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Abstract 
We review the historical development of a mathematical description of 

twisting, Petrov-type N x N, complex, solutions of Einstein's vacuum field equa
tions, emphasizing Jerzy Plebariski's intimate involvement for many years. The 3 
pde'e needed are linear and second-order in a potential function, F, while they are 
non-linear and fourth-order in a projection function, x, that defines the projection 
onto 3 independent variables. We describe the use of Cartan's reduced characters 
and also Janet's theory of integrability for pde's, and then use each of these to 
determine involutive prolongations of the original system. The simplest approach 
to the involutive system has 6 pde's involved; however, one may also prolong the 
system so as to acquire explicitly all derivatives of F, in terms of 7th derivatives of 
x. In that approach, the final, involutive, system describes 5 distinct such deriva
tives of x, allowing the F-dependent system to appear as a 'linearization' of that 
system. 

I. Introduction: 

It was some 18 years ago when Jerzy Plebari.ski and I began to work together on 
problems in general relativity, with a reasonably constant working relationship since 
that time. Although we did in fact meet 5 years earlier, on a boat in the Bosphorus, 
neither of us took much notice at that time; nonetheless, Jerzy seemed very pleased to 
have me join him here at the Centro de Investigaci6nes y Estudios Avanzados, early 
in 1975. A few weeks after I arrived, Jerzy was invited to a conference, "The Riddle 
of Gravity," at Syracuse University, where he talked with both Ted Newman and 
Roger Penrose concerning their work on "heavens" .1 He came back to Mexico in an 
extremely excited state, claiming that he had heard very interesting things, but that 
he wanted to approach it in his way rather than what they were doing. During the 
next several days, he and I worked together all the days, and he worked alone all the 
nights as well. The result was his first paper2 on ~-spaces, originally titled "Heaven, 
Hell and Einstein Equations." This was the beginning of an extremely interesting, 
and fruitful, collaboration between the two of us, including many other people as time 
passed, on the behavior of complex-valued solutions to Einstein's field equations. 

After he and Ivor Robinson generalized the original notions, to ~~-spaces,3 so 
that it was possible for the spaces being considered to allow real-valued, Minkowski
signature cross-sections, the size of the arena increased substantially, causing the 
review4 in 1980, with Charles Boyer as well in a very important role, to be quit.e 
lengthy. About 2 years later, work with Gerardo Torres del Castillo5 gave us a clear 
way to explicitly specify the (complex) Petrov Type of an ~~-space that was being 
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searched for. Jerzy and I wanted to achieve a wider dissemination of the power of 
the techniques for ~~-spaces, deciding that a very reasonable way to do that would be 
to show clearly how they could be used to solve some very important, long-standing 
problem in the field. It took not too long to decide that the problem we wanted to 
use for this purpose would be the twisting, type-N, Einstein spaces. He and I had 
already solved completely the type-N problem for ~-spaces6 , so this seemed like a 
natural extension. As well, there was only one known solution so far, due to Hauser7 • 

Work began in 1981 and, unfortunately, continues to this day. In 1982, I spent my 
sabbatical semester in Mexico, working with Jerzy on this problem. We acquired 
considerable understanding of the problem, and found that it might in fact be fairly 
difficult. We achieved the solution to some extremely interesting systems of non
linear pde's, based on various seemingly-reasonable ansatze, each of which turned out 
to be a solution to the vacuum field equations, of type N on both the self-dual and 
anti-self-dual sides, but twisting only on one side. 

In 1987 Jerzy spent his sabbatical semester with me in Albuquerque, where he 
worked almost non-stop on this problem, even though my participation was severely 
hindered by the very many academic duties that revolved around the fact that I was 
the chairperson of the department. By this time, we had a clear delineation of the 
problem that should be solved, more or less as reported in our paper8 published last 
year, 1982. Mathematically, the problem was specified by saying that we wanted the 
solution of a triplet of pde's in 3 independent variables, two dependent ones, and also 
including two gauge functions, each of which depended only on two of the 3 variables. 
These last two functions are referred to as gauge functions since the equations, as 
obtained after the input of considerable geometrical intuition from Jerzy, had a very 
remarkable symmetry property that can be quickly summarized by saying that it was 
always possible to choose new independent variables so that these two gauge functions 
simply became two of the new independent variables, without in any way otherwise 
changing the form of the equations. The triplet of equations is linear, and of second 
order, in one of the unknown functions, which I will F, as well as being linear in the 
gauge functions, but quite .nonlinear in the other unknown function. When several 
friends were shown the equations in that format, it was suggested that the equations 
might well be over-determined, and have no solutions, since there were three equations 
for only two unknown functions. Their comments were wrong; however, it was those 
comments that began my first serious inquiries into the questions surrounding the 
involutivity of systems of pde's. 

Attempting to find interesting solutions of this triplet of equations, one of the 
important routes we were following centered around the fact that it was possible to 
differentiate the original equations, and manipulate them, so that one obtained new 
pde's that were linear and first-order in the variable F. Clearly first-order pde's are 
much nicer than second-order ones; therefore, we attempted to understand how this 
could happen, what it might mean, what was the number of them, etc. The results 
of the investigations on these questions through 1986, and indeed through 1991, are 
contained in Ref. 8. What can also be, more or less, seen in that article is the shape 
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of the 4 independent, first-order pde's that had been obtained by mid-1986. While 
they do indeed have rather "messy" coefficients, Jerzy's work in "understanding" the 
meaning behind the equations allowed us to write them in a rather simple format, 
especially the first two of them. It is perhaps worth noting immediately that the 
existence of four such equations, in terms of {F1, F2, F3 , F}, allows us to consider the 
equations as homogeneous, algebraic equations, from whence we could conclude that 
the determinant of the coefficients must vanish. This, of course, was an equation 
which now had only one unknown function contained within it. Whether it was 
only the first of many such requirements on that single function, we had no way of 
knowing. What is not contained in that article is the fact that Jerzy worked for 
several solid months, while in Albuquerque, to obtain the last 2 of these 4 equations, 
and to obtain them in what seemed to us to be the best possible form. As well, of 
course, he worked very hard at finding new methods to obtain solutions. In May 
he suffered an extremely serious stroke, causing him to need to spend many months 
recovering and losing several years to that project. Therefore, I am very glad to now 
be able to announce that several of the questions underlying the structure of these 
equations have now been laid to rest, even though we still have no new, non-trivial 
solutions of them. 

The complete set of integrability conditions for the vacuum, twisting, type-N 
problem can be formulated in as few as 6 equations, or it may require considerably 
more, since the size of the set of all integrability conditions, for a given system of 
pde's in more than one dependent variable, depends on how the equations are used 
to describe the submanifold in the corresponding jet space. 

II. Description of the Problem 

Recall that a (complex-valued) ~~-space contains (at least) one congruence 
of null strings (completely null, totally geodesic, complex-valued, two-dimensional 
surfaces )4, which, in . the generic case, has a non-zero expansion that picks out a 
special direction on any given leaf of the congruence. This expansion form determines 
an affine parameter, <jJ- 1 , which can be used as one of the 4 coordinates needed to 
specify the space. Since the non-zero value of this expansion is what causes the real
valued twist of any real section to be non-zero, its use as a coordinate "inhibits" the 
coordinate system from the beginning to have non-zero twist. As well, we recall4 

that an ~~-space can be completely specified by a "Debye-type" potential function, 
W, that must satisfy a single non-linear pde, the hyperheavenly equation;i.e., Wis a 
single scalar function whose second derivatives determine the metric, and the fourth 
derivatives the curvature. Such a space has a number of (local) geometrical invariants, 
two very important ones being the Petrov types of the self-dual and anti-self-dual 
parts of the curvature tensor. Since we are of course interested in this study as a 
method to eventually determine real-valued solutions of the vacuum field equations, 
it is important to cause these two invariants to agree. One side of the curvature 
is determined by the fourth derivatives of W, while the other side is determined 
by a derivative of a function, 1, constant on any given leaf of the congruence, that 
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appears in the equation for W. To search for real-valued solutions of type N, we must 
append to the hyperheavenly equation the additional requirement that both parts of 
the curvature be of Petrov type N. This determines5 explicitly the dependence of W 

on the affine parameter, <1>- 1, as a third-order polynomial in inverse powers of ¢-L, 

i.e., in powers of</>, so that the problem is reduced to finding the coefficients of this 
polynomial, which now depend only on the 3 remaining coordinates, and the derivative 
of I· The content of the original equation for W is now most efficiently stated in 
terms of a set of 2-forms,8

•9 adapted to the fact that this particular 4~-space actually 
contains two null strings. The simpler half of this set of 2-forms is a realizatio.n of 
the Maurer-Cartan equations for SL(2 , C), which allows us to define some 4 quantities 
that "perform" like coordinates, {x, v, y, u}, and a single, unknown relation between 
them, that projects the problem down to the residual, underlying 3-dimensional space 
of independent variables, which we variously refer to as x = x(v, y, u) or v = v(x, y, u). 

The other half of the set of 2-forms specifies the existence of a particular potential 
function, F, and a gauge function, A, and the explicit equations that they must satisfy 
as functions of the above set(s) of coordinates. The resulting equations are actually 
"reasonable" and linear in F , as well as A and r; however they are highly non-linear 
in this function that describes the projection into the space of 3 variables. 

As worked out in detail in Ref. 7, the defining equations for the problem just 
described are most simply written in the format: 

F33-rF=O 

x1F22 + 2x12F2 + (x122 - x1A)F = 0 

x23(F23 + F32) + X223F3 + x233F2 + tx2233F = 0 

A3 = 0 i= A1 I /2 = 0 i= /1 

(2. L) 

where we have caused the equations to appear linear in x by making an anholonomic 
choice for coordinates on the space of first derivatives. More precisely, taking M as 
the space of independent variables, with (local) coordinate chart {v , y,u}, and N as 
the space of dependent variables, {F,x,A,r}, we choose coordinates for the fibers of 
the first jet bundle, J 1(M, N), 

(2.2) 

where 
F1= -(8F) 

- 8v (y,u) 
F2= -(8F) 

- oy (11,u) 
(8F) F3= -

- OU <~.y) 
(2 .3) 

and the subscripts on the parentheses indicate which variables are being held constant 
during the indicated differentiation. Therefore, subscripts 1 and 2 indicate partial 
derivatives with respect to one choice of coordinates, {v, y, u}, while subscript 3 indi
cates a partial derivative with respect to a different choice of coordinates, {x, y, u}, so 
that the subscripts do not commute. Instead, we have the commutator equations 

(2.4) 
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for any function G. 

We refer to the function 6., and also 1, as gauge functions because of the re
markable symmetry the equations possess. 8 There are four sets of infinite-dimensional 
symmetries that generate pure gauge transformations. 

I. If one chooses a new coordinate chart, {x, u, y}, with x :: X(x, y), and lets A, 
1, and H = x 1F transform as scalars, then the three equations, Eq. (2.1), are 
left completely form-invariant. Since, however, 6. is a function only of x and 
y, i.e., 6.3 = O, it follows that we may always choose 6. to be any function of 
its two arguments whatsoever, changing x accordingly as we go, but leaving 
invariant the form of the equations-surely the property of a gauge function. 
In particular, we often consider the situation where we simply choose 6. to have 
the value x, nothing more needing to be done to the equations, and losing no 
generality. 

II. Similarly, the second symmetry allows one to choose a new coordinate chart, 
{ii,u,y}, with ii= V(v,u), and transform F, 6., and 1 as scalars, then the three 
equations are again left completely form-invariant. Since 12 = O, this allows 
us to choose 1 to have any (non-constant) value we might like, such as, for 
example, v. We have not chosen to permanently make any choices, since 
partic11lar functional forms for them may simplify the finding of forms for F 

and J;. Somewhat less important symmetries are 
III. that any non-constant function of y may be used to replace y, with appropriate 

transformations of F and 6., and 
IV. that any non-constant function of u may be used to replace u, with again 

appropriate transformations8 of F and 'Y· 

Having given this introduction to the obtention of Eq. (2.1), we now want 
to note that the equations there are not involutive, rather, they possess non-trivial 
integrability conditions, as already suggested in the introduction. The "need" to 
be able to describe all of the integrability conditions has followed several different 
pathways. I want to describe two of those pathways here, and to use two different 
methods to describe them as well. To do this, we will need some superstructure 
concerning jet bundles and forms defined thereon. Therefore I note that we view the 
jet bundle, J"(M, N), for some integer k, as simply a "place" where the individual 
derivatives, through order k, have an independent life of their own. This necessitates 
our being concerned with whether particular functions on J" could be construed as 
lifts of functions over M. As is standard, 10•11 we use the contact module, n", for this 
purpose, any such function having the property that (j"ut(fl") = O, where i"u is a local 
cross section of of the bundle, fibered over M, and u : U ~ M -+ N. In the current, 
anholonomic coordinates, the contact module over J 1 takes the form 

(2.5) 
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Continuing this process upward, and making the choice that the indices on the coordi
nates should be in standard numerical order, introduces the following new coordinates 
on 1 2/11

: 

with the additional generators of the contact module given by 

n2;n1 : 

8,, 1 = dz1 - xudv - x12dy- (x13 - z11va)du 
8,,, = dx2 - x12dv - x22dy - (.:e23 - x12ua)du , 
Bv 3 = dv3 + (x1a/zi)dv + (.:e23/x1)dy- (v33 + (z1a/x1)vi]du 

BF1 :: dF1 - F11dv - F12dy - (F13 - F11v3)du 
BF, = dF2 - F22dv - F22dy - (F23 - F12v3)du , 
()F3 :: dF3 - (F13 - (z1a/z1)Fi)dv - (F2a - (x23/.:e1)Fi]dy 

- (Fas - F1av3 + (x1ava/.:ei)Fi)du 

(2.7) 

plus ones for A and r. We continue this process to include derivatives through fourth 
for the function x, but only second derivatives in the other unknown functions, refer
ring to this particular bundle as 12 •4 • 

We may then denote by Y2•4 the submanifold of J 2•4 defined by the original 
system of pde's. Since the pde's are simply algebraic equations on the jet bundle, we 
now choose to solve that set of equations for a maximal set of variables, intending 
to use that as a way of "eliminating" them from future consideration. Referring to 
the variables so eliminated as co-coordinates for the submanifold, Y 2•4 , we can give 
a coordinate presentation of the inclusion map, i : Y - J 2·4, which is the identity 
on the remaining coordinates, and has our 3 equations solved for the remaining 3 
co-coordinates, to describe the rest of the map. There are very many ways to make 
such a choice, but it turns out that such a choice has implications for succeeding 
choices, when one is prolonging the differential system. Therefore, we have looked at 
two distinct ones, each of which has considerable merit as a description of the entire 
problem. 

An obvious choice is simply to eliminate as many as possible of the derivatives 
of the dependent variable F, since they appear linearly in the equations. This is in 
fact what Jerzy and I attempted to do, over a period of quite some time, all by hand, 
acquiring first-order pde's for F, of course at the expense of increasing the order of 
derivatives of x; however, the method we used did increase that order in a minimal way. 
At the beginning, then one would choose to eliminate the 3 variables, {Faa, F22, F2a}. 
On the other hand, as it now turns out, there may well be a better approach, which 
uses Eqs. (2.1) to eliminate the 3 variables {Faa,F22 ,x22aa}, which can, almost, be 
justified by saying that one is eliminating the highest-order derivatives available, in 
each equation. Either choice describes the same (co-dimension 3) submanifold, 

y = y2,4 c J2,4 ~ llt54 

where the variables include the 3 independent variables, jet variables through the 
second derivatives of F, through the fourth derivatives of x, plus the non-zero first 
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derivatives of ~ and 'Y· Our differential ideal is then the entire contact module, 
generated by the contact 1-forms for F and its first derivatives, derivatives from zero 
to three for x, and also for ~ and "/, all restricted back to Y: 

I= n<2
•
4lly c Y* with dim(I) = 26 

The "directions" for Cartan's test for involutivity, applied to linear Pfaffian 
systems by Ref. 10, require that we determine the reduced characters of the system, 
I, named (sJ., s~, s~, .. . ) and the dimension of the space of integral elements, Vn(I), 
where n is the number of independent variables, i.e., the dimension of M•. Letting 
{ wi H be a basis for M", denoting the generators of I by 8°, and completing a basis 
for the rest of y• with a set of 1-forms, {7rf}, we may begins these tasks by writing 

-d8° =A ·0 7rf /\ wi + le~ wi /\ wi (mod I) (2.8) 
- fl 2 SJ 

The quantities {3°; = Afi 0 1Tf are referred to as the "tableau" matrix. The set of terms 
quadratic in wi are referred to as the torsion of the system. In principle, there could 
also be terms quadratic in the ?rf's. In the case when there are no such elements, the 
Pfaffian system that we have is designated linear; since our system is in fact linear, 
from now on we only describe the use of the theory for such systems. When the 
basis elements for M* are ordered so that the number of algebraically-independent in 
column 1 is maximal, then the number of column 2 maximal-while maintaining those 
in column 1-and then the number in column i arranged maximal, while maintaining 
fixed in location all those in previous columns, these various maximal numbers are 
referred to as the reduced Cartan characters for the system, labeled by the symbols 
si. However, in order for this to be a useful labeling, we must also know that there 
exists an affine transformation of the basis elements 1Tf -+ Zf 6 ?T6 + Wl; wi, i.e., a re
naming of the "extra" part of the basis of M•, mixing in some of the basis of the rest 
as needed, so that the torsion transforms to zero. On the other hand, we must also 
determine the dimension of the space of (n-dimensional) integral elements, Vn(I), i.e., 
the number of parameters needed to describe the space of n-planes tangent to the 
solution manifold. Such elements could be written in the form 7rf - Pt w;, where the 
pf are are coordinates in some exactly the paramter space needed to describe these 
n-planes. The general theory in Ref. 10 assures us that if such a parametrization 
exists, then it determines the transformation needed to transform away the torsion. 
Therefore, we next look at this problem, by creating another matrix, the rows of 
which are the exterior derivatives of all the algebraically-independent quantities, {3''i, 

just determined above, Li=l si of them. Writing these derivatives modulo I, we write 
the result as a matrix wedge-multiplying the basis of M*. The origin of the various 
pf a.scribes various symmetry properties to these coefficients; provided there is a 
complete solution to this question, the algebraically-independent entities within this 
matrix are just the desired parameters that characterize the elements of Vn(I), and 
their number is the dimension needed. The following inequality is then always true; 
however, in order for the system to be involutive, Cartan's criterion tells us that it 
must actually be an equality: 

(2.9) 

In our case, the typical structure of the Cartan Tableau is of the form 
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Cartan Tableau for I 

d():i; 0 0 
d()F 0 0 
d(}:c, 0 0 

0 0 

d()F, = d F11 d Fi2 

d()Fl dF12 dF22 

d()F3 

d()"'"' dx1111 d :r:1112 

0 
0 
0 
0 

dF33 

d X1113 

AGn 

the tilde means that the value from the 
pde's should be inserted. The first 11 
rows of the tableau matrix are identi
cally zero, because of the later terms in 
the ideal. Inserting all the entries, we 
find that every non-zero entry in the first 
column is algebraically-independent, so 
s~ = 15 is surely maximal. However, our 
first choice for a basis of M• does not 
maximize s~, since that would give us 
s~ = 6, s~ = 1, while the ordering {dv. dy + 
du, dy - du} gives the maximal (correct) 

where the symbol --- indicates that the values s~ = 7, s~ = 0. With that ordering, 
value from n2 should be inserted, while we have (si, s~, s~) = (15, 7, 0). 

On the other hand, creating the matrix describing those 15+ 7 = 22 linearly
independent exterior derivatives just above, again modulo all the earlier 1-forms, 
we next find the number of algebraically-independent quantities that occur in that 
matrix. This is essentially a count of the independent "next-highest" derivatives of 
each dependent variable. 

Integral Element Matrix for I 

dF11 F11 t (F112) ( .. . ) 
dF12 F112 F122 ( .. . ) 
dF13 F113 +@ (F123 + @) 

Aon dF23 F123 +@ F323 +@ F233 +@ 
dx1111 Xttlll (x11112) (x11113 +@) 
d:r:1112 X11112 (x11122) (xu123 + @) 

where the entries in parentheses are not algebraically-independent from those in some 
prior column, and @ indicates lower-order terms, that arise from some commutator 
equation. This number is then 22 + 6 + O = 28, so that the formula in Eq. (2.8) gives 
15 + 2(7) = 29 > 28, from which we conclude that the system is not involutive. 

This fact is hardly surprising, since Jerzy and I had already found that we 
could obtain clearly new, first-order pde's for F by differentiating and manipulating 
the original pde's. Cartan and Kuranishi of course say that we should proceed in 
exactly that way, namely, to obtain an involutive system, we must prolong the original 
ideal to one higher jet and perform the test again, and perhaps yet again or maybe 
even again, but, at least, some finite number of times. The fact that this will he 
only a finite number of times is not necessarily "good news," since our calculation of 
the second pair of first-order pde's had required many months of effort. However, as 
it turns out, when the prolongation to J 3 •5 is calculated, that differential system is 
actually involutive. The prolonged submanifold, y(t), is of co-dimension 12, namely 

y(1):: y3,5 C J3,5 c R79 
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while the prolonged ideal acquires 4 more 1-forms for the independent second deriva
tives of F, 14 more for the independent fourth derivatives of x, and 4 more for the 
first derivatives of 6 and -y: 

The prolonged tableau is a 48x3 matrix, the first 26 rows of which are all zeros, and 
we find that (s~, s2, s~) = (22, 6, 0). Looking for the space of integral elements for 1<1l, the 
22 + 6 = 28 independent elements determine 28 + 6 + O = 34 as the dimen~ion of the space 
of integral elements, so that the equality in the sum is realized, and this first-prolonged 
system is involutive! As an aside, an involutive system can always be created as a 
differential system so that the (non-restricted) Cartan characters, {so, s1, ... } are equal 
to the restricted ones. The character s0 is simply the total number of 1-forms, which 
in our (prolonged) case is 48; as well the total number of (algebraically- independent) 
variables in our prolonged space is 79, so that the Cartan genus of our system is 
g::n-L:~=0 (si) = 79-(48+22+6+0)=3. 

III. An Understanding of the Answer 

The complete prolongation of our 3 (original) pde's onto the jet, J3 •5 pro
vides us with 9 new equations, the 3 derivatives of each one, so one expects the 
prolongation, i(l) : y(i) -+ J3 ·~ to have co-dimension $ 12. It is useful to describe 
how this works following the two distinct lines of coordinatization for Y already men
tioned. I will refer to the choice that uses {F33 , F22 , x2233} as co-coordinates as Option 2, 
and the alternative option, to eliminate {F33 , F22 , F23 } as co-coordinates, as Option l, 
where the numbers are historically motivated. The two sets correspond to different 
choices of coordinates on the same submanifold, Y. However, the prolonged equa
tions, created by differentiating the original equations and then restricting them to 
yC 1J, i.e., by re-expressing them without co-coordinates, appear different in these two 
options. In both options, five of the new co-coordinates are (essentially) the same, 
{F1aa,F23a,Faaa,F122,F222}. However, for Option 2, the other 4 co-coordinates (on J 1) 

are {F223, x12233, z22233, z223a3}, while for Option 1, the choices are, {F22a, F123, Fi2, Fi3 ~. 
The last two choices in Option 1 appear since there are insufficiently many third 
derivatives among the 9 new equations to solve them all for third derivatives of F. It 
is this occurrence that will cause us to be able to determine all second derivatives, 
and to determine first-order pde's that F must satisfy. 

Both sets of 12 equations do determine 12 co-coordinates for the same sub
manifold, yC 1lc J 3 •5 , but they present different pictures concerning the involutivity 
of the equations. Understanding how this happens is, I believe, useful. We first ask 
whether there are any integrability conditions remaining. To answer this question 
completely, we must count the dimension of the space of integral elements, which 
"amounts to" a second prolongation of the system, to J 4•6 • The resulting 3+9+17 
equations completely specify the submanifold, y<2l c J 4 •6 • The submanifold so deter
mined is identical in both coordinate presentations, as one would hope. Therefore, as 
a (coordinate-free) differential system, the two options are the same. However, from 
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the point of view of pde's and the explicit determination of co-coordinates, they give 
different answers concerning involutivity. Better language might be that the choice 
of coordinate presentation in Option 1 "hides" the involutivity of the differential 
system? For Option 2, the important question is whether the different methods of 
obtaining a value for F2233, via 82Fz33 or via 8 3 F 223 , give the same answer. As it turns 
out, they do indeed give the same answer, modulo the set of 12 equations already 
agreed to, which explains why the co-dimension mentioned above is 17, rather than 
18, the number of independent second derivatives of 3 quantities. In point of fact, 
to answer this single question we do not need all the 3+9 equations; it is actually 
sufficient to simply know the original 3 equations, plus the 3 additional equations 
lh(F33 equation), 03(F22 equation), and 81(x2233 equation), so I believe that this set 
of 6 equations is a minimal set of equations that defines the involutive system. The 
other 3 equations will be presented below, in Eqs. (3.1-3). 

Before proceeding to discuss the virtues of Option 1, I want to now return to 
a very important point, connected with the various Cartan characters. The original 
purpose of finding an involutive prolongation, as I read the history books, was so 
that one could know exactly what sort of initial data could be consistently given, to 
determine a unique solution of the given system of pde's. Cartan's characters have 
already told us a portion of that answer; however, I found an alternative approach 
to be considerably more informative. Since I have also used that approach to in
terpret the meaning of the 9 equations, and of the several more that follow below, 
I want now to comment on it, and to answer very explicitly just what is the free 
initial data available. There is an alternative method to that of Cartan, originally 
created by Riquier12, Vessiot13, and Janet 14, at about the same time as Cartan's work 
was done. Pommaret15 and others have written fairly recent books on it, which have 
a co-homological approach. However, people involved with computers, attempting 
to teach them to solve overconstrained systems of pde's, appear to have found it 
quite useful; therefore, the readable references come from fairly unexpected quarters. 
Schwartz16 in Germany and co-workers of Vinogradov in Russia17 have been automat
ing this approach. Work of Stormark, 18 in Stockholm, has been the most useful to 
me. He describes Janet's theory of integration, via Hilbert bases for monomials for 
the c<;>ordinates for submanifold of the jet bundle that describes the pde. Beginning 
with a given set of pde's, and a particular choice of ordering for the coordinates on 
1 00

, he allows one to decide which equations, for a given prolongation, must actually 
be calculated to see if they will generate new information such as integrability condi
tions, and which ones are simply there because they are involved in the prolongation. 
The members of this last set are those in which there is no ambiguity concerning how 
to determine that particular prolonged equation, such as, for example, the quantity 
F333 in our problem which may only be determined by taking 83 on the equation 
for F33. An example that he works out in detail begins with the 2-equation system, 
p33 = x2pu, P22 = 0. This simple example requires 5 successive prolongation steps, 
adding along the way the other pde's, p322 = 0, p3211 = 0, Ps1111 = 0, P211 = 0, P1111 = O, 
before it achieves involutivity, whereupon one is then able to show that the general 
solution to the original problem depends (only) on 12 constants. 
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Stormark's method (or Janet's) is of course very explicitly dependent on one's 
choice of coordinates, but coordinate-covariant in that it works easily in any set of 
coordinates desired. His method also makes it very easy to prolong from y<i) c J3

•5 

to simply some subspace of J 3 ·6 , instead of having to go all the way to J 4
•
6

• Beginning 
with a given set of pde's one first solves each one for the highest derivative of some 
unknown function that appears within. Beginning with those given co-coordinates, 
one must specify a unique method to calculate all higher derivatives of each unknown 
function appearing. This need for uniqueness requires an ordering of the independent 
variables, which we make, somewhat arbitrarily, as 3 > 2 > 1, which specifies an 
order~ng in the algorithm that computes the unique value of all higher derivatives. 
Following Stormark, we use a series of tables to describe the choices made and the 
co-coordinates chosen, as pictured below. The entries across the top indicate the 
independent variables; the entries down the first column indicate the co-coordinates 
chosen to be eliminated, and the entries in the other columns indicate "legal" mono
mials that may be pre-pended, denoted with "·", to the co-coordinates to create 
monomials for higher derivatives 

Applied to our first prolongation, via Option 2, we use our equations to tell us 
the values, on J2•4 , of F33 , F22 , and x2233 , viewed as co-coordinates defining Y. Since 
3 is the largest index, the equation with the largest number of 3's is dealt with first. 
Any derivative of F of the form F3317 is to be obtained by calculating it from the u-th 
derivative of the F33 equation, where u stands for any number of derivatives. On the 
other hand, beginning with the F22 equation, we may determine all derivatives of the 
form F22i, but with i made from 1 's and/or 2's. Therefore F332 is to be determined 
as F2 • Fa3 , from F 33 , rather than from F22 • There is then no way to compute F223i the 
system is incomplete, as Stormark defines it. We will use a • to indicate a difficulty in 
any location where there is a dis-allowed (or illegal) monomial multiplication. Such 
entries will denote either an incomplete system, caused by the lack of a legal way to 
calculate that quantity, or a possible integrability condition caused by the existence of 
more than one way to calculate a quantity. In the former case, the needed equation 
will be calculated, violating the ordering rules but then appended to the system of 
co-coordinates; in the latter case, the two methods will be compared and the resulting 
equation, if non-trivial, will be solved for an additional co-coordinate and appended 
to the system. 

Stormark Table 
for Option 2 

3 2 1 

F3
2 

F3 F2 Fi 

F22 • F2 Fi 

X3
2

X2
2 

X3 X2 Z1 

Original pde's 

The • in the table indicates a place where a question 
must be answered. In this case, the system is incom
plete since there is no legal way to calculate F3F2

2
• 

We compute it from the 83(F2requation), and add it to 
the system, and re-order the entries in the new table 
presented below. 

With these, now, 4 equations on p ,5 the • in
dicates a possible integrability question, while the ../ 
indicates a previous • that has already been resolved. 
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3 2 1 

F32 F3 F2 F1 

F3F2
2 • F2 Fi 

F22 v F2 F1 

X3
2

X2
2 

X3 x2 x1 

First S-prolongation 

The question arises: Is F 3·F3 F 2
2 = F 2

2·F32 ? 
Since the answer is NO, the equation must be 
solved for some highest derivative and added to 
the system. After eliminating F 233 , using the 
legal definition, F2·F32 , it still contains F 123 and 
x12233j we elect to solve for x12233. 

We then present the latest results in yet a new Stormark table: 

3 2 1 

F32 Fa F2 F1 

F3F2
2 v F2 F1 

F2
2 v F2 F1 

X1X3
2

x2
2 

X3 :z:2 :z: 1 

:Z:32:Z:22 :Z:3 :z:2 • 
Second S-prolongation 

The question arises: Is x1•x32x 2
2 = x 1:z:3

2x 2
2 ? 

When computed, the answer to the question is 
YES! The system is now involutive, with these 
equations. The 5 listed above, and the F 233 that 
was needed "along the way." Since this answer 
is simply 0 = O, we may look at this last ''S
prolongation" as simply the calculation of inte
gral elements that had to be done, in Cartan 's 
approach to this problem. 

These extra three equations, for F22a, F2aa, and x122aa are given below. It It is inter
esting that in none of the 6 equations do A or 1 appear differentiated, since the only 
derivatives of them that occur are those that must vanish. 

z:> Fx122x 13 2F2xi2Xi3 
r223 = 2 + 2 

X1 X1 

F :z:122a Fa x122 

Xi X1 

2 F2 :z:12a 

Xi 

2F2ax12 +A Fa 
xi 

2 F1 F2 :z:233 2 F12 :z:233 2 F1 :z:u x2a
2 

2 Fu x2a2 2 F1 2 x2a
2 

Xl2233 = + ---
F2 F Fx~ Fx1 F 2 x1 

4 Fi x12 x13 x23 4 F12 x13 x23 4 Fi x12a x23 4 F1 F23 x23 2 F1 x1a X22a - + + + +----F x~ F x1 F x1 F 2 F x1 

2F1Fax223 2F1ax22:1 2F2x12X133 4F2:t12X13
2 

4F2xi2s:z:13 + - + - +----
F2 F Fx1 Fx~ Fxt 

(3. L) 

(3.2) 

4F2ax12x13 2F2x12as 4F23x12s 2F3x1223 4F123x23 2Fa:i:12211:13 + - - - - +----
F xi F F F F' F :lJ1 

(3.:3) 

The other thing we receive from Stormark's approach is an explicit method for 
determining the "complementary variables," by which he means those functions on 
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the jet bundle which are "free" and available for arbitrary choice to be used as initial 
conditions for the pde's being considered. One might hope to use this information to 
create information to sum a Taylor series-at least in some special cases-although 
I have yet to see how. Following his straight-forward, if complicated, procedure, the 
entire list of these "complementary variables," which of course agrees with the count 
a la Cartan, is given by 

4 functions of 2 variables : 

4 fuuctions of 1 variable: 

x(v,y,0) 

v3(v,y,O) 

V33(v, 0, u) 

x233(v,O,u) 

F(v,0,0) 

F2(v,0,0) 

F3(v,0,0) 

F23(v, 0, 0) 

{

Ll(z,y) 
2 "gauge" functions : 

'Y(v,u) 

(3A) 

There are considerably more free functions than might have been expected. Some of 
them are of course gauge freedoms, irrelevant to the final, distinct manifolds; some 
of the extra freedom, on the other hand, may well have to do with the fact that we 
are still allowed complex transformations, i.e., we must eventually choose real slices, 
which may cut down the final amount of freedom available. We can also note that 
the way that the choice of initial variables oscillates between { v, y} and { v, u} surely is 
simply the mirror, in this approach, of the difficulty that arose with the choice of the 
variables in the Cartan calculation, that one must actually use {v,y+u,y-u}, instead 
of the original {v, y, u}. 

IV. How Many First-Order Pde's are There? 

I now want to recall that in Jerzy's original approach, which followed Op
tion 1, he was finding first-order pde's for F, by the use of differential concomitants. 
Stormark's and Janet's approach is of course deliberately intended to make the most 
efficient use of such calculations. Therefore, we now retreat to Option 1 and the first 
prolongation, where one has 3+9 equations to consider. Before we may ask questions 
concerning the higher derivatives, we should stay on J3•6 and ask questions about 
the other second derivatives. This is most easily seen with respect to the following 
Stormark table: 
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Stormark Table 

for Option 1 

3 2 1 

F32 F3 F2 F1 
F2F3 • F2 F1 
F22 • F2 F1 

Original pde's 

This system is complete, but two questions arise: 
(1) Is F3·F32 = F2·F32 ? 
(2) Is F3·F2 2 = F2·F2F3 ? 

Both answers are no. Both new equa
tions must be appended to the system; we re
solve them for their highest F-derivatives, find
ing F13 from (1) and Fi2 from (2). 

We then present the results of these calculations, having expanded the system to 5 
pde's, in the next table: 

3 2 1 

F32 F3 F2 F1 

F2F3 v' F2 Fi 

FiF3 • • Fi 

F22 
v' F2 Fi 

FiF2 • • Fi 

First S-prolongation 

Four questions arise from this table: 
(3) Is F3·FiF3 = F1 ·F32 ? 
(4) Is F2·F1F3 = F1·F2F3? 
(5) Is F3·F1F2 = F1·F2F3? 
(6) Is F2·F1F2 = F1·F22 ? 

The answers are no for (3), (4), and (6), 
but yes for (5), which is identical to ( 4). We solve 
( 4) for F11 , and treat (3) and (6) as equations to 
be solved for F2 and F3, noting that their highest 
z-derivatives are z223333 and :1: 222233, respectively. 

The above calculations are already rather lengthy; the equality of (5) and ( 1) 
was shown by calculations performed by the symbolic algebra system, Macsyma. Also 
note that this equality of those two equations maintains the number of new equations 
at 17, instead of 18, for both options. At this point we have explicit determinations 
of all the second derivatives of F, and two first-order pde's for F . These last two 
constitute the first pair of first-order pde's that Jerzy and I found, in the early 1980's. 
At this point, however, there still remain some questions concerning integrability. In 
1986-7, the question was whether one can actually perform the prolongation to J<3·7 >, 
to ask whatever integrability conditions are being put forth by the system, viewed in 
this Way. Based on a good understanding of the problem, Jerzy developed a notation 
that allowed the manual derivation of an additional two first-order pde's, also allowing 
all 4 to be written8 on half a page. 

The symbolic computer performs the job of calculation much faster, if the 
questions are asked correctly; however, the answers provide exactly no insight into 
the problem. In addition, if the questions are not asked in a very well-formed way, the 
computer enters into calculations so large that it is unable to do anything useful with 
them at all. The computer simply determines these 4 first-order pde's as polynomials 
in all the variables, with 20, 54, 59, and 121 terms. An approach is to consider 
selecting 3 of the equations for the first derivatives, and inserted that information 
into the fourth one. Conceptually simpler is to ask that the determinant of the four 
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pde's be zero, since they constitute a homogeneous, algebraic system of equations for 
the 4 unknown functions, F1, F2 , F3, and F. The result is an equation involving only 
x and its derivatives, plus, of course, the gauge functions, Ll and 'Y· Although this 
equation was written out, it is of very high degree, and generally not useful. A more 
serious problem was that we were now very unsure how many more such first-order 
pde's there might be, nor could we see any clean way to determine the rest of them 
in any reasonable time span. 

Further progress wandered until we were able to utilize techniques to answer 
the questions underlying the involutivity of the problem. Using the current tech
niques, the next prolongation table could be explicitly calculated: 

3 2 1 

F32 F3 F2 F1 
Now eight questions arise: 

F2F3 v F2 F1 
FiF3 v v F1 
F2 2 ..; F2 F1 

F1F2 ..; v F1 

(7) Is F3·F1 2 - Fi·F1F3 ? 
(8) Is F2·F12 - Fi·F1F2? 
(9) Is FJ°F3 = F 2? 3 . 

(10) Is F3·F2 = F2F3? 
(11) Is F2·F3 = F2F3? 

F1 2 • • Fi (12) Is F2·F2 = F22 ? 
F3 • • • (13) Is F1·F3 = F1F3? 

F2 • • • (14) Is F1·F2 = F1F2? 

Second S-prolongation 

The answers are that (7) and (8) are simply linear combinations of (9)-(14 ), 
but those 6 are new equations in Fi, F, and x-derivatives. Of these 6 equations, 
(7) and (8) are simply the second pair of first-order pde's known for several years. 
However, the other 4 equations are new, and could be said to increase the number of 
first-order pde's to eight! However, at this point, we still do not know if there m;i.y 
not be yet more; the number might in fact seem to be mounting rapidly. Noting that 
each of these 6 pde's is linear in a distinct 7th derivative of x, the approach, then, is 
to (1) eliminate F2 and F3 via the two resolutions above, then (2) solve an arbitrary 
one, say (14), for F1 , and then (3) eliminate F1 from the remaining 5 equations. 
Since the equations have always been homogeneous in the F-derivatives, this means 
that those 5 may be divided by F, giving us 5 remaining equations for x only. The 
problem thus presented, however, sounds rather difficult, since we are asking that one 
unknown function, x = x(v, y, u) should satisfy 5 different equations for 5 of its seventh 
derivatives. Creating a new Stormark table for these equations-presented below
we find exactly 5 non-trivial integrability questions to be asked, on y(4) c J 3·8 c J 6·8 • 

The calculations involved to ascertain whether these are yet 5 new conditions that 
must be appended to the system might never have been accomplished had it not been 
for the power of the symbolic algebra system and computer involved. 
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3 2 1 

X23X34 X3 X2 X1 

X1X2 2 X3
4 X3 • X1 

X2
4

X33 • X2 X1 

X2
5

X3
2 • X2 X1 

X1X2
4

X3
2 • • X1 

Third S-prolongation 

Five questions arise: 
( 15) Is xrx1x2 2 X3 4 = x1 ·x23 x3 4 ? 
(16) Is x3·x2 4x33 = x2·x23 x34 ? 
(17) Is .:c3·x2

5
x32 = x2·x2 4x3

3 ? · 
(18) Is x3·x1x24 x3 2 = x1·x24 x33 ? 
(19) Is x2·x1x 2

4 x3 2 = x1 ·x25 x 3
2 ? 

The computer assures us that every one of the answers is "Yes"; when proper sub
stitutions are made, all 5 of the above equations are identically satisfied. Finally, the 
system is found to be involutive in this.choice of coordinate presentation as well. From 
the point of view of Option 1, this prolongation is of course also involutive since every 
prolongation of an involutive system is also (still) involutive. 10 In addition, we have 
finally answered the interesting question (that Jerzy and I had discussed at length), 
namely, how many first-order, linear pde's for Fare there in some "complete" set? In 
1987 we had 4, on J 1•7 • The answer is now seen to be that the complete set is 8 such 
first-order, linear pde's, but the 4 others still involve only derivatives of x through the 
seventh. (From the point of view of the computer, the other 4 are also polynomials, 
with 137, 194, 311, and 472 terms.) We certainly welcome that answer to a question 
long sought for. 

Many other people have worried about questions concerning the type N prob
lem, of course, certainly including Ted Newman and Ivor Robinson, speakers here 
at this conference. About 6 years ago Alan Held speculated, at the triennial Je11a 
Relativitatstheorie Conference, that no new solution to this problem would ever he 
found, on the grounds that the number of steps needed to create that solution was in 
fact infinite. Our calculation indeed refutes that surmise. 

In addition to being a long-sought answer, is there any other value to these 
8 first-order pde's? We hope so, but are not yet certain. One approach dearly is to 
use this as a hunting-ground for reasonable ansatze, looking for solutions. Whether 
these equations, basically without F's are more useful for that purpose than those 6 
equations that come from looking at the problem from the viewpoint of Option 2, 
we do not know. A couple of years ago, I was already involved in this "game," and 
presented results at the Marcel Grossmann Conference in Japan. 19 At that time, I 
had hoped that there were some solutions "close" to Hauser's solution. In the current 
notation, Hauser's solution may be described as having 

x = -v +HY+ u)2 

F=F(v,y+u) 
3 3 

.6. =- r = -Bx Bv 
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The particular fact that F is some hypergeometric function also comes out of the 
equations, but is a straight-forward detail that follows if you require solutions to 
our equations that satisfy Eqs. ( 4.1). My calculation from two years ago assumed 
only Eq. (4.la), the functional form of x, leaving explicitly open the possibility that 
Fy ¥= Fu. If that had been true, then the new solution would not have the (true) Killing 
vector that Hauser's solution has, namely 8u in these coordinates. Beginning with 
that form for z, I was able to use the computer to find additional equations beyond 
the original four first-order pde's-without, of course, any particular knowledge as 
to whether or not there were yet more. These additional equations were sufficient to 
prove that Eq. ( 4.la) implied the rest of those constraints; i.e., given that form of x, 
there were no other solutions. Not very helpful, certainly, but at least interesting. 

A different way to view this problem is now the following. Suppose one is given 
the 5 different 7th order, quasi-linear pde's for 5 derivatives of x. For some given 
choice of A and "Y, these involve only derivatives of x; therefore, the system is very 
overconstrained. Nonetheless, we have shown that the system is in fact compatible. 
It is quite common, these days, to begin with a nonlinear pde and to "find the linear 
problem associated with it," in the language of, say, Neugebauer. Perhaps these 8 
first-order, linear pde's have some relation to such a question. I do not yet know how, 
but there does seem some hope. 
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