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Dark matter (DM) which sufficiently heats a local region in a white dwarf will trigger runaway fusion,
igniting a type Ia supernova (SN). In a companion paper [P. W. Graham et al., Phys. Rev. D 98, 115027
(2018)], this instability was used to constrain DM heavier than 1016 GeV which ignites SN through the
violent interaction of one or two individual DM particles with the stellar medium. Here we study the
ignition of supernovae by the formation and self-gravitational collapse of a DM core containing many DM
particles. For nonannihilating DM, such a core collapse may lead to a mini black hole that can ignite SN
through the emission of Hawking radiation, or possibly as a by-product of accretion. For annihilating DM,
core collapse leads to an increasing annihilation rate and can ignite SN through a large number of
rapid annihilations. These processes extend the previously derived constraints on DM to masses as low as
105 GeV.
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I. INTRODUCTION

Dark matter (DM) accounts for over 80% of the matter
density of the Universe, but its identity remains unknown.
While direct detection [1] is a promising approach to
identifying the nature of DM, searches for indirect sig-
natures of DM interactions in astrophysical systems is also
fruitful, particularly if the unknown DM mass happens to
be large.
It was recently suggested [2] that white dwarfs (WD)

act as astrophysical DM detectors: DM may heat a local
region of a WD and trigger thermonuclear runaway fusion,
resulting in a type Ia supernova (SN). DM ignition of sub-
Chandrasekhar WDs was further studied in a companion
paper [3], where we showed that generic classes of DM
capable of producing high-energy standard model (SM)
particles in the star can be constrained, e.g., by DM
annihilations or decay to SM products. As an illustrative
example, [3] placed new constraints on ultraheavy DMwith
masses greater than 1016 GeV for which a single annihi-
lation or decay is sufficient to ignite a SN.
Here we examine the possibility of igniting SN by the

formation and self-gravitational collapse of a DM core. We
study two novel processes by which a collapsing DM core
in a WD can ignite a SN—these were first pointed out in
[3], and are studied here in more detail. If the DM has

negligible annihilation cross section, collapse may result in
a mini black hole (BH) that can ignite a SN via the emission
of energetic Hawking radiation or possibly as it accretes. If
the DM has a small but nonzero annihilation cross section,
collapse can dramatically increase the number density of
the DM core, resulting in SN ignition via a large number of
rapid annihilations. Both of these processes extend the
previously derived constraints on DM in [3], notably to
masses as low as 105 GeV.
A number of potential observables of DM cores in

compact objects have been considered in the literature.
These include: (1) gravitational effects of DM cores on the
structure of low-mass stars [4–8], WDs [9], and neutron
stars (NS) [10–13], (2) BH formation and subsequent
destruction of host NSs [14–28], and (3) anomalous heating
from DM annihilations or scatters in WDs and NSs
[29–36]. See also [37,38] for unique asteroseismology
signatures of possible low-mass bosonic DM cores. We
emphasize that the signature of a DM core igniting a type Ia
SN is distinct from these, and thus the constraints derived
here are complementary. For instance, while it has been
known that DM cores which form evaporating mini BHs
are practically unobservable in a NS, this is decidedly not
the case in a WD where (as we show) such BHs will
typically ignite a SN. Note that [39] considers DM cores
in WDs which inject heat and ignite SN through elastic
DM-nuclear scatters—we discuss this process in more
detail later as it pertains to our new constraints.
The paper is organized as follows. In Sec. II, we review

the triggering of runaway fusion by localized energy
deposition in a WD. In Sec. III, we summarize the
necessary conditions for DM core collapse and discuss
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the generic end states of such collapse. In Secs. IV and V,
we derive constraints on DM cores which would ignite
SN by the processes described above, namely black hole
formation and DM-DM annihilations. We conclude in
Sec. VI.

II. TRIGGERING THERMONUCLEAR RUNAWAY

Thermonuclear runaway in a carbon WD generally
occurs when the cooling timescale of a hot region exceeds
the fusion timescale. Cooling is dominated by the thermal
diffusion of either photons or degenerate electrons, while
the highly exothermic fusion of carbon ions is unsup-
pressed at temperatures greater than their Coulomb thresh-
old ≈MeV. Crucially, the diffusion time increases with
the size L of the heated region while the fusion time is
independent of L. This defines a critical trigger size and
temperature for ignition:

L≳ λT and T ≳MeV ⇒ ignite supernova: ð1Þ

λT was numerically computed in [40] and is λT ≈ 10−5 cm
at a number density nion ≈ 1032 cm−3.
One can also consider, as in [3], the critical energy Eboom

required to heat an entire trigger region λ3T to an MeV.
Eboom ≈ 1016 GeV for nion ≈ 1032 cm−3 and sharply
increases at lower WD densities—this agrees with the
expectation that WDs grow closer to instability as they
approach the Chandrasekhar mass. Of course to trigger
runaway fusion, an energy in excess of Eboom must also
be deposited sufficiently rapidly. The relevant timescale
is the characteristic diffusion time τdiff across a region of
size λT at a temperature ≈MeV. This diffusion time is
also computed in [40] to be τdiff ≈ 10−12 s at densities
nion ≈ 1032 cm−3. Therefore a total energy E, specifically
deposited within a trigger region ≲λ3T and a diffusion time
≲τdiff , will ignite a SN if:

E ≳ Eboom ⇒ ignite supernova: ð2Þ

One possibility is that the necessary energy (2) is
deposited directly to carbon ions, e.g., by a transiting
primordial BH [2]. It is also possible to deposit this energy
indirectly, e.g., by DM interactions releasing SM particles
into the stellar medium [3]. To this end the stopping
distances of high-energy (≫ MeV) particles in a WD
was calculated in [3], where it was shown that hadrons,
photons and electrons all transfer their energies to the
stellar medium within a distance of order λT (the sole
exception being neutrinos). We thus safely presume that
any E ≳ Eboom released into these SM products inside λ3T
will be efficiently deposited and thermalized within this
region as well.
In summary, the rate of any process which deposits an

energy E (defined to be localized spatially within λ3T and

temporally within τdiff ) that satisfies (2) can be constrained.
This is done by either demanding that a single explosive
event not occur during the lifetime of an observed heavy
≳1.2 M⊙ WD,1 or that the occurrence of many such events
throughout the Galaxy in predominantly lower mass WDs
not affect the observed SN rate. For simplicity we just
utilize the former here and the existence of a WD with
properties:

nion ≈ 1031 cm−3; ρWD ≈ 3 × 108
g

cm3
;

MWD ≈ 1.25 M⊙; RWD ≈ 3000 km: ð3Þ
Here nion and ρWD refer to the central density of the WD,
and we relate this to its mass and radius using the equation
of state formulated in [42]. While the average density is
smaller by a factor ∼10−1, nion only changes by Oð1Þ from
the central value out to distances ∼RWD=2 [43]. For such a
WD, the relevant trigger scales are of order:

λT ≈ 4 × 10−5 cm;

Eboom ≈ 7 × 1016 GeV;

τdiff ≈ 4 × 10−11 s: ð4Þ
These values are approximate, but we expect they are
accurate at the order of magnitude level, as are the ensuing
constraints. Finally, we assume theWD has a typical interior
temperature TWD ≈ keV and lifetime τWD ≈ 5 Gyr [44].2

III. DARK MATTER CORE COLLAPSE

Here we review the conditions for DM capture, collec-
tion, and self-gravitational collapse in a WD. As much of
this discussion is already present in the literature, in what
follows we simply quote the relevant results. We assume
throughout that the DM loses energy primarily by short-
range nuclear scatters. While other dissipation mechanisms
are certainly possible (such as exciting dark states or
emitting radiation) we will not treat these here.
Consider DM with mass mχ ≫ 10 GeV and scattering

cross section off ions σχA. For spin-independent inter-
actions, σχA is related to the DM-nucleon cross section
σχn by

σχA ¼ A2

�
μχA
μχn

�
2

F2ðqÞσχn ∼ A4F2ðqÞσχn; ð5Þ

whereF2ðqÞ is the Helm form factor [45], andq ∼mionvrel ∼
mion max½v; vion� is the momentum transfer between the
DM at velocity v and a nuclear target. Currently the most
stringent constraints on σχn come from Xenon 1T [1]:

1For instance, the Sloan Digital Sky survey has cataloged >10
such heavy WDs [41].

2The age of a WD is typically estimated by measuring its
temperature and modeling the cooling over time.
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σχn < 10−45 cm2

�
mχ

TeV

�
: ð6Þ

It is also possible forDM to have spin-dependent interactions
(e.g., Majorana DM) which does not benefit from a A2

coherent enhancement and is less constrained by direct
detection [46]. WDs predominantly consist of spin-
zero nuclei (12C, 16O), though as pointed out by [16] DM
capture/thermalization can proceed by scattering off a lower
density of nonzero spin nuclei (e.g., a small fraction of 13C).
For simplicity, wewill restrict our attention here only to spin-
independent interactions.

A. Core formation

DM capture in compact objects has a long history
[47,48], though the usual formulas must be modified to
account for heavy DM requiring multiple scatters to be
captured (e.g., see [3]). DM transits the WD at a rate

Γtrans ∼
ρχ
mχ

R2
WD

�
vesc
vhalo

�
2

vhalo; ð7Þ

where vesc ≈ 2 × 10−2 is the escapevelocity and vhalo ≈ 10−3

is the virial velocity of our galactic halo. ρχ is theDMdensity
in the region of the WD—we may consider either nearby
WDs [41] with ρχ ≈ 0.4 GeV

cm3 or WDs close to the Galactic
center [49] where it is expected that ρχ ≳ 103 GeV

cm3 [50].
Meanwhile, DM is captured by the WD at rate that is
parametrically

Γcap ∼ Γtrans · min

�
1;

Nscat

NcapðvhaloÞ
�
: ð8Þ

Nscat ∼ nionσχARWD is the average number of DM scatters

during a single transit, and NcapðvÞ ∼ mχv2

mionv2esc
is roughly the

number of scatters needed for DM with velocity v asymp-
totically far away from star to become gravitationally bound,
though with a necessary minimum of Ncap ≥ 1. More
properly, Γcap should be numerically calculated [51], though
the expression in (8) is parametrically correct. Based on the
assumed WD parameters (3), we find NcapðvhaloÞ > 1 for
DM masses mχ > 10 TeV; in this regime, the capture rate
scales as Γcap ∝

σχA
m2

χ
as opposed to the usual Γcap ∝

σχA
mχ

result

that is often used.
We now turn to DM thermalization. This may proceed in

either of two qualitatively different regimes, orbital decay
or terminal drift, depending on the strength of dissipation.
For simplicity we compute detailed constraints only for the
case of orbital decay, which is applicable in the case of
sufficiently small DM-nuclei cross section σχA, though we
also briefly comment on the dynamics of DM terminal drift.
In the limit of orbital decay, DM within the WD follows

gravitational orbits which gradually shrink as the DM

dissipates energy. We require here that the timescale of
energy loss is much slower than the DM orbital period,
which is simply the gravitational free-fall time in the star

tff ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

GρWD

s
≈ 0.1 s: ð9Þ

The rate of energy loss due to nuclear scatters is given by

dE
dt

∼ ρWDσχAv2 max½v; vion�; ð10Þ

where vion ∼
ffiffiffiffiffiffiffi
TWD
mion

q
≈ 4 × 10−4 is the thermal ion velocity

and v is the velocity of the “in-falling” DM. The max
function distinguishes between the regimes of “inertial”
and “viscous” drag, with the latter being relevant once v
drops below vion. This dissipation is always small on orbital
timescales provided σχA is below a critical cross section

σff ∼
mχ

ρWDvesctff
≈ 3 × 10−38 cm2

�
mχ

TeV

�
: ð11Þ

In addition to the drag force of (10), nuclear scatters will
inflict a slight Brownian motion on the DM trajectory,
though this only becomes important at cross sections well
above σff . An individual nuclear scatter will transfer a small
amount of momentum δp ≪ mχv to the DM,

δp ∼mion max½v; vion�; ð12Þ

which is set by the ion momentum in the rest frame of the
DMand is roughly constant for hard scatters. Over the course
of one orbit, an accumulation of momentum transfers will
yield a net change Δp. This accumulation is a Brownian
process as each scatter transfers momentum of roughly the
same magnitude δp (12) but with a random direction, giving
Δp ∼ δp · N1=2 where N ∼ nionσχA max½v; vion�tff is the
number of scatters occurring during an orbit. We find that
Δp is small compared to the DM momentum mχv provided
that σχA < σff . Thus the DMundergoes negligible deflection
during an orbit, andBrownianmotionmay indeed be ignored
for the case of orbital decay.
Thermalization in the orbital decay limit proceeds in

three stages (e.g., see [16] for a detailed derivation). First,
the DM will pass through the star many times on a wide
elliptic orbit of initial size Ri ≫ RWD set by the number of
scatters during the first stellar transit:

Ri ∼ RWD

�
mχ

mion

�
1

max½Nscat; 1�
: ð13Þ

The time for the DM orbital size to become contained
within the WD is then:
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t1 ∼
mχ

ρWDσχAvesc

�
Ri

RWD

�
1=2

; ðRi → RWDÞ: ð14Þ

Note that t1 is parametrically shorter if the DM scatters
multiple times in a single transit Nscat > 1 [see (13)],
corresponding to cross sections σχn > 10−41 cm2. This
results in a change of slope at 10−41 cm2 in the constraints
shown in Figs. 1, 4, and 5. Subsequently the DM completes
many orbits within the star, losing energy according to (10).
Eventually the DM reaches velocities vth and settles at a
radius Rth where its kinetic energy is of order TWD and
balances the gravitational potential of the enclosed WD
mass:

vth ∼

ffiffiffiffiffiffiffiffiffi
TWD

mχ

s
≈ 10−7

�
mχ

108 GeV

�
−1=2

; ð15Þ

Rth ∼
�

TWD

GmχρWD

�
1=2

≈ 500 cm

�
mχ

108 GeV

�
−1=2

: ð16Þ

The DM first slows to vion in a time

t2 ∼
mχ

ρWDσχAvion
; ðvesc → vionÞ; ð17Þ

and then to vth in a time that is logarithmically greater:

t3 ∼ t2 log

�
mχ

mion

�
; ðvion → vthÞ: ð18Þ

A DM core will thus form within the age of the WD for
σχA < σff if

t1 þ t2 þ t3 < τWD ðform DM coreÞ: ð19Þ

We now consider σχA > σff, the regime of terminal drift,
in which case the condition for core formation is para-
metrically different than (19). In particular, the time

required for DM to settle to Rth increases with increasing
σχA, which sets an upper bound σmax on the cross sections
for which a DM core can form within the age of a WD. In
this scenario, Oð1Þ of the DM kinetic energy is rapidly lost
in the first pass through the star. The dynamics are then
dominated by the drag force corresponding to (10)

FA ∼ ρWDσχAvmax½v; vion�; ð20Þ

and the DM will fall towards Rth on a predominantly radial
trajectory with the infall velocity given by the terminal
speed at which FA balances gravity. To estimate σmax, we
consider the extreme case of large σχA and a radial infall.
Here FA takes the linear form as v is small, and the DM
drifts always with the local terminal speed, yielding a
drift time

tdrift ∼
t2ff
t2
log

�
RWD

Rth

�
: ð21Þ

Core formation occurs if tdrift < τWD, which sets an upper
bound σmax ∼ 1016σff . Finally, with σχA > σff , the
Brownian nature of nuclear scatters may become important
before a DM particle reaches Rth, and its motion will then
be a random walk with an inward gravitational drift.
Indeed, the terminal velocity may fall below vth as the
DM approaches the center of the star, at which point the
DM becomes thermal even outside of Rth and equilibrates
with the stellar medium. The DM then settles into a
Boltzmann distribution of temperature TWD, in this case
a Gaussian density profile with size Rth in the center of the
star. The relevant core formation timescale is now the time
required for thermal DM particles located at some r > Rth
to settle into this distribution. But, such a biased random
walk proceeds precisely as Brownian motion about a center
which drifts inward at the terminal speed—thus the time-
scale for infall is just (21) and the bound σmax is valid
regardless of the onset of Brownian motion.

B. Asymmetric DM collapse

First consider the evolution of a core of nonannihilating
DM, herein referred to as asymmetric DM [52,53]. Upon
formation, the DM core will steadily collect at Rth at a rate
Γcap. If its density ever exceeds the WD density ρWD, then
the core will become self-gravitating. The critical number
of DM particles needed for the onset of self-gravitation is

Nsg ∼
ρWDR3

th

mχ
≈ 5 × 1032

�
mχ

108 GeV

�
−5=2

; ð22Þ

while the total number of DM particles that can possibly be
collected within τWD is simply:

Nlife ∼ ΓcapτWD: ð23Þ

FIG. 1. Parameter space fmχ ; σχng of asymmetric DM in which
a DM core forms and collapses within τWD ≈ 5 Gyr in a WD of
local DM density ρχ. See text for details.
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Thus self-gravitational collapse requires

Nsg < Nlife; ðcore self-gravitatesÞ: ð24Þ

This sets an upper limit on the DM mass that can form a
self-gravitating core mχ ≳ 100 TeV (or Rth ≲ 0.1 km),
taking the maximum possible capture rate Γcap ¼ Γtrans

and ρχ ¼ 0.4 GeV
cm3 .

Of course, this assumes that the DM core obeys
Maxwell-Boltzmann statistics throughout the collection
phase. In general, the quantum statistics of DM with
velocity v in a core of size N becomes important once
the de Broglie wavelength of individual DM particles
exceeds their physical separation in the core. For the
thermal DM population at Rth, this occurs after it has
collected a number:

NQM;th ∼ ðmχTWDÞ3=2R3
th ∼

T3
WD

ðGρWDÞ3=2
≈ 1052; ð25Þ

which is greater than Nsg for all DM masses mχ ≳ GeV.
In the case of bosonic DM, if the core reachesNQM;th before
the onset of self-gravitation it will begin populating a Bose-
Einstein condensate (BEC). A more compact BEC could
then self-gravitate earlier, as considered by [14,17,18] in
a NS. We find this is not possible in a WD, namely
NQM;th ≫ Nlife even for light bosonic DMmχ ≲ GeV. Thus
the condition for core collapse is indeed (24).
For simplicity, we focus on DM which scatters infre-

quently with the medium, σχA < σff , see (11). The orbital
timescale of the constituents of a collapsing core decreases
faster than the timescale of energy loss due to nuclear
scatters, so in this regime the DM trajectories will continue
to have the form of slowly decaying orbits during the entire
collapse.
In summary, the conditions (19) and (24) on fmχ ; σχng

parameter space for which a DM core forms and collapses in
a WD are depicted in Fig. 1. One can check that for DM
masses and scattering cross sections satisfying (24), the left-
hand side of the core formation condition (19) is ultimately
dominated by t1. We also show a rough amalgamation (e.g.,
see [54]), extending to large DM masses and cross sections,
of the constraints from underground direct detection experi-
ments including Xenon 1T [1].
We now turn to the dynamics of collapse. In order for a

self-gravitating DM core to shrink, it must lose the excess
gravitational potential energy. The “cooling" timescale tcol
(leading to gravitational heating of the DM) is initially
independent of DM velocity but hastens once the DM
velocity exceeds vion. For a collapsing DM core with a
number of particles Ncol, the velocity and characteristic
collapse time at size r is

vcolðrÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNcolmχ

r

r
;

tcolðrÞ ∼
mχv2col

dE=dtðvcolÞ
∼ t2min

�
1;
vion
vcol

�
; ð26Þ

where we have used elastic scatters (10) as the dominant
dissipation mechanism. This should be modified once
vcol ≳ 2 × 10−2 and the momentum transfer becomes
∼ΛQCD. At this point the interaction is not described by
elastic scattering off nuclei, but an inelastic scattering off
constituent quarks. This is a nonperturbative QCD process
that will result in the release of pions. Since the typical
momentum transfer here saturates at ∼ΛQCD, the energy
transfer per scatter scales linearly with velocity and is
roughly of order ∼ΛQCDvcol. For simplicity, we assume that
the cross section for this inelastic interaction is also of order
σχA [with the form factor (5) set to A−2]. The rate of energy
loss in this regime is parametrically

dE
dt

∼ ΛQCDnionσχAv2col: ð27Þ

Thus at velocities vcol ≳ 2 × 10−2, the characteristic core
collapse time saturates to tcol ∼

mχ

nionσχAΛQCD
. One can also

check that tcol is always greater than the (decreasing)
dynamical time ∼r=vcol.
We emphasize that while cooling by nuclear scatters

during core collapse is the minimal assumption, other
dissipation mechanisms (e.g., radiating as a blackbody)
could become efficient due to the increasing DM density, as
considered by [14]. However since this is more model
dependent, we do not consider any such additional cooling
mechanisms here.
Actually, the initial number of collapsing particles can be

parametrically greater than the critical self-gravitation
number Ncol ≫ Nsg. As discussed in [3], this occurs when
the time to capture a self-gravitating number is much less
than the time for the DM core to collapse, i.e., when
Nsg < Γcaptcol. We find this is relevant for DM masses
mχ ≳ 1014 GeV. Here the collapsing core will inevitably
“overcollect” to a much larger number until these two
timescales become comparableNcol ∼ Γcaptcol, although the
density profile of the core at this point is highly nontrivial.
It is worth noting that the collapsing core would likely be
nonuniform even in the absence of overcollection, as
emphasized in [20]—realistically, the core might develop
a “cuspy” profile similar to the formation of galactic DM
halos. In either case, a precise understanding of the DM
core density profile is beyond the scope of this work. For
simplicity we will assume a core of uniform density with a
number of collapsing particles

Ncol ¼ max½Nsg;Γcaptcol�: ð28Þ
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However, this assumption of a uniform density core is
likely a conservative one with regards to our constraints.
For asymmetric DM, a density peak within the collapsing
core (e.g., due to overcollection) would collapse to BHs of
smaller mass than otherwise assumed and (as we show)
would still ignite a SN. For annihilating DM, a density peak
may have a greater rate of annihilations depending on the
density profile which would ignite a SN sooner than
otherwise assumed.
Though irrelevant prior to self-gravitation, quantum

mechanical effects may become important during the
collapse itself. For a number of collapsing particles
Ncol ¼ Nsg, this occurs once the de Broglie wavelengths
of DM particles in the core begin overlapping:

1
mχvcolðrÞ ∼

r
N1=3

sg
. That is, once the core has shrunk to a size

RQM ∼
1

Gm3
χN

1=3
sg

≈ 3 × 10−11 cm

�
mχ

108 GeV

�
−13=6

; ð29Þ

and has a density

ρQM ∼
Nsgmχ

R3
QM

∼
m5

χT3
WD

ρWD
≈ 1072

GeV
cm3

�
mχ

108 GeV

�
5

: ð30Þ

Of course this assumes that the core has not already formed
a BHGNsgmχ ≲ RQM. This means that QM collapse is only
relevant for DM masses:

mχ ≲ ρWD

T3
WD

≈ 109 GeV; ðQM affects collapseÞ; ð31Þ

for which it is indeed the case that Ncol ¼ Nsg. Note that the
extreme densities of the DM core (30) are not necessarily
problematic as we always assume the DM is pointlike with
no substructure; however, with an explicit model one should
be wary of higher dimension operators modifying the
collapse dynamics by potentially triggering new interactions.

1. Fermionic DM

If DM is a fermion, (29) is precisely the radius of
stabilization due to degeneracy pressure. A degenerate DM
core will sit at RQM until it collects an additional number of
particles N ≫ Nsg and subsequently shrinks as r ∼ 1

Gm3
χN1=3.

Note that additional captured DM particles are still able to
dissipate energy and decrease their orbital sizes below the
thermal radius under the gravitational influence of the
compact core. For DMmasses (31) the collection time N

Γcap
is

always far greater than the cooling time tcol (26), and thus
the shrinking proceeds adiabatically at a rate Γcap.
Fermi pressure is capable of supporting a self-gravitating

degenerate DM core until it exceeds the Chandrasekhar
limit

Nf
Cha ∼

M3
pl

m3
χ
≈ 2 × 1033

�
mχ

108 GeV

�
−3
: ð32Þ

Thus the Fermi degenerate core will collapse to a BH as
long as

Nf
Cha < Nlife; ðBH from degenerate coreÞ; ð33Þ

which is the case formχ ≳ 106 GeV, assuming Γcap ¼ Γtrans

and ρχ ¼ 0.4 GeV
cm3 . We note that the presence of attractive

e.g., Yukawa-type DM self-interactions can drastically
reduce the critical number required to overcome Fermi
pressure (see [24]), though we do not consider this
possibility here.

2. Bosonic DM.

If DM is a boson, once the DM core collapses to (29) it
starts populating a BEC. Further collapse results in increas-
ing the number of particles in the BEC, with the density of
the noncondensed particles fixed at ρQM, see [20] for
details. The size of the BEC is initially set by the
gravitational potential of the enveloping self-gravitating
sphere, and particles in the BEC have a velocity set by the
uncertainty principle:

rBEC ∼
�

1

GρQMm2
χ

�
1=4

≈ 10−16 cm
�

mχ

108 GeV

�
−7=4

;

vBEC ∼
1

mχrBEC
≈ 10−6

�
mχ

108 GeV

�
3=4

: ð34Þ

The BEC sits at rBEC until it becomes self-gravitating at a
number:

NBEC;sg ∼
ρQMr3BEC

mχ
≈ 2 × 1016

�
mχ

108 GeV

�
−5=4

: ð35Þ

A self-gravitating BEC will continue to add particles, and
in the process shrink as rBEC ∼ 1

Gm3
χN
. The rate at which DM

particles are added to the BEC is set by the rate at which the
noncondensed DM core sheds the excess gravitational
energy. The time to condense a number of particles N ≪
Nsg is

tBECðNÞ ∼ N
Nsg

tcolðRQMÞ: ð36Þ

Note that the typical DM velocity in the noncondensed DM
sphere at this stage is

vcolðRQMÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNsgmχ

RQM

s
≈ 0.3

�
mχ

108 GeV

�
1=3

: ð37Þ

The pressure induced by the uncertainty principle is
capable of supporting the self-gravitating sphere of
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DM particles until it exceeds the so-called bosonic
Chandrasekhar limit:

Nb
Cha ∼

M2
pl

m2
χ
≈ 1022

�
mχ

108 GeV

�
−2
; ð38Þ

which is far less than Nsg for all DM masses (31).
Interestingly, this limit is dramatically affected by even
the presence of minuscule DM self-interactions [55]. These
may be a generic expectation given the already assumed
scattering cross section off nucleon, as emphasized in [23].
In the case of a repulsive λjχj4 interaction potential where
λ > 0, no stable configuration exists beyond a critical
number

Nb
Cha;self ∼

M2
pl

m2
χ

�
1þ λ

32π

M2
pl

m2
χ

�1=2

: ð39Þ

We find that Nb
Cha;self is still less than Nsg as long as

λ≲ 10−2. An attractive self-interaction could reduce the
necessary critical limit, although this is highly model
dependent. From here on, we will use (38) as the relevant
critical limit.

C. Annihilating DM collapse

Now consider the case of DM with an annihilation cross
section σχχ into SM products, e.g., quarks. We will restrict
our attention here to DM masses mχ ≪ Eboom such that
multiple annihilations are necessary to ignite a SN. As in
the asymmetric case, for simplicity we focus on DM which
scatters infrequently, σχA < σff .
As described above, the thermalizing DM constitutes a

number density of DM throughout the WD volume.
Depletion of this in-falling DM is dominated by the total
rate of annihilations near the thermal radius:

Γinfall ∼
ðΓcapt2Þ2

R3
th

σχχvth: ð40Þ

Therefore a DM core at Rth will steadily collect at a rate
roughly Γcap as long as

Γinfall < Γcap; ðsteady DM collectionÞ: ð41Þ

Of course this collecting DM core is also depleting via
annihilations, and will at most reach an equilibrium number

Neq ∼
�
ΓcapR3

th

σχχvth

�
1=2

: ð42Þ

This results in amore stringent condition for self-gravitation:

Nsg < min½Nlife; Neq�; ðcore self-gravitatesÞ: ð43Þ

IfNsg > Nlife orNsg > Neq, theDMcore has either saturated
at a number Neq or is still continuing to collect at a number
Nlife, whichever comes first. In either case if the core does not
reach self-gravitation [i.e., (43) is not satisfied],we found that
the total rate of annihilations within a core subregion of
volume λ3T ≪ R3

th is much too small to ignite a SN.
We thus turn to core collapse, during which annihilations

become more rapid as the core shrinks. The conditions (19),
(41) and (43) on the fmχ ; σχχvg parameter space for which
a collapse takes place are depicted in Fig. 2. Here we have
taken a fixed fiducial value of the scattering cross section
σχn ¼ 10−39 cm2, though the allowed parameter space of
collapse in the case of annihilating DM exists for any σχn
within the region shown in Fig. 1. We have checked that
there are no existing constraints at these low DM annihi-
lation cross sections, for instance from DM annihilations in
the galactic halo contributing to the observed cosmic
ray flux.
As before, a self-gravitating DM core shrinks at a rate set

by cooling (26). However the core is also annihilating so
that NðrÞ is decreasing from its initial value Ncol (28).
When the DM core is at a radius r, the total rate of
annihilations is

Γχχ ∼
N2

r3
σχχvcol: ð44Þ

The collapse will initially proceed unscathed, with the
number of collapsing particles roughly constant
NðrÞ ≈ Ncol, until the characteristic annihilation time N

Γχχ

is of order the collapse time tcol. The size of the core at this
stage is an important scale, which we denote as Rχχ . Note
that Rχχ as defined is trivially smaller than Rth if conditions
(41) and (43) are satisfied. The expression for Rχχ depends

FIG. 2. Parameter space fmχ ; σχχvg of annihilating DM in
which a DM core forms and collapses within τWD ≈ 5 Gyr in
a WD of local DM density ρχ. We take a fixed value of the
DM-nuclei scattering cross section σχn ¼ 10−39 cm2. See text for
details.
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on whether this takes place during the “viscous” or
“inertial” drag regimes, or in the inelastic scattering regime
(27). Written in terms of the annihilation cross section
σχχvcol, this scales as

Rχχ ∝

(
ðσχχvcolÞ1=3 vcol < vion or 2 × 10−2 < vcol

ðσχχvcolÞ2=5 vion < vcol < 2 × 10−2
:

ð45Þ

Note that vcol is to be evaluated at Rχχ in these expressions.
Once the DM core collapses to within Rχχ , it begins

depleting appreciably. We call this an annihilation burst.
Once r≲ Rχχ , the continued evolution of the DM core is
driven by two competing effects: scatters with the stellar
matter drive the core to collapse to smaller radii, as before,
but at the same time annihilations drive the core to expand
by weakening the gravitational potential. We do not work
out this detailed evolution, but rather conservatively con-
sider the constraints only for r≳ Rχχ.
For DM masses (31), if Rχχ > RQM then the core

effectively annihilates before any quantum statistics
become significant. On the other hand, if Rχχ < RQM then
the core remains roughly intact and can form a Fermi
degenerate core or BEC, as in the asymmetric DM case. We
examine the subsequent evolution of the core in the case
Rχχ < RQM, but with the added presence of annihilations.

1. Fermionic DM

If DM is a fermion, a Fermi degenerate core will
continue to collect DM particles and shrink (and thus
the rate of annihilations increases). During this stage, the

degenerate DM core can saturate at an equilibrium Nf
χχ

when the annihilation rate Γχχ is of order the shrinking rate
set by DM capture Γcap. If Nf

χχ ≲ Nsg, the Fermi degenerate
core saturates while still roughly at RQM (29). If Nf

χχ ≳ Nsg,
the core substantially shrinks before saturating at a number:

Nf
χχ ∼

Γ1=3
cap

Gm3
χðσχχvcolÞ1=3

; Nf
χχ > Nsg: ð46Þ

Of course, for sufficiently low annihilation cross section
a saturated core may never form in the WD lifetime
Nlife < Nf

χχ or before forming a BH Nf
Cha < Nf

χχ .

2. Bosonic DM

If DM is a boson the core will condense particles into a
BEC. As the noncondensed core collapse proceeds at
constant density, it will never burst as the rate of annihi-
lations in the enveloping sphere only decreases. However
the BEC can saturate at an equilibrium number when the
annihilation rate in the compact region becomes of order
the condensation rate given by (36). We have checked that
this saturation is never reached before the BEC self-
gravitates at a number (35). Subsequently the BEC adds
particles from the core and shrinks (and the rate of
annihilations in the BEC increases). The self-gravitating
BEC then either saturates at a number

Nb
χχ ∼

�
Nsg

tcolðRQMÞG3m9
χσχχvBEC

�
1=5

; Nb
χχ > NBEC;sg;

ð47Þ

or first reaches Nb
Cha when annihilations are negligible and

forms a BH.

D. Endgame

There are many possible outcomes of the DM core
collapse in a WD. For asymmetric DM the core can
collapse to a mini BH, either directly or by first forming
a Fermi degenerate core or populating a BEC. As detailed
in Sec. IV, such a BH can ignite a SN by emission of
Hawking radiation or, as we motivate, possibly even during
its accretion. For annihilating DM the core annihilates at an
increasing rate until collapsing to Rχχ , at which point it is
effectively annihilating an Oð1Þ fraction. As detailed in
Sec. V, this large number of rapid annihilations can even
ignite a SN before the core reaches Rχχ .
It is also the case that the DM core is directly heating the

WD via nuclear scatters. This may be sufficient to ignite a
SN, as first calculated by [39]. We estimate the total energy
deposited by a collapsing core of size r inside a trigger
region λ3T during a time τdiff as

FIG. 3. Initial black hole mass formed by DM core collapse in a
WD. We take a representative value of the scattering cross
section, though MBH is independent of σχn except for large
DM masses where Nsg < Γcaptcol. As plotted MBH cuts off at
points where a DM core does not even form or collapse, or where
a Fermi degenerate core does not have time to collect a
Chandrasekhar number Nf

Cha.
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EχAðrÞ ∼ Ncolmχv2col

�
τdiff
tcol

�
· min

�
1;

�
λT
r

�
3
�
: ð48Þ

In considering this process, [39] additionally required
that (1) the DM core be self-thermalized (e.g., due to DM-
DM self interactions) and (2) the core must uniformly heat
a trigger region λ3T , thus restricting the analysis to core sizes
r≳ λT . Neither of these requirements are necessary, how-
ever. While a deposited energy well inside the trigger
region may not immediately ignite a conductive flame as
per [40], it will eventually if the energy is sufficiently large
(2) once the heat has diffused out to a size ∼λT (see [3] for a
more detailed discussion of this evolution). This observa-
tion allows the derived constraints of [39] to be extended to
larger DM masses: we simply require EχA ≳ Eboom satisfies
the condition (2) in order for scattering to ignite a SN.
We emphasize that the heat deposited in the stellar matter

during a DM collapse would be drastically affected by the
presence of an additional cooling mechanism which drives
the collapse, e.g., emitting dark radiation. In particular, if
such a cooling mechanism is present and efficient in a
collapsing core, ignition due to heating by nuclear scatters
as in [39] might not occur. As we show in Secs. IV and V,
however, most collapsing DM cores would still ignite a SN
from BH formation or annihilations. For this reason, while
we show the extended constraints on DM-nuclear scatters
from (48), we will also consider and show the conse-
quences of core collapse to smaller radii, below the size at
which nuclear scatters (as the sole cooling mechanism)
would deposit sufficient energy to be constrained.

IV. BLACK HOLE-INDUCED SN

As described in Sec. III B, a BH formed by DM collapse
will have an initial mass (shown in Fig. 3):

MBH ∼

8>><
>>:

Nf
Chamχ mχ ≲ 109 GeV fermionic DM

Nb
Chamχ mχ ≲ 109 GeV bosonic DM

GNcolmχ mχ ≳ 109 GeV

:

ð49Þ

Note that any such BH will necessarily have some angular
momentum.TheDMcore initially inherits its angular velocity
from the rotating WD, though loses angular momentum to
the stellar medium as it cools and collapses. We find the
dimensionless spin parameter of the initial BH is always
small JBH

GM2
BH
≲ 10−2, assuming a WD angular velocity of

ΩWD ≈ 0.01 Hz. Thus the newly formed BH is approxi-
mately Schwarzschild, and has a radius:

RBH ¼ 2GMBH ≈ 3 × 10−5 cm

�
MBH

1047 GeV

�
: ð50Þ

A. Fate of a BH

It is generally believed [56] that BHs have a temperature

TBH ¼ 1

4πRBH
≈ 6 MeV

�
MBH

1039 GeV

�
−1
; ð51Þ

and lose mass by emitting particles at a rate�
dMBH

dt

�
HR

¼ α

G2M2
BH

; ð52Þ

where αðMBHÞ encodes the different particle emission
rates, roughly increasing as the BH temperature exceeds
the mass threshold of a new species. Detailed calculation
[57] finds α ≈ 2.8 × 10−4 for TBH ≲MeV, accounting for
emission of photons, gravitons, and three neutrino species.
Counting only experimentally verified SM degrees of
freedom, the emission rate effectively asymptotes to α ≈
4.1 × 10−3 for TBH ≳ 100 GeV [58]. Thus an evaporating
BH (by this we mean a BH which only Hawking radiates
without any accretion)3 has a lifetime less than τWD ≈
5 Gyr if

MBH ≲ 2 × 1038 GeV ðevaporate in τWDÞ: ð53Þ

The BH primarily accretes nuclear matter and additional
DM particles: which dominates depends on the BH mass,
or more precisely the DM parameters. In the hydrodynamic
spherical so-called Bondi approximation, the former is
given by �

dMBH

dt

�
WD

¼ 4πλ

�
GMBH

c2s

�
2

ρWDcs; ð54Þ

where cs ≈ 2 × 10−2 is the sound speed (approximated
from numerical calculations in [60]), and λ ∼Oð1Þ [61].
The accretion of DM potentially has two contributions.

Under the influence of the BH gravitational potential,
individual DM particles will continue reducing their orbit
size below the thermal radius by scattering with the stellar
medium. Once it crosses the angular momentum barrier
4GMBH, the DMwill rapidly fall into the BH [61]. A steady
state is soon achieved after the BH is formed where DM
feeds the BH at a rate set by the capture rate:�

dMBH

dt

�
χ

¼ Γcapmχ : ð55Þ

There may also be large overdensity of DM particles in the
vicinity of the newly formed BH, which is likely if the DM
core collapses with nonuniform density. In the collisionless

3An evaporating BH loses angular momentum rapidly and has
a decreasing spin parameter—thus rotation is negligible through-
out the evaporation [59].
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spherical approximation [61], a DM population with density
ρ∞ and velocity v∞ far from the BH accretes at a rate:

�
dMBH

dt

�
χ

¼ 16πρ∞G2M2
BH

v∞
: ð56Þ

Such accretion is especially relevant for bosonic DM if the
BH is formed from a compact BEC within an enveloping
noncondensed DM core [20]. For our purposes we will only
consider (56) in this scenario, where ρ∞ is given by the very
large density (30) and v∞ is given by (37).
The fate of a BH is determined by

dMBH

dt
¼ −

�
dMBH

dt

�
HR

þ
�
dMBH

dt

�
WD

þ
�
dMBH

dt

�
χ

: ð57Þ

We first consider BHs that are not formed from a BEC.
Without DM accretion, we find Hawking evaporation beats
Bondi accretion, i.e., ðdMBH

dt ÞHR > ðdMBH
dt ÞWD at masses:

MBH ≲ 1038 GeV; ðHawking beats BondiÞ: ð58Þ

Including the steady accretion of DM (55), we find
Hawking evaporation beats the largest possible DM accre-
tion, i.e., ðdMBH

dt ÞHR > ðdMBH
dt Þχ when Γcap ¼ Γtrans at masses

MBH ≲ 2 × 1035 GeV; ðHawking beats DMÞ; ð59Þ

where Hawking also clearly beats Bondi. The critical mass
Mcrit at which dMBH=dt ¼ 0 depends on the strength of
the steady DM accretion (55), and for the relevant DM
parameter space lies in the range:

Mcrit ≈ 2 × 1035–1038 GeV; ð60Þ

where the upper end of this range holds when Bondi
dominates the accretion, and all lower values apply when
steady DM accretion (55) dominates.
We now consider the timescales involved in accreting or

evaporating, which can estimated by the characteristic time:

τBH ∼
MBH

dMBH=dt
: ð61Þ

If the BH is evaporating, τBH ∝ M3
BH and is set by the time

spent at the largest BH mass, i.e., the initial BH mass. If the
BH is dominantly accreting by Bondi then τBH ∝ M−1

BH
is set by the time spent at the smallest BH mass, If,
however, the BH is dominantly accreting by DM (55) then
τBH ∝ MBH is instead set by the time spent at the largest BH
mass—this is the BH mass at which Bondi accretion takes
over 1038 ≲MBH ≲ 1041 GeV (depending on the capture

rate Γcap). Miraculously, we find τBH ≈ Gyr for BH masses
MBH ≈ 1038 GeV, coinciding with the upper end of (60)
where Bondi accretion becomes of order the Hawking
evaporation. This can also be seen from the fact that Mcrit
(60) lies just below the BH mass necessary to evaporate
within τWD ≈ 5 Gyr in the absence of any accretion (53).
Thus it is clear that whether the BH is evaporating or
accreting, it will necessarily do so in a characteristic time
less than a Gyr.
Returning to the case of BHs formed from a BEC, we

find that the DM accretion of the noncondensed enveloping
DM core (56) in fact beats Hawking evaporation over the
entire DM mass range of interest. Note that this outcome is
strikingly different from the analogous process in a NS,
where it has been found that such BHs always dominantly
evaporate [20]. The difference arises from the fact that the
density of the DM core (30) is significantly smaller at NS
densities/temperatures and at the lower DM masses con-
sidered by [20].
We now briefly address the question: is Bondi always

a valid estimate for the accretion of nuclear matter onto
the BH? As is well known, accretion could be in the
Eddington-limited regime: this occurs when the radiation
produced by in-falling matter exerts a significant pressure
so as to backreact on the accretion. In the spherical
approximation, this yields a maximum luminosity:

Ledd ¼
4πGMBHmion

σ
; ð62Þ

where σ is the dominant interaction by which outgoing
radiation transfers momentum to the in-falling matter.
Assuming photon energies near the horizon ω≳MeV,
this is either set by hard Compton scattering off electrons
σ ∼ α2

meω
∼ 100 mbð ω

MeVÞ−1 or inelastic photo-nuclear inter-
actions off ions σ ∼mb (see [3] for details). Accretion is
Eddington limited if ϵ · ðdMBH=dtÞWD exceeds Ledd,
where ϵ is the radiation efficiency. If we conservatively
take ϵ ∼ 0.1, we find Bondi accretion is not Eddington
limited for BH masses less than MBH ≲ 1040 GeV. Note
that even if the accretion is Eddington limited at larger BH
masses, the timescale τBH then becomes independent of
MBH and is still much less than a Gyr.
The accretion could also be stalled by the stellar rotation:

this occurs when the in-falling matter possesses excess
angular momentum that must be dissipated to accrete, e.g.,
by viscous stresses during a slow phase of disk accretion
[61]. Reference [22] examines the effect of rotations for
mini BHs in NSs, concluding that kinematic viscosity can
maintain Bondi spherical accretion as long as the BH mass
is sufficiently small. Based on the analysis of [22], we
crudely estimate that Bondi accretion would hold for
MBH ≲ 1046 GeV, assuming a (conservative choice of)
WD viscosity [62]. Even if the BH accretion is stalled
beyond this point we suspect the accretion timescale is still
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much smaller than a Gyr, though a detailed understanding
is beyond the scope of this work.

B. Constraints

1. Hawking

The Hawking radiation emitted by a BH will ignite a
SN if

EBH ∼
α

G2M2
BH

· min½τdiff ; τBH� ð63Þ

satisfies the condition (2) EBH ≳ Eboom. If the BH is
evaporating, then τBH is just its remaining lifetime (which
is greater than τdiff for BH massesMBH ≳ 1029 GeV). Even
if a BH is technically accreting, it is possible to ignite a SN
by the large amount of Hawking radiation emitted during
its infancy. In this case, one can check that (63) still
approximates the dominant contribution to the total energy
emitted during a time τdiff .
Assuming τdiff ≪ τBH, applicable for all starting BH

masses we consider, Hawking is explosive at BH masses:

MBH;boom ≈ 2 × 1035 GeV: ð64Þ

Of course, any DM core that results in a BH initially less
than MBH;boom ignites a SN upon formation. In addition,
DM cores that result in a BH initially greater thanMBH;boom

but less than the critical threshold Mcrit evaporate and
eventually ignite a SN within a Gyr. Coincidentally, any
BH initially greater than Mcrit will not ignite a SN via
Hawking but will instead accrete—this is evident from the
fact that (64) lies just below the lower end of the critical
threshold (60). However this is notably not the case for
accreting BHs formed from a BEC: we have checked that
all BHs formed from a BEC immediately ignite a SN by
Hawking despite the large accretion rate from the large
enveloping DM density.

2. Accretion

Finally, we comment on the final outcome of an
accreting BH. It is conservative to suppose that such a
BH simply eats the star. However, it is plausible that
accreting BHs in WDs ignite SN once they grow suffi-
ciently large. We can think of at least two potential
mechanisms for this:
(1) The flow of stellar matter into the BH leads to the

formation of a sonic horizon Rs ∼ GMBH=c2s ∼
104RBH, with supersonic flow as the matter enters
free fall near the BH. The kinetic energy of a carbon
ion at the sonic horizon is mionc2s ∼MeV, increas-
ing as it falls inward. It is reasonable to suppose
that the flow inside the sonic horizon is not
perfectly radial, in which case this violent swarm
of carbon ions may ignite thermonuclear fusion.

BH masses MBH ≳ 1043 GeV have sonic horizons
Rs ≳ λT . Assuming substantial nonradial flow, such
BHs may then have carbon ions colliding at large
enough energies to overcome the Coulomb barrier
and initiate fusion over a large region. As this
fusion is happening within the sonic horizon, a
resulting fusion front would need to propagate out
as a supersonic shockwave (e.g., a so-called det-
onation front [44]) in order to ignite the rest of
the star.

(2) Inflow onto the BH also increases the density of
stellar matter near the BH, for instance by roughly a
factor ∼10–100 at the sonic horizon [61]. This
increased density may be sufficient, even at low
temperatures, to ignite the star outside the sonic
horizon through pycnonuclear fusion without the
need for a supersonic shockwave (or inside the sonic
horizon, with an accompanying supersonic fusion
front.) Runaway pycnonuclear fusion begins when a
sufficiently large region of carbon achieves a critical
density ∼1010 g=cm3 [44], which is a factor ∼30
greater than our chosen central density. Note that the
corresponding pycnonuclear trigger size λP may be
different from the thermonuclear trigger size λT as
the rates of fusion and diffusion depend on density
and temperature, and both may be modified by
dynamics near the BH. However, if we simply
assume λP ∼ λT ∼ 10−5 cm, then large BH masses
MBH ≳ 1044 GeV would have a sonic horizon
Rs ≫ λP, and could thus potentially ignite a SN
via subsonic fusion front.

To confirm either of these mechanisms leads to ignition
would require more detailed numerical calculations, which

FIG. 4. Constraints on fermionic asymmetric DM which forms
a DM core and collapses to a mini black hole in a WD. The black
hole either ignites a supernova via Hawking emission (red) or
accretes and eats the star (or possibly ignites a supernova) (blue).
Also shown (purple) are the constraints on DM-nuclei scatters
igniting a supernova during core collapse before formation of a
black hole.
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we do not attempt here. In any case, whether an accreting
BH eats the star or ignites a SN, we are able to constrain
any such BHs by the existence of observed WDs given that
the accretion timescale is less than a Gyr.
To summarize, BHs formed by DM core collapse will

either ignite a SN by Hawking radiation, or accrete and
subsequently eat the star or ignite a SN. The resulting
constraints on DM parameters are shown in Fig. 4 (fer-
mionic DM) and Fig. 5 (bosonic DM). For fermionic DM
these constraints extend well beyond those previously
derived which consider BH formation/accretion in NSs,
and are thus complementary. For bosonic DM these
constraints are entirely new—in the DM mass range of
interest, there are in fact no bounds due to BH formation in
NSs (see [20] for details). We also show the constraints
from DM-nuclei scatters igniting a SN during core collapse
at any point before formation of a BH (or a Fermi
degenerate core or BEC).

V. ANNIHILATION-INDUCED SN

A collapsing core of annihilating DM has an increasing
annihilation rate, and effectively depletes Oð1Þ (“bursts”)
upon shrinking to a size r ∼ Rχχ . However, even while r≳
Rχχ and the DM core roughly retains its initial number
NðrÞ ≈ Ncol, the energy deposited by a small fraction of the
core may be significant. We estimate the energy deposited
in the large number of annihilations within a trigger region
λ3T and diffusion time τdiff for r≳ Rχχ :

EχχðrÞ ∼mχ
N2

col

r3
σχχvcolτdiff · min

�
1;

�
λT
r

�
3
�
: ð65Þ

This is sufficient to ignite a SN if it satisfies Eχχ ≳
Eboom (2).
As expected, the annihilating core deposits energy more

and more rapidly as it shrinks to smaller radii. We can also
evaluate the deposited energy (65) at the bursting point
r ∼ Rχχ . Interestingly for Rχχ < λT, we find EχχðRχχÞ scales
inversely with annihilation cross section EχχðRχχÞ ∝
ðσχχvcolÞ−1=5 in the regime vion < vcolðRχχÞ < 2 × 10−2,
i.e., the DM core is more explosive for lower annihilation
cross section. This is basically a result of the collapsing
core focusing and becoming more dense before annihilat-
ing Oð1Þ, thus making this energy deposition at r ∼ Rχχ

more violent. It is also interesting that EχχðRχχÞ scales
inversely with DM mass—this is just a result of the greater
number of collapsing particles at lower DM masses.
Similarly, in the regimes vcolðRχχÞ < vion or vcolðRχχÞ >
2 × 10−2 we find EχχðRχχÞ is independent of annihilation
cross section σχχvcol, i.e., the ignition condition EχχðRχχÞ ≳
Eboom simply corresponds to an upper bound on DM mass.
This variation in the dependence of Eχχ on σχχvcol for
different regimes of vcolðRχχÞ is responsible for the change
in slope of the constrained regions of Figs. 6 and 7 for
1011 GeV≲mχ ≲ 1012 GeV.
If the core has not yet ignited a SN by the time it

collapses to Rχχ , could it do so afterwards? Although the
number of collapsing particles at this point is depleting
appreciably, the shrinking of the core may still drive the
total rate of annihilations to increase; if so, there is the
possibility of igniting a SN at sizes r≲ Rχχ . We have
estimated that this is not the case. However, as described in
Sec. III C, the evolution of the annihilating DM core here is
somewhat complicated and requires more detailed study—
thus we only consider the constraints on annihilations while
the DM core is still at sizes r≳ Rχχ .

FIG. 6. Constraints on fermionic DM which forms a DM core
and ignites a supernova through annihilations (red). For suffi-
ciently small σχχv the core first collapses to a black hole (blue),
and is otherwise constrained, see Fig. 4. Also shown (purple) are
the constraints on DM-nuclei scatters igniting a supernova during
core collapse before annihilations could do so.

FIG. 5. Constraints on bosonic asymmetric DM which forms a
DM core and collapses to a mini black hole in a WD. The black
hole either ignites a supernova via Hawking emission (red) or
accretes and eats the star (or possibly ignites a supernova) (blue).
Also shown (purple) are the constraints on DM-nuclei scatters
igniting a supernova during core collapse before formation of a
black hole.
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Of course, the DM core may never annihilate efficiently
if it first collapses to a BH GNcolmχ ≳ Rχχ , though the
energy deposited by annihilations before the core shrinks to
within the Schwarzschild radius may still be sufficient to
ignite a SN. Similarly, if the DM core first reaches the size
at which QM effects become important before efficiently
annihilating, RQM ≳ Rχχ , then the energy deposited by
annihilations at or before this point may still be sufficient
to ignite a SN. We have included both of these constraints.
We now consider annihilations igniting SN after for-

mation of a Fermi degenerate core or a BEC. As shown in
Sec. III C, a Fermi degenerate core shrinks by capturing
additional DM and can saturate once the capture rate is of
order the annihilation rate. If this saturation occurs before
the core has a chance to shrink much below RQM, then it
does not ignite a SN. On the other hand if saturation occurs
at a number (46) much greater than the initial collapsing
number, then annihilations in the Fermi degenerate core can
ignite a SN at a numberN ≲ Nf

χχ. The energy deposited in a
trigger region λ3T and a diffusion time τdiff is

Ef
χχðNÞ ∼mχ

N2

r3
σχχvcolðrÞτdiff · min

�
1;

�
λT
r

�
3
�
;

r ∼
1

Gm3
χN1=3 : ð66Þ

Thus a shrinking Fermi degenerate core ignites a SN
through annihilations if (66) satisfies Ef

χχ ≳ Eboom (2). Of
course this assumes that N ≲ Nlife and that the core has not
yet collapsed to a BH first N ≲ Nf

Cha.
Similarly, a self-gravitating BEC that is collecting

particles from the enveloping noncondensed core will
saturate at a number (47). This highly compact BEC can
ignite a SN at any number N ≲ Nb

χχ. The energy deposited

by annihilations in the BEC within a time τdiff [or (36),
whichever is shorter] is simply

Ef
χχðNÞ ∼mχ

N2

r3
σχχvBECðrÞτdiff · min

�
1;

�
λT
r

�
3
�
;

r ∼
1

Gm3
χN

; ð67Þ

and will ignite a SN if it is satisfies Eb
χχ ≳ Eboom (2). Of

course this also assumes that the BEC has not yet collapsed
to a BH N ≲ Nb

Cha. Note that the DM annihilation cross
section must be extremely small for a shrinking BEC to
have not ignited a SN before formation of a BH: the
requirement Eb

χχðNb
ChaÞ ≳ Eboom implies cross sections as

low as σχχvBEC ≳ Eboom
M4

plτdiff
∼ 10−90 cm3=s would ignite a SN

through annihilations in the BEC.
To summarize, a collapsing DM core can ignite a SN by

a large number of rapid annihilations. These constraints are
valid regardless of the nature of the annihilation products
as long as they deposit their energy within a trigger sized
region. The resulting constraints on DM parameters are
shown in Fig. 6 (fermionic DM) and Fig. 7 (bosonic DM),
taking a fixed value of the scattering cross section
σχn ¼ 10−39 cm2. This roughly corresponds to the inter-
action strength for Z boson exchange, i.e., heavy hyper-
charged DM (or “WIMPzilla”) [63–66]. We also show the
constraint from DM-nuclei scatters igniting a SN during
core collapse at any point before DM annihilations would
have done so. Note that the particular shape of the bounded
regions in Figs. 6 and 7 results from the expressions for the
energy released in annihilations, e.g., as in (65).
For an explicit DM model σχχv is typically related to

the DM mass in a calculable way, e.g., s-wave annihilation
of hypercharged DM σχχv ∼ α22=m

2
χ , α2 is the SUð2ÞL

gauge coupling. As shown in Figs. 6 and 7, we constrain
annihilation cross sections many orders of magnitude
smaller than this naive estimate. However, this estimate
is based upon annihilations of DM its antiparticle
χχ̄ → SM, with both existing in roughly equal abundances
today. It is straightforward to imagine a scenario in which
essentially no χ̄ particles remain today, and yet χ is capable
of annihilating itself through a parametrically suppressed
interaction. To demonstrate, an explicit DM model of this
sort is hypercharged DM with a large vectorlike mass and
an additional small dimension-5 Majorana mass term. We
emphasize though that any DM candidate which can
annihilate itself through higher dimension operators may
have σχχv small enough to be constrained by our results
e.g., annihilation to SM fermions through a Planck-
suppressed cross section σχχv ∼m2

χ=M4
pl.

VI. DISCUSSION

We have studied the possibility of DM core collapse
triggering type Ia SN in sub-Chandrasekhar WDs,

FIG. 7. Constraints on bosonic DMwhich forms a DM core and
ignites a supernova through annihilations (red). For sufficiently
small σχχv the core first collapses to a black hole (blue), and is
otherwise constrained, see Fig. 5. Also shown (purple) are the
constraints on DM-nuclei scatters igniting a supernova during
core collapse before annihilations could do so.
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following up on previous work [3]. Collapse of asymmetric
DM can lead to the formation of a mini BH which ignites
a SN by the emission of Hawking radiation, and collapse
of annihilating DM can lead to large number of rapid
annihilations which also ignite a SN. Such processes allow
us to place novel constraints on DM parameters, as shown
in Figs. 4–7. These constraints improve on the limits set
by terrestrial experiments, and they are complementary to
previous considerations of DM capture in compact objects.
It is interesting to contemplate that the ignition of type Ia
SN through the evaporation of mini black holes represents
a potential observable signature of Hawking radiation.
Further, it also interesting that the extremely tiny annihi-
lation cross sections constrained in this work, which to our
knowledge has no other observable consequences, can
nonetheless be capable of igniting a SN.
The processes studied here present a number of oppor-

tunities for future work. The DM constraints presented in
this paper are based on the existence known, heavy WDs. It
would also be interesting to calculate the constraints on DM
core collapse scenarios arising from the observed galactic
SN rate—these may depend more sensitively on the time-
scale to form a core, or in the case of BH formation, the
evaporation time. In addition, we have restricted our
attention here and in [3] to DM candidates which interact
with the SM through short-range, elastic nuclear scatters.
It would be interesting to broaden our scope to relics with
qualitatively different interactions, such as inelastic scatters
or radiative processes. DM which can cool via emission of

dark radiation will be more susceptible to collapse, and is
likely to be more strongly constrained than models pos-
sessing only elastic cooling. Another particularly interest-
ing case is electrically charged particles [67] or magnetic
monopoles. Ultraheavy monopoles and antimonopoles
could be captured in a WD and subsequently annihilate,
igniting SN—we estimate that such a process can be used
to place constraints on the flux of galactic monopoles
exceeding current limits [68].
Finally, though we have not touched upon it here, there

are many puzzles in our understanding of the origin of type
Ia SN and other WD events, such as Ca-rich transients. It is
plausible (e.g., see the discussion in [3]) that DM is
responsible for a fraction of these events. To this end, it
is important to identify the distinguishing features of SN
that would originate from DM core collapse (e.g., the lack
of a stellar companion) in order to observationally test such
tantalizing possibilities.
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