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The canonical tensor model (CTM) is a tensor model proposing a classically and quantum
mechanically consistent description of gravity, formulated as a first-class constraint system with
structural similarities to the ADM formalism of general relativity. The classical CTM produces
a general relativistic system in a formal continuum limit, the emergence of which should be
explained by the quantum CTM. In this paper we study the symmetry properties of a wave func-
tion that exactly solves the quantum constraints of the CTM. We have found that it has strong
peaks at configurations invariant under some Lie groups, as predicted by a mechanism described
in our previous paper. A surprising result is the preference for configurations invariant not only
under Lie groups with positive definite signature, but also with Lorentzian signature. Such sym-
metries could characterize the global structures of spacetimes, and our results are encouraging
towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the
wave function we have also analyzed the asymptotic behavior, which for the most part seems to
be well under control.
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1. Introduction

The current standard model of particle physics describes three of the fundamental forces with great
precision. Perturbative methods in quantum field theory are used to calculate scattering amplitudes
of processes. The notable absentee in this description of fundamental physics is gravity. The absence
of gravity is due to the perturbative non-renormalizability of Einstein’s general relativity [1], making
the perturbative theory lose its predictive power. Ever since there have been attempts to develop well
defined non-perturbative theories that lead to general relativity in some continuum limit.

One way to treat quantum gravity non-perturbatively is by introducing a discretization of spacetime
by means of simplices at the Planck scale. One of the ways to do this is by the use of tensor models
[2–4], which can be seen as a generalization of matrix models. These original models are known
to have some difficulties,1 some of which have been resolved by the advent of the colored tensor
models [7]. However, there still remain problems due to the emergence of branched polymers instead

1 A serious problem of tensor models with symmetric tensors like the original models is that it is unknown
whether there exist 1/N expansions that would enable systematic analysis. Recently, introducing a traceless
condition [5] or a pair of symmetric tensors [6] have been proposed as possible resolutions.
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of space-like simplicial complexes resembling our universe2 [10,11]. The problem here may lie in the
fact that tensor models usually by construction generate Euclidean signature spaces, without paying
special attention to time. One model that treats time differently is causal dynamical triangulation and
it is able to produce macroscopic spaces using a notion of causality to restrict generated spaces to
be compatible with a (3+1)-dimensional Lorentzian decomposition [12,13]. On the other hand, the
Euclidean counterpart (dynamical triangulation) has proved to be more difficult [14,15].

The issues of the tensor models above and the suggestion of the importance of the treatment of time
in quantum gravity led to a model called the canonical tensor model (CTM), which was introduced
by one of the authors of this paper [16]. The model is defined in the Hamiltonian (also called the
canonical) formalism, which naturally treats time separately. Like the Hamiltonian formulation of
general relativity (the Arnowitt–Deser–Misner (ADM) formalism [17]), the Hamiltonian consists
of a linear combination of first-class constraints. This makes sure that, even though time is singled
out, general covariance is not broken. The fundamental dynamical variables of the model are a
conjugate pair of real symmetric rank-3 tensors. The CTM has been shown to have a strong connection
to general relativity: It agrees with a mini-superspace approximation for N = 1 [18],3 while in
a formal continuum limit, where N → ∞, the dynamical structure agrees with that of general
relativity [19,20]. Due to this connection with general relativity and the fact that the model can be
quantized easily [21], one can hope for this model to be a consistent model for quantum gravity.

Since the main goal of the CTM is to describe quantum gravity, it is important to study the quantum
mechanical dynamics of the model, e.g., the physical states (wave functions) [21,22]. One important
question is what the properties of the preferred configurations of the wave functions are. Symmetries
are especially interesting to analyze since they might give a hint to what kind of spaces can emerge
from the model. In this paper we analyze these preferred configurations of a wave function of the
model that is valid for general N , particularly paying attention to the mechanism described before in
Ref. [23], where configurations that are themselves invariant under a subgroup of the full symmetry
group of a system get amplified.4 We find that this mechanism seems to work well for this wave
function of the CTM, observing clear preferences for symmetric configurations. Rather surprisingly,
we found not only Lie groups with space-like (positive definite) signatures, but also with spacetime-
like (indefinite) signatures, explicitly SO(1, N − 1) for the particular simplified cases we consider,
as the symmetries associated with the preferred configurations. This suggests that there is a hidden
time direction present in the emergent symmetry, possibly signaling the emergence of de Sitter-like
spacetimes in the CTM.5

This paper is organized as follows. In Sect. 2, we review the formalism of the CTM and present
the wave function that we analyze. The wave function is expressed as a holomorphic integration over
N variables, which can be seen as a multi-variable generalization of the Airy function. In Sect. 3,

2 Recently, tensor models have been attracting much attention as Sachdev–Ye–Kitaev (SYK)-like models
without disorder [8,9]. In this context, tensor models may be indirectly related to quantum gravity through
holography, in which the dominance of branched polymer-like graphs, the so-called melonic diagrams, is
important in the exact solvability of the model in the large-N limit.

3 Here, N denotes the range of the indices of the tensors, namely 1, 2, . . . , N .
4 The main point of this mechanism is that the physical quantity describing a state in the system is invariant

under a group G, whereas certain configurations can themselves be invariant under a subgroup H ⊂ G. It was
found that these configurations will be greatly preferred over non-symmetric configurations.

5 Some discretion with this statement is in order here. Though the appearance of such spacetime symmetries
is encouraging, a correct geometrical interpretation is still left for later study.
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we review the mechanism of the amplification of the wave function at symmetric configurations,
which was described in our previous paper [23]. In Sect. 4, we explain the method by which we
numerically evaluate the wave function for generic configurations. Since the integrand is oscillatory
(oscillating infinitely fast at infinity) with a constant modulus we introduce a regularization procedure,
which in physics is often called the ε-prescription, to properly handle the conditionally convergent
integral. Then, we take the vanishing limit of the regularization by considering a deformation of
the integration contour. We introduce a numerical method that takes care of the deformation. In
Sect. 5, we consider a subspace of the configurations, in which one can analytically carry out all the
integrations except for one. This simplified model is useful for studying the amplification mechanism,
especially for large-N cases, because just one integration remains to be evaluated numerically for
any N . We observe strong amplification of the wave function at symmetric configurations. We also
study the large-N behavior of the wave function. In Sect. 6 we show how the space-like symmetries
that are highlighted are promoted to spacetime-like symmetries in this wave function. In Sect. 7,
we study the asymptotic behavior of the wave function at the infinity of the configuration space,
numerically and analytically. We find a rich variety of possibilities, which should be studied more
thoroughly in the future. The final section is devoted to a summary and future problems.

2. Review of the canonical tensor model

The canonical tensor model (CTM) is a model for gravity in the canonical (Hamiltonian) framework,
which seems to be a natural starting point to construct a model that treats time differently. There
have been several attempts to do this by starting from the ADM formalism [17] of general relativity,
where it is described as a first-class constrained system with the fundamental fields being the spatial
metric hij and its conjugate momentum π ij. The (reduced) Hamiltonian density H is given by a
linear combination of the so-called “Hamiltonian constraint” H and the “(spatial) diffeomorphism
constraint” Hi,6 where the lapse function N and the shift vector N i act like the corresponding
Lagrange multipliers:7

H = NH + N iHi, (1)

where the repeated indices are assumed to be summed over. This standard convention will also
be assumed hereafter unless otherwise stated. The constraints span the hypersurface deformation
algebra,

{H (f ), H (f ′)} = �H (�F),

{ �H (�f ), H (f )} = H (L�f f ),

{ �H (�f ), �H ( �f ′)} = �H (L�f �f ′), (2)

where �H (�f ) = ∫ d3x f iHi, H (f ) = ∫ d3x f H, Fi = hij(f ∂j f ′ − f ′∂j f ), and L�f is the Lie derivative

with respect to �f .

6 The diffeomorphism constraint is also often called the momentum constraint.
7 For a geometric overview of these quantities, see, for instance, Ref. [24].
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The most straightforward way to attempt to construct a canonical quantum gravity theory is to
quantize the fundamental fields by mapping hij → ĥij and π ij → π̂ ij.8 Since H and Hi are classical
constraints, one can implement them on the quantum level by demanding

Ĥ |�〉 = 0, (3)

Ĥi |�〉 = 0. (4)

Here, Eq. (3) is called the Wheeler–DeWitt equation. This functional differential equation is in
general not well defined, although some attempts have been made to make sense of this. There exist
various kinds of difficulties in this approach.

To circumvent these issues in the canonical formalism, one may try to describe a space in a discrete
way by a set of “points”. In the CTM we choose to implement this already at the classical level, by
describing the model as a tensor model. The first non-trivial case to try to construct a Hamiltonian
with similar properties to Eq. (1) would be a real symmetric rank-3 tensor model, using a conjugate
pair of real symmetric rank-3 tensors, Qabc and Pabc, as the fundamental variables with the canonical
Poisson algebraic relations,

{Qabc, Pdef } =
∑
σ

δaσd δbσeδcσf ,

{Qabc, Qdef } = {Pabc, Pdef } = 0, (5)

where σ are the permutations of d, e, and f . The labels of the tensors range from 1 to N and label
the “points” in the space that we are interested in.9 The N → ∞ limit is supposed to correspond to
a continuous space where the model should coincide with general relativity.10 Similar to the spatial
diffeomorphism invariance in general relativity, we introduce a kinematical O(N ) symmetry of the
system such that the system is invariant under “relabeling” of the points:

Qabc → Laa′Lbb′Lcc′Qa′b′c′ ,

Pabc → Laa′Lbb′Lcc′Pa′b′c′ , (6)

where Lab are O(N ) matrices. The CTM is the minimal of its kind, meaning that we consider a model
with just two constraints:

H = naHa + nabJab, (7)

where Ha corresponds to the Hamiltonian constraint and Jab corresponds to the spatial diffeomor-
phism constraint in Eq. (1). For convenience, and to maintain the analogy to the ADM formalism, we
will abuse this terminology to refer to the CTM constraints from now on. The spatial diffeomorphism

8 This does not appear to be the best method in canonical quantum gravity and one is better off usingAshtekar
variables [25], which led to the loop representations in quantum gravity (loop quantum gravity).

9 We call them “points”, since the formal continuum limit suggests that the labels are mapped to continuous
coordinates. The exact implementation of this geometric picture at the discrete level is still not fully understood,
as the points should be connected in some way, e.g., by simplices.

10 It is worth stressing that unlike the usual Euclidean-type tensor models, the spacetime dimension emerging
from the CTM is not directly related to the rank of the tensors. This can, for instance, be seen in the actual
correspondence in a formal continuum limit [19,20].
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constraint of ADM generates diffeomorphisms within a certain timeslice [26]; hence it is natural to
take for Jab the generators of SO(N ) transformations that we imposed in Eq. (6):

Jab = 1

4
(QacdPbcd − QbcdPacd), (8)

which is antisymmetric, Jab = −Jba. To specify the classical model, one now has to introduce the
Hamiltonian constraint. In analogy with theADM formalism of general relativity, the algebra spanned
by the constraints should close. Furthermore, one can deduce that the terms should be connected,
corresponding to the absence of non-local behavior in the ADM algebra (2). This means that, for
instance, a term like QabcQbcdQdee is allowed but a term like QabbQcdeQcde is not. By considering
only terms that are up to the third order in Q and P and even in P,11 one can prove that there is a
unique model described by the following Hamiltonian constraint [27]:

Ha = 1

2
(PabcPbdeQcde − λ Qabb), (9)

where λ is a real constant. Without loss of generality, the constant can be normalized as λ = 0, ±1
by a rescaling, Q → c Q, P → P/c, which keeps Eq. (5). The constraints of Eqs. (8) and (9) span
the following algebra, which corresponds to the ADM algebra in a formal continuum limit with
N → ∞ [19]:

{H(ξ1), H(ξ2)} = J
(
[ξ̃1, ξ̃2] + 2λ ξ1 ∧ ξ2

)
,

{J (η), H(ξ)} = H(ηξ),

{J (η1), J (η2)} = J ([η1, η2]). (10)

Here H(ξ) = Haξa, J (η) = Jabηab, ξ̃ab = Pabcξc, (ξ1 ∧ ξ2)ab = ξ1
a ξ2

b − ξ1
b ξ2

a , and [., .] denotes
the matrix commutator.

The quantization of the CTM can be done consistently by canonical quantization [21]. Let us
map the canonical variables to quantum mechanical operators and the canonical Poisson brackets to
quantum mechanical commutators:

Qabc → Q̂abc, Pabc → P̂abc,

{Qabc, Pdef } → −i[Q̂abc, P̂def ]. (11)

The constraints are now given by the operators

Ĥa = 1

2
(P̂abcP̂bdeQ̂cde − λQ̂abb + iλH P̂abb), (12)

Ĵab = 1

4
(Q̂acdP̂bcd − Q̂bcdP̂acd). (13)

11 The limitation up to the third order has been put in by hand in order to consider the simplest case, and we
do not know whether there exist other consistent Hamiltonian constraints with higher-order terms. Whether
it is fair to only consider even terms in P is still an open question; however, it can be somewhat physically
motivated as a “time reversal symmetry” condition where P → −P and Q → Q.
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The constant λH depends on the ordering of the operators in the first term of the Hamiltonian
constraint. However, if one requires the Hamiltonian constraint to be self-adjoint, this constant is
fixed to be

λH = 1

2
(N + 2)(N + 3). (14)

Conveniently, the quantized constraint algebra contains no anomalies: the algebra remains of the
same form, as can be checked by explicit computations.

Just like the usual constraints in canonical quantum gravity, Eqs. (3) and (4), we have to impose
that the physical states of the theory vanish under the constraints

Ĥa |�〉 = 0, (15)

Ĵab |�〉 = 0. (16)

By choosing a representation, these constraints can be expressed as a set of partial differential
equations. This means that the problem is in principle well defined, though the solutions can in
general have very complicated forms. Several exact solutions have been found before [21,22], and
the main interest of this paper is a wave function in the P representation given by

�(P) =
∫

RN+1
dφdφ̃ ei(Pφ3+φ2φ̃− 4

27λ
φ̃3), (17)

which gives the wave function of a physical state by

�phys(P) = �(P)
λH
2 . (18)

Here φ = (φ1, φ2, . . . , φN ) ∈ R
N , φ̃ ∈ R and we use the short-hand notations

Pφ3 = Pabcφaφbφc,

φ2 = φaφa,

dφ = �adφa. (19)

Though there are several exact solutions known, Eq. (17) has the nice property that it is valid for
any N . The derivation of this wave function is given in Appendix A. We will mainly consider the
λ > 0 case, as it appears to be the physically most sensible case. Taking λ → 0 (after rescaling
φ̃ → |λ|1/3φ̃ in Eq. (17)) will lead to problems mentioned in the following paragraph. The case of
λ < 0 is not very interesting as no strong peaks are expected to emerge there, which will be shown in
Sect. 4. The wave function with λ > 0 will in fact be shown to have a rich structure, which can be well
understood in terms of the highlighting mechanism of symmetries reviewed in Sect. 3. As discussed
in Sect. 7 and Appendix D, the wave function seems asymptotically decaying and normalizable in
most of the directions of the |P| → ∞ limit, so it seems reasonable to concentrate our attention
mainly on the structure of the peaks in the finite region of P.
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As for the λ = 0 case, another wave function is known that is generally valid for any N in the Q
representation [22]12 and is given by

�(Q) =
∫

RN
dφ (φ2)αeiQφ3

, (20)

where α = (N + 3)(N − 2)/8. The idea of looking at λ = 0 seems physically justified, since the
λ term in Eq. (12) classically leads to non-local behavior in the formal continuum limit [19,20].
However, as shown in Appendix B, the wave functions, Eq. (17) with λ = 0 and Eq. (20), have
peculiar behavior that would make a sensible interpretation difficult. In short, for λ = 0, due to
the homogeneous nature of the wave functions under the rescaling of P (or Q), the system suffers
from an instability of collapsing down to vanishing (or divergent) configurations, namely P = 0
(or Q = ∞). On the other hand, as we will see, the wave function (17) for λ > 0 has interesting
behavior for finite P, which is potentially of physical importance. Thus λ > 0 seems to be the only
physically sensible choice13 in the quantum CTM. This also suggests an important future subject of
study that the classical dynamics analyzed for λ = 0 in Refs. [21,22] should be modified from this
quantum requirement.

Lastly, we would like to comment on the Lorentzian form that we have particularly taken in Eq. (17);
namely the exponent of the integrand has an overall factor i with a real action14 and the integration
region is a real hyper-plane. As reviewed in Appendix A, only the validity of partial integrations is
the essential ingredient of the proof for the wave function to be the solution. Therefore, as long as
the integration is convergent, one can freely take the overall factor and the integration region: there
is no particular reason to take the Lorentzian form from the requirement of physical states. On the
other hand, in our treatment of paying special attention to the time direction, the Lorentzian form
would be the most natural choice, and moreover it has the following two advantages. One is that,
as will be discussed in later sections, the wave function is generally well defined as a conditionally
convergent integral for generic P. This will pose more difficult problems in the Euclidean form, as
the integral will usually suffer from divergences caused by the cubic terms, unless the integration
region is altered to some non-trivial complex one. Another important reason is that the highlighting
mechanism of symmetries explained in Sect. 3 requires the coherence/decoherence of the integrand
to occur, and the Lorentzian form would be the most efficient one for the mechanism to be evident.
Therefore, though it might be theoretically possible to make some other choices, we will exclusively
consider the Lorentzian form throughout this paper.

3. Highlighting mechanism of symmetries

In Ref. [23] the authors of this paper introduced a mechanism that can explain the preference for
symmetric configurations in models similar to the CTM. This section serves as a short review of this
mechanism.

12 Eq. (20) is a solution to the second-order partial differential equations derived from the Hamiltonian con-
straints in the Q representation. Therefore, the solution is more non-trivial than Eq. (17) in the P representation,
which is a solution to the first-order ones. Unfortunately, we do not presently have any generalization of this
solution to λ �= 0.

13 λ corresponds to the cosmological constant in the correspondence between the CTM with N = 1 and the
mini-superspace treatment of general relativity [18]. Therefore, the necessity of λ > 0 curiously matches the
present astrophysical observation of a positive cosmological constant.

14 For convenience we use the terminology “action”, inspired by the path integral formulation of quantum
field theories. The action in Eq. (17) is S = Pφ3 + φ2φ̃ − 4

27λ
φ̃3.

7/36



PTEP 2018, 043A01 D. Obster and N. Sasakura

In physics, one is often interested in quantities of the form

�(Q) =
∫

C
dφ eiS(φ,Q). (21)

Here � is the physical quantity of interest, defined on a configuration space of which Q is an element.
φ denotes some internal integration variables in the space C and S(φ, Q) is a function of φ and Q.
Note that the wave function (17) of our interest also has this form.

Let us introduce a group symmetry in Eq. (21). Considering Q and φ, which are labeled by some
discrete set of labels, one can look at the action of some group G on Eq. (21), where Q and φ

transform under some representations:

φ
(g)
a = R(g) b

a φb,

Q(g)
i = R̃(g)

j
i Qj. (22)

Here, R and R̃ are representations of the group element g ∈ G. Both R and R̃ are assumed to be
non-trivial for the mechanism to work, though they are allowed to be reducible and may also contain
trivial representations. We consider a symmetry such that the “action” S remains invariant,

S(φ(g), Q(g)) = S(φ, Q), (23)

and the group elements have determinant 1 such that

dφ(g) = dφ, (24)

which implies that

�(Q(g)) = �(Q). (25)

Here, it is also implicitly assumed that the integration contour C is invariant under the group action.
However, this is not a general requirement, because, for instance, if the integral (21) is a holomorphic
one, as in the case of Eq. (17), C is allowed to be transformed up to continuous deformations due to
the Cauchy theorem.

One can make a good estimate of the preferred configurations of Q by considering the critical
points φσ of the action:

∂S

∂φa

∣∣∣∣
φ=φσ

= 0. (26)

Summing up all the contributions of such critical points for the approximation of the full integral
is called the stationary phase approximation.15 Here, we want to use it to qualitatively predict the
most important configurations by analyzing these critical points. Usually if there exist several critical
points, the contributions of the critical points will have uncorrelated phases and will cancel each other
out so that the sum will generally be small. However, in some cases it is possible to get a large sum,
i.e., if we take a certain configuration QH that is invariant under a subgroup H ⊂ G. In this case,

15 This terminology is for real S. The analogous method for complex cases is given by taking the main
orders [28] in the Picard–Lefschetz theory [29].
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because of the invariance of Eq. (23), the critical points form invariant sets with the same phase
along the trajectories of the group action h ∈ H :

S(φσ , QH ) = S(φσ ,(h), Q(h)
H ) = S(R(h)a

bφσ
b , QH ). (27)

Because the phase is constant, all the critical points contained in such an invariant set contribute
coherently to �.16 If a critical point φσ is contained in the trivial part of the representation R, the
invariant set contains only one element, and the critical point will be isolated in most cases. On the
other hand, if the group action generates a non-trivial set of critical points (a continuous set if H is
a continuous group), these critical points will give larger contributions than the isolated cases.

Generally speaking, this mechanism would prefer a larger representation space of H in the space
of φ for larger amplification of �. On the other hand, it seems rather difficult to determine whether
higher-dimensional symmetries are preferred or not. A higher-dimensional symmetry will in general
form a higher-dimensional subspace of the representation in the space of φ, and therefore the ampli-
fication for one particular QH will become larger. However, higher symmetries will require more
conditions on QH , and the net probability of getting higher-dimensional symmetries can become
smaller. Therefore, it seems a non-trivial question what kinds of symmetric configurations have the
largest contributions in the end.

In the previous paper a certain toy model was analyzed, which is very similar to the current model
of interest, Eq. (17), being obtained by setting φ̃ = 1 in Eq. (17):

�(P) =
∫

dφ ei(φ2+Pφ3). (28)

This model was found to indeed support this highlighting mechanism of symmetric configurations.

4. Highlighted symmetries in the canonical tensor model

In this section, we first analyze the critical points in the action of the integral expression of the wave
function (17) to obtain potential peaks expected from the highlighting mechanism of symmetries
discussed in Sect. 3. We find that λ > 0 is required for the existence of interesting critical points.
We give a numerical method for the explicit evaluation of the wave function (17). The regularization
and its vanishing limit by means of a contour deformation are discussed in some detail. Finally we
show that, for a few concrete examples, we indeed find strong peaks at symmetric configurations in
accordance with the highlighting mechanism.

4.1. Critical points

The “action” of the wave function given in Eq. (17),

S(P, φ, φ̃) = Pφ3 + φ2φ̃ − 4

27λ
φ̃3, (29)

is invariant under the following O(N ) transformations:

Pabc → Laa′Lbb′Lcc′Pa′b′c′ ,

φa → Laa′φa′ , (30)

16 Since the whole system of φ is invariant under H for Q = QH , the coherence is an exact phenomenon
beyond the stationary phase approximation.
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where L denotes the fundamental O(N ) matrices. The existence of such an underlying symmetry is
one of the conditions for the mechanism in Sect. 3 to work, and the present model may have the
highlighting phenomena for the symmetric configurations.

To start, let us analyze the critical points of Eq. (29). From Eq. (26) one finds the equations to be
given by

3(Pφσ 2)a + 2φσ
a φ̃σ = 0,

φσ 2 − 4

9λ
φ̃σ 2 = 0, (31)

where φσ and φ̃σ denote the critical points of φ and φ̃ respectively, labeled by σ . If φ̃σ �= 0 we can
rewrite the equations with the rescaled variable ϕσ = φσ /φ̃σ , and obtain

3(Pϕσ 2)a + 2ϕσ
a = 0,

ϕσ 2 − 4

9λ
= 0. (32)

The first equation is nothing but the critical point equation of the previous model (28). Therefore, one
can expect that the symmetry highlighting phenomena will similarly occur in the present model as
in the previous one (28) (as analyzed in Ref. [23]). Here the only difference comes from the second
equation, which restricts the size of ϕσ to be a constant. Since, from the first equation, the size of
ϕσ is inversely proportional to that of P, the second equation actually restricts the size of P. This
implies that, unlike the previous model (28), the values of P for which there exist critical points are
restricted by an additional condition. This can be obtained by eliminating φ̃σ from Eq. (31):

λ = (Pφσ 3)2

(φσ 2)3 . (33)

This is indeed independent of the overall scale of φσ , giving a restriction on the size of P. This
relation is consistent only for λ > 0. For λ < 0, from Eq. (31), there are no other critical points than
the trivial one φ = φ̃ = 0, and we cannot expect the wave function to have interesting structures.17

Because λ = 0 has already been discarded in Sect. 2, we will exclusively consider the λ > 0 case in
this paper.

Following the argument of Sect. 3, we want to consider the subgroups of the full symmetry group
O(N ) under which the configuration Pabc itself is invariant. These configurations are expected to be
more relevant than the configurations without such symmetric properties. The primary possibilities of
symmetries are O(n) (n < N ), O(n) × O(m) (n + m < N ), and so on. Other interesting possibilities
are the Lie groups with real orthogonal representations, which can be embedded into the O(N )

matrices of the underlying symmetry (30). To see whether these configurations are preferred, it is
necessary to develop some tools to actually calculate the integral (17). This is highly non-trivial, and
few things can be done analytically. But numerical tools will prove to be of value.

4.2. Evaluating the wave function

In this section, we reduce the N + 1-dimensional integral of Eq. (17) to an N -dimensional compact
integral. This is valid for generic P, and hence is very useful to analyze the behavior for generic P.

17 As a check of this statement, we have computed the wave function for some cases with λ < 0 by the
method explained in the later sections, and have actually observed its monotonous nature.
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Though the expression is in principle exact, numerical evaluation might be slow and inaccurate in
general due to the remaining numerical integration over N variables.

Taking advantage of the fact that S(P, φ, φ̃) in Eq. (29) is a homogeneous cubic function of φ and
φ̃, we can do a coordinate transformation to hyperspherical coordinates. For notational simplicity,
we introduce P̃ as the tensor expressing P̃abcφaφbφc = S(P, φ, φ̃) in Eq. (29), where we regard
φN+1 = φ̃. With hyperspherical coordinates, φ can be decomposed into an angular and a radial part
as φa = φ� ar, where � denotes a set of angular coordinates, and φ� is a unit vector oriented in the
direction described by �. By this change of variables, we obtain

�(P) =
∫

SN
d�

∫ ∞

0
dr rN ei(P̃φ3

�)r3−ε r3
, (34)

where we have introduced the ε r3 term with a positive small ε as a regulator. The r integration can
now be done by using

∫∞
0 dr rN e−(ε−ia)r3 = 1

3�(N+1
3 )(ε − ia)− N+1

3 :

�(P) = 1

3
�

(
N + 1

3

)∫
SN

d�
1

(ε − iP̃φ3
�)

N+1
3

. (35)

Here the branch cut of the fractional power is assumed to be taken on the negative real axis. This
will always be assumed for other fractional powers and logarithmic functions appearing in this paper
without further notice. Now the problem of computing the wave function is reduced to a compact
N -dimensional integration. However, the ε → 0+ limit has an apparent difficulty of diverging on
the points � satisfying P̃φ3

� = 0. For generic P̃, this divergence is not a real property of the wave
function, because the singular points can be circumvented by considering appropriate deformation
of the integration contour away from the real plane as shown in Fig. 1. Such deformation is allowed
because of the Cauchy’s integral theorem. For the numerical computation, one can systematically
perform this deformation by doing a change of variables, which adds some imaginary values to the
spherical coordinates:

�′
j = �j + i�

∂(P̃φ3
�)

∂�j
, (36)

where � is a small positive number, �j (j = 1, 2, . . . , N ) are the spherical coordinates taking real
values, and �′

j are the deformed coordinates that are generally complex. If � is positive and small

Fig. 1. An illustration of the deformation of the integration contour. The integration contours are described by
the thick lines, and the branch cuts of the integrand by the dotted ones. On the left, for ε > 0, the contour can be
taken on a real line, and can safely be deformed without being singular in the ε → 0+ limit. The deformation
cannot be done if the integration contour is pinched by two branch cuts in the ε → +0 limit, as in the right
figure.
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enough, this deformation will deform the contour appropriately, because18

P̃φ3
�′ = P̃φ3

� + i
N∑

j=1

�

(
∂(P̃φ3

�)

∂�j

)2

+ O(�2), (37)

and the second term on the right-hand side effectively add a positive contribution to ε in the denom-
inator of Eq. (35). This will enable one to smoothly take the ε → 0+ limit. With this change of
variables, Eq. (34) has now been transformed to

�(P) = 1

3
�

(
N + 1

3

)∫
SN

d�

∣∣∣∣∂�′

∂�

∣∣∣∣ 1

(−iP̃φ3
�′)

N+1
3

, (38)

which does not contain ε anymore.
As can easily be seen in Eq. (37), the aforementioned method of deforming the contour does not

work properly on the � for which P̃φ3
� = 0 and ∂(P̃φ3

�)/∂�i = 0 ∀i. Since the former can be
regarded as the derivative of P̃φ3 with respect to r and the latter with respect to the angular variables,
the condition is nothing but ∂(P̃φ3)/∂φa = 0 ∀a, namely the condition (26) for a critical point of P̃φ3.
As explained in Sect. 4.1, non-trivial critical points exist19 only for special values of P̃, namely those
satisfying Eq. (33). In other words, there is a correspondence between the singularities of the wave
function and the condition (33) derived from the existence of critical points. Thus, the expression
(38) is non-singular and valid for generic P̃, but singular for special P̃ allowing the existence of
critical points. A typical example of a singular case is illustrated in the right figure of Fig. 1, where
the deformation cannot be done because of a pinch by two branch cuts, reflecting the singularity
of the wave function on this point in the ε → +0 limit. As used above, in this paper, we often use
“generic” and “special” to describe the non-singular and singular cases of P (and P̃), respectively.

A consistency check of the final expression of the wave function (38) can be done by looking at the
dependence of the value on the deformation parameter �. The wave function should not depend on �

due to the Cauchy theorem, unless the contour crosses some cuts or singularities by the deformation.
A more thorough consistency check is to directly see whether the constraint equations (15) and (16)
are satisfied by Eq. (38). We have obtained some fairly good numerical results supporting the validity
of Eq. (38). The details are given in the last part of Appendix A.

The expression (38) has the advantage that it is in principle valid for generic P and any N . It is
certainly useful to study the wave function at general values of P for small N . However, it still contains
the N -variable integration, so for larger N the numerical integration takes much time and may contain
large numerical errors. Therefore it is not really useful for studying the large-N behavior of the wave
function. For that reason, in Sect. 5, we consider a subspace of P, where one can analytically perform
all the integrations but one, which is numerically evaluated. This subspace is still large enough to
contain both the symmetric and non-symmetric configurations, and is therefore useful for our purpose
to see the highlighting phenomena of symmetric configurations.

4.3. An example

To give a concrete example of the application of the mechanism explained in Sect. 3 we consider
N = 3. The case of N = 3 has just one Lie subgroup that can be highlighted by the mechanism:

18 Here, we implicitly take the expression of P̃φ3
� as a holomorphic function of �.

19 Note that the trivial critical point φ = 0 plays no role in Eq. (38).

12/36



PTEP 2018, 043A01 D. Obster and N. Sasakura

O(2) ⊂ O(3). A tensor Pabc invariant under an SO(2) transformation can be obtained by solving

Taa′Pa′bc + Tbb′Pab′c + Tcc′Pabc′ = 0, (39)

where Tab is the generator of the SO(2) transformation. There always exists an O(3) transformation
to put this generator in the following form:

T =
⎡
⎢⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎥⎦. (40)

Equation (39) can then be found to be solved by

P113 = P223 = x

3
,

P333 = y, (41)

where the other components (up to permutations) are zero. The action of Eq. (29) for this configuration
is given by

S = x(φ2
1 + φ2

2)φ3 + yφ3
3 + (φ2

1 + φ2
2 + φ2

3)φ̃ − 4

27λ
φ̃3, (42)

which is O(2) invariant. The (real) critical points (26) of the action are given by

φ1 = φ2 = φ3 = φ̃ = 0, (43)

φ1 = φ2 = 0, φ3 = − 2

3y
φ̃, for λ = y2, (44)

φ2
1 + φ2

2 = R2φ̃2, φ3 = −1

x
φ̃, for λ = 4x3

27(x − y)
, (45)

where R2 = 2x−3y
x3 > 0. The result is really similar to the one found for the previous model (28)

[23], with the major difference coming from Eq. (33): Each critical point, except the trivial one,
has a restriction on the configuration variables, x and y, which is shown as the second equation in
each line.

Figure 2 displays clearly the symmetry highlighting phenomenon of the present model consistent
with the discussions in Sect. 3: The wave function has strong peaks along the trajectory represented
by the second equation of Eq. (45) with R2 > 0, while there are small peaks along the second
equation of Eq. (44). As discussed there, one can see that the continuous critical points, namely
Eq. (45), contribute much more than the isolated one (44). One can also observe that the peaks exist
along the classical paths of the CTM, as shown in the right figure, where the classical equation of
motion is given by

dPabc

dt
= {H3, Pabc} (46)

with an auxiliary parameter t. Here, the Hamiltonian vector flow of H3 has directions within the
x, y plane, since this preserves the O(2) symmetry. Thus, the strong peaks can be regarded as repre-
senting a particular classical path, giving an explicit example of the emergence of classicality in the
quantum CTM.
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Fig. 2. Left: A 3D plot of the absolute value of the wave function (38) for Eq. (42) with λ = 0.5, drawn on the
(x, y) parameter plane. The values over 300 have been chopped. Middle: The same function as the left, but as
a contour plot. The blue solid curve and the straight lines respectively represent the restrictions y = x − 4

27λ
x3

in Eq. (45) and y2 = λ in Eq. (44). The configurations along Eq. (45) with R2 > 0 are strongly peaked. The
smaller effects along Eq. (44) are also visible. Right: The arrows represent the Hamiltonian vector flow of H3

of the classical CTM.

One can add other terms to the action of Eq. (42) to disrupt the symmetry. From the discussion in
Sect. 3 one would expect that any such terms will make the wave function smaller. For this example
we will focus on one term specifically; the others can also be calculated well. The term we add here
is given by

δS = zφ1φ
2
3 , (47)

where z is a parameter corresponding to P133 = z/3. One can reduce the integral with this term to a
single compact integral:

�(P) =
∫

dφdφ̃ ei(φ2
1(xφ3+φ̃)+φ2

2(xφ3+φ̃)+zφ1φ
2
3+yφ3

3+φ2
3 φ̃− 4

27λ
φ̃3)

=
∫

dφ3dφ̃
iπ

xφ3 + φ̃
e

i(yφ3
3+φ2

3 φ̃− 4
27λ

φ̃3− z2φ4
3

4(xφ3+φ̃)
)

=
∫

drdθ
iπ

x cos θ + sin θ
ei(y cos3 θ+cos2 θ sin θ− 4

27λ
φ̃3− z2 cos4 θ

4(x cos θ+sin θ)
)r3

= iπ�(4/3)

∫
dθ

(
−i
(

y cos3 θ + cos2 θ sin θ − 4
27λ

sin3 θ − z2 cos4(θ)
4(x cos θ+sin θ)

))−1/3

x cos θ + sin θ
, (48)

where a similar deformation of the integration contour as in Eq. (38) is implicitly taken.
The integral (48) can be evaluated numerically, one example of which can be found in Fig. 3.

One can see that indeed the wave function has a peak for z = 0, so the symmetric configuration is
preferred.

5. Simplified calculable model

In this section we treat a simplified model by restricting P to a subspace. The motivation for this is
to reduce the number of numerical integrations needed for the evaluation of the wave function, as
the numerical integrations over multiple variables take much time and are not always reliable due to
numerical errors. In this subspace, the integrations in Eq. (17) can be done analytically except for
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Fig. 3. The evaluation of the integral (48) with x = 3, y = x − 4
27λ

x3, λ = 1. This is plotted against z, and the
symmetric configuration z = 0 is clearly preferred.

one integration, which can be numerically evaluated much more easily. The restriction does not spoil
our main purpose: The subspace is large enough to observe the symmetry highlighting phenomenon
in the CTM, though it is not enough to predict the most preferred symmetric configuration in the full
configuration space. Because of the single remaining numerical integration, the model can be used
to numerically study the behavior of the wave function for large N , which is virtually impossible by
the method described in Sect. 4.2.

The model that we consider is given by

�(x, y) =
∫

dφdφ̃ eiS(φ,φ̃,x,y), (49)

where

S(φ, φ̃, x, y) =
N−1∑
i=1

xiφ
2
i φN + yφ3

N + φ2φ̃ − kφ̃3 (50)

with k = 4
27λ

. When xi are all equivalent, the action is invariant under an O(N −1) symmetry. When
all values of xi are different, the O(N − 1) symmetry is broken to O(1)N−1 ∼= ZN−1

2 . We also have
the intermediate cases with

⊗k
i=1 O(ni) with n1 + ... + nk = N − 1 by considering some sets of

equivalent xi as the following illustrative example:

(xi) = (

O(3)︷ ︸︸ ︷
x1, x1, x1,

O(2)︷ ︸︸ ︷
x2, x2,

O(1)︷︸︸︷
x3 ,

O(2)︷ ︸︸ ︷
x4, x4, ... ). (51)

This fact makes this model interesting for the study of the symmetry highlighting phenomena, though
the subspace is really small compared to the whole space of P.

One can analytically integrate over φi (i = 1, 2, . . . , N − 1) in Eq. (49), because these are just
Gaussian integrations. After this exercise there remain two integrations, over φN and φ̃, and one of
them can be done in a similar manner to the radial integration in Eq. (34). By doing this integration
we obtain

� = 2π
N−1

2 Re [A+] , (52)
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Fig. 4. An example of the integration contour C of φ̃. The dotted lines are the branch cuts of the integrand.
φ̃0 denotes a real solution to h(φ̃) = 0. The example is shown for h′(φ̃0) < 0.

where A+ is given by

A+ = 1

3
�

(
5 − N

6

)∫
C

dφ̃

N−1∏
j=1

1√
−i(xj + φ̃)

(
−ih(φ̃)

)N−5
6

, (53)

with h(φ̃) = φ̃ + y − k φ̃3 if (N − 5)/6 is not an integer, or Eq. (C12) if (N − 5)/6 is an integer.
The detailed derivation is given in Appendix C. The integration contour C should be taken so as to
avoid the branch cuts of the integrand as illustrated in Fig. 4. This is determined by the vanishing
limit of the regularization, as explained in Appendix C. Since there remains only one integration,
the numerical evaluation is relatively easy, even for a large N .

From expression (53) (or (C12)), one can easily see the symmetry highlighting phenomena in
this simplified case. As in the right figure of Fig. 1, the wave function will have singularities if the
integration contour is pinched by some branch cuts. In the example of Fig. 4, this occurs if some
of −xi coincides with φ̃0, and the number, say n, of −xi that accumulates at φ̃0 will determine the
highlighted symmetry to be O(n).

In general, as explained in Appendix C, the branch cuts of the square roots of the integrand
extend in the negative imaginary direction, while those of (−ih(φ̃))(N−5)/6 (or log(−ih(φ̃)) for
integer (N − 5)/6 and similarly below) extends from the point where h(φ̃) = 0 on the real axis
in the positive imaginary direction if h′(φ̃) < 0 at the point and the negative imaginary direction
if h′(φ̃) > 0. Due to the simple cubic form of h(φ̃) in φ̃, there only exist two major cases for
the branch cuts of (−ih(φ̃))(N−5)/6. These are (i) y2 > λ: One branch cut extends in the positive
imaginary direction, or (ii) y2 < λ: Two branch cuts extend in the positive imaginary direction, and
one in between extends in the negative imaginary direction. Since the pinching occurs only when
the positive and negative branch cuts meet, we have the following three major kinds of singularities
of the wave function:

◦ At y2 = λ, two of the branch cuts of (−ih(φ̃))(N−5)/6, one extending in the negative imaginary
direction and the other in the positive, pinch the contour.

◦ At y2 > λ, O(n) symmetric configurations are highlighted by the accumulation of n of −xi to
the one branch point of (−ih(φ̃))(N−5)/6.

◦ At y2 < λ, O(n1)×O(n2) symmetric configurations are highlighted by the similar accumulation
above to the two branch points of (−ih(φ̃))(N−5)/6 whose branch cuts extend in the positive
imaginary directions.
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Fig. 5. Left: The branch cuts of the integrand and the integration contour C for Eq. (54). Right: A 3D plot
of the wave function plotted on the (x1, x2) plane for N = 3, y = 0, and λ = 0.5. There are small peaks
corresponding to the case that one of the xi is on k−1/2, and a large peak corresponding to the highlighting of
an O(2) symmetry at x1 = x2 = k−1/2. The values over 100 have been chopped.

The first one corresponds to the small peak described in Eq. (44) for N = 3, and the second and
third to that in Eq. (45), where only an accumulation to one branch point is considered in Eq. (45)
due to x1 = x2 = x. One important thing to notice is that, while the action (50) can have various⊗k

i=1 O(ni) symmetries, the actual highlighted symmetries are limited to O(n) or O(n1) × O(n2).
As a concrete example, let us consider the simple case with N = 3, y = 0 of Eq. (50). In this case,

Eq. (53) has the form

AN=3,y=0
+ ∝

∫
C

dφ̃ (−i(x1 + φ̃))−
1
2 (−i(x2 + φ̃))−

1
2 (−iφ̃(1 + √

kφ̃)(1 − √
kφ̃))−

1
3 . (54)

The branch cuts of the integrand and the integration contour C are illustrated in the left figure of Fig. 5.
There are three branch points coming from h(φ̃) = 0, i.e., φ̃ = 0, ±k−1/2, and singular behavior is
expected for xi = ±k−1/2, but not for xi = 0 because of the absence of a pinch. If only one of xi is
at ±k−1/2, the singularity of the integrand is not strong enough for the integral to diverge, but there
will be a rapid change of the value when xi passes over ±k−1/2, because the integration contour
gets substantially changed. If x1 = x2 = ±k−1/2, the integral diverges, and the wave function has a
strong peak there.20 This indeed corresponds to an O(2) symmetric configuration, and is interpreted
as an occurrence of the symmetry highlighting phenomenon (see the right figure of Fig. 5).

As mentioned at the beginning of this section, this simplified setting gives a relatively simple
way to do some analysis on the large-N behavior and to explore some of the possible symmetric
configurations. To do the analysis of the first problem we will introduce a parameterization of just
one parameter z, which breaks the O(N − 1) symmetry completely to O(1)N−1, given by

xi(z) = x0 + z

(
i

N
− 1

2

)
. (55)

This parameterization is chosen such that xi (i = 1, 2, . . . , N −1) are distributed evenly in the region,

xi(z) ∈
(

x0 − z

2
, x0 + z

2

)
(56)

20 In this paper, we will not discuss whether this divergence is square integrable over P or not, because, for
that, we need the understanding of the behavior in the full parameter space of P, which is out of our present
reach.
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Fig. 6. Left: The absolute value of the wave function plotted against z for N = {4, 6, 8, 10} with x0 = 2,
y = x0 − kx3

0, k = 4/27. Right: The same for x0 = 2, y = x0 − kx3
0 + 0.1, k = 4/27. It is clear that even a

small number of α changes the overall structure. There even exist locations where the wave function changes
its sign. These appear as sharp valleys in the plot of the absolute value. Comparing the two figures, one can
see that the peak for α = 0 is much stronger.

with a center at x0. Once one understands the behavior of this for large N , one might be able to get a
hint about the N → ∞ limit for the simplified model (50). However, this parameterization reduces
the configuration space even further, making the predictions somewhat modest.

For y, we shall choose a value of

y = x0 − kx3
0 + α, (57)

where α is the parameter that we will change. When α = 0, the relevant branch point of
(−ih(φ̃))(N−5)/6, written in x = −φ̃, is located at the center x = x0 of the region (56). There-
fore, if we take |z| smaller, xi accumulate toward the branch point and the configuration approaches
an O(N − 1) symmetric one. Indeed, as seen in the left figure of Fig. 6, there is a strong peak at
z = 0, as expected from the highlighting mechanism. The peak is enhanced for larger N .

If we take a non-zero value for α, z = 0 is no longer the case in which the accumulation of xi

toward the branch point occurs. In fact, the region (56) contains the branch point only for |z| > zmin

with a positive value of zmin. The minimum zmin can be obtained by solving the condition for one of
the endpoints21 of the region (56) to coincide with the branch point, e.g. y = x0 + z/2−k(x0 + z/2)3

with Eq. (57) for x0, z > 0. Indeed, as can be seen in the right figure of Fig. 6, the peaks are located
away from z = 0. What occurs around the peaks is that xi(z) pass over the the branch point one by
one in the course of changing the value of z. The highlighted symmetry is just O(1) for each passing
over. The wave function has some rich structures, seemingly reflecting the one-by-one passing over.
The amplitude of the wave function is enhanced for larger N , but is substantially smaller than the
O(N − 1) case in the left figure. Note also that for non-zero α, even though the point z = 0 still
corresponds to an O(N − 1) symmetric configuration, this is not a large peak, since it misses the
condition (33). Rather, the condition is satisfied for a highlighted O(1) symmetry, when one of the
xi(z) passes over the branch point.

For the large-N limit one can also use this setup and see if eventually this wave function will
converge to something meaningful. While the case for α ∼ 0 seems to be rather simple, the situation
for non-zero α seems to be much more complex. As explained above, the wave function as a function
of z is made of a collection of O(1) symmetric peaks, whose amount is N − 1. Among them, the

21 Here we ignore a small difference coming from the fact that the endpoints of the region (56) are not
contained as xi. For large N this is justified.
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Fig. 7. Left: The absolute value of the wave function plotted against z for N = {50, 60, 70, 80} with x0 = 2,
y = x0 − kx3

0, k = 4/27. Right: The same for y = x0 − kx3
0 + 0.1. The wave function for finite α has more

structures and is not peaked around z = 0. The peak is much stronger for α = 0.

peaks closer to z = 0 appear to become more and more important for larger N , which is due to the
high density of peaks in this region. These things can be seen in Fig. 7.

Lastly we will investigate the behavior of the simplified model for other symmetries. As men-
tioned at Eq. (51), it is possible to find several subgroups in the configuration xi. Let us consider
the case symmetric under a product group, O(n1) × O(n2) with n1 + n2 = N − 1, having the
following xi:

(xi) = (

n1 times︷ ︸︸ ︷
x1, ..., x1,

n2 times︷ ︸︸ ︷
x2, ..., x2 ) . (58)

This is supposed to be the maximum possibility of the highlighted product group symmetry, because a
product group with more than two O(ni) cannot be highlighted, as mentioned earlier in the analysis of
the singularity of the wave function. For Eq. (58), one can derive the following two sets of continuous
critical points in the same manner as deriving Eq. (45) of the previous example:

φ2
1 + ... + φ2

n1
= R2

1φ̃
2, φN = − 1

x1
φ̃, others = 0,

φ2
n1+1 + ... + φ2

N−1 = R2
2φ̃

2, φN = − 1

x2
φ̃, others = 0, (59)

where R2
i = 2xi−3y

x3
i

. Each set of the continuous critical points exists only if the extra restriction

y = xi − kx3
i is satisfied as in the second equation of Eq. (45). There is another way to derive

this restriction by using the singular structure of the branch cuts, not by using the stationary phase
approximation: As mentioned earlier, the wave function has singularities when h(−xi) = 0, and
solving this equation will lead to the same restriction. Obviously we get the O(N − 1) symmetry by
putting x1 = x2.

From Eq. (59) one would expect two things. First, it seems that the continuous critical points
in Eq. (59) have smaller orbit spaces than O(n1 + n2), making O(n1 + n2) probably the stronger
symmetry. Second, it is possible for the sets of continuous critical points to coexist, highlighting the
O(n1) × O(n2) symmetry, if y = x1 − kx3

1 = x2 − kx3
2 is satisfied with distinct x1 and x2. These

two contributions of the continuous critical points interfere with each other, and they may add up or
cancel each other depending on particular cases. An example for N = 7 with k = 4/27 and y = 0.5
is given in Fig. 8, where we see the peaks of various patterns of symmetries.
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Fig. 8. Left: The wave function plotted against x1, x2 for a setup given by Eq. (58) for O(3)× O(3) symmetry.
The largest peaks at x1 = x2 are of the O(6) symmetry, and the shallow peaks extending from them the separate
O(3) symmetries. At the crossing points of the O(3) peaks corresponding to O(3)×O(3), one can find a small
additive effect. Right: The same for O(4) × O(2) symmetry. It can be seen that the O(6) symmetry at x1 = x2

is most preferred, while the O(4) peaks are much stronger then O(2). At the point where O(4) × O(2) should
occur, there should be an interference effect, but this cannot be easily seen because of the large difference of
the strengths between O(4) and O(2). In both figures, the values over a certain level have been chopped.

6. Emergence of hidden spacetime symmetries

So far, we have only paid attention to the O(N ) symmetry, Eq. (6), which can be regarded as the
space-like symmetry of the CTM in analogy with the ADM formalism. It would be reasonable to
apply the highlighting mechanism to the O(N ) symmetry, since it is the kinematical symmetry of
the CTM. However, while the symmetry is represented on the integration variable φ of the wave
function (17), there exists the other integration variable φ̃. Taking the mechanism more carefully,
larger symmetries represented on both φ and φ̃ have the possibility to be highlighted. Moreover,
we also impose the Hamiltonian constraint Ha|�〉 = 0, not only the kinematical one Jab|�〉 = 0.
In this section, we will explicitly show that the above prospect for larger highlighted symmetries is
indeed right in the example discussed in Sects. 4.3 and 5. Rather surprisingly, the hidden highlighted
symmetries that we will find have spacetime signatures.

Let us first explain why we call these symmetries hidden. In Sect. 4.3, we solved the symmetry
condition (39) for N = 3. There, the matrix T was assumed to be real and antisymmetric, and the
SO(2) symmetry turned out to be the unique possibility. This does not change, even if we consider
T to be an arbitrary real matrix, and we still get only the SO(2) symmetry as the unique possibility.
It will turn out that not the fundamental dynamical variable of the theory, P, but rather the extended
one (mentioned before in Sect. 4.2), P̃, will have a spacetime-like symmetry.

Following the line of thought from the first paragraph of this section, let us consider P̃ instead of
P, where P̃ is the real symmetric rank-3 tensor parameterizing the whole action (42) including the
part with φ̃:

P̃113 = P̃223 = x

3
,

P̃333 = y,

P̃114 = P̃224 = P̃334 = 1

3
,

P̃444 = −k , (60)
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where k = 4
27λ

, we have regarded φ4 = φ̃, and the other components up to permutations are zero.
We now want to find the solutions to the symmetry condition

Taa′P̃a′bc + Tbb′P̃ab′c + Tcc′P̃abc′ = 0 (61)

with arbitrary 4-by-4 real matrices T (not restricted to be antisymmetric).
The number of the entries of T is 16, and it is easy to solve the condition by computer. For generic

x, y, we again find only the SO(2) matrix (40) as the solution. However, if we assume the second
equation in Eq. (45), y = x−k x3, for the continuous critical points, we obtain the following T (2), T (3)

in addition to the SO(2) generator (40) as solutions to Eq. (61):

T (2)
13 = T (3)

23 = 1, T (2)
14 = T (3)

24 = −x, T (2)
31 = T (3)

32 = −1 + 3

2
k x2, T (2)

41 = T (3)
42 = −3

2
k x, (62)

where the other components are zero. One can check that they satisfy the following algebra:

[T (1), T (2)] = −T (3),

[T (1), T (3)] = T (2),

[T (2), T (3)] = (3k x2 − 1) T (1), (63)

where T (1) denotes the SO(2) generator (40). As shown in Sect. 4.3, the strong peaks appear if
R2 = 2x−3y

x3 > 0, which implies nothing but the positivity of the coefficient 3k x2 − 1 in the last line.
Thus we have found an SO(1, 2) symmetry generated by T (1,2,3) as the highlighted symmetry on the
strong peaks.

On the fixed points of the classical Hamiltonian vector flow the symmetry is enhanced even further.
The flow is given by H3 (46), which is drawn in Fig. 2. There exist two kinds of fixed points, one
at (i) x = ±1/

√
3k and the other at (ii) x = ±2/

√
3k , on the curve y = x − k x3. In each case, in

addition to the above T (1,2,3) with the substitution of the values of x, there exists another symmetry
transformation that solves Eq. (61):

(i) : T i
11 = T i

22 = 1

2
, T i

33 = 1, T i
34 = ∓ 2√

3k
, T i

43 = ∓√
3k ,

(ii) : T ii
11 = T ii

22 = 1, T ii
33 = −1, T ii

34 = ∓ 2√
3k

, T ii
43 = ∓√

3k , (64)

where the other components vanish. The algebras formed by them are respectively given by

(i) : [T (1), T i] = 0, [T (2), T i] = 3

2
T (2), [T (3), T i] = 3

2
T (3),

(ii) : [T (1,2,3), T ii] = 0. (65)

For general N with all xi = x in the simplified model discussed in Sect. 5, one can find a similar
thing happening as above. The symmetry SO(N − 1) for general x, y is enhanced to the hidden
SO(1, N − 1) symmetry at the strong peaks on y = x − k x3, and there is an addition of another
symmetry on each fixed point of the flow.

Presently we do not have a reliable physical interpretation of these highlighted hidden spacetime
symmetries. These symmetries become apparent only after including the φ̃ direction in the discussion
of symmetries. This seems to suggest that this extra direction corresponds in some way to an implicit
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time direction in the theory. This interpretation seems justified as the extra terms with φ̃ are originally
introduced to satisfy the Hamiltonian constraint. Moreover, the geometry of the critical points in
Eq. (45) has the interesting structure of a circle that changes its radius in the φ̃ direction. Though
this looks like a time evolving system, the integration variables φ and φ̃ have at this stage no
physical interpretation. It is clear, however, that these emergent spacetime symmetries will play
some important roles in the spacetime interpretation of the dynamics of the quantum CTM, which
is yet to be explored.

7. Asymptotic behavior

The asymptotic behavior of the wave function (17) is also important to analyze. A sufficiently fast
damping wave function at infinity would mean that the wave function is normalizable, at least up
to singularities in the finite-P regime. Furthermore, the wave function turns out to have non-trivial
asymptotic behavior worth investigating. In this section we will first show an easy example of the
asymptotic behavior for a case with N = 3 showing some of the non-trivial behavior, then we will
present a general scaling argument, which will be compared with some numerical results. The scaling
argument seems to explain the asymptotic behavior in most cases, but will turn out not to cover all.
In Appendix D, we show in part the normalizability of the wave function at infinity, based on the
analysis of the asymptotic behavior discussed in this section.

The example was introduced in Sect. 4.3 and the resulting wave function is given in Eq. (48).
Looking at the integrand, the asymptotic behavior with respect to x, y, and z naively seems to be

�(x → ∞) ∼ x−1,

�(y → ∞) ∼ y−1/3,

�(z → ∞) ∼ z−2/3. (66)

However, the last asymptotic behavior is not right, and it is actually given by

�(z → ∞) ∼ z−1/2, (67)

which can easily be checked by the numerical method given in the preceding sections. The reason
for the difference from the naive expectation from the integrand is that the integrand is not uniformly
convergent due to the pole. Therefore, in general, one has to carefully look into the integral to know
the asymptotic behaviors in various infinite directions of the parameters. In the following section, we
will give a scaling argument that would be applicable to most cases, including the above example.
However, there do exist exceptional cases that cannot be understood simply by the scaling argument,
and a more general method must be pursued in future study.

7.1. Scaling argument

In this subsection, we will describe a scaling argument that explains the asymptotic behavior of the
wave function in most directions of large P. Let us consider the wave function (17),

�(P) =
∫

RN+1
dφdφ̃ ei(Pφ3+φ2φ̃−kφ̃3), (68)

where k = 4
27λ

is assumed to be a positive constant. Throughout this subsection, it is implicitly
assumed that the integration is appropriately defined by the prescription described in Sect. 4.2.
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A natural rescaling of the integration variables would be given by

φa → |P|− 1
3 φa (a = 1, 2, . . . , N ), (69)

where |P| = √
PabcPabc. By the rescaling, the action in Eq. (68) is transformed as

Pφ3 + φ2φ̃ − kφ̃3 → |P|−1Pφ3 + |P|− 2
3 φ2φ̃ − kφ̃3. (70)

If one naively assumes that the middle term can be neglected in the large-P limit, � will be
estimated as

�(P) ∼ |P|− N
3

∫
R

dφ̃ e−ikφ̃3
∫

RN
dφ ei|P|−1Pφ3

. (71)

The first integral takes a finite non-zero value, and the last integral does not depend on the overall
scale of P. Therefore, when the last integral takes a finite non-zero value, the asymptotic behavior
of �, in which |P| is taken infinitely large with constant Pabc/|P|, will be given by

�(P) ∼ const. |P|− N
3 , (72)

where the overall factor is a function of Pabc/|P|. The crucial assumption here is that the last integral
of Eq. (71) takes a finite non-zero value. For most values of P, this will be true, and the asymptotic
behavior will be given by Eq. (72). However, there exist values of P for which this is not true, and
there actually exist rich varieties of asymptotic behavior other than that.

A simple example with different asymptotic behavior can be obtained from the calculable model
discussed in Sect. 5. By setting y = 0 in the model, we have

Pφ3 =
N−1∑
i=1

xiφ
2
i φN . (73)

If a uniform rescaling φa → |x|− 1
3 φa with |x| =

√∑
i x2

i for all the φa (a = 1, 2, . . . , N ) is performed
(as prescribed by Eq. (69)), and the limit |x| → ∞ is taken, one obtains

Pφ3 + φ2φ̃ − kφ̃3 →
N−1∑
i=1

xi

|x|φ
2
i φN − kφ̃3, (74)

where the middle term has naively been assumed to be negligible in the limit. The right-hand side
contains φN in a linear form, and this causes trouble. In fact, by performing the φN integration (and
the φ̃ integration) with the replacement (74), one obtains

� ∼ const. |x|− N
3

∫
RN−1

N−1∏
i=1

dφi δ

(
N−1∑
i=1

xi

|x|φ
2
i

)
. (75)

Further integrations over φi (i = 1, 2, . . . , N − 1) will be troublesome: the integral vanishes or
diverges, depending on the signs of xi, where the only finite case is N = 3 with x1,2 having the
same sign.

A correct way to deal with the above example is to consider a different rescaling than Eq. (69).
To get a finite convergent result of the integration, the action has to take an appropriate form in the
limit. In the present case, the φ2

N φ̃ term contained in the middle term would be important in the limit,
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because it would prevent φN from appearing only linearly, avoiding the problem above. So, rather
than uniformly rescaling all the φa like Eq. (69), let us consider the following asymmetric rescaling:

φi → |x|− 1
2 φi (i = 1, 2, . . . , N − 1), φN → φN . (76)

By doing this rescaling and taking the limit |x| → ∞, one obtains

Pφ3 + φ2φ̃ − kφ̃3 →
N−1∑
i=1

xi

|x|φ
2
i φN + φ2

N φ̃ − kφ̃3, (77)

where φ2
N φ̃ indeed remains. Then, the expression

� ∼ |x|− N−1
2

∫
RN+1

dφdφ̃ exp

[
i

(
N−1∑
i=1

xi

|x|φ
2
i φN + φ2

N φ̃ − kφ̃3

)]
(78)

gives the asymptotic behavior � ∼ const. |x|− N−1
2 , if the integral takes a finite non-vanishing value.

This is actually the correct asymptotic behavior, if all the xi have the same sign. In fact, the first line of
Eq. (66) corresponds to the N = 3 case of Eq. (78). However, if the signs of xi are mixed, the integral
in Eq. (78) is divergent: the integral cannot be defined as a strictly convergent integration, as explained
in the following. The φi integrations in Eq. (78) are Gaussian and diverge for φN = 0. Therefore, to
define the integral properly, one needs to deform the integration contour of φN in the vicinity φN ∼ 0.
For the convergence of φi integration, the contour must be deformed as φN → φN + iε Sign(xi) with
a small positive ε in the vicinity φN ∼ 0. However, this can be done consistently for all φi, only if
all xi have the same sign.

In the case of mixed signs of xi, one must consider another rescaling:

φi → φi (i = 1, 2, . . . , N − 1), φN → 1

|x|φN . (79)

Then, one obtains

� ∼ 1

|x|
∫

RN+1
dφdφ̃ exp

[
i

(
N−1∑
i=1

(
xi

|x|φN + φ̃

)
φ2

i − kφ̃3

)]
. (80)

In this case, the divergence of the φi integrations can be avoided by deforming the integration contour
of φN in the manner mentioned above in the vicinity of xi|x|φN + φ̃ ∼ 0. In the present case, unless

φ̃ = 0, the locations of φN satisfying xi|x|φN + φ̃ = 0 are different for different xi, and therefore

there are no contradictions like the former case. Moreover, the point φ̃ = 0 can be circumvented by
adding a small positive imaginary value to φ̃ in the vicinity of φ̃ ∼ 0 without ruining the convergence
of the φi integrations. Here xi must have mixed signs for the expression (80) to be useful, because
otherwise the integral vanishes, which can be proved by deforming the integration contour of φN to
the positive imaginary infinity. Thus the expression (80) shows that the asymptotic behavior is given
by const. /|x| for the mixed case. This turns out to be the correct one for N ≥ 4, while N = 3 is
exceptional, and will be discussed at the end of this subsection.

Let us summarize our scaling argument in general terms. We want to obtain the asymptotic behavior
of � for |P| → ∞ with all Pabc/|P| being fixed. Let us consider a rescaling,

φa → |P|−waφa (a = 1, 2, . . . , N ) (81)
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with some weights wa. Then, � is transformed to

� = |P|−
∑N

a=1 wa

∫
RN+1

dφdφ̃ exp
[
i
(
|P|−wa−wb−wcPabcφaφbφc + |P|−2waφaφaφ̃ − kφ̃3

)]
,

(82)

where the repeated indices are assumed to be summed over. This leads to the following two conditions:
(i) The action in Eq. (82) has a finite limit in |P| → ∞; (ii) The integral takes a finite non-zero value
for the limiting action. Under these conditions, one obtains the asymptotic behavior

� ∼ const. |P|−
∑N

a=1 wa . (83)

If one cannot find the set {wa; a = 1, 2, . . . , N } that satisfies the two conditions above, the scaling
argument cannot be applied. In fact, there exists such a counter example: The N = 3 case with x1,2

having different signs. To see this, let us perform the φi integrations in Eq. (80). Then one obtains

� ∼ const.

|x|
∫

dφN dφ̃

N−1∏
i=1

1√
−i
(

xi|x|φN + φ̃
) exp

(
−ikφ̃3

)
. (84)

For N = 3, the integral over φN has a logarithmic divergence at infinity, and condition (ii) is violated.
In fact, a numerical study shows that the asymptotic behavior of � is given by (c1 + c2 log |x|)/|x|
with constants c1,2, which has the form of the naive expression 1/|x| accompanied by a logarithmic
correction. Such a logarithmic correction cannot be treated by the present scaling argument. Therefore
our scaling argument is not general enough to cover all the cases, though it seems applicable to
most cases.

7.2. Examples

The general argument in the preceding subsection can now be used to explain the behavior of Eqs. (66)
and (67). First, for the large x-behavior we let y and z be fixed. This gives the leading term of the
action as

x(φ2
1 + φ2

2)φ3.

This corresponds to the first case of the example in the preceding subsection, namely N = 3 with
x1,2 having the same sign. Therefore, one obtains the behavior 1/x, as can be extracted from Eq. (78),
in agreement with Eq. (66).

Let us next consider the y → ∞ limit with x, z being fixed. The leading term is given by

yφ3
3 . (85)

For this case, one is led to take w3 = 1/3, because condition (i) requires w3 ≥ 1/3, but w3 > 1/3
violates condition (ii). As for the other weights, one should take w1,2 = 0, so that the limit of
the action is given by (φ2

1 + φ2
2)φ̃ + φ3

3 − 4φ̃3/27λ. If one were to take w1,2 > 0, the integral of the
limit would violate condition (ii), because the term (φ2

1 + φ2
2)φ̃ is needed for the convergence of the

integral. Then, one obtains � ∼ y−1/3 in agreement with Eq. (66).
The last case is z → ∞ with x, y being fixed. The leading term is

zφ2
1φ3. (86)
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Table 1. This table shows the asymptotic behavior of � for N = 3 when the coefficient z of the term shown in
the first column is taken to infinity. c1,2, c′

1,2 are some numerical constants. The coincidence of the form between
the third and the fifth rows can be understood by an orthogonal transformation φ1 → 1√

2
(φ1 + φ2), φ2 →

1√
2
(φ1 − φ2).

Term Asymptotic behavior

(φ2
1 + φ2

2)φ3 z−1

φ3
3 z− 1

3

(φ2
1 − φ2

2)φ3 c1z−1 + c2z−1 log(z)

φ2
1φ3 z− 1

2

φ1φ2φ3 c′
1z−1 + c′

2z−1 log(z)

In a similar way to above, one can determine w1 = 1/2, w2 = w3 = 0, which gives � ∼ z−1/2 in
agreement with Eq. (67).

The asymptotic behaviors for N = 3 are summarized in Table 1. In particular, there are cases,
in which there exists the exceptional logarithmic correction discussed at the end of the preceding
subsection.

Another simple example with non-trivial behavior is given by P with a chain-like structure:

Pφ3 = |P| (φ1φ
2
2 + φ2φ

2
3 + φ3φ

2
4 + · · · + φN−1φ

2
N

)
. (87)

Here, since φ1 is only linearly coupled, we should take w1 = 0 to keep φ2
1 φ̃ of the action in the limit.

As for the other φa, we should take

w2 = 1

2
, w3 = 1

4
, w4 = 3

8
, . . . , wN = 1

3

(
1 + (−1)N 2−N+1), (88)

to cancel the overall factor |P| of Eq. (87). Then, the asymptotic behavior is determined to be

� ∼ const. |P|−
∑

a wa = const. |P|− 1
9

(
3N−2+(−1)N 2−(N−1)

)
. (89)

We have numerically checked the behavior for some small N .
As seen above, the wave function has rich asymptotic behavior depending on the direction, and

how to classify all the possibilities seems an interesting non-trivial question.

8. Summary and future problems

In this paper, we have studied in some detail the profile of a wave function that exactly solves all the
quantum constraints of the canonical tensor model (CTM) for general N [22]. We have found the
preference for symmetric configurations, whose mechanism was described in the previous paper [23]
in a general setting. This preference has been found to occur only for λ > 0, where λ is a constant in
the “Hamiltonian” constraint of the CTM and is known to correspond to the cosmological constant
for N = 1. Surprisingly, we have found some symmetries with indefinite (spacetime-like) signatures
associated with the preferred configurations, not only the ones with positive definite (space-like)
signatures. Since symmetries will determine the global characters of spacetimes, the results are
encouraging toward showing spacetime emergence in the CTM. We have also studied the asymptotic
behavior of the wave function for large values of P, and have found some rich structure.

An important technical detail in our work was to give the precise definition of the wave function,
which had rather formally been given in a previous paper [22]. The wave function has the expression
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of an integration over N + 1 real variables, and the integrand oscillates infinitely fast at infinity with
a constant modulus. In other words, the integral is a sort of multi-variable extension of the integral
expression of the Airy function, and has conditionally convergent limits for generic values of the
parameters contained in the integrand. To properly handle this rather delicate integral, we introduced
a regularization, the so-called ε-prescription, and took its vanishing limit by properly deforming the
integration contour. Then, the obtained expression of the wave function was analyzed mainly by
numerical methods, as well as partly by analytical methods for simplified settings.

We have found some rich structure of the peaks and the asymptotic behavior of the wave function,
which quickly become more and more complicated as N becomes larger. Our present method of
analysis, which largely relies on numerical methods, cannot provide a thorough understanding of
the properties of the wave function. Therefore there remain a long list of questions toward the
full understanding of the quantum CTM. We considered only the particular wave function that has
the most familiar Lorentzian form and is valid for general N , but there exist other possibilities
of the wave functions. We would need to argue more strongly for the present particular choice of
the wave function, or have to equally well consider the other possibilities in the CTM [22] and a
candidate for a more fundamental model [30]. We only considered the orthogonal group symmetries
with the vector representations as highlighted symmetries, but other representations and Lie groups
are also possible and interesting. For example, to describe an emergent two-sphere the expected
highlighted configuration would take a form like P(l1,m1)(l2,m2)(l3,m3) ∼ ∫ dω Y m1

l1
(ω)Y m2

l2
(ω)Y m3

l3
(ω),

where Y m
l (ω) denotes the spherical harmonics, and the irreducible representations labeled by l run

from spin-zero to a cut-off. This interpretation is an area being left for later study. The other Lie
groups with real orthogonal representations, which can be embedded in the O(N ) matrices, are
also interesting to explore. The surprising appearance of spacetime signatures associated with the
preferred configurations should obviously be understood more deeply. We only studied the profile of
the wave function, but we rather have to perform integrations over P to evaluate physical quantities
like

∫
dP |�(P)|2O(P) with an observable O(P). By doing this we can determine whether the

highlighted peaks are really physically sensible or not. This is also important to see whether the
divergences at the peaks are physically harmless or not. It seems necessary to develop more effective
and systematic methods to answer these questions.
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Appendix A. The derivation of the wave function

In this section of the appendix, we will show the derivation of the wave function (17) [22] to make this
paper self-contained. In the derivation, the validity of partial integrations is essentially important.
This can be assured by taking appropriate integration contours or the appropriate prescription of
regularization as taken in Sect. 4.2. The derivation of the other wave function (20) is similar. We will
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also describe the result of the consistency checks of the numerical evaluation of the wave function
(38), which is mentioned at the end of Sect. 4.2.

From Eqs. (12) and (15), the Hamiltonian constraint equations in the P representation are given by

(PabcPbdeDP
cde + λH Pabb − λDP

abb)�phys(P) = 0, (A1)

where DP
abc are the derivative operators with respect to Pabc with the following normalization:

DP
abcPdef =

∑
σ

δaσd δbσeδcσf , (A2)

where σ denote the permutations of d, e, and f . To get a solution, let us consider an ansatz,

�(P) =
∫

C
dφ f (φ2)eiPφ3

, (A3)

which was motivated by the close connection between the CTM and the randomly connected tensor
networks [31–33]. Here, f denotes a function to be determined below. Applying the first operator in
Eq. (A1), we obtain

PabcPbdeDP
cde�(P) = 6i

∫
C

dφ PabcPbdeφcφdφef (φ2)eiPφ3

= 2
∫

C
dφ Pabcφcf (φ2)∂beiPφ3

= −2
∫

C
dφ ∂b

(
Pabcφcf (φ2)

)
eiPφ3

= −2
∫

C
dφ
(
Pabbf (φ2) + 2Pabcφbφcf ′(φ2)

)
eiPφ3

, (A4)

where ∂a denotes the derivative with respect to φa, f ′ the derivative of f with respect to the argument,
and we have performed some partial integrations with no boundary contributions, which are assumed
to be valid by appropriately taking C. The last term of Eq. (A4) can further be computed as∫

C
dφ Pabcφbφcf ′(φ2)eiPφ3 = 1

3i

∫
C

dφ f ′(φ2)∂aeiPφ3

= 2i

3

∫
C

dφ φaf ′′(φ2)eiPφ3
. (A5)

Now let us assume

f ′′(x) = Axf (x) (A6)

with a numerical constant A. Then, the last expression in Eq. (A5) can further be computed as∫
C

dφ φaf ′′(φ2)eiPφ3 = A
∫

C
dφ φaφ

2f (φ2)eiPφ3

= A

6i
DP

abb

∫
C

dφ f (φ2)eiPφ3
. (A7)

Finally, by collecting the expressions above, we obtain an identity satisfied by �(P):[
PabcPbdeDP

cde + 2Pabb + 4A

9
DP

abb

]
�(P) = 0. (A8)
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This identity implies that a solution to Eq. (A1) is given by Eq. (18), if we put

A = −9

4
λ. (A9)

As for Eq. (A6), the solution is given by the Airy function, and an integral expression of f can be
given by

f (x) =
∫

C̃
dφ̃ exp

[
i

(
xφ̃ + φ̃3

3A

)]
(A10)

with an appropriate integration contour C̃. By putting this expression into the ansatz (A3), we obtain
Eq. (17).

Let us finally check the momentum constraints. Similarly, by performing some partial integrations,
we obtain

Ĵab�(P) = (PacdDP
bcd − PbcdDP

acd)

∫
C

dφ f (φ2)eiPφ3

= 6i
∫

C
dφ f (φ2)(Pacdφbφcφd − Pbcdφaφcφd)eiPφ3

= 2i
∫

C
dφ f (φ2)(φb∂a − φa∂b)e

iPφ3

= −2i
∫

C
dφ
(
∂a(f (φ2)φb) − ∂b(f (φ2)φa)

)
eiPφ3

= 0. (A11)

This proves that �phys satisfies the momentum constraints.
The integration region of the wave function considered in the text is a real plane, and hence the

integrand does not damp at infinity. Nonetheless, the integration converges conditionally for generic
P, because the integrand oscillates infinitely fast at the infinity of the integration region. As in Sect. 4,
we treat this delicate integration by introducing the so-called ε-prescription, which is often used in
physics to regularize, and finally take the ε → +0 limit. In this case, the above proof cannot be
applied to the wave function, since there exists an extra contribution to the identity (A8) from the
regularization term. In general, it is not a trivial question whether the extra contribution vanishes in
the vanishing limit of the regularization, but the present case is easy to answer as follows. If we add
the regularization term, −εφ2 − εφ̃2, to the exponent of Eq. (A3), the additional term to Eq. (A8)
turns out to be

ε

∫
RN+1

dφdφ̃
(

c1Pabcφbφc + c2φaφ̃
)

e
i
(

Pφ3+φ2φ̃− 4
27λ

φ̃3
)
−εφ2−εφ̃2

(A12)

with numerical constants c1, c2. This vanishes in the ε → 0+ limit for generic P, because, irrespective
of the additional function of φ, φ̃ in the integrand, the integration is still conditionally convergent
due to the infinitely fast oscillations of the integrand at infinity, and the overall factor ε will make
the breaking term vanish.

The above argument supports the validity of the ε-prescription taken in the text. As explained
in Sect. 4.2, the ε → +0 limit requires a deformation of the integration contour that should not
change the values of the wave function due to the Cauchy theorem, if the deformation parameter �

is small enough. To be sure, we performed some direct numerical checks of our method of computing
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Fig.A1. The dependence of the numerical values of the wave function (38) on �. The left is for N = 2 and
λ = 1 at a “generic” configuration (P111, P112, P122, P222) = (1, 1.1, 1.2, 1.3), and the right for N = 3 and λ = 1
at (P111, P112, . . . , P333) = (1.0111, 1.0222, 1.0333, . . . , 1.111). The horizontal axis represents − log10(�), and
the vertical axis the wave function. There exist substantial regions of constant values, which are supposed to
be the real values of the wave function.

Eq. (38). We studied the dependence of the wave function on � for N = 1, 2, 3. Two of the results are
shown in Fig. A1. As shown, the graphs contain substantial regions of constancy, the values of which
can be regarded as the real values of the wave function in the vanishing limit of the regularization.
The deviations in the left region (larger �) should come from the fact that the deformed contours
cross some branch cuts or singularities. The deviations in the right region (smaller �) come from the
fact that the deformed contour is so close to the singularities that the numerical integrations suffer
from errors.

Another check was to see whether the key identity (A8) is satisfied by the numerically computed
wave function. We have obtained some satisfactorily small numbers of the violations for N = 1, 2, 3.
For example, we obtained the violation of order ∼ 10−8 for N = 2 and � = 0.1, and ∼ 10−2

for N = 3 and � = 10−1.8, respectively, for the same parameters used in Fig. A1. Though it is
hard to judge whether these numbers can be regarded as zero, we also observed the tendency that
the violations became smaller when the optional parameters of the numerical integration command
were chosen to produce more precise numerical values.

In the checks above, several hours of computation time were needed even for N = 3 to get the
satisfactorily precise results shown in Fig. A1.22 However, the slow speed to get precise values is not
so problematic for our main purpose. This is because we are not interested in the values themselves,
but in the qualitative behavior of the wave function to see the highlighting phenomenon of symmetric
configurations. Therefore, in most cases, we can set the optional parameters in favor of the speed,
sacrificing unnecessary preciseness.

Appendix B. The difficulty of the λ = 0 wave functions

In this appendix, we will explain the difficulty of the wave functions for λ = 0, namely Eq. (17)
with λ = 0 and Eq. (20).

22 We performed the numerical computation with Mathematica 11. The optional parameters of the numerical
integration command had to be tuned to get better results. In our computation, it was important to make the
option value “MaxErrorIncreases” at least several tens of thousands, while its default value is two thousand.
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Let us first consider Eq. (17). By a change of variable φ̃ → |λ|1/3φ̃ and taking the limit λ → 0,
one can see that φ and φ̃ are decoupled. P is coupled only with φ, and the wave function is given by

�(P) =
∫

RN
dφ eiPφ3

. (B1)

By considering a rescaling of variables φ → |P|−1/3φ, it is obvious that the wave function splits
into radial and angular parts as

�(P) = |P|− N
3 �(P�), (B2)

where we have introduced a polar coordinate with P� abc = Pabc/|P|. Then, from Eqs. (14) and (18),
the physical wave function is given by

�phys(P) = |P|− N (N+2)(N+3)
12 �(P�)

(N+2)(N+3)
4 . (B3)

Therefore, the wave function has a strong peak at the origin P ∼ 0. To be more precise, let us include
the volume factor as well:∫

dP |�phys(P)|2 =
∫

d|P|
|P| dP� |P|− N (N+2)

3 |�(P�)| (N+2)(N+3)
2 , (B4)

where we have used the fact that the dimension of the space of P is given by N (N + 1)(N + 2)/6.
Therefore, P = 0 is the most favorable configuration, which would have the physical meaning that
there are no spaces.

This preference for P = 0 is qualitatively understandable, because, at P = 0, the integrand does
not depend on φ and the integration trivially diverges. Similar reasoning can also be applied not only
to this global preference, but to the partial cases in which the configurations with Pabc = 0, ∃a, ∀b, c
are relatively preferred, because then the integrand does not depend on φa, and the integration over
φa diverges. Therefore, generally speaking, the configurations with less effective N are preferred.
This tendency to collapse will make it hard for the case of λ = 0 to be physically sensible.

Let us turn to Eq. (20). In a similar manner, we obtain

�(Q) = |Q|− N+2α
3 �(Q�), (B5)

where α = (N + 3)(N − 2)/8. Then,∫
dQ |�(Q)|2 =

∫
d|Q|
|Q| dQ� |Q|N3+2N2−3N+6

6 |�(Q�)|2. (B6)

Since the exponent is positive for N ≥ 1, the wave function diverges at infinity. This problem of
this case seems be a “conjugate dual” to the former one: the wave function spreads out to infinity. It
would be difficult to physically make sense of this case as well.

Appendix C. A simple expression of the calculable model

The integral that we want to consider here is

� =
∫

RN+1

N∏
j=1

dφjdφ̃ exp
(

iS(φ, φ̃, x, y) − ε(φ2 + φ̃2)
)

, (C1)
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where ε > 0, φ2 =∑N
i=1 φ2

i , and

S(φ, φ̃, x, y) =
N−1∑
i=1

xiφ
2
i φN + yφ3

N + φ2φ̃ − kφ̃3 (C2)

with k = 4
27λ

.
There are two difficult things in the actual evaluation of this integration. One is the multi-variable

integration, and the other is the ε → +0 limit. We will reduce the former to a single integration, and
safely take the latter by deforming the integration contour of the remaining single integration.

By doing the Gaussian integrations over φi (i = 1, 2, . . . , N − 1), one obtains

� = π
N−1

2

∫
R2

dφdφ̃

N−1∏
j=1

1√
ε − i(xjφ + φ̃)

exp
(

i
(
φ2φ̃ + yφ3 − kφ̃3

)
− ε(φ2 + φ̃2)

)
, (C3)

where φN has been replaced by φ for notational simplification.
By dividing the integration region of φ into positive and negative regions, the wave function (C3)

can be expressed as

� = π
N−1

2 (A+ + A−), (C4)

where

A+ =
∫ ∞

0
dφ

∫ ∞

−∞
dφ̃

N−1∏
j=1

1√
ε − i(xjφ + φ̃)

exp
(

i
(
φ2φ̃ + yφ3 − kφ̃3

)
− ε(φ2 + φ̃2)

)
,

A− =
∫ 0

−∞
dφ

∫ ∞

−∞
dφ̃

N−1∏
j=1

1√
ε − i(xjφ + φ̃)

exp
(

i
(
φ2φ̃ + yφ3 − kφ̃3

)
− ε(φ2 + φ̃2)

)
. (C5)

One can easily show that A∗+ = A− by performing a change of variables, φ → −φ, φ̃ → −φ̃.
Therefore,

� = 2π
N−1

2 Re [A+] . (C6)

To compute A+, let us perform a change of variable, φ̃ → φφ̃. Then, we obtain

A+ =
∫ ∞

0
dφ

∫ ∞

−∞
dφ̃

N−1∏
j=1

1√
ε − i(xj + φ̃)

φ1− N−1
2 exp

(
−
(
ε − i

(
φ̃ + y − kφ̃3

))
φ3
)

, (C7)

where we have used the positivity of φ. Here, the regularization parameter ε has been replaced,
keeping the same roles as in Eq. (C5), namely, a suppression term at infinity and the choice of the
branches of the square roots. However, the replacement introduces a new singularity at φ = 0, as
can be seen in the power of φ in the integrand of Eq. (C7).

As mentioned above, the integration (C7) has a divergence at the endpoint φ = 0 for positive N .
This singularity did not exist in the original integration before the replacement of the regularization
parameter, and therefore has to be regulated in another way. One way is to consider an analytic
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continuation of N from negative to positive values. Then, by formally carrying out the φ integration,
one obtains

A+ = 1

3
�

(
5 − N

6

)∫ ∞

−∞
dφ̃

N−1∏
j=1

1√
ε − i(xj + φ̃)

(
ε − ih(φ̃)

)N−5
6

, (C8)

where

h(φ̃) = φ̃ + y − kφ̃3. (C9)

Here, the remaining φ̃ integration is convergent, because the integrand behaves like ∼ φ̃−2 as it tends
to infinity.

In Eq. (C8), the regularization parameter ε determines how to take the integration contour in relation
to the branch cuts of the integrand. By using the Cauchy theorem, one can take the ε → 0+ limit
by continuously deforming the integration contour C away from the real plane. Here, the fractional
powers of the integrand in Eq. (C8) are supposed to be taken in the main branches. Hence, the branch
cuts associated with φ̃ = −xi extend in the direction of the negative pure imaginary, as in Fig. 4. If
we first consider the case that (N −5)/6 is fractional, there also exist branch cuts associated with the
solutions to h(φ̃) = 0. The relevant solutions are those on the real axis, and the branch cuts extend
from there to the negative or positive imaginary regions, depending on whether the signs of h′(φ̃) at
the solutions are positive or negative, respectively. The contour C should be taken so as to circumvent
those branch cuts. An example is shown in Fig. 4. With this understanding of the integration contour
C, one obtains an ε-free expression:

A+ = 1

3
�

(
5 − N

6

)∫
C

dφ̃

N−1∏
j=1

1√
−i(xj + φ̃)

(
−ih(φ̃)

)N−5
6

. (C10)

When n = (N − 5)/6 is a non-negative integer, Eq. (C10) cannot be used, because the overall
factor (the gamma function) is divergent. Moreover, in this case, the integrand has no singularities in
the positive imaginary region, and one can deform C to infinity to show that the integration vanishes
because of the fast damping behavior φ̃−2 of the integrand. Thus, the expression (C10) is actually
indeterministic, � = ∞ · 0.

To resolve this issue, let us take the analytic continuation in N more carefully. Let us consider a
perturbation of N as N = 6n + 5 + 6α with an infinitesimal α. The relevant formulas are

�

(
5 − N

6

)
= (−1)n+1

n! α + · · · ,

(ε − ih)n+α = (ε − ih)neα ln(ε−ih) = (ε − ih)n(1 + α ln(ε − ih) + · · · ). (C11)

Putting these into Eq. (C10) and taking the zeroth order in α (the lowest-order α−1 vanishes because
of the vanishing of the integration explained above), one obtains

A+ = (−1)n+1

3n!
∫

C
dφ̃

N−1∏
j=1

1√
−i(xj + φ̃)

(
−ih(φ̃)

)n
ln
(
−ih(φ̃)

)
, (C12)

where the integration contour is taken in the same manner as previously.
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The formula (C6) with Eqs. (C10) and (C12) was numerically compared with the computation
based on the generally applicable method (but rather slow due to the multi-variable integration)
explained in Sect. 4.2. We have found perfect agreement in all the cases that we checked up to
N = 5, supporting the validity of the derivation of the formula.

Appendix D. Normalizability of the wave function in the large-P region

In this appendix, we will discuss the normalizability of the wave function in the large-P region,
when the wave function has the asymptotic behavior that can be derived from the scaling argument
discussed in Sect. 7. This appendix does not fully prove the normalizability of the wave function in
the large-P region, because we assume the scaling argument, which we know does not cover all the
cases, as shown in Sect. 7. Therefore, this appendix proves the normalizability only in part of the
large-P region, which we expect should cover most of the configuration space.

As discussed in Sect. 7, the scaling argument assumes the existence of a scaling of φa that satisfies
conditions (i) and (ii). One can easily derive the following set of necessary conditions for (i) and (ii):

wa + wb + wc ≥ 1 if Pabc �= 0, ∀ a, b, c,

wa + wb + wc = 1, ∃ a, b, c,

wa ≥ 0, ∀ a. (D1)

The first one is necessary for condition (i), because, after the rescaling of φ, the term
Pabc|P|−wa−wb−wcφaφbφc in the action should not diverge in the asymptotic limit |P| → ∞. The
third one is necessary for the same reason for |P|−2waφ2

a φ̃ in the action. The second one is necessary
for condition (ii), because at least one triple term must remain in the action in the asymptotic limit
for the convergence of the integral. Here, note that it is not possible to keep all the φ2

a φ̃ terms in the
action in the asymptotic limit for assuring the convergence of the integral, because the first one of
Eq. (D1) requires that at least one of wa must be positive.

As shown in Appendix A, the physical wave function is given by Eq. (18) with Eq. (14):

�phys(P) = �(P)
1
4 (N+2)(N+3), (D2)

where � is the wave function (17). Therefore, if we assume the scaling argument, the asymptotic
behavior of �phys is given by

�phys ∼ const. |P|− 1
4 (N+2)(N+3)

∑N
a=1 wa , (D3)

where we have used Eq. (83).
Now, let us consider perturbations δPabc of Pabc, and qualitatively estimate the allowed range of

the perturbations under the requirement that the asymptotic behavior keeps the same form (D3)
with a given set {wa; a = 1, 2, . . . , N }. First of all, if the perturbations δPabc of Pabc satisfy
δPabc|P|−(wa+wb+wc) → 0 in |P| → ∞, the limiting action after the rescaling does not change.
Therefore, in this case, the wave function keeps the same asymptotic form as Eq. (D3) including the
overall constant. We can consider more general perturbations. Because of (ii), the limiting action
can be perturbed by certain finite amounts without losing the convergence of the integral. Such
perturbations are on the order of δPabc ∼ |P|wa+wb+wc . In this case, the overall constant in Eq. (D3)
can change, because it is determined by the integration value with the limiting action, while the
scaling behavior in |P| keeps the same form. Thus we obtain the following qualitative estimation of
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the range of perturbations that are allowed for the asymptotic behavior determined by a given set
{wa; a = 1, 2, . . . , N }:

δPabc � |P|wa+wb+wc . (D4)

Then, the contribution to the norm of �phys from such a region, denoted below by P{w}, can be
estimated as

||�phys||2P{w} =
∫

P{w}

N∏
a,b,c=1
a≤b≤c

dPabc |�phys|2

�
∫

d|P|
|P|

⎛
⎜⎝ N∏

a,b,c=1
a≤b≤c

|P|wa+wb+wc

⎞
⎟⎠ |P|− 1

2 (N+2)(N+3)
∑N

a=1 wa

=
∫

d|P|
|P| |P|−(N+2)

∑N
a=1 wa

≤
∫

d|P|
|P| |P|− 1

3 (N+2) < ∞. (D5)

Here, from the first to the second lines, we have used Eq. (D3) and the range (D4), and also the first
line of Eq. (D1) for the radial direction; from the second to the third lines, we have used the fact
that each wa appears 1

2(N + 1)(N + 2) times in the product; and from the third to the last lines, we
have used

∑N
a=1 wa ≥ 1

3 , which can be proved from Eq. (D1). The estimate (D5) shows that �phys

is normalizable in the large-P region of P{w}.
Note that the estimation above does not prove the normalizability of the wave function in the large-

P region. The obstacle is that we do not know exactly to what extent all the P{w} cover the whole
large-P region, since we know that our scaling argument does not cover all the possible asymptotic
behavior, as shown in Sect. 7. What we have shown in this appendix is merely that the normalizability
of the wave function in the large-P region is assured at least in the vicinities of P with the asymptotic
behavior consistent with the scaling argument. On the other hand, the result of this appendix seem
to narrow down the possibilities of the breakdown of the normalizability in the large-P region to
the following two kinds of locations: the boundaries between different asymptotic regions, and the
vicinities of the exceptional cases to our scaling argument. Though the discussions in this appendix
are qualitative and partial, they will at least give good guidance in more thorough future study.
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