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Abstract: In this article, we study the strong interaction of the vertices ΣbNB and ΣcND using the three-point

QCD sum rules under two different Dirac structures. Considering the contributions of the vacuum condensates up

to dimension 5 in the operation product expansion, the form factors of these vertices are calculated. Then, we

fit the form factors into analytical functions and extrapolate them into time-like regions, which gives the coupling

constants. Our analysis indicates that the coupling constants for these two vertices are GΣbNB =0.43±0.01 GeV−1

and GΣcND =3.76±0.05 GeV−1.
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1 Introduction

To date, many heavy baryons have been observed by
the BaBar, Belle and CLEO Collaborations [1–4], in-
cluding the 1

2

+
antitriplet states(Λ+

c , Ξ+
c ,Ξ0

c ), and the
1
2

+
and 3

2

+
sextet states (Ωc, Σc, Σ′

c) and (Ω∗
c , Σ∗

c , Σ∗
c )

[2]. Besides, several S-wave bottom baryon states such
as Λb, Σb, Σ∗

b , Ξb and Ωb have also been observed by
the CDF and LHCb Collaborations [5, 6]. The SELEX
Collaboration has even reported the observation of a sig-
nal for a doubly charmed baryon state Ξ+

cc [7, 8]. Since
then, there has been great interest in studying the prop-
erties of these heavy baryons, which contains at least
one heavy quark [9–13]. The charm and bottom baryon
states which contain one or two heavy quarks are par-
ticularly interesting for studying the dynamics of light
quarks in the presence of the heavy quark(s), and serve
as an excellent ground for testing predictions of the quark
models and heavy quark symmetry.

Many studies have looked at the properties of the
heavy baryons, such as mass spectrum, and radiative and
strong decays, which are very important for us to fur-
ther understand heavy flavor physics [14–20, 22]. In this
regard, the strong coupling constants associated with
heavy baryons play an important role in describing the
strong interaction among the heavy baryons and other

participating hadrons. In addition, the properties of B
and D mesons in the nuclear medium are closely related
to their interactions with the nucleons [23–25], i.e. D0+p
or n→Λ+

c ,Σ+
c or Σ0

c , B−+p or n→Λ0
b or Σ−

b .
From these processes, we can see that it is impor-

tant to know the values of the related strong coupling
constants GΣbNB and GΣcND, which are essential to de-
termine the modifications of the masses, decay constants
and other parameters of the B and D mesons in the nu-
clear medium. Up to now, only a few works on the strong
coupling constants of the heavy baryons with the nucleon
and heavy mesons have been reported [19–21, 26, 27].

The QCD sum rules (QCDSR) are one of the most
powerful non-perturbative methods, and are also in-
dependent of model parameters. In recent years, nu-
merous articles have reported the precise determination
of the strong form factors and coupling constants via
QCDSR [28–42, 45–47]. The strong coupling constants
of GΣbNB and GΣcND have been analyzed in Ref. [20],
which was carried out by considering the q/p/γ5 Dirac
structure. Here, as a confirmation and verification, we
also analyze these two vertices but with the Dirac struc-
tures p/γ5 and q/γ5. Besides, we also consider the 〈qqG〉
condensate term, which was not considered in Ref. [20].

The outline of this paper is as follows. In Section 2,
we study the strong vertices ΣbNB and ΣcND using the
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three-point QCDSR under two different Dirac structures
p/γ5 and q/γ5. Besides the perturbative contribution, we
also consider the contributions of 〈qq〉, 〈GG〉 and 〈qqG〉
on the OPE side. In Section 3, we present the numerical
results and discussions, and our conclusions are given in
Section 4.

2 QCD sum rules for ΣbNB and ΣcND

We can choose a two-point or three-point correlation
function to analyze the strong coupling constants. The
vertices ΣbNB and ΣcND can be analyzed by choos-
ing light cone QCD sum rules (LCQSR) with a two-
point correlator or QCD sum rules with a three-point
correlation function. In this work, we choose the latter.
The three-point correlation functions of the two vertices
ΣbNB and ΣcND can be written as:

Π(p,p′,q) = i2
∫

d4x

∫

d4ye−ip.xeip′.y

×
〈

0|τ(JN (y)JB[D](0)JΣb[Σc](x))|0
〉

, (1)

where τ is the time-ordered product and JΣb[Σc](x),JN (y)
and JB[D](0) are the interpolating currents of the hadrons
Σb[Σc], N and B[D] respectively. The baryon current,
which include several possibilities, is a composite opera-
tor with the same quantum numbers as a given baryon.
To construct the baryon current, some criteria have to be
adopted. For example, the current should include a min-
imal number of derivatives and maximize the projection
onto the considered baryon state [48, 49]. For nucleon N
as an example, it can be written as:

JN(x)=εijk

(

uiT (x)Cγµuj(x)
)

γ5γ
µdk(x)

or

JN(x)=εijk

(

uiT (x)Cσµνuj(x)
)

γ5σ
µνdk(x)

where C is the charge conjugation operator, and i, j
and k are color indices. Other possible currents involve
derivatives. Sometimes, we need to also consider lin-
ear combinations of the interpolating currents, with the
coefficient suitably chosen in order to maximize the over-
lap. For simplicity, the interpolating currents for baryons
Σb[Σc], N , and meson B[D], are written as the following
form:

JΣb[
∑

c](x) = εijk

(

uiT (x)Cγµdj(x)
)

γ5γ
µb[c]k(x) (2)

JN (y) = εijk

(

uiT (y)Cγµuj(y)
)

γ5γ
µdk(y) (3)

JB[D](0) = u(0)γ5b[c](0) (4)

According to the QCD sum rules, the three-point cor-
relation function can be calculated in two different ways.
In the first way, the calculation is carried out in hadron
degrees of freedom. This is called the phenomenologi-
cal side. In the second way, called the operator product
expansion (OPE) side, it is calculated in quark degrees
of freedom. Then, invoking quark-hadron duality, we
equate the phenomenological and OPE sides, from which
the QCD sum rules for the strong coupling form factors
are attained.

2.1 The phenomenological side

We insert a complete set of intermediate hadronic
states with the same quantum numbers as the operators
JΣb[Σc](x),JN (y) and JB[D](0) into the correlation func-
tion Eq. (1) to obtain the phenomenological representa-
tions. The positive and negative parity states can also
couple to the chosen currents [50]. In our calculations,
we mainly take into account the positive parity nucle-
ons. After isolating the ground-state contributions, the
correlation function is written as:

ΠHAD(p,p′,q)=

〈

0|JN |N(p′)
〉〈

0|JB[D]|B[D](q)
〉〈

Σb[Σc](p)|JΣb[Σc]|0
〉

(p2−m2
Σb[Σc])(p

′2−m2
N)(q2−m2

B[D])

×
〈

N(p′)B[D](q)|Σb[Σc](p)
〉

+··· (5)

where h.r. stands for the contributions of higher reso-
nances and continuum states. The matrix elements ap-
pearing in the above equation can be parameterized as
the following formulas:

〈0|JN |N(p′)〉= λNuN(p′,s′) (6)

〈0|JB[D]|B[D](q)〉= i
m2

B[D]fB[D]

mu+mb[c]

(7)

〈Σb[Σc](p)|JΣb[Σc]|0〉= λΣb[Σc]uΣb[Σc](p,s) (8)

〈N(p′)B[D](q)|Σb[Σc](p)〉=

GΣbNB[ΣcND]uN (p′,s′)iγ5uΣb[Σc](p,s), (9)

where λN and λΣb[Σb] are residues of the N and Σb[Σb]
baryons, fB[D] is the leptonic decay constant of the B[D]
meson and GΣbNB[ΣcND] is the strong coupling form fac-
tor of the vertices ΣbNB and ΣcND. Considering these
parameters, Eq. (5) can be written as:
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ΠHAD(p,p′,q)= i2
m2

B[D]fB[D]

mb[c]+mu

λNλΣb[Σc]gΣbNB[ΣcND]

(p2−m2
Σb[Σc])(p

′2−m2
N)(q2−m2

B[D])

×
{

(mNmΣb[Σc]−m2
Σb[Σc])γ5+(mΣb[Σc]−mN) 6pγ5+ 6q 6pγ5−mΣb[Σc] 6qγ5

}

+··· (10)

2.2 The OPE side

Now, we briefly outline the operator product expansion (OPE) for the three-point correlation Eq. (1). First, we
contract the quark fields in the correlation with Wich’s theorem.

Π(p,p′,q)OPE = i2
∫

d4x

∫

d4ye−ip.xeip′.yεabcεijk

×
{

γ5γνS
cj
d (y−x)γµCSbiT

u (y−x)CγνSah
u (y)γ5S

hk
b[c](−x)γµγ5

−γ5γνS
cj
d (y−x)γµCSaiT

u (y−x)CγνSbh
u (y)γ5S

hk
b[c](−x)γµγ5

}

. (11)

Second, we replace the heavy and light quark propagators with the following full propagators [46, 47, 51],

Smn
b[c] (x) =

i

(2π)4

∫

d4ke−ik.x
{ δmn

6k−mb[c]

−
gsG

αβ
mn

4

σαβ(6k+mb[c])+( 6k+mb[c])σαβ

(k2−m2
Q)2

+
π

2

3

〈αsGG

π

〉

δmnmb[c]

k2+mb[c] 6k

(k2−m2
b[c])

4
+···

}

, (12)

Smn
u[d](x) = i

6x

2π
2x4

δmn−
mu[d]

4π
2x2

δmn−
〈qq〉

12

(

1−i
mu[d]

4
6x
)

−
x2

192
m2

0〈qq〉
(

1−i
mu[d]

6
6x
)

−
igsλ

ij
AGA

θη

32π
2x2

[

6xσθη+σθη 6x
]

+··· (13)

where m,n are the color indices, and 〈qq〉 is the 〈uu〉
and 〈dd〉 in Eq. (13). After these above substitutions in
Eq. (11), we carry out Fourier transformation in D=4+ε
dimensions with ε→0:

1

[(y−x)2]n
=

∫

dDt

(2π)D
e−it.(y−x)i(−1)n+12D−2n

π
D/2

×
Γ (D/2−n)

Γ (n)

(

−
1

t2

)D/2−n

(14)

1

[y2]n
=

∫

dDt′

(2π)D
e−it′.yi(−1)n+12D−2n

π
D/2

×
Γ (D/2−n)

Γ (n)

(

−
1

t′2

)D/2−n

. (15)

Before the preformation of four-x and four-y integrals,
the replacements xµ → i ∂

∂pµ
and yµ → −i ∂

∂p′

µ
are car-

ried out. After these processes, the integrals turn into
Dirac delta functions which are used to simplify the four-
integrals over k and t′. The following step is to perform
the Feynman parametrization, after which the following
function is used to carried out the remaining four-integral
over t:

∫

dDt

(2π)D

1

[t−M 2]α
=

i(−1)α

(4π)D/2

Γ (α−D/2)

Γ (α)

×
1

(M 2)α−D/2
,

where M 2=m2
b[c]x+p2x(x+y−1)+p′2y(x+y−1)−q2xy.

After further simplification, the three-point correla-
tion on the OPE side shows the following Dirac struc-
tures:

ΠOPE(p,p′,q) = Π1(q
2)γ5+Π2(q

2) 6pγ5+Π3(q
2) 6q 6pγ5

+Π4(q
2) 6qγ5, (16)

where each Πi denotes contributions coming from the
perturbative and nonperturbative parts. In general, we
expect that we can choose either Dirac structure Πi (with
i =1,2,3,4) of the correlations Π(p,p′,q) to study the
hadronic coupling constants. In our calculations, p/γ5

and q/γ5 are the pertinent Dirac structures.
After taking the imaginary parts of Πi, we get the

spectral densities ρi(s,s
′,Q2) of the corresponding Dirac

structure. Using dispersion relations, each Πi can be
written as:

ΠOPE
i (Q2) =

∫

ds

∫

ds′ ρ
pert
i (s,s′,Q2)+ρnon−pert

i (s,s′,Q2)

(s−p2)(s′−p′2)
,

(17)

where s = p2, s′ = p′2 and Q2 = −q2. As examples, we
give the perturbative and nonperturbative parts of the
spectral densities for the two Dirac structures 6 pγ5 and
6qγ5:
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ρpert
6pγ5

(s,s′,Q2) =

∫ 1

0

dx

∫ 1−x

0

dy
−1

32π
4(x+y−1)

{

−
[

2mb[c](x+y)+md(3x+3y−1)−mu(x+y−1)
]

×
[

x(m2
b[c]+Q2y)+sx(x+y−1)+s′y(x+y−1)

]

+s(x+y)
[

mb[c]x(2x+2y−1)

+3md(x−1)(x+y−1)−mu(x
2+x(y−4)−2y+3)

]

+s′(x+y)
[

mb[c]

(

x(2y−1)

+2(y−1)y
)

+y
(

3md(x+y−1)−mu(x+y−2)
)]

+9mb[c]mdmux+9mb[c]mdmuy

−6mb[c]mdmu−3mb[c]m
2
ux−3mb[c]m

2
uy+2mb[c]Q

2x2y−mb[c]Q
2x2+2mb[c]Q

2xy2

−mb[c]Q
2xy−6mdm

2
ux−6mdm

2
uy+6mdm

2
u+3mdQ

2x2y+3mdQ
2xy2−3mdQ

2xy

−3mdQ
2y2+3mdQ

2y−muQ
2x2y−muQ

2xy2+2muQ
2xy+2muQ

2y2−3muQ
2y

}

×Θ[H2(s,s
′,Q2)],

ρpert
6qγ5

(s,s′,Q2) =

∫ 1

0

dx

∫ 1−x

0

dy
1

32π
4(x+y−1)2

{

(x+y−1)
[

s
(

mb[c]xy(2x+2y−1)+3md(x
2(y−1)

+x(y2−3y+1)−(y−1)y)−mu(x
2(y−3)+x(y2−7y+3)+(3−2y)y)

)

+s′y
(

mb[c](x(2y−1)+2(y−1)y)+3md(y−1)(x+y−1)−mu(x(y−3)+y2−5y+3)
)

+9mb[c]mdmuy−6mb[c]mdmu−3mb[c]m
2
uy+2mb[c]Q

2xy2−mb[c]Q
2xy−6mdm

2
uy+3mdQ

2xy2

−3mdQ
2xy−3mdQ

2y2+3mdQ
2y−muQ

2xy2+3muQ
2xy+2muQ

2y2−3muQ
2y

]

−
[

mb[c](x(6y−1)+6(y−1)y)+3md(3y−2)(x+y−1)+mu(−3x(y−2)−3y2+10y−6)
]

×
[

x(m2
b[c]+Q2y)+sx(x+y−1)+s′y(x+y−1)

]}

Θ[H2(s,s
′,Q2)],

ρnon−pert
6pγ5

(s,s′,Q2) =

∫ 1

0

dx

∫ 1−x

0

dy
3(〈uu〉−〈dd〉)

12π
2

(

3x+3y−1
)

Θ[H2(s,s
′,Q2)]

−
〈uu〉

48π
2(m2

b[c]+Q2)2

{

6m3
b[c]md−12m3

b[c]mu−6m2
b[c]mdmu+6m2

b[c]m
2
u

+s′

[

2m2
b[c]−mb[c]mu+2Q2

]

−2m2
b[c]Q

2+6mb[c]mdQ
2+s

[

mb[c](mu−2mb[c])−2Q2
]

−11mb[c]muQ
2−3mdmuQ

2+3m2
uQ

2−2Q4
}

Θ[H1[s,s
′,Q2]]

−

∫ 1

0

dx

∫ 1−x

0

dy〈αs

G2

π

〉
x3(3x+3y−2)mb[c]

16π
2(x+y−1)

δ[H2[s,s
′,Q2]]

+
〈qqg〉

8×4π
2×9(m2

b[c]+Q2)4

{

18m6
b[c]−18m5

b[c]md−36m5
b[c]mu−18m4

b[c]mdmu+18m4
b[c]m

2
u

+39m4
b[c]Q

2−36m3
b[c]mdQ

2−32m3
b[c]muQ

2+30m2
b[c]Q

4−3s
[

m3
b[c](3mb[c]−2mu)

+4m2
b[c]Q

2+Q4
]

+3s′
[

3m4
b[c]−2m3

b[c]mu+4m2
b[c]Q

2+Q4
]

−18mb[c]mdQ
4

−2mb[c]muQ
4+9Q6

}

Θ[H1[s,s
′,Q2]],
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ρnon−pert
6qγ5

(s,s′,Q2) =

∫ 1

0

dx

∫ 1−x

0

dy
3

16×12π
2

{

(48y−32)〈dd〉+(32−48y)〈uu)
}

Θ[H2(s,s
′,Q2)]

−
〈uu〉

48π
2(m2

b[c]+Q2)2

{

−3mb[c]

[

2m2
b[c](md−2mu)+mb[c]mu(mu−5md)+2mdm

2
u

]

+Q2
[

2m2
b[c]−6mb[c]md+11mb[c]mu+12mdmu

]

+s
[

mb[c](2mb[c]−mu)+2Q2
]

−2Q4
}

×Θ[H1[s,s
′,Q2]]+

∫ 1

0

dx

∫ 1−x

0

dy〈αs

G2

π

〉
x3(18xy−x+18y2−18y+2)mb[c]

96π
2(x+y−1)2

δ[H2[s,s
′,Q2]]

−
〈qqg〉

8×4π
2×9(m2

b[c]+Q2)4

{

27m6
b[c]−54m5

b[c]md−54m5
b[c]mu−72m4

b[c]mdmu+18m4
b[c]m

2
u

−60m4
b[c]Q

2+36m3
b[c]mdm

2
u+s

[

m3
b[c](−15mb[c]+36md+10mu)

−4mb[c]Q
2(6mb[c]−9md−mu)−9Q4

]

+2s′

[

m3
b[c](3mb[c]−72md−2mu)

−2mb[c]Q
2(−3mb[c]+9md+mu)+3Q4

]

−72m3
b[c]mdQ

2−64m3
b[c]muQ

2

−72m2
b[c]mdmuQ

2+45m2
b[c]Q

4−18mb[c]mdQ
4−16mb[c]muQ

4−18mdmuQ
4

+12Q6
}

Θ[H1[s,s
′,Q2]].

where δ represents the Delta function, Θ denotes the unit-step function, and H1[s,s
′,Q2], H2[s,s

′,Q2] are defined as:

H1[s,s
′,Q2]=s′ (18)

H2[s,s
′,Q2]=x(m2

b[c]+Q2y)+sx(x+y−1)+s′y(x+y−1). (19)

2.3 The strong coupling constant

We perform a double Borel transformation [49] on the phenomenological as well as the OPE side. Then, we
equate these two sides, invoking the quark-hadron duality from which the sum rule is obtained. As an example, the
form factors for the structure 6pγ5 are:

G 6pγ5
ΣbNB[ΣcND](Q

2) = e
m2

Σb[Σc]

M12 e
m2

N
M22

(mb[c]+mu)(Q
2+m2

B[D])

m2
B[D]fB[D]λΣb[Σc]λN (mΣb[Σc]−mN)

×
{

∫ s0

(mb[c]+mu+md)2
ds

∫ u0

(2mu+md)2
ds′e−

s

M12 e−
s′

M12

[

ρpert
6pγ5

(s,s′,Q2)+ρnon−pert
6pγ5

(s,s′,Q2)
]}

, (20)

where M1 and M2 are the Borel parameters, and s0

and u0 are two continuum threshold parameters which
are introduced to eliminate the h.r. terms. These pa-
rameters fulfill the following relations: m2

i <s0<m′2
i and

m2
o<u0<m′2

o , where mi and mo are the masses of the in-
coming and outgoing hadrons respectively and m′ is the
mass of the first excited state of these hadrons.

3 Results and discussion

This section gives the numerical analysis of the
sum rules for the coupling constants. The decay
constant parameters used in this work are taken as:
fB =(248 ± 23exp ± 25V ub) MeV [52], fD =(205.8 ±
8.5± 2.5) MeV [53], λ2

N =(0.0011± 0.0005)GeV6 [54],
λΣb

=(0.062 ± 0.018)GeV3 [55], and λΣc
=(0.045 ±

0.015)GeV3 [55]. We take the masses of the hadrons
from Ref. [56], where mB =(5279.26 ± 0.17) MeV,
mD =(1864.84 ± 0.07) MeV, mN =(938.272046 ±

0.000021) MeV, mΣb
=(5811.3±1.9) MeV, mΣc

=(2452.9±
0.4) MeV and for the quarks, mb =(4.18±0.03) GeV,
mc =(1.275± 0.025) GeV, md =(4.8+0.5

−0.3) MeV, and
mu =(2.3+0.7

−0.5) MeV. The vacuum condensates are taken
to be the standard values 〈uu〉 = 〈dd〉 = −(0.8±0.1)×
(0.24±0.01GeV)3 [57], 〈sgsσGs〉 = m2

0〈ss〉 [57], m2
0 =

(0.8±0.1)GeV2, 〈g2
sGG〉=(0.022±0.004)GeV4 [58]. From

Eq. (20), we also know that the value of the form factor
GΣbNB[ΣcND] is a function of the input parameters, in-
cluding the Borel parameters M 2

1 and M 2
2 , the continuum

threshold s0 and u0, and the momentum Q2.
The working regions for M 2

1 and M 2
2 are determined

by requiring not only that the contributions of the higher
states and continuum be effectively suppressed, but also
that the contributions of the higher-dimensional opera-
tors are small. In other words, we should find a good
plateau which will ensure OPE convergence and the sta-
bility of our results [49]. The plateau is often called the
“Borel window”. Considering these factors, the Borel
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windows are chosen as 7(3)GeV2
6 M 2

1 < 14(7)GeV2

and 3(2)GeV2
6 M 2

2 < 7(6)GeV2 for the strong vertex
ΣbNB(ΣcND) (see Figs. 1–4). From these figures, the
values are rather stable with variations of the Borel pa-
rameters, so it is reliable to extract the form factors. In
addition, the continuum parameters s0 =(mi+4i)

2 and
u0=(mo+4o)

2 are employed to include the pole and to
suppress the h.r. contributions. The values for 4i and
4o cannot be far from the experimental value of the dis-
tance between the pole and the first excited state [49].
In general, these two continuum thresholds s0 and u0

are determined by the relations s0∼(mi+0.5GeV)2 and
u0∼(mo+0.5GeV)2. According to these considerations,
we take s0 =37.4(7.6)GeV2 and u0 =1.99(1.99)GeV2 for
the strong vertex ΣbNB(ΣcND).
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Fig. 1. GΣbNB as a function of M2
1 at average val-

ues of the continuum thresholds.
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Fig. 2. GΣbNB as a function of M2
2 at average val-

ues of the continuum thresholds.

However, in order to obtain the coupling constants,
it is necessary to extrapolate these results into physical
regions (Q2 < 0), which is realized by fitting the form
factors into suitable analytical functions. It is indicated

that we should get the same values for the coupling con-
stants for the different Dirac structures p/γ5 or q/γ5 when
we take Q2=−m2

B[D]. This above procedure can help us
minimize the uncertainties in the calculation of the cou-
pling constant, which will be quite clear in the following
section. Actually, there is no fixed expression for the
fitting function of the form factors in the framework of
QCD sum rules. In many cases, it is found that the form
factors can be appropriately fitted into a combination of
exponential function and power function. After some ef-
fort, we observe that the dependence of the form factors
on Q2 can be well fitted into the following two analytical
functions for ΣbNB and ΣcND respectively (see Fig. 5
and Fig. 6):

GΣbNB(Q2)=C1exp
−

Q2

C2 +C3exp
−

Q2

C4 (21)

GΣcND(Q2)=C5exp
−

Q2

C6 +C7 (22)
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Fig. 3. GΣcND as a function of M2
1 at average val-

ues of the continuum thresholds.
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Fig. 4. GΣcND as a function of M2
2 at average val-

ues of the continuum thresholds.
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Fig. 5. GΣbNB as a function of Q2 at average val-
ues of the continuum thresholds and Borel mass
parameters.
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Fig. 6. GΣcND as a function of Q2 at average val-
ues of the continuum thresholds and Borel mass
parameters.

The values of Ci for different Dirac structures are
presented in Table 1 for the two strong vertices ΣbNB
and ΣcND. The fit function is used to determine the
value of the strong coupling constant at Q2=−m2

B[D] for
different structures, and the results are also presented in
Table 1. The errors in these results mainly arise from
the uncertainties of the fitting parameters such as δC1,

δC2, δC3 etc. In our calculations, we take the central
values of all the input parameters such as the masses of
the quark and hadrons, the decay constants, etc. If the
uncertainties of these input parameters are considered,
one would expect rather large errors at the level of at
least 10%.

It is indicated from Fig. 5 and Table 1 that we
obtain compatible results for the strong coupling con-
stant gΣcND from different Dirac structures when we take
Q2=−m2

D in the fitting function Eq. 22. The results of
the coupling constants for vertex ΣcND are 3.58 and
3.94 for the p/γ5 and q/γ5 structure respectively. The
average value is 3.76±0.05, which is consistent with Az-
izi’s result in Ref. [20]. For the ΣbNB vertex, the results
from different Dirac structures are not in good agreement
with each other, the values being 0.55 and 0.31 respec-
tively. Comparing these values with Azizi’s [20], 12.96,
our results are much smaller. The main difference be-
tween our calculations and those of Ref. [20] lies in the
different choices of the Dirac structure. In Ref. [20], they
selected the 6 q 6 pγ5 structure to analyze the strong cou-
pling constants. In our analysis, we choose 6qγ5 and 6pγ5.
Besides, we also consider the contribution from 〈qqG〉.
Our previous work indicated that this condensate con-
tribution should not lead to so much difference in the
final results [59]. Thus, this value for the strong cou-
pling constant ΣbNB needs to be further analyzed by
other theoretical methods such as the light-cone QCD
sum rules (LCQSR) and lattice QCD. At present, we
temporarily take the average values of these two differ-
ent structures as the final results, giving 0.43±0.01 and
3.76±0.05 for ΣbNB and ΣcND respectively.

4 Conclusion

In this article, we have calculated the form factors of
the vertices ΣbNB and ΣcND in space-like regions by
three-point sum rules. We then fit the form factors into
analytical functions, extrapolated them into the time-
like regions, and obtained the strong coupling constants
GΣbNB and GΣcND . These calculated results can be used
to analyze related experimental results at the LHC as
well as heavy ion collision experiments like PANDA at
FAIR.

Table 1. Parameters appearing in the fit function of the coupling form factor for ΣbNB and ΣcND.

structure C1/GeV−1 C2/GeV2 C3/GeV−1 C4/GeV2 GΣbNB

ΣbNB 6pγ5 −0.40±0.05 −4.89±0.02 0.90±0.05 −26.13±4.00 0.55±0.01

6qγ5 −0.78±0.10 −4.99±0.02 1.74±0.10 −24.22±4.00 0.31±0.01

ΣcNB structure C1/GeV−1 C2/GeV2 C3/GeV−1 C4/GeV2 GΣcNB

6pγ5 4.21±0.20 −21.51±3.00 0 3.58±0.02

6qγ5 663.20±63.50 1728.30±25.60 −660.60±68.70 3.94±0.04
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