los neutrinos y para la evolución de

la señal de 21-cm, y la teoŕıa de las perturbaciones cosmológicas, utilizada para la

evolución de las perturbaciones que afectan la radiación de fondo y las estructuras

a gran escala.

En cuanto a las notaciones utilizadas, tratamos de utilizar las notaciones más

habituales, aunque en áreas nuevas como el estudio de la enerǵıa oscura y la

materia oscura, en que muchas ideas aparecen al mismo tiempo, por lo general no

hay una notación estándar. Sin embargo, esperamos que la notación quede clara

a partir del contexto y de definiciones previas. Por último, excepto en partes del

caṕıtulo 5, vamos a utilizar a lo largo de la tesis el sistema natural de unidades,

~ = c = kb = 1, y la masa de Planck reducida, mp = Mp/
√

8π = 2,436 × 1018

GeV, más convenientes a la hora de escribir las ecuaciones cosmológicas.
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2
Big Bang Cosmology

In the last century cosmology became a science. Although Newton’s law for

gravitation worked (and still works) extremely well for several astronomical ap-

plications, a spacetime theory for gravitation, Einstein’s General Relativity, was

necessary to allow theorists to wonder about the behavior of the entire cosmos on

a piece of paper.

However, in order to cosmology really become a branch of science, advances on

the observational astronomy side were also necessary, since even the most creative

theories have to be tested and shown to work in the real world. The discoveries

by Edwin Hubble that our galaxy was one among many others and especially that

the whole fabric of the spacetime was expanding brought to life a new area of

scientific research, one that allows scientists to speculate and test their theories

against cosmological observations.

In this chapter, we discuss and review some of the main basic features of the

presently known as the standard cosmological model, the ΛCDM Big Bang model.

As we will show, this model describes the behavior of the Universe confidently back

to 0.01 seconds after the initial singularity, starting from a very hot state were the

light nuclei were formed, some 13.7 Gyr in the past. Initially its energy density

was dominated by relativistic particles like photons, neutrinos and (maybe) other

hot relics, but cold matter in the form of baryons and especially the hypothetical

dark matter (DM) eventually take over the energy density budget. During this

matter domination epoch several important steps in the cosmological history take

place: atoms are formed, releasing the oldest possible snapshot (in photons) of the

Universe, the so-called cosmic microwave background; the first stars and galaxies
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form, changing the thermal state of the Universe and reionizing the intergalactic

medium, a period that still has to be better understood and that will be tested

with future generations of space and ground-based telescopes.

Finally, when the Universe was approximately 10 Gyr old a new player becomes

an important component of the energy density of the Universe, possibly changing

its evolution forever: the so-called dark energy. The most important feature of

this component is its negative pressure, that eventually becomes responsible for

the observed acceleration of the Universe.

2.1. An expanding Universe

A central hypothesis for the standard cosmological model, known as the Cos-

mological principle, is that the Universe is homogeneous and isotropic beyond some

scale (smaller than the horizon scale, which we are going to define later), at any

time.

The cosmological principle plays a key role in the Friedmann-Robertson-Walker

(FRW) model of the Universe, since the homogeneity and isotropy allows for the use

of the Roberston-Walker metric. The symmetry properties of this metric reduces

the ten coupled differential Einstein equations to a pair of them, the so-called

Friedmann equations, which depend only on one variable, namely, the scale factor

a(t).

Despite of the fact that this symmetry was originally used by Einstein without

observational support, nowadays a set of cosmological observations, especially the

ones from the isotropy and homogeneity of the cosmic microwave background

radiation (CMB), indicates that the cosmological principle is a valid approximation

for the Universe in large scales [Clifton et al., 2012].

Another observational fact for the Universe is that it is expanding, as Edwin

Hubble first showed in the late 1920’s [Hubble, 1929]. He discovered a linear

relation1 between the distance l(t) of a galaxy and its receding velocity v(t),

v(t) = H0 l(t) , (2.1)

1The linear relation is only valid for cosmologically small distances. For more distant galaxies,
corrections that depend on the deceleration parameter, which we shall discuss later, have to be
considered.
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where the proportionality constant H0 is nowadays known as Hubble constant. It

is usually written in the normalized and dimensionless form

H0 = 100 h km s−1 Mpc−1 . (2.2)

The best measurements to date on this parameter were obtained using the Hubble

Space Telescope and the Wide Field Camera 3 [Riess et al., 2011],

h = 0.738 ± 0.024 , (2.3)

at 1σ of confidence level.

Notice that for the homogeneity and isotropy to be preserved in an expanding

Universe, the scale factor which measures the expansion between any two points

separated by a distance l(t) have to be the same everywhere in the visible Universe,

in such way that

l(t) = ra(t) . (2.4)

In this way, any given galaxy sees any other galaxy located at a distance l(t) recede

with the velocity

v =
dl(t)

dt
=

ȧ(t)

a(t)
l(t) = H(t)l(t) , (2.5)

that is, following the Hubble law. A dot here denotes a derivative with respect to

the cosmic time t, and

H(t) =
ȧ(t)

a(t)
, (2.6)

is the so called Hubble parameter, whose present value is given by the Hubble

constant, equation (2.2).

The Hubble constant has a dimension of time−1, and therefore it offers a

natural scale for the age of the Universe,

H0
−1 = 9.778 h−1 Gyr . (2.7)

In order to make the measurements of the receding velocities, Hubble made use

of the redshift z suffered by the spectra of those galaxies, a quantity that can be
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quantified in cosmological terms as

1 + z =
λo

λe

=
a(to)

a(te)
, (2.8)

where λo corresponds to the observed wavelength of a given feature of the spec-

trum, and λe to its value when emitted.

To analyze the expansion of the Universe, it is convenient to use comoving

coordinates, in which, by definition, the coordinate system follows the expansion,

in such a way that a galaxy with no peculiar velocity keeps its coordinates constant.

In those coordinates, galaxies are points at rest that follow the so-called Hubble

flow.

Another important point is the need of a metric ds2 = gµνdxµdxν to measure a

comoving distance between any two points. As we have already commented before,

a very convenient metric that incorporates the symmetries of the cosmological

principle is the Robertson-Walker (RW) metric,

ds2 = dt2 − d l2 = dt2 − a2(t)

(

dr 2

1 − kr 2
+ r 2dθ2 + r 2 sin2 θ dφ2

)

, (2.9)

where (t, r , θ, φ) are the comoving coordinates and k is +1, 0 or −1 depending on

the geometry of the space.

2.2. Background cosmology

The Einstein’s equations are given by

Gµν ≡ Rµν −
1

2
Rgµν = 8πG Tµν , (2.10)

where Rµν is the so-called Ricci tensor, R is the Ricci scalar, both functions of

the metric, and Tµν is the energy-momentum tensor of the fluid components of

the Universe. Using the RW metric and the energy-momentum tensor of a perfect

fluid,

T µν = (ρ + p)UµUν − pgµν , (2.11)
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where ρ and p are the energy density and pressure measured by a comoving ob-

server, and the 4-velocity for a comoving observer is given by Uµ = (1, 0, 0, 0), we

obtain the Friedmann equations,

ȧ2

a2
+

k

a2
= H2 +

k

a2
=

8πG

3
ρ , (2.12)

2
ä

a
+

ȧ2

a2
+

k

a2
= −8πG p . (2.13)

Two important quantities that can be defined are the so-called critical density,

ρc ≡ 3H2

8πG
, (2.14)

and the density parameter

Ω ≡ ρ

ρc

=
8πG

3H2
ρ . (2.15)

In particular, we have that the current critical density is given by

ρc0 =
3H2

0

8πG
= 1.879 h2 × 10−29 g cm−3 = 8.099 h2 × 10−11 eV4 . (2.16)

That allows us to write the Friedmann equation in the form

H2 =
8πG

3
ρ − k

a2
=⇒ k

H2a2
= Ω − 1 . (2.17)

We see, therefore, that the density parameter of the Universe, given by Ω, and its

spatial geometry are linked2, yielding,

a) open Universe: k = −1 =⇒ ρ < ρc =⇒ Ω < 1 ;

b) flat Universe: k = 0 =⇒ ρ = ρc =⇒ Ω = 1 ;

c) closed Universe: k = +1 =⇒ ρ > ρc =⇒ Ω > 1 .

2The names, besides related to the spatial geometry, would also refer to the destiny of the
Universe in case it is dominated by matter or radiation, but not a cosmological constant. For the
former, an open Universe expands forever, a flat one expands forever with its velocity decreasing
to zero in an infinite time, and a closed one collapses back at some time in the future. However,
for a cosmological constant dominated Universe, the relation between geometry and destiny does
not hold anymore [Krauss & Turner, 1999].
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We can also rewrite equations (2.12) and (2.13) to obtain a more convenient form

for the second Friedmann equation,

ä

a
= −4πG

3
(ρ + 3p) = −4πG

3
ρ (1 + 3ω) , (2.18)

where ω = p/ρ is the fluid equation of state parameter. Statistical mechanics tells

us that for the case of a fluid composed of relativistic matter (called collectively

radiation, or hot, matter), ωr = 1/3, while for regular baryons, whose temperature

is much smaller than its mass (and also nonrelativistic, or cold, matter in general),

ωm ≈ 0. Soon we shall discuss the situation for more exotical fluids.

If we derive the Friedmann equation with respect to time,

d

dt

(

ȧ2 + k
)

=
d

dt

(

8πG

3
ρa2

)

=⇒ 2ȧä =
8πG

3

(

ρ̇a2 + 2ρaȧ
)

,

and use eq. (2.18), we obtain the fluid equation

− (ρ + 3p) aȧ = ρ̇a2 + 2ρaȧ =⇒ ρ̇ = −3H (ρ + p) , (2.19)

which can be analogously obtained using the conservation of the energy-momentum

tensor of a perfect fluid.

In this case, we can obtain the dependence of the energy density on the scale

factor for a equation of state,

ρ̇a = −3ρ (1 + ω)ȧ , ⇒ 1

3 (1 + ω)

∫

dρ

ρ
=

∫

da

a
,

and therefore,

ρ ∝ a−3(1+ω) . (2.20)

For the above equation, we can obtain the particular well known cases of matter

and radiation,

ρr ∝ a−4 , ρm ∝ a−3 . (2.21)

These cases can also be understood from a more physical point of view. In the

case of the matter density, it only implies that the density is falling as the volume

of the Universe increases (that is, with the scale factor to the third power, since

the number of particles is constant). In the case of radiation, there is an extra
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factor coming from the fact that the wavelength also increases with the expansion,

and therefore the energy density scales with the fourth power of the scale factor.

We can also consider different components for the Universe, like for instance

the cosmological constant3 denoted by Λ. One can show that the fluid behavior of

the cosmological constant is the same of the vacuum of a quantum field, and for

Lorentz invariance that amounts to saying that it has a negative pressure, equals

to minus its energy density, that is, ωΛ = −1. Notice that this could also have

been obtained from eq. (2.20) taking into account that the energy density of a

cosmological constant is, by definition, constant. We will discuss the cosmological

constant in much more detail in the next sections.

Solving the Friedmann equation for a given fluid allows for the determination

of the behavior of the scale factor as a function of the time,

ȧ

a
∝ a−3(1+ω)/2 ⇒

∫

da a3(1+ω)/2a−1 ∝
∫

dt , (2.22)

and therefore

a(t) ∝ t2/3(1+ω) . (2.23)

In other words, during matter domination a(t) ∝ t2/3 and during radiation domi-

nation a(t) ∝ t1/2. In the case of a cosmological constant eq. (2.22) immediately

leads to a(t) ∝ exp(Ht), that is, an exponential expansion. Notice the latter is

the case supposed to have happened very early in the history of the Universe, the

so-called inflationary epoch, which we will see more details later.

The observed densities of baryonic matter, total (dark plus baryonic) matter,

neutrinos, and photons are

ρb0 = 1.879 × 10−29Ωb0h
2g cm−3

≈ 1.62 × 10−12 eV4 , (2.24)

ρm0 = 1.879 × 10−29Ωm0h
2g cm−3

≈ 1.21 × 10−11 eV4 , (2.25)

3Einstein first introduced it the field equations of General Relativity in order to obtain a
static Universe, according to the cosmological ideas of the time. However, as soon as Hubble
discovered the expansion of the Universe, Einstein is cited by Gamow as having said that “the
introduction of the cosmological term was the biggest blunder of his life.” [Gamow, 1970].
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ρmassive
ν0 = 2.02 × 10−31

(∑

i mνi

1 eV

)

g cm−3

= 8.69 × 10−13

(∑

i mνi

1 eV

)

eV4 , (2.26)

ρmassless
ν0 = 8.11 × 10−36 g cm−3 ,

= 5.89 × 10−17 eV4 , (2.27)

ργ0 = 4.64 × 10−34 g cm−3

= 3.37 × 10−15 eV4 , (2.28)

We will discuss some of those in details, but just for completeness we mention

here some of the ways those numbers are measured. The value of the baryonic

density comes from limits on light elements production in the early Universe, the

nucleosynthesis epoch, which requires Ωb0h
2 ≈ 0.02, a result that agrees with other

observational results, like CMB anisotropies. The total matter density (baryonic

plus dark), Ωm0 ≈ 0.3, is essentially measured gravitationally via the rotation

curves of galaxies, gravitational lensing, X-ray emission from hot gas in clusters,

and the measurement of peculiar velocities in the large scale structure distribution.

[Bertone et al., 2005; Bertone, 2010], and the results agree very well with the CMB

anisotropy data. Neutrino density upper limit is obtained using the limits on the

sum of the total masses of the three mass eigenstates obtained from cosmology

[Lesgourgues & Pastor, 2006], that we will discuss more about later. Finally, the

photon density is measured via the temperature of the CMB temperature.

One can see that the matter density is currently at least five orders of magnitude

higher than the radiation one. However, since radiation density falls more rapidly

than matter density, there should be a time in which both densities contributed

equally to the density of the Universe. This time, known as equality time, separates

an early radiation domination era from a subsequent matter domination. As we

are going to see, observations confirm the scenario of an early, hot Universe in

which both matter and radiation are in thermodynamical equilibrium4.

4Notice that although the primordial Universe could not have been in thermodynamical equi-
librium, since it was expanding, the idea of local thermodynamical equilibrium is valid for inter-
actions whose reaction rates Γ is much larger that the expansion rate of the Universe, given by
H .
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Figure 2.1: Density parameters for the different components of the Universe. From
Lesgourgues & Pastor [2006].
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2.3. Radiation Dominated Epoch

2.3.1. Thermodynamics of the Early Universe

In order to analyze the early Universe, it is necessary to know the species which

contribute to the energy of the Universe at a given time, as well as their distribution

functions, since the number and energy densities, for instance, are both dependent

on them.

For a species in kinetic equilibrium, the distribution function is given by the

familiar Fermi-Dirac (+) or Bose-Einstein (−) distributions,

f (p) =

[

exp

(

E − µ

T
± 1

)]−1

, (2.29)

Where E 2 = |p|2 +m2. If the species is in chemical equilibrium, then the chemical

potential µ is related to the other species it interacts with. Normally it is negligible

compared to the energy, but in the next chapter we discuss a situation in which it

might play a key role in the early Universe.

The number density, energy density, and pressure are given respectively by,

n =
g

(2π)3

∫

∞

m

f (p)d3p , (2.30)

ρ =
g

(2π)3

∫ ∞

m

E (p)f (p)d3p , (2.31)

p =
g

(2π)3

∫

∞

m

|p|2
3E

f (p)d3p . (2.32)

While relativistic particles (T ≫ m) show either a Fermi-Dirac or a Bose-

Einstein distribution, depending on their spin, one can show that nonrelativistic

particles (m ≫ T ) distribution function converges to a Maxwell-Boltzmann distri-

bution.

In a situation of local thermodynamic equilibrium, the number density, energy

density and pressure of a relativistic species are given respectively by

n = bn

ζ(3)

π2
gT 3 , (2.33)
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ρ = bρ
π2

30
gT 4 , (2.34)

p =
ρ

3
, (2.35)

where g corresponds to the number of degrees of freedom available for each particle

species, bn = 1 (3/4) and bρ = 1 (7/8) for bosons (fermions), and ζ(3) = 1.2026

is the Riemann zeta function of 3. In the case of nonrelativistic particles, those

thermodynamical quantities are given by

n = g

(

mT

2π

)3/2

exp(−m/T ) , (2.36)

ρ = mn , (2.37)

p = nT ≪ ρ , (2.38)

from where we see that the density and pressure of nonrelativistic species are expo-

nentially smaller than the ones of relativistic species when they are in equilibrium.

Because of that, it is a good approximation to include only the contribution of the

relativistic species in the early Universe, in such way that

ρr =
π2

30
g∗T

4 , (2.39)

pr =
ρr

3
=

π2

90
g∗T

4 , (2.40)

where

g∗ ≡
∑

i=bosons

gi

(

Ti

T

)4

+
7

8

∑

i=fermions

gi

(

Ti

T

)4

, (2.41)

is the total number of degrees of freedom of relativistic fermions and bosons i

(that is, the ones for which mi ≪ T ), Notice that because g∗ is related to the

number of relativistic species in the Universe, it is a function of the cosmological

temperature, as we are going to discuss later.

Deep into the radiation era, we have that

H =

√

8π3

90
g 1/2
∗

T 2

MP

= 1.66 g 1/2
∗

T 2

MP

, (2.42)
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and since a(t) ∝ t1/2 for the radiation domination,

t

1 s
=

1

2H
= 0.162 g−1/2

∗ ×10−44

(

MP

T

)2

= 0.241 g−1/2
∗

(

T

MeV

)−2

. (2.43)

In order to estimate the different temperatures of the different species after they

leave the equilibrium, we can make use of the fact that the expansion is adiabatic.

We have that 3da = V−2/3dV , where V is a unitary comoving volume,

Vdρ = (ρ + p)dV ⇒ d (ρV ) = −pdV , (2.44)

and therefore the entropy is conserved in a comoving volume, as it should be for

an adiabatic expansion. The thermodynamics assures that, for a given comoving

volume V ,

TdS = d(ρV ) + pdV = Vdρ + (ρ + p)dV = d [(ρ + p)V ] − Vdp . (2.45)

And using

dS =

(

∂S

∂ρ

)(

dρ

dT

)

dT +

(

∂S

∂V

)

dV , (2.46)

we have that
∂S

∂T
=

(

∂S

∂ρ

)(

dρ

dT

)

=
V

T

dρ

dT
, (2.47)

∂S

∂V
=

ρ + p

T
. (2.48)

Since
∂2S

∂T ∂V
=

∂2S

∂V ∂T
, (2.49)

we have that

∂

∂T

(

ρ + p

T

)

= − 1

T 2
(ρ+p)+

1

T

dρ

dT
+

1

T

dp

dT
=

∂

∂V

(

V

T

dρ

dT

)

=
1

T

dρ

dT
,

(2.50)

and therefore,
dp

dT
=

ρ + p

T
. (2.51)



2.3 Radiation Dominated Epoch 21

Using the above equation and equation (2.45), we can obtain the entropy, because

dS =
1

T
d [(ρ+p)V ]− (ρ + p)V

T 2
dT ⇒ dS = d

[

(ρ + p)V

T
+ constant

]

,

(2.52)

and therefore, the entropy in a comoving volume is given by

S =
(ρ + p)V

T
(2.53)

We should keep in mind that the entropy is given by the contribution of the

relativistic particles, whose energy density, eq. (2.39), and pressure, eq. (2.40),

results in the entropy density s given by

s ≡ S

V
=

2π2

45
g∗ST 3 , (2.54)

where

g∗S ≡
∑

i=bosons

gi

(

Ti

T

)3

+
7

8

∑

i=fermions

gi

(

Ti

T

)3

. (2.55)

Notice that g∗ = g∗S only when all the species share the same temperature.

Beside that, the fact that the total entropy is constant implies that sV ∝ g∗Sa3T 3

is constant, and therefore

T ∝ g
−1/3
∗S a−1 , (2.56)

that is, for epochs in which g∗S is approximately constant, T ∝ a−1.

However, there are several situations in which g∗S and g∗ vary with time,

as for instance when one of the species becomes nonrelativistic or annihilates

and transfers its entropy to the other relativistic particles. In those cases, the

temperature of the primordial plasma decreases slower than a−1.

In order to obtain another important cosmological quantity, the so-called baryon-

to-photon ratio, ηb, we can use the fact that the number density of photons, nγ,

is proportional to the entropy density,

s =
2π4

90ζ(3)
g∗S nγ = 1.80 g∗S nγ , (2.57)

where we used the fact that gγ = 2.

Therefore, the baryon-to-photon ratio, that is, the ratio of the baryon number
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density to the number density of photons is given by

ηb =
nb − nb̄

nγ
= 1.80 g∗S

nb

s
, (2.58)

where nb and nb̄ are the number density of baryons and antibaryons, respectively.

Since observations indicate that nb̄ ≈ 0, it is usual to define ηb = nb/nγ .

Since the baryon number is conserved5, as well as the entropy, we have that

the ratio ηb varies only with g∗S , that is, when species annihilates generating more

photons that will distribute its entropy among the other particles which are still in

equilibrium.

2.3.2. Neutrino decoupling

To analyze the primordial behavior of the Universe, it is essential to know the

species which are present at each time, since we have to calculate g∗ and g∗S to

be able to calculate the cosmological parameters, like H and ηb, for instance.

As we have commented before, to maintain a species in local thermodynamical

equilibrium it is necessary that the interaction rate Γ be larger than H, the expan-

sion rate of the Universe. That amounts to saying that the number of interactions

between the particles that one is interested in is (much) larger than unity in a

Hubble time, and therefore the expansion of the Universe can be safely ignored6.

We can analyze, for instance, the process of neutrino decoupling. Neutrinos are

kept in equilibrium via electroweak interactions with the free protons and neutrons

in the early Universe. The cross section of electroweak process is given approxi-

mately by σ ≈ G 2
FT 2, where GF = (292.80 GeV)−2 is the Fermi constant. Since

neutrinos are highly relativistic at energies around 1 MeV, its number density is

proportional to T 3, and therefore their interaction rate is

ΓEW = nν σ |v | ≈ G 2
FT 5 , (2.59)

5Except, of course, if one is dealing with the very early Universe, when the baryogenesis is
supposed to happen.

6The precise way to improve this back-of-the-envelope calculation is by numerically solving
the distribution functions for the species using the Boltzmann equation [Kolb & Turner, 1990;
Dodelson, 2003] and taking other effects into account, as for instance, the effect of neutrino
oscillations [Mangano et al., 2005]. However, the condition Γ & H works as an order of magnitude
estimate, and it is a good approximation in general.
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where |v | ≈ 1 simply denotes the relativistic nature of neutrinos at those energies.

We can then compare the above equation with eq. (2.42), to obtain

ΓEW

H
≈ MPG 2

FT 5

T 2
≈
(

T

0.8 MeV

)3

, (2.60)

that is, for temperatures below 0.8 MeV, the electroweak interaction rate is not

capable of keeping the neutrinos in thermodynamical equilibrium, and they decou-

ple of the primordial plasma. A little after neutrino decoupling, the temperature

falls below the electron-positron mass, they become nonrelativistic, annihilate, and

their entropy is transferred to the photons. Because of that, the photon temper-

ature falls slower than a−1 for a while, and the photon temperature deviates from

the neutrino temperature, which is still scaling with the inverse of the scale factor.

This difference in temperature can be estimated using eq. (2.56). With the

annihilation of the e± pairs, the number of eletromagnetic degrees of freedom of

the primordial plasma falls from g∗ = 2 + (7/2) = 11/2 to g∗ = 2, correspondent

to the photon. Because of that, aTγ in eq. (2.56) increases by a factor (11/4)1/3,

while aTν remains constant. Because of this, we have that

Tγ

Tν
=

(

11

4

)1/3

≃ 1.40102 . (2.61)

After the e± annihilation, both aTγ and aTν remain constant, and we expect

the ratio between both temperatures to remain constant. In particular, since

we measure Tγ0 = 2.728 K, we expect that Tν0 ≃ 1.94 K. Detecting such a

cosmic neutrino background is extremely challenging and possibly not feasible in

the near future (if ever), although some indirect evidences for its existence could be

achievable [Trotta & Melchiorri, 2005; Gelmini, 2005; Michney & Caldwell, 2007;

De Bernardis et al., 2008].

We can also calculate the present value for the number of degrees of freedom,

supposed to be constant after the e± annihilation7,

g∗ = 2 +
7

8
× 2 × 3 ×

(

4

11

)4/3

= 3.36 , (2.62)

7Notice that for the evaluation of g∗ and g∗S we have ignored here corrections to the effective
number of neutrinos [Dicus et al., 1982; Dodelson & Turner, 1992; Mangano et al., 2002, 2005].
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g∗S = 2 +
7

8
× 2 × 3 × 4

11
= 3.91 . (2.63)

Using the present temperature of the photons we can calculate the number density

of both photons and neutrinos,

nγ0 =
2ζ(3)

π2
T 3 = 3.153 × 10−12 eV3 ≈ 410 cm−3 , (2.64)

nν0 =
3ζ(3)

2π2
T 3

ν =
3

11
nγ0 = 8.599 × 10−13 eV3 ≈ 111

cm−3

flavor
, (2.65)

as well as the corresponding energy density of photons,

ργ0 =
2π2

30
T 4 = (1.43 × 10−4 eV)4 = 4.64 × 10−34 g cm−3 , (2.66)

Ωγ0h
2 =

ργ0

ρc0
= 2.47 × 10−5 , (2.67)

In this way, we can estimate the entropy of the Universe, as well as the baryon-to-

photon ratio,

ηb = 7.04
nb

s
= 7.04

ρb

mp s
≈ 2.75 × 10−8 Ωb0h

2 , (2.68)

where we approximated the bayon mass to the proton mass, mb ≈ mp = 938.272

MeV, and the entropy density given by (2.54). Notice finally that both the baryonic

number and the entropy are conserved in a comoving volume, and therefore the

ratio nb/s is constant.

The main issue here is that the entropy of the Universe is extremely high

since there are around 109 photons in the Universe for each baryon. Because of

that, processes which involve the formation of bound states, like the primordial

nucleosynthesis and the recombination, which we shall discuss next, take place at

a much lower energy than one would expect, since the very small ηb assures that

there are enough high energy photons to dissociate the bound states even for a

low average photon temperature.
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2.3.3. Primordial Nucleosynthesis

Detailed calculations [Kolb & Turner, 1990] show that nucleosynthesis might

have occurred at energies around T ≈ 0.1 MeV. Essentially, two factors are respon-

sible for such a low temperature: the huge entropy of the Universe and the dubbed

“deuterium bottleneck”. In what follows, we are going to make a brief summary

of the main physical process that take place during nucleosynthesis, although one

should keep in mind that in order to track precisely the light elements abundance8,

obviously the work should be done numerically including the full nuclear reaction

chain [Iocco et al., 2009].

The first step in the formation of the light elements, Deuterium, has a binding

energy of 2.22 MeV, what allows for a significant amount of those nuclei only

when the temperature of the Universe is around 0.1 MeV. Therefore, the whole

primordial nucleosynthesis process happens only below this energy.

When the weak interactions rate falls below the Hubble rate and the neutrinos

fall off out the equilibrium, the weak reactions

νe + n ⇄ p + e− ,

e+ + n ⇄ p + ν̄e ,

that interconvert protons and neutrons stop, and the proton-to-neutron ratio ba-

sically freezes, except for the slow β-decay,

n ⇄ p + e− + ν̄e . (2.69)

Taking the Maxwell-Boltzmann distribution, eq. (2.36), at T = 0.8 MeV, when

ΓEW < H, we have that

nn

np

≈ e−(mn−mp)/T ≈ 1

5
, (2.70)

where mn = 939.565 MeV and mp = 938.272 MeV. This fraction does not remain

constant, since some neutrons still are converting into protons via β decay (2.69).

Therefore, at the temperature of 0.1 MeV, the ratio reaches its final value nn/np ≈
8As it is known for several decades [Burbidge et al., 1957], heavy elements are synthesized

much later in the history of the Universe.
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1/7, since after that the reactions that form 3He++ and especially 4He++ also

become efficient. In particular, the 4He nucleus has a high binding energy of 28.3

MeV, much larger than the photon temperature at that time, and therefore remains

stable.

The fact the nucleosynthesis essentially stops after the formation of 4He, except

for a small portion of 7Li (7Li/H ≈ 10−10 - 10−9), is due mainly to the lack of

stable isotopes with mass A = 5 and A = 8 and to the low temperature in which

the process starts. Therefore, besides the H (essentially all the protons that were

left), 4He and 7Li, a small portion of D (D/H ≈ 10−3 − 10−4) and 3He (3He/H

≈ 10−4 − 10−5) not used for the production of 4He is present when nucleosynthesis

finishes.

A back-of-the-envelope calculation can then be used to estimate the fraction

XP of 4He over H nuclei, keeping in mind that helium is composed by 2 neutrons

and 2 protons. For that, we are going to assume that the two were the only light

nuclei produced during the nucleosynthesis process, what is a good approximation.

When this happens, all neutrons are used to form helium nuclei, and the excess

of protons is left as hydrogen nuclei. In this way,

XP =
nHe

nH
=

nn/2

7nn − nn

≈ 1

12
. (2.71)

And the mass fraction YP of 4He over the total mass is (using mp ≈ mn)

YP =
4nHe

nH + 4nHe
=

4XP

1 + 4XP

≈ 0.25 . (2.72)

Those primordial abundances depend on some physical quantities like the neutron

half-life τ1/2(n) (important to know the exact ratio between neutrons and protons

after weak interactions cease), the number of degrees of freedom g∗ (which directly

affect the Hubble parameter) and the baryon-to-photon ratio ηb (the abundances

with respect to the hydrogen XA of a given nucleus is proportional to ηA−1
b ). From

the last one it is possible, using equation (3.1) constrain the present baryon density

using the abundance of light nuclei.

Figure 2.2 shows the abundances as a function of the baryonic density. 4He

corresponds to its mass fraction YP , while the other nuclei show their abundances

relative to the hydrogen. The vertical strip shows the region of concordance for the
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3 of the 4 nuclei [Lesgourgues et al., 2012]. The apparent issue with the primordial

abundance of 7Li is currently being studied very intensively [Fields, 2011]. In

summary, the fact that there is a concordant strip is a strong evidence for the

big bang model until 10−2 second after the initial singularity. It is also striking

that the value Ωb0h
2 ≈ 0.02 agrees extremely well with the CMB measurements.

The concordance makes of nucleosynthesis one of the main pillars of the standard

cosmological model.

2.4. Matter Dominated Epoch

As we have discussed before, matter and radiation densities evolve differently

with time, in such way that

ρr

ρm

=
ρr0

ρm0

(a0

a

)

=
ρr0

ρm0
(1 + z) . (2.73)

And the equality time can be calculated to be

1 + zeq =
ρm0

ρr0
= 24000 Ωm0h

2 ≈ 3600 , (2.74)

Teq = T0 (1 + zeq) = 65425 Ωm0h
2 K ≈ 9800 K ≈ 0.85 eV . (2.75)

That is, for temperatures below 0.8 eV matter is the leading component in the

right-hand-side of Friedmann equation9.

However, matter and radiation still behave like plasma, since they still are

coupled due to the Thomson scattering. Only after the capture of the electrons by

the ionized nuclei, the process known as recombination, radiation can travel freely

through the spacetime in the form of the cosmic background radiation (CMB).

9The process, however, is not instantaneous, and is strongly complicated by the fact that at
least one of the neutrinos is supposed to become nonrelativistic around the same epoch.
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Figure 2.2: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of BBN - the bands show the 95% C.L. range. Boxes indicate the observed
light element abundances (smaller boxes: ±2σ statistical errors; larger boxes: ±2σ
statistical and systematic errors). The narrow vertical band indicates the CMB measure
of the cosmic baryon density, while the wider band indicates the BBN concordance range
(both at 95% C.L.). From Fields & Sarkar [2012].



2.4 Matter Dominated Epoch 29

2.4.1. Cosmic background radiation

The hydrogen bound state has an energy corresponding to the difference be-

tween the free proton and electron masses with respect to the bound state,

mH − mp − me = −13.59 eV ,

and therefore neutral atoms could be formed below this temperature, at least in

principle10. However, again due to the high entropy of the Universe, electron

capture is delayed until the temperature of the Universe of the order of 0.3 eV.

When the electrons and nuclei recombine, Thomson scattering ceases. One can

show that the last scattering surface (LSS) is located at z ≈ 1100, when the

Universe was around 300.000 years old.

Since the whole plasma of nuclei, electrons and photons was in local thermo-

dynamical equilibrium, the distribution of the photons have to follow a blackbody

radiation distribution, simply redshifted after the last scattering surface.

In 1948, Gamow, Alpher and Herman [Alpher et al., 1948; Gamow, 1948b] for

the first time estimated the temperature of the present Universe to be T ≈ 5 K,

using for that a hot big bang model11 [Alpher & Herman, 1948; Gamow, 1948a;

Alpher & Herman, 1950].

A naive estimative of the present temperature of the cosmic background radi-

ation can be done assuming the present age of the Universe to be t0 = 13.5 Gyr

and matter dominated since recombination,

T0

TLSS

=

(

tLSS

t0

)2/3

=⇒ T0 ≈ 2.5 K . (2.76)

Despite of this striking result, the calculation did not receive much attention, since

it was considered highly speculative, and the detection of such a background,

technologically unfeasible.

However, two engineers working at the Bell Labs, Penzias and Wilson [Penzias

& Wilson, 1965], discovered such radiation in 1964. At Princeton, a group led

by Robert Dicke (and with Jim Peebles and David Wilkinson) was preparing an

10The recombination process is obviously far more complicated than discussed here, where
again our intention is only to present a qualitative idea of the process in which the CMB is
released. For more detailed accounts, see for instance [Kolb & Turner, 1990; Dodelson, 2003].

11Historical details can be found in [Alpher & Herman, 1988; Brush, 1992].
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experiment to search for this radiation [Peebles et al., 2009] when they learned

about the results, and immediately realized the cosmological importance of what

Penzias and Wilson have discovered [Dicke et al., 1965]. Interestingly enough, the

discover rendered the 1978 Nobel prize to Penzias and Wilson, but not for Gamow

or Dicke.

The full confirmation of the blackbody spectrum came only in the 90’s, as

measured by the FIRAS (Far Infrared Absolute Spectrophotometer) instrument

on board of COBE (Cosmic Background Explorer) satellite [Mather et al., 1994],

what awarded John Mather the 2006 Nobel prize. George Smoot was awarded the

same year for the discovery of the anisotropies of the cosmic background radiation

[Wright et al., 1992; Smoot et al., 1992], that we will discuss later.

COBE’s curve (figure 2.3) show an amazing agreement with a blackbody curve,

and therefore, with the predictions of the hot Big Bang model. The errors can be

hardly seen on the theoretical curve (in the figure, the errors were multiplied by a

factor of 400 in order to be visible). The present temperature of the Universe is

[Fixsen et al., 1996]

T0 = 2.728 ± 0.001 K . (2.77)

The radiation is homogeneously and isotropically distributed in all directions (in

agreement with the cosmological principle), with fluctuations (or anisotropies) of

the order of 10−5.

2.4.2. The dark ages

After the recombination of the hydrogen atoms and the release of the cosmic

microwave background the Universe entered a period that became known as the

dark ages, in which the potential wells seeded by dark matter start atracting the

baryons (that at this point can collapse gravitationally as the Compton scattering

ceased) to form what will later become the first galaxies and stars.

The evolution of the small density perturbations

δ(l) =
ρ(l)

ρ̄
− 1 , (2.78)

where ρ̄ is the average density of the Universe, can be described by the continuity

and Euler equations, and feel the gravitational atraction described by the Newto-
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Figure 2.3: Cosmic microwave background radiation (CMBR) spectrum as measured
by FIRAS instrument on COBE. The error bars were increased by a factor of 400 to be
visible. From Turner & Tyson [1999].
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nian Poisson equation [Loeb, 2010]. For small perturbations we can linearize the

density perturbations, take its Fourier transform and combine those equations to

obtain, to leading order in δ,

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πG ρ̄δ − c2

Sk2

a2
δ , (2.79)

where c2
s is the sound speed, dependent on each species present in the cosmological

fluid. The fluid approach is valid for collisionless dark matter particles until there is

the so-called cross-streaming, when distinct fluid elements encounter each other.

In the cosmological case this occurs normally at a much later time, when the

perturbations become nonlinear, and therefore this approach is valid for small

perturbations. The wavenumber k = 2π/λ is obtained when we expand the density

field as a sum over periodic Fourier modes, each with its corresponding comoving

wavelength λ. The precise calculation of the evolution of the perturbations needs to

take into account other subtle effects as, for instance, the impact on the formation

of the first structures due to the relative velocity of dark matter and baryons when

the photons decouple from the baryons [Tseliakhovich & Hirata, 2010; Visbal et al.,

2012].

To understand statistically the properties of those perturbations the standard

procedure is to use two measures. The first is the correlation function

ξ(r) = 〈δ(x + r)δ(x)〉 , (2.80)

where the average is taken over the entire statistical ensemble of points with a co-

moving distance r from the point x. Notice that for the isotropic and homogeneous

distribution, ξ is a function of only r = |r|. The second one is the corresponding

Fourier transform, the so-called power spectrum,

P(k) = (2π)−3〈δkδ
∗
k′〉 . (2.81)

One could obviously construct higher powers of the perturbation correlation

function. However, if the density field is a Gaussian random field its statistical

properties are entirely described by the power spectrum only [Lyth & Liddle, 2009].

However, in the case of non-gaussianities the higher order correlations are necessary

for understanding the properties and origin of the fields [Bartolo et al., 2004].
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In the current standard cosmological model, the origin of those perturbations

is ascribed to inflationary fields (that will be discussed in the next section), but for

our purposes it is enough to know that most models predict a simple primordial

power-law spectrum of perturbations,

P(k) ∝ kn , n ≈ 1 , (Primordial) (2.82)

where n is the scalar spectral index, and for a value around unity the power spec-

trum is said to be nearly scale invariant, meaning that the gravitational potential

fluctuations have the same amplitude over all scales when they enter the horizon.

Nonetheless, this primordial shape changes and develops features as the Uni-

verse evolves. A particular transition takes place at the matter-radiation equality

discussed above, and it develops a small-scale shape of

P(k) ∝ kn−4 , (Small − scale) (2.83)

due to the fact that perturbations experience no growth during radiation domina-

tion. Those modes therefore have an amplitude much smaller than the extrapo-

lation of long wavelength modes. This can be encoded in the so-called transfer

function that describes the evolution of the perturbations from the inflationary era

to the matter-radiation equality.

In any case, all of this is true for linear perturbations, when their density is

much smaller than the average density of the Universe, eq. (2.78). To form the

luminous sources that will change the physical state of the Universe forever one

needs to go for the nonlinear evolution of the perturbations and the theory behind

formation of structures.

2.4.3. The first luminous objects

To understand the formation of the first objects in the Universe as well as their

impact on the evolution of the cosmos one needs to model the nonlinear evolution

of the perturbations, as the halos of dark matter are going to seed the formation

of galaxies and stars.

Nowadays numerical simulations of structure formation can be performed over

a wide range of scales, and help us to understand the behavior of the cosmic
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Figure 2.4: Reconstructed matter power spectrum: the stars show the power spectrum
from combining the Atacama Cosmology Telescope (ACT) and WMAP data, compared
to a serie of measurements of the power spectrum at different scales. The solid and
dashed lines show the nonlinear and linear power spectra, respectively, from the best-fit
ACT ΛCDM model with spectral index of nS = 0.96. From Hlozek et al. [2012].
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web throughout the history of the Universe [Springel et al., 2006]. While those

numerical studies allow for precise predictions and understanding of the evolution,

much of the physics can also be understood with simpler analytical models, and this

interplay between analytical and numerical results allow for a better understanding

of the formation of structures in the Universe.

Using the collapse model, for instance, one can analytically calculate the fully

nonlinear solution for a purely spherical top-hat perturbation and show that the

linearized density contrast of a shell of (dark) matter collapsing at redshift zc had

an overdensity, extrapolated to the present day, of [Padmanabhan, 1993; Stiavelli,

2009]

δcrit(zc) ≈ 1.686(1 + zc) , (2.84)

meaning that overdensities with δ > δcrit ≈ 1.686 at redshift zc will collapse and

virialize.

Using the Press-Schechter formalism [Press & Schechter, 1974] we can predict

the fraction of halos with mass above M that has collapsed at a given redshift,

and find the number density of comoving halos with mass between M and M +dm

[Barkana & Loeb, 2001],

n(M , z) =

√

2

π

ρm

M

−d [ln σ(M)]

dM
νc exp

[

−ν2
c

2

]

, (2.85)

where νc = δcrit(z)/σ(M) and σ(M) is the root mean square (rms) of the smoothed

density field (at radius R = (3M/4πρ̄)1/3). This scenario has been improved by

taking into account more realistic non-spherical collapses: in particular, Sheth

& Tormen [1999] allowed for ellipsoidal collapse, allowing for the three different

collapsing times (one for each axis), and some years later they fitted simulations in

the context of ellipsoidal collapse to obtain more accurate values for the parameters

of the model [Sheth & Tormen, 2002].

One extra piece needed for understanding the physics behind the halo properties

and formation of structure is the role played by the baryons. As the halos of dark

matter form, baryons fall into them due to gravity. However, since baryons are not

collisionless, the pressure of the infalling gas becomes important, and the balance

between gravity and pressure changes the simple picture of the spherical collapse
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Figure 2.5: Number density of halos per logarithmic bin of halo mass, Mdn/dM (in
units of comoving Mpc−3), at various redshifts. From Loeb [2010].
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model.

In particular, one can show that there is a scale that separates the stable

perturbations from the ones that collapse. This scale is set by the Jeans mass,

that can be estimated to be, for z . 100, [Barkana & Loeb, 2001]

MJ ≈ 5.73 × 103

(

Ωmh2

0.15

)−1/2(
Ωbh

2

0.022

)−3/5(
1 + z

10

)3/2

M⊙ . (2.86)

When an object with M > MJ collapses, the gas can cool inside this dark

matter halo (that cannot condense or cool for being effectively collisionless), even-

tually condensing to the center and fragmenting into stars. This is the physical

mechanism that generates a extended dark matter halo with a core dominated by

cold gas and stars.

The evolution and formation of galaxies is a topic of very intensive research

nowadays as the computer power increases, allowing for more detailed simulations.

In what concerns the rest of this work, we will be interested in the effect that this

first luminous sources play in the intergalactic medium (IGM) [Meiksin, 2009; Loeb,

2010]. Although it has not yet been probed directly, it is theoretically expected

that the photons produced by the first generation of stars will heat and reionize the

intergalactic gas at lower redshifts, producing a significant impact in the properties

of the IGM.

2.4.4. Reionization

Observations of the CMB, spectra of early quasars, and other cosmological

probes indicate that the intergalactic medium went through a transition at redshifts

around 10 in which most of the atomic hydrogen of the Universe was reionized [Fan

et al., 2006]. Studies of the Gunn-Peterson effect, an absorption trough seen in

the spectra of quasars bluewards of the Lyman-α line [Gunn & Peterson, 1965], for

instance, indicate a rapid increase of the neutral fraction between the redshifts 5.5

and 6 [Fan, 2008], and current CMB experiments indicate that (8.8±1.5)% (68%

C.L.) of the CMB photons were scattered by free electrons after the recombination

epoch [Komatsu et al., 2011], implying that the reionization of the Universe took

place at z ≈ 10.

To understand how the first stars were able to ionize the entire IGM one needs to
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take into account that as the first stars start burning hydrogen they produce UV and

X-ray photons that escape the dark matter halos and interact with the surrounding

intergalactic medium. In particular, the description of those spherically symmetric

ionization fronts needs to include the cosmological expansion, recombinations, and

properties of the ionizing sources,

n̄H

(

dVp

dt
− 3HVp

)

=
dNγ

dt
− αBCn̄2

HVp , (2.87)

where n̄H is the mean number density of atomic hydrogen, Vp is the physical volume

of the ionized sphere, αB is the coefficient for the case-B recombination, adequate

for the optically thick regime [Draine, 2011; Osterbrock & Ferland, 2006], and

C is the so-called clumping factor. The first term in the RHS is proportional to

the emissivity of the source of photons. It has been shown that those bubbles of

ionized hydrogen grow with time, and the IGM goes from a phase in which most

hydrogen is atomic to one in which it is basically all ionized [Stiavelli, 2009; Loeb,

2010; Loeb & Furlanetto, 2012].

Finally, it should be mentioned that this period is potentially going to be probed

very accurately by forthcoming 21-cm cosmology observations [Furlanetto et al.,

2006a; Morales & Wyithe, 2010; Pritchard & Loeb, 2012], a topic we are going to

discuss in much more detail in chapter 5.

2.5. Dark Energy Dominated Epoch

Over the last two decades a new cosmological scenario emerged (for some

reviews see, for instance, Bahcall et al. [1999]; Freedman & Turner [2003]; Ratra

& Vogeley [2008]; Frieman et al. [2008]) thanks to a set of different cosmological

observations, especially the precise measurements of the anisotropies of the cosmic

microwave background, and of the expansion rate of the Universe using distant

Type Ia supernovae back from the time the Universe was about half of its present

age.

As we discussed before, the cosmic microwave background is essentially ho-

mogeneous and isotropic, with fluctuations of the order δT/T ≈ 10−5. Those

small fluctuations carry important cosmological information concerning the status

of the baryon-photon coupled fluid in the early Universe, just before the release of
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Figure 2.6: From top to bottom: temperature of the IGM, ionized fraction, and global
21-cm signal for different reionization models as a function of redshift. The first popu-
lation of stars heat and ionize the medium at z ≈ 10. From Pritchard & Loeb [2012].
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the CMB. Using them properly allows for putting constraints on some of the cos-

mological parameters, like the spatial curvature of the Universe and the baryonic

density [Dodelson, 2003].

Figure 2.7: The WMAP 7-year temperature power spectrum [Komatsu et al., 2011],
along with the temperature power spectra from the ACBAR [Reichardt et al., 2009] and
QUaD [Brown et al., 2009] experiments. We show the ACBAR and QUaD data only
at l ≥ 690, where the errors in the WMAP power spectrum are dominated by noise.
The solid line shows the best-fitting 6-parameter flat ΛCDM model to the WMAP data
alone. From Komatsu et al. [2011].

Nowadays, the most precise data of CMB anisotropies come from the WMAP

7yr data (Wilkinson Microwave Anisotropy Probe) satellite12, shown in Figure 2.7.

In the particular case of the spatial curvature, the recent results of the combination

between several CMB, Type Ia supernovae, BAO, and the two point function of

the BOSS-CMASS galaxy sample [Sanchez et al., 2012] indicate that

103 ΩK ≡ 103 (1 − Ω0) = −4.5+4.3
−4.2 , (2.88)

that is, the energy density of the Universe is very close to the critical one. However,

as we discussed earlier, baryonic density cannot be larger than around 4% of the

12http://map.gsfc.nasa.gov/
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present critical density [Sanchez et al., 2012],

100 Ωb0h
2 = 2.223+0.039

−0.037 , (2.89)

a result that agrees extremely well with light element abundances.

Even including the dark matter contribution, the total matter density amounts

to [Sanchez et al., 2012]

100 Ωm0h
2 = 11.13 ± 0.40 . (2.90)

Therefore, CMB alone results in the need of a smooth component that dominates

currently the energy density of the Universe.

On top of that, in the late 90’s two independent groups observing Type Ia

supernovae gathered evidence [Riess et al., 1998; Perlmutter et al., 1999] for the

astonishing result that the expansion of the Universe is accelerating, indicating the

presence of a cosmological constant-like fluid that contributes to about 70% of

the present energy of the Universe, figure 2.8).

Supernovae data [Shapiro & Turner, 2006] indicate with 5σ confidence level

that there was a recent period of acceleration for the Universe, corresponding to

a negative deceleration parameter,

q0 ≡ − ä0

a0H
2
0

=
4πG

3H2
0

∑

i

ρi (1 + 3ωi) =
Ω0

2
+
∑

i

3

2
Ωiωi , (2.91)

where i correspond to the different fluids, as well as evidence for an earlier de-

celerated period. Moreover, as the number of supernovae observed increases the

error bars keep shrinking towards a cosmological constant [Conley et al., 2011],

especially when combined with different cosmological datasets (see, e.g., Figure

2.9).

Those results lead to a cosmological paradigm in which this negative pressure

fluid, coined dark energy (DE) [Peebles & Ratra, 2003; Copeland et al., 2006;

Caldwell & Kamionkowski, 2009; Amendola & Tsujikawa, 2010], is the dominant

component of the energy of the Universe, driving its dynamics nowadays.

Moreover, different pieces of evidence for the existence of dark energy come

from several other cosmological observations. We just cite here some of them,
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Figure 2.8: Hubble diagram for around 200 Type Ia supernovae. From top to bottom,
(Ωm0 = 0.3;ΩΛ0 = 0.7), (Ωm0 = 0.3;ΩΛ0 = 0) and (Ωm0 = 1;ΩΛ0 = 0). The dashed
curve represents an Universe in which q = 0 over all its evolution, and therefore points
above it indicate a period of acceleration. From Freedman & Turner [2003].
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Figure 2.9: The marginalized posterior distribution in the Ωm − wDE (wDE ≡ ωφ in
our notation) plane for the ΛCDM parameter set extended by including the redshift-
independent value of wDE as an additional parameter. The dashed lines show the 68%
and 95% contours obtained using CMB information alone. The solid contours corre-
spond to the results obtained from the combination of CMB data plus the shape of the
redshift-space correlation function (CMASS). The dot-dashed lines indicate the results
obtained from the full dataset combination (CMB+CMASS+SN+BAO). The dotted
line corresponds to the ΛCDM model, where wDE = −1. From Sanchez et al. [2012].



44 Big Bang Cosmology

especially the ones which are important currently to pinpoint the nature of the dark

energy, and the ones that probably will become important during the next years,

like baryonic acoustic oscillations (BAO) [Seo & Eisenstein, 2003, 2007; Beutler

et al., 2011; Xu et al., 2012; Padmanabhan et al., 2012], weak lensing [Huterer,

2002; Zhan et al., 2009; Vanderveld et al., 2012], 21-cm cosmology [Pritchard

et al., 2007; Wyithe et al., 2008; Chang et al., 2008; Masui et al., 2010], and

others [Seljak et al., 2006; Cunha et al., 2009].

The number of possible candidates for dark energy that emerged in the last

few years is enormous [Amendola & Tsujikawa, 2010], and we are going to review

only two of them: the cosmological constant, important not only for historical

reasons, but also because the data seems to be narrowing the results towards it,

and the scalar field models for dark energy, the dubbed quintessence models. But

before that, we should take a brief look at another period in which the Universe

supposedly had its expansion accelerated, the so-called inflationary period.

2.5.1. A short digression: Inflation

The standard cosmological model, although sucessful, presents some problems

with its “initial conditions”. Within the context of the standard big bang model,

there is no explanation for the observed homogeneity and isotropy of the Universe

on large scales, what was known in the early 1980’s as the horizon problem: as the

Universe expands, regions that were not in causal contact before become accessible.

An example of that is, for instance, that during the decoupling time the horizon

corresponded to a size of around 1o in the present sky. Therefore, we would not

expect the homogeneity and isotropy of the CMB on scales larger than that.

In the same way, one can show that a flat Universe, that is Ω = 1, is the only

stable point for the equations of regular matter in the Universe. If the Universe

was slightly closed or open during its early stages, it rapidly evolves away from

Ω ∼ 1, since

(Ω − 1)RD = (Ωi − 1)

(

t

ti

)2/3

,

(Ω − 1)MD = (Ωi − 1)
t

ti
,

during radiation and matter domination, respectively, and for an open or closed
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Universe. Since observations indicate that Ω0 ∼ 1, it implies that for the nucle-

osynthesis epoch Ωnuc − 1 ∼ tnuc/t0 ∼ 10−18. Therefore, in order to obtain the

present dynamics of the Universe, the initial density had to be fine-tuned to be

extremely close to the critical density, what became known as the flatness problem.

Alan Guth [Guth, 1981] noticed, in a seminal paper, that phase transitions

very early in the history of the Universe would lead to a period of early accelerated

expansion. He called this period inflation, and noticed that it would solve the issues

discussed above and other problems (like the overabundance of heavy relics) if it

lasted long enough. Although the original model was known to have problems in

percolating the bubbles of the phase transition, the importance of an accelerated

phase to explain the initial conditions of the Universe was rapidly recognized, and

soon enough new models without the problems of the original one were proposed

[Linde, 1982, 1983; Albrecht & Steinhardt, 1982].

To see how a period of acceleration can solve some of the problems discussed

above, we can analyze again the Friedmann equation,

Ω − 1 =
k

H2a2
.

Since one can show that in general H ∝ t−1, H is always decreasing in value, and

therefore Ω would being taken away from 1. However, if d(Ha)/dt > 0, what

would take Ω towards 1. One can show that a condition for that is,

d(Ha)

dt
> 0 ⇒ ä > 0 .

An accelerating Universe leads the Universe towards flatness. Moreover, if this

inflation happens early and lasts enough, the whole observable Universe will have

expanded from a small region that was in causal contact before inflation, explain-

ing the homogeneity and isotropy, as well as diluting away any unwanted relic

abundance [Lyth & Liddle, 2009].

Therefore, one can define inflation as the time when the Universe is accelerat-

ingly expanding,

d(Ha)

dt
> 0 ⇐⇒ ä > 0 ⇐⇒ ω < −1

3
,

where we have used eq. (2.18). Notice that a cosmological constant like fluid is
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the candidate for causing the inflation, since ωΛ = −1. However, inflation needs to

finish and a reheating process [Bassett et al., 2006] to take place (populating the

Universe with radiation and baryons, since inflation dilutes strongly any previous

particle abundance that could exist). Therefore, one needs a “cosmological con-

stant” behavior, but with a fluid that after inflation either decays into photons to

start the “standard big bang”, or that at least decays faster than any subdominant

component and leaves place for gravitational reheating to happen.

In terms of the Friedmann equation, for a constant energy density ρΛ,

H =
ȧ

a
=

√

8πG

3
ρΛ = const ⇒ a(t) = a(ti) exp [H(t − ti)] , (2.92)

where ti is the initial time for the inflation. Therefore, in the case a constant energy

density dominates the energy density of the Universe, the scale factor increases

exponentially, being that the reason Guth called this expansion inflationary.

2.5.2. Cosmological constant

Arguably the most natural candidate for dark energy is the so-called cosmo-

logical constant. As we have discussed in the previous chapter, the cosmological

constant has been revived several times in the last decades, mostly motivated by

cosmological problems [Carroll et al., 1992], like the age of the Universe (section

2.6), and theoretical prejudices for a flat Universe [Turner et al., 1984; Ostriker &

Steinhardt, 1995; Krauss & Turner, 1995].

However, the fact its energy density is constant and of the order of the present

critical density brings several unanswered questions [Weinberg, 1989]. One of them

is the coincidence problem: why the dark energy and the matter densities have

the same order of magnitude in the present, even if they scale differently for the

whole history of the Universe. We shall come back to this problem in the end of

the chapter.

Another conundrum as complicated as this one is the cosmological constant

problem. The cosmological constant turns out to be a measure of the energy

density of the vacuum and although we cannot calculate the vacuum energy with

any confidence, this identification allows us to consider the scales of various con-

tributions to the cosmological constant.
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The configuration with the lowest energy density in a theory (if it exists) will

be one in which there is no contribution from kinetic or gradient energy in the

Lagrangian of the theory, like the minimum in the Higgs potential, for instance.

Therefore, the vacuum energy-momentum tensor is given by

T Λ
µν = −ρΛgµν , (2.93)

with ρΛ given by the minimum of the potential energy for each theory. Notice that

this form for the vacuum energy-momentum tensor can also be argued for on the

more general grounds that it is the only Lorentz-invariant form for T Λ
µν of a perfect

fluid, eq. (2.11).

The vacuum can therefore be thought of as a perfect fluid with

ωΛ =
pΛ

ρΛ
= −1 . (2.94)

The vacuum energy is also equivalent to writing in the right-hand side of Einstein’s

equations a new term of the form Λgµν , for

ρΛ ≡ Λ

8πG
. (2.95)

This equivalence is the origin of the identification of the cosmological constant with

the energy of the vacuum, and shows that we can also think about the cosmological

constant in gravitational terms. In fact, the action for general relativity in the

presence of a “bare” cosmological constant Λ0

S =
1

16πG

∫

d4x
√
−g(R − 2Λ0) , (2.96)

leads to Einstein’s equations (2.10) plus a cosmological constant term like the one

discussed above. Thus, the cosmological constant can be thought of as simply a

constant term in the Lagrange density of the theory. Indeed, eq. (2.96) is the

most general covariant action we can construct out of the metric and its first and

second derivatives [Carroll, 2001].

Classically, then, the effective cosmological constant is the sum of a bare term

Λ0 and the potential energy V of the fields present in the Universe. But there is

still another contribution, coming from quantum fluctuations in the fields.
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A (free) quantum field can be understood as a collection of an infinite number

of harmonic oscillators in momentum space. Formally, the zero-point energy of

such an infinite collection will be infinite [Weinberg, 1989; Carroll et al., 1992]. If,

however, we discard the very high-momentum modes on the grounds that we trust

our theory only up to a certain ultraviolet momentum cutoff kmax, we find that the

resulting energy density is of the form

ρΛ ∼ ~k4
max . (2.97)

In flat spacetime, this energy has no effect, and is traditionally discarded by a

process known as “normal-ordering”. However, when one is dealing with curved

spacetimes, like FRW, the actual value of the vacuum energy has important con-

sequences.

The “net” cosmological constant, therefore, is the sum of all those contribu-

tions, including potential energies from scalar fields, zero-point fluctuations of each

field theory, and the bare cosmological constant Λ0.

In the particular case of the first of them, we can consider the Weinberg-

Salam electroweak model, where the phases of broken and unbroken symmetry are

distinguished by a potential energy difference of approximately MEW ∼ 200 GeV.

Therefore, except for some incredible coincidence, we would expect a contribution

for the cosmological constant coming from the electroweak symmetry breaking of

order

ρEW
Λ ∼ (200 GeV)4 ∼ 3.7 × 1026 g cm−3 . (2.98)

In the case of fluctuations, we should choose our cutoff at the energy past which

we no longer trust our field theory. If we are confident that we can use ordinary

quantum field theory all the way up to the Planck scale mp = (8πG )−1/2 ∼
1018 GeV, we would obtain

ρ
mp

Λ ∼ (1018 GeV)4 ∼ 2.3 × 1089 g cm−3 , (2.99)

far beyond any reasonable value for the observed cosmological constant,

ρ
(obs)
Λ ≤ (10−12 GeV)4 ∼ 2.3 × 10−31 g cm−3 , (2.100)
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The ratio of eq. (2.99) to eq. (2.100) is the origin of the famous discrepancy of

120 orders of magnitude between the theoretical and observational values of the

cosmological constant [Weinberg, 1989], what became known as the cosmological

constant problem.

The practical approach that most people take is to assume that the cosmolog-

ical constant is zero, by some (yet to be discovered) reason, and try to attack the

dark energy using different tools. One of them is using scalar fields to explain the

current acceleration of the Universe, very much like they are used for primordial

inflation. In the next section, we are going to review briefly the use of scalar fields

in cosmology, initially for inflationary models, and then in the scenarios known as

quintessential models.

2.5.3. The potential of scalar fields

As we mentioned earlier, the idea of inflation was born in the context of phase

transitions in the early Universe. However, Guth’s original model suffer from a

problem known as graceful exit, a problem already pointed out in the original paper.

Inflation in this model was caused by the supercooling of the Universe during a

phase transition. Bubbles of the new phase should form and percolate. But because

of the exponential expansion of the horizon, bubbles will never percolate, and the

whole scenario is spoiled.

However, soon enough new models appeared, like the New inflation mod-

els [Linde, 1982; Albrecht & Steinhardt, 1982] and the Chaotic models [Linde,

1983]. They were based on the idea of using different scalar field (dubbed infla-

ton) potentials, and after that essentially all inflationary models were based on the

same approach.

The overall idea is that the early Universe is homogeneously filled with a scalar

field Φ (or more than one in the Hybrid models [Lyth & Liddle, 2009]) dominated

by its potential V (Φ). The action of this field in curved spacetime is given by

S =

∫

d4x
√−g

[

1

2
gµν∂µΦ∂νΦ − V (Φ)

]

(2.101)

(where g is the determinant of the metric tensor gµν), and the corresponding
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energy-momentum tensor is

Tµν =
1

2
∂µΦ∂νΦ +

1

2
(gαβ∂αΦ∂βΦ)gµν − V (Φ)gµν . (2.102)

Comparing the above equation with the one of a perfect fluid, eq. (2.11), for

a homogeneous field, we have that the 0-0 component is given by

T 0
0 = ρΦ = Φ̇2 − 1

2
Φ̇2 + V (Φ) ⇒ ρΦ =

1

2
Φ̇2 + V (Φ) , (2.103)

and the spatial components correspond to

(−1)(−T i
i ) = pΦ =

1

2
Φ̇2 − V (Φ) ⇒ pΦ =

1

2
Φ̇2 − V (Φ) . (2.104)

The equation of state of ωΦ is given by

ωΦ =
pΦ

ρΦ
=

1
2
Φ̇2 − V (Φ)

1
2
Φ̇2 + V (Φ)

⇒ −1 ≤ ωΦ ≤ 1 . (2.105)

As one can see from the above equation, when the potential energy dominates

over the kinetic one, the field behaves like a cosmological constant, as we have

commented in the beginning of the section. In the opposite situation, when the

kinetic energy dominates, the energy density of the inflaton scales as a−6, much

faster than matter and radiation.

The equation of motion for the scalar field can be obtained by varying its

action with respect to the field, and analogously to the flat spacetime case, this

corresponds to the Klein-Gordon equation,

2Φ = − dV

dΦ
(2.106)

where the covariant d’Alembertian is 2 = ∇ν∇ν = gµν∇µ∇ν . Therefore, in

an expanding Universe, a spatially homogeneous scalar with potential V (Φ) and

minimal coupling to gravity has the equation of motion given by

Φ̈ + 3HΦ̇ +
dV

dΦ
= 0 , (2.107)

where H is the Hubble parameter, and overdots indicate time derivatives. Notice
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that the Hubble parameter acts as a friction term: the field will be overdamped

(and thus approximately constant) when H >
√

d2V /dΦ2, and underdamped

(and thus free to roll) when H <
√

d2V /dΦ2.

This equation of motion could also be obtained from the fluid equation eq.

(2.19) of the scalar field,

ρ̇Φ = −3H (ρΦ + pΦ) , (2.108)

using equations (2.103) and (2.104).

There are a lot more about inflation discussed elsewhere, like its key role in

seeding the perturbations of structure formation [Dodelson, 2003; Lyth & Liddle,

2009], how the models can be probed by current observations [Dodelson et al.,

1997; Lidsey et al., 1997; Dvorkin & Hu, 2010; Mortonson et al., 2011], and on

the construction of particle physics models of inflation [Lyth & Riotto, 1999; Lyth

& Liddle, 2009]. However, as stated before, our main interest here is the fact that

recent observations indicates that the Universe is again in an accelerated period,

and that scalar field models can also be used to explain the current acceleration

of the Universe, the so-called quintessence models.

Quintessence

As we just discussed, a scalar field13 φ only gravitationally coupled to the matter

content of the Universe can be an alternative to the cosmological constant the dark

energy if its energy density is similar to the present critical density of the Universe

[Peebles & Ratra, 1988; Ratra & Peebles, 1988; Wetterich, 1988; Frieman et al.,

1995; Ferreira & Joyce, 1998].

Caldwell, Dave and Steinhardt [Caldwell et al., 1998] coined the term quintessence

for the scalar field, and proposed that it could have small perturbations that, in

principle, could be probed in the CMB and matter power spectrum. Different

quintessence models correspond to different choices of the scalar field potential.

Two classes of particular solutions, called tracker and scaling solutions [Copeland

et al., 1998; Liddle & Scherrer, 1999; Steinhardt et al., 1999; Zlatev et al., 1999],

were soon discovered. Those solutions correspond to stable dynamical fixed points

[Copeland et al., 2006] for the coupled system of equations given by

13We will use φ for the quintessence field, in order to distinguish it from the inflaton field Φ.
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Ḣ = −κ2

2

(

γbfρbf + φ̇2
)

,

φ̈ = −3Hφ̇ − dV

dφ
, (2.109)

ρ̇bf = −3γbfHρbf ,

where γi ≡ 1+ωi , and the index bf denotes the dominant background fluid (matter

or radiation) when the system reaches the fixed point.

Both the tracker and scaling solutions are characterized by the fact that the

quintessence equation of state, eq. (2.105) becomes constant in the fixed point,

that is, the system reaches a point in which the ratio between the kinetic and

potential energies becomes constant. In the next section, we are going to discuss

why those solutions are interesting, the differences between them, and what kind

of quintessence potentials generate each of the solutions.

Tracker and scaling quintessence

The idea of using quintessential tracker solutions first emerged as a tentative

to address the coincidence problem: why are dark energy and dark matter energy

densities of the same order of magnitude in the present epoch? This problem arises

because dark energy must have a negative pressure to accelerate the Universe, and

cold dark matter (as well as baryons) has vanishing pressure. Therefore, the ratio

of their energy densities ρ, for a constant equation of state ωφ of dark energy,

must vary as
ρm

ρφ
=

ρm0

ρφ0
(1 + z)−3ωφ ≈ (1 + z)3

2
, (2.110)

what makes the current epoch a very special one, when both terms contribute

almost equally to the energy density of the Universe.

As we are going to discuss, tracker models cannot solve the coincidence prob-

lem. In this sense, what models of quintessence do, in general, is to fine tune the

overall scale of the potential of dark energy (or the scale in which modifications of

general relativity become important) to be of order of the present critical density,

a fine tuning that emerges even when one is using tracking or scaling solutions.

More recent tentatives to solve this problem include scalar fields with non-
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canonical kinetic terms where the equation of state of the field changes to a

cosmological constant-like as the background changes from radiation to matter

domination (see, e.g., Armendariz-Picon et al. [2000, 2001]), and (spatial) cur-

vature coupled quintessence, where the existence of a small spatial curvature of

the Universe, ΩK . 10−3 , triggers the recent dark energy domination [França,

2006]. However, the former apparently have a very small parameter space that

can generate relevant cosmological solutions, and the latter still is a phenomeno-

logical model, to be obtained from a more fundamental theory, and also has to be

compared to different data sets to check its consistency. The coincidence problem

still is a tricky problem to be solved by any serious dark energy candidate.

Tracker solutions were initially though to be able to solve the problem because

in the fixed point (fp) regime, both quintessence and matter densities scale on the

same way, and therefore the ratio between the densities after the stable solution is

reached is given by
ρfp

m

ρfp
φ

=
Ωfp

m

Ωfp
φ

= constant . (2.111)

In fact, one can show that the fixed point is stable and can be reached from a

wide range of initial conditions, and therefore could, at least in principle, address

the coincidence. However, the constant ratio implies that the quintessence tracks

the behavior of the background fluid, and even when the ratio is the correct one

(∼ 3/7), the quintessence equation of state is very close to the matter one, and

therefore cannot accelerate the Universe.

Nonetheless, even though the coincidence problem cannot be solved by those

solutions, they still are interesting because for them the dark energy equation of

state remains constant. Therefore, assuming a constant equation of state when

fitting the data is a well motivated fact in the context of those solutions, although

surely one has to keep an open mind and test for other possibilities [Linder, 2008b],

like varying equations of state [Albrecht et al., 2006; Albrecht & Bernstein, 2007].

In this way, we will discuss how to obtain the kind of potentials that generate

such solutions [Liddle & Scherrer, 1999], although we are not going to discuss

their dynamical stability [Copeland et al., 2006]. Before that, we have to stop and

clarify an issue on the notation of the solutions, since the tracker solutions have

been defined differently in the almost simultaneous works [Steinhardt et al., 1999;

Zlatev et al., 1999] and [Liddle & Scherrer, 1999]. In the former, they define a
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tracker solution as the one in which

ωφ ≈ ωbf − 2(Γ − 1)

1 + 2(Γ − 1)
, Γ ≡ V ′′V

(V ′)2
,

for Γ > 1 and approximately constant. Prime in this equation denotes derivatives

with respect to the field φ, and ωbf corresponds to the background equation of

state.

The same kind of solution has been defined in [Liddle & Scherrer, 1999] as

a scaling one. In this work, a tracker solution is one in which Γ = 1, leading to

ωφ = ωbf . This is the definition we are going to use here and in the other chapters.

To obtain the potentials, we have to write the equations in a more convenient

form. Using the definition of the energy density for a spatially homogeneous scalar

field, we have that

ρ̇φ = φ̇

(

φ̈ +
dV

dφ

)

= −3Hφ̇2 , (2.112)

where for the last equality we have used the Klein-Gordon equation. Then, as-

suming the constant behavior for both the equations of state of the background,

ρbf ∝ a−m, and quintessence, ρφ ∝ a−n, we have that

ρ̇φ + 3Hγφρφ = 0 ⇒ ρ̇φ/2

ρφ
= − 3

2
Hγφ = − nH

2
, (2.113)

that is,
φ̇2/2

ρφ
=

n

6
. (2.114)

Assuming that the initial density of the background fluid is much larger than the

quintessence, ρφ ≪ ρbf , we have that the scale factor evolves as a(t) ∝ t2/m, and

therefore

H =
ȧ

a
=

2

m

t(2−m)/m

t2/m
=

2

m
t−1 . (2.115)

That leads to the field equation,

φ̈ = − 6

m

φ̇

t
− dV

dφ
, (2.116)

and since

ρφ ∝ a−n ∝ t−2n/m , (2.117)
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we finally obtain that eq. (2.114) reads

φ̇ ∝ √
ρφ ∝ t−n/m . (2.118)

That set of equations is now in a very suitable form, since plugging eq. (2.118)

in eq. (2.116), we can integrate the equations to obtain the scalar field potential

V (φ). That is what we are going to do next for both tracker and scaling solutions.

a) Tracker solutions

For n = m, eq. (2.118) gives

∫

dφ ∝
∫

dt

t
∝ ln t ⇒ φ(t) = A ln(t/t⋆), (2.119)

where A is a constant, and the field is written in units of mp, and one can

show from the equation of motion of the scalar field, eq. (2.116), that

V (φ) =
2t⋆
λ2

(

6

m
− 1

)

e−λφ ≡ V0 e−λφ , (2.120)

that is, the tracker solutions happen for the “famous” exponential potential,

[Ratra & Peebles, 1988; Wetterich, 1988; Ferreira & Joyce, 1998; Copeland

et al., 1998]. This tracker solution is a stable fixed point for λ2 > 3γbf , with

the density parameter of the quintessence given by

Ωfp
φ =

3γbf

λ2
. (2.121)

In fact, one can show [Liddle & Scherrer, 1999; Copeland et al., 1998] that

the exponential potential is the only one which presents tracker solutions

for the uncoupled quintessence. However, as we discussed before, tracker

solutions cannot accelerate the Universe, and therefore we know that those

kind of solutions are excluded, although one can consider different behaviors

of the exponential potential, like its scaling solutions [França & Rosenfeld,

2002] to look for cosmologically interesting solutions.

b) Scaling solutions

A scaling solution is the one in which the positive constants m = 3γbf
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and n = 3γφ are different. As we are going to see, this kind of solutions

arise naturally in inverse law potentials [Ratra & Peebles, 1988], also called

Ratra-Peebles potentials, for obvious reasons.

For n 6= m, we have from eq. (2.118) that

∫

dφ ∝
∫

t−n/mdt ⇒ φ(t) = A t1−n/m , (2.122)

where A is simply a constant. The field equation in this case gives

V (φ) = A2
(

1 − n

m

)2 (6 − n)

2n

(

φ

A

)α

≡ V0 φα , (2.123)

where

α =
2n

n − m
⇒ n =

α

α − 2
m . (2.124)

Therefore, scaling solutions happen for inverse law potentials.

We have two particular solutions of interest: α > 2 and α < 0. Notice that

0 < α ≤ 2 is not included, since we assumed that n and m are positive

constants. Moreover, if α = 0, then the potential is simply a constant and

does not depend on φ.

Moreover, in the attractor regime, we have that the two equations of state

can be related,

γφ =
α

α − 2
γbf ⇒ ωφ =

2

α − 2
+

α

α − 2
ωbf . (2.125)

In the present epoch, the background fluid is composed by nonrelativistic

matter, and therefore,

ωφ =
2

α − 2
, (2.126)

which is negative for α < 0.

Summing up, we see that the scaling solution can in principle provide the

observed acceleration of the Universe, with the ratio of densities given by

ρφ

ρm

∝ a−n/3 , (2.127)

from where one can clearly see that the coincidence problem still is present,
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since one has to fine tune the parameters of the potential (V0, α) in order

to obtain reasonable cosmological histories. Moreover, it should be noted

that, as in the case of the exponential potentials, one can always evade the

attractor conditions for those potentials [Kneller & Strigari, 2003].

To conclude this section, it should be said that scaling solutions are far

more common than tracker ones [Copeland et al., 2005]. The exponential

potential, for instance, also presents a stable scaling regime [Copeland et al.,

1998], valid for λ2 < 3γbf , with the equation of state given by

ωφ = −1 +
λ2

3
(2.128)

that can explain the current acceleration of the the Universe and the dark

energy density with the same level of fine tuning required in more elaborate

models [França & Rosenfeld, 2002]. Those models were later shown to be

totally consistent with M / String Theory [Kallosh et al., 2002; Gutperle

et al., 2003], and therefore gained an interesting appeal from the theoretical

point of view.

2.5.4. Dark energy and the rest of the Universe

Quintessence is modelled by a scalar field whose excitations are very light,

mφ =

√

V ′′(φ)

2
∼ H0 ∼ 10−33 eV . (2.129)

From the point of view of particle physics, the exchange of very light fields gives

rise to forces of very long range, a fifth force, what makes interesting to consider

the direct interaction of the quintessence field φ to ordinary matter. Although it

is traditional to neglect (or set to zero) the couplings of this light scalar to the

standard model particles, we expect such couplings to be present. As an example,

they could be present in the form [Copeland et al., 2004]

LφF = − 1

4g 2(φ(t))
Fµν F̃

µν = −1

4
B(φ(t))Fµν F̃

µν (2.130)

where F̃µν is the dual of the electromagnetic strength tensor, 2F̃µν = ǫαβµνFαβ .
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That kind of couplings leads to a variation in the fine structure constant α

[Uzan, 2003, 2011], and assuming a coupling of the form B(φ) = 1 − ζ(φ −
φ0)/mp, for most quintessence potentials one can obtain a limit in which ζ < 10−5

[Copeland et al., 2004]. The robust limit ζ < 10−3 comes only from the equivalence

principle [Olive et al., 2002], obtained comparing the differential acceleration of

light and heavy elements, and therefore is also valid for the coupling of this field

with baryons in the Universe. Moreover, astrophysical and cosmological bounds on

density dependent couplings strongly constrains those couplings [Ellis et al., 1989;

Dent et al., 2009].

Moreover, tests of the gravitational inverse square law found no evidence for

a deviation of the standard gravity [Adelberger et al., 2009] down to the scale

λ = 56 µm [Kapner et al., 2007], smaller than the dark energy scale, given by

ρ
1/4
φ0 ∼ 2.2 × 10−3 eV ∼ (90 µm)−1.

Yet another scenario was proposed [Khoury & Weltman, 2004a,b] using self-

interactions of the scalar-field to avoid the most restrictive of the current bounds.

They dubbed such scalars chameleon fields due to the way in which the mass of

the field depends on the density of matter in the local environment. A chameleon

field might be very heavy in relatively high density environments, such as the

Earth and its atmosphere, but almost massless cosmologically where the density

is much lower. This feature allows for the field to evade local constraints on

fifth force effects. However, the linearised equations have been probed and a

lot of the parameter space has been excluded [Upadhye et al., 2012; Adelberger

et al., 2007], although there are claims that nonlinear effects play an important

role [Mota & Shaw, 2006, 2007] and can change those conclusions. In this sense,

we see that even in more exotical scenarios the coupling to baryons seems to be

severely constrained.

Nonetheless, there is still another possibility to be studied: the coupling be-

tween dark energy and dark matter. Those, obviously, can be probed only cosmo-

logically, since none of them has been directly detected yet, although one should

keep in mind that the stability of the quintessence potentials severely constrains

the coupling, as is usual for scalar potentials [Doran & Jäckel, 2002], unless one

assumes (as we will do in the rest of the text) to be already dealing with the “quan-

tum corrected potential”. This interaction leads, in general, to radically different

predictions for the dark sector, and also to distinct properties of the dark matter
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particle, like the variation of its mass. That idea is the main responsible behind

several models that arose later, in particular the idea of neutrino as a mass-varying

particle that we are interested in.

Coupled dark energy

In this section we are going to consider the modifications on the background

equations that arise from the coupling between quintessence and dark matter. Both

components, as discussed in the previous chapters, have their behaviors dictated

by the conservation of the energy momentum tensors T
(φ)
µν and T

(C)
µν , respectively

(hereafter the index C refers to the cold dark matter component).

General covariance requires the conservation of their sum, so that it is possible

to consider a coupling such that,

∇µT (φ)
νµ = −δ(φ)Tα(C)

α ∇νφ ,

∇µT (C)
νµ = δ(φ)Tα(C)

α ∇νφ , (2.131)

where δ is a free parameter, normally taken to be a constant, although it can be

a function of the field φ.

Such a coupling arises for instance in string theory, or after a conformal trans-

formation of Brans-Dicke theory [Amendola, 1999, 2000], although one should keep

in mind that the specific coupling (2.131) is only one of the possible forms, and

more complicated functions are also possible, as well as more phenomenological

approaches [Mangano et al., 2003; Quartin et al., 2008].

The coupling to relativistic particles like photons (and neutrinos in the early

Universe, as we will discuss later) in this case vanish, since

T
β(r)
β ≡ T (r) = ρr − 3pr = 0 . (2.132)

The equations (2.131) for a homogeneous quintessence can be written as

ρ̇φ + 3Hρφ(1 + ωφ) = −δ(φ)ρC φ̇ ,

ρ̇c + 3Hρc = δ(φ)ρC φ̇ , (2.133)

that is, the usual fluid equation plus a right-hand side dependent on the coupling.
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Notice that this amounts to saying that the usual scaling of the energy densities

with the scale factor, ρ ∝ a−3(1+ω) for constant ω, does not hold here. In fact,

one can rewrite the above equations in the form

ρ̇φ + 3Hρφ(1 + ωe
φ) = 0,

ρ̇c + 3Hρc(1 + (1 + ωe
c )) = 0 , (2.134)

where the effective equations of state are given by

ωe
φ = ωφ +

δ(φ)ρC φ̇

3Hρφ
= ωφ +

I
3Hρφ

,

ωe
c = −δ(φ)φ̇

3H
= − I

3Hρc

,

where we define I = δ(φ)ρC φ̇, and this fact holds for any interaction term I.

The Klein-Gordon equation is given by,

φ̈ + 3Hφ̇ = −dV

dφ
− δ(φ)ρc , (2.135)

and clearly shows the effect on the field of the coupling with the dark matter: it

inserts an extra piece in the potential of the quintessence.

The rest of the fluids (baryons, neutrinos and photons) follow the same standard

equations, as well as the Friedmann equation,

H2 =
1

3m2
p

(

ρc + ρb + ργ + ρν +
1

2
φ̇2 + V (φ)

)

. (2.136)

In what follows we are going to consider a particular model as an example, but

before doing it, we shall describe another way to interpret the above equations, in

the context of mass-varying cold dark matter particles.

2.5.5. Mass-varying particles

In general, when one considers two interacting species, like in eq. (2.133), we

are interested in interactions that happen via quantum field theory creation and/or

annihilation of particles, like models in which the dark matter particles [Lattanzi &
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Valle, 2007] or massive neutrinos [Beacom et al., 2004] decay, leading their number

density to be

n(t) = ni

(ai

a

)3

exp[−t/τ ] , (2.137)

to fall faster than a−3, where ni is the initial number density when the decay starts,

and τ is the mean lifetime of the particle [Kolb & Turner, 1990].

However, here we will be interested in a less standard form of interaction: one

in which the mass of the particle depends on the vacuum expectation value (vev)

of the quintessence field,

mc(φ) = mc0f (φ) . (2.138)

In this case the particle is not decaying into quintessence or any other particle, and

its number is conserved,

ṅc + 3Hnc = 0 . (2.139)

Therefore, the energy density ρc = mcnc obeys the equation

ρ̇c + 3Hρc =
d ln[f (φ)]

dφ
ρc φ̇ . (2.140)

Comparing equations (2.133) and (2.140), one can clearly see that the former

can be interpreted as a set of equations of a mass-varying particle coupled to the

quintessence field, with an interaction term

δ(φ) =
d ln[f (φ)]

dφ
. (2.141)

The idea of a cosmological important mass-varying particle has been investigated

initially in the context of scalar-tensor theories [Casas et al., 1992]. The term

“VaMPs” for those scenarios was coined by Anderson & Carroll [1998], which also

analyses some cosmological consequences of a particular coupling, and brings into

attention the fact that with an extra contribution to the potential, eq. (2.135), it

is possible to define a minimum for the sum of the two, and therefore to obtain a

cosmological constant behavior for the field stuck in the bottom of the potential.

In order to analyse in more detail this class of models, we are going to take

a particular potential and mass variation, the so-called exponential VaMP model

[Comelli et al., 2003; França & Rosenfeld, 2004].
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The potential of the DE scalar field φ is given by

V (φ) = V0 eβφ/mp , (2.142)

where V0 and β are positive constants. Dark matter is modelled by a particle of

mass

mc = mc0 e−λ(φ−φ0)/mp , (2.143)

where mc0 is the current mass of the dark matter particle and λ a constant pa-

rameter. Comparing with previous equations, we see that in this case δ(φ) is given

by,

δ = − λ

mp

= constant . (2.144)

The fluid equations become,

ρ̇c + 3Hρc = −λφ̇

mp

ρc ,

ρ̇φ + 3Hρφ(1 + ωφ) =
λφ̇

mp

ρc , (2.145)

where ωφ = pφ/ρφ = (1
2
φ̇2−V )/(1

2
φ̇2+V ) is the usual equation of state parameter

for a homogeneous scalar field.

Thus, we have that

ω(e)
c =

λφ̇

3Hmp

=
λφ′

3mp

,

ω
(e)
φ = ωφ − λφ̇

3Hmp

ρc

ρφ

= ωφ − λφ′

3mp

ρc

ρφ

, (2.146)

are the effective equation of state parameters for dark matter and dark energy,

respectively. Primes denote derivatives with respect to u = ln(a) = − ln(1 + z),

and a0 = 1.

The Klein-Gordon equation reads

φ̈ + 3Hφ̇ =
λρχ

mp

− βV

mp

. (2.147)
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The Klein-Gordon and the Friedmann equations become, in terms of u,

H2φ′′ +
1

3m2
p

[

3

2
(ρb + ρc) + ρr + 3V

]

φ′ =
λρc

mp

− βV

mp

, (2.148)

H2 =
(1/3m2

p) (ρc + ρb + ρr + V )

1 − (1/6m2
p) φ′2

, (2.149)

where we have neglected the mass of the neutrinos, and their contribution is

summed with the photons one, denoted by radiation (r).

Using the fact that the right-hand side of eq. (2.148) is the derivative with

respect to the field φ of an effective potential [Hoffman, 2003],

Veff(φ) = V (φ) + ρc(φ) , (2.150)

one can show that there is a fixed point value for the field, given by dVeff(φ)/dφ =

0:
φ

mp

= − 3

(λ + β)
u +

1

(λ + β)
ln

(

βV0

λρc0eλφ0/mp

)

. (2.151)

At the present epoch the energy density of the Universe is divided essentially

between dark energy and dark matter. In this limit, using the above solution, one

obtains

Ωφ = 1 − Ωc =
3

(λ + β)2
+

λ

λ + β
, (2.152)

ω(e)
c = ω

(e)
φ = − λ

λ + β
, (2.153)

which is a stable attractor for β > −λ/2 + (
√

λ2 + 12)/2. The equality between

ωc and ωφ clearly denotes a tracker solution coming from the behavior of the

exponential potential [Amendola, 1999; Comelli et al., 2003; França & Rosenfeld,

2004] in this regime.

The density parameters for the components of the Universe and the effective

equations of state for the DE and DM for a typical solution are shown in Fig.

2.10. Notice that the transition to the tracker behavior in this example is currently

occurring.

Moreover, in those models, the cosmological predictions are in general much

different when compared with the “standard cases” of a cosmological constant or
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Figure 2.10: Top panel: Density parameters of the components of the Universe as a
function of u = − ln(1 + z) for λ = 3, β = 2 and V0 = 4.2 × 10−48 GeV4. After a
transient period of baryonic matter domination (dot-dashed line), DE comes to dominate
and the ratio between the DE (solid line) and DM (dashed line) energy densities remains
constant. Bottom panel: Effective equations of state for DE (solid line) and DM (dashed
line) for the same parameters used in top panel. In the tracker regime both equations
of state are negative. From França & Rosenfeld [2004].
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an uncoupled quintessence. The acceleration of the Universe could have started

as early as z ∼ 3 [Amendola, 2003; Amendola et al., 2006], the relic abundance

of cold dark matter could be altered by as much as 40% [Rosenfeld, 2005], and a

possible super-acceleration of the Universe that violates the weak energy condition,

ωφ < −1, could be accomodated without problems [Das et al., 2006].

Therefore, the message is that even background quantities like the abundance

of dark matter and the expansion history could be severely changed if we allow

for different models of the dark sector. Because of that, it was initially thought

that in this case a tracker solution would be able to solve the coincidence problem

[Comelli et al., 2003], although later it became clear that the level of fine tuning

needed for such potentials was even stronger than in normal quintessence models

[França & Rosenfeld, 2004]. Notice that, also in this case, non-attractor solutions

[França & Rosenfeld, 2002] might be cosmologically relevant [Farrar & Peebles,

2004].

2.6. The age of the Universe

To close this chapter, we include here a note on what was probably one of

the first indications of the existence of the dark energy: the age of the Universe

[Turner et al., 1984; Ostriker & Steinhardt, 1995; Krauss & Turner, 1995].

Although the model independent measures of the age of the Universe still give

larger errors, they can exclude some models for the Universe based on the lower

limit for the age of the Universe. Assuming that besides matter, there is an extra

component in the Universe, which we shall denote by φ,

ρ = ρm + ρr + ρφ =⇒ Ω = Ωm + Ωr + Ωφ .

with an equation of state ωφ, we have that

ȧ2

a2
+

k

a2
=

8πG

3
(ρm + ρr + ρφ) ,

Using eq. (2.20), we have that

ȧ2

a2
+

k

a2
=

8πG

3

[

ρm0

(a0

a

)3

+ ρr0

(a0

a

)4

+ ρφ0

(a0

a

)3(1+ωφ)
]

.
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That can be rewritten as,

ȧ2 + k = a2
0H

2
0

[

Ωm0

(a0

a

)

+ Ωr0

(a0

a

)2

+ Ωφ0

(a0

a

)1+3ωφ

]

.

Notice that we can use the Friedman equation, k = a2
0H

2
0 (Ω0 − 1), in such a way

that

ȧ = a0H0

√

1 − Ω0 + Ωm0

(a0

a

)

+ Ωr0

(a0

a

)2

+ Ωφ0

(a0

a

)1+3ωφ

.

Changing the variables, y = a/a0 and dy/da = a−1
0 , we have that da/dt =

a0(dy/dt), and

t0 = H−1
0

∫ 1

0

dy
√

1 − Ω0 + Ωm0 y−1 + Ωr0 y−2 + Ωφ0 y−(1+3ωφ)
, (2.154)

where we assumed that ai ≈ 0 ≪ a0. Therefore, this is the equation to be solved

to calculate for the age of the Universe.

In a flat matter dominated Universe we have, for instance, that

t0 = H−1
0

∫ 1

0

dy y 1/2 =⇒ t0 =
2

3
H−1

0 ≈ 6.52 h−1 Gyr . (2.155)

WMAP collaboration [Komatsu et al., 2011] has given a stringent value for the

age of the Universe, t0 = 13.7±0.2 Gyr at 68% C.L. However, this result is model

dependent and obtained from direct integration of the Friedmann equation for the

running spectral index ΛCDM model. More conservative are the observations that

indicates as lower limit for the age of the oldest globular clusters (and consequently

for the age of the Universe) t0 = 10.4 Gyr at 95% C.L. [Krauss & Chaboyer, 2003].

Notice that this value is far too large when compared with the value given by

eq. (2.155). One way to solve those problems is using a cosmological constant

plus matter flat Universe. In this case, the age is given by

t0 = H−1
0

∫ 1

0

dy
√

(1 − ΩΛ0) y−1 + ΩΛ0y 2

= −2

3
H−1

0

∫ 1

∞

du

u5/3
√

(1 − ΩΛ0)u2/3 + ΩΛ0u−4/3
,
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where y = u−2/3 and dy/du = −2/3 u−5/3. Since

∫

dx

x
√

ax2 + bx + c
= − 1√

c
ln

(

2
√

c

x

√
ax2 + bx + c +

2c

x
+ b

)

, c > 0

we have that (for a = 1 − ΩΛ, b = 0, c = ΩΛ),

t0 = −2

3
H−1

0

∫ 1

∞

du

u
√

(1 − ΩΛ0)u2 + ΩΛ0

=⇒ t0 =
2

3
H−1

0 Ω
−1/2
Λ0 ln

[

1 + Ω
1/2
Λ0

(1 − ΩΛ0)1/2

]

.

(2.156)

That is, the age of the Universe depends on the contribution of the cosmological

constant ΩΛ0. As one can see in figure 2.11, for a flat Universe the age is always

higher when a non-negligible cosmological constant is present. For ΩΛ0 = 0.7, for

instance,

t0 ≈ 1.45 × 2

3
H−1

0 ≈ 9.45 h−1 Gyr ≈ 13.5 Gyr . (2.157)
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Figure 2.11: Age of the Universe in units of h−1 Gyr for a flat Universe with and without
a cosmological constant. Dotted line shows t0 = 2

3H0
for comparison only.
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In fact, using the limits discussed above and the position of the first Doppler

peak in WMAP experiment it is possible to put an upper limit on the equation of

state (assumed constant) of the dark energy, ωφ < −0.67 at 90% confidence level

[Jimenez et al., 2003]. However, current upper limits on the age of the Universe

can not constrain the lower value of the equation of state, since for large values of

the age (t0 & 18 Gyr) the cosmology is essentially independent on the value of the

equation of state [Krauss, 2004], unless we assume that reionization took place

too early in the Universe history (as indicated by WMAP data), and consequently

the upper limit for the age of the Universe is close to the upper limits coming from

globular cluster, t0 ≈ 16 Gyr, as in the case discussed in [Jimenez et al., 2003].
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Figure 2.12: Distribution of models that satisfy Hubble parameter (h = 0.72±0.08) and

DE parameter density (Ωφ = 0.7± 0.1) constraints as a function of age of the Universe

for the coupled dark energy-dark matter models. A fit to the points gives t0 = 15.3+1.3
−0.7

Gyr at 68% C.L. From França & Rosenfeld [2004].

In the case of a varying dark energy equation of state, a model independent

approach to calculate the age of the Universe has been performed [Kunz et al.,

2004], and using CMB and supernovae data the age of the Universe was found to
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be t0 = 13.8±0.3 Gyr at 68% C.L., showing that this result seems robust, at least

for the simpler dark energy models.

For coupled models, the age of the Universe is in general much higher than

the one in standard cosmological models, as one can see from figure 2.12. In

particular, comparing with the estimates we have just discussed, t0 = 13.8 ± 0.3

Gyr at 68% C.L., we have that in the coupled scenario t0 = 15.3+1.3
−0.7 Gyr at 68%

C.L. [França & Rosenfeld, 2004].

2.7. Summary and Open Problems

In this chapter we discussed briefly the main aspects of the standard cosmo-

logical model. We discussed some of the well established results of the model,

like the expansion of the Universe, the abundance of light elements, the blackbody

spectrum for the CMB, and the age of the Universe, as well as some relatively more

recent results that shed some light on the components that constitute the Universe

we live in, like the CMB anisotropies, the observation of distant supernovae, and

the power spectrum of galaxies.

We also mentioned some of the theoretical developments to explain the evo-

lution of the Universe, from the inflationary early Universe to the recent period

of acceleration, passing through the still unexplored dark ages, when the cosmic

dawn took place thanks to the formation of the first stars.

Such a model obviously leaves many questions unanswered, and in the rest of

this thesis we will focus on our contribution to answer three particular questions

concerning the field of astroparticle physics.

Chapter 3 is concerned with the matter-antimatter asymmetry in the early

Universe, in the context of leptonic asymmetries. Our goal is to constrain with

current cosmological datasets the amount of asymmetries that can be stored in

the neutrino sector, and forecast what some of the future experiments might be

able to say about it.

Chapter 4 studies in detail a model that could explain the acceleration of the

Universe and have some impact on the cosmic neutrino background. In this model,

the dark energy is modeled by a scalar field that interacts with neutrinos via their

masses. We analyze this model at the background and linear perturbation level to

constrain its parameters and its possible impact on the relic neutrinos.
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Finally, Chapter 5 deals with the question of the impact of dark matter on

cosmological observables and how we can use them to constrain the nature of

this particle. In particular, we focus on 21-cm cosmology, a new observational

technique that has the potential to play a key role in the understanding of the

dark ages and the accurate determination of cosmological paramters. We aim to

understand the role played by dark matter in the cosmic dawn, and how we can

hope to use this future dataset to constrain dark matter properties.



3
Cosmological Lepton Asymmetry

In the previous chapter we briefly mentioned that observations indicate that

the amount of antimatter in the Universe is observed to be small. Probes of

the anisotropies of the cosmic microwave background (CMB) together with other

cosmological observations have measured the cosmological baryon asymmetry ηb to

the percent level thanks to very precise measurements of the baryon density, as ηb

is derived through eq. (2.58) [Komatsu et al., 2011]. Quantifying this asymmetry

between matter and antimatter of the Universe is crucial for understanding some

of the particle physics processes that might have taken place in the early Universe,

at energies much larger than the ones that can be reached currently in particle

accelerators.

Nonetheless, whereas the lepton asymmetries are expected to be of the same

order of the baryonic one due to sphaleron effects [Kolb & Turner, 1990] that

equilibrate both asymmetries, it could be the case that other physical processes lead

instead to leptonic asymmetries much larger than ηb, eq. (2.58), (see, e.g., Casas

et al. [1999]; March-Russell et al. [1999]; McDonald [2000]), with consequences

for the early Universe phase transitions [Schwarz & Stuke, 2009], cosmological

magnetic fields [Semikoz et al., 2009], and the dark matter relic density [Shi &

Fuller, 1999; Laine & Shaposhnikov, 2008; Stuke et al., 2012].

In particular, neutrino asymmetries are also bound to be nonzero in the presence

of neutrino isocurvature perturbations, like those generated by curvaton decay

[Lyth et al., 2003; Gordon & Malik, 2004; di Valentino et al., 2012]. Those

large neutrino asymmetries could affect the cosmological observables [Lesgourgues

& Pastor, 1999, 2006], and although the limits on such asymmetries have been
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improving over the last years, current constraints are still many orders of magnitude

weaker than the baryonic measurement.

On the other hand, thanks to the neutrino oscillations the initial primordial

flavor asymmetries are redistributed among the active neutrinos before the onset

of Big Bang Nucleosynthesis (BBN) [Dolgov et al., 2002; Wong, 2002; Abazajian

et al., 2002], which makes the knowledge of the oscillation parameters important

for correctly interpreting the limits on such asymmetries. Nowadays all of those pa-

rameters are accurately measured (see, e.g., Fogli et al. [2011, 2012]; Schwetz et al.

[2011]; Forero et al. [2012]), with the exception of the mixing angle θ13 that only re-

cently started to be significantly constrained. In fact, several neutrino experiments

over the last year gave indications of nonzero values for sin2 θ13 [Abe et al., 2011;

Adamson et al., 2011; Abe et al., 2012], and recently the Daya Bay reactor exper-

iment claimed a measurement of sin2(2θ13) = 0.092 ± 0.016(stat.)±0.005(syst.)

at 68% C.L. [An et al., 2012], excluding a zero value for θ13 with high significance.

The same finding has been also reported by the RENO Collaboration [Ahn et al.,

2012], sin2(2θ13) = 0.113 ± 0.013(stat.)±0.019(syst.) (68% C.L.).

Finally, yet another important piece of information for reconstructing the neu-

trino asymmetries in the Universe is the measured value of the relativistic degrees

of freedom in the early universe, quantified in the so-called effective number of neu-

trinos, Neff , defined in eq. (3.2). In the case of the three active neutrino flavors

with zero asymmetries and a standard thermal history, its value is the well-known

Neff ≃ 3.046 [Mangano et al., 2005], but the presence of neutrino asymmetries

can increase that number while still satisfying the BBN constraints [Pastor et al.,

2009]. Interestingly enough, recent CMB data has consistently given indications

of Neff higher than the standard value: recently the Atacama Cosmology Tele-

scope (ACT) [Dunkley et al., 2011] and the South Pole Telescope (SPT) [Benson

et al., 2011; Keisler et al., 2011] have found evidence for Neff > 3.046 at 95%

C. L., making the case for extra relativistic degrees of freedom stronger (see also

Archidiacono et al. [2011]). It should however be kept in mind that other physical

processes, like, e.g., the contribution from the energy density of sterile neutrinos

mixed with the active species [Giusarma et al., 2011; Hamann et al., 2011] or of

gravitational waves [Sendra & Smith, 2012] could also lead to a larger value for

Neff .

Some recent papers have analyzed the impact of neutrino asymmetries with
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Table 3.1: Cosmological and neutrino parameters.

Type Symbol Meaning Uniform Prior
Primary Ωbh

2 Baryon density (0.005, 0.1)
Cosmological Ωdmh2 Dark matter densitya (0.01, 0.99)
Parameters τ Optical depth to reionization (0.01, 0.8)

100θs Angular scale of the sound horizon at the last scattering (0.5, 10)
ns Scalar index of the power spectrum (0.5, 1.5)
log [1010As ] Scalar amplitude of the power spectrum b (2.7, 4)

Neutrino m1(eV) Mass of the lightest neutrino c (0, 1)
Parameters ην Total asymmetry at T = 10 MeV (−0.8, 0.8)

ηin
νe

Initial electron neutrino asymmetry at T = 10 MeV (−1.2, 1.2)
Derived h Reduced Hubble constantd -
Parameters ∆Neff Enhancement to the standard effective number of neutrinose -

aAlso includes neutrinos.
bat the pivot wavenumber k0 = 0.05 Mpc−1.
cWe assume here normal mass hierarchy.
dH0 = 100h km s−1 Mpc−1.
eNeff = 3.046.
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oscillations on BBN [Pastor et al., 2009; Mangano et al., 2011, 2012], mainly

because data on light element abundances dominate the current limits on the

asymmetries. Some studies using CMB data can be found in the literature (see

for instance [Lattanzi et al., 2005; Popa & Vasile, 2008; Shiraishi et al., 2009] for

limits on the degeneracy parameters ξν using the WMAP data and [Hamann et al.,

2008] for the effect of the primordial Helium fraction in a Planck forecast), but

our results improve on that in two directions. First, we used for our analysis the

neutrino spectra in the presence of asymmetries after taking into account the effect

of flavor oscillations. Second, we checked the robustness of our results comparing

the analysis of CMB and BBN data with a more complete set of cosmological

data, including in particular supernovae Ia (SNIa) data [Kessler et al., 2009], the

measurement of the Hubble constant from the Hubble Space Telescope (HST)

[Riess et al., 2009], and the Sloan Digital Sky Survey (SDSS) data on the matter

power spectrum [Reid et al., 2010]. While current CMB measurements and the

other datasets are not expected to improve significantly the constraints on the

asymmetries, they constrain the sum of the neutrino masses, giving a more robust

and general picture of the cosmological parameters.

Our goal in this chapter is twofold: first, we constrain the neutrino asymmetries

and the sum of neutrino masses for both zero and nonzero values of θ13 using some

of the latest cosmological data to obtain an updated and clear idea of the limits

on them using current data; second, we perform a forecast of the constraints

that could be achievable with future CMB experiments, taking as an example the

proposed mission COrE1 [Bouchet et al., 2011]. Given that current constraints

are basically dominated by the BBN constraints, we use our forecast to answer

the more general question of whether future CMB experiments can be competitive

with the BBN bounds.

For that, our discussion will be based on our results published in Castorina

et al. [2012], and initially we briefly review in Sec. 3.1 the dynamics of the neu-

trino asymmetries prior to the BBN epoch. With those tools in hand, we proceed

to study in Sec. 3.2 the impact on cosmological observables of the neutrino asym-

metries for two values of the mixing angle θ13 using current cosmological data.

We then step towards the future and describe in Sec. 3.3 our forecast for the ex-

periment COrE, where we study the potential of the future data from lensing of

1http://www.core-mission.org
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CMB anisotropies to constrain some of the cosmological parameters (in particular,

neutrino asymmetries and the sum of the neutrino masses) with great precision.

Finally, in Sec. 3.4 we draw some remarks on this chapter.

3.1. Evolution of cosmological neutrinos with fla-

vor asymmetries

The dynamics of the neutrino distribution functions in the presence of flavor

asymmetries and neutrino oscillations in the early Universe has been discussed

in detail in the literature [Pastor et al., 2009; Mangano et al., 2011, 2012], and

here we will only briefly review its main features and its consequences for the late

cosmology.

We assume that flavor neutrino asymmetries, ηνα
, were produced in the early

Universe. As we discussed in Subsection 2.3.2, at large temperatures frequent

weak interactions keep neutrinos in equilibrium thus, their energy spectrum follows

a Fermi-Dirac distribution with a chemical potential µνα
for each neutrino flavor.

If ξα ≡ µνα
/T is the degeneracy parameter, the asymmetry is given by

ηνα
≡ nνα

− nν̄α

nγ
=

1

12ζ(3)

[

π2ξα + ξ3
α

]

. (3.1)

Here nνα
(nν̄α

) denotes the neutrino (antineutrino) number density.

As usual, using equation (2.39) we will write the radiation energy density of

the Universe in terms of the parameter Neff , the effective number of neutrinos, as

ρr = ργ

[

1 +
7

8

(

4

11

)4/3

Neff

]

, (3.2)

with Neff = 3.046 the value in the standard case with zero asymmetries and no extra

relativistic degrees of freedom [Mangano et al., 2005]. Assuming that equilibrium

holds for the neutrino distribution functions, the presence of flavor asymmetries

leads to an enhancement

∆Neff =
15

7

∑

α=e,µ,τ

[

2

(

ξα

π

)2

+

(

ξα

π

)4
]

. (3.3)
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Note that a neutrino degeneracy parameter of order ξα & 0.3 is needed in order

to have a value of ∆Neff at least at the same level of the effect of non-thermal

distortions discussed in [Mangano et al., 2005]. This corresponds to ηνα
∼ O(0.1).

On the other hand, the primordial abundance of 4He depends on the presence of

an electron neutrino asymmetry and sets a stringent BBN bound on ηνe
which

does not apply to the other flavors, leaving a total neutrino asymmetry of order

unity unconstrained [Kang & Steigman, 1992; Hansen et al., 2002]. However, this

conclusion relies on the absence of effective neutrino oscillations that would modify

the distribution of the asymmetries among the different flavors before BBN.

The evolution of the neutrino asymmetries in the epoch before BBN with three-

flavor neutrino oscillations is found by solving the equations of motion for 3 × 3

density matrices in flavor space ̺p for each neutrino momentum p as described in

Sigl & Raffelt [1993]; McKellar & Thomson [1994], where the diagonal elements are

the usual flavor distribution functions (occupation numbers) and the off-diagonal

ones encode phase information and vanish for zero mixing.

Oscillations in flavor space of the three active neutrinos are driven by two

mass-squared differences and three mixing angles bounded by the experimental

observations [Forero et al., 2012; Fogli et al., 2012]. The equations of motion

(EOMs) for ̺p are [Pastor et al., 2009],

i
d̺p

dt
= [Ωp, ̺p] + C [̺p, ¯̺p] , (3.4)

and similar for the antineutrino matrices ¯̺p. The first term on the r.h.s. describes

flavor oscillations,

Ωp =
M2

2p
+
√

2GF

(

− 8p

3m2
w

E + ̺ − ¯̺

)

, (3.5)

where p = |p| and M is the neutrino mass matrix (opposite sign for antineutrinos).

Matter effects are included via the term proportional to the Fermi constant GF,

where E is the 3×3 flavor matrix of charged-lepton energy densities [Sigl & Raffelt,

1993]. For our range of temperatures we only need to include the contribution

of electrons and positrons. Finally, the last term arises from neutrino-neutrino

interactions and is proportional to ̺ − ¯̺, where ̺ =
∫

̺p d3p/(2π)3 and similar

for antineutrinos.
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For the relevant values of neutrino asymmetries this matter term dominates

and leads to synchronized oscillations [Dolgov et al., 2002; Wong, 2002; Abaza-

jian et al., 2002] . The last term in eq. (3.4) corresponds to the effect of neu-

trino collisions, i.e. interactions with exchange of momenta. Here we follow the

same considerations of Pastor et al. [2009], in particular concerning the details on

the approximations made and related references. In short, the collision terms for

the off-diagonal components of ̺p in the weak-interaction basis are momentum-

dependent damping factors, while collisions and pair processes for the diagonal ̺p

elements are implemented without approximations solving numerically the collision

integrals as in Mangano et al. [2005]. These last terms are crucial for modify-

ing the neutrino distributions to achieve equilibrium with e± and, indirectly, with

photons.

Therefore, the total lepton asymmetry is redistributed among the neutrino

flavors and the BBN bound on ηνe
can be translated into a limit on ην = ηνe

+ηνµ
+

ηντ
, unchanged by oscillations and constant until electron-positron annihilations,

when it decreases due to the increase in the photon number density.

The temperature at which flavor oscillations become effective is important not

only to establish ηνe
at the onset of BBN, but also to determine whether weak

interactions with e+e− can still keep neutrinos in good thermal contact with the

primeval plasma. Oscillations redistribute the asymmetries among the flavors, but

only if they occur early enough interactions would preserve Fermi-Dirac spectra

for neutrinos, in such a way that the degeneracies ξα are well defined for each ηνα

and the relation in Eq. (3.3) remains valid. This is the case of early conversions

of muon and tau neutrinos, since oscillations and collisions rapidly equilibrate their

asymmetries at T ≃ 15 MeV [Dolgov et al., 2002]. Therefore one can assume

the initial values ηin
νµ

= ηin
ντ

≡ ηin
νx

, leaving as free parameters ηin
νe

and the total

asymmetry ην = ηin
νe

+ 2ηin
νx

. The evolution of the asymmetries with temperature

for a particular choice of initial values can be seen in Fig. 3.1

If the initial values of the flavor asymmetries ηin
νe

and ηin
νx

have opposite signs,

neutrino conversions will tend to reduce the asymmetries which in turn will de-

crease Neff . But if flavor oscillations take place at temperatures close to neutrino

decoupling this would not hold and an extra contribution of neutrinos to radiation

is expected with respect to the value in Eq. (3.3), as emphasized in Pastor et al.

[2009] and shown in Fig. 3.2, where the Neff isocontours for non-zero mixing are
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Figure 3.1: Example of evolution of the flavor asymmetries for two different values of
sin2θ13 (in this example ην = −0.41 and ηin

νe
= 0.82). The total neutrino asymmetry

is constant and equal to three times the value shown by the blue dotted line. From
Mangano et al. [2011].
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Figure 3.2: Final contribution of neutrinos with primordial asymmetries to the radiation
energy density. The isocontours of Neff on the plane ηin

νe
vs. ην , including flavor oscilla-

tions, are shown for two values of sin2 θ13: 0 (blue solid curves, top panel) and 0.04 (red
solid curves, bottom panel) and compared to the case with zero mixing (dashed curves).
The dotted line corresponds to ην = ηνx (x = µ, τ), where one expects oscillations to
have negligible effects.
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compared with those obtained from the frozen neutrino distributions taking into

account the effect of flavor oscillations [Mangano et al., 2011]. One can see that

oscillations efficiently reduce Neff for neutrino asymmetries with respect to the

initial values from Eq. (3.3).

The evolution of the neutrino and antineutrino distribution functions with non-

zero initial asymmetries, from T = 10 MeV until BBN, has been calculated by

Pastor et al. [2009] and Mangano et al. [2011]. Here we use the final numerical

results for these spectra in a range of values for ηin
νe

and ην as an input for our

analysis, described in the next Section. Note that an analysis in terms of the

degeneracy parameters ξα as done for instance in Shiraishi et al. [2009] is no longer

possible. We adopt the best fit values for the neutrino oscillation parameters

quoted in Schwetz et al. [2011], assuming a normal hierarchy of the neutrino

masses, except for the mixing angle θ13, for which we will adopt two distinct values:

θ13 = 0 and sin2 θ13 = 0.04. The latter is close to the upper limit placed by the

Daya Bay [An et al., 2012] and RENO [Ahn et al., 2012] experiments on this mixing

angle (with a best-fit value of sin2 θ13 = 0.024 and sin2 θ13 = 0.029, respectively),

and is used as an example to understand the cosmological implications of a nonzero

θ13. Moreover, since the flavor asymmetries equilibrate for large values of this

mixing angle, the cosmological effects are similar for sin2 θ13 & 0.02, as in the

case of an inverted hierarchy for a broad range of θ13 values (see, for instance,

Fig. 3.3). As for the case θ13 = 0, though it seems presently disfavoured with a

high statistical significance after the Daya Bay and RENO results, we have decided

to include it for comparison.

3.2. Cosmological constraints on neutrino param-

eters

Having set the basic framework for the calculation of the neutrino distribution

functions in the presence of asymmetries and for different θ13, we can now proceed

to investigate its cosmological effects.

In order to constrain the values of the cosmological neutrino asymmetries, we

compare our results to the observational data. In particular, we use a modified
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Figure 3.3: The shadowed region corresponds to the values of the total neutrino asym-
metry compatible with BBN at 95% C.L., as a function of θ13 and the neutrino mass
hierarchy. From Mangano et al. [2012].

version of the CAMB code2 [Lewis et al., 2000] to evolve the cosmological pertur-

bations and obtain the CMB and matter power spectra in the presence of non-zero

neutrino asymmetries in the neutrino distribution functions. We checked that the

spectra computed by our modified CAMB version are consistent up to high ac-

curacy with those obtained with CLASS [Blas et al., 2011], that incorporates the

models considered here in its public version. This version of CAMB is interfaced

with the Markov chain Monte Carlo package CosmoMC3 [Lewis & Bridle, 2002]

that we use to sample the parameter space and obtain the posterior distributions

for the parameters of interest.

We derive our constraints in the framework of a flat ΛCDM model with the three

standard model neutrinos and purely adiabatic initial conditions. The parameters

we use are described in Table 3.1 as well as the range of the flat priors used. As

can be seen, six of them are the standard ΛCDM cosmological parameters, and

we add to those three new parameters, namely the mass of the lightest neutrino

2http://camb.info/
3http://cosmologist.info/cosmomc/
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mass eigenstate m1 (the other two masses are calculated using the best fit for

∆m2
21 and ∆m2

31 obtained in [Schwetz et al., 2011], assuming normal hierarchy)

and the two neutrino asymmetries we mentioned earlier, ηin
νe

and ην . The values

of the effective degeneracy parameters ξα after BBN4, needed by CAMB, are

pre-calculated as a function of the asymmetries (following the method described

in the previous section) over a grid in (ηin
νe

, ην) and stored on a table, used for

interpolation during the Monte Carlo run.

A comment on the parameterization is in order. It is a standard practice in

cosmological analyses to parameterize the neutrino masses via Ωνh
2 or equivalently

fν ≡ Ων/Ωdm, and from that (assuming that neutrinos decoupled at equilibrium)

derive the sum of neutrino masses, which are taken to be degenerate. The presence

of lepton asymmetries dramatically changes this simple scheme. Now the neutrino

number density is a complicated function of the η’s obtained from a non-equilibrium

distribution function. When fν is used, any effect related to the way in which the

total neutrino density is shared among the different mass eigenstates is completely

lost. In that sense, the parameterization used in this paper looks more physically

motivated since energy densities of neutrinos are constructed from two fundamental

quantities, namely their phase space distributions and their masses.

The most basic dataset that we consider only consists of the WMAP 7-year

CMB temperature and polarization anisotropy data. We will refer to it simply

as “WMAP”. The likelihood is computed using the the WMAP likelihood code

publicly available at the LAMBDA website5. We marginalize over the amplitude

of the Sunyaev-Zel’dovich signal.

In addition to the WMAP data, we also include the BBN measurement of the
4He mass fraction Yp from the data collection analysis done in [Iocco et al., 2009],

in the form of a Gaussian prior

Yp = 0.250 ± 0.003 (1σ) . (3.6)

Indeed, some authors have recently reported a larger central value, Yp ∼ 0.257

[Izotov & Thuan, 2010; Aver et al., 2010, 2011], with quite different uncertainty

4The neutrino distribution functions can be parameterized by Fermi-Dirac-like functions with
an effective ξα and temperature Tα [Mangano et al., 2011], which are related to the first two
moments of the distribution, the number density and energy density.

5http://lambda.gsfc.nasa.gov/
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determinations. In [Aver et al., 2012] using a Markov chain Monte Carlo technique

already exploited in [Aver et al., 2011], the primordial value of 4He decreased again

to Yp = 0.2534±0.0083, which is compatible at 1σ with the measurement quoted

in eq. (3.6). We will not use these results in our analysis, but we will comment

on their possible impact in the following. We also note that in [Mangano & Ser-

pico, 2011] a robust upper bound Yp < 0.2631 (95 % C.L.) has been derived

based on very weak assumptions on the astrophysical determination of 4He abun-

dance, namely that the minimum effect of star processing is to keep constant

the helium content of a low-metallicity gas, rather than increase it, as expected.

As we will show, the measurement of Yp currently dominates the constraints on

the asymmetries: if we were to conservatively allow for larger uncertainties on that

measurement, like for example those reported in [Aver et al., 2012], our constraints

from present data would correspondingly be weakened. Moreover, we decided not

to use the Deuterium measurements since at the moment they are not competi-

tive with Helium for constraining the asymmetries (see Fig. 3.4), although there

are recent claims that they could place strong constraints on Neff at the level of

∆Neff ≃ ±0.5 [Pettini & Cooke, 2012]. This is a very interesting perspective but

at the moment, Deuterium measurements in different QSO absorption line systems

show a significant dispersion, much larger than the quoted errors.

The dataset that uses both WMAP 7-year data and the determination of the

primordial abundance of Helium as in (3.6) will be referred to as “WMAP+He”.

Measurements of Yp represent the best “leptometer” currently available, in the

sense that they place the most stringent constraints on lepton asymmetries for a

given baryonic density [Serpico & Raffelt, 2005]. The 4He mass fraction depends on

the baryonic density, the electron neutrino degeneracy parameter and the effective

number of neutrino families. Thus, in order to consistently implement the above

determination of Yp in our Monte Carlo analysis, we compute ∆Neff and ξe coming

from the distribution functions calculated with the asymmetries (as explained in

the previous section) and store them on a table. During the CosmoMC run, we use

this table to obtain by interpolation the values ∆Neff and ξe corresponding to given

values of the asymmetries (which are the parameters actually used in the Monte

Carlo), and finally to obtain Yp as a function of ∆Neff , ξe and Ωbh
2. Notice that

this approach is slightly less precise than the one used in Mangano et al. [2011,

2012], where a full BBN analysis was performed, but this approximation should
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Figure 3.4: Bounds in the ην vs. ηin
νe

plane for each nuclear yield. Areas between the
lines correspond to 95% C.L. regions singled out by the 4He mass fraction (solid lines)
and Deuterium (dashed lines). From Mangano et al. [2011].
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suffice for our purposes, especially taking into account that we will be comparing

BBN limits on the asymmetries with the ones placed by other cosmological data,

that as we shall see are far less constraining. In any case, we have checked that

the agreement between the interpolation scheme and the full BBN analysis is at

the percent level.

We derive our constraints from parallel chains generated using the Metropolis-

Hastings algorithm [Gilks et al., 1996]. For a subset of the models, we have also

generated chains using the slice sampling method, in order to test the robustness

of our results against a change in the algorithm. We use the Gelman and Rubin R

parameter to evaluate the convergence of the chains, demanding that R−1 < 0.03.

The one- and two-dimensional posteriors are derived by marginalizing over the other

parameters.

Our results for the cosmological and neutrino parameters from the analysis

are shown in Table 3.2, while Fig. 3.5 shows the marginalized one-dimensional

probability distributions for the lightest neutrino mass, the initial electron-neutrino

asymmetry, and the total asymmetry, for the different values of θ13. Notice that

the posterior for ηin
νe

(middle panel) is still quite large at the edges of the prior

range. This happens also for both the ηin
νe

and ην posteriors obtained using only

the WMAP data (not shown in the figure). Since the priors on these parameters

do not represent a real physical constraint (as in the case mν > 0), but just a

choice of the range to explore, we refrain from quoting 95% credible intervals in

these cases, as in order to do this one would need knowledge of the posterior in

all the region where it significantly differs from zero. However, it is certain that

the actual 95% C.L. includes the one that one would obtain using just part of the

posterior (as long as this contains the peak of the distribution). If we do this, we

obtain constraints that are anyway much worse than those from BBN. Finally, we

also stress that if a larger experimental determination of Yp or measurements with

larger uncertainities were used, as those reported in [Izotov & Thuan, 2010; Aver

et al., 2010, 2011], BBN would show a preference for larger values of Neff as well.

Concerning the neutrino asymmetries, shown in the middle and bottom panels

of Fig. 3.5, we notice that while the initial flavor asymmetries remain highly uncon-

strained by current data, the total asymmetry constraint improves significantly for

θ13 6= 0. This result agrees with previous results from BBN-only studies [Mangano

et al., 2011, 2012], and it is a result of the equilibration of flavor asymmetries
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Figure 3.5: One-dimensional posterior probability density for m1, ηin
νe

, and ην for the
WMAP+He dataset.
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Figure 3.6: 68% and 95% confidence regions in total neutrino asymmetry ην vs. the
primordial abundance of Helium Yp plane for θ13 = 0 (blue) and sin2 θ13 = 0.04 (red),
from the analysis of the WMAP+He dataset. Notice the much stronger constraint for
the nonzero mixing angle due to the faster equilibration of flavor asymmetries.
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Table 3.2: 95% C.L. constraints on cosmological parameters for the WMAP and
WMAP+He datasets.

Parameter WMAP WMAP+He

sin2 θ13 = 0 sin2 θ13 = 0.04 sin2 θ13 = 0 sin2 θ13 = 0.04

100 Ωbh
2 2.20+0.14

−0.12 2.20+0.13
−0.12 2.20 ± 0.12 2.20 ± 0.12

Ωdmh2 0.118 ± 0.016 0.117+0.017
−0.016 0.119 ± 0.017 0.117 ± 0.016

τ 0.085+0.029
−0.026 0.085+0.030

−0.027 0.085+0.030
−0.027 0.085+0.029

−0.027

100θs 1.0387 ± 0.0063 1.0389+0.0069
−0.0063 1.0381+0.054

−0.053 1.0387+0.0053
−0.0054

ns 0.953 ± 0.032 0.953+0.032
−0.033 0.955+0.034

−0.035 0.952+0.031
−0.032

log
[

1010As

]

3.064+0.080
−0.082 3.062+0.080

−0.079 3.068+0.081
−0.078 3.062+0.073

−0.075

m1 (eV) ≤ 0.39 ≤ 0.38 ≤ 0.38 ≤ 0.38

ηin
νe

– 6 – a – a – a

ην – a – a [−0.64; 0.72] [−0.071; 0.054]

h 0.652+0.084
−0.083 0.653+0.081

−0.082 0.656+0.084
−0.081 0.650+0.078

−0.081

∆Neff ≤ 0.32 ≤ 0.16 ≤ 0.43 ≤ 0.03

when θ13 is large (see Fig. 3.7).

When the flavors equilibrate in the presence of a nonzero mixing angle (sin2 θ13 =

0.04 in our example) the total asymmetry is distributed almost equally among the

different flavors, leading to a final asymmetry ηfin
νe

≈ ηfin
νx

≈ ην/3 (where x = µ, τ).

Hence, the fact that the BBN prior requires ηfin
νe

≈ 0 for the correct abundance of

primordial Helium (see Fig. 3.6) leads to a strong constraint on the constant total

asymmetry, −0.071 ≤ ην ≤ 0.054 (95% C.L.).

On the other hand, since the constraints come most from the distortion in

the electron neutrino distribution function, when θ13 = 0 (and therefore there is

less mixing) the direct relation between ηfin
νe

and ην is lost. In this case, the total

asymmetry could still be large, even if the final electron neutrino asymmetry is

small, as asymmetries can still be stored on the other two flavors, leading to a

constraint an order of magnitude weaker than the previous case, −0.64 ≤ ην ≤
0.72 (95% C.L.). As expected, this is reflected on the allowed ranges for ∆Neff , as

shown in Fig. 3.8: while for θ13 = 0 the ∆Neff ≃ 0.5 are still allowed by the data,

nonzero values of this mixing angle reduce the allowed region in the parameter

space by approximately an order of magnitude in both ∆Neff and ην .
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Figure 3.7: The 95% C.L. contours from the BBN analysis [Mangano et al., 2011] in
the plane ην vs. ηin

νe
for θ13 = 0 (left) and sin2 θ13 = 0.04 (right) for different choices of

the abundance of 4He. From Mangano et al. [2011].
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Figure 3.8: Two-dimensional 68% and 95% confidence regions in the (ην , Neff) plane
from the analysis of the WMAP+He dataset, for θ13 = 0 (blue) and sin2 θ13 = 0.04 (red).
Even for zero θ13 the data seem to favor Neff around the standard value Neff = 3.046.
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We confirmed in our analysis that the constraints on the asymmetry are largely

dominated by the BBN prior at present. This is shown in Fig. 3.9, where we com-

pare the results of our analysis with a more complete dataset (which we refer to

as ALL) that includes distance measurements of SNIa from the SDSS compilation

[Kessler et al., 2009] and the HST determination of the Hubble constant H0 [Riess

et al., 2009], as well as data on the power spectrum of the matter density field,

as reconstructed from a sample of Luminous Red Galaxies of the SDSS Seventh

Data Release [Reid et al., 2010]. This is due to the fact that other cosmological

data constrain the asymmetries via their effect on increasing Neff , and currently the

errors on the measurement of the effective number of neutrinos [Komatsu et al.,

2011; Dunkley et al., 2011; Keisler et al., 2011; Benson et al., 2011] are significantly

weaker than our prior on Yp, eq. (3.6)7. The fact that bounds on leptonic asym-

metries are dominated by the BBN prior (i.e. by 4He data) is also confirmed by the

similarity of our bounds on (ην , ηin
νe

) with those of [Mangano et al., 2012]. Note

that the limits reported in Mangano et al. [2012] sound weaker, because they are

frequentist bounds obtained by cutting the parameter probability at ∆χ2 = 6.18,

i.e. they represent 95% bounds on joint two-dimensional parameter probabilities

(in the Gaussian approximation). The one-dimensional 95% confidence limits, cor-

responding to ∆χ2 = 4, are smaller and very close to the results of the present

paper. We also checked that using our codes and data sets, we obtain very similar

results when switching from Bayesian to frequentist confidence limits.

We conclude this section noting that the current constraints on the sum of

neutrino masses are robust under a scenario with lepton asymmetries, as those

extra degrees-of-freedom do not correlate with the neutrino mass. On the other

hand, to go beyond the BBN limits on the asymmetries more precise measurements

of Neff are clearly needed, and in the next section we forecast the results that could

be achievable with such an improvement using COrE as an example of future CMB

experiments.

7On the other hand, these other cosmological data sets have an impact on other parameters
like e.g. the neutrino mass. But since in this work we are primarily interested in bounding the
asymmetries, we prefer to stick to the robust WMAP+He data set. In that way, our results are
not contaminated by possible systematic uncertainties in the other data. Actually, the inclusion
of all external datasets (in particular, of SNIa together with H0) reveals a conflict between them,
leading to a bimodal posterior probability for Ωdmh2 and to a preference for m1 > 0 at 95% C.L.
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Figure 3.9: One-dimensional posterior probability density for ην comparing the
WMAP+He and the ALL datasets. As mentioned in the text, the constraints on the
total asymmetry do not improve significantly with the inclusion of other cosmologi-
cal datasets, as they are mainly driven by the determination of the primordial Helium
abundance.
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3.3. Forecast

Given that the current constraints on the lepton asymmetries are dominated

by their effect on the primordial production of light elements, one can ask whether

future cosmological experiments can improve over the current limits imposed by

BBN. With that goal in mind, we take as an example a proposed CMB experiment,

COrE (Cosmic Origins Explorer) [Bouchet et al., 2011], designed to detect the pri-

mordial gravitational waves and measure the CMB gravitational lensing deflection

power spectrum on all linear scales to the cosmic variance limit. The latter is of

special interest for this work, as the CMB lensing is expected to probe with high

sensitivity the absolute neutrino masses and Neff [Lesgourgues et al., 2006].

We used the package FuturCMB8 in combination with CAMB and CosmoMC

for producing mock CMB data, and fit it with a likelihood based on the potential

sensitivity of COrE. We include, also in this case, the information coming from

present measurements of the Helium fraction, encoded in the Gaussian prior (3.6).

We consider five of COrE’s frequency channels, ranging from 105 to 225 GHz, with

the specifications given in [Bouchet et al., 2011] and reported for convenience in

Table 3.3, and assume an observed fraction fsky = 0.65. We do not consider other

channels as they are likely to be foreground dominated. We take a maximum

multipole ℓmax = 2500. In our analysis, we have assumed that the uncertainties

associated to the beam and foregrounds have been properly modeled and removed,

so that we can only consider the statistical uncertainties. Those are optimistic

assumptions, as under realistic conditions systematic uncertainties will certainly

play an important role. In that sense, our results represent an illustration of what

future CMB experiments could ideally achieve.

We use CMB lensing information in the way described in [Perotto et al., 2006],

assuming that the CMB lensing potential spectrum will be extracted from COrE

maps with a quadratic estimator technique.

For the forecast we adopt the fiducial values for the cosmological parameters

shown in Table 3.4 for both cases of θ13 discussed previously. The two sets of

fiducial values correspond to the best-fit models of the WMAP+He dataset for

the two values of θ13. In the case of the neutrino mass, since the likelihood is

essentially flat between 0 and 0.2 eV, we have chosen to take m1 = 0.02 eV. This

8http://lpsc.in2p3.fr/perotto/
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Frequency [GHz] θfwhm [arcmin] σT [µK] σP [µK]
105 10.0 0.268 0.463
135 7.8 0.337 0.583
165 6.4 0.417 0.720
195 5.4 0.487 0.841
225 4.7 0.562 0.972

Table 3.3: Experimental specifications for COrE [Bouchet et al., 2011]. For each
channel, we list the channel frequency in GHz, the FWHM in arcminutes, the temperature
(σT ) and polarization (σP) noise per pixel in µK.

is below the expected sensitivity of COrE and should thus be essentialy equivalent

to the case where the lightest neutrino is massless.

Table 3.4: Fiducial values for the cosmological parameters for the COrE forecast.

Parameter Fiducial Value Fiducial Value
(sin2 θ13 = 0) (sin2 θ13 = 0.04)

Ωbh
2 0.0218 0.0224

Ωdmh2 0.121 0.118
τ 0.0873 0.0865
h 0.709 0.705
ns 0.978 0.968
log [1010As ] 3.12 3.08
m1 (eV) 0.02 0.02
ηin

νe
0 0

ην 0 0

The sensitivities on the neutrino parameters for COrE are shown in Fig. 3.10

for the two values of θ13. As expected for the sum of the neutrino masses, the

constraints are significantly better than the current ones, and could in principle

start probing the minimal values guaranteed by flavor oscillations [Lesgourgues

et al., 2006]. Note that our forecast error for m1 differs slightly from the one

presented in [Bouchet et al., 2011], most probably because the forecasts in this

reference are based on the Fisher matrix approximation. But our main goal in

this section is to discuss how COrE observations will help improving the limits on

the asymmetries discussed previously, that are basically dominated by the available

measurements of the 4He abudance. The bottom panel of Fig. 3.10 shows the
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Figure 3.10: One-dimensional probability distribution function for m1 and ην for COrE
forecast. The middle panel shows that an experiment like COrE could start constrain
the initial electron neutrino asymmetry. The vertical lines on the bottom panel show the
current 95% C.L. limits obtained in the previous section. The errors on the asymmetries
are improved by approximately a factor 6.6 or 1.6 for θ13 = 0 and sin2 θ13 = 0.04,
respectively, compared to the results shown in Fig. 3.5.
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Table 3.5: 95% confidence intervals for the neutrino parameters with COrE.

Parameter sin2 θ13 = 0 sin2 θ13 = 0.04
m1 (eV) < 0.049 < 0.048
ηin

νe
[−0.20; 0.20] [−0.25; 0.24]

ην [−0.12; 0.09] [−0.048; 0.030]

forecasted posterior probability distribution for ην , and the marginalized constraints

for it are listed in Table 3.5 for both values of θ13; in particular, the vertical lines

of the bottom panel show the 95% C.L. limits obtained from the full BBN analysis

of Mangano et al. [2012]. Comparing the values from Tables 3.2 and 3.5 one can

see that an experiment like COrE would improve current 95% limits on the total

leptonic asymmetry by nearly a factor 6.6 (θ13 = 0) and 1.6 (sin2 θ13 = 0.04),

competitive over the constraints from 4He abundance only. It should be noted

that the error bars on the primordial abundances are very difficult to be reduced

due to systematic errors on astrophysical measurements [Iocco et al., 2009], and

therefore it is feasible that CMB experiments will be an important tool in the

future to improve the constraints on the asymmetries. Notice however that, since

the CMB is insensitive to the sign of the η’s, BBN measurements will still be

needed in order to break this degeneracy.

Finally, in Fig. 3.11 we show the COrE sensitivity on the asymmetries in the

plane ην vs. ηin
νe

compared to the constraints of Sec. 3.2 obtained using current

data and to the full BBN analysis of Mangano et al. [2012]. Notice that in the

case θ13 = 0 the constraints of the previous section are quite less constraining than

the ones coming from the full BBN analysis because we are not using deuterium

data, known to be important to close the contours on the asymmetries plane,

especially for small values of θ13 [Mangano et al., 2011]. Moreover, future CMB

experiments have the potential to reduce the allowed region, dominating the errors

in this analysis.

In summary, a future CMB experiment like COrE is capable of improving the

constraints on the lepton asymmetries by up to a factor 6.6 on the total and/or

flavor asymmetries depending on the value of the mixing angle θ13. In addition

to that, such an experiment would also constrain other cosmological parameters

(in particular the sum of the neutrino masses) with significant precision, providing
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Figure 3.11: The 95% C.L. contours on the ην vs. ηin
νe

plane from our analysis with
current data (WMAP+He dataset, black dotted) compared to the results of the BBN
analysis of Mangano et al. [2012] (blue dashed) and with the COrE forecast (red solid).
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yet another step towards the goal of accurately measuring the properties of the

Universe.

3.4. Concluding remarks

Understanding the physical processes that took place in the early Universe is a

crucial ingredient for deciphering the physics at energies that cannot be currently

probed in terrestrial laboratories. In particular, since the origin of the matter-

antimatter is still an open question in cosmology, it is important to keep an open

mind for theories that predict large lepton asymmetries. In that case, constraining

total and flavor neutrino asymmetries using cosmological data is a way to test and

constrain some of the possible particle physics scenarios at epochs earlier than the

BBN.

For that, in this chapter we initially used current cosmological data to constrain

not only the asymmetries, but also to understand the robustness of the cosmo-

logical parameters (and the limits on the sum of the neutrino masses) for two

different values of the mixing angle θ13 to account for the evidences of a nonzero

value for this angle. Our results confirm the fact that at present the limits on the

cosmological lepton asymmetries are dominated by the abundance of primordial

elements generated during the BBN, in particular the abundance of 4He, currently

the most sensitive “leptometer” available.

However, future CMB experiments might be able to compete with BBN data

in what concerns constraining lepton asymmetries, although BBN will always be

needed in order to get information on the sign of the η’s. We took as an example

the future CMB mission COrE, proposed to measure with unprecedent precision

the lensing of CMB anisotropies, and our results indicate that it has the potential

to significantly improve over current constraints while, at the same time placing

limits on the sum of the neutrino masses that are of the order of the neutrino mass

differences.

Finally, we notice that for the values of θ13 measured by the Daya Bay and

RENO experiments the limits on the cosmological lepton asymmetries and on its

associated effective number of neutrinos are quite strong, so that lepton asymme-

tries cannot increase Neff significantly above 3.1. Under those circumstances, if

the cosmological data (other than BBN) continues to push for large values of Neff ,
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new pieces of physics such as sterile neutrinos will be necessary to explain that

excess.



4
Mass-Varying Neutrino Models

As we have discussed earlier in this thesis, the Universe seems to be dominated

by a component of energy with negative pressure that is causing its expansion to

accelerate at least since z ≈ 1.

Several candidates for this so-called dark energy have been proposed (see Sec-

tion 2.5), but understanding them theoretically and observationally has proven

to be challenging. On the theoretical side, explaining the small value of the ob-

served dark energy density component, ρφ ∼ (10−3 eV)4, as well as the fact

that both dark energy and matter densities contribute significantly to the energy

budget of the present universe requires in general a strong fine tuning on the

overall scale of the dark energy models. In the case in which the dark energy

is assumed to be a scalar field φ slowly rolling down its flat potential V (φ), the

quintessence models, the effective mass of the field has to be taken of the order

mφ = |d2V (φ)/dφ2|1/2 ∼ 10−33 eV for fields with vacuum expectation values of

the order of the Planck mass.

On the observational side, choosing among the dark energy models is a com-

plicated task [Linder, 2008a]. Most of them can mimic a cosmological constant

at late times (that is, an equation of state wφ ≡ pφ/ρφ = −1) [Albrecht et al.,

2006], and all data until now are perfectly consistent with this limit. In this sense,

looking for different imprints that could favor the existence of a particular model

of dark energy is a path worth taking.

Our goal in this chapter, which follows closely one of our works [França et al.,

2009], consists in understanding whether a class of dark energy models, the so-

called Mass-Varying Neutrinos (MaVaNs) scenario [Gu et al., 2003; Fardon et al.,
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2004; Peccei, 2005; Amendola et al., 2008; Wetterich, 2007] could be constrained

not only via the dark energy effects, but also by indirect signs of the neutrino

mass variation during cosmological evolution, since neutrinos play a key role in

several epochs [Hannestad, 2006; Lesgourgues & Pastor, 2006]. An indication of

the variation of the neutrino mass would certainly tend to favor this models (at

least on a theoretical basis) with respect to most DE models. Notice that although

MaVaNs scenarios can suffer from stability issues for the neutrino perturbations

[Afshordi et al., 2005], there is a wide class of models and couplings that avoid

this problem [Eggers Bjælde et al., 2008; Bean et al., 2008a,b,c; Bernardini &

Bertolami, 2008].

Similar analyses have been made in the past, but they have either assumed par-

ticular models for the interaction between the neutrinos and the DE field [Brookfield

et al., 2006b,a; Ichiki & Keum, 2008], or chosen a parameterization that does not

reflect the richness of the possible behavior of the neutrino mass variations [Zhao

et al., 2007].

In order to be able to deal with a large number of models, instead of focusing

on a particular model for the coupling between the DE field and the neutrino sector,

we choose to parameterize the neutrino mass variation to place general and robust

constraints on the MaVaNs scenario. In this sense, our work complements previous

analyses by assuming a realistic and generic parameterization for the neutrino mass,

designed in such a way to probe almost all the different regimes and models within

the same framework. In particular, our parameterization allows for fast and slow

mass transitions between two values of the neutrino mass, and it takes into account

that the neutrino mass variation should start when the coupled neutrinos change

their behavior from relativistic to nonrelativistic species. We can mimic different

neutrino-dark energy couplings and allow for almost any monotonic behavior in the

neutrino mass, placing reliable constraints on this scenario in a model independent

way.

For that, we start this chapter, based on França et al. [2009], by reviewing

briefly the MaVaNs scenario and its main equations. In Section 4.2 we present

our parameterization with the results for the background and the perturbation

equations obtained within this context. The results of our comparison of the

numerical results with the data and the discussion of its main implications are

shown in section 4.3. Finally, in section 4.4 the main conclusions, and some recent
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results are discussed in section 4.5.

4.1. Mass-varying neutrinos

For simplicity, instead of using the standard Friedmann equations, eqs. (2.12)

and (2.13), we will write them using the conformal time1 τ that can be written in

terms of the cosmic time and scale factor by dτ = dt/a, in natural units. In this

case, the Friedmann equations read

H2 =

(

ȧ

a

)2

=
a2

3m2
p

ρ, (4.1)

Ḣ = − a2

6m2
p

(ρ + 3p) , (4.2)

where the dot (in this chapter) denotes a derivative with respect to conformal

time, and the reduced Planck mass is mp = 1/
√

8πG = 2.436 × 1018 GeV. The

neutrino mass in the models we are interested in is a function of the scalar field φ

that plays the role of the dark energy, and can be written as

mν(φ) = Mνf (φ) , (4.3)

where Mν is a constant and different models are represented by distinct f (φ) as

discussed in Subsection 2.5.5.

The fluid equation of the neutrino species can be directly obtained from the

Boltzmann equation for its distribution function [Brookfield et al., 2006a],

ρ̇ν + 3Hρν (1 + wν) = α(φ)φ̇ (ρν − 3pν) , (4.4)

where α(φ) = d ln[mν(φ)]/dφ takes into account the variation of the neutrino

mass, and wx = px/ρx is the equation of state of the species x . Moreover, since

the total energy momentum tensor is conserved, the dark energy fluid equation

also presents an extra right-hand side term proportional to the neutrino energy

1Not to be confused with the optical depth of the Universe, also denoted by τ in other
chapters.
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momentum tensor trace, Tα
(ν)α = (ρν − 3pν), and can be written as

ρ̇φ + 3Hρφ (1 + wφ) = −α(φ)φ̇ (ρν − 3pν) . (4.5)

For a homogeneous and isotropic scalar field, the energy density and pressure are

given by

ρφ =
φ̇2

2a2
+ V (φ) , pφ =

φ̇2

2a2
− V (φ) , (4.6)

and both equations lead to the standard cosmological Klein-Gordon equation (in

conformal time) for an interacting scalar field, namely,

φ̈ + 2Hφ̇ + a2dV (φ)

dφ
= −a2α(φ) (ρν − 3pν) . (4.7)

From the above equations one sees that, given a potential V (φ) for the scalar field

and a field-dependent mass term mν(φ) for the neutrino mass, the coupled system

given by equations (4.1), (4.4), and (4.7), together with the fluid equations for

the baryonic matter, cold dark matter and radiation (photons and other massless

species) can be numerically solved [Brookfield et al., 2006a]. Notice that a similar

approach is basically the same discussed in Subsection 2.5.5 for a possible variation

of the dark matter mass [Anderson & Carroll, 1998] and its possible interaction

with the dark energy [Amendola, 2000; Amendola & Tocchini-Valentini, 2001],

with several interesting phenomenological ramifications [Farrar & Peebles, 2004;

França & Rosenfeld, 2004; Huey & Wandelt, 2006; Das et al., 2006; Quartin et al.,

2008; La Vacca et al., 2009].

Following the equations given in (2.134), equations (4.4) and (4.5) can be

rewritten in the standard form,

ρ̇ν + 3Hρν

(

1 + w (eff)
ν

)

= 0 ,
(4.8)

ρ̇φ + 3Hρφ

(

1 + w
(eff)
φ

)

= 0 ,
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if one defines the effective equation of state of neutrinos and DE as

w (eff)
ν =

pν

ρν
− α(φ)φ̇ (ρν − 3pν)

3Hρν
,

(4.9)

w
(eff)
φ =

pφ

ρφ
+

α(φ)φ̇ (ρν − 3pν)

3Hρφ
.

The effective equation of state can be understood in terms of the dilution of the

energy density of the species. In the standard noncoupled case, the energy density

of a fluid with a given constant equation of state w scales as ρ ∝ a−3(1+w), eq.

(2.20). However, in the case of interacting fluids, one should also take into account

the energy transfer between them, and the energy density in this case will be given

by

ρ(z) = ρ0 exp

[

3

∫ z

0

(

1 + w (eff)(z ′)
)

d ln(1 + z ′)

]

. (4.10)

For a constant effective equation of state one obtains the standard result, ρ ∝
a−3(1+w (eff)), as expected.

Notice that this mismatch between the effective and standard DE equations of

state could be responsible for the “phantom behavior” suggested by supernovae

data when fitting it using a cosmological model with noninteracting components

[Das et al., 2006]. This effect could be observable if dark energy was coupled to

the dominant dark matter component. For the models discussed here, however, it

cannot be significant: the neutrino fraction today (Ων0/Ωφ0 ∼ 10−2) is too small

to induce an “effective phantom-like” behavior.

As we commented before, the analysis until now dealt mainly with particular

models, that is, with particular functional forms of the dark energy potential V (φ)

and field dependence of the neutrino mass α(φ). A noticeable exception is the

analysis of Zhao et al. [2007], in which the authors use a parameterization for

the neutrino mass a là Chevallier-Polarski-Linder (CPL) [Albrecht et al., 2006;

Chevallier & Polarski, 2001; Linder, 2003]: mν(a) = mν0 + mν1(1 − a). However,

although the CPL parameterization works well for the dark energy equation of

state, it cannot reproduce the main features of the mass variation in the case

of variable mass particle models. In the case of the models discussed here, for

instance, the mass variation is related to the relativistic/nonrelativistic nature of

the coupled neutrino species. With a CPL mass parameterization, the transition
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from m1 to m0 always takes place around z ∼ 1, which is in fact only compatible

with masses as small as 10−3 eV. Hence, the CPL mass parameterization is not

suited for a self-consistent exploration of all interesting possibilites.

One of the goals in this chapter is to discuss and test a parameterization

suggested in França et al. [2009] that allows for a realistic simulation of mass-

varying scenarios in a model independent way, with the minimum possible number

of parameters, as explained in the next section.

4.2. Model independent approach

4.2.1. Background equations

As usual, the neutrino energy density and pressure are given in terms of the

zero order Fermi-Dirac distribution function by eq. (2.29)

f 0(q) =
gν

eq/Tν0 + 1
, (4.11)

where q = ap denotes the modulus of the comoving momentum qi = qni (δijninj =

1), gν corresponds to the number of neutrino degrees of freedom, and Tν0 is the

present neutrino background temperature. Notice that in the neutrino distribution

function we have used the fact that the neutrinos decouple very early in the history

of the universe while they are relativistic, and therefore their equilibrium distribution

depends on the comoving momentum, but not on the mass. In what follows

we have neglected the small spectral distortions arising from non-instantaneous

neutrino decoupling [Mangano et al., 2005]. Thus, the neutrino energy density

and pressure are given by

ρν =
1

a4

∫

dq

(2π)3
dΩ q2ǫf 0(q) , (4.12)

pν =
1

3a4

∫

dq

(2π)3
dΩ q2f 0(q)

q2

ǫ
, (4.13)

where ǫ2 = q2 + m2
ν(a)a

2 (assuming that mν depends only on the scale factor).

Taking the time-derivative of the energy density, one can then obtain the fluid
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equation for the neutrinos,

ρ̇ν + 3H (ρν + pν) =
d ln mν(u)

du
H (ρν − 3pν) , (4.14)

where u ≡ ln a = − ln(1 + z), already defined in Subsection 2.5.5, is the number

of e-folds counted back from today. Due to the conservation of the total energy

momentum tensor, the dark energy fluid equation is then given by

ρ̇φ + 3Hρφ (1 + wφ) = −d ln mν(u)

du
H (ρν − 3pν) . (4.15)

We can write the effective equations of state, defined in eqs. (4.8), as

w eff
ν =

pν

ρν
− d lnmν(u)

du

(

1

3
− pν

ρν

)

,

(4.16)

w eff
φ =

pφ

ρφ

+

(

Ων

Ωφ

)

d lnmν(u)

du

(

1

3
− pν

ρν

)

.

The above results only assume that the neutrino mass depends on the scale factor

a, and up to this point, we have not chosen any particular parameterization. Con-

cerning the particle physics models, it is important to notice that starting from a

value of wφ and a function mν(a) one could, at least in principle, reconstruct the

scalar potential and the scalar interaction with neutrinos following an approach

similar to the one discussed in Rosenfeld [2007].

4.2.2. Mass variation parameters

Some of the main features of the MaVaNs scenario are:

(i) that the dark energy field gets kicked and moves away from its minimum

(if mφ > H) or from its previous slow-rolling trajectory (if mφ < H) when

the neutrinos become non-relativistic, very much like the case when it is

coupled to the full matter content of the universe in the so-called chameleon

scenarios [Brax et al., 2004];

(ii) that as a consequence, the coupling with the scalar field generates a neutrino

mass variation at that time.
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Any parameterization that intends to mimic scalar field models interacting

with a mass-varying particle (neutrinos, in our case) for the large redshift range to

which the data is sensitive should at least take into account those characteristics.

Moreover, the variation of the mass in most models (see Brookfield et al. [2006b],

for instance) can be well approximated by a transition between two periods: an

earlier one, in which the mass is given by m1, and the present epoch, in which

the mass is given by m0 (we will not consider here models in which the neutrino

mass behavior is nonmonotonic). The transition for this parameterization, as

mentioned before, starts when neutrinos become nonrelativistic, which corresponds

approximately to

zNR ≈ 1.40

(

1 eV

3 Tγ0

)

( m1

1 eV

)

≈ 2 × 103
( m1

1 eV

)

(4.17)

where m1 corresponds to the mass of the neutrino during the period in which it

is a relativistic species. Before zNR we can treat the neutrino mass as essentially

constant, since the right-hand side of the fluid equation is negligible compared to

the left-hand side, and therefore there is no observable signature of a possible mass

variation.

When the neutrinos become nonrelativistic, the r.h.s. of the DE and neutrino

fluid equations becomes important, and the neutrino mass starts varying. In order

to model this variation, we use two parameters, namely the current neutrino mass,

m0, and ∆, a quantity related to the amount of time that it takes to complete

the transition from m1 to m0 (see Fig. 4.1). That behavior resembles very much

the parameterization of the dark energy equation of state discussed in Corasaniti

& Copeland [2003], except for the fact that in our case the transition for the mass

can be very slow, taking several e-folds to complete, and must be triggered by the

time of the nonrelativistic transition, given by equation (4.17).

Defining f = [1 + e−[u (1+∆)−uNR]/∆]−1 and f∗ = [1 + euNR/∆]−1 we can use the

form

mν = m0 + (m1 − m0) × Γ(u, uNR, ∆) , (4.18)
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Figure 4.1: Schematic plot of the mass variation. Based on Fig. 1 of Corasaniti et al.
[2004].

where

Γ(u, uNR, ∆) = 1 − f

f∗
(4.19)

=

[

1 − 1 + euNR/∆

1 + e−[u (1+∆)−uNR]/∆

]

.

Starting at uNR = − ln(1 + zNR), the function Γ(u, uNR, ∆) decreases from 1

to 0, with a velocity that depends on ∆. The top panel in Figure 4.2 gives

the behavior of eq. (4.18) with different parameters; the bottom panels shows

that in this parametrization, the derivative of the mass with respect to e-fold

number resembles a Gaussian function. The peak of the quantity dm/du occurs

at the value ū = uNR/(1 + ∆); hence, for ∆ ≪ 1, the mass variation takes place

immediately after the non-relativistic transition (ū ≃ uNR) and lasts a fraction

of e-folds (roughly, 3∆ e-folds); for 1 ≤ ∆ ≤ |uNR| the variation is smooth and

centered on some intermediate redshift between zNR and 0; while for ∆ ≫ |uNR |,
the transition is still on-going today, and the present epoch roughly coincides with

the maximum variation.
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Figure 4.2: Neutrino mass behavior for the parameterization given by equation (4.18).
Top panel: Neutrino mass as a function of log(a) = u/ ln(10) for models with m0 = 0.5
eV and different values of m1 and ∆. Bottom panel: Neutrino mass variation for the
same parameters as in the top panel.
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Although the functional form of Γ, eq. (4.19), seems complicated, one should

note that it is one of the simplest forms satisfying our requirements with a minimal

number of parameters. An example that could look simpler, but that for practical

purposes is not, would be to assume that the two plateaus are linked together by

a straight line. In this case, we would need a parameterization of the form

mν =



















m1 , u < uNR ,

m0 + (m1 − m0)
[

u−uend

uNR−uend

]

, uNR ≤ u ≤ uend ,

m0 , u > uend

where uend corresponds to the chosen redshift in which the transition stops. Notice

that in this case not only we still have three parameters to describe the mass vari-

ation, but also the function is not smooth. Moreover, the derivative of the mass

with respect to u gives a top-hat-like function which is discontinuous at both uNR

and uend. In this sense, it seemed to us that equation (4.18) would give us the best

“price-to-earnings ratio” among the possibilities to use phenomenologically moti-

vated parameterizations for the mass-varying neutrinos, although certainly there

could be similar proposals equally viable, such as for instance the possibility of

adapting for the mass variation the parameterization used for the dark energy

equation of state in Douspis et al. [2008] and Linden & Virey [2008]. There,

the transition between two constant values of the equation of state exhibits a

tanh [Γt(u − ut)] dependence, where Γt is responsible for the duration of the tran-

sition and ut is related to its half-way point.

In the rest of our analysis, we will use a couple of extra assumptions that need

to be taken into account when going through our results. First, we will consider

that only one of the three neutrino species is interacting with the dark energy

field, that is, only one of the mass eigenstates has a variable mass. The reason

for this approximation is twofold: it is a simpler case (compared to the case with

3 varying-mass neutrinos), since instead of 6 extra parameters with respect to the

case of constant mass, we have only 2, namely the early mass of the neutrino

whose mass is varying, m1, and the velocity of the transition, related to ∆.

Besides simplicity, the current choice is the only one allowed presently in the

case in which neutrinos were heavier in the past. Indeed, we expect our stronger

constraints to come from those scenarios, especially if the neutrino species behaves
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as a nonrelativistic component at the time of radiation-matter equality, given by

1 + zeq ∼ 4.05 × 104(Ωc0h
2 + Ωb0h

2)/(1 + 0.23Neff) (here the indexes c stands

for cold dark matter). Taking the three neutrino species to be nonrelativistic

at equality would change significantly the value of zeq, contradicting CMB data

(according to WMAP5, 1 + zeq = 3141+154
−157 (68% C.L.) [Komatsu et al., 2009]).

Instead, a single neutrino species is still marginally allowed to be non-relativistic

at that time.

To simplify the analysis, we also assumed that the dark energy field, when not

interacting with the neutrinos, reached already the so-called scaling solution (see

discussion in Subsection 2.5.3), i.e., the dark energy equation of state wφ in eq.

(4.15) is constant in the absence of interaction. Notice however that when the

neutrinos become non-relativistic the dark energy fluid receives the analogous of

the chameleon kicks we mentioned before, and the dark energy effective equation

of state, eq. (4.16), does vary for this period in a consistent way.

The upper panel of Figure 4.3 shows how the density parameters of the different

components of the universe evolve in time, in a typical MaVaNs model. The lower

panel displays a comparison between mass-varying and constant mass models, in

particular during the transition from m1 to m0. As one would expect, far from the

time of the transition, the densities evolve as they would do in the constant mass

case.

4.2.3. Perturbation equations

The next step is to calculate the cosmological perturbation equations and their

evolution using this parameterization. We chose to work in the synchronous gauge,

and our conventions follow the ones by Ma and Bertschinger [Ma & Bertschinger,

1995]. In this case, the perturbed metric is given by

ds2 = −a2dτ 2 + a2 (δij + hij) dx idx j . (4.20)

In this gauge, the equation for the three-momentum of the neutrinos reads [Ichiki

& Keum, 2008]
dq

dτ
= −1

2
qḣijninj − a2m2

ν

q
β

∂ρφ

∂x i

∂x i

dτ
, (4.21)
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Figure 4.3: Top panel: Density parameters for the different components of the universe
versus log(a) = u/ ln(10) in a model with m1 = 0.05 eV, m0 = 0.2 eV, ∆ = 10,
and all the other parameters consistent with present data. The radiation curve include
photons and two massless neutrino species, and matter stands for cold dark matter
and baryons. The bump in the neutrino density close to log(a) = −0.5 is due to the
increasing neutrino mass. Bottom panel: Density parameters for two different mass-
varying neutrino models. The solid black curves show the density parameter variation
for two distinct constant mass models, with masses mν = 0.05 eV and mν = 0.2 eV.
The dashed (red) curve shows a model in which the mass varies from m1 = 0.2 eV
to m0 = 0.05 eV, with ∆ = 0.1, and the dotted (blue) line corresponds a model with
m1 = 0.05 eV to m0 = 0.2 eV, with ∆ = 10.
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where, as in equation (4.4), we define

β(a) ≡ d ln mν

dρφ
=

d lnmν

d ln a

(

dρφ

d ln a

)−1

. (4.22)

Since the neutrino phase space distribution [Ma & Bertschinger, 1995] can be

written as f
(

x i , q, nj , τ
)

= f 0(q)
[

1 + Ψ
(

x i , q, nj , τ
)]

, one can show that the

first order Boltzmann equation for a massive neutrino species, after Fourier trans-

formation, is given by [Brookfield et al., 2006a; Ichiki & Keum, 2008]

∂Ψ

∂τ
+ i

q

ǫ
(n̂ · k)Ψ +

(

η̇ − (k̂ · n̂)2 ḣ + 6η̇

2

)

d ln f 0

d ln q
(4.23)

= −iβ
qk

ǫ
(n̂ · k)

a2m2
ν

q2

d ln f 0

d ln q
δρφ ,

where η and h are the synchronous potentials in the Fourier space. Notice that

the perturbed neutrino energy density and pressure are also going to be modified

due to the interaction, and are written as

δρν =
1

a4

∫

d3q

(2π)3
f 0

(

ǫΨ + β
m2

νa
2

ǫ
δρφ

)

, (4.24)

3δpν =
1

a4

∫

d3q

(2π)3
f 0

(

q2

ǫ
Ψ − β

q2m2
νa

2

ǫ3
δρφ

)

. (4.25)

This extra term comes from the fact that the comoving energy ǫ depends on the

dark energy density, leading to an extra-term which is proportional to β.

Moreover, if we expand the perturbation Ψ (k, q, n, τ) in a Legendre series [Ma

& Bertschinger, 1995], the neutrino hierarchy equations will read,

Ψ̇0 = −qk

ǫ
Ψ1 +

ḣ

6

d ln f 0

d ln q
,

Ψ̇1 =
qk

3ǫ
(Ψ0 − 2Ψ2) + κ , (4.26)

Ψ̇2 =
qk

5ǫ
(2Ψ1 − 3Ψ3) −

(

1

15
ḣ +

2

5
η̇

)

d ln f 0

d ln q
,

Ψ̇ℓ =
qk

(2ℓ + 1)ǫ
[ℓΨℓ−1 − (ℓ + 1)Ψℓ+1] .
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where

κ = −1

3
β

qk

ǫ

a2m2
ν

q2

d ln f 0

d ln q
δρφ . (4.27)

For the dark energy, we use the “fluid approach” [Hu, 1998] (see also Bean &

Doré [2004]; Hannestad [2005]; Koivisto & Mota [2006]), so that the density and

velocity perturbations are given by,

δ̇φ = +
3H(wφ − ĉ2

φ)
(

δφ +
3H(1+wφ)

1+βρν(1−3wν )

θφ

k2

)

− (1 + wφ)
(

θφ + ḣ
2

)

1 + βρν(1 − 3wν)

−

(

ρν

ρφ

) [

βρ̇φ(1 − 3c2
ν )δν + β̇ρφ(1 − 3wν)δφ

]

1 + βρν(1 − 3wν)
, (4.28)

θ̇φ = −
[H(1 − 3ĉ2

φ)+βρν(1 − 3wν)H(1 − 3wφ)

1 + βρν(1 − 3wν)

]

θφ +
k2

1 + wφ
ĉ2
φδφ

− β(1 − 3wν)

(

ρν

ρφ

)[

k2

1 + wφ

ρφδφ − ρ̇φθφ

]

, (4.29)

where the dark energy anisotropic stress is assumed to be zero [Mota et al., 2007],

and the sound speed ĉ2
φ is defined in the frame comoving with the dark energy fluid

[Weller & Lewis, 2003]. So, in the synchronous gauge, the quantity c2
φ ≡ δpφ/δρφ

is related to ĉ2
φ through

c2
φδφ = ĉ2

φ

(

δφ − ρ̇φ

ρφ

θφ

k2

)

+ wφ
ρ̇φ

ρφ

θφ

k2
. (4.30)

In addition, from eqs. (4.15) and (4.22), we have that

ρ̇φ

ρφ

=
−3H(1 + wφ)

1 + βρν(1 − 3wν)
. (4.31)
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4.3. Results and Discussion

4.3.1. Numerical approach

Equipped with the background and perturbation equations, we can study this

scenario by modifying the numerical packages that evaluate the CMB anisotropies

and the matter power spectrum. In particular, we modified the CAMB code [Lewis

et al., 2000], based on CMBFast2 [Seljak & Zaldarriaga, 1996] routines. We use

CosmoMC [Lewis & Bridle, 2002] in order to sample the parameter space of our

model with a Markov Chain Monte Carlo (MCMC) technique.

We assume a flat universe, with a constant equation of state dark energy fluid,

cold dark matter, 2 species of massless neutrinos plus a massive one, and ten free

parameters. Six of them are the standard ΛCDM parameters, namely, the physical

baryon density Ωb0h
2, the physical cold dark matter density Ωc0h

2, the dimension-

less Hubble constant h, the optical depth to reionization τreion, the amplitude (As)

and spectral index (ns) of primordial density fluctuations. In addition, we vary

the constant dark energy equation of state parameter wφ and the three parame-

ters accounting for the neutrino mass: the present mass m0, the logarithm of the

parameter ∆ related to the duration of the transition, and the logarithm of the

ratio of the modulus of the mass difference over the current mass, log µ, where we

define

µ ≡ |m1 − m0|
m0







µ+ ≡ m1

m0
− 1 , m1 > m0 ,

µ− ≡ 1 − m1

m0
, m1 < m0 .

All these parameters take implicit flat priors in the regions in which they are allowed

to vary (see Table 4.1).

Table 4.1: Assumed ranges for the MaVaNs parameters

Parameter Range
wφ −1 < wφ < −0.5
m0 0 < m0/eV < 5
∆ −4 < log ∆ < 2
µ −6 < log(µ+) < 0

−6 < log(µ−) < 0

2http://cfa-www.harvard.edu/∼mzaldarr/CMBFAST/cmbfast.html
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Concerning the last parameter, notice that we choose to divide the parameter

space between two regions: one in which the mass is decreasing over time (µ+) and

one in which it is increasing (µ−). We chose to make this separation because the

impact on cosmological observables is different in each regime, as we will discuss

later, and by analyzing this regions separately we can gain a better insight of the

physics driving the constraints in each one of them. Moreover, we do not allow

for models with wφ < −1, since we are only considering scalar field models with

standard kinetic terms.

For given values of all these parameters, our modified version of CAMB first

integrates the background equations backward in time, in order to find the initial

value of ρφ leading to the correct dark energy density today. This problem does

not always admit a solution leading to well-behaved perturbations: the dark energy

perturbation equations (4.28), (4.29) become singular whenever one of the two

quantities appearing in the denominators, ρφ or [1 + βρν(1 − 3wν)], vanishes. As

we shall see later, in the case in which the neutrino mass decreases, the background

evolution is compatible with cases in which the dark energy density crosses zero,

while the second term can never vanish. We exclude singular models by stopping

the execution of CAMB whenever ρφ < 0, and giving a negligible probability

to these models in CosmoMC. The physical interpretation of these pathological

models will be explained in the next sections. For other models, CAMB integrates

the full perturbation equations, and passes the CMB and matter power spectra to

CosmoMC for comparison with the data.

Table 4.2: Results for increasing and decreasing neutrino mass, using WMAP 5yr +
small scale CMB + LSS + SN + HST data.

(+)Region 95% (68%) C.L. (−)Region 95% (68%) C.L.

wφ < −0.85 (< −0.91) < −0.87 (< −0.93)
m0 (eV) < 0.28 (< 0.10) < 0.43 (< 0.21)
log µ+ < −2.7 (< −4.5) —
log µ− — < −1.3 (< −3.1)
log ∆ [−3.84; 0.53] ([−2.20; 0.05]) [−0.13; 4] ([0.56; 4])

We constrain this scenario using CMB data (from WMAP 5yr [Komatsu et al.,

2009; Dunkley et al., 2009], VSA [Scott et al., 2003], CBI [Pearson et al., 2003]

and ACBAR [Kuo et al., 2004]); matter power spectrum from large scale struc-
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ture (LSS) data (2dFGRS [Cole et al., 2005] and SDSS [Tegmark et al., 2006]);

supernovae Ia (SN) data from Kowalski et al. [2008], and the HST Key project

measurements of the Hubble constant [Freedman et al., 2001]3.

Once the posterior probability of all ten parameters has been obtained, we can

marginalize over all but one or two of them, to obtain one- or two-dimensional

probability distributions. We verified that the confidence limits on the usual six

parameters do not differ significantly from what is obtained in the “vanilla model”

[Komatsu et al., 2009], and therefore we only provide the results for the extra

neutrino and dark energy parameters (Figures 4.4, 4.5, 4.7, 4.8, and Table 4.2).

4.3.2. Increasing neutrino mass

In this model, the background evolution of the dark energy component obeys

to equation (4.15), which reads after division by ρφ:

ρ̇φ

ρφ

= −3H(1 + wφ) −
d ln mν

du

ρν

ρφ

H(1 − 3wν) (4.32)

≡ −Γd − Γi

where the two positive quantities Γd and Γi represent respectively the dilution rate

and interaction rate of the dark energy density. For any parameter choice, ρφ can

only decrease with time, so that the integration of the dark energy background

equation backward in time always find well-behaved solutions with positive values

of ρφ. Moreover, the quantity [1+βρν(1− 3wν)] appearing in the denominator of

the dark energy perturbation equations is equal to the contribution of the dilution

rate to the total energy loss rate, Γd/(Γd + Γi). This quantity is by construction

greater than zero, and the dark energy equations cannot become singular. However,

when the the interaction rate becomes very large with respect to the dilution rate,

this denominator can become arbitrarily close to zero. Then, the dark energy

perturbations can be enhanced considerably, distorting the observable spectra and

conflicting the data. Actually, this amplification mechanism is well-known and was

3While this work was being finished, the SHOES (Supernova, HO, for the Equation of State)
Team [Riess et al., 2009] reduced the uncertainty on the Hubble constant by more than a factor
2 with respect to the value obtained by the HST Key Project, finding H0 = 74.2 ± 3.6 km s−1

Mpc−1. However, since we are taking a flat prior on H0, and our best fit value for H0 is contained
in their 1σ region, we do not expect our results to be strongly affected by their results.
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Figure 4.4: Marginalized 1D probability distribution in the increasing mass case m1 <
m0, in arbitrary scale, for the neutrino / dark energy parameters: m0, log10[µ−] (top
panels), wφ, and log ∆ (bottom panels).
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Figure 4.5: Marginalized 2D probability distribution in the increasing mass case m1 < m0.



4.3 Results and Discussion 119

studied by various authors [Bean et al., 2008b; Väliviita et al., 2008; Gavela et al.,

2009]. It was found to affect the largest wavelengths first, and is usually refered

as the large-scale instability of coupled dark energy models. The condition for

avoiding this instability can be thought to be roughly of the form

Γi < AΓd , (4.33)

where A is some number depending on the cosmological parameters and on the

data set (because a given data set tells how constrained is the large scale instability,

i.e. how small can be the denominator [1 + βρν(1 − 3wν)], i.e. how small should

the interaction rate remain with respect to the dilution rate). The perturbations

are amplified when the denominator is much smaller than one, so A should be a

number much greater than one. Intuitively, the condition (4.33) will lead to the

rejection of models with small values of (wφ, ∆) and large values of µ−. Indeed,

the interaction rate is too large when the mass variation is significant (large µ−)

and rapid (small ∆). The dilution rate is too small when wφ is small (close to

the cosmological constant limit). Because of that, it seems that when the dark

energy equation of state is allowed to vary one can obtain a larger number of viable

models if wφ > −0.8 early on in the cosmological evolution [Majerotto et al., 2010;

Väliviita et al., 2010].

We ran CosmoMC with our full data set in order to see how much this mass-

varying scenario can depart from a standard cosmological model with a fixed dark

energy equation of state and massive neutrinos. In our parameter basis, this

standard model corresponds to the limit logµ− → −∞, with whatever value of

log∆. The observational signature of a neutrino mass variation during dark energy

or matter domination is encoded in well-known effects, such as:

(i) a modification of the small-scale matter power spectrum [due to a different

free-streaming history], or

(ii) a change in the time of matter/radiation equality [due to a different corre-

spondence between the values of (ωb, ωm, ων) today and the actual matter

density at the time of equality].

On top of that, the neutrino and dark energy perturbations can approach the

regime of large-scale instability discussed above.
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Our final results - namely, the marginalized 1D and 2D parameter probabilities -

are shown in figures 4.4 and 4.5. The shape of the contours in (logµ−, log ∆) space

is easily understandable with analytic approximations. The necessary condition

(4.33) for avoiding the large-scale instability reads in terms of our model parameters

µ−

[

1 + ∆(1 + Γ)

∆

]

< A

[

1

(1 − Γ) (1 − f )

]

3Ωφ(1 + wφ)

Ων(1 − 3wν)
, (4.34)

where we expressed the mass variation as

d lnmν

du
=

(

µ−

1 − µ−Γ

)(

1 + ∆

∆

)

(1 − Γ) (1 − f ) . (4.35)

Two limits can be clearly seen from this equation. For ∆ ≪ 1 (fast transitions),

the upper limit on µ− reads

µ− . A∆

[

1

(1 − Γ) (1 − f )

]

3Ωφ(1 + wφ)

Ων(1 − 3wν)
. (4.36)

This corresponds to the diagonal limit in the lower half of the right upper panel of

figure 4.5. In fact, the appearance of the large-scale instability is seen in models

localized at the edge of the allowed region, as shown in figure 4.6.

In the opposite case of a very slow transition, ∆ ≫ 1, it is clear from eq.

(4.34) that the limit on µ− should be independent on ∆,

µ− . A

[

1

(1 − Γ) (1 − f )

]

3Ωφ(1 + wφ)

Ων(1 − 3wν)
. (4.37)

This limit corresponds to the almost vertical cut in the upper part of the plane

(log µ−, log ∆) (upper right panel, fig. 4.5).

These conditions are easier to satisfy when at the time of the transition,

Ωφ(1 + wφ) is large. So, in order to avoid the instability, large values of wφ

are preferred. However, it is well-known that cosmological observables (luminosity

distance relation, CMB and LSS power spectra) better fit the data for w close to

−1 (cosmological constant limit). In the present model, the role of the large-scale

instability is to push the best-fit value from -1 to -0.96, but wφ = −1 is still allowed

at the 68% C.L.

The main result of this section is that the variation of the neutrino mass is
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Figure 4.6: CMB anisotropies and matter power spectra for some mass varying models
with increasing mass, showing the development of the large scale instability. The cos-
mological parameters are set to our best fit values, except for the ones shown in the
plot. The data points in the CMB spectrum correspond to the binned WMAP 5yr data.
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bounded to be small, not so much because of the constraining power of large-scale

structure observations in the regime where neutrino free-streaming is important

(i.e., small scales), but by CMB and LSS data on the largest scales, which provide

limits on the possible instability in DE and neutrino perturbations.

Indeed, for the allowed models, the mass variation could be at most of order

10% for masses around 0.05 eV, and less than 1% for masses larger than 0.3 eV:

this is undetectable with small scale clustering data, showing that the limit really

comes from large scales.

With those results, we conclude that there is no evidence for a neutrino mass

variation coming from the present data. In fact, as for most cosmological data

analyses, the concordance ΛCDM model remains one of the best fits to the data,

lying within the 68% interval of this analysis.

Nonetheless, better constraints will possibly be obtained with forthcoming

data, especially the ones that probe patches of the cosmological “desert” between

z ≃ 1100 and z ≃ 1, like CMB weak lensing [Lesgourgues et al., 2006], and/or

cross-correlations of different pieces of data, like CMB and galaxy-density maps

[Lesgourgues et al., 2008]. We can estimate, for instance, what is the favored

redshift range for the neutrino mass variation according to our results. Taking

m0 = 0.1 eV and the mean likelihood values for log ∆ and log[m1/m0], one can

see that the bulk of the mass variation takes place around z ∼ 20, a redshift that

possibly will be probed by future tomographic probes like weak lensing [Hannes-

tad, 2006; Kitching et al., 2008] and especially 21 cm absorption lines [Loeb &

Zaldarriaga, 2004; Loeb & Wyithe, 2008; Mao et al., 2008; Pritchard & Pierpaoli,

2008]. Those will help not only to disentangle some degeneracies in the parameter

space, but will also allow for direct probes of the neutrino mass in different redshift

slices.

4.3.3. Decreasing neutrino mass

In this case, the evolution rate of the dark energy density is still given by

equation (4.32) but with an opposite sign for the interaction rate: it can be

summarized as
ρ̇φ

ρφ

= −Γd + Γi , (4.38)
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Figure 4.7: Marginalized 1D probability distribution (red/solid lines) in arbitrary scale
for the decreasing mass case m1 > m0, for neutrino / dark energy parameters: m0,
log[µ+] (top panels), wφ, and log ∆ (bottom panels).
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Figure 4.8: Marginalized 2D probability distribution for decreasing mass, m1 > m0.



4.3 Results and Discussion 125

with Γd and Γi both positive. In principle, the interaction rate could overcome

the dilution rate, leading to an increase of ρφ. Hence, the integration of the dark

energy evolution equation backward in time can lead to negative values of ρφ,

and the prior ρφ > 0 implemented in our CAMB version is relevant. Still, the

denominator [1+βρν(1−3wν)] can never vanish since it is equal to Γd/(Γd −Γi).

Well before before the transition, the interaction rate is negligible and ρ̇φ is

always negative. We conclude that β = d ln mν/dρφ starts from small positive

values and increases. If the condition

Γi < Γd (4.39)

is violated during the transition, ρ̇φ will cross zero and become positive. This

corresponds to β growing from zero to +∞, and from −∞ to some finite negative

value. After Γi/Γd has reached its maximum, β undergoes the opposite evolution.

Reaching ρφ = 0 is only possible if ρφ has a non-monotonic evolution, i.e. if

(4.39) is violated. However, the perturbations diverge even before reaching this

singular point: when β tends to infinity, it is clear from eq. (4.26) that the neutrino

perturbation derivatives become arbitrarily large. We conclude that in this model,

the condition (4.39) is a necessary condition for avoiding instabilities, but not a

sufficient condition: the data is expected to put a limit on the largest possible

value of β, which will always be reached before ρ̇φ changes sign, i.e. before the

inequality (4.39) is saturated. Hence, the condition for avoiding the instability is

intuitively of the form of (4.33), but now with A being a number smaller than one.

We then ran CosmoMC with the full data set and obtained the marginalized 1D

and 2D parameter probabilities shown in figures 4.7 and 4.8. The major differences

with respect to the increasing mass case are: a stronger bound on m0, a much

stronger bound on µ−, and the fact that large values of ∆ are now excluded. This

can be understood as follows. In order to avoid instabilities, it is necessary to

satisfy the inequalities (4.36), (4.37), but with a much smaller value of A than

in the increasing mass case; hence, the contours should look qualitatively similar

to those obtained previously, but with stronger bounds. This turns out to be the

case, although in addition, large ∆ values are now excluded. Looking at the mass

variation for large ∆ in figure 4.2, we see that in this limit the energy transfer

takes place essentially at low redhsift. Hence, the interaction rate is large close to
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z = 0. In many models, this leads to positive values of ρ̇φ at the present time, to a

non-monotonic behavior of the dark energy density, and to diverging perturbations.

This can only be avoided when w is large with respect to -1, i.e. when the dilution

rate is enhanced. Hence, in this model, the need to avoid diverging perturbations

imposes a strong parameter correlation between w and ∆. However, values of w

greater than -0.8 are not compatible with the supernovae, CMB and LSS data set;

this slices out all models with large ∆.

The fact that the bound on m0 is stronger in the decreasing mass case is also

easily understandable: for the same value of the mass difference µ± = |m1 −
m0|/m0, a given m0 corresponds to a larger mass m1 in the decreasing mass case.

It is well-known that CMB and LSS data constrain the neutrinos mass through its

background effect, i.e. through its impact on the time of matter/radiation equality

for a given dark matter abundance today. The impact is greater when m1 is larger,

i.e. in the decreasing mass case; therefore, the bounds on m0 are stronger.

4.4. Concluding remarks

In this chapter we analyzed some mass-varying neutrino scenarios in a nearly

model independent way, using a general and well-behaved parameterization for the

neutrino mass, including variations in the dark energy density in a self-consistent

way, and taking neutrino/dark energy perturbations into account.

Our results for the background, CMB anisotropies, and matter power spectra

are in agreement with previous analyses of particular scalar field models, showing

that the results obtained with this parameterization are robust and encompass the

main features of the MaVaNs scenario.

Moreover, a comparison with cosmological data shows that only small mass

variations are allowed, and that MaVaNs scenario are mildly disfavored with respect

to the constant mass case, especially when neutrinos become lighter as the universe

expands. In both cases, neutrinos can change significantly the evolution of the

dark energy density, leading to instabilities in the dark energy and/or neutrino

perturbations when the transfer of energy between the two components per unit

of time is too large. These instabilities can only be avoided when the mass varies

by a very small amount, especially in the case of a decreasing neutrino mass. Even

in the case of increasing mass, constraining better the model with forthcoming
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data will be a difficult task, since it mimics a massless neutrino scenario for most

of the cosmological time.

One should keep in mind that our analysis assumes a constant equation of

state for dark energy and a monotonic behavior for the mass variation. Even

though those features are present in most of the simplest possible models, more

complicated models surely can evade the constraints we obtained in our analysis.

Finally, those constraints will be improved with forthcoming tomographic data.

If any of the future probes indicate a mismatch in the values of the neutrino mass

at different redshifts, we could arguably have a case made for the mass-varying

models.

4.5. Recent Results

Since the publication of this work, most of the discussion in the literature on

those models were focused on the properties of the nonlinear neutrino clumps and

whether the perturbations could be stabilized in the nonlinear regime, what could

possibly avoid some of the constraints discussed here (a nonextensive list of papers

is Wintergerst et al. [2010]; Pettorino et al. [2010]; Baldi [2011]; Baldi et al. [2011];

La Vacca & Mota [2012]).

In particular, two results are worth mentioning here concerning recent advances

in this area. First, Baldi et al. [2011] have performed the first simulation of

structure formation in the context of the models discussed here, although their

approach is limited to z & 1 for the Newtonian approximation used in the code. In

particular, they observe a pulsation in the growth of structure that could potentially

test those models. While the authors state that this stabilizes the fluctuations and

avoids the growth of the neutrino induced gravitational potential, a full relativistic

analysis is necessary to assess this question. Second, La Vacca & Mota [2012]

have recently studied the impact of tomographic weak lensing from a Euclid-like

experiment on specific models of MaVaNs, and show that, as expected, this kind

of dataset could significantly improve the limits on the coupling between neutrinos

and dark energy.
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5
Dark matter and the 21-cm global signal

In chapter 2 we saw that several different cosmological and astrophysical ob-

servations seem to indicate that most matter in the Universe does not interact sig-

nificantly with photons: the so-called dark matter [Bertone et al., 2005; Bertone,

2010], yet to be detected directly and/or indirectly, can be inferred nowadays only

via its gravitational interactions.

While a gigantic list of particles has been proposed as candidates for the dark

matter, probably the most studied are the weakly-interacting massive particles

(WIMPs) [Jungman et al., 1996], particles with masses from GeV to TeV that

interact very weakly with the known particles of the standard model. At high tem-

peratures they are abundant and rapidly converting to lighter particles and vice

versa. Shortly after the temperature of the Universe drops below its mass the

number density of DM particles drops exponentially. At this point, they cease to

annihilate, fall out of equilibrium (or freeze-out), and a relic cosmological abun-

dance remains. Moreover, because those particles are basically non-interacting,

they will eventually form the potentials wells at which baryons will gravitationally

fall to form the first luminous sources after the dark ages as well as present day

cosmological structures like galaxies and clusters.

On the other hand, understanding the physics of the sources responsible for

the end of the dark ages and for the reionization of the Universe is one of the main

challenges of the forthcoming decade. Although inaccessible with the current

observational tools, this period presents the possibility to be probed within the

next decade using 21-cm cosmology, which uses the hyperfine transition line of the

neutral hydrogen to map tomographically the high redshift Universe [Furlanetto
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et al., 2006a; Morales & Wyithe, 2010].

While several large collaborations are building and/or planning instruments that

aim to detect the three-dimensional fluctuations in the 21-cm brightness temper-

ature (such as LOFAR 1, MWA2, PAPER3, and SKA4), some recent experimental

effort has been put on looking for the so-called global, i.e. sky-averaged, 21-cm

signal [Furlanetto, 2006]. The EDGES experiment [Bowman et al., 2008], for in-

stance, has recently been able to place some weak limits on the duration of the

reionization epoch [Bowman & Rogers, 2010; Pritchard & Loeb, 2010b], a first

step in the direction of using the 21-cm signal to probe the high-redshift universe.

In particular, since the 21-cm signal directly probes the physical state of the inter-

galactic medium at high-redshifts, it is a very sensitive probe for mechanisms that

inject energy into it, like dark matter annihilation. This extra energy is released in

the form of gamma ray and other particles, like electrons and positrons, that will

cool rapidly due to the inverse Compton effect with the cosmic microwave back-

ground, producing a spectrum of upscattered CMB photons that play an important

role in the evolution of the Intergalactic Medium (IGM).

In this chapter, based upon a preliminary version of a paper in preparation

[França et al., 2012], we discuss the impact that DM could have had in the IGM

during the epoch in which the first generation of stars were formed in the Universe.

For that, we will focus on the modifications of the 21-cm global signal arising from

the annihilation of DM particles at those epochs. Our goals are, first, to check

whether one could distinguish the effects of DM annihilation from the impact on

the IGM of the first luminous sources with the 21-cm global signal; and second,

to learn if we could use those observation to probe some properties of the DM

particles.

For that, in Section 5.1 we review the physics behind the global 21-cm signal,

including the modeling of the first luminous sources. We then discuss the dark

matter annihilation in Section 5.2, focusing on the mechanisms that shape the

final photon spectrum at a given redshift. In Section 5.3 we discuss the impact

of this extra energy injection in the global 21-cm signal, along with the prospects

of constraining dark matter properties with global experiments. Finally, in Section

1http://www.lofar.org
2http://www.MWAtelescope.org
3http://astro.berkeley.edu/∼dbacker/eor/; see [Parsons et al., 2010] for some early results.
4http://www.skatelescope.org
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5.4 we discuss the current state of our results and some future possibilities of

extending them. Throughout this chapter we use the cosmological parameters of

the ΛCDM model consistent with Komatsu et al. [2011]: ΩΛ = 0.72, ΩM = 0.28,

Ωb = 0.045, h = 0.7, ns = 0.95, and σ8 = 0.8.

5.1. The global 21-cm signal with dark matter an-

nihilation

The hyperfine or spin-flip transition of the hydrogen atom occurs because the

triplet state when the proton and electron spins are aligned is slightly more energetic

than the singlet state when they are opposite (see figure 5.1). When the atom

undergoes a transition from the upper state, it releases a a photon of frequency

ν21 ≈ 1420.2 MHz, corresponding to a wavelength of approximately 21-cm (see,

for instance, Peebles [1992]).

Figure 5.1: In a hydrogen atom the spins of the electron and the proton may be either
parallel or opposite. The energy of the former state is slightly larger. The wavelength of
a photon corresponding to a transition between these states is 21-cm. From Karttunen
et al. [2007].

However, the 21-cm line from gas during the first billion years of the Universe,

when the first structures start forming, redshifts to radio frequencies 30-200 MHz

making it a prime target for a new generation of radio interferometers currently

being built.
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In the language of radioastronomers, the redshift dependent sky-averaged signal

is observed in terms of the differential brightness temperature Tb(z) with respect

to the CMB temperature Tγ [Rohlfs et al., 2009], and can be written as

Tb(z) = 27(1 − xi)

(

TS − Tγ

TS

)(

1 + z

10

)1/2

mK , (5.1)

where xi is the hydrogen ionized fraction, and TS is the so-called spin temperature,

defined by the number densities of hydrogen atoms in each of the hyperfine levels,

n1

n0
=

g1

g0
exp

[

−T⋆

TS

]

= 3 exp

[

−68 mK

TS

]

, (5.2)

where the subscripts 1 and 0 correspond to the excited (triplet) and ground (singlet)

states of the H atom, gi is the spin degeracy factor of each hyperfine level (3 and 1

for the triplet and singlet, respectively), and T⋆ is the temperature that corresponds

to the energy difference between the levels, T⋆ = (E1 − E0)/kB .

The redshift evolution of the spin temperature in equilibrium can be written as

T−1
S =

T−1
γ + xαT−1

α + xcT
−1
K

1 + xα + xc

(5.3)

≈
T−1

γ + (xα + xc)T
−1
K

1 + xα + xc

,

where Tα is the effective color temperature of the Lyα field [Hirata, 2006], that

is expected to relax quickly to TK in the optically thick regime. The collisional

coupling coefficient xc can be written as

xc = xHH
c + xeH

c =
4T⋆

3A10Tγ

[

κHH
10 (TK )nH + κeH

10 (TK)ne

]

, (5.4)

where the first term refers to the collisions between neutral hydrogen atoms [Al-

lison & Dalgarno, 1969; Zygelman, 2005], and the second one is the collisional

coupling due to the collisions between electrons and neutral H atoms [Furlan-

etto & Furlanetto, 2007]. Finally, the ultraviolet scattering coefficient is [Chen &
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Miralda-Escudé, 2004; Hirata, 2006],

xα =
16π2T⋆e

2fS,α

27A10Tγmec
SαJα , (5.5)

where fS,α = 0.4162 is the oscillator strength of the Lyα transition, Sα is a cor-

rection factor of the order of unity that describes the photon distribution around

the Lyα resonance [Furlanetto & Pritchard, 2006], and Jα is the angle-averaged

specific intensity of Lyα photons calculated in detail by Pritchard & Furlanetto

[2007]. A useful approximation for Sα can be found in Chuzhoy & Shapiro [2007].

For most of the redshifts that are likely to be observationally probed in the

near future collisional coupling of the 21 cm line is inefficient. However, once star

formation begins, resonant scattering of Lyα photons provides a second channel

for coupling. This process is generally known as the Wouthuysen-Field effect

[Wouthuysen, 1952; Field, 1959] and is illustrated in Figure 5.2, which shows the

hyperfine structure of the hydrogen 1S and 2P levels.

Figure 5.2: Illustration of the Wouthuysen-Field effect. Solid line transitions allow spin
flips, while dashed transitions are allowed but do not contribute to spin flips. From
Pritchard & Loeb [2012].

To have a qualitative grasp of the physics behind this effect, suppose that
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hydrogen is initially in the hyperfine singlet state. Absorption of a Lyα photon will

excite the atom into any of the central 2P hyperfine states (the dipole selection

rules make the other two hyperfine levels inaccessible). From here emission of a

Lyα photon can relax the atom to either of the two ground state hyperfine levels.

If relaxation takes the atom to the ground level triplet state then a spin-flip has

occurred. Hence, resonant scattering of Lyα photons can produce a spin-flip. This

effect, when calculated in detail [Chen & Miralda-Escudé, 2004; Hirata, 2006]

results in the coupling shown in eq. (5.5).

5.1.1. The thermal evolution

The evolution of the IGM kinetic temperature TK can be written as

dTK

dt
=

xi

1 + fHe + xi

8uγ(z)σT

3mec
(Tγ − TK)

− 2H(z)TK +
2

3kB

ǫX + ǫα + fχ,hǫχ

nA

, (5.6)

where fHe is the Helium fraction in number, uγ(z) is the CMB energy density,

me is the electron mass, σT = 6.652 × 10−25 cm2 is the Thomson cross-section,

nA = nH + nHe is the number density of atoms at z , and fχ,h is the fraction of the

energy released in DM annihilations that goes into heating the IGM [Shull & van

Steenberg, 1985], that can be approximated by [Chen & Kamionkowski, 2004],

fχ,h =
1 + 2xi

3
. (5.7)

The first term on the right-hand side of eq. (5.6) corresponds to Compton

heating, responsible for coupling TK to Tγ at z & 150. The different heating

rates per unit volume, ǫχ and ǫα, are due to X-ray and Lyα photons from the

first luminous sources [Furlanetto, 2006], and the extra energy input from DM

annihilations is [Cirelli et al., 2009]

ǫχ(z) = c

∫ mχ

0

dEγ Eγ
dNγ

dEγ
(Eγ, z)α(Eγ, z) , (5.8)

where dNγ/dEγ(Eγ, z) is the final spectrum of photons from DM annihilation at
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redshift z that will be discussed in further detail in Section 5.2, and α(Eγ, z) is the

absorption coefficient of the different photon interactions, namely [Slatyer et al.,

2009]: (i) photoionization, (ii) Compton scattering, (iii) pair production on H and

He, (iv) pair production on the CMB, and (v) photon-photon scattering.

Moreover, the evolution of the ionized fraction, given by

dxi

dt
= (1 − xi)Λi − αACex

2
i nH +

I (z)

nH

, (5.9)

where Λi is the rate of production of ionizing photons per unit time per baryon,

and it is proportional to the evolution of the gas fraction inside collapsed objects at

z; αA = 4.2 × 10−13 cm3s−1 is the case A recombination coefficient, adequate for

the optical thin limit where no photons are reabsorbed [Draine, 2011; Osterbrock

& Ferland, 2006], and Ce ≡ 〈n2
e〉/〈ne〉2 [Pritchard & Furlanetto, 2007]. The last

term takes into account the ionizations produced by DM annihilations [Cirelli et al.,

2009], for which rate of ionization per unit volume I (z) is given by

I (z) =

∫ mχ

EH,i

dEγ
dNγ

dEγ

(Eγ, z)P(Eγ , z)Ni(Eγ) , (5.10)

where EH,i = 13.6 eV is the H ionization energy, and the probability of a primary

ionization per second is given by

P(Eγ , z) = nH(1 − xi)σi(Eγ)c , (5.11)

where σi is the photoionization cross-section [Zdziarski & Svensson, 1989], and

the number of ionizations induced by the energy transferred from the photon to

the scattered electron is

Ni(Eγ) = fχ,iEγ

[

nH

EH,inA
+

nHe

EHe,inA

]

≈ 7.1 × 107fχ,i

(

Eγ

GeV

)

(5.12)

where EHe,i = 24.6 eV is the ionization energy of the Helium atom, and the fraction

of the absorbed energy that goes into ionizations can be approximated by [Chen
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& Kamionkowski, 2004]

fχ,i ≈
1 − xi

3
, (5.13)

although we use the numerical fits given by Shull & van Steenberg [1985].

5.1.2. Astrophysical parameters

Before proceeding to the calculation of the spectrum from DM annihilation in

the next section, we discuss briefly the astrophysical parameters that describe the

modeling of the first luminous sources. We follow the approach of [Pritchard &

Loeb, 2008], in which one must specify a luminosity for sources of ionizing, Lyα,

and X-ray photons.

For the ionizing photons, we define the number of photons produced per baryon

in stars that contribute to ionizing the IGM,

Nion,IGM = fescNion , (5.14)

where fesc is the fraction of ionizing photons that escape the host halo. Using this

model, the conventional definition of ionizing efficiency [Robertson et al., 2010],

for instance, can be written as

ζ = Nion,IGMf⋆ , (5.15)

where f⋆ is the efficiency of star formation. Moreover, we specify the number

of Lyα photons produced per baryon in stars Nα, which for convenience will be

parametrized as Nα = fαNα,ref , where Nα,ref = 6590 for normal (i.e., Population

II) stars, and we expect the value of fα to be close to unity. In the case of very

massive stars (i.e., Population III), for instance, fα = 0.46.

Finally, we fix the energy in X-rays produced per baryon in stars, εX , which

we also parametrize as εX = fXεX ,ref . We take starburst galaxies as the source

for the X-rays [Pritchard & Furlanetto, 2007], with a power-law spectrum with

index αS = 1.5, and εX ,ref = 560 eV. The dependence of the global signal on the

X-ray and Lyα emissivities is showed on Figure 5.3 for a variation of 5 orders of

magnitude on each one.
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Figure 5.3: Dependence of the 21-cm signal on the X-ray (top panel) and Lyα (bottom
panel) emissivity. In each case, the emissivity is reduced or increased by a factor of up
to 100. From Pritchard & Loeb [2010a].
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5.2. Dark matter annihilation

Different authors have discussed the consequences of dark matter annihila-

tion/decay in the 21-cm signal [Furlanetto et al., 2006b; Valdés et al., 2007;

Finkbeiner et al., 2008; Chuzhoy, 2008; Cumberbatch et al., 2010; Natarajan &

Schwarz, 2009; Yuan et al., 2010]. The earlier papers, however, have neglected the

annihilation inside halos [Furlanetto et al., 2006b; Valdés et al., 2007; Finkbeiner

et al., 2008], considering only the annihilation due to the smooth background.

That is a good approximation for redshifts z & 60, but at lower redshifts the anni-

hilation inside DM halos boosts the effect by several orders of magnitude. Chuzhoy

[2008] pointed out the importance of the clumpy component, and Cumberbatch

et al. [2010] studied the enhancement due to the annihilation in subhalos. The

analysis of Natarajan & Schwarz [2009] studied the 21-cm signal considering only

the effect of the annihilation, but ignoring the star component, although they qual-

itatively discussed the influence of astrophysical sources on the global brightness

temperature, and Yuan et al. [2010] analyzes two specific sets of parameters for

the dark matter model. In our work we take a different approach: we use the state

of the art models for the first sources [Pritchard & Loeb, 2010a, 2012], and use as

an example the DM annihilation spectra from neutralinos of Cirelli et al. [2011],

which take into account the electroweak corrections important for annihilation of

particles with masses larger than the electroweak scale [Ciafaloni et al., 2011].

The only missing component for describing the evolution of the IGM is the final

spectrum of photons from DM annihilation. Notice that there are two components

for it that we need to take int account: the smooth background annihilation,

dominant at early epochs, and the annihilation of the DM clustered component

that takes place at the halos once the structures start forming.

The smooth background annihilation rate is given by

Rbkg(z) =
〈σAv〉
2m2

χ

ρ̄2
χ0(1 + z)6 , (5.16)

with mχ being the mass of the dark matter particles, 〈σAv〉 is the thermally aver-

aged annihilation cross-section, and ρ̄χ0 is the present energy density of the dark

matter component. This is the dominant annihilation component before the for-

mation of the first structures at z . 100, when the annihilation in denser strutures
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starts taking place. The rate of annihilation will then depend on the number

density of dark matter halos and on the density distribution inside them,

Rhalos(z) =
〈σAv〉
2m2

χ

∫ ∞

Mmin

dM
dn

dM
(M , z)(1 + z)3

×
∫

dr ρ2(r , M)4πr 2 . (5.17)

For the purposes of understanding the DM impact on the global 21-cm signal, we

can consider the annihilation in halos as a “boost” factor over the background an-

nihilation [Cirelli et al., 2009; Arina & Tytgat, 2011] and write the full annihilation

rate as

R(z) =
〈σAv〉
2m2

χ

ρ̄2
χ0(1 + z)6 [1 + B(z , Mmin)] , (5.18)

with

B(z , Mmin) = 1 +
∆c(z)

3ρ̄χ(z)

∫ ∞

Mmin

dM M
dn

dM
(M , z)

× f [c(M , z)] , (5.19)

where ρ̄χ(z) = ρ̄χ0(1 + z)3 is the background DM density at z , and ∆c(z), for a

flat ΛCDM model, is given by [Ullio et al., 2002]

∆c(z) =
18π2 + 82[ΩM(z) − 1] − 39[ΩM(z) − 1]2

ΩM(z)
, (5.20)

with ΩM(z) calculated at the collapse redshift. In the case of a NFW density

profile [Navarro et al., 1996, 1997] the function f [c(M , z)] reads

f (c) =

c3

3

[

1 −
1

(1 + c3)

]

[

ln(1 + c) −
c

1 + c

]2 . (5.21)

Finally, following the discussion of Subsection 2.4.3, according to the Press-

Schechter formalism the comoving number density distribution of dark matter halos
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is given by
dn

dM
(M , z) =

ρχ

M
νf (ν)

d ln ν

dM
, (5.22)

where ν ≡ [δsc(z)/σ(M , z)]2, δsc(z) = 1.686/D(z) is the critical density required

for spherical collapse at z , D(z) is the linear growth factor normalized to unit at

z = 0, and the variance of the linear field is

σ2(M , z) = D2(z)

∫ ∞

0

dk

2π2
P(k)W 2(kr) . (5.23)

Here W (y) = 3(sin y − y cos y)/y 3 is the top-hat window function, r is the

radius of the volume enclosing the mass M , r = (3M/4πρm)3, and P(k) is the

matter power spectrum. Moreover, in equation (5.22) we use the Sheth-Tormen

multiplicity function,

νf (ν) = A
[

1 + (aν)−p
]

(aν)1/2 e−aν/2

√
2π

. (5.24)

with A = 0.322, p = 0.3, and a = 0.75 [Sheth & Tormen, 2002].

With those ingredients, the spectrum of photons at redshift z is given by

dNγ

dEγ
(Eγ, z) =

∫

∞

z

dz ′

H(z ′)(1 + z ′)

(

1 + z

1 + z ′

)3

R(z)

×
[

dN ′
γ

dE ′
γ

(E ′
γ) +

dN ′
IC

dE ′
γ

(E ′
γ, z

′)

]

× exp[−τ(z , z ′, E ′
γ)] , (5.25)

where τ(z , z ′, E ′
γ) is the optical depth describing the absorption of the photons

between redshift z and z ′,

τ(z , z ′, E ′
γ) = c

∫ z ′

z

dz ′′
α(E ′′

γ , z ′′)

H(z ′′)(1 + z ′′)
, (5.26)

where E ′′ = E ′(1 + z ′′)/(1 + z ′).



5.2 Dark matter annihilation 141

5.2.1. Inverse Compton Scattering

When the annihilation products include electrons and positrons, they rapidly

cool with the CMB radiation field, upscattering CMB photons to energies that

can play a role in the evolution of the temperature and ionization state of the

Universe. Following [Profumo & Jeltema, 2009; Yuan et al., 2010], the spectrum

of the inverse Compton (IC) photons at a given redshift is,

dNIC

dE
(E , z) =

∫ mχ

me

dEe

dne

dEe

(Ee , z)PIC(E , Ee , z) , (5.27)

where we defined

dne

dEe

(Ee , z) =
1

b(Ee , z)

∫ mχ

Ee

dE ′
dNe

dE ′
(E ′) , (5.28)

with b(Ee , z) ≈ 2.67×10−17(1+z)4(Ee/GeV)2 GeV s−1 being the electron/positron

energy loss rate due to the IC scattering, and dNe/dE ′(E ′) is the electron/positron

spectrum per WIMP annihilation.

Moreover, the IC power is defined as

PIC(E , Ee , z) = c

∫ 1

1/4γ2

dǫ nγ(ǫ, z) σKN(E , Ee , ǫ) , (5.29)

where nγ(ǫ, z) is the CMB photon spectrum at redshift z , and σKN(E , Ee , ǫ) is the

Klein-Nishima cross-section,

σKN(E , Ee , ǫ) =
3σT

4ǫγ2
G (q, Γ) , (5.30)

with

G (q, Γ) ≡ 2q ln q + (1 + 2q)(1 − q) +
(Γq)2(1 − q)

2(1 + Γq)
, (5.31)

Γ ≡ 4ǫγ

mec2
, q ≡ E

Γ(γmec2 − E )
, γ =

Ee

mec2
, (5.32)

Therefore, we can use the spectra of direct photons and eq. (5.27) into eq.

(5.25), and with that obtain the total photon injection of the annihilation of dark

matter at a given z. Examples of such spectra are shown in Figure 5.4.
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Figure 5.4: Final photon spectra including direct and inverse Compton photons as
discussed in the text, for different dark matter models.
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5.3. Results and discussion

With all the tools in place, we can calculate the impact of DM in the 21-cm

signal. On the contrary to the previous chapters, the results discussed on this

section are preliminary and somewhat brief, outlining the main technical current

and expected results.

To analyze the impact of DM annihilation in the 21-cm global signal, we need

first to calculate the changes in the brightness temperature given by eq. (5.1). For

that, we can use eqs. (5.3) and (5.6) for the changes in the spin temperature (and

IGM temperature), as well as eq. (5.9) for the changes in the ionization state of

the Universe (see, for instance, Fig. 5.5).

Our goals are to check whether it is possible to distinguish between the effects

of DM annihilation and the first luminous sources with the 21-cm global signal,

and to learn if we could use those observation to probe some properties of the

DM particles. For that, we initially discuss the signal produced by the first galax-

ies (following Pritchard & Loeb [2010a]), which generate an early background of

Lyα and X-ray photons.

Models for the signal during the formation of the first structures exist [Furlan-

etto, 2006; Pritchard & Loeb, 2008], but for our purposes it will be useful to focus

on physical features of the signal that are both observable and model independent.

With this in mind, one can parameterize the signal using the turning points of the

signal. Figure 5.6 shows the evolution of Tb and its frequency derivative. There

are four turning points associated with [Pritchard & Loeb, 2010a]:

(0) a minimum during the dark ages where collisional coupling begins to become

ineffective,

(1) a maximum at the transition from the dark ages to the Lyα pumping regime

as Lyα pumping begins to be effective,

(2) an absorption minimum as X-ray heating begins to raise the signal towards

emission,

(3) an emission maximum as the signal becomes saturated and starts to decrease

with the cosmic expansion,
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Figure 5.5: IGM temperature TK (and the corresponding spin temperature TS ) (top
panel) and ionized fraction (bottom panel) as a function of redshift for different X-ray
and Lyα emissivities.
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(4) the end of reionization, where asymptotically the signal goes to zero at very

low and high frequencies.

Figure 5.6: Evolution of the 21 cm global signal and its derivative. Vertical dashed lines
indicate the locations of the turning points. In the top panel, we also show a cubic spline
fit to the turning points (blue dotted curve) as described in the text. From Pritchard &
Loeb [2010a].

A simple model for the evolution of the signal can be obtained by adopting the

parameters (ν0, Tb0), (ν1, Tb1), (ν2, Tb2), (ν3, Tb3), and ν4 for the frequency and

amplitude of the turning points and the frequency at the end of reionization.

Following the conventional notation, these points are labelled as xi = (νi , Tbi)

(with x4 = (ν4, 0 mK)). We then model the signal with a simple cubic spline
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between these points with the additional condition that the derivative should be

zero at the turning points (enforced by doubling the data points at the turning

points and offsetting them by ∆ν = ±1 MHz). Moreover, for this work we gen-

eralize the procedure of Pritchard & Loeb [2010a] for allowing models with less

than four turning points, as in the case of DM annihilation some models can heat

the Universe early (compared to models with only stars), and suppress the trough

(ν2, Tb2), for instance (see Fig. 5.7).

Figure 5.7: Evolution of the global 21-cm signal with redshift in different scenarios.
The black (solid) curve shows the a typical evolution in a “standard” scenario in which
the intergalactic medium is heated and ionized by Population III stars. The blue (short
dashed) and red (long dashed) curves show two different scenarios for dark matter
annihilation (parameterized by the dark matter particle mass mχ and annihilation cross-
section 〈σv〉) and their impact on the global signal [França, 2012].

We adopt the same fiducial parameter set of Pritchard & Loeb [2008], assuming

a star forming efficiency f⋆ = 0.1, a Lyα emissivity expected for Population II stars

fα = 1, and X-ray emissivity appropriate for extrapolating the locally observed

X-ray-FIR correlation, fX = 1. This gives turning points x0=(16.1 MHz, -42 mK),

x1=(46.2 MHz, -5 mK), x2=(65.3 MHz, -107 mK), x3=(99.4 MHz, 27 mK), and

x4=(180 MHz, 0 mK). The resulting spline fit is shown in the top panel of Fig. 5.6.

The model does a good job of capturing the general features of the 21 cm signal,

although there are clear differences in the detailed shape. Since global experiments

are unlikely to constrain more than the sharpest features, this approach should be
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adequate for our purposes.

There is considerable uncertainty in the parameters of this model, and so to

gauge the likely model dependence of the turning points, we make use of the model

of Pritchard & Loeb [2008]. Varying the Lyα , X-ray, and UV emissivity by two

orders of magnitude on either side of their fiducial values we find the position and

amplitude of the turning points to give the parameter space shown in Figure 5.8.

Concerning the annihilation of DM, we are interested in models whose signal shape

can not be reproduced by the first sources only, i.e., models that lie out of the

regions shown in Fig. 5.8. Those models are the ones that can be distinguished

from the signal of the first stars, therefore allowing one to constrain properties of

the DM models using the observed signal.

Figure 5.8: Parameter space for the frequency and brightness temperature of the four
turning points of the 21 cm signal calculated by varying parameters over the range fX =
[0.01, 100] and fα = [0.01, 100] for fixed cosmology and star formation rate f∗ = 0.1.
Green region indicates fα > 1, red region indicates fX > 1, blue regions indicates both
fα > 1 and fX > 1, while the black region has fα < 1 and fX < 1. From Pritchard &
Loeb [2010a].

Because in this case the cosmology is fixed, x0 appears as a single point. The
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locations of x1 and x3 are controlled by the Lyα and X-ray emissivity respectively.

Only x2 shows significant dependence on both Lyα and X-ray emissivity leading

to a large uncertainty in its position. This is good news for observations, because

even a poor measurement of the position of x2 is likely to rule out a wide re-

gion of parameter space. Since x2 is the feature with both the largest amplitude

and sharpest shape, one expects that this is the best target for observation and

makes experiments covering ν = 50 − 100 MHz of great interest. This is the

range expected to be covered by the second generation of global experiments, like

improvements of EDGES.

Lastly, we show in Fig. 5.9 a preliminary version of the parameter space

(mχ, 〈σAv〉) of DM models whose signal cannot be mimicked by first stars. For

comparison, we show the current limits coming from CMB annihilation (WMAP

limits) and the forecasted region that will be probed by Planck [Galli et al., 2011].

As one can see, we expect next generation of global signal experiments to be com-

petitive with the most recent CMB experiments for constraining DM properties,

and the exact quantitative comparison will be discussed elsewhere [França et al.,

2012].

5.4. Next steps

In this chapter we have discussed the methods and some preliminary results of

an analysis of the impact of DM on the 21-cm global signal. In the short-term, our

plan is to scan in more details the whole parameter space of Fig. 5.9 to quantify

with more precision the constraints that the next generations of 21-cm all-sky

experiments can place on DM properties. Moreover, we also plan to compare

those limits with other high-z probes, as for instance CMB spectral distortions, to

have a more general picture of what kind of cosmological constraints we can place

on the parameter space of the simpler DM models.

In the long-term, we plan to extend the current analysis for the power spectrum

of the 21-cm fluctuations, since a lot of the experimental efforts is also being done

in this direction. Generalizing the tools of the current work to include for instance

the clumpling of DM and the relative velocity between baryons and DM particles

at early redshifts will be crucial, as well as using state-of-the-art results of semi-

numerical simulations like 21cmFAST [Mesinger et al., 2011]. That will allow us



5.4 Next steps 149

Figure 5.9: A preliminary version of the parameter space of DM models considered here.
The stars refer to models whose brightness temperature can be distinguished from the
first luminous sources. Also shown are the current limits from WMAP and the forecasted
exclusion region for the Planck satellite discussed by Galli et al. [2011].
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to have a more detailed picture of the effects of the annihilation and probably to

constrain more severely the DM models under discussion.



6
Conclusions

Currently all cosmological observations seem to point towards the standard

cosmological model, in which around 96% of the contribution to the current energy

density of Universe has not yet been detected directly, and all we learn about them

is known only because of its gravitational effects.

However, the very fact that nowadays one can speak about a cosmological

standard model is a remarkable success of the scientific enterprise, as less than a

century has passed since Einstein published his theory of gravitation, and Hubble

discovered the expansion of the Universe.

In this thesis we discussed three components of the cosmic recipe that still

have to be better understood, namely the nature of dark energy and dark matter,

as well as the role played by neutrinos in the Universe.

In chapter 3 (based on Castorina et al. [2012]) we discussed the possibility

that the neutrino sector store large cosmological asymmetries when compared to

the baryonic one. In particular, since the origin of the matter-antimatter is still

an open question in cosmology, it is important to keep an open mind for theories

that predict large lepton asymmetries. In that case, constraining total and flavor

neutrino asymmetries using cosmological data is a way to test and constrain some

of the possible particle physics scenarios at epochs earlier than the BBN.

For that, we initially used current cosmological data to constrain not only the

asymmetries, but also to understand the robustness of the cosmological parameters

(such as the limits on the sum of the neutrino masses) for two different values of

the mixing angle θ13 to account for the evidences of a nonzero value for this angle.

Our results confirm the fact that at present the limits on the cosmological lepton
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asymmetries are dominated by the abundance of primordial elements generated

during the BBN, in particular the abundance of 4He, currently the most sensitive

“leptometer” available. However, future CMB experiments might be able to com-

pete with BBN data in what concerns constraining lepton asymmetries, although

BBN will always be needed in order to get information on the sign of the η’s.

We took as an example the future CMB mission COrE, proposed to measure with

unprecedent precision the lensing of CMB anisotropies, and our results indicate

that it has the potential to significantly improve over current constraints and, at

the same time placing limits on the sum of the neutrino masses that are of the

order of the neutrino mass differences. Finally, we notice that for the values of θ13

measured by the Daya Bay and RENO experiments the limits on the cosmological

lepton asymmetries and on its associated effective number of neutrinos are quite

strong, so that lepton asymmetries cannot increase Neff significantly above 3.1.

Under those circumstances, if the cosmological data (other than BBN) continues

to push for large values of Neff , new pieces of physics such as sterile neutrinos will

be necessary to explain that excess.

In chapter 4 (based on França et al. [2009]) we focused on a class of models

for explaining the acceleration of the Universe, the so-called Mass-Varying Neu-

trino models. Our analysis is nearly model independent, for it uses a general

and well-behaved parameterization for the neutrino mass, including variations in

the dark energy density in a self-consistent way, and taking neutrino/dark energy

perturbations into account.

Our results for the background, CMB anisotropies, and matter power spectra

are in agreement with previous analyses of particular scalar field models, showing

that the results obtained with this parameterization are robust and encompass the

main features of the MaVaN scenarios. Moreover, a comparison with cosmological

data shows that only small mass variations are allowed, and that MaVaNs scenario

are mildly disfavored with respect to the constant mass case, especially when

neutrinos become lighter as the Universe expands. In both cases, neutrinos can

change significantly the evolution of the dark energy density, leading to instabilities

in the dark energy and/or neutrino perturbations when the transfer of energy

between the two components per unit of time is too large. These instabilities can

only be avoided when the mass varies by a very small amount, especially in the case

of a decreasing neutrino mass. Even in the case of increasing mass, constraining
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better the model with forthcoming data will be a difficult task, because it mimics

a massless neutrino scenario for most of the cosmological time.

One should keep in mind that our analysis assumes a constant equation of

state for dark energy and a monotonic behavior for the mass variation. Even

though those features are present in most of the simplest possible models, more

complicated models surely can evade the constraints we obtained in our analysis.

Moreover, recently it has been discussed in the literature the possibility that non-

linearities stabilize the instabilities we discussed here, although one should keep in

mind that the nonlinear treatment of perturbations in this models are a complicated

task, and it is still not clear whether the instability problems can be cured. Finally,

those constraints will improve with forthcoming tomographic data. If any of the

future probes indicate a mismatch in the values of the neutrino mass at different

redshifts, we could arguably have a case made for the mass-varying models.

Finally, in chapter 5 (based on França et al. [2012]) we showed some of our

results for the impact of DM annihilation on the global 21-cm signal and the

possibility of using this technique to obtain constraints on DM properties. This

technique has the potential to significantly improve the measurements of cosmo-

logical parameters, besides being the only known observations that can have access

to the period when the first stars and galaxies formed. The high redshifted 21-cm

transition of the hydrogen atom has the potential to probe those epochs, open-

ing a window in redshift that most probably will allow us to explore not only the

astrophysical processes taking place during the early Universe when the first stars

and galaxies form, but also the fundamental physics that might play some role at

those early times.

Our work builds upon previous ones, but we use the current knowledge of the

IGM and particle physics in order to obtain more reliable results: we use the state-

of-the-art models for the first sources, and use DM annihilation spectra that take

into account the electroweak corrections important for annihilation of particles

with masses larger than the electroweak scale. Their importance arises from the

fact that thanks to them the energy of the self-annihilations is distributed among

several final products, including electrons and positrons. The energetic electrons

and positrons redistribute their energy mostly via the inverse Compton scattering

with CMB photons, which can be upscattered to energies that heat and ionize

the gas, changing the 21-cm signal. It is clear that any extra radiation injection
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that alters the X-ray and Lyα fraction can change significantly the brightness

temperature. In the case of the modifications due to dark matter annihilation, the

signal is sensitive to the mass of the dark matter particle and to the self-annihilation

cross-section, as the former controls the energy that will be ultimately available

for upscattering the CMB photons and the latter sets the number of annihilations

at a given density. Finally, our preliminary results seem to indicate that at least

in principle this technique could distinguish the contribution of the first stars from

the one from DM annihilation for a reasonable region of the parameter space (mχ

vs. 〈σv〉) as the DM annihilation products affect the IGM at earlier epochs than

the first stars. The next step will be to understand the impact of DM not only on

the sky-averaged global signal, but also on the fluctuations of this signal.

In summary, we discussed here three astroparticle physics topics that still need

to be better understood. For that, more data is necessary. Thankfully, a large

amount of data is expected to come from several cosmological observations that

are currently running, and many others that are already funded and planned. More-

over, terrestrial experiments, like particle accelerators, are expected to help gluing

together some of the pieces of the standard particle physics model or even finally

discover the nature of the dark matter that dominates the dynamics of the galaxies.

One should keep in mind that history of science teachs us to expect future

observations and experiments to bring not only answers to our current questions,

but also to give us new interesting puzzles to play with in order to understand the

Universe we live in. That is the hope we all share.
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Doran, M., & Jäckel, J. 2002, Phys. Rev. D, 66, 043519, [arXiv:astro-ph/0203018]

Douspis, M., Zolnierowski, Y., Blanchard, A., & Riazuelo, A. 2008, Astron. &

Astrophys., 488, 47

Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton,

NJ: Princeton University Press, 540 p.)

Dunkley, J. et al. 2011, Astrophys. J., 739, 52, [arXiv:1009.0866]

——. 2009, Astrophys. J. Suppl. Ser., 180, 306, [arXiv:0803.0586]

Dvorkin, C., & Hu, W. 2010, Phys. Rev. D, 82, 043513, [arXiv:1007.0215]

Eggers Bjælde, O., Brookfield, A. W., van de Bruck, C., Hannestad, S.,

Mota, D. F., Schrempp, L., & Tocchini-Valentini, D. 2008, JCAP, 01, 026,

[arXiv:0705.2018]

Ellis, J., Kalara, S., Olive, K. A., & Wetterich, C. 1989, Phys. Lett. B, 228, 264

Fan, X. 2008, in American Institute of Physics Conference Series, Vol. 990, First

Stars III, ed. B. W. O’Shea & A. Heger, 437–441

Fan, X., Carilli, C. L., & Keating, B. 2006, Ann. Rev. Astron. Astrophys., 44, 415,

[arXiv:astro-ph/0602375]

Fardon, R., Nelson, A. E., & Weiner, N. 2004, JCAP, 10, 005, [arXiv:astro-

ph/0309800]



162 Conclusions

Farrar, G. R., & Peebles, P. J. E. 2004, Astrophys. J., 604, 1, [arXiv:astro-

ph/0307316]

Ferreira, P. G., & Joyce, M. 1998, Phys. Rev. D, 58, 023503, [arXiv:astro-

ph/9711102]

Field, G. B. 1959, Astrophys. J., 129, 536

Fields, B. D. 2011, Ann. Rev. Nucl. Part. Sci, 61, 47, [arXiv:1203.3551]

Fields, B. D., & Sarkar, S. 2012, in J. Beringer et al.(PDG), Phys. Rev. D, 86,

010001, http://pdg.lbl.gov, [arXiv:0806.2649]

Finkbeiner, D. P., Padmanabhan, N., & Weiner, N. 2008, Phys. Rev. D, 78,

063530, [arXiv:0805.3531]

Fixsen, D. J., Cheng, E. S., Gales, J. M., Mather, J. C., Shafer, R. A., & Wright,

E. L. 1996, Astrophys. J., 473, 576, [arXiv:astro-ph/9605054]

Fogli, G. L., Lisi, E., Marrone, A., Montanino, D., Palazzo, A., & Rotunno, A. M.

2012, Phys. Rev. D, 86, 013012, [arXiv:1205.5254]

Fogli, G. L., Lisi, E., Marrone, A., Palazzo, A., & Rotunno, A. M. 2011,

Phys. Rev. D, 84, 053007, [arXiv:1106.6028]
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