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Abstract

In the first part of this thesis, we revisit a classical problem: how far does a random

walk travel in a given number of steps (of length 1, each taken along a uniformly

random direction)? We study the moments of the distribution of these distances

as well as the corresponding probability distributions. Although such random walks

are asymptotically well understood, very few exact formulas had been known; we

supplement these with explicit hypergeometric forms and unearth general structures.

Our investigation of the moments naturally leads us to consider (multiple) Mahler

measures. For several families of Mahler measures we are able to give evaluations in

terms of log-sine integrals. Therefore, and because of the connections of log-sine

integrals with number theory and mathematical physics, we study generalized log-

sine integrals and show that they evaluate in terms of the well-studied polylogarithms.

A computer algebra implementation of our results demonstrates that a large body of

results on log-sine integrals scattered over the literature is now computer-amenable.

The second part is concerned with developing specific methods for evaluating

several families of definite integrals arising in diverse contexts (such as calculations in

quantum field theories). We also review and illustrate Ramanujan’s Master Theorem

and show that it generalizes to the method of brackets, which has its roots in the

negative dimensional integration method utilized by particle physicists. We then

apply this technique to multiple integrals recently studied in a physical context.

Complementary to these symbolic methods, we present an exponentially fast algo-

rithm for numerically integrating rational functions over the real line. This algorithm

operates on the coefficients of the rational function instead of evaluating it.
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15 Positivity of Szegö’s rational function 352

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

15.2 Positivity preserving operations . . . . . . . . . . . . . . . . . . . 354

15.3 Szegö’s rational function . . . . . . . . . . . . . . . . . . . . . . . 356

15.4 On positivity of a family of rational functions . . . . . . . . . . . 360

16 A q-analog of Ljunggren’s binomial congruence 366

16.1 Introduction and notation . . . . . . . . . . . . . . . . . . . . . . 366

16.2 A bit of history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

16.3 A q-analog of Ljunggren’s congruence . . . . . . . . . . . . . . . . 369

16.4 A q-analog of Wolstenholme’s congruence . . . . . . . . . . . . . . 371

xi



17 Outlook 374

17.1 The method of brackets and similar approaches . . . . . . . . . . 374

17.2 Creative telescoping leading to divergent integrals . . . . . . . . . 387

Bibliography 392

xii



1

Chapter 1

Introduction and overview

1.1 Overview

All but the first and last chapters of this thesis correspond to a paper that either

has already appeared for publication or which has been accepted for publication.

The work presented in Chapters 2–7 originated from revisiting the classical prob-

lem of how far a planar random walk travels in a given number of steps. A summary

and introduction is given in Section 1.2. We record here an overview of these chapters:

Chapter 2: [BNSW11] Some arithmetic properties of short random walk integrals
(with Jonathan M. Borwein, Dirk Nuyens, James Wan)

published in The Ramanujan Journal, Vol. 26, Nr. 1, 2011, p. 109-132

Chapter 3: [BSW11] Three-step and four-step random walk integrals
(with Jonathan M. Borwein, James Wan)

to appear in Experimental Mathematics

Chapter 4: [BSWZ11] Densities of short uniform random walks
(with Jonathan M. Borwein, James Wan, Wadim Zudilin (appendix by Don Zagier))

to appear in Canadian Journal of Mathematics

Chapter 5: [BS11c] Special values of generalized log-sine integrals
(with Jonathan M. Borwein)

published in Proceedings of ISSAC 2011 (36th International Symposium on Symbolic and

Algebraic Computation), ACM Press, Jun 2011, p. 43-50

— received ISSAC 2011 Distinguished Student Author Award
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Chapter 6: [BS11a] Log-sine evaluations of Mahler measures
(with Jonathan M. Borwein)

to appear in Journal of the Australian Mathematical Society

Chapter 7: [BBSW12] Log-sine evaluations of Mahler measures, part II
(with David Borwein, Jonathan M. Borwein, James Wan)

to appear in Integers (Selfridge memorial volume)

Chapters 8–13 are concerned with developing specific methods for evaluating sev-

eral families of definite integrals arising in diverse contexts (such as calculations in

quantum field theories). An introduction to this second part is given in Section 1.3.

Again, we record the relevant chapters:

Chapter 8: [AEG+11] Ramanujan’s Master Theorem
(with Tewodros Amdeberhan, Ivan Gonzalez, Marshall Harrison, Victor H. Moll)

to appear in The Ramanujan Journal

Chapter 9: [GMS10] The method of brackets. Part 2: Examples and applications
(with Ivan Gonzalez, Victor H. Moll)

published in “Gems in Experimental Mathematics”, Contemporary Mathematics, Vol. 517,

2010, p. 157-171

Chapter 10: [MMMS10] A fast numerical algorithm for the integration of rational
functions
(with Dante Manna, Luis Medina, Victor H. Moll)

published in Numerische Mathematik, Vol. 115, Nr. 2, Apr 2010, p. 289-307

Chapter 11: [AMS09] Closed-form evaluation of integrals appearing in positronium
decay
(with Tewodros Amdeberhan, Victor H. Moll)

published in Journal of Mathematical Physics, Vol. 50, Nr. 10, Oct 2009, 6 p.

Chapter 12: [AEMS10] Wallis-Ramanujan-Schur-Feynman
(with Tewodros Amdeberhan, Olivier Espinosa, Victor H. Moll)

published in American Mathematical Monthly, Vol. 117, Nr. 15, Aug 2010, p. 618-632

Chapter 13: [BBS12] A sinc that sank
(with David Borwein, Jonathan M. Borwein)

to appear in American Mathematical Monthly, Vol. 119, Nr. 7, Aug-Sep 2012

Finally, this thesis includes Chapters 14, 15 and 16 which discuss work of a more

combinatorial type.



3

In Chapter 14 we study the divisibility properties of the coefficients c(n, k) defined

by

(1− k2x)−1/k =
∑
n≥0

c(n, k)xn

which generalize the central binomial coefficients c(n, 2) =
(

2n
n

)
. In particular, we

show that the coefficients are integers.

In Chapter 15 we consider the problem of deciding whether a given rational func-

tion has a power series expansion of entirely positive coefficients. By introducing an

elementary transformation that preserves such positivity we prove the positivity of

1

(1− x)(1− y) + (1− y)(1− z) + (1− z)(1− x)
,

which goes back at least to Gabor Szegö. We then consider applications of this

transformation to more general classes of rational functions.

Chapter 16 establishes a q-analog of the classical binomial congruence

(
ap

bp

)
≡
(
a

b

)
mod p3,

where p > 3 is a prime. This resolves a problem posed by George Andrews in [And99].

Chapter 14: [SMA09] The p-adic valuation of k-central binomial coefficients
(with Tewodros Amdeberhan, Victor H. Moll)

published in Acta Arithmetica, Vol. 140, 2009, p. 31-42

Chapter 15: [Str08] Positivity of Szego’s rational function
published in Advances in Applied Mathematics, Vol. 41, Issue 2, Aug 2008, p. 255-264

Chapter 16: [Str11] A q-analog of Ljunggren’s binomial congruence
published in DMTCS Proceedings: 23rd International Conference on Formal Power Series and

Algebraic Combinatorics (FPSAC), Jun 2011, p. 897-902
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1.2 Arithmetic aspects of random walks

An n-step uniform random walk starts at the origin of the plane and consists of

n steps of length 1, each taken into a uniformly random direction. The study of such

walks largely originated with Pearson more than a century ago [Pea05a]. He posed

the problem of determining the distribution of the distance from the origin after a

certain number, say n, of steps. Let Wn(s) denote the sth moment of this distance

and pn the corresponding probability density function. Starting with the integral

representation

Wn(s) =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣∣
n∑
k=1

e2πitk

∣∣∣∣∣
s

dt1 · · · dtn (1.1)

the moments are studied in detail in Chapters 2 and 3. It is shown that the even

moments have the interesting combinatorial evaluation

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (1.2)

The consequent recurrences satisfied by the even moments are lifted to functional

equations satisfied by Wn(s). In the cases n = 3 and n = 4 a more explicit study

shows that Wn(s) has a representation as a Meijer G-function. Ultimately, using

transformations of Meijer G-functions and identities from the theory of elliptic in-

tegrals, this allows us to find closed formulas for the average distances W3(1) and

W4(1) (in the latter case, as a sum of 6F5’s). Previously, only the trivial evaluation

W2(1) = 4
π

was known.

Knowledge of the pole structure of the Wn(s) and the general theory of the (distri-

butional) Mellin calculus allow us to prove in Chapter 4 that the densities pn satisfy

Fuchsian differential equations. Using a family of combinatorial identities discovered

in [DM04] (Don Zagier kindly provided his direct combinatorial proof as an appendix

to Chapter 4) we show that the singularities of pn occur at the positive integers
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n, n− 2, . . . as well as 0. Surprisingly, we find that in the cases n = 3 and n = 4 the

differential equations arise from modular forms (more precisely, in each case there is

a modular form f(τ) and a modular function g(τ) such that the function y locally

expressing f(τ) = y(g(τ)) satisfies the differential equation at hand). Moreover, we

are able to give the hypergeometric evaluation

p4(x) =
2

π2

√
16− x2

x
Re 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣(16− x2)
3

108x4

)
(1.3)

valid throughout 0 6 x 6 4; this complements the classically known expressions for

p2 and p3. Further exploiting the mentioned modularity of p4 and the Chowla-Selberg

formula we find that p4(1) is expressible as
√

5
40π4 Γ( 1

15
)Γ( 2

15
)Γ( 4

15
)Γ( 8

15
). From general

principles this gives the first residue of W5 and thus the first term in the expansion

of p5 for small argument. Based on numerical experiments, we conjecture a related

expression for the second residue. Combined, this characterizes p5 for small argument

as a particular solution to a Calabi-Yau type differential equation [AvEvSZ10].

The multiple Mahler measure, recently introduced in [KLO08], of k functions

P1, . . . , Pk (typically Laurent polynomials) in n variables is defined as

µ(P1, P2, . . . , Pk) =

∫ 1

0

· · ·
∫ 1

0

k∏
j=1

log
∣∣Pj (e2πit1 , . . . , e2πitn

)∣∣ dt1dt2 . . . dtn. (1.4)

When k = 1 this reduces to the standard (logarithmic) Mahler measure [Boy98]. The

moments of random walks Wn are related to Mahler measures: the derivatives W
(k)
n (0)

equal the multiple Mahler measure µk(1+x1+. . .+xn−1) where µk(P ) = µ(P1, . . . , Pk)

with P1, . . . , Pk = P .

A Mahler measure of similar form was studied by Sasaki [Sas10] who considered

µ(1+x+y1, 1+x+y2, . . . , 1+x+yk) and provided an evaluation of µ(1+x+y1, 1+x+y2).

We show in Chapter 6 that this Mahler measure has a natural evaluation in terms of
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log-sine integrals. Namely, if

Ls(k)
n (σ) = −

∫ σ

0

θk logn−1−k
∣∣∣∣2 sin

θ

2

∣∣∣∣ dθ (1.5)

denotes the (generalized) log-sine integral then

µ(1 + x+ y1, . . . , 1 + x+ yk) =
1

π
Lsk+1

(π
3

)
− 1

π
Lsk+1 (π) . (1.6)

In Chapters 6 and 7 we demonstrate that several other Mahler measures have values

involving generalized log-sine integrals at π, π/3 or more general arguments. Accord-

ingly, we analyze in Chapter 5 log-sine integrals and their evaluations, both explicit

and in terms of generating series. We show that log-sine integrals can be systemati-

cally evaluated in terms of polylogarithms of Nielsen type at corresponding argument.

This approach unifies (and automatizes) various results found in the literature (and

rectifies several errors; see Chapter 5 and [BS11b]). The implementation of our re-

sults in the computer algebra systems SAGE and Mathematica complements existing

computer algebra packages such as lsjk [KS05] for numerical evaluations of log-sine

integrals, or HPL [Mai06] as well as [VW05] for working with multiple polylogarithms.

These packages are used, for instance, in particle physics [DK00, KV00] where log-

sine integrals appeared in recent work on the higher-order terms in the ε-expansion

of various Feynman diagrams.
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1.3 Methods in definite integration

Many families of definite integrals can be evaluated using Ramanujan’s Master

Theorem (RMT, henceforth)

∫ ∞
0

xs−1

{
λ(0)− x

1!
λ(1) +

x2

2!
λ(2)− · · ·

}
dx = Γ(s)λ(−s). (1.7)

As an application we show in Chapter 8 that David Broadhurst’s Bessel integral rep-

resentation [Bro09] of the moments Wn(s) of random walks can be derived naturally:

Wn(s) = 2s+1−k Γ(1 + s
2
)

Γ(k − s
2
)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x) dx (1.8)

for 2k > Re s > max(−2,−n
2
). Moreover, we demonstrate that RMT can be used

to explain the method of brackets, a method for evaluating multidimensional definite

integrals first presented in [GS07] in the context of integrals arising from Feynman

diagrams. While the basic idea is the assignment of a formal symbol 〈a〉 to the

divergent integral ∫ ∞
0

xa−1 dx, (1.9)

we refer to [GM10] or Chapter 9 for a complete description of the operational rules.

The method is similar, as discussed in Section 17.1.2, to the approach of repeatedly

introducing Mellin-Barnes integral representations inside an integral but has purely

algebraic rules. This makes the method particularly interesting for implementation

in a computer algebra system, a project initiated by Karen Kohl [Koh11] in her

thesis. The price to pay for not having to care about the contours of integration

in the complex plane and keeping track of the appropriate set of residues is that

the method of brackets, in its current formulation, is heuristic in the sense that an

evaluation does not constitute rigorous proof, see Section 17.1.2. We demonstrate

the utility of the method in Chapter 9 by applying it to several integrals of physical
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interest including the loop integral (in Schwinger parametrization), also considered in

[BD91], associated to a single-loop Feynman diagram (with one independent external

momentum and one massive denominator)

∫ ∞
0

∫ ∞
0

∫ ∞
0

xa1−1
1 xa2−1

2 xa3−1
3

exp (x1m
2) exp

(
− x1x2
x1+x2+x3

s
)

(x1 + x2 + x3)D/2
dx1 dx2 dx3 (1.10)

which is evaluated in terms of hypergeometric functions in each of the regions |s/m2| <

1 and |s/m2| > 1. An advantage of the method of brackets is that it obtains both

results without the need for analytic continuation.

By using the theory of rational Landen transformations (which mimics the classical

elliptic Landen transformation [MM08a]), we devise an exponentially fast algorithm

in Chapter 10 for numerically integrating rational functions over the real line to high

precision. The algorithm defines a dynamical system on the coefficients of the rational

integrand which at each step preserves the integral on the line. The transformations

are given by explicit polynomials which depend on the degree of the input and the

desired order of the method (both of which are arbitrary). We analyze the complexity

of the algorithm and provide an implementation for Mathematica.

In Chapters 11, 12 and 13 we study specific families of definite integrals which

are briefly indicated next. In Chapter 11 we give an analytic evaluation involving the

dilogarithm function for two integrals including

∫ 1

0

log[x1 + (1− x1)y2]

(1− x1)x2 − x1(1− x2)y2
dy (1.11)

which were recently studied in the context of quantum field theories. In Chapter 12

we generalize a classical integral evaluation of Wallis to the integral

∫ ∞
0

n∏
k=1

1

x2 + q2
k

dx (1.12)
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which is evaluated as a quotient of Schur functions. Various applications are given,

including to a sum related to Feynman diagrams. Lastly, in Chapter 13 we consider

and evaluate the sinc integral

∫ ∞
−∞

n∏
j=1

sin (kj(x− aj))
x− aj

dx (1.13)

which had been posed as a Monthly problem but whose solution was subsequently

withdrawn.

1.4 Some notation

We collect here some notation which is common to Chapters 5, 6, 7 and thus

reproduced here.

The multiple polylogarithm, as studied for instance in [BBK01] and [BBG04, Ch. 3],

will be denoted by

Lia1,...,ak(z) :=
∑

n1>···>nk>0

zn1

na11 · · ·nakk
.

For our purposes, the a1, . . . , ak will usually be positive integers and a1 > 2 so that the

sum converges for all |z| 6 1. For example, Li2,1(z) =
∑∞

k=1
zk

k2

∑k−1
j=1

1
j
. In particular,

Lik(x) :=
∑∞

n=1
xn

nk
is the polylogarithm of order k and

Tik(x) :=
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)k

the related inverse tangent of order k. We use the same notation for the analytic

continuations of these functions. The usual notation will be used for repetitions so

that, for instance, Li2,{1}3(z) = Li2,1,1,1(z).
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Moreover, multiple zeta values are denoted by

ζ(a1, . . . , ak) := Lia1,...,ak(1).

Similarly, we consider the multiple Clausen functions (Cl) and multiple Glaisher func-

tions (Gl) of depth k and weight w = a1 + . . .+ ak defined as

Cla1,...,ak (θ) =

 Im Lia1,...,ak(e
iθ) if w even

Re Lia1,...,ak(e
iθ) if w odd

 , (1.14)

Gla1,...,ak (θ) =

 Re Lia1,...,ak(e
iθ) if w even

Im Lia1,...,ak(e
iθ) if w odd

 , (1.15)

in accordance with [Lew81]. Thus

Ls2 (θ) = Cl2 (θ) =
∞∑
n=1

sin(nθ)

n2
. (1.16)

As illustrated by (1.16) and later in (5.28), the Clausen and Glaisher functions al-

ternate between being cosine and sine series with the parity of the dimension. Of

particular importance will be the case of θ = π/3 which has also been considered in

[BBK01].

Finally, we recall the following Kummer-type polylogarithm, [Lew81, BBK01],

which has been exploited in [BZB08] among other places:

λn(x) := (n− 2)!
n−2∑
k=0

(−1)k

k!
Lin−k(x) logk |x|+ (−1)n

n
logn |x|, (1.17)

so that

λ1

(
1
2

)
= log 2, λ2

(
1
2

)
=

1

2
ζ(2), λ3

(
1
2

)
=

7

8
ζ(3),

and λ4

(
1
2

)
is the first to reveal the presence of Lin

(
1
2

)
.
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Our other notation and usage in Chapters 5, 6, 7 is largely consistent with that

in [Lew81] and that in the newly published [OLBC10] in which most of the requisite

material is described. Finally, a recent elaboration of what is meant when we speak

about evaluations and “closed forms” is to be found in [BC10].
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Chapter 2

Some arithmetic properties of
short random walk integrals

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[BNSW11] Some arithmetic properties of short random walk integrals
(with Jonathan M. Borwein, Dirk Nuyens, James Wan)

published in The Ramanujan Journal, Vol. 26, Nr. 1, 2011, p. 109-132

Abstract We study the moments of the distance traveled by a walk in the plane

with unit steps in random directions. While this historically interesting random walk

is well understood from a modern probabilistic point of view, our own interest is

in determining explicit closed forms for the moment functions and their arithmetic

values at integers when only a small number of steps is taken. As a consequence of a

more general evaluation, a closed form is obtained for the average distance traveled

in three steps. This evaluation, as well as its proof, rely on explicit combinatorial

properties, such as recurrence equations of the even moments (which are lifted to

functional equations). The corresponding general combinatorial and analytic features

are collected and made explicit in the case of 3 and 4 steps. Explicit hypergeometric

expressions are given for the moments of a 3-step and 4-step walk and a general

conjecture for even length walks is made.
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2.1 Introduction, history and preliminaries

We consider, for various values of s, the n-dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πixk

∣∣∣∣∣
s

dx (2.1)

which occurs in the theory of uniform random walks in the plane, where at each step

a unit-step is taken in a random direction, see Figure 2.1. As such, the integral (2.1)

expresses the s-th moment of the distance to the origin after n steps. Our interest

in these integrals is from the point of view of (symbolic) computation. In particular,

we seek explicit closed forms of the moment functions Wn(s) for small n as well as

closed form evaluations of these functions at integer arguments. Of special interest is

the case Wn(1) of the expected distance after n steps.

While the general structure of the moments and densities of the random walks

studied here is well-known from a modern probabilistic point of view (for instance,

the characteristic function of the distance after n steps is simply the Bessel function

Jn0 —a fact reflected in (2.14) and (2.28)), there has been little research on the question

of closed forms. This is exemplified by the fact that W3(1) has apparently not been

evaluated in the literature before (in contrast the case W2(1) = 4
π

is easy). As a

consequence of a more general result we show in Section 2.5 that

W3(1) =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
(2.2)

where Γ is the gamma function.

A related second motivation for our work is of a numerical nature. In fact, more

than 70 years after the problem was posed, [MFW77] remarks that for the densities

of 4, 5 and 6-steps walks, “it has remained difficult to obtain reliable values”. One

challenge lies in the difficulty of computing the involved integrals, such as (2.28)
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(a) Several 4-step walks (b) A 500-step walk

Figure 2.1: Random walks in the plane.

which is highly oscillatory, to reasonably high precision. This is not straightforward,

and so some comments on obtaining high precision numerical evaluations of Wn(s)

are given in Appendix 2.6.2. A more comprehensive study of the numerics of such

multiple-integrations is conducted in [BB11].

The term “random walk” first appears in a question by Karl Pearson in Nature in

1905 [Pea05a]. He asked for the probability density of a two-dimensional random walk

couched in the language of how far a “rambler” (hill walker) might walk. This trig-

gered a response by Lord Rayleigh [Ray05] just one week later. Rayleigh replied that

he had considered the problem earlier in the context of the composition of vibrations

of random phases, and gave the probability distribution 2x
n
e−x

2/n for large n. This

quickly leads to a good approximation for Wn(s) for large n and fixed s = 1, 2, 3, . . . .

Another week later, Pearson again wrote in Nature, see [Pea05b], to note that

G. J. Bennett had given a solution for the probability distribution for n = 3 which

can be written in terms of the complete elliptic integral of the first kind K. This

density function can be written as

p3(x) = Re

(√
x

π2
K

(√
(x+ 1)3(3− x)

16x

))
, (2.3)
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see, e.g., [Hug95] and [Pea06]. Pearson concluded that there was still great interest in

the case of small n which, as he had noted, is dramatically different from that of large

n. This is illustrated in Figure 2.2: while p8 is visually almost indistinguishable from

the smooth limiting form (shown in superimposed dotted lines) given by Rayleigh,

the densities p3, p4 and p5 have remarkable features of their own.

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) p3

1 2 3 4

0.1

0.2

0.3

0.4

0.5

(b) p4

1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(c) p5

2 4 6 8

0.05

0.10

0.15

0.20

0.25

0.30

(d) p8

Figure 2.2: Densities p3, p4, p5 and, for contrast, p8.

The results obtained here, as well as in a follow-up study in [BSW11], have been

crucial in the discovery ([BSWZ11]) of a closed form for the density p4 of the distance

traveled in 4 steps. Additionally, an improved hypergeometric evaluation of p3 is

obtained in [BSWZ11]. For the convenience of the reader, the closed forms obtained

in [BSWZ11] are:

p3(x) =
2
√

3

π

x

(3 + x2)
2F1

(
1
3
, 2

3

1

∣∣∣∣x2 (9− x2)
2

(3 + x2)3

)
, (2.4)

p4(x) =
2

π2

√
16− x2

x
Re 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣(16− x2)
3

108x4

)
, (2.5)

for 0 6 x 6 3 and 0 6 x 6 4 respectively.
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It should be noted that the progress we make here (and in [BSW11, BSWZ11])

on the question of closed forms rely on techniques, for instance analysis of Meijer

G-functions and their relationship with generalized hypergeometric series, that were

fully developed only much later in the 20th century.

We remark that much has been done in generalizing the problem posed by Pearson.

For instance, in further response to Pearson, Kluyver [Klu06] made a lovely analysis of

the cumulative distribution function of the distance traveled by a rambler in the plane

for various choices of step length. Other generalizations include allowing walks in

three dimensions (where the analysis is actually simpler, see [Wat41, §49]), confining

the walks to different kinds of lattices, or calculating whether and when the walker

would return to the origin. An excellent source of this sort of results is [Hug95].

Applications of two-dimensional random walks are numerous and well-known; for

instance, [Hug95] mentions that they may be used to model the random migration

of an organism possessing flagella; analysing the superposition of waves (e.g., from a

laser beam bouncing off an irregular surface); and vibrations of arbitrary frequencies.

The subject also finds use in Brownian motion and quantum chemistry.

We learned of the special case for s = 1 of (2.1) from the whiteboard in the

common room at the University of New South Wales. It had been written down by

Peter Donovan as a generalization of a discrete cryptographic problem, as discussed in

[Don09]. Some numerical values of Wn evaluated at integers are shown in Tables 2.1

and 2.2. One immediately notices the apparent integrality of the sequences for the

even moments—which are the moments of the squared expected distance, and where

the square root for s = 2 gives the root-mean-square distance
√
n. For n = 2, 3, 4 these

sequences were found in the Online Encyclopedia of Integer Sequences [Slo09]—the

cases n = 5, 6 are in the database as a consequence of this paper.
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n s = 2 s = 4 s = 6 s = 8 s = 10 [Slo09]
2 2 6 20 70 252 A000984

3 3 15 93 639 4653 A002893

4 4 28 256 2716 31504 A002895

5 5 45 545 7885 127905 A169714

6 6 66 996 18306 384156 A169715

Table 2.1: Wn(s) at even integers.

n s = 1 s = 3 s = 5 s = 7 s = 9
2 1.27324 3.39531 10.8650 37.2514 132.449
3 1.57460 6.45168 36.7052 241.544 1714.62
4 1.79909 10.1207 82.6515 822.273 9169.62
5 2.00816 14.2896 152.316 2037.14 31393.1
6 2.19386 18.9133 248.759 4186.19 82718.9

Table 2.2: Wn(s) at odd integers.

By numerical observation, experimentation and some sketchy arguments we quickly

conjectured and strongly believed that, for k a nonnegative integer

W3(k) = Re 3F2

(
1
2
,−k

2
,−k

2

1, 1

∣∣∣∣4) . (2.6)

The evaluation (2.2) of W3(1) can be deduced from (2.6). Based on results in Sec-

tions 2.2 and 2.3, the evaluation (2.6) is established in Section 2.5.

In Section 2.2 we observe that the even moments Wn(2k) are given by integer

sequences and study the combinatorial features of fn(k) := Wn(2k), k a nonnegative

integer. We show that there is a recurrence relation for the numbers fn(k) and confirm

an observation from Table 2.1 that the last digit in the column for s = 10 is always

n mod 10. The discovery of (2.6) was precipitated by the form of f3 given in (2.12).

In Section 2.3 some analytic results are collected, and the recursions for fn(k)

are lifted to Wn(s) by the use of Carlson’s theorem. The recursions for n = 2, 3, 4, 5

are given explicitly as an example. These recursions then give further information

regarding the pole structure of Wn(s). Plots of the analytic continuation of Wn(s) on

the negative real axis are given in Figure 2.3. Inspired by a more general combinatorial
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convolution given in Section 2.2 we conjecture, for n = 1, 2, . . ., the recursion

W2n(s)
?
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j),

which has been partially resolved in [BSW11].
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Figure 2.3: Various Wn and their analytic continuations.

2.2 The even moments and their combinatorial

features

In the case s = 2k the square root implicit in the definition (2.1) of Wn(s) dis-

appears, resulting in the fact that the even moments Wn(2k) are integers. In this

section we collect several of the combinatorial features of these moments which, while

sometimes in principle routine, provide important guidance and foundation. For in-

stance, the combinatorial expression for W3(2k) will eventually lead to the evaluation

of all integer moments W3(k) in Section 2.5. As a second example, the recurrence
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equation, in its explicit form, for W4(2k) is at the heart of the derivation of the closed

form (2.5) in [BSWZ11].

In fact, the even moments are given as sums of squares of multinomials—as is

detailed next. While this result may be readily obtained from general probabilistic

principles starting with the observation that the characteristic function of the distance

traveled in n steps is given by the Bessel function Jn0 (see Section 2.4), we prefer to

give an elementary derivation starting from the integral definition (2.1) of Wn(s).

Proposition 2.2.1. For nonnegative integers k and n,

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

.

Proof. In the spirit of the residue theorem of complex analysis, if f(x1, . . . , xn) has a

Laurent expansion around the origin then

ct f(x1, . . . , xn) =

∫
[0,1]n

f(e2πix1 , . . . , e2πixn) dx, (2.7)

where ‘ct’ denotes the operator which extracts from an expression the constant term

of its Laurent expansion. In light of (2.7), the integral definition (2.1) of Wn(s) may

be restated as

Wn(s) = ct ((x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))s/2 , (2.8)

see also Appendix 2.6.1. In the case s = 2k the right-hand side may be finitely

expanded to yield the claim: on using the multinomial theorem,

(x1+ · · ·+ xn)k (1/x1 + · · ·+ 1/xn)k

=
∑

a1+···+an=k

(
k

a1, . . . , an

)
xa11 · · ·xann

∑
b1+···+bn=k

(
k

b1, . . . , bn

)
x−b11 · · ·x−bnn ,
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and the constant term is now obtained by matching a1 = b1, . . . , an = bn.

Remark 2.2.2. In the case that s is not an even integer, the right-hand side of (2.8)

may still be expanded, say, when Re s > 0 to obtain the series evaluation

Wn(s) = ns
∑
m>0

(−1)m
(
s/2

m

) m∑
k=0

(−1)k

n2k

(
m

k

) ∑
a1+···+an=k

(
k

a1, . . . , an

)2

. (2.9)

An alternative elementary proof of this expansion is given in Appendix 2.6.1. We

include this alternative proof, which chronologically was our first one, because, as a

side-product, it yields other interesting integral evaluations. ♦

In light of Proposition 2.2.1, we consider the combinatorial sums

fn(k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (2.10)

of multinomial coefficients squared. These numbers also appear in [RS09] in the

following way: fn(k) counts the number of abelian squares of length 2k over an

alphabet with n letters (that is strings xx′ of length 2k from an alphabet with n

letters such that x′ is a permutation of x). It is not hard to see that

fn1+n2(k) =
k∑
j=0

(
k

j

)2

fn1(j) fn2(k − j), (2.11)

for two non-overlapping alphabets with n1 and n2 letters. In particular, we may use

(2.11) to obtain f1(k) = 1, f2(k) =
(

2k
k

)
, as well as

f3(k) =
k∑
j=0

(
k

j

)2(
2j

j

)
= 3F2

(
1
2
,−k,−k

1, 1

∣∣∣∣4) =

(
2k

k

)
3F2

(−k,−k,−k
1,−k + 1

2

∣∣∣∣14
)
,

(2.12)

f4(k) =
k∑
j=0

(
k

j

)2(
2j

j

)(
2(k − j)
k − j

)
=

(
2k

k

)
4F3

( 1
2
,−k,−k,−k
1, 1,−k + 1

2

∣∣∣∣1) . (2.13)
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Here and below pFq notates the generalised hypergeometric function. In general,

(2.11) can be used to write fn as a sum with at most dn/2e − 1 summation indices.

We recall a generating function for (fn(k))∞k=0 used in [BBBG08]. Let In(z) denote

the modified Bessel function of the first kind. Then

∑
k>0

fn(k)
zk

(k!)2
=

(∑
k>0

zk

(k!)2

)n

= 0F1(1; z)n = I0(2
√
z)n. (2.14)

It can be anticipated from (2.10) that, for fixed n, the sequence fn(k) will satisfy

a linear recurrence with polynomial coefficients. A procedure for constructing these

recurrences has been given in [Bar64]; in particular, that paper gives the recursions

for 3 6 n 6 6 explicitly. Moreover, an explicit general formula for the recurrences is

given in [Ver04]:

Theorem 2.2.3. For fixed n > 2, the sequence fn(k) satisfies a recurrence of order

λ = dn/2e with polynomial coefficients of degree n− 1:

∑
j>0

kn−1
∑

α1,...,αj

j∏
i=1

−αi(n+ 1− αi)
(

k − i
k − i+ 1

)αi−1
 fn(k − j) = 0. (2.15)

Here, the sum is over all sequences α1, . . . , αj such that 0 6 αi 6 n and αi+1 6 αi−2.

The recursions for n = 2, 3, 4, 5 are listed in Example 2.3.4 in Section 2.3.3, for-

mulated in terms of Wn(s) as per Theorem 2.3.3. As a consequence of Theorem 2.2.3

we obtain:

Theorem 2.2.4. For fixed n > 2, the sequence fn(k) satisfies a recurrence of order

λ = dn/2e with polynomial coefficients of degree n− 1:

cn,0(k)fn(k) + · · ·+ cn,λ(k)fn(k + λ) = 0 (2.16)



22

where

cn,0(k) = (−1)λ (n!!)2
(
k +

n

4

)n+1−2λ
λ−1∏
j=1

(k + j)2 , (2.17)

and cn,λ(k) = (k + λ)n−1. Here n!! =
∏λ−1

i=0 (n− 2i) is the double factorial.

Proof. The claim for cn,λ follows straight from (2.15). By (2.15), cn,0 is given by

cn,0(k − λ) =

[
kn−1

∑
α1,...,αλ

λ∏
i=1

−αi(n+ 1− αi)
(

k − i
k − i+ 1

)αi−1
]

(2.18)

where the sum is again over all sequences α1, . . . , αλ such that 0 6 αi 6 n and

αi+1 6 αi − 2.

If n is odd then there is only one such sequence, namely {n, n− 2, n− 4, . . .}, and

it follows that

cn,0(k − λ) = (−1)λ (n!!)2
λ−1∏
j=1

(k − j)2 (2.19)

in accordance with (2.17).

When n = 2λ is even, there are λ+1 sequences, namely α0 = {n, n−2, n−4, . . . , 2},

and αi for 1 6 i 6 λ, where αi is constructed from α0 by subtracting all elements by

1 starting from the (λ+ 1− i)th position.

Now by (2.18), we have

cn,0(k − λ) = (−1)λ

(
λ−1∏
i=1

(k − i)2

)
λ∑
j=0

(
λ∏
i=1

aji (n+ 1− aji )
)

(k − λ+ j), (2.20)

where aji denotes the ith element of aj.

We make the key observation that the sum in (2.20) is symmetric, so writing it

backwards and adding that to itself, we factor out the term involving k:

2
λ∑
j=0

(
λ∏
i=1

aji (n+ 1− aji )
)

(k − λ+ j) = (2k − λ)
λ∑
j=0

λ∏
i=1

aji (n+ 1− aji ). (2.21)
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As we know the sequences aj explicitly, the product on the right of (2.21) simplifies

to

(2λ)!

(
2j
j

)(
2λ−2j
λ−j

)(
2λ
λ

) .

Hence the sum on the right of (2.21) is

λ∑
j=0

(2λ)!

(
2j
j

)(
2λ−2j
λ−j

)(
2λ
λ

) = 22λλ!2, (2.22)

which can be verified, for instance, using the snake oil method ([Wil90]). Substituting

this into (2.20) gives (2.17) for even n.

Remark 2.2.5. For fixed k, the map n 7→ fn(k) can be given by the evaluation of a

polynomial in n of degree k. This follows from

fn(k) =
k∑
j=0

(
n

j

) ∑
a1+···+aj=k

ai>0

(
k

a1, . . . , aj

)2

, (2.23)

because the right-hand side is a linear combination (with positive coefficients only

depending on k) of the polynomials
(
n
j

)
= n(n−1)···(n−j+1)

j!
in n of degree j for j =

0, 1, . . . , k.

From (2.23) the coefficient of
(
n
k

)
is seen to be (k!)2. We therefore formally obtain

the first-order approximation Wn(s) ≈n ns/2Γ(s/2 + 1) for n going to infinity, see also

[Klu06]. In particular, Wn(1) ≈n
√
nπ/2. Similarly, the coefficient of

(
n
k−1

)
is k−1

4
(k!)2

which gives rise to the second-order approximation

(k!)2

(
n

k

)
+
k − 1

4
(k!)2

(
n

k − 1

)
= k!nk − k(k − 1)

4
k!nk−1 +O(nk−2)

of fn(k). We therefore obtain

Wn(s) ≈n ns/2−1

{(
n− 1

2

)
Γ
(s

2
+ 1
)

+ Γ
(s

2
+ 2
)
− 1

4
Γ
(s

2
+ 3
)}

,
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which is exact for s = 0, 2, 4. In particular, Wn(1) ≈n
√
nπ/2 +

√
π/n/32. More

general approximations are given in [Cra09]. ♦

Remark 2.2.6. It follows straight from (2.10) that, for primes p, fn(p) ≡ n modulo

p. Further, for k > 1, fn(k) ≡ n modulo 2. This may be derived inductively from the

recurrence (2.11) since, assuming that fn(k) ≡ n modulo 2 for some n and all k > 1,

fn+1(k) =
k∑
j=0

(
k

j

)2

fn(j) ≡ 1 +
k∑
j=1

(
k

j

)
n = 1 + n(2k − 1) ≡ n+ 1 (mod 2).

Hence for odd primes p,

fn(p) ≡ n (mod 2p). (2.24)

The congruence (2.24) also holds for p = 2 since fn(2) = (2n− 1)n, compare (2.23).

In particular, (2.24) confirms that indeed the last digit in the column for s = 10 is

always n mod 10—an observation from Table 2.1. ♦

Remark 2.2.7. The integers f3(k) (respectively f4(k)) also arise in physics, see for

instance [BBBG08], and are referred to as hexagonal (respectively diamond) lattice in-

tegers. The corresponding entries in Sloane’s online encyclopedia [Slo09] are A002893

and A002895. We recall the following formulae [BBBG08, (186)–(188)], relating these

sequences in non-obvious ways:

(∑
k>0

f3(k)(−x)k

)2

=
∑
k>0

f2(k)3 x3k

((1 + x)3(1 + 9x))k+ 1
2

=
∑
k>0

f2(k)f3(k)
(−x(1 + x)(1 + 9x))k

((1− 3x)(1 + 3x))2k+1

=
∑
k>0

f4(k)
xk

((1 + x)(1 + 9x))k+1
.
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It would be instructive to similarly engage f5(k) for which we have

f5(k) =

(
2 k

k

) k∑
j=0

(
k
j

)4(
2 k
2 j

) 3F2

(−j,−j,−j
1, 1

2
− j

∣∣∣∣14
)
,

as follows from (2.11). ♦

2.3 Analytic features of the moments

This section collects analytic features of the moments Wn(s) as a function in s. In

particular, it is shown that the recurrences for the even moments Wn(2k), described

in Section 2.2, extend to functional equations. This is deduced in the usual way from

Carlson’s theorem. Still we find it instructive to give the details, especially as the

explicit form of the functional equations and the resulting pole structures were crucial

for discovery and proof of the closed forms in the cases n = 3, 4, 5 obtained in here

and in [BSW11, BSWZ11], as was true for the results in Section 2.2.

2.3.1 Analyticity

We start with a preliminary investigation of the analyticity of Wn(s) for a given

n. This analyticity also follows from the general principle that the moment functions

of bounded random variables are always analytic in a strip of the complex plane

containing the right half-plane—but again we prefer to give a short direct proof.

Proposition 2.3.1. Wn(s) is analytic at least for Re s > 0.

Proof. Let s0 be a real number such that the integral in (2.1) converges for s = s0.

Then we claim that Wn(s) is analytic in s for Re s > s0. To this end, let s be such
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that s0 < Re s 6 s0 + λ for some real λ > 0. For any real 0 6 a 6 n,

|as| = aRe s 6 nλas0 ,

and therefore

sup
s0<Re s6s0+λ

∫
[0,1]n

∣∣∣∣∣
∣∣∣∣ n∑
k=1

e2πixk

∣∣∣∣s
∣∣∣∣∣ dx 6 nλWn(s0) <∞.

This local boundedness implies, see for instance [Mat01], that Wn(s) as defined by

the integral in (2.1) is analytic in s for Re s > s0. Since the integral clearly converges

for s = 0, the claim follows.

This result will be extended in Theorem 2.3.5 and Corollary 2.3.6.

2.3.2 n = 1 and n = 2

It follows straight from the integral definition (2.1) that W1(s) = 1. In the case

n = 2, direct integration of (2.40) with n = 2 yields

W2(s) = 2s+1

∫ 1/2

0

cos(πt)sdt =

(
s

s/2

)
, (2.25)

which may also be obtained using (2.9). In particular, W2(1) = 4/π. It may be worth

noting that neither Maple 14 nor Mathematica 7 can evaluate W2(1) if it is entered

naively in form of the defining (2.1) (or expanded as the square root of a sum of

squares), each returning the symbolic answer ‘0’.
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2.3.3 Functional equations

We may lift the recursive structure of fn, defined in Section 2.2, to Wn to a fair

degree on appealing to Carlson’s theorem [Tit39, 5.81]. We recall that a function f

is of exponential type in a region if |f(z)| 6Mec|z| for some constants M and c.

Theorem 2.3.2 (Carlson). Let f be analytic in the right half-plane Re z > 0 and of

exponential type with the additional requirement that

|f(z)| 6Med|z|

for some d < π on the imaginary axis Re z = 0. If f(k) = 0 for k = 0, 1, 2, . . . then

f(z) = 0 identically.

Theorem 2.3.3. Given that fn(k) satisfies a recurrence

cn,0(k)fn(k) + · · ·+ cn,λ(k)fn(k + λ) = 0

with polynomial coefficients cn,j(k) (see Theorem 2.2.4) then Wn(s) satisfies the cor-

responding functional equation

cn,0(s/2)Wn(s) + · · ·+ cn,λ(s/2)Wn(s+ 2λ) = 0,

for Re s > 0.

Proof. Let

Un(s) := cn,0(s)Wn(2s) + · · ·+ cn,λ(s)Wn(2s+ 2λ).

Since fn(k) = Wn(2k) by Proposition 2.2.1, Un(s) vanishes at the nonnegative integers

by assumption. Consequently, Un(s) is zero throughout the right half-plane and we

are done—once we confirm that Theorem 2.3.2 applies. By Proposition 2.3.1, Wn(s)
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is analytic for Re s > 0. Clearly, |Wn(s)| 6 nRe s. Thus

|Un(s)| 6
(
|cn,0(s)|+ |cn,1(s)|n2 + · · ·+ |cn,λ(s)|n2λ

)
n2 Re s.

In particular, Un(s) is of exponential type. Further, Un(s) is polynomially bounded

on the imaginary axis Re s = 0. Thus Un satisfies the growth conditions of Theorem

2.3.2.

Example 2.3.4. For n = 2, 3, 4, 5 we find

(s+ 2)W2(s+ 2)− 4(s+ 1)W2(s) = 0,

(s+ 4)2W3(s+ 4)− 2(5s2 + 30s+ 46)W3(s+ 2) + 9(s+ 2)2W3(s) = 0,

(s+ 4)3W4(s+ 4)− 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2) + 64(s+ 2)3W4(s) = 0,

and

(s+ 6)4W5(s+ 6)− (35(s+ 5)4 + 42(s+ 5)2 + 3)W5(s+ 4) +

(s+ 4)2(259(s+ 4)2 + 104)W5(s+ 2)− 225(s+ 4)2(s+ 2)2W5(s) = 0.

♦

We note that in each case the recursion lets us determine significant information

about the nature and position of any poles of Wn(s). We exploit this in the next

theorem for n > 3. The case n = 2 is transparent since as determined above W2(s) =(
s
s/2

)
which has simple poles at the negative odd integers.

Theorem 2.3.5. Let an integer n > 3 be given. The recursion guaranteed by Theo-

rem 2.3.3 provides an analytic continuation of Wn(s) to all of the complex plane with

poles of at most order two at certain negative integers.
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Proof. Proposition 2.3.1 proves analyticity in the right halfplane. It is clear that

the recursion given by Theorem 2.3.3 ensures an analytic continuation with poles

only possible at negative integer values compatible with the recursion. Indeed, with

λ = dn/2e we have

Wn(s) = −cn,1(s/2)Wn(s+ 2) + · · ·+ cn,λ(s/2)Wn(s+ 2λ)

cn,0(s/2)
(2.26)

with the cn,j as in (2.16). We observe that the right side of (2.26) only involves

Wn(s + 2k) for k > 1. Therefore the least negative pole can only occur at a zero of

cn,0(s/2) which is explicitly given in (2.17). We then note that the recursion forces

poles to be simple or of order two, and to be replicated as claimed.

Corollary 2.3.6. If n > 3 then Wn(s), as given by (2.1), is analytic for Re s > −2.

Proof. This follows directly from Theorem 2.3.5, the fact that cn,0(s/2) given in (2.17)

has no zero for s = −1, and the proof of Proposition 2.3.1.

In Figure 2.3, on page 18, the analytic continuations for each of W3, W4, W5, and

W6 are plotted on the real line.

Example 2.3.7. Using the recurrence given in Example 2.3.4 we find that W3(s) has

simple poles at s = −2,−4,−6, . . ., compare Figure 2.3(a). Moreover, the residue at

s = −2 is given by Res−2(W3) = 2/(
√

3π), and all other residues of W3 are rational

multiples thereof. This may be obtained from the integral representation given in

(2.29) observing that, at s a negative even integer, the residue contributions are

entirely from the first term. ♦

Example 2.3.8. Similarly, we find that W4 has double poles at −2,−4,−6, . . ., com-

pare Figure 2.3(b). With more work, or using a more sophisticated analysis as in
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[BSWZ11], it is possible to show that

lim
s→−2

(s+ 2)2W4(s) =
3

2π2
,

and in similar fashion the complete structure of W4(s) is thus accessible. ♦

Remark 2.3.9. More generally, it would appear that Theorem 2.3.5 can be extended

to show that

• for n odd Wn has simple poles at −2p for p = 1, 2, 3, . . ., while

• for n even Wn has simple poles at −2p and 2(1 − p) − n/2 for p = 1, 2, 3, . . .

which will overlap when 4|n.

This conjecture is further investigated in [BSW11]. ♦

We close this section by remarking that the knowledge about the poles of Wn for

instance reveals the asymptotic behaviour of the densities pn at 0. This is detailed

in [BSWZ11] where closed forms for the densities are investigated, with particular

emphasis on n = 3, 4, 5. It is worth noting that p5 was first proven rigorously not to

be linear on [0, 1] in [Fet63].

2.3.4 Convolution series

Our attempt to lift the convolution sum (2.11) to Wn(s) resulted in the following

conjecture:

Conjecture 2.3.10. For positive integers n and complex s,

W2n(s)
?
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (2.27)
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It is understood that the right-hand side of (2.27) refers to the analytic continu-

ation of Wn as guaranteed by Theorem 2.3.5. Conjecture 2.3.10, which is consistent

with the pole structure described in Remark 2.3.9, has been confirmed by David

Broadhurst [Bro09] using a Bessel integral representation for Wn, given in (2.28),

for n = 2, 3, 4, 5 and odd integers s < 50 to a precision of 50 digits. By (2.11) the

conjecture clearly holds for s an even positive integer. For n = 1 it is confirmed next.

Example 2.3.11. For n = 1 we obtain from (2.27) using W1(s) = 1,

W2(s) =
∑
j>0

(
s/2

j

)2

=

(
s

s/2

)

which agrees with (2.25). ♦

We remark that a partial resolution of Conjecture 2.3.10 is obtained in [BSWZ11].

2.4 Bessel integral representations

As noted in the introduction, Kluyver [Klu06] made a lovely analysis of the cu-

mulative distribution function of the distance traveled by a “rambler” in the plane

for various fixed step lengths. In particular, for our uniform walk Kluyver provides

the Bessel function representation

Pn(t) = t

∫ ∞
0

J1(xt) Jn0 (x) dx.

Thus, Wn(s) =
∫ n

0
ts pn(t) dt, where pn = P ′n. From here, Broadhurst [Bro09] obtains

Wn(s) = 2s+1−k Γ(1 + s
2
)

Γ(k − s
2
)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x) dx (2.28)

for real s and is valid as long as 2k > s > max(−2,−n
2
).
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Remark 2.4.1. For n = 3, 4, symbolic integration in Mathematica of (2.28) leads to

interesting analytic continuations [Cra09] such as

W3(s) =
1

22s+1
tan
(πs

2

)( s
s−1

2

)2

3F2

( 1
2
, 1

2
, 1

2
s+3

2
, s+3

2

∣∣∣∣14
)

+

(
s
s
2

)
3F2

(− s
2
,− s

2
,− s

2

1,− s−1
2

∣∣∣∣14
)
,

(2.29)

and

W4(s) =
1

22s
tan
(πs

2

)( s
s−1

2

)3

4F3

( 1
2
, 1

2
, 1

2
, s

2
+ 1

s+3
2
, s+3

2
, s+3

2

∣∣∣∣1)+

(
s
s
2

)
4F3

( 1
2
,− s

2
,− s

2
,− s

2

1, 1,− s−1
2

∣∣∣∣1) .
(2.30)

We note that for s = 2k = 0, 2, 4, . . . the first term in (2.29) (resp. (2.30)) is

zero and the second is a formula given in (2.12) (resp. (2.13)). Thence, one can in

principle prove (2.29) and (2.30) by applying Carlson’s theorem—after showing the

singularities at 1, 3, 5, . . . are removable. A rigorous proof, along with extensions and

more details, appears in [BSW11]. ♦

2.5 The odd moments of a three-step walk

In this section, we combine the results of the previous sections to finally prove the

hypergeometric evaluation (2.6) of the moments W3(k) in Theorem 2.5.1.

It is elementary to express the distance y of an (n + 1)-step walk conditioned on

a given distance x of an n-step walk. By a simple application of the cosine rule we

find

y2 = x2 + 1 + 2x cos(θ),
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where θ is the outside angle of the triangle with sides of lengths x, 1, and y:

\θx

yjjjjjjjjjjjjj

jjjjjjjjjjjjj 1
�����

�����

It follows that the s-th moment of an (n+1)-step walk conditioned on a given distance

x of an n-step walk is

gs(x) :=
1

π

∫ π

0

ys dθ = |x− 1|s 2F1

(
1
2
,− s

2

1

∣∣∣∣− 4x

(x− 1)2

)
. (2.31)

Here we appealed to symmetry to restrict the angle to θ ∈ [0, π). We then evaluated

the integral in hypergeometric form which, for instance, can be done with the help of

Mathematica. Observe that gs(x) does not depend on n. Since Wn+1(s) is the s-th

moment of the distance of an (n+ 1)-step walk, we obtain

Wn+1(s) =

∫ n

0

gs(x) pn(x) dx, (2.32)

where pn(x) is the density of the distance x for an n-step walk. Clearly, for the 1-step

walk we have p1(x) = δ1(x), a Dirac delta function at x = 1. It is also easily shown

that the probability density for a 2-step walk is given by p2(x) = 2(π
√

4− x2)−1 for

0 6 x 6 2 and 0 otherwise. The density p3(x) is given in (2.3).

For n = 3, based on (2.12) we define

V3(s) := 3F2

(
1
2
,− s

2
,− s

2

1, 1

∣∣∣∣4) , (2.33)

so that by Proposition 2.2.1 and (2.12), W3(2k) = V3(2k) for nonnegative integers

k. This led us to explore V3(s) more generally numerically and so to conjecture and

eventually prove the following:
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Theorem 2.5.1. For nonnegative even integers and all odd integers k:

W3(k) = Re V3(k).

Remark 2.5.2. Note that, for all complex s, the function V3(s) also satisfies the

recursion given in Example 2.3.4 for W3(s)—as is routine to prove symbolically using

for instance creative telescoping [PWZ96]. However, V3 does not satisfy the growth

conditions of Carlson’s Theorem (Theorem 2.3.2). Thus, it yields a rather nice illus-

tration that the hypotheses can fail. ♦

Proof of Theorem 2.5.1. It remains to prove the result for odd integers. Since, as

noted in Remark 2.5.2, for all complex s, the function V3(s) defined in (2.33) also

satisfies the recursion given in Example 2.3.4, it suffices to show that the values given

for s = 1 and s = −1 are correct. From (2.32), we have the following expression for

W3:

W3(s) =
2

π

∫ 2

0

gs(x)√
4− x2

dx =
2

π

∫ π/2

0

gs(2 sin(t))dt. (2.34)

For s = 1: equation (2.31), [BB98, Exercise 1c, p. 16], and Jacobi’s imaginary

transformations [BB98, Exercises 7a) & 8b), p. 73] allow us to write

π

2
g1(x) = (x+ 1)E

(
2
√
x

x+ 1

)
= Re

(
2E(x)− (1− x2)K(x)

)
(2.35)
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where K(k) =
∫ π/2

0
dt/
√

1− k2 sin2(t) and E(k) =
∫ π/2

0

√
1− k2 sin2(t) dt denote the

complete elliptic integrals of the first and second kind. Thus, from (2.34) and (2.35),

W3(1) =
4

π2
Re

∫ π/2

0

(
2E(2 sin(t))− (1− 4 sin2(t))K(2 sin(t))

)
dt

=
4

π2
Re

∫ π/2

0

∫ π/2

0

2
√

1− 4 sin2(t) sin2(r) dtdr

− 4

π2
Re

∫ π/2

0

∫ π/2

0

1− 4 sin2(t)√
1− 4 sin2(t) sin2(r)

dtdr.

Amalgamating the two last integrals and parameterizing, we consider

Q(a) :=
4

π2

∫ π/2

0

∫ π/2

0

1 + a2 sin2(t)− 2 a2 sin2(t) sin2(r)√
1− a2 sin2(t) sin2(r)

dtdr. (2.36)

We now use the binomial theorem to integrate (2.36) term-by-term for |a| < 1

and substitute 2
π

∫ π/2
0

sin2m(t) dt = (−1)m
(−1/2

m

)
throughout. Moreover, (−1)m

(−α
m

)
=

(α)m/m! where the later denotes the Pochhammer symbol. Evaluation of the conse-

quent infinite sum produces:

Q(a) =
∑
k>0

(−1)k
(−1/2

k

)(
a2k

(−1/2

k

)2

− a2k+2

(−1/2

k

)(−1/2

k + 1

)
− 2a2k+2

(−1/2

k + 1

)2
)

=
∑
k>0

(−1)ka2k

(−1/2

k

)3
1

(1− 2k)2

= 3F2

(−1
2
,−1

2
, 1

2

1, 1

∣∣∣∣a2

)
.

Analytic continuation to a = 2 yields the claimed result as per for s = 1.
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For s = −1: we similarly and more easily use (2.31) and (2.34) to derive

W3(−1) = Re
4

π2

∫ π/2

0

K(2 sin(t)) dt

= Re
4

π2

∫ π/2

0

∫ π/2

0

1√
1− 4 sin2(t) sin2(r)

dtdr = V3(−1).

Example 2.5.3. Theorem 2.5.1 allows us to establish the following equivalent ex-

pressions for W3(1):

W3(1) =
4
√

3

3

(
3F2

(−1
2
,−1

2
,−1

2

1, 1

∣∣∣∣14
)
− 1

π

)
+

√
3

24
3F2

(
1
2
, 1

2
, 1

2

2, 2

∣∣∣∣14
)

= 2
√

3
K2 (k3)

π2
+
√

3
1

K2 (k3)

=
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
.

These rely on using Legendre’s identity and several Clausen-like product formulae,

plus Legendre’s evaluation of K(k3) where k3 :=
√

3−1
2
√

2
is the third singular value as

in [BB98]. More simply but similarly, we have

W3(−1) = 2
√

3
K2 (k3)

π2
=

3

16

21/3

π4
Γ6

(
1

3

)
.

Using the recurrence presented in Example 2.3.4 it follows that similar expressions

can be given for W3 evaluated at odd integers.

In [BSW11], corresponding hypergeometric closed forms for W4 are presented. ♦
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2.6 Appendix

2.6.1 An alternative proof of the series evaluation (2.9)

We begin with:

Proposition 2.6.1. For complex s with Re s > 0,

Wn(s) = ns
∑
m>0

(−1)m
(
s/2

m

)(
2

n

)2m ∫
[0,1]n

( ∑
16i<j6n

sin2(π(xj − xi))
)m

dx. (2.37)

Proof. Start with

∣∣∣∣∣
n∑
k=1

e2πixk

∣∣∣∣∣
2

=

(
n∑
k=1

cos(2πxk)

)2

+

(
n∑
k=1

sin(2πxk)

)2

=

(∑
i<j

(
cos(2πxi) + cos(2πxj)

)2

+
(

sin(2πxi) + sin(2πxj)
)2
)
− n(n− 2)

= 4

(∑
i<j

cos2(π(xj − xi))
)
− n(n− 2)

= n2 − 4

(∑
i<j

sin2(π(xj − xi))
)
.

Therefore, noting that binomial expansion may be applied to the integrand outside a

set of n-dimensional measure zero,

Wn(s) =

∫
[0,1]n

(
n2 − 4

(∑
i<j

sin2(π(xj − xi))
))s/2

dx

= ns
∫

[0,1]n

∑
m>0

(−1)m
(
s/2

m

)(
2

n

)2m
(∑

i<j

sin2(π(xj − xi))
)m

dx.

Thus the result follows once changing the order of integration and summation is

justified. Observe that if s is real then (−1)m
(
s/2
m

)
has a fixed sign for m > s/2 and

we can apply monotone convergence. On the other hand, if s is complex then we may
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use

lim
m→∞

∣∣∣∣∣
(
s/2
m

)(
Re s/2
m

)∣∣∣∣∣ =

∣∣∣∣Γ(−Re s/2)

Γ(−s/2)

∣∣∣∣ ,
which follows from Stirling’s approximation, and apply dominated convergence using

the real case for comparison.

We next evaluate the integrals in (2.37):

Theorem 2.6.2. For nonnegative integers m,

∫
[0,1]n

(∑
i<j

sin2(π(xj − xi))
)m

dx =
(n

2

)2m
m∑
k=0

(−1)k

n2k

(
m

k

) ∑
a1+···+an=k

(
k

a1, . . . , an

)2

.

Proof. Denote the left-hand by In,m. As in the proof of Proposition 2.2.1 we note

that the claim is equivalent to asserting that 22mIn,m is the constant term of

(n2 − (x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))m.

Observe that

(n2 − (x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))m =

( ∑
16i<j6n

(
2− xi

xj
− xj
xi

))m

= (−1)m

( ∑
16i<j6n

(xj − xi)2

xixj

)m

.

The result therefore follows from the next proposition.

As before, we denote by ‘ct’ the operator which extracts from an expression the

constant term of its Laurent expansion.

Proposition 2.6.3. For any integers 1 6 i1 6= j1, . . . , im 6= jm 6 n,

∫
[0,1]n

m∏
k=1

4 sin2(π(xjk − xik)) dx = (−1)m ct
m∏
k=1

(xjk − xik)2

xikxjk
.
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Proof. We prove this by evaluating both sides independently. First, we have

LHS :=

∫
[0,1]n

m∏
k=1

4 sin2(π(xjk − xik)) dx

= (−1)m
∫

[0,1]n

m∏
k=1

(
eπi(xjk−xik ) − e−πi(xjk−xik )

)2
dx

= (−1)m
∑
a,b

(−1)
∑
k(ak+bk−2)/2

∫
[0,1]n

eπi
∑
k(ak+bk)(xjk−xik ) dx

=
∑
a,b

(−1)
∑
k(ak+bk)/2

∫
[0,1]n

cos

(
π
∑
k

(ak + bk)(xjk − xik)
)

dx

where the last two sums are over all sequences a, b ∈ {±1}m. In the last step the

summands corresponding to (a, b) and (−a,−b) have been combined.

Now note that, for a an even integer,

∫ 1

0

cos(π(ax+ b))dx =

 cos(πb) if a = 0,

0 otherwise.
(2.38)

Since ak + bk is even, we may apply (2.38) iteratively to obtain

∫
[0,1]n

cos

(
π
∑
k

(ak + bk)(xjk − xik)
)

dx =

 1 if a, b ∈ S,

0 otherwise,

where S denotes the set of sequences a, b ∈ {±1}m such that

m∑
k=1

(ak + bk)(xjk − xik) = 0

as a polynomial in x. It follows that

LHS =
∑
a,b∈S

(−1)
∑
k(ak+bk)/2 (2.39)
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On the other hand, consider

RHS := (−1)m ct
m∏
k=1

(xjk − xik)2

xikxjk
,

and observe that, by a similar argument as above,

(−1)m
m∏
k=1

(xjk − xik)2

xikxjk
=
∑
a,b

m∏
k=1

(−1)(ak+bk)/2

(
xjk
xik

)(ak+bk)/2

where the sum is again over all sequences a, b ∈ {±1}m. From here, it is straight-

forward to verify that RHS is equivalent to the expression given for LHS in (2.39).

The desired evaluation is now available. On combining Theorem 2.6.2 and Propo-

sition 2.6.1 we obtain that for Re s > 0,

Wn(s) = ns
∑
m>0

(−1)m
(
s/2

m

) m∑
k=0

(−1)k

n2k

(
m

k

) ∑
a1+···+an=k

(
k

a1, . . . , an

)2

.

This is (2.9).

Remark 2.6.4. We briefly outline the experimental genesis of the evaluation given

in Proposition 2.2.1. The sequence 22mI3,m appearing in the proof of Theorem 2.6.2

is Sloane’s, [Slo09], A093388 where a link to [Ver99] is given. That paper contains

the sum

22mI3,m = (−1)m
m∑
k=0

(
m

k

)
(−8)k

m−k∑
j=0

(
m− k
j

)3

and further mentions that 22mI3,m is therefore the coefficient of (xyz)m in

(8xyz − (x+ y)(y + z)(z + x))m.
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Observe also that 22mI2,m is the coefficient of (xy)m in

(4xy − (x+ y)(y + x))m.

It was then noted that

8xyz − (x+ y)(y + z)(z + x) = 32xyz − (x+ y + z)(xy + yz + zx)

and this line of extrapolation led to the correct conjecture, so that the next case

would involve

42wxyz − (w + x+ y + z)(wxy + xyz + yzw + zwx),

which was what we have now proven. ♦

2.6.2 Numerical evaluations

A one-dimensional reduction of the integral (2.1) may be achieved by taking pe-

riodicity into account:

Wn(s) =

∫
[0,1]n−1

∣∣∣∣∣1 +
n−1∑
k=1

e2πixk

∣∣∣∣∣
s

d(x1, . . . , xn−1). (2.40)

From here, we note that quick and rough estimates are easily obtained using the

Monte Carlo method. Moreover, since the integrand function is periodic this seems

like an invitation to use lattice sequences—a quasi-Monte Carlo method. E.g., the

lattice sequence from [CKN06] can be straightforwardly employed to calculate an

entire table in one run by keeping a running sum over different values of n and s. A

standard stochastic error estimator can then be obtained by random shifting.
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Generally, however, Broadhurst’s representation (2.28) seems to be the best avail-

able for high precision evaluations of Wn(s). We close by commenting on the special

cases n = 3, 4.

Example 2.6.5. The first high precision evaluations of W3 were performed by David

Bailey who confirmed the initially only conjectured Theorem 2.5.1 for s = 2, . . . , 7

to 175 digits. This was done on a 256-core LBNL system in roughly 15 minutes by

applying tanh-sinh integration to

W3(s) =

∫ 1

0

∫ 1

0

(
9− 4(sin2(πx) + sin2(πy) + sin2(π(x− y)))

)s/2
dydx,

which is obtained from (2.40) as in Proposition 2.6.1. More practical is the one-

dimensional form (2.34) which can deliver high precision results in minutes on a simple

laptop. For integral s, Theorem 2.5.1 allows extremely high precision evaluations. ♦

Example 2.6.6. Assuming that Conjecture 2.3.10 holds for n = 2 (for a proof, see

[BSWZ11]), Theorem 2.5.1 implies that for nonnegative integers k

W4(k)
?
= Re

∑
j>0

(
s/2

j

)2

3F2

(
1
2
,−k

2
+ j,−k

2
+ j

1, 1

∣∣∣∣4) .
This representation is very suitable for high precision evaluations of W4 since, roughly,

one correct digit is added by each term of the sum. Formula (2.30) by Crandall also

lends itself quite well for numerical work (by slightly perturbing even s for integer

arguments). ♦



43

Chapter 3

Three-step and four-step random
walk integrals

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[BSW11] Three-step and four-step random walk integrals
(with Jonathan M. Borwein, James Wan)

to appear in Experimental Mathematics

Abstract We investigate the moments of 3-step and 4-step uniform random walks

in the plane. In particular, we further analyse a formula conjectured in [BNSW11]

expressing 4-step moments in terms of 3-step moments. Diverse related results in-

cluding hypergeometric and elliptic closed forms for W4(±1) are given and two new

conjectures are recorded.

3.1 Introduction and preliminaries

Continuing research commenced in [BNSW11], for complex s, we consider the

n-dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx (3.1)
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which occurs in the theory of uniform random walks in the plane, where at each step a

unit-step is taken in a random direction. As such, the integral (3.1) expresses the s-th

moment of the distance to the origin after n steps. The study of such walks largely

originated with Pearson more than a century ago [Pea05a, Pea05b]. In his honor we

might call such integrals ramble integrals, as he posed such questions for a walker

or rambler. As discussed in [BNSW11], and illustrated further herein, such ram-

ble integrals are approachable by a mixture of analytic, combinatoric, algebraic and

probabilistic methods. They provide interesting numeric and symbolic computation

challenges. Indeed, nearly all of our results were discovered experimentally.

For n > 3, the integral (3.1) is well-defined and analytic for Re s > −2, and

admits an interesting analytic continuation to the complex plane with poles at certain

negative integers, see [BNSW11]. We shall also write Wn for these continuations. In

Figure 3.1 we show the continuations of W3 and W4 on the negative real axis. Observe

the poles of W3 and W4 at negative even integers (but note that neither function has

zeroes at negative odd integers even though the graphs may suggest otherwise).

-6 -4 -2 2

-3

-2

-1

1

2

3

4

(a) W3

-6 -4 -2 2

-3

-2

-1

1

2

3

4

(b) W4

Figure 3.1: W3, W4 analytically continued to the real line.

It is easy to determine that W1(s) = 1, and W2(s) =
(
s
s/2

)
. Furthermore, it is

proven in [BNSW11] that, for k a nonnegative integer, in terms of the generalized



45

hypergeometric function, we have

W3(k) = Re 3F2

(
1
2
,−k

2
,−k

2

1, 1

∣∣∣∣4) . (3.2)

From here, the following expressions for W3(1) can be established:

W3(1) =
4
√

3

3

(
3F2

(−1
2
,−1

2
,−1

2

1, 1

∣∣∣∣14
)
− 1

π

)
+

√
3

24
3F2

(
1
2
, 1

2
, 1

2

2, 2

∣∣∣∣14
)

(3.3)

= 2
√

3
K2 (k3)

π2
+
√

3
1

K2 (k3)
(3.4)

=
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
(3.5)

=
1

π2

(
21/3

4
β2

(
1

3

)
+ 22/3β2

(
2

3

))
, (3.6)

where K is the complete elliptic integral of the first kind, k3 :=
√

3−1
2
√

2
is the third

singular value as in [BB98], and β(x) := B(x, x) is a central Beta-function value.

More simply, but similarly,

W3(−1) = 2
√

3
K2 (k3)

π2
=

3

16

21/3

π4
Γ6

(
1

3

)
=

2
1
3

4π2
β2

(
1

3

)
. (3.7)

Using the two-term recurrence for W3 given in [BNSW11], it follows that similar

expressions can be given for W3 evaluated at any odd integer. It is one of the goals

of this paper to give similar evaluations for a 4-step walk.

For s an even positive integer, the moments Wn(s) take explicit integer values. In

fact, for integers k > 0,

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (3.8)

Based on the combinatorial properties of this evaluation, the following conjecture was

made in [BNSW11]. Note that the case n = 1 is easily resolved.
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Conjecture 3.1.1. For positive integers n and complex s,

W2n(s)
?[1]
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (3.9)

We investigate this conjecture in some detail in Section 3.4. For n = 2, in conjunc-

tion with (3.3) this leads to a very efficient computation of W4 at integers, yielding

roughly a digit per term.

3.2 Bessel integral representations

We start with the result of Kluyver [Klu06], amplified in [Wat41, §31.48] and

exploited in [BNSW11], to the effect that the probability that an n-step walk ends

up within a disc of radius α is

Pn(α) = α

∫ ∞
0

J1(αx)Jn0 (x) dx. (3.10)

From this, David Broadhurst [Bro09] obtains

Wn(s) = 2s+1−k Γ(1 + s
2
)

Γ(k − s
2
)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x) dx (3.11)

valid as long as 2k > s > −n/2. Here and below Jν(z) denotes the Bessel function

of the first kind.

Example 3.2.1 (Wn(±1)). In particular, from (3.11), for n > 2, we can write:

Wn(−1) =

∫ ∞
0

Jn0 (x) dx, Wn(1) = n

∫ ∞
0

J1(x)J0(x)n−1 dx

x
. (3.12)

♦
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Equation (3.11) enabled Broadhurst to verify Conjecture 3.1.1 for n = 2, 3, 4, 5

and odd positive s < 50 to a precision of 50 digits. A different proof of (3.11) is

outlined in Remark 3.2.3 below. In particular, for 0 < s < n/2, we have

Wn(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1Jn0 (x) dx, (3.13)

so that Wn(−s) essentially is (the analytic continuation of) the Mellin transform of

the nth power of the Bessel function J0.

Example 3.2.2. Using (3.13), the evaluations W1(s) = 1 and W2(s) =
(
s
s/2

)
translate

into

∫ ∞
0

xs−1J0(x) dx = 2s−1 Γ(s/2)

Γ(1− s/2)
,∫ ∞

0

xs−1J2
0 (x) dx =

1

2Γ(1/2)

Γ(s/2)Γ(1/2− s/2)

Γ(1− s/2)2

in the region where the left-hand side converges.

The Mellin transforms of J3
0 and J4

0 in terms of Meijer G-functions appear in the

proofs of Theorems 3.2.7 and 3.2.8. ♦

Remark 3.2.3. Here, we demonstrate how Ramanujan’s “master theorem” may be

applied to find the Bessel integral representation (3.11) in a natural way; this and

more applications of Ramanujan’s master theorem will appear in [AEG+11]. For an

alternative proof see [Bro09].

Ramanujan’s master theorem [Har78] states that, under certain conditions on the

analytic function ϕ,

∫ ∞
0

xν−1

(
∞∑
k=0

(−1)k

k!
ϕ(k)xk

)
= Γ(ν)ϕ(−ν). (3.14)
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Based on the evaluation (3.8), we have, as noted in [BNSW11], the generating

function ∑
k>0

Wn(2k)
(−x)k

(k!)2
=

(∑
k>0

(−x)k

(k!)2

)n

= J0(2
√
x)n (3.15)

for the even moments. Applying Ramanujan’s master theorem (3.14) to ϕ(k) :=

Wn(2k)/k!, we find

Γ(ν)ϕ(−ν) =

∫ ∞
0

xν−1Jn0 (2
√
x) dx. (3.16)

Upon a change of variables and setting s = 2ν,

Wn(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1Jn0 (x) dx. (3.17)

This is the case k = 0 of (3.11). The general case follows from the fact that if F (s)

is the Mellin transform of f(x), then (s− 2)(s− 4) · · · (s− 2k)F (s− 2k) is the Mellin

transform of
(
− 1
x

d
dx

)k
f(x). ♦

3.2.1 Pole structure

A very useful consequence of equation (3.13) is the following proposition.

Proposition 3.2.4 (Poles). The structure of the poles of Wn is as follows:

(a) (Reflection) For n = 3, we have explicitly for k = 0, 1, 2, . . . that

Res(−2k−2)(W3) =
2

π
√

3

W3(2k)

32k
> 0,

and the corresponding poles are simple.
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(b) For each integer n > 5, the function Wn(s) has a simple pole at −2k − 2 for

integers 0 6 k < (n− 1)/4 with residue given by

Res(−2k−2)(Wn) =
(−1)k

22k(k!)2

∫ ∞
0

x2k+1Jn0 (x) dx. (3.18)

(c) Moreover, for odd n > 5, all poles of Wn(s) are simple as soon as the first (n−1)/2

are.

In fact, we believe that for odd n, all poles of Wn(s) are simple as stated in

Conjecture 3.4.1. For individual n this may be verified as in Example 3.2.5. This was

done by the authors for n 6 45.

Proof. (a) For n = 3 it was shown in [BNSW11] that Res−2(W3) = 2/(
√

3π). This

also follows from (3.24) of Corollary 3.2.9. We remark that from [Wat41, (4)

p. 412] this is also the value of the conditional integral
∫∞

0
xJ3

0 (x) dx in accordance

with (3.18). Letting r3(k) := Res(−2k)(Wn), the explicit residue equation is

r3 (k) =
(10 k2 − 30 k + 23) r3(k − 1)− (k − 2)2r3(k − 2)

9 (k − 1)2
,

which has the asserted solution, when compared to the recursion for W3(s):

(s+ 4)2W3(s+ 4)− 2(5s2 + 30s+ 46)W3(s+ 2) + 9(s+ 2)2W3(s) = 0. (3.19)

We give another derivation in Example 3.3.4 in Section 3.3.

(b) For n > 5 we note that the integral in (3.18) is absolutely convergent since

|J0(x)| 6 1 on the real axis and J0(x) ≈
√

2/(πx) cos(x − π/4) (see [AS72,

(9.2.1)]). Since

lim
s→2k

(s− 2k)Γ(1− s/2) = 2
(−1)k

(k − 1)!
,
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the residue is as claimed by (3.17).

(c) As shown in [BNSW11] Wn, for odd n, satisfies a recursion of the form

(−1)λ (n!!)2
λ−1∏
j=1

(s+ 2j)2 Wn(s)+c1(s)Wn(s+2)+· · ·+(s+ 2λ)n−1Wn(s+2λ) = 0,

with polynomial coefficients of degree n− 1 where λ := (n+ 1)/2. From this, on

multiplying by (s+2k)(s+2k−2) · · · (s−2k+2λ) one may derive a corresponding

recursion for Res(−2k)(Wn) for k = 1, 2, . . . Inductively, this lets us establish that

the poles are simple. The argument breaks down if one of the initial values is

infinite as it is when 4|n.

Example 3.2.5 (Poles of W5). We illustrate Proposition 3.2.4 in the case n = 5. In

particular, we demonstrate how to show that all poles are indeed simple. To this end,

we start with the recursion:

(s+ 6)4W5(s+ 6)− (35(s+ 5)4 + 42(s+ 5)2 + 3)W5(s+ 4)

+ (s+ 4)2(259(s+ 4)2 + 104)W5(s+ 2) = 225(s+ 4)2(s+ 2)2W5(s).

From here,

lim
s→−2

(s+ 2)2W5(s) =
4

225
(285W5(0)− 201W5(2) + 16W5(4)) = 0

which shows that the first pole is indeed simple as is also guaranteed by Proposition

3.2.4b. Similarly,

lim
s→−4

(s+ 4)2W5(s) = − 4

225
(5W5(0)−W5(2)) = 0
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showing that the second pole is simple as well. It follows from Proposition 3.2.4c that

all poles of W5 are simple. More specifically, let r5(k) := Res(−2k)(W5). With initial

values r5(0) = 0, r5(1) and r5(2), we derive that

r5(k + 3) =
k4r5(k)− (5 + 28 k + 63 k2 + 70 k3 + 35 k4) r5(k + 1)

225(k + 1)2(k + 2)2

+
(285 + 518 k + 259 k2) r5(k + 2)

225(k + 2)2
.

♦

3.2.2 Meijer G-function representations

The Meijer G-function was introduced in 1936 by the Dutch mathematician Cor-

nelis Simon Meijer (1904-1974). It is defined, for parameter vectors a and b [AAR99],

by

Gm,n
p,q

(
a

b

∣∣∣∣x) = Gm,n
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x)
=

1

2πi

∫
L

∏m
k=1 Γ(bk − t)

∏n
k=1 Γ(1− ak + t)∏q

k=m+1 Γ(1− bk + t)
∏p

k=n+1 Γ(ak − t)
xt dt. (3.20)

In the case |x| < 1 and p = q the contour L is a loop that starts at infinity on a

line parallel to the positive real axis, encircles the poles of the Γ(bk − t) once in the

negative sense and returns to infinity on another line parallel to the positive real axis.

L is a similar contour when |x| > 1. Moreover Gp,q
m,n is analytic in each parameter; in

consequence so are the compositions arising below.

Our main tool below is the following special case of Parseval’s formula giving the

Mellin transform of a product.
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Theorem 3.2.6. Let G(s) and H(s) be the Mellin transforms of g(x) and h(x) re-

spectively. Then

∫ ∞
0

xs−1g(x)h(x) dx =
1

2πi

∫ δ+i∞

δ−i∞
G(z)H(s− z) dz (3.21)

for any real number δ in the common region of analyticity.

This leads to:

Theorem 3.2.7 (Meijer form for W3). For all complex s

W3(s) =
Γ(1 + s/2)

Γ(1/2)Γ(−s/2)
G2,1

3,3

(
1, 1, 1

1/2,−s/2,−s/2

∣∣∣∣14
)
. (3.22)

Proof. We apply Theorem 3.2.6 to J3
0 = J2

0 · J0 for s in a vertical strip. Using

Example 3.2.2 we then obtain

∫ ∞
0

xs−1J3
0 (x) dx =

1

2πi

∫ δ+i∞

δ−i∞

2s−z−2

Γ(1/2)

Γ(z/2)Γ(1/2− z/2)

Γ(1− z/2)2

Γ(s/2− z/2)

Γ(1− s/2 + z/2)
dz

=
2s

2Γ(1/2)

1

2πi

∫ δ/2+i∞

δ/2−i∞
4−t

Γ(t)Γ(1/2− t)Γ(s/2− t)
Γ(1− t)2Γ(1− s/2 + t)

dt

=
2s

2Γ(1/2)
G2,1

3,3

(
1, 1, 1

1/2, s/2, s/2

∣∣∣∣14
)

where 0 < δ < 1. The claim follows from (3.17) by analytic continuation.

Similarly we obtain:

Theorem 3.2.8 (Meijer form for W4). For all complex s with Re s > −2

W4(s) =
2s

π

Γ(1 + s/2)

Γ(−s/2)
G2,2

4,4

(
1, (1− s)/2, 1, 1

1/2,−s/2,−s/2,−s/2

∣∣∣∣1) . (3.23)
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Proof. We now apply Theorem 3.2.6 to J4
0 = J2

0 · J2
0 , again for s in a vertical strip.

Using once more Example 3.2.2, we obtain

∫ ∞
0

xs−1J4
0 (x) dx =

1

2πi

∫ δ+i∞

δ−i∞

1

4π

Γ(z/2)Γ(1/2− z/2)

Γ(1− z/2)2

Γ(s/2− z/2)Γ(1/2− s/2 + z/2)

Γ(1− s/2 + z/2)2
dz

=
1

2π
G2,2

4,4

(
1, (1 + s)/2, 1, 1

1/2, s/2, s/2, s/2

∣∣∣∣1)

where 0 < δ < 1. The claim again follows from (3.17).

We illustrate with graphs of W3,W4 in the complex plane in Figure 3.2. Note

the poles, which are white, and zeros, which are black (other complex numbers are

assigned a (non-unique) color depending on argument and modulus in such a way

that the order of poles and zeros is visible). These graphs were produced employing

the Meijer forms in their hypergeometric form as presented in the next section. In

the case n = 4, the functional equation is employed for s with Re s 6 −2.

(a) W3 (b) W4

Figure 3.2: W3 via (3.22) and W4 via (3.23) in the complex plane.
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3.2.3 Hypergeometric representations

By Slater’s theorem [Mar83, p. 57], the Meijer G-function representations for

W3(s) and W4(s) given in Theorems 3.2.7 and 3.2.8 can be expanded in terms of

generalized hypergeometric functions.

Corollary 3.2.9 (Hypergeometric forms). For s not an odd integer, we have

W3(s) =
1

22s+1
tan
(πs

2

)( s
s−1

2

)2

3F2

( 1
2
, 1

2
, 1

2
s+3

2
, s+3

2

∣∣∣∣14
)

+

(
s
s
2

)
3F2

(− s
2
,− s

2
,− s

2

1,− s−1
2

∣∣∣∣14
)
,

(3.24)

and, if also Re s > −2, we have

W4(s) =
1

22s
tan
(πs

2

)( s
s−1

2

)3

4F3

( 1
2
, 1

2
, 1

2
, s

2
+ 1

s+3
2
, s+3

2
, s+3

2

∣∣∣∣1)+

(
s
s
2

)
4F3

( 1
2
,− s

2
,− s

2
,− s

2

1, 1,− s−1
2

∣∣∣∣1) .
(3.25)

These lovely analytic continuations of W3 and W4, first found in [Cra09], can also

be obtained by symbolic integration of (3.11) in Mathematica.

Example 3.2.10. From (3.24) and taking the limit using L’Hôpital’s rule, we have

W3(−1) =
16

π3
K2

(√
3− 1

2
√

2

)
log 2 +

3

π

∞∑
n=0

(
2n
n

)3

44n

2n∑
k=1

(−1)k

k
. (3.26)

In conjunction with (3.7) we obtain

∞∑
n=0

(
2n

n

)3 ∑2n
k=1

(−1)k

k

44n
=

(
2√
3π
− 16

3π2
log 2

)
K2

(√
3− 1

2
√

2

)
. (3.27)

For comparison, (3.25) produces

W4(−1) =
4

π

∞∑
n=0

(
2n
n

)4

44n

∞∑
k=2n+1

(−1)k+1

k
.

♦
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We see that while Corollary 3.2.9 makes it easy to analyse the poles, the provably

removable singularities at odd integers are much harder to resolve explicitly [Cra09].

For W4(−1) we proceed as follows:

Theorem 3.2.11 (Hypergeometric form for W4(−1)).

W4(−1) =
π

4
7F6

( 5
4
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) . (3.28)

Proof. Using Theorem 3.2.8 we write

W4(−1) =
1

2π
G2,2

4,4

(
1, 1, 1, 1
1
2
, 1

2
, 1

2
, 1

2

∣∣∣∣1) .
Using the definition (3.20) of the Meijer G-function as a contour-integral, we see that

the corresponding integrand is

Γ(1
2
− t)2Γ(t)2

Γ(1
2

+ t)2Γ(1− t)2
xt =

Γ(1
2
− t)2Γ(t)4

Γ(1
2

+ t)2
· sin2(πt)

π2
xt, (3.29)

where we have used Γ(t)Γ(1 − t) = π
sin(πt)

. We choose the contour of integration to

enclose the poles of Γ(1
2
−t). Note then that the presence of sin2(πt) does not interfere

with the contour or the residues (for sin2(πt) = 1 at half integers). Hence we may

ignore sin2(πt) in the integrand altogether. Then the right-hand side of (3.29) is the

integrand of another Meijer G-function; thus we have shown that

G2,2
4,4

(
1, 1, 1, 1
1
2
, 1

2
, 1

2
, 1

2

∣∣∣∣1) =
1

π2
G2,4

4,4

(
1, 1, 1, 1
1
2
, 1

2
, 1

2
, 1

2

∣∣∣∣1) . (3.30)

The same argument shows that the factor of 1
π2 applies to all W4(s) when we change

from G2,2
4,4 to G2,4

4,4.
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Now, using the transformation

xαGm,n
p,q

(
a

b

∣∣∣∣x) = Gm,n
p,q

(
a + α

b + α

∣∣∣∣x) (3.31)

we deduce that

W4(−1) =
1

2π3
G2,4

4,4

(
1
2
, 1

2
, 1

2
, 1

2

0, 0, 0, 0

∣∣∣∣1) .
Finally, we appeal to Bailey’s identity [Bai32, Formula (3.4)]:

7F6

(
a, 1 + a

2 , b, c, d, e, f
a
2 , 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1 + a− f

∣∣∣∣1)
=

Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− e)Γ(1 + a− f)

Γ(1 + a)Γ(b)Γ(c)Γ(d)Γ(1 + a− b− c)Γ(1 + a− b− d)Γ(1 + a− c− d)Γ(1 + a− e− f)

×G2,4
4,4

(
e + f − a, 1− b, 1− c, 1− d

0, 1 + a− b− c− d, e− a, f − a

∣∣∣∣1) . (3.32)

The claim follows upon setting all parameters to 1/2.

An attempt to analogously apply Bailey’s identity for W4(1) fails, since its Meijer

G representation as obtained from Theorem 3.2.8 does not meet the precise form re-

quired in the formula. Nevertheless, a combination of Nesterenko’s theorem ([Nes03])

and Zudilin’s theorem ([Zud02]) gives the following result:

Theorem 3.2.12 (Hypergeometric form for W4(1)).

W4(1) =
3π

4
7F6

( 7
4
, 3

2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
3
4
, 2, 2, 2, 1, 1

∣∣∣∣1)− 3π

8
7F6

( 7
4
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
, 1

2
3
4
, 2, 2, 2, 2, 1

∣∣∣∣1) . (3.33)

Proof. We first prove a result that will allow us to use Nesterenko’s theorem, which

converts the Meijer G form of W4(1) to a triple integral. We need the following
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identities which can be readily verified:

d

dz

(
z−b1G2,2

4,4

(
a1, a2, a3, a4

b1, b2, b3, b4

∣∣∣∣z)) = −z−1−b1G2,2
4,4

(
a1, a2, a3, a4

b1 + 1, b2, b3, b4

∣∣∣∣z) (3.34)

d

dz

(
z1−a1G2,2

4,4

(
a1, a2, a3, a4

b1, b2, b3, b4

∣∣∣∣z)) = z−a1G2,2
4,4

(
a1 − 1, a2, a3, a4

b1, b2, b3, b4

∣∣∣∣z) (3.35)

Let a(z) := G2,2
4,4

(
0,1,1,1

− 1
2
, 1
2
,− 1

2
,− 1

2

∣∣z). Note that a(1) = −2πW4(1) by Theorem 3.2.8.

Applying (3.34) to a(z) and using the product rule, we get 1
2
a(1) + a′(1) = c1, where

c1 := −G2,2
4,4

(
0,1,1,1

1
2
, 1
2
,− 1

2
,− 1

2

∣∣1). Applying (3.35) and (3.31) to a(z), we obtain a′(1) = b1

where b1 := G2,2
4,4

(
− 1

2
,− 1

2
, 1
2
, 1
2

0,−1,−1,−1

∣∣1). Appealing to equation (3.65), we see that b1 = −c1.

Hence a(1) = 4c1. Converting c1 to a G2,4
4,4 as in (3.30), which finally satisfies the

conditions of Nesterenko’s theorem, we obtain:

W4(1) =
4

π3

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− y)(1− z)

(1− x)yz(1− x(1− yz))
dx dy dz.

We now make a change of variable z′ = 1− z. Writing

(z′)
1
2 = (z′)−

1
2 (1− (1− z′)) = (z′)−

1
2 − (z′)−

1
2 (1− z′)

splits the previous triple integral into two terms. Each term satisfies Zudilin’s theorem

and so can be written as a 7F6. We thence obtain the result as claimed.

The following alternative relation was first predicted by the integer relation algo-

rithm PSLQ in a computational hunt for results similar to that in Theorem 3.2.11:

Theorem 3.2.13 (Alternative hypergeometric form for W4(1)).

W4(1) =
9π

4
7F6

( 7
4
, 3

2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
3
4
, 2, 2, 2, 1, 1

∣∣∣∣1)− 2π7F6

( 5
4
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) . (3.36)
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Proof. For notational convenience, let

A :=
3π4

128
7F6

( 7
4
, 3

2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
3
4
, 2, 2, 2, 1, 1

∣∣∣∣1) ,
B :=

3π4

256
7F6

( 7
4
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
, 1

2
3
4
, 2, 2, 2, 2, 1

∣∣∣∣1) ,
C :=

π4

16
7F6

( 5
4
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) .
By (3.33), W4(1) = (32/π3)(A − B), and the truth of (3.36) is equivalent to the

evaluation W4(1) = (32/π3)(3A− C). Thus, we only need to show 2A+B − C = 0.

The triple integral for A encountered in the application of Zudilin’s theorem is

A =
1

8

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− y)

(1− x)yz(1− z)(1− x(1− yz))
dx dy dz,

and can be reduced to a one dimensional integral:

A = A1 :=

∫ 1

0

(K ′(k)− E ′(k))2

1− k2
dk,

Here, as usual, K ′(k) := K
(√

1− k2
)

and E ′(k) := E(
√

1− k2).

Happily, we may apply a non-trivial action on the exponents of x, y, z and leave

the value of the integral unchanged (see [Zud04], remark after lemma 8). We obtain:

A =
1

8

∫ 1

0

∫ 1

0

∫ 1

0

√
1− x(1− yz)

xyz(1− x)(1− y)(1− z)
dx dy dz

= A2 :=

∫ 1

0

K ′(k)E ′(k) dk.

The like integral for B can also be reduced to a one dimensional integral,

B = B2 :=

∫ 1

0

k2K ′(k)2 dk.
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But B also satisfies the conditions of Bailey’s identity and Nesterenko’s theorem, from

which we are able to produce an alternative triple integral, and reduce it to:

B = B1 :=

∫ 1

0

(K ′(k)− E ′(k))
(
E ′(k)− k2K ′(k)

) dk

1− k2
.

As for C, equation (3.57) details its evaluation, which we also record here:

C =

∫ 1

0

K ′(k)2 dk.

Now 2A+B−C = A1 +A2 +B1−C = 0, because the integrand of the later expression

is zero.

Note that the theorem gives the identity

2

∫ 1

0

K ′(k)E ′(k) dk =

∫ 1

0

(1− k2)K ′(k)2 dk, (3.37)

among others. An ensuing systematic study of the moments of products of elliptic

integrals may be found in [Wan12].

Remark 3.2.14. Note that each of the 7F6’s involved in Theorems 3.2.11, 3.2.12 and

3.2.13 can also be easily written as a sum of two 6F5’s.

Also note that the first 7F6 term in Theorem 3.2.13 satisfies the conditions of

Bailey’s identity (3.32) (with a = e = f = 3
2
, b = c = d = 1

2
):

7F6

( 7
4
, 3

2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
3
4
, 2, 2, 2, 1, 1

∣∣∣∣1) = − 16

3π4
G2,4

4,4

(
3
2
, 1

2
, 1

2
, 1

2

1, 0, 0, 0

∣∣∣∣1) . (3.38)

We can thence convert the right-hand side to a Meijer G form. On the other hand,

W4(1) = − 1

2π3
G2,4

4,4

(
0, 1, 1, 1

1
2
,−1

2
,−1

2
,−1

2

∣∣∣∣1) .
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We thus obtain the non-trivial identity:

G2,4
4,4

(
1
2
, 3

2
, 3

2
, 3

2

1, 0, 0, 0

∣∣∣∣1) = 24G2,4
4,4

(
3
2
, 1

2
, 1

2
, 1

2

1, 0, 0, 0

∣∣∣∣1)+ 8G2,4
4,4

(
1
2
, 1

2
, 1

2
, 1

2

0, 0, 0, 0

∣∣∣∣1) . (3.39)

♦

Corollary 3.2.15 (Elliptic integral representation for W4(1)). We have

W4(1) =
16

π3

∫ 1

0

(1− 3k2)K ′(k)2 dk. (3.40)

Proof. The conclusion of Theorem 3.2.13 implies (π3/16)W4(1) = C − 3B = C −

3B2.

3.3 Probabilistically inspired representations

In this section, we build on the probabilistic approach taken in Section 6 of

[BNSW11]. We may profitably view a (m + n)-step walk as a composition of an

m-step and n-step walk for m,n > 1. Different decompositions make different struc-

tures apparent.

We express the distance z of an (n+m)-step walk conditioned on a given distance

x of the first n steps as well as the distance y of the remaining m steps. Then, by the

cosine rule,

z2 = x2 + y2 + 2xy cos(θ),

where θ is the outside angle of the triangle with sides of lengths x, y, and z:

\θx

zjjjjjjjjjjjjj

jjjjjjjjjjjjj y
�����

�����
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It follows that for s > 0, the s-th moment of an (n+m)-step walk conditioned on the

distance x of the first n steps and the distance y of the remaining m steps is

gs(x, y) :=
1

π

∫ π

0

zs dθ = |x− y|s 2F1

(
1
2
,− s

2

1

∣∣∣∣− 4xy

(x− y)2

)
. (3.41)

Here we appealed to symmetry to restrict the angle to θ ∈ [0, π). We then evaluated

the integral in hypergeometric form which, for instance, can be done with the help of

Mathematica or Maple.

Remark 3.3.1 (Alternate forms for gs). Using Kummer’s quadratic transformation

[AAR99], we obtain

gs(x, y) = Re ys 2F1

(− s
2
,− s

2

1

∣∣∣∣x2

y2

)
(3.42)

for general positive x, y. This provides an analytic continuation of s 7→ gs(x, y). In

particular, we have

g−1(x, y) =
2

π
Re

1

y
K

(
x

y

)
(3.43)

and, with E the complete elliptic integral of the second kind, we have

g1(x, y) =
2

π
Re y

{
2E

(
x

y

)
−
(

1− x2

y2

)
K

(
x

y

)}
. (3.44)

This later form has various re-expressions. ♦

Denote by pn(x) the density of the distance x for an n-step walk. Since Wn+m(s)

is the s-th moment of the distance of an (n+m)-step walk, we obtain

Wn+m(s) =

∫ n

0

∫ m

0

gs(x, y) pn(x)pm(y) dy dx, (3.45)

for s > 0. Since for the 1-step walk we have p1(x) = δ1(x), this generalizes the

corresponding formula given for Wn+1(s) in [BNSW11].
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In (3.45), if n = 0, then we may take p0(x) = δ0(x), and regard the limits of

integration as from −ε and +ε, ε→ 0. Then gs = ys as the hypergeometric collapses

to 1, and we recover the basic form

Wm(s) =

∫ m

0

yspm(y) dy. (3.46)

It is also easily shown that the probability density for a 2-step walk is given by

p2(x) =
2

π
√

4− x2

for 0 6 x 6 2 and 0 otherwise.

The density p3(x) for 0 6 x 6 3 can be expressed by

p3(x) = Re

(√
x

π2
K

(√
(x+ 1)3(3− x)

16x

))
, (3.47)

see, e.g., [Pea06]. To make (3.47) more accessible we need the following cubic identity.

Proposition 3.3.2. For all 0 6 x 6 1 we have

K

(√
16x3

(3− x)3(1 + x)

)
=

3− x
3 + 3x

K

(√
16x

(3− x)(1 + x)3

)
.

Proof. Both sides satisfy the differential equation

4x2(x+3)2f(x)+(x−3)(x+1)2((x3−9x2−9x+9)f ′(x)+x(x3−x2−9x+9)f ′′(x)) = 0,

and both of their function values and derivative values agree at the origin.

Applying Jacobi’s imaginary transform [BB98, p. 73], Re K(x) = 1
x
K
(

1
x

)
, for
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x > 1 to express p3(x) as a real function over [0, 1] and [1, 3], leads to

W3(−1) =

∫ 3

0

p3(x)

x
dx =

4

π2

∫ 1

0

K
(√

16x
(3−x)(1+x)3

)
√

(3− x)(1 + x)3
dx+

1

π2

∫ 3

1

K

(√
(3−x)(1+x)3

16x

)
√
x

dx.

The change of variables x→ 3−t
1+t

in the last integral transforms it into the second

last integral. Therefore,

W3(−1) = 2

∫ 1

0

p3(x)

x
dx. (3.48)

To make sense of this more abstractly, let

σ(x) =
3− x
1 + x

, λ(x) =
(1 + x)3(3− x)

16x
.

Then for 0 < x < 3 we have σ2(x) = x and λ(x)λ(σ(x)) = 1. In consequence σ is an

involution that sends [0, 1] to [1, 3] and

p3(x) =
4x

(3− x)(x+ 1)
p3(σ(x)). (3.49)

Example 3.3.3 (Series for p3 and W3(−1)). We know that

W3(2k) =
k∑
j=0

(
k

j

)2(
2j

j

)

is the sum of squares of trinomials (see (3.8) and [BNSW11]). Using Proposition

3.3.2, we may now apply equation (184) in [BBBG08, Section 5.10] to obtain

p3(x) =
2x

π
√

3

∞∑
k=0

W3(2k)
(x

3

)2k

, (3.50)
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with radius of convergence 1. From (3.50) and (3.48) we deduce that

W3(−1) =
4

π
√

3

∞∑
k=0

W3(2k)

9k(2k + 1)

as a type of reflection formula. ♦

We can use (3.10) to deduce for all n > 4 that

pn(α) = α

∫ ∞
0

J0(t)nJ0(αt)t dt. (3.51)

Alternatively, setting φn(r) := pn(r)/(2πr), we have that for n > 2 ([Hug95])

φn(r) =
1

2π

∫ 2π

0

φn−1

(√
r2 + 1− 2r cos t

)
dt. (3.52)

The densities p3 and p4 are shown in Figure 3.3. Note that p3 has a singularity at 1

as follows from (3.47). We remark that the derivative of p4 has singularities at 0 and

4. We also record that p−4 (2) ≈ .144687 while p+
4 (2) = −∞. This can be proven by

using the large-order asymptotic expansion for Jν to estimate p′4(s) for s near 2 as a

combination of Fresnel integrals.

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2
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0.4

0.5

0.6
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0.5

Figure 3.3: The densities p3 (L) and p4 (R).

Example 3.3.4 (Poles of W3). From here we may efficiently recover the explicit

form for the residues of W3 given in Proposition 3.2.4a. Fix integers N > 2k > 0 and
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0 < α < 1. Use the series p3(x) =
∑

j>0 ajx
2j+1 in (3.50) to write

W3(s)−
∫ 3

α

p3(x)xs dx−
∫ α

0

∞∑
j=N

ajx
2j+1+s dx =

∫ α

0

N−1∑
j=0

ajx
2j+1+s dx

=
N∑
j=1

aj−1
α2j+s

2j + s
, (3.53)

and observe that both sides are holomorphic and so (3.53) holds in a neighborhood

of s = −2k. Since only the first term on the left has a pole at −2k we may deduce

that Res(−2k)(W3) = ak−1. Equivalently,

Res(−2k−2)(W3) =
2

π
√

3

W3(2k)

32k
,

which exposes an elegant reflection property. ♦

Remark 3.3.5 (W5). Using (3.45) we may express W5(s) and W6(s) as double inte-

grals, for example,

W5(−1) =
4

π4

∫ 3

0

∫ 2

0

√
x

y
√

4− y2
Re

(
K

(
x

y

))
Re

(
K

(√
(x+ 1)3(3− x)

16x

))
dy dx.

We also have an expression based on taking two 2-step walks and a 1-step walk:

W5(−1) =
8

π4

∫ 2

0

∫ 2

0

∫ π

0

Re K(
√
x2 + y2 + 2xy cos z)√

(4− x2)(4− y2)
dz dx dy

=
8

π4

∫ π
2

0

∫ π
2

0

∫ π

0

Re K
(

2
√

sin2 a+ sin2 b+ 2 sin a sin b cos c
)

dc da db,

but we have been unable to make further progress with these forms. ♦
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3.3.1 Elliptic integral representations

From (3.45), we derive

W4(s) =
2s+2

π2

∫ 1

0

∫ 1

0

gs(x, y)√
(1− x2)(1− y2)

dx dy

=
2s+2

π2

∫ π/2

0

∫ π/2

0

gs(sinu, sin v) du dv.

where s > −2. In particular, for s = −1, again using Jacobi’s imaginary transforma-

tion, we have:

W4(−1) =
4

π3
Re

∫ 1

0

∫ 1

0

K(x/y)

y
√

(1− x2)(1− y2)
dx dy (3.54)

=
8

π3

∫ 1

0

∫ 1

0

K(t)√
(1− t2y2)(1− y2)

dy dt

=
8

π3

∫ 1

0

K2(k) dk. (3.55)

The corresponding integral at s = 1 is

W4(1) =
32

π3

∫ 1

0

(k + 1)(K(k)− E(k))

k2
E

(
2
√
k

k + 1

)
dk.

Starting with Nesterenko’s theorem [Nes03] we have the following:

W4(−1) =
1

2π3

∫
[0,1]3

dxdydz√
xyz(1− x)(1− y)(1− z)(1− x(1− yz))

. (3.56)

(Such integrals are related to Beukers’ integrals, which were used in the elementary

derivation of the irrationality of ζ(3).) Upon computing the dx integral, followed by
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the change of variable k2 = yz, we have:

W4(−1) =
1

π3

∫ 1

0

∫ 1

0

K(
√

1− yz)√
yz(1− y)(1− z)

dy dz (3.57)

=
2

π3

∫ 1

0

∫ 1

k2

K(
√

1− k2)√
y(1− y)(y − k2)

dy dk

=
4

π3

∫ 1

0

K ′(k)2 dk. (3.58)

Compare this with the corresponding (3.54). In particular, appealing to Theorem

3.2.11 we derive the closed forms:

2

∫ 1

0

K(k)2 dk =

∫ 1

0

K ′(k)2 dk =
(π

2

)4

7F6

( 5
4
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
1
4
, 1, 1, 1, 1, 1

∣∣∣∣1) . (3.59)

Recalling Corollary 3.2.15 and equation (3.37) we also deduce that

W4(1) =
96

π3

∫ 1

0

E ′(k)K ′(k) dk − 8W4(−1). (3.60)

If we make a trigonometric change of variables in (3.57), we obtain

W4(−1) =
4

π3

∫ π/2

0

∫ π/2

0

K

(√
1− sin2 x sin2 y

)
dx dy. (3.61)

We may rewrite the integrand as a sum, and then interchange integration and sum-

mation to arrive at a slowly convergent representation of the same general form as in

Conjecture 3.1.1:

W4(−1) =
1

2

∞∑
n=0

(−1/2

n

)2

3F2

(
1
2
, 1

2
,−n

1, 1

∣∣∣∣1) . (3.62)

Remark 3.3.6 (Relation to Watson integrals). From the evaluation (3.7) we note

that W3(−1) equals twice the second of three triple integrals considered by Watson
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in [Wat38]:

W3(−1) =
1

π3

∫ π

0

∫ π

0

∫ π

0

dudvdw

3− cos v cosw − cosw cosu− cosu cos v
. (3.63)

This is derived in [BBG04] and various related extensions are to be found in [BBBG08].

It is not clear how to generalize this to W4(−1).

Watson’s second integral (3.63) also gives the alternative representation:

W3(−1) = π−5/2G3,2
3,3

(
1
2
, 1

2
, 1

2

0, 0, 0

∣∣∣∣4) . (3.64)

The equivalence of this and the Meijer G representation coming from Theorem 3.2.7

can be established similarly to the proof of Theorem 3.2.11 upon using the Meijer G

transformation

Gm,n
p,q

(
a

b

∣∣∣∣x) = Gn,m
q,p

(
1− b

1− a

∣∣∣∣1x
)
. (3.65)

♦

Remark 3.3.7 (Probability of return to the unit disk). By a simple geometric argu-

ment, there is a 1
3

chance of returning to the unit disk in a 2-step walk. Similarly, for

a 3-step walk, if the second step makes an angle θ with the first step, then the third

step can only vary over a range of θ to return to the unit disk (it can be parallel to

the first step, to the second step, or anywhere in between). Thus the probability of

returning to the unit disk in three steps is

1

4π2

∫ π

−π
|θ| dθ =

1

4
=

∫ 1

0

p3(x) dx.

Appealing to (3.50) we deduce that

∞∑
k=0

W3(2k)

9k(k + 1)
=

√
3π

4
.
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In fact, as Kluyver showed [Klu06], the probability of an n-step walk ending in the

unit disk is 1/(n + 1). This is easily obtained by setting α = 1 in (3.10). See also

[Ber10] for a very short proof of this fact which is not based on a Bessel integral

representation. ♦

3.4 Partial resolution of Conjecture 3.1.1

We may now investigate Conjecture 3.1.1 which is restated below for convenience.

Conjecture. For positive integers n and complex s,

W2n(s)
?[1]
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (3.66)

We can resolve this conjecture modulo a conjectured technical estimate given in

Conjecture 3.4.2. The proof outline below certainly explains Conjecture 3.1.1 by

identifying the terms of the infinite sum as natural residues.

Proof. Using (3.17) we write W2n as a Bessel integral

W2n(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1J2n
0 (x) dx.

Then we apply Theorem 3.2.6 to J2n
0 = J2n−1

0 ·J0 for s in a vertical strip. Since, again

by (3.17), we have

∫ ∞
0

xs−1J2n
0 (x) dx = 2s−1 Γ(s/2)

Γ(1− s/2)
Wn(−s)
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we obtain

W2n(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1J2n−1
0 (x) · J0(x) dx (3.67)

=
Γ(1− s/2)

Γ(s/2)

1

2πi

∫ δ+i∞

δ−i∞

1

2

Γ(z/2)Γ(s/2− z/2)

Γ(1− z/2)Γ(1− s/2 + z/2)
W2n−1(−z) dz

where 0 < δ < 1.

Observe that the integrand has poles at z = s, s+2, s+4, . . . coming from Γ(s/2−

z/2) as well as (irrelevant for current purposes) poles at z = 0,−2,−4, . . . coming

from Γ(z/2). On the other hand, the term W2n−1(−z) has at most simple poles at

z = 2, 4, 6, . . . which are cancelled by the corresponding zeros of Γ(1 − z/2). This

asserted pole structure of W2n−1 was shown in Example 3.2.5 for n = 3 and may be

shown analogously for each n = 4, 5, . . . based on Proposition 3.2.4. That this works

generally is stated as Conjecture 3.4.1 below.

Next, we determine the residue of the integrand at z = s+ 2j. Since Γ(s/2− z/2)

has a residue of −2(−1)j/j! at z = s+ 2j, the residue of the integrand is

− (−1)jΓ(s/2 + j)

(j!)2Γ(1− s/2− j)W2n−1(−(2j + s)) = − Γ(s/2)

Γ(1− s/2)

(−s/2
j

)2

W2n−1(−s− 2j).

Thus it follows that

W2n(−s) =
∑
j>0

(−s/2
j

)2

W2n−1(−s− 2j), (3.68)

which is what we want to prove, provided that the contour of the integral after (3.67)

can be closed in the right half-plane. This is Conjecture 3.4.2 below.

This proof is thus rigorous provided that the next two conjectures hold. However,

note that Conjecture 3.4.1 is easily checked for individual n. In particular, it is true

for 2n− 1 6 45.



71

Conjecture 3.4.1 (Poles of W2n−1). For each n > 1 all poles of W2n−1 are simple.

Conjecture 3.4.2 (Growth of W2n−1). For given s,

lim inf
r→∞

∫
γr

Γ(z/2)Γ(s/2− z/2)

Γ(1− z/2)Γ(1− s/2 + z/2)
W2n−1(−z) dz = 0,

where γr is a right half-circle of radius r around δ ∈ (0, 1).

Remark 3.4.3 (Other approaches to Conjecture 3.1.1). We restrict ourself to the

core case with n = 2. One can prove that both sides of the needed identity satisfy the

recursion for W4. Hence, it suffices to show that the conjecture is correct for s = ±1.

Working entirely formally with (3.11) and ignoring the restriction on s we have:

∑
j>0

(−1/2

j

)2

W3(−1− 2j) =
∞∑
j=0

(−1/2

j

)2

2−2jΓ(1
2
− j)

Γ(1
2

+ j)

∫ ∞
0

x2jJ3
0 (x) dx

=

∫ ∞
0

J3
0 (x)

∞∑
j=0

(−1/2

j

)2 Γ(1
2
− j)

Γ(1
2

+ j)

(x
2

)2j

dx

=

∫ ∞
0

J4
0 (x) dx

= W4(−1),

on appealing to Example 3.2.1, since

∞∑
j=0

(−1/2

j

)2 Γ(1
2
− j)

Γ(1
2

+ j)
x2j = J0(2x)

for x > 0. There is a corresponding manipulation for s = 1, but we cannot make

them rigorous. However, in [BSWZ11], we prove the conjecture for n = 2 and s an

integer. ♦
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Conclusion

In addition to the two new conjectures made explicit above, it would be fascinating

to obtain closed forms for any of the residues in Proposition 3.2.4 with n > 5. It would

likewise be very informative to obtain a closed form for W5(±1).
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Chapter 4

Densities of short uniform random
walks

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[BSWZ11] Densities of short uniform random walks
(with Jonathan M. Borwein, James Wan, Wadim Zudilin (appendix by Don Zagier))

to appear in Canadian Journal of Mathematics

Abstract We study the densities of uniform random walks in the plane. A special

focus is on the case of short walks with three or four steps and less completely those

with five steps. As one of the main results, we obtain a hypergeometric representation

of the density for four steps, which complements the classical elliptic representation

in the case of three steps. It appears unrealistic to expect similar results for more

than five steps. New results are also presented concerning the moments of uniform

random walks and, in particular, their derivatives. Relations with Mahler measures

are discussed.

4.1 Introduction

An n-step uniform random walk is a walk in the plane that starts at the origin

and consists of n steps of length 1 each taken into a uniformly random direction.
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The study of such walks largely originated with Pearson more than a century ago

[Pea05a, Pea05b, Pea06] who posed the problem of determining the distribution of

the distance from the origin after a certain number of steps. In this paper, we study

the (radial) densities pn of the distance travelled in n steps. This continues research

commenced in [BNSW11, BSW11] where the focus was on the moments of these

distributions:

Wn(s) :=

∫ n

0

pn(t)ts dt.

The densities for walks of up to 8 steps are depicted in Figure 4.1. As established

by Lord Rayleigh [Ray05], pn quickly approaches the probability density 2x
n
e−x

2/n for

large n. This limiting density is superimposed in Figure 4.1 for n > 5.
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Figure 4.1: Densities pn with the limiting behaviour superimposed for n > 5.

Closed forms were only known in the cases n = 2 and n = 3. The evaluation, for

0 6 x 6 2,

p2(x) =
2

π
√

4− x2
(4.1)
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is elementary. On the other hand, the density p3(x) for 0 6 x 6 3 can be expressed

in terms of elliptic integrals by

p3(x) = Re

(√
x

π2
K

(√
(x+ 1)3(3− x)

16x

))
, (4.2)

see, e.g., [Pea06]. One of the main results of this paper is a closed form evaluation of

p4 as a hypergeometric function given in Theorem 4.4.9. In (4.20) we also provide a

single hypergeometric closed form for p3 which, in contrast to (4.2), is real and valid

on all of [0, 3]. For convenience, we list these two closed forms here:

p3(x) =
2
√

3

π

x

(3 + x2)
2F1

(
1
3
, 2

3

1

∣∣∣∣x2 (9− x2)
2

(3 + x2)3

)
, (4.3)

p4(x) =
2

π2

√
16− x2

x
Re 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣(16− x2)
3

108x4

)
. (4.4)

We note that while Maple handled these well to high precision, Mathematica strug-

gled, especially with the analytic continuation of the 3F2 when the argument is greater

than 1.

A striking feature of the 3- and 4-step random walk densities is their modularity.

It is this circumstance which not only allows us to express them via hypergeometric

series, but also makes them a remarkable object of mathematical study.

This paper is structured as follows: In Section 4.2 we give general results for

the densities pn and prove for instance that they satisfy certain linear differential

equations. In Sections 4.3, 4.4, and 4.5 we provide special results for p3, p4, and p5

respectively. Particular interest is taken in the behaviour near the points where the

densities fail to be smooth. In Section 4.6 we study the derivatives of the moment

function and make a connection to multidimensional Mahler measures. Finally in

Section 4.7 we provide some related new evaluations of moments and so resolve a

central case of an earlier conjecture on convolutions of moments in [BSW11].
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The amazing story of the appearance of Theorem 4.2.7 is worth mentioning here.

The theorem was a conjecture in an earlier version of this manuscript, and one of the

present authors communicated it to D. Zagier. That author was surprised to learn

that Zagier had already been asked for a proof of exactly the same identities a little

earlier, by P. Djakov and B. Mityagin.

Those authors had in fact proved the theorem already in 2004 (see [DM04, Theo-

rem 4.1] and [DM07, Theorem 8]) during their study of the asymptotics of the spectral

gaps of a Schrödinger operator with a two-term potential — their proof was indirect,

so that we should never have come across the identities without the accident of ask-

ing the same person the same question! Djakov and Mityagin asked Zagier about the

possibility of a direct proof of their identities (the subject of Theorem 4.2.7), and he

gave a very neat and purely combinatorial answer. It is this proof which is herein

presented in the Appendix.

We close this introduction with a historical remark illustrating the fascination

arising from these densities and their curious geometric features. H. Fettis devotes

the entire paper [Fet63] to proving that p5 is not linear on the initial interval [0, 1] as

ruminated upon by Pearson [Pea06]. This will be explained in Section 4.5.

4.2 The densities pn

It is a classical result of Kluyver [Klu06] that pn has the following Bessel integral

representation:

pn(x) =

∫ ∞
0

xtJ0(xt)Jn0 (t) dt. (4.5)

Here Jν is the Bessel function of the first kind of order ν.

Remark 4.2.1. Equation (4.5) naturally generalizes to the case of nonuniform step

lengths. In particular, for n = 2 and step lengths a and b we record (see [Wat41,
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p. 411] or [Hug95, 2.3.2]; the result is attributed to Sonine) that the corresponding

density is

p2(x; a, b) =

∫ ∞
0

xtJ0(xt)J0(at)J0(bt) dt

=
2x

π
√

((a+ b)2 − x2)(x2 − (a− b)2)
(4.6)

for |a− b| 6 x 6 a+ b and p2(x; a, b) = 0 otherwise. Observe how (4.6) specializes to

(4.1) in the case a = b = 1.

In the case n = 3 the density p3(x; a, b, c) has been evaluated by Nicholson [Wat41,

p. 414] in terms of elliptic integrals directly generalizing (4.2). The corresponding

extensions for four and more variables appear much less accessible. ♦

It is visually clear from the graphs in Figure 4.1 that pn is getting smoother for

increasing n. This can be made precise from (4.5) using the asymptotic formula for

J0 for large arguments and dominated convergence:

Theorem 4.2.2. For each integer n > 0, the density pn+4 is bn/2c times continuously

differentiable.

On the other hand, we note from Figure 4.1 that the only points preventing pn

from being smooth appear to be integers. This will be made precise in Theorem 4.2.4.

To this end, we recall a few things about the s-th moments Wn(s) of the density

pn which are given by

Wn(s) =

∫ ∞
0

xspn(x) dx =

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx. (4.7)

Starting with the right-hand side, these moments had been investigated in [BNSW11,

BSW11]. There it was shown that Wn(s) admits an analytic continuation to all of
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the complex plane with poles of at most order two at certain negative integers. In

particular, W3(s) has simple poles at s = −2,−4,−6, . . . and W4(s) has double poles

at these integers [BNSW11, Thm. 6, Ex. 2 & 3].

Moreover, from the combinatorial evaluation

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

(4.8)

for integers k > 0 it followed that Wn(s) satisfies a functional equation, as in

[BNSW11, Ex. 1], coming from the inevitable recursion that exists for the right-

hand side of (4.8) . For instance,

(s+ 4)2W3(s+ 4)− 2(5s2 + 30s+ 46)W3(s+ 2) + 9(s+ 2)2W3(s) = 0,

and equation (4.9) below.

The first part of equation (4.7) can be rephrased as saying that Wn(s − 1) is

the Mellin transform of pn ([ML86]). We denote this by Wn(s − 1) = M [pn; s].

Conversely, the density pn is the inverse Mellin transform of Wn(s − 1). We intend

to exploit this relation as detailed for n = 4 in the following example.

Example 4.2.3 (Mellin transforms). For n = 4, the moments W4(s) satisfy the

functional equation

(s+ 4)3W4(s+ 4)− 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2) + 64(s+ 2)3W4(s) = 0. (4.9)

Recall the following rules for the Mellin transform: if F (s) = M [f ; s] then in the

appropriate strips of convergence

• M [xµf(x); s] = F (s+ µ),

• M [Dxf(x); s] = −(s− 1)F (s− 1).
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Here, and below, Dx denotes differentiation with respect to x, and, for the second

rule to be true, we have to assume, for instance, that f is continuously differentiable.

Thus, purely formally, we can translate the functional equation (4.9) of W4 into

the differential equation A4 · p4(x) = 0 where A4 is the operator

A4 = x4(θ + 1)3 − 4x2θ(5θ2 + 3) + 64(θ − 1)3 (4.10)

= (x− 4)(x− 2)x3(x+ 2)(x+ 4)D3
x + 6x4

(
x2 − 10

)
D2
x (4.11)

+ x
(
7x4 − 32x2 + 64

)
Dx +

(
x2 − 8

) (
x2 + 8

)
.

Here θ = xDx. However, it should be noted that p4 is not continuously differentiable.

Moreover, p4(x) is approximated by a constant multiple of
√

4− x as x → 4− (see

Theorem 4.4.1) so that the second derivative of p4 is not even locally integrable. In

particular, it does not have a Mellin transform in the classical sense. ♦

Theorem 4.2.4. Let an integer n > 1 be given.

• The density pn satisfies a differential equation of order n− 1.

• If n is even (respectively odd) then pn is real analytic except at 0 and the even

(respectively odd) integers m ≤ n.

Proof. As illustrated for p4 in Example 4.2.3, we formally use the Mellin transform

method to translate the functional equation of Wn into a differential equation An ·

y(x) = 0. Since pn is locally integrable and compactly supported, it has a Mellin

transform in the distributional sense as detailed for instance in [ML86]. It follows

rigorously that pn solves An · y(x) = 0 in a distributional sense. In other words, pn

is a weak solution of this differential equation. The degree of this equation is n − 1

because the functional equation satisfied by Wn has coefficients of degree n − 1 as

shown in [BNSW11, Thm. 1].
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The leading coefficient of the differential equation (in terms of Dx as in (4.11))

turns out to be

xn−1
∏

2|(m−n)

(x2 −m2) (4.12)

where the product is over the even or odd integers 1 ≤ m ≤ n depending on whether

n is even or odd. This is discussed below in Section 4.2.1.

Thus the leading coefficient of the differential equation is nonzero on [0, n] except

for 0 and the even or odd integers already mentioned. On each interval not containing

these points it follows, as described for instance in [Hör89, Cor. 3.1.6], that pn is

in fact a classical solution of the differential equation. Moreover the analyticity of

the coefficients, which are polynomials in our case, implies that pn is piecewise real

analytic as claimed.

Remark 4.2.5. It is one of the basic properties of the Mellin transform, see for

instance [FS09, Appendix B.7], that the asymptotic behaviour of a function at zero is

determined by the poles of its Mellin transform which lie to the left of the fundamental

strip. It is shown in [BNSW11] that the poles of Wn(s) occur at specific negative

integers and are at most of second order. This translates into the fact that pn has an

expansion at 0 as a power series with additional logarithmic terms in the presence of

double poles. This is made explicit in the case of p4 in Example 4.4.3.

4.2.1 An explicit recursion

We close this section by providing details for the claim made in (4.12). Recall

that the even moments fn(k) := Wn(2k) satisfy a recurrence of order λ := dn/2e with

polynomial coefficients of degree n− 1 (see [BNSW11]). An entirely explicit formula

for this recurrence is given in [Ver04]:
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Theorem 4.2.6.

∑
j>0

kn+1
∑

α1,...,αj

j∏
i=1

(−αi)(n+ 1− αi)
(

k − i
k − i+ 1

)αi−1
 fn(k − j) = 0 (4.13)

where the sum is over all sequences α1, . . . , αj such that 0 6 αi 6 n and αi+1 6 αi−2.

Observe that (4.12) is easily checked for each fixed n by applying Theorem 4.2.6.

We explicitly checked the cases n 6 1000 (using a recursive formulation of Theorem

4.2.6 from [Ver04]) while only using this statement for n 6 5 in this paper. The fact

that (4.12) is true in general is recorded and made more explicit in Theorem 4.2.7

below.

For fixed n, write the recurrence for fn(k) in the form
∑n−1

j=0 k
jqj(K) where qj

are polynomials and K is the shift k → k + 1. Then qn−1 is the characteristic

polynomial of this recurrence, and, by the rules outlined in Example 4.2.3, we find

that the differential equation satisfied by pn(x) is of the form qn−1(x2)θn−1 + · · · ,

where θ = xDx and the dots indicate terms of lower order in θ.

We claim that the characteristic polynomial of the recurrence (4.13) satisfied by

fn(k) is
∏

2|(m−n)(x − m2) where the product is over the integers 1 ≤ m ≤ n such

that m ≡ n modulo 2. This implies (4.12). By Theorem 4.2.6 the characteristic

polynomial is
λ∑
j=0

 ∑
α1,...,αj

j∏
i=1

(−αi)(n+ 1− αi)

xλ−j (4.14)

where λ = dn/2e and the sum is again over all sequences α1, . . . , αj such that 0 6

αi 6 n and αi+1 6 αi − 2. The claimed evaluation is thus equivalent to the following

identity, first proven by P. Djakov and B. Mityagin [DM04, DM07]. Zagier’s more

direct and purely combinatorial proof is given in the Appendix.
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Theorem 4.2.7. For all integers n, j > 1,

∑
06m1,...,mj<n/2

mi<mi+1

j∏
i=1

(n− 2mi)
2 =

∑
16α1,...,αj6n
αi6αi+1−2

j∏
i=1

αi(n+ 1− αi). (4.15)

4.3 The density p3

The elliptic integral evaluation (4.2) of p3 is very suitable to extract information

about the features of p3 exposed in Figure 4.1(a). It follows, for instance, that p3 has

a singularity at 1. Moreover, using the known asymptotics for K(x), we may deduce

that the singularity is of the form

p3(x) =
3

2π2
log

(
4

|x− 1|

)
+O(1) (4.16)

as x→ 1.

We also recall from [BSW11, Ex. 5] that p3 has the expansion, valid for 0 6 x 6 1,

p3(x) =
2x

π
√

3

∞∑
k=0

W3(2k)
(x

3

)2k

(4.17)

where

W3(2k) =
k∑
j=0

(
k

j

)2(
2j

j

)
(4.18)

is the sum of squares of trinomials. Moreover, we have from [BSW11, Eqn. 29] the

functional relation

p3(x) =
4x

(3− x)(x+ 1)
p3

(
3− x
1 + x

)
(4.19)

so that (4.17) determines p3 completely and also makes apparent the behaviour at 3.

We close this section with two more alternative expressions for p3.
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Example 4.3.1 (Hypergeometric form for p3). Using the techniques in [CZ10] we

can deduce from (4.17) that

p3(x) =
2
√

3x

π (3 + x2)
2F1

(
1

3
,
2

3
; 1;

x2 (9− x2)
2

(3 + x2)3

)
(4.20)

which is found in a similar but simpler way than the hypergeometric form of p4 given

in Theorem 4.4.9. Once obtained, this identity is easily proven using the differential

equation from Theorem 4.2.4 satisfied by p3. From (4.20) we see, for example, that

p3(
√

3)2 = 3
2π2W3(−1). ♦

Example 4.3.2 (Iterative form for p3). The expression (4.20) can be interpreted in

terms of the cubic AGM, AG3, see [BB91], as follows. Recall that AG3(a, b) is the

limit of iterating

an+1 =
an + 2bn

3
, bn+1 = 3

√
bn

(
a2
n + anbn + b2

n

3

)
,

beginning with a0 = a and b0 = b. The iterations converge cubically, thus allowing

for very efficient high-precision evaluation. On the other hand,

1

AG3(1, s)
= 2F1

(
1

3
,
2

3
; 1; 1− s3

)

so that in consequence of (4.20), for 0 6 x 6 3,

p3(x) =
2
√

3

π

x

AG3(3 + x2, 3 |1− x2|2/3)
. (4.21)

Note that p3(3) =
√

3
2π

is a direct consequence of the final formula.

Finally we remark that the cubic AGM also makes an appearance in the case

n = 4. We just mention that the modular properties of p4 recorded in Remark 4.4.11
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can be stated in terms of the theta functions

b(τ) =
η(τ)3

η(3τ)
, c(τ) = 3

η(3τ)3

η(τ)
(4.22)

where η is the Dedekind eta function defined in (4.42). For more information and

proper definitions of the functions b, c as well as a, which is related by a3 = b3 +c3, we

refer to [BBG94]. Ultimately we are hopeful that, in search for an analogue of (4.19)

for p4, this may lead to an algebraic relation between algebraically related arguments

of p4. ♦

4.4 The density p4

The densities pn are recursively related. As in [Hug95], setting φn(x) = pn(x)/(2πx),

we have that for integers n > 2

φn(x) =
1

2π

∫ 2π

0

φn−1

(√
x2 − 2x cosα + 1

)
dα. (4.23)

We use this recursive relation to get some quantitative information about the

behaviour of p4 at x = 4.

Theorem 4.4.1. As x→ 4−,

p4(x) =

√
2

π2

√
4− x− 3

√
2

16π2
(4− x)3/2 +

23
√

2

512π2
(4− x)5/2 +O

(
(4− x)7/2

)
.

Proof. Set y =
√
x2 − 2x cosα + 1. For 2 < x < 4,

φ4(x) =
1

π

∫ π

0

φ3(y) dα =
1

π

∫ arccos(x
2−8
2x

)

0

φ3(y) dα
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since φ3 is only supported on [0, 3]. Note that φ3(y) is continuous and bounded in the

domain of integration. By the Leibniz integral rule, we can thus differentiate under

the integral sign to obtain

φ′4(x) = − 1

π

(x2 + 8)φ3(3)

x
√

(16− x2)(x2 − 4)
+

1

π

∫ arccos(x
2−8
2x

)

0

(x− cos(α))
φ′3(y)

y
dα. (4.24)

This shows that φ′4, and hence p′4, have a singularity at x = 4. More specifically,

φ′4(x) = − 1

8
√

2π3
√

4− x
+O(1) as x→ 4−.

Here, we used that φ3(3) =
√

3
12π2 . It follows that

p′4(x) = − 1√
2π2
√

4− x
+O(1)

which, upon integration, is the claim to first order. Differentiating (4.24) twice more

proves the claim.

Remark 4.4.2. The situation for the singularity at x = 2+ is more complicated since

in (4.24) both the integral (via the logarithmic singularity of φ3 at 1, see (4.16)) and

the boundary term contribute. Numerically, we find, as x→ 2+,

p′4(x) = − 2

π2
√
x− 2

+O(1).

On the other hand, the derivative of p4 at 2 from the left is given by

p′4(2−) =

√
3

π
3F2

(−1
2
, 1

3
, 2

3

1, 1

∣∣∣∣1)− 2

3
p4(2).

These observations can be proven in hindsight from Theorem 4.4.7. ♦
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We now turn to the behaviour of p4 at zero which we derive from the pole structure

of W4 as described in Remark 4.2.5.

-6 -4 -2 2

-3

-2

-1

1

2

3

4

(a) W4

-6 -4 -2 2

-3

-2

-1

1

2

3

4

(b) W5

Figure 4.2: W4 and W5 analytically continued to the real line.

Example 4.4.3. From [BSW11], we know that W4 has a pole of order 2 at −2 as

illustrated in Figure 4.2(a). More specifically, results in Section 4.6 give

W4(s) =
3

2π2

1

(s+ 2)2
+

9

2π2
log(2)

1

s+ 2
+O(1)

as s→ −2. It therefore follows that

p4(x) = − 3

2π2
x log(x) +

9

2π2
log(2)x+O(x3)

as x→ 0. ♦

More generally, W4 has poles of order 2 at −2k for k a positive integer. Define

s4,k and r4,k by

W4(s) =
s4,k−1

(s+ 2k)2
+
r4,k−1

s+ 2k
+O(1) (4.25)

as s→ −2k. We thus obtain that, as x→ 0+,

p4(x) =
K−1∑
k=0

x2k+1 (r4,k − s4,k log(x)) +O(x2K+1).



87

In fact, knowing that p4 solves the linear Fuchsian differential equation (4.10) with a

regular singularity at 0 we may conclude:

Theorem 4.4.4. For small values x > 0,

p4(x) =
∞∑
k=0

(r4,k − s4,k log(x)) x2k+1. (4.26)

Note that

s4,k =
3

2π2

W4(2k)

82k

as the two sequences satisfy the same recurrence and initial conditions. The numbers

W4(2k) are also known as the Domb numbers ([BBBG08]), and their generating

function in hypergeometric form is given in [Rog09] and has been further studied in

[CZ10]. We thus have

∞∑
k=0

s4,k x
2k+1 =

6x

π2 (4− x2)
3F2

(
1
3
, 1

2
, 2

3

1, 1

∣∣∣∣ 108x2

(x2 − 4)3

)
(4.27)

which is readily verified to be an analytic solution to the differential equation satisfied

by p4.

Remark 4.4.5. For future use, we note that (4.27) can also be written as

∞∑
k=0

s4,k x
2k+1 =

24x

π2 (16− x2)
3F2

(
1
3
, 1

2
, 2

3

1, 1

∣∣∣∣ 108x4

(16− x2)3

)
(4.28)

which follows from the transformation

(1− 4x)3F2

(
1
3
, 1

2
, 2

3

1, 1

∣∣∣∣− 108x

(1− 16x)3

)
= (1− 16x)3F2

(
1
3
, 1

2
, 2

3

1, 1

∣∣∣∣ 108x2

(1− 4x)3

)
(4.29)

given in [CZ10, (3.1)]. ♦
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On the other hand, as a consequence of (4.25) and the functional equation (4.9)

satisfied by W4, the residues r4,k can be obtained from the recurrence relation

128k3r4,k = 4(2k − 1)(5k2 − 5k + 2)r4,k−1 − 2(k − 1)3r4,k−2

+ 3
(
64k2s4,k − (20k2 − 20k + 6)s4,k−1 + (k − 1)2s4,k−2

)
(4.30)

with r4,−1 = 0 and r4,0 = 9
2π2 log(2).

Remark 4.4.6. In fact, before realizing the connection between the Mellin transform

and the behaviour of p4 at 0, we empirically found that p4 on (0, 2) should be of the

form r(x) − s(x) log(x) where a and r are odd and analytic. We then numerically

determined the coefficients and observed the relation with the residues of W4 as given

in Theorem 4.4.4. ♦

The differential equation for p4 has a regular singularity at 0. A basis of solutions

at 0 can therefore be obtained via the Frobenius method, see for instance [Inc26].

Since the indicial equation has 1 as a triple root, the solution (4.27) is the unique

analytic solution at 0 while the other solutions have a logarithmic or double logarith-

mic singularity. The solution with a logarithmic singularity at 0 is explicitly given

in (4.34), and, from (4.26), it is clear that p4 on (0, 2) is a linear combination of the

analytic and the logarithmic solution.

Moreover, the differential equation for p4 is a symmetric square. In other words, it

can be reduced to a second order differential equation, which after a quadratic substi-

tution, has 4 regular singularities and is thus of Heun type. In fact, a hypergeometric

representation of p4 with rational argument is possible.

Theorem 4.4.7. For 2 < x < 4,

p4(x) =
2

π2

√
16− x2

x
3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣(16− x2)
3

108x4

)
. (4.31)
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Proof. Denote the right-hand side of (4.31) by q4(x) and observe that the hyperge-

ometric series converges for 2 < x < 4. It is routine to verify that q4 is a solution

of the differential equation A4 · y(x) = 0 given in (4.10) which is also satisfied by

p4 as proven in Theorem 4.2.4. Together with the boundary conditions supplied by

Theorem 4.4.1 it follows that p4 = q4.

We note that Theorem 4.4.7 gives 2
√

16− x2/(π2x) as an approximation to p4(x)

near x = 4, which is much more accurate than the elementary estimates established

in Theorem 4.4.1.

Corollary 4.4.8. In particular,

p4(2) =
27/3π

3
√

3
Γ

(
2

3

)−6

=

√
3

π
W3(−1). (4.32)

Quite marvelously, as first discovered numerically:

Theorem 4.4.9. For 0 < x < 4,

p4(x) =
2

π2

√
16− x2

x
Re 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣(16− x2)
3

108x4

)
. (4.33)

Proof. To obtain the analytic continuation of the 3F2 for 0 < x < 2 we employ the

formula [Luk69, 5.3], valid for all z,

q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq

∣∣∣∣z) =

∏
j Γ(bj)∏
j Γ(aj)

q+1∑
k=1

Γ(ak)
∏

j 6=k Γ(aj − ak)∏
j Γ(bj − ak)

(−z)−ak

× q+1Fq

(
ak, {ak − bj + 1}j
{ak − aj + 1}j 6=k

∣∣∣∣1z
)
,

which requires the aj to not differ by integers. Therefore we apply it to

3F2

( 1
2

+ ε, 1
2
, 1

2
− ε

5
6
, 7

6

∣∣∣∣z) .
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and take the limit as ε→ 0. This ultimately produces, for z > 1,

Re 3F2

( 1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣z) =
log(108z)

2
√

3z
3F2

(
1
3
, 1

2
, 2

3

1, 1

∣∣∣∣1z
)

(4.34)

+
1

2
√

3z

∞∑
n=0

(1
3
)n(1

2
)n(2

3
)n

n!3

(
1

z

)n
(5Hn − 2H2n − 3H3n).

Here Hn =
∑n

k=1 1/k is the n-th harmonic number. Now, insert the appropriate

argument for z and the factors so the left-hand side corresponds to the claimed closed

form. Observing that (
1
3

)
n

(
1
2

)
n

(
2
3

)
n

=
(2n)!(3n)!

108n(n!)2
,

we thus find that the right-hand side of (4.33) is given by − log(x)S4(x) plus

6

π2

∞∑
n=0

(2n)!(3n)!

(n!)5

x4n+1

(16− x2)3n

(
5Hn − 2H2n − 3H3n + 3 log(16− x2)

)
where S4 is the solution (analytic at 0) to the differential equation for p4 given in

(4.28). This combination can now be verified to be a formal and hence actual solution

of the differential equation for p4. Together with the boundary conditions supplied

by Theorem 4.4.4 this proves the claim.

Remark 4.4.10. Let us indicate how the hypergeometric expression for p4 given in

Theorem 4.4.7 was discovered. Consider the generating series

y0(z) =
∞∑
k=0

W4(2k)zk (4.35)

of the Domb numbers which is just a rescaled version of (4.27). Corresponding to

(4.28), the hypergeometric form for this series given in [Rog09] is

y0(z) =
1

1− 4z
3F2

(
1
3
, 1

2
, 2

3

1, 1

∣∣∣∣ 108z2

(1− 4z)3

)
(4.36)
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which converges for |z| < 1/16. y0 satisfies the differential equation B4 · y0(z) = 0

where

B4 = 64z2(θ + 1)3 − 2z(2θ + 1)(5θ2 + 5θ + 2) + θ3 (4.37)

and θ = z d
dz

. Up to a change of variables this is (4.10); y0 is the unique solution

which is analytic at zero and takes the value 1 at zero; the other solutions which are

not a multiple of y0 have a single or double logarithmic singularity. Let y1 be the

solution characterized by

y1(z)− y0(z) log(z) ∈ zQ[[z]]. (4.38)

Note that it follows from (4.38) as well as Theorem 4.4.4 together with the initial

values s4,0 = 3
2π2 and r4,0 = s4,0 log(8) that p4, for small positive argument, is given

by

p4(x) = − 3x

4π2
y1

(
x2

64

)
. (4.39)

If x ∈ (2, 4) and z = x2/64 then the argument t = 108z2

(1−4z)3
of the hypergeometric

function in (4.36) takes the values (1,∞). We therefore consider the solutions of the

corresponding hypergeometric equation at infinity. A standard basis for these is

t−1/3
3F2

( 1
3
, 1

3
, 1

3
2
3
, 5

6

∣∣∣∣1t
)
, t−1/2

3F2

( 1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣1t
)
, t−2/3

3F2

( 2
3
, 2

3
, 2

3
4
3
, 7

6

∣∣∣∣1t
)
. (4.40)

In fact, the second element suffices to express p4 on the interval (2, 4) as shown in

Theorem 4.4.7. ♦

We close this section by showing that, remarkably, p4 has modular structure.

Remark 4.4.11. As shown in [CZ10] the series y0 defined in (4.35) possesses the
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modular parameterization

y0

(
−η(2τ)6η(6τ)6

η(τ)6η(3τ)6

)
=

η(τ)4η(3τ)4

η(2τ)2η(6τ)2
. (4.41)

Here η is the Dedekind eta function defined as

η(τ) = q1/24

∞∏
n=1

(1− qn) = q1/24

∞∑
n=−∞

(−1)nqn(3n+1)/2, (4.42)

where q = e2πiτ . Moreover, the quotient of the logarithmic solution y1 defined in

(4.38) and y0 is related to the modular parameter τ used in (4.41) by

exp

(
y1(z)

y0(z)

)
= e(2τ+1)πi = −q. (4.43)

Combining (4.41), (4.43) and (4.39) one obtains the modular representation

p4

(
8i
η(2τ)3η(6τ)3

η(τ)3η(3τ)3

)
=

6(2τ + 1)

π
η(τ)η(2τ)η(3τ)η(6τ) (4.44)

valid when the argument of p4 is small and positive. This is the case for τ = −1/2 +

iy when y > 0. Remarkably, the argument attains the value 1 at the quadratic

irrationality τ = (
√
−5/3− 1)/2 (the 5/3rd singular value of the next section). As a

consequence, the value p4(1) has a nice evaluation which is given in Theorem 4.5.1.

♦

4.5 The density p5

As shown in [BSW11], W5(s) has simple poles at −2,−4, . . ., compare Figure

4.2(b). We write r5,k = Res−2k−2W5 for the residue of W5 at s = −2k − 2. A
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surprising bonus is an evaluation of r5,0 = p4(1) ≈ 0.3299338011, the residue at

s = −2. This is because in general for n > 4, one has

Res−2Wn+1 = p′n+1(0) = pn(1),

as follows from [BSW11, Prop. 1(b)]; here p′n+1(0) denotes the derivative from the

right at zero.

Explicitly, using Theorem 4.4.9, we have,

r5,0 = p′5(0) =
2
√

15

π2
Re 3F2

( 1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣125

4

)
. (4.45)

In fact, based on the modularity of p4 discussed in Remark 4.4.11 we find:

Theorem 4.5.1.

r5,0 =
1

2π2

√
Γ( 1

15
)Γ( 2

15
)Γ( 4

15
)Γ( 8

15
)

5Γ( 7
15

)Γ(11
15

)Γ(13
15

)Γ(14
15

)
. (4.46)

Proof. The value τ = (
√
−5/3− 1)/2 in (4.44) gives the value p4(1) = r5,0. Applying

the Chowla–Selberg formula [SC67, BB98] to evaluate the eta functions yields the

claimed evaluation.

Using [BZ92, Table 4, (ii)], (4.46) may be simplified to

r5,0 =

√
5

40

Γ( 1
15

)Γ( 2
15

)Γ( 4
15

)Γ( 8
15

)

π4
(4.47)

=
3
√

5

π3

(√
5− 1

)
2

K2
15 =

√
15

π3
K5/3K15, (4.48)

where K15 and K5/3 are the complete elliptic integral at the 15th and 5/3rd singular

values [BB98].

Remarkably, these evaluations appear to extend to r5,1 ≈ 0.006616730259, the

residue at s = −4. Resemblance to the tiny nome of Bologna [BBBG08] led us to
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discover — and then check to 400 places using (4.55) and (4.56) — that

r5,1
?
=

13

1800
√

5

Γ( 1
15

)Γ( 2
15

)Γ( 4
15

)Γ( 8
15

)

π4
− 1√

5

Γ( 7
15

)Γ(11
15

)Γ(13
15

)Γ(14
15

)

π4
. (4.49)

Using (4.47) this evaluation can be neatly restated as

r5,1
?
=

13

225
r5,0 −

2

5π4

1

r5,0

. (4.50)

We summarize our knowledge as follows:

Theorem 4.5.2. The density p5 is real analytic on (0, 5) except at 1 and 3 and

satisfies the differential equation A5 · p5(x) = 0 where A5 is the operator

A5 = x6(θ + 1)4 − x4(35θ4 + 42θ2 + 3) (4.51)

+ x2(259(θ − 1)4 + 104(θ − 1)2)− (15(θ − 3)(θ − 1))2

and θ = xDx. Moreover, for small x > 0,

p5(x) =
∞∑
k=0

r5,k x
2k+1 (4.52)

where

(15(2k + 2)(2k + 4))2 r5,k+2 =
(
259(2k + 2)4 + 104(2k + 2)2

)
r5,k+1

−
(
35(2k + 1)4 + 42(2k + 1)2 + 3

)
r5,k + (2k)4r5,k−1

(4.53)

with explicit initial values r5,−1 = 0 and r5,0, r5,1 given by (4.47) and (4.49) above.

Proof. First, the differential equation (4.51) is computed as was that for p4, see (4.10).

Next, as detailed in [BSW11, Ex. 3] the residues satisfy the recurrence relation (4.53)
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with the given initial values. Finally, proceeding as for (4.26), we deduce that (4.52)

holds for small x > 0.

Numerically, the series (4.52) appears to converge for |x| < 3 which is in accor-

dance with 1
9

being a root of the characteristic polynomial of the recurrence (4.53);

see also (4.12). The series (4.52) is depicted in Figure 4.3.

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

Figure 4.3: The series (4.52) (dotted) and p5.

Since the poles of W5 are simple, no logarithmic terms are involved in (4.52) as

opposed to (4.26). In particular, by computing a few more residues from (4.53),

p5(x) = 0.329934x+ 0.00661673x3 + 0.000262333x5 + 0.0000141185x7 +O(x9)

near 0 (with each coefficient given to six digits of precision only), explaining the

strikingly straight shape of p5(x) on [0, 1]. This phenomenon was observed by Pearson

[Pea06] who stated that for p5(x)/x between x = 0 and x = 1,

“the graphical construction, however carefully reinvestigated, did not per-

mit of our considering the curve to be anything but a straight line. . . Even

if it is not absolutely true, it exemplifies the extraordinary power of such

integrals of J products [that is, (4.5)] to give extremely close approxima-

tions to such simple forms as horizontal lines.”
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This conjecture was investigated in detail in [Fet63] wherein the nonlinearity was

first rigorously established. This work and various more recent papers highlight the

difficulty of computing the underlying Bessel integrals.

Remark 4.5.3. Recall from Example 4.4.3 that the asymptotic behaviour of pn at

zero is determined by the poles of the moments Wn(s). To obtain information about

the behaviour of pn(x) as x → n−, we consider the “reversed” densities p̃n(x) =

pn(n− x) and their moments W̃n(s). For non-negative integers k,

W̃n(k) =

∫ n

0

xkp̃n(x) dx =

∫ n

0

(n− x)kpn(x) dx =
k∑
j=0

(
k

j

)
(−1)jnk−jWn(j)

On the other hand, we can find a recurrence satisfied by the W̃n(s) as follows: a

differential equation for the densities p̃n(x) is obtained from Theorem 4.2.4 by a

change of variables. The Mellin transform method as described in Example 4.2.3 then

provides a recurrence for the moments W̃n(s). We next apply the same reasoning as

in [BSW11] to obtain information about the pole structure of W̃n(s). It should be

emphasized that this involves knowledge about initial conditions in term of explicit

values of initial moments Wn(2k).

For instance, in the case n = 4, we find that the moments W̃4(s) have simple poles

at −3
2
,−5

2
,−7

2
, . . . which predicts an expansion of p4(x) as given in Theorem 4.4.1.

For n = 5, we learn that W̃5(s) has simple poles at s = −2,−3,−4, . . .. It then

follows, as for (4.52), that p5(x) =
∑∞

k=0 r̃5,k (x− 5)k+1 for x 6 5 and close to 5. The

r̃5,k are the residues of W̃5(s) at s = −k − 2. ♦
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4.6 Derivative evaluations of Wn

As illustrated by Theorem 4.4.4, the residues of Wn(s) are very important for

studying the densities pn as they directly translate into behaviour of pn at 0. The

residues may be obtained as a linear combination of the values of Wn(s) and W ′
n(s).

Example 4.6.1 (Residues of Wn). Using the functional equation for W3(s) and

L’Hôpital’s rule we find that the residue at s = −2 can be expressed as

Res−2(W3) =
8 + 12W ′

3(0)− 4W ′
3(2)

9
. (4.54)

This is a general principle and we likewise obtain for instance:

Res−2(W5) =
16 + 1140W ′

5(0)− 804W ′
5(2) + 64W ′

5(4)

225
, (4.55)

Res−4(W5) =
26 Res−2(W5)− 16− 20W ′

5(0) + 4W ′
5(2)

225
. (4.56)

In the presence of double poles, as for W4,

lim
s→−2

(s+ 2)2W4(s) =
3 + 4W ′

4(0)−W ′
4(2)

8
(4.57)

and for the residue:

Res−2(W4) =
9 + 18W ′

4(0)− 3W ′
4(2) + 4W ′′

4 (0)−W ′′
4 (2)

16
. (4.58)

Equations (4.57, 4.58) are used in Example 4.4.3 and each unknown is evaluated

below. ♦

We are therefore interested in evaluations of the derivatives of Wn for even argu-

ments.
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Example 4.6.2 (Derivatives of W3 and W4). Differentiating the double integral for

W3(s) (4.7) under the integral sign, we have

W ′
3(0) =

1

2

∫ 1

0

∫ 1

0

log(4 sin(πy) cos(2πx) + 3− 2 cos(2πy)) dx dy.

Then, using

∫ 1

0

log(a+ b cos(2πx)) dx = log

(
1

2

(
a+
√
a2 − b2

))
for a > b > 0,

we deduce

W ′
3(0) =

∫ 5/6

1/6

log(2 sin(πy)) dy =
1

π
Cl
(π

3

)
, (4.59)

where Cl denotes the Clausen function. Knowing as we do that the residue at s = −2

is 2/(
√

3π), we can thus also obtain from (4.54) that

W ′
3(2) = 2 +

3

π
Cl
(π

3

)
− 3
√

3

2π
.

In like fashion,

W ′
4(0) =

3

8π2

∫ π

0

∫ π

0

log (3 + 2 cosx+ 2 cos y + 2 cos(x− y)) dx dy

=
7

2

ζ(3)

π2
. (4.60)

The final equality will be shown in Example 4.6.6. Note that we may also write

W ′
3(0) =

1

8π2

∫ 2π

0

∫ 2π

0

log(3 + 2 cos x+ 2 cos y + 2 cos(x− y)) dx dy.
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The similarity between W ′
3(0) and W ′

4(0) is not coincidental, but comes from applying

∫ 1

0

log
(
(a+ cos 2πx)2 + (b+ sin 2πx)2

)
dx =

 log(a2 + b2) if a2 + b2 > 1,

0 otherwise

to the triple integral of W ′
4(0). As this reduction breaks the symmetry, we cannot

apply it to W ′
5(0) to get a similar integral. ♦

In general, differentiating the Bessel integral expression

Wn(s) = 2s+1−k Γ(1 + s
2
)

Γ(k − s
2
)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x) dx, (4.61)

obtained by David Broadhurst [Bro09] and discussed in [BSW11], under the integral

sign gives

W ′
n(0) = n

∫ ∞
0

(
log

(
2

x

)
− γ
)
Jn−1

0 (x)J1(x) dx

= log(2)− γ − n
∫ ∞

0

log(x)Jn−1
0 (x)J1(x) dx, (4.62)

where γ is the Euler-Mascheroni constant, and

W ′′
n (0) = n

∫ ∞
0

(
log

(
2

x

)
− γ
)2

Jn−1
0 (x)J1(x) dx.

Likewise

W ′
n(−1) = (log(2)− γ)Wn(−1)−

∫ ∞
0

log(x)Jn0 (x) dx,

and

W ′
n(1) =

∫ ∞
0

n

x
Jn−1

0 (x)J1(x) (1− γ − log(2x)) dx.

Remark 4.6.3. We may therefore obtain many identities by comparing the above
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equations to known values. For instance,

3

∫ ∞
0

log(x)J2
0 (x)J1(x) dx = log(2)− γ − 1

π
Cl
(π

3

)
.

♦

Example 4.6.4 (Derivatives of W5). In the case n = 5,

W ′
5(0) = 5

∫ ∞
0

(
log

(
2

t

)
− γ
)
J4

0 (t)J1(t) dt ≈ 0.54441256

with similar but more elaborate formulae for W ′
5(2) and W ′

5(4). Observe that in

general we also have

W ′
n(0) = log(2)− γ −

∫ 1

0

(Jn0 (x)− 1)
dx

x
−
∫ ∞

1

Jn0 (x)
dx

x
, (4.63)

which is useful numerically. ♦

In fact, the hypergeometric representation of W3 and W4 first obtained in [Cra09]

and recalled below also makes derivation of the derivatives of W3 and W4 possible.

Corollary 4.6.5 (Hypergeometric forms). For s not an odd integer, we have

W3(s) =
1

22s+1
tan
(πs

2

)( s
s−1

2

)2

3F2

( 1
2
, 1

2
, 1

2
s+3

2
, s+3

2

∣∣∣∣14
)

+

(
s
s
2

)
3F2

(− s
2
,− s

2
,− s

2

1,− s−1
2

∣∣∣∣14
)
,

(4.64)

and, if also Re s > −2, we have

W4(s) =
1

22s
tan
(πs

2

)( s
s−1

2

)3

4F3

( 1
2
, 1

2
, 1

2
, s

2
+ 1

s+3
2
, s+3

2
, s+3

2

∣∣∣∣1)+

(
s
s
2

)
4F3

( 1
2
,− s

2
,− s

2
,− s

2

1, 1,− s−1
2

∣∣∣∣1) .
(4.65)

Example 4.6.6 (Evaluation of W ′
3(0) and W ′

4(0)). If we write (4.64) or (4.65) as

Wn(s) = f1(s)F1(s) + f2(s)F2(s), where F1, F2 are the corresponding hypergeometric
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functions, then it can be readily verified that f1(0) = f ′2(0) = F ′2(0) = 0. Thus,

differentiating (4.64) by appealing to the product rule we get:

W ′
3(0) =

1

π
3F2

( 1
2
, 1

2
, 1

2
3
2
, 3

2

∣∣∣∣14
)

=
1

π
Cl
(π

3

)
.

The last equality follows from setting θ = π/6 in the identity

2 sin(θ)3F2

( 1
2
, 1

2
, 1

2
3
2
, 3

2

∣∣∣∣sin2 θ

)
= Cl (2 θ) + 2 θ log (2 sin θ) .

Likewise, differentiating (4.65) gives

W ′
4(0) =

4

π2 4F3

( 1
2
, 1

2
, 1

2
, 1

3
2
, 3

2
, 3

2

∣∣∣∣1) =
7ζ(3)

2π2
, (4.66)

thus verifying (4.60). In this case the hypergeometric evaluation

4F3

( 1
2
, 1

2
, 1

2
, 1

3
2
, 3

2
, 3

2

∣∣∣∣1) =
∞∑
n=0

1

(2n+ 1)3
=

7

8
ζ(3),

is elementary. ♦

Differentiating (4.64) at s = 2 leads to the evaluation

3F2

( 1
2
, 1

2
, 1

2
5
2
, 5

2

∣∣∣∣14
)

=
27

4

(
Cl
(π

3

)
−
√

3

2

)
,

while from (4.65) at s = 2 we obtain

W ′
4(2) = 3 +

14ζ(3)− 12

π2
. (4.67)

Thus we have enough information to evaluate (4.57) (with the answer 3/(2π2)).



102

Note that with two such starting values, all derivatives of W3(s) or W4(s) at even

s may be computed recursively.

We also note here that the same technique yields

W ′′
3 (0) =

π2

12
− 2

π

∞∑
n=0

(
2n
n

)
42n

Hn+1/2

(2n+ 1)2
(4.68)

=
π2

12
+

4 log(2)

π
Cl
(π

3

)
− 4

π

∞∑
n=0

(
2n
n

)
42n

∑n
k=0

1
2k+1

(2n+ 1)2
, (4.69)

and, quite remarkably,

W ′′
4 (0) =

π2

12
+

7ζ(3) log(2)

π2
+

4

π2

∞∑
n=0

Hn − 3Hn+1/2

(2n+ 1)3
(4.70)

=
24Li4

(
1
2

)
− 18ζ(4) + 21ζ(3) log(2)− 6ζ(2) log2(2) + log4(2)

π2
,

where the very final evaluation is obtained from results in [BZB08, §5]. Here Li4(1/2)

is the polylogarithm of order 4, while Hn := γ + Ψ(n + 1) denotes the nth harmonic

number, where Ψ is the digamma function. So for non-negative integers n, we have

explicitly Hn =
∑n

k=1 1/k, as before, and

Hn+1/2 = 2
n+1∑
k=1

1

2k − 1
− 2 log(2).

An evaluation of W ′′
3 (0) in terms of polylogarithmic constants is given in [BS11a].

In particular, this gives an evaluation of the sum on the right-hand side of (4.68).

Finally, the corresponding sum for W ′′
4 (2) may be split into a telescoping part and

a part involving W ′′
4 (0). Therefore, it can also be written as a linear combination of

the constants used in (4.70). In summary, we have all the pieces to evaluate (4.58),

obtaining the answer 9 log(2)/(2π2).



103

4.6.1 Relations with Mahler measure

For a (Laurent) polynomial f(x1, . . . , xn), its logarithmic Mahler measure, see for

instance [RVTV04], is defined as

m(f) =

∫ 1

0

. . .

∫ 1

0

log
∣∣f (e2πit1 , . . . , e2πitn

)∣∣ dt1 · · · dtn.
Recall that the sth moments of an n-step random walk are given by

Wn(s) =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣∣
n∑
k=1

e2πitk

∣∣∣∣∣
s

dt1 · · · dtn = ‖x1 + . . .+ xn‖ss

where ‖ · ‖p denotes the p-norm over the unit n-torus, and hence

W ′
n(0) = m(x1 + . . .+ xn) = m(1 + x1 + . . .+ xn−1).

Thus the derivative evaluations in the previous sections are also Mahler measure

evaluations. In particular, we rediscovered

W ′
3(0) =

1

π
Cl
(π

3

)
= L′(χ−3,−1) = m(1 + x1 + x2),

along with

W ′
4(0) =

7ζ(3)

2π2
= m(1 + x1 + x2 + x3)

which are both due to C. Smyth [RVTV04, (1.1) and (1.2)] with proofs first published

in [Boy81, Appendix 1].

With this connection realized, we find the following conjectural expressions put

forth by Rodriguez-Villegas, mentioned in different form in [Fin05],

W ′
5(0)

?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt (4.71)
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and

W ′
6(0)

?
=

(
3

π2

)3 ∫ ∞
0

η2(e−t)η2(e−2t)η2(e−3t)η2(e−6t) t4 dt, (4.72)

where η was defined in (4.42). We have confirmed numerically that the evaluation of

W ′
5(0) in (4.71) holds to 600 places. Likewise, we have confirmed that (4.72) holds to

80 places. Details of these somewhat arduous confirmations are given in [BB11].

Differentiating the series expansion for Wn(s) obtained in [BNSW11] term by

term, we obtain

W ′
n(0) = log(n)−

∞∑
m=1

1

2m

m∑
k=0

(
m

k

)
(−1)kWn(2k)

n2k
. (4.73)

On the other hand, from [RVTV04] we find the strikingly similar

W ′
n(0) =

1

2
log(n)− γ

2
−
∞∑
m=2

1

2m

m∑
k=0

(
m

k

)
(−1)kWn(2k)

k!nk
. (4.74)

Finally, we note that Wn(s) itself is a special case of zeta Mahler measure as

introduced recently in [Aka09].

4.7 New results on the moments Wn

From [BBBG08] equation (23), we have for k > 0 even,

W3(k) =
3k+3/2

π 2k Γ(k/2 + 1)2

∫ ∞
0

tk+1K0(t)2I0(t)dt, (4.75)

where I0(t), K0(t) denote the modified Bessel functions of the first and second kind,

respectively.
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Similarly, [BBBG08] equation (55) states that for k > 0 even,

W4(k) =
4k+2

π2 Γ(k/2 + 1)2

∫ ∞
0

tk+1K0(t)3I0(t)dt. (4.76)

Equation (4.75) can be formally reduced to a closed form as a 3F2 (for instance

by Mathematica). At k = ±1, the closed form agrees with W3(±1). As both sides

of (4.75) satisfy the same recursion ([BBBG08] equation (8)), we see that it in fact

holds for all integers k > −2.

In the following we shall use Carlson’s theorem ([Tit39]) which states:

Let f be analytic in the right half-plane Re z > 0 and of exponential type with the

additional requirement that

|f(z)| 6Med|z|

for some d < π on the imaginary axis Re z = 0. If f(k) = 0 for k = 0, 1, 2, . . . then

f(z) = 0 identically. We then have the following:

Lemma 4.7.1. Equation (4.75) holds for all k with Re k > −2.

Proof. Both sides of (4.75) are of exponential type and agree when k = 0, 1, 2, . . .. The

standard estimate shows that the right-hand side grows like e|y|π/2 on the imaginary

axis. Therefore the conditions of Carlson’s theorem are satisfied and the identity

holds whenever the right-hand side converges.

Using the closed form given by the computer algebra system, we thus have:

Theorem 4.7.2 (Single hypergeometric for W3(s)). For s not a negative integer

< −1,

W3(s) =
3s+3/2

2π

Γ(1 + s/2)2

Γ(s+ 2)
3F2

( s+2
2
, s+2

2
, s+2

2

1, s+3
2

∣∣∣∣14
)
. (4.77)
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Turning our attention to negative integers, we have for k > 0 an integer:

W3(−2k − 1) =
4

π3

(
2kk!

(2k)!

)2 ∫ ∞
0

t2kK0(t)3dt, (4.78)

because the two sides satisfy the same recursion ([BBBG08, (8)]), and agree when

k = 0, 1 ([BBBG08, (47) and (48)]).

Remark 4.7.3. Equation (4.78) however does not hold when k is not an integer.

Also, combining (4.78) and (4.75) for W3(−1), we deduce

∫ ∞
0

K0(t)2I0(t) dt =
2√
3π

∫ ∞
0

K0(t)3 dt =
π2

2
√

3

∫ ∞
0

J0(t)3 dt.

From (4.78), we experimentally determined a single hypergeometric for W3(s) at

negative odd integers:

Lemma 4.7.4. For k > 0 an integer,

W3(−2k − 1) =

√
3
(

2k
k

)2

24k+132k 3F2

(
1
2
, 1

2
, 1

2

k + 1, k + 1

∣∣∣∣14
)
.

Proof. It is easy to check that both sides agree at k = 0, 1. Therefore we need only to

show that they satisfy the same recursion. The recursion for the left-hand side implies

a contiguous relation for the right-hand side, which can be verified by extracting the

summand and applying Gosper’s algorithm ([PWZ96]).

The integral in (4.78) shows that W3(−2k− 1) decays to 0 rapidly – very roughly

like 9−k as k →∞ – and so is never 0 when k is an integer.

To show that (4.76) holds for more general k required more work. Using Nichol-

son’s integral representation in [Wat41],

I0(t)K0(t) =
2

π

∫ π/2

0

K0(2t sin a) da,
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the integral in (4.76) simplifies to

2

π

∫ π/2

0

∫ ∞
0

tk+1K0(t)2K0(2t sin a) dtda. (4.79)

The inner integral in (4.79) simplifies in terms of a Meijer G-function; Mathematica

is able to produce √
π

8 sink+2 a
G3,2

3,3

(−1
2
,−1

2
, 1

2

0, 0, 0

∣∣∣∣ 1

sin2 a

)
,

which transforms to √
π

8 sink+2 a
G2,3

3,3

(
1, 1, 1
3
2
, 3

2
, 1

2

∣∣∣∣ sin2 a

)
.

Let t = sin2 a in the above, so the outer integral in (4.79) transforms to

√
π

16

∫ 1

0

t−
k+3
2 (1− t)− 1

2 G2,3
3,3

(
1, 1, 1
3
2
, 3

2
, 1

2

∣∣∣∣t) dt. (4.80)

We can resolve this integral by applying the Euler-type integral

∫ 1

0

t−a(1− t)a−b−1Gm,n
p,q

(
c

d

∣∣∣∣zt) dt = Γ(a− b)Gm,n+1
p+1,q+1

(
a, c

d, b

∣∣∣∣z) . (4.81)

Indeed, when k = −1, the application of (4.81) recovers the Meijer G representation

of W4(−1) ([BSW11]); that is, (4.76) holds for k = −1.

When k = 1, the resulting Meijer G-function is

G2,4
4,4

(
2, 1, 1, 1
3
2
, 3

2
, 1

2
, 3

2

∣∣∣∣1) ,
to which we apply Nesterenko’s theorem ([Nes03]), deducing a triple integral (up to

a constant factor) for it:

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− x)z

y(1− y)(1− z)(1− x(1− yz))3
dxdydz.
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We can reduce the triple integral to a single integral,

∫ 1

0

8E ′(t)
(
(1 + t2)K ′(t)− 2E ′(t)

)
(1− t2)2

dt.

Now applying the change of variable t 7→ (1 − t)/(1 + t), followed by quadratic

transformations for K and E, we finally get

∫ 1

0

4(1 + t)

t2
E

(
2
√
t

1 + t

)(
K(t)− E(t)

)
dt,

which is, indeed, (a correct constant multiple times) the expression for W4(1) which

follows from Section 3.1 in [BSW11].

We finally observe that both sides of (4.76) satisfy the same recursion ([BBBG08]

equation (9)), hence they agree for k = 0, 1, 2, . . .. Carlson’s theorem applies with the

same growth on the imaginary axis as in (4.75) and we have proven the following:

Lemma 4.7.5. Equation (4.76) holds for all k with Re k > −2.

Theorem 4.7.6 (Alternative Meijer G representation for W4(s)). For all s,

W4(s) =
22s+1

π2 Γ(1
2
(s+ 2))2

G2,4
4,4

(
1, 1, 1, s+3

2
s+2

2
, s+2

2
, s+2

2
, 1

2

∣∣∣∣1) . (4.82)

Proof. Apply (4.81) to (4.80) for general k, and equality holds by Lemma 4.7.5.

Note that Lemma 4.7.5 combined with the known formula for W4(−1) in [BSW11]

gives

4

π3

∫ ∞
0

K0(t)3I0(t) dt =

∫ ∞
0

J0(t)4 dt.

Armed with the knowledge of Lemma 4.7.5, we may now resolve a very special

but central case (corresponding to n = 2) of Conjecture 1 in [BSW11].
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Theorem 4.7.7. For integer s,

W4(s) =
∞∑
j=0

(
s/2

j

)2

W3(s− 2j). (4.83)

Proof. In [BNSW11] it is shown that both sides satisfy the same three term recur-

rence, and agree when s is even. Therefore, we only need to show that the identity

holds for two consecutive odd values of s.

For s = −1, the right-hand side of (4.83) is

∞∑
j=0

(−1/2

j

)2

W3(−1− 2j) =
∞∑
j=0

22−2j

π3j!2

∫ ∞
0

t2jK0(t)3 dt

upon using (4.78), and after interchanging summation and integration (which is jus-

tified as all terms are positive), this reduces to

4

π3

∫ ∞
0

K0(t)3I0(t) dt,

which is the value for W4(−1) by Lemma 4.7.5.

We note that the recursion for W4(s) gives the pleasing reflection property

W4(−2k − 1) 26k = W4(2k − 1).

In particular, W4(−3) = 1
64
W4(1). Now computing the right-hand side of (4.83) at

s = −3, and interchanging summation and integration as before, we obtain

∞∑
j=0

(−3/2

j

)2

W3(−3− 2j) =
4

π3

∫ ∞
0

t2K0(t)3I0(t) dt =
1

64
W4(1) = W4(−3).

Therefore (4.83) holds when s = −1,−3, and thus holds for all integer s.
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4.8 Appendix: A family of combinatorial

identities

DON ZAGIER1

The “collateral result” of Djakov and Mityagin, [DM04, DM07], is the pair of

identities

∑
−m<i1<···<ik<m
i2−i1,...,ik−ik−1>2

k∏
s=1

(m2 − i2s) = σk(1
2, 32, . . . , (2m− 1)2) ,

∑
1−m<i1<···<ik<m
i2−i1,...,ik−ik−1>2

k∏
s=1

(m− is)(m+ is − 1) = σk(2
2, 42, . . . , (2m− 2)2) ,

where m and k are integers with m > k > 0 and σk denotes the kth elementary

symmetric function. By setting js = is + m in the first sum and js = is + m − 1 in

the second, we can rewrite these formulas more uniformly as2

FM,k(M) =


σk(1

2, 32, . . . , (M − 1)2) if M is even,

σk(2
2, 42, . . . , (M − 1)2) if M is odd,

(4.84)

where FM,k(X) is the polynomial in X (non-zero only if M > 2k > 0) defined by

FM,k(X) =
∑

0<j1<···<jk<M
j2−j1,...,jk−jk−1>2

k∏
s=1

js(X − js) . (4.85)

1The original note is unchanged.
2Note that (4.84) is precisely Theorem 4.2.7.
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The advantage of introducing the free variable X in (4.85) is that the functions

FM,k(X) satisfy the recursion

FM+1,k+1(X)− FM,k+1(X) = M (X −M)FM−1,k(X), (4.86)

because the only paths that are counted on the left are those with 0 < j1 < · · · <

jk < jk+1 = M .

It is also advantageous to introduce the polynomial generating function

ΦM = ΦM(X, u) =
∑

06k6M/2

(−1)k FM,k(X)uM−2k ,

the first examples being

Φ0 = 1 , Φ1 = u , Φ2 = u2 − (X − 1) , Φ3 = u3 − (3X − 5)u ,

Φ4 = u4 − (6X − 14)u2 + (3X2 − 12X + 9) ,

Φ5 = u5 − (10X − 30)u3 + (15X2 − 80X + 89) ,

Φ6 = u6 − (15X − 55)u4 + (45X2 − 300X + 439)u2 − (15X3 − 135X2 + 345X − 225) .

In terms of this generating function, the recursion (4.86) becomes

ΦM+1 = uΦM −M(X −M) ΦM−1 (4.87)

and the identity (4.84) to be proved can be written succinctly as

ΦM(M,u) =
∏
|λ|<M

λ 6≡M (mod 2)

(u− λ) . (4.88)

Denote by PM(u) the polynomial on the right-hand side of (4.88). Looking for other

pairs (M,X) where ΦM(X, u) has many integer roots, we find experimentally that
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this happens whenever M −X is a non-negative integer, and studying the data more

closely we are to conjecture the two formulas

ΦM(M − n, u) =
1

2n

n∑
j=0

(
n

j

)
PM(u− n+ 2j) (M, n > 0) (4.89)

(a generalization of (4.88)) and

ΦM+n(M,u) = ΦM(M,u) Φn(−M,u) (M, n > 0) . (4.90)

Formula (4.90) is easy to prove, since it holds for n = 0 trivially and for n = 1

by (4.87) and since both sides satisfy the recursion yn+1 = u yn + n(M + n) yn−1 for

n = 1, 2, . . . by (4.87). On the other hand, combining (4.88), (4.89) and (4.90) leads

to the conjectural formula

Φn(−M,u) =
1

2n

n∑
j=0

(
n

j

)
PM+n(u− n+ 2j)

Pn(u)
= n!

n∑
j=0

(−1)j
(−u−M−1

2

j

)(
u−M−1

2

n− j

)

or, renaming the variables,

1

M !
ΦM(x+ y + 1, y − x) =

M∑
j=0

(−1)j
(
x

j

)(
y

M − j

)
. (4.91)

To prove this, we see by (4.87) that, denoting by GM = GM(x, y) the expression on

the right, it suffices to prove the recursion (M + 1)GM+1 = (y − x)GM + (M − x −

y − 1)GM−1. This is an easy binomial coefficient identity, but once again it is easier

to work with generating functions: the sum

G(x, y;T ) :=
∞∑

M=0

GM(x, y)Tm = (1− T )x (1 + T )y (4.92)
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satisfies the differential equation

1

G
∂G
∂T

=
y

1 + T
− x

1− T

or

∂G
∂T

= (y − x)G +

(
T
∂

∂T
− x− y

)
G,

and this is equivalent to the desired recursion.

We can now complete the proof of (4.84). Rewriting (4.92) in the form

1

M !
ΦM(X, u) = coeffTM

(
(1− T )

X−u−1
2 (1 + T )

X+u−1
2

)
,

we find that, for 1 6 j 6M ,

1

M !
ΦM(M,M + 1− 2j) = coeffTM

(
(1− T )j−1 (1 + T )M−j

)
= 0

and hence that the polynomial on the left-hand side of (4.88) is divisible by the

polynomial on the right, which completes the proof since both are monic of degree M

in u.
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Chapter 5

Special values of generalized
log-sine integrals

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[BS11c] Special values of generalized log-sine integrals
(with Jonathan M. Borwein)

published in Proceedings of ISSAC 2011 (36th International Symposium on Symbolic and

Algebraic Computation), ACM Press, Jun 2011, p. 43-50

— received ISSAC 2011 Distinguished Student Author Award

Abstract We study generalized log-sine integrals at special values. At π and mul-

tiples thereof explicit evaluations are obtained in terms of Nielsen polylogarithms

at ±1. For general arguments we present algorithmic evaluations involving Nielsen

polylogarithms at related arguments. In particular, we consider log-sine integrals at

π/3 which evaluate in terms of polylogarithms at the sixth root of unity. An imple-

mentation of our results for the computer algebra systems Mathematica and SAGE

is provided.
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5.1 Introduction

For n = 1, 2, . . . and k > 0, we consider the (generalized) log-sine integrals defined

by

Ls(k)
n (σ) := −

∫ σ

0

θk logn−1−k
∣∣∣∣2 sin

θ

2

∣∣∣∣ dθ. (5.1)

The modulus is not needed for 0 6 σ 6 2π. For k = 0 these are the (basic) log-sine

integrals Lsn (σ) := Ls(0)
n (σ). Various log-sine integral evaluations may be found in

[Lew81, §7.6 & §7.9].

In this paper, we will be concerned with evaluations of the log-sine integrals

Ls(k)
n (σ) for special values of σ. Such evaluations are useful for physics [KS05]: log-sine

integrals appeared for instance in recent work on the ε-expansion of various Feynman

diagrams in the calculation of higher terms in the ε-expansion, [DK00, KV00, DK01,

Dav00, Kal05]. Of particular importance are the log-sine integrals at the special val-

ues π/3, π/2, 2π/3, π. The log-sine integrals also appear in many settings in number

theory and analysis: classes of inverse binomial sums can be expressed in terms of

generalized log-sine integrals, [DK04, BBK01].

In Section 5.2 we focus on evaluations of log-sine and related integrals at π. Gen-

eral arguments are considered in Section 5.4 with a focus on the case π/3 in Section

5.4.1. Imaginary arguments are briefly discussed in 5.4.2. The results obtained are

suitable for implementation in a computer algebra system. Such an implementation

is provided for Mathematica and SAGE, and is described in Section 5.6. This com-

plements existing packages such as lsjk [KS05] for numerical evaluations of log-sine

integrals or HPL [Mai06] as well as [VW05] for working with multiple polylogarithms.

Further motivation for such evaluations was sparked by our recent study [BS11a]

of certain multiple Mahler measures. For k functions (typically Laurent polynomials)

in n variables the multiple Mahler measure µ(P1, P2, . . . , Pk), introduced in [KLO08],
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is defined by

∫ 1

0

· · ·
∫ 1

0

k∏
j=1

log
∣∣Pj (e2πit1 , . . . , e2πitn

)∣∣ dt1dt2 . . . dtn.

When P = P1 = P2 = · · · = Pk this devolves to a higher Mahler measure, µk(P ),

as introduced and examined in [KLO08]. When k = 1 both reduce to the standard

(logarithmic) Mahler measure [Boy81].

The multiple Mahler measure

µk(1 + x+ y∗) := µ(1 + x+ y1, 1 + x+ y2, . . . , 1 + x+ yk) (5.2)

was studied by Sasaki [Sas10, Lemma 1] who provided an evaluation of µ2(1+x+y∗).

It was observed in [BS11a] that

µk(1 + x+ y∗) =
1

π
Lsk+1

(π
3

)
− 1

π
Lsk+1 (π) . (5.3)

Many other Mahler measures studied in [BS11a, BBSW12] were shown to have eval-

uations involving generalized log-sine integrals at π and π/3 as well.

To our knowledge, this is the most exacting such study undertaken — perhaps

because it would be quite impossible without modern computational tools and absent

a use of the quite recent understanding of multiple polylogarithms and multiple zeta

values [BBBL01].
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5.2 Evaluations at π

5.2.1 Basic log-sine integrals at π

The exponential generating function, [Lew58, Lew81],

− 1

π

∞∑
m=0

Lsm+1 (π)
λm

m!
=

Γ (1 + λ)

Γ2
(
1 + λ

2

) =

(
λ
λ
2

)
(5.4)

is well-known and implies the recurrence

(−1)n

n!
Lsn+2 (π) = π α(n+ 1)

+
n−2∑
k=1

(−1)k

(k + 1)!
α(n− k) Lsk+2 (π) , (5.5)

where α(m) = (1− 21−m)ζ(m).

Example 5.2.1. (Values of Lsn (π)) We have Ls2 (π) = 0 and

−Ls3 (π) =
1

12
π3

Ls4 (π) =
3

2
π ζ(3)

−Ls5 (π) =
19

240
π5

Ls6 (π) =
45

2
π ζ(5) +

5

4
π3ζ(3)

−Ls7 (π) =
275

1344
π7 +

45

2
π ζ(3)2

Ls8 (π) =
2835

4
π ζ(7) +

315

8
π3ζ(5) +

133

32
π5ζ(3),

and so forth. The fact that each integral is a multivariable rational polynomial in π

and zeta values follows directly from the recursion (5.5). Alternatively, these values

may be conveniently obtained from (5.4) by a computer algebra system. For instance,

in Mathematica the code
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FullSimplify[D[-Binomial[x,x/2], {x,6}] /.x->0]

produces the above evaluation of Ls6 (π). ♦

5.2.2 The log-sine-cosine integrals

The log-sine-cosine integrals

Lscm,n (σ) := −
∫ σ

0

logm−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ logn−1

∣∣∣∣2 cos
θ

2

∣∣∣∣ dθ (5.6)

appear in physical applications as well, see for instance [DK01, Kal05]. They have

also been considered by Lewin, [Lew58, Lew81], and he demonstrates how their values

at σ = π may be obtained much the same as those of the log-sine integrals in Section

5.2.1. As observed in [BBSW12], Lewin’s result can be put in the form

− 1

π

∞∑
m,n=0

Lscm+1,n+1 (π)
xm

m!

yn

n!
=

2x+y

π

Γ
(

1+x
2

)
Γ
(

1+y
2

)
Γ
(
1 + x+y

2

)
=

(
x

x/2

)(
y

y/2

)
Γ
(
1 + x

2

)
Γ
(
1 + y

2

)
Γ
(
1 + x+y

2

) . (5.7)

The last form makes it clear that this is an extension of (5.4).

The notation Lsc has been introduced in [DK01] where evaluations for other values

of σ and low weight can be found.

5.2.3 Log-sine integrals at π

As Lewin [Lew81, §7.9] sketches, at least for small values of n and k, the general-

ized log-sine integrals Ls(k)
n (π) have closed forms involving zeta values and Kummer-

type constants such as Li4(1/2). This will be made more precise in Remark 5.2.8.
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Our analysis starts with the generating function identity

−
∑
n,k>0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
=

∫ π

0

(
2 sin

θ

2

)λ
eiµθ dθ

= ieiπ
λ
2 B1

(
µ− λ

2
, 1 + λ

)
− ieiπµB1/2

(
µ− λ

2
,−µ− λ

2

)
(5.8)

given in [Lew81]. Here Bx is the incomplete Beta function:

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1 dt.

We shall show that with care — because of the singularities at zero — (5.8) can be

differentiated as needed as suggested by Lewin.

Using the identities, valid for a, b > 0 and 0 < x < 1,

Bx(a, b) =
xa(1− x)b−1

a
2F1

(
1− b, 1
a+ 1

∣∣∣∣ x

x− 1

)
=
xa(1− x)b

a
2F1

(
a+ b, 1

a+ 1

∣∣∣∣x) ,
found for instance in [OLBC10, §8.17(ii)], the generating function (5.8) can be rewrit-

ten as

ieiπ
λ
2

(
B1

(
µ− λ

2
, 1 + λ

)
−B−1

(
µ− λ

2
, 1 + λ

))
.

Upon expanding this we obtain the following computationally more accessible gener-

ating function for Ls
(k)
n+k+1 (π):
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Theorem 5.2.2. For 2|µ| < λ < 1 we have

−
∑
n,k>0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!

= i
∑
n>0

(
λ

n

)
(−1)neiπ

λ
2 − eiπµ

µ− λ
2

+ n
. (5.9)

We now show how the log-sine integrals Ls(k)
n (π) can quite comfortably be ex-

tracted from (5.9) by differentiating its right-hand side. The case n = 0 is covered

by:

Proposition 5.2.3. We have

dk

dµk
dm

dλm
i
eiπ

λ
2 − eiπµ

µ− λ
2

∣∣∣∣
λ=0
µ=0

=
π

2m
(iπ)m+kB(m+ 1, k + 1).

Proof. This may be deduced from

ex − ey

x− y =
∑
m,k>0

xmyk

(k +m+ 1)!

=
∑
m,k>0

B(m+ 1, k + 1)
xm

m!

yk

k!

upon setting x = iπλ/2 and y = iπµ.

The next proposition is most helpful in differentiation of the right-hand side of

(5.9) for n > 1, Here, we denote a multiple harmonic number by

H
[α]
n−1 :=

∑
n>i1>i2>...>iα

1

i1i2 · · · iα
. (5.10)

If α = 0 we set H
[0]
n−1 := 1.
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Proposition 5.2.4. For n > 1

(−1)α

α!

(
d

dλ

)α(
λ

n

)∣∣∣∣
λ=0

=
(−1)n

n
H

[α−1]
n−1 . (5.11)

Note that, for α > 0,

∑
n>0

(±1)n

nβ
H

[α]
n−1 = Liβ,{1}α(±1)

which shows that the evaluation of the log-sine integrals will involve Nielsen polylog-

arithms at ±1, that is polylogarithms of the type Lia,{1}b(±1).

Using the Leibniz rule coupled with Proposition 5.2.4 to differentiate (5.9) for

n > 1 and Proposition 5.2.3 in the case n = 0, it is possible to explicitly write

Ls(k)
n (π) as a finite sum of Nielsen polylogarithms with coefficients only being rational

multiples of powers of π. The process is now exemplified for Ls
(2)
4 (π) and Ls

(1)
5 (π).

Example 5.2.5. (Ls
(2)
4 (π)) To find Ls

(2)
4 (π) we differentiate (5.9) once with respect

to λ and twice with respect to µ. To simplify computation, we exploit the fact that

the result will be real which allows us to neglect imaginary parts:

−Ls
(2)
4 (π) =

d2

dµ2

d

dλ
i
∑
n>0

(
λ

n

)
(−1)neiπ

λ
2 − eiπµ

µ− λ
2

+ n

∣∣∣∣
λ=µ=0

= 2π
∑
n>1

(−1)n+1

n3
=

3

2
πζ(3).

In the second step we were able to drop the term corresponding to n = 0 because its

contribution −iπ4/24 is purely imaginary as follows a priori from Proposition 5.2.4.

♦

Example 5.2.6. (Ls
(1)
5 (π)) Similarly, setting

Li±a1,...,an := Lia1,...,an(1)− Lia1,...,an(−1)
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we obtain Ls
(1)
5 (π) as

−Ls
(1)
5 (π) =

3

4

∑
n>1

8(1− (−1)n)

n4

(
nH

[2]
n−1 −Hn−1

)
+

6(1− (−1)n)

n5
− π2

n3

= 6 Li±3,1,1−6 Li±4,1 +
9

2
Li±5 −

3

4
π2ζ(3)

= − 6 Li3,1,1(−1) +
105

32
ζ(5)− 1

4
π2ζ(3).

The last form is what is automatically produced by our program, see Example 5.6.1,

and is obtained from the previous expression by reducing the polylogarithms as dis-

cussed in Section 5.5. ♦

The next example hints at the rapidly growing complexity of these integrals,

especially when compared to the evaluations given in Examples 5.2.5 and 5.2.6.

Example 5.2.7. (Ls
(1)
6 (π)) Proceeding as before we find

−Ls
(1)
6 (π) = − 24 Li±3,1,1,1 +24 Li±4,1,1−18 Li±5,1 +12 Li±6

+ 3π2ζ(3, 1)− 3π2ζ(4) +
π6

480

= 24 Li3,1,1,1(−1)− 18 Li5,1(−1)

+ 3ζ(3)2 − 3

1120
π6. (5.12)

In the first equality, the term π6/480 is the one corresponding to n = 0 in (5.9)

obtained from Proposition 5.2.3. The second form is again the automatically reduced

output of our program. ♦

Remark 5.2.8. From the form of (5.9) and (5.11) we find that the log-sine integrals

Ls(k)
n (π) can be expressed in terms of π and Nielsen polylogarithms at ±1. Using the

duality results in [BBBL01, §6.3, and Example 2.4] the polylogarithms at −1 may be
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explicitly reexpressed as multiple polylogarithms at 1/2. Some examples are given in

[BS11a].

Particular cases of Theorem 5.2.2 have been considered in [KS05] where explicit

formulae are given for Ls(k)
n (π) where k = 0, 1, 2. ♦

5.2.4 Log-sine integrals at 2π

As observed by Lewin [Lew81, 7.9.8], log-sine integrals at 2π are expressible in

terms of zeta values only. If we proceed as in the case of evaluations at π in (5.8) we

find that the resulting integral now becomes expressible in terms of gamma functions:

−
∑
n,k>0

Ls
(k)
n+k+1 (2π)

λn

n!

(iµ)k

k!
=

∫ 2π

0

(
2 sin

θ

2

)λ
eiµθ dθ

= 2πeiµπ
(

λ
λ
2

+ µ

)
(5.13)

The special case µ = 0, in the light of (5.18) which gives Lsn (2π) = 2 Lsn (π), recovers

(5.4).

We may now extract log-sine integrals Ls(k)
n (2π) in a similar way as described in

Section 5.2.1.

Example 5.2.9. For instance,

Ls
(2)
5 (2π) = −13

45
π5.

We remark that this evaluation is incorrectly given in [Lew81, (7.144)] as 7π5/30

underscoring an advantage of automated evaluations over tables (indeed, there are

more misprints in [Lew81] pointed out for instance in [DK01, KS05]). ♦
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5.2.5 Log-sine-polylog integrals

Motivated by the integrals LsLsck,i,j defined in [Kal05] we show that the consid-

erations of Section 5.2.3 can be extended to more involved integrals including

Ls(k)
n (π; d) := −

∫ π

0

θk logn−k−1

(
2 sin

θ

2

)
Lid(e

iθ) dθ.

On expressing Lid(e
iθ) as a series, rearranging, and applying Theorem 5.2.2, we obtain

the following exponential generating function for Ls(k)
n (π; d):

Corollary 5.2.10. For d > 0 we have

−
∑
n,k>0

Ls
(k)
n+k+1 (π; d)

λn

n!

(iµ)k

k!

= i
∑
n>1

Hn,d(λ)
eiπ

λ
2 − (−1)neiπµ

µ− λ
2

+ n
(5.14)

where

Hn,d(λ) :=
n−1∑
k=0

(−1)k
(
λ
k

)
(n− k)d

. (5.15)

We note for 0 6 θ 6 π that Li−1(eiθ) = −1/
(
2 sin θ

2

)2
, Li0(eiθ) = −1

2
+ i

2
cot θ

2
,

while Li1(eiθ) = − log
(
2 sin θ

2

)
+ iπ−θ

2
, and Li2(eiθ) = ζ(2) + θ

2

(
θ
2
− π

)
+ iCl2 (θ).

Remark 5.2.11. Corresponding results for an arbitrary Dirichlet series La,d(x) :=∑
n>1 anx

n/nd can be easily derived in the same fashion. Indeed, for

Ls(k)
n (π; a, d) := −

∫ π

0

θk logn−k−1

(
2 sin

θ

2

)
La,d(e

iθ) dθ
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one derives the exponential generating function (5.14) with Hn,d(λ) replaced by

Hn,a,d(λ) :=
n−1∑
k=0

(−1)k
(
λ
k

)
an−k

(n− k)d
. (5.16)

This allows for Ls(k)
n (π; a, d) to be extracted for many number theoretic functions. It

does not however seem to cover any of the values of the LsLsck,i,j function defined in

[Kal05] that are not already covered by Corollary 5.2.10. ♦

5.3 Quasiperiodic properties

As shown in [Lew81, (7.1.24)], it follows from the periodicity of the integrand

that, for integers m,

Ls(k)
n (2mπ)− Ls(k)

n (2mπ − σ)

=
k∑
j=0

(−1)k−j(2mπ)j
(
k

j

)
Ls

(k−j)
n−j (σ) . (5.17)

Based on this quasiperiodic property of the log-sine integrals, the results of Section

5.2.4 easily generalize to show that log-sine integrals at multiples of 2π evaluate in

terms of zeta values. This is shown in Section 5.3.1. It then follows from (5.17)

that log-sine integrals at general arguments can be reduced to log-sine integrals at

arguments 0 6 σ 6 π. This is discussed briefly in Section 5.3.2.

Example 5.3.1. In the case k = 0, we have that

Lsn (2mπ) = 2mLsn (π) . (5.18)
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For k = 1, specializing (5.17) to σ = 2mπ then yields

Ls(1)
n (2mπ) = 2m2π Lsn−1 (π)

as is given in [Lew81, (7.1.23)]. ♦

5.3.1 Log-sine integrals at multiples of 2π

For odd k, specializing (5.17) to σ = 2mπ, we find

2 Ls(k)
n (2mπ) =

k∑
j=1

(−1)j−1(2mπ)j
(
k

j

)
Ls

(k−j)
n−j (2mπ)

giving Ls(k)
n (2mπ) in terms of lower order log-sine integrals.

More generally, on setting σ = 2π in (5.17) and summing the resulting equations

for increasing m in a telescoping fashion, we arrive at the following reduction. We

will use the standard notation

H(a)
n :=

n∑
k=1

k−a

for generalized harmonic sums.

Theorem 5.3.2. For integers m > 0,

Ls(k)
n (2mπ) =

k∑
j=0

(−1)k−j(2π)j
(
k

j

)
H(−j)
m Ls

(k−j)
n−j (2π) .

Summarizing, we have thus shown that the generalized log-sine integrals at mul-

tiples of 2π may always be evaluated in terms of integrals at 2π. In particular,

Ls(k)
n (2mπ) can always be evaluated in terms of zeta values by the methods of Sec-

tion 5.2.4.
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5.3.2 Reduction of arguments

A general (real) argument σ can be written uniquely as σ = 2mπ ± σ0 where

m > 0 is an integer and 0 6 σ0 6 π. It then follows from (5.17) and

Ls(k)
n (−θ) = (−1)k+1 Ls(k)

n (θ)

that Ls(k)
n (σ) equals

Ls(k)
n (2mπ)±

k∑
j=0

(±1)k−j(2mπ)j
(
k

j

)
Ls

(k−j)
n−j (σ0) . (5.19)

Since the evaluation of log-sine integrals at multiples of 2π was explicitly treated in

Section 5.3.1 this implies that the evaluation of log-sine integrals at general arguments

σ reduces to the case of arguments 0 6 σ 6 π.

5.4 Evaluations at other values

In this section we first discuss a method for evaluating the generalized log-sine

integrals at arbitrary arguments in terms of Nielsen polylogarithms at related argu-

ments. The gist of our technique originates with Fuchs ([Fuc61], [Lew81, §7.10]).

Related evaluations appear in [DK00] for Ls3 (τ) to Ls6 (τ) as well as in [DK01] for

Lsn (τ) and Ls(1)
n (τ).

We then specialize to evaluations at π/3 in Section 5.4.1. The polylogarithms

arising in this case have been studied under the name of multiple Clausen and Glaisher

values in [BBK01]. In fact, the next result (5.20) with τ = π/3 is a modified version

of [BBK01, Lemma 3.2]. We employ the notation

(
n

a1, . . . , ak

)
:=

n!

a1! · · · ak!(n− a1 − . . .− ak)!
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for multinomial coefficients.

Theorem 5.4.1. For 0 6 τ 6 2π, and nonnegative integers n, k such that n−k > 2,

ζ(n− k, {1}k)−
k∑
j=0

(−iτ)j

j!
Li2+k−j,{1}n−k−2(eiτ )

=
ik+1(−1)n−1

(n− 1)!

n−k−1∑
r=0

r∑
m=0

(
n− 1

k,m, r −m

)
×
(
i

2

)r
(−π)r−m Ls

(k+m)
n−(r−m) (τ) . (5.20)

Proof. Starting with

Lik,{1}n(α)− Lik,{1}n(1) =

∫ α

1

Lik−1,{1}n(z)

z
dz

and integrating by parts repeatedly, we obtain

k−2∑
j=0

(−1)j

j!
logj(α) Lik−j,{1}n(α)− Lik,{1}n(1)

=
(−1)k−2

(k − 2)!

∫ α

1

logk−2(z) Li{1}n+1(z)

z
dz. (5.21)

Letting α = eiτ and changing variables to z = eiθ, as well as using

Li{1}n(z) =
(− log(1− z))n

n!
,

the right-hand side of (5.21) can be rewritten as

(−1)k−2

(k − 2)!

i

(n+ 1)!

∫ τ

0

(iθ)k−2
(
− log

(
1− eiθ

))n+1
dθ.

Since, for 0 6 θ 6 2π and the principal branch of the logarithm,

log(1− eiθ) = log

∣∣∣∣2 sin
θ

2

∣∣∣∣+
i

2
(θ − π), (5.22)
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this last integral can now be expanded in terms of generalized log-sine integrals at τ .

ζ(k, {1}n)−
k−2∑
j=0

(−iτ)j

j!
Lik−j,{1}n(eiτ )

=
(−i)k−1

(k − 2)!

(−1)n

(n+ 1)!

n+1∑
r=0

r∑
m=0

(
n+ 1

r

)(
r

m

)
(
i

2

)r
(−π)r−m Ls

(k+m−2)
n+k−(r−m) (τ) . (5.23)

Applying the MZV duality formula [BBBL01], we have

ζ(k, {1}n) = ζ(n+ 2, {1}k−2),

and a change of variables yields the claim.

We recall that the real and imaginary parts of the multiple polylogarithms are

Clausen and Glaisher functions as defined in (1.14) and (1.15).

Example 5.4.2. Applying (5.20) with n = 4 and k = 1 and solving for Ls
(1)
4 (τ)

yields

Ls
(1)
4 (τ) = 2ζ(3, 1)− 2 Gl3,1 (τ)− 2τ Gl2,1 (τ)

+
1

4
Ls

(3)
4 (τ)− 1

2
π Ls

(2)
3 (τ) +

1

4
π2 Ls

(1)
2 (τ)

=
1

180
π4 − 2 Gl3,1 (τ)− 2τ Gl2,1 (τ)

− 1

16
τ 4 +

1

6
πτ 3 − 1

8
π2τ 2.

For the last equality we used the trivial evaluation

Ls(n−1)
n (τ) = −τ

n

n
. (5.24)



130

It appears that both Gl2,1 (τ) and Gl3,1 (τ) are not reducible for τ = π/2 or τ = 2π/3.

Here, reducible means expressible in terms of multi zeta values and Glaisher functions

of the same argument and lower weight. In the case τ = π/3 such reductions are

possible. This is discussed in Example 5.4.5 and illustrates how much less simple

values at 2π/3 are than those at π/3. We remark, however, that Gl2,1 (2π/3) is

reducible to one-dimensional polylogarithmic terms [BS11a]. In [BBSW12] explicit

reductions for all weight four or less polylogarithms are given. ♦

Remark 5.4.3. Lewin [Lew81, 7.4.3] uses the special case k = n − 2 of (5.20) to

deduce a few small integer evaluations of the log-sine integrals Ls(n−2)
n (π/3) in terms

of classical Clausen functions. ♦

In general, we can use (5.20) recursively to express the log-sine values Ls(k)
n (τ) in

terms of multiple Clausen and Glaisher functions at τ .

Example 5.4.4. (5.20) with n = 5 and k = 1 produces

Ls
(1)
5 (τ) = −6ζ(4, 1) + 6 Cl3,1,1 (τ) + 6τ Cl2,1,1 (τ)

+
3

4
Ls

(3)
5 (τ)− 3

2
π Ls

(2)
4 (τ) +

3

4
π2 Ls

(1)
3 (τ) .

Applying (5.20) three more times to rewrite the remaining log-sine integrals produces

an evaluation of Ls
(1)
5 (τ) in terms of multi zeta values and Clausen functions at τ . ♦

5.4.1 Log-sine integrals at π/3

We now apply the general results obtained in Section 5.4 to the evaluation of

log-sine integrals at τ = π/3. Accordingly, we encounter multiple polylogarithms at

the basic 6-th root of unity ω := exp(iπ/3). Their real and imaginary parts satisfy
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various relations and reductions, studied in [BBK01], which allow us to further treat

the resulting evaluations. In general, these polylogarithms are more tractable than

those at other values because ω = ω2.

Example 5.4.5. (Values at π
3
) Continuing Example 5.4.2 we have

−Ls
(1)
4

(π
3

)
= 2 Gl3,1

(π
3

)
+

2

3
πGl2,1

(π
3

)
+

19

6480
π4.

Using known reductions from [BBK01] we get:

Gl2,1

(π
3

)
=

1

324
π3, Gl3,1

(π
3

)
= − 23

19440
π4, (5.25)

and so arrive at

− Ls
(1)
4

(π
3

)
=

17

6480
π4. (5.26)

Lewin explicitly mentions (5.26) in the preface to [Lew81] because of its “queer”

nature which he compares to some of Landen’s curious 18th century formulas. ♦

Many more reduction besides (5.25) are known. In particular, the one-dimensional

Glaisher and Clausen functions reduce as follows [Lew81]:

Gln (2πx) =
2n−1(−1)1+bn/2c

n!
Bn(x)πn,

Cl2n+1

(π
3

)
=

1

2
(1− 2−2n)(1− 3−2n)ζ(2n+ 1). (5.27)

Here, Bn denotes the n-th Bernoulli polynomial. Further reductions can be derived

for instance from the duality result [BBK01, Theorem 4.4]. For low dimensions, we

have built these reductions into our program, see Section 5.5.



132

Example 5.4.6. (Values of Lsn (π/3)) The log-sine integrals at π/3 are evaluated by

our program as follows:

Ls2

(π
3

)
= Cl2

(π
3

)
−Ls3

(π
3

)
=

7

108
π3

Ls4

(π
3

)
=

1

2
π ζ(3) +

9

2
Cl4

(π
3

)
−Ls5

(π
3

)
=

1543

19440
π5 − 6 Gl4,1

(π
3

)
Ls6

(π
3

)
=

15

2
π ζ(5) +

35

36
π3ζ(3) +

135

2
Cl6

(π
3

)
−Ls7

(π
3

)
=

74369

326592
π7 +

15

2
πζ(3)2 − 135 Gl6,1

(π
3

)

As follows from the results of Section 5.4 each integral is a multivariable rational

polynomial in π as well as Cl, Gl, and zeta values. These evaluations confirm those

given in [DK01, Appendix A] for Ls3

(
π
3

)
, Ls4

(
π
3

)
, and Ls6

(
π
3

)
. Less explicitely, the

evaluations of Ls5

(
π
3

)
and Ls7

(
π
3

)
can be recovered from similar results in [KS05,

DK01] (which in part were obtained using PSLQ; we refer to Section 5.5 for how our

analysis relies on PSLQ).

The first presumed-irreducible value that occurs is

Gl4,1

(π
3

)
=
∞∑
n=1

∑n−1
k=1

1
k

n4
sin
(nπ

3

)
=

3341

1632960
π5 − 1

π
ζ(3)2 − 3

4π

∞∑
n=1

1(
2n
n

)
n6
. (5.28)

The final evaluation is described in [BBK01]. Extensive computation suggests it is

not expressible as a sum of products of one dimensional Glaisher and zeta values.

Indeed, conjectures are made in [BBK01, §5] for the number of irreducibles at each

depth. Related dimensional conjectures for polylogs are discussed in [Zlo07]. ♦
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5.4.2 Log-sine integrals at imaginary values

The approach of Section 5.4 may be extended to evaluate log-sine integrals at

imaginary arguments. In more usual terminology, these are log-sinh integrals

Lsh(k)
n (σ) := −

∫ σ

0

θk logn−1−k
∣∣∣∣2 sinh

θ

2

∣∣∣∣ dθ (5.29)

which are related to log-sine integrals by

Lsh(k)
n (σ) = (−i)k+1 Ls(k)

n (iσ) .

We may derive a result along the lines of Theorem 5.4.1 by observing that equation

(5.22) is replaced, when θ = it for t > 0, by the simpler

log(1− e−t) = log

∣∣∣∣2 sinh
t

2

∣∣∣∣− t

2
. (5.30)

This leads to:

Theorem 5.4.7. For t > 0, and nonnegative integers n, k such that n− k > 2,

ζ(n− k, {1}k)−
k∑
j=0

tj

j!
Li2+k−j,{1}n−k−2(e−t)

=
(−1)n+k

(n− 1)!

n−k−1∑
r=0

(
n− 1

k, r

)(
−1

2

)r
Lsh(k+r)

n (t) . (5.31)

Example 5.4.8. Let ρ := (1 +
√

5)/2 be the golden mean. Then, by applying

Theorem 5.4.7 with n = 3 and k = 1,

Lsh
(1)
3 (2 log ρ) = ζ(3)− 4

3
log3 ρ

− Li3(ρ−2)− 2 Li2(ρ−2) log ρ.
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This may be further reduced, using Li2(ρ−2) = π2

15
− log2 ρ and Li3(ρ−2) = 4

5
ζ(3) −

2
15
π2 log ρ+ 2

3
log3 ρ, to yield the well-known

Lsh
(1)
3 (2 log ρ) =

1

5
ζ(3).

The interest in this kind of evaluation stems from the fact that log-sinh integrals

at 2 log ρ express values of alternating inverse binomial sums (the fact that log-sine

integrals at π/3 give inverse binomial sums is illustrated by Example 5.4.6 and (5.28)).

In this case,

Lsh
(1)
3 (2 log ρ) =

1

2

∞∑
n=1

(−1)n−1(
2n
n

)
n3

.

More on this relation and generalizations can be found in each of [NYW95, KV00,

BBK01, BBG04]. ♦

5.5 Reducing polylogarithms

The techniques described in Sections 5.2.3 and 5.4 for evaluating log-sine inte-

grals in terms of multiple polylogarithms usually produce expressions that can be

considerably reduced as is illustrated in Examples 5.2.6, 5.2.7, and 5.4.5. Relations

between polylogarithms have been the subject of many studies [BBBL01, BBG04]

with a special focus on (alternating) multiple zeta values [Köl82, HO03, Zlo07] and,

to a lesser extent, Clausen values [BBK01].

There is a certain deal of choice in how to combine the various techniques that

we present in order to evaluate log-sine integrals at certain values. The next example

shows how this can be exploited to derive relations among the various polylogarithms

involved.
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Example 5.5.1. For n = 5 and k = 2, specializing (5.17) to σ = π and m = 1 yields

Ls
(2)
5 (2π) = 2 Ls

(2)
5 (π)− 4π Ls

(1)
4 (π) + 4π2 Ls3 (π) .

By Example 5.2.9 we know that this evaluates as −13/45π5. On the other hand, we

may use the technique of Section 5.2.3 to reduce the log-sine integrals at π. This

leads to

−8π Li3,1(1) + 12π Li4(1)− 2

5
π5 = −13

45
π5.

In simplified terms, we have derived the famous identity ζ(3, 1) = π4

360
. Similarly, the

case n = 6 and k = 2 leads to ζ(3, 1, 1) = 3
2
ζ(4, 1) + 1

12
π2ζ(3) − ζ(5) which further

reduces to 2ζ(5) − π2

6
ζ(3). As a final example, the case n = 7 and k = 4 produces

ζ(5, 1) = π6

1260
− 1

2
ζ(3)2. ♦

For the purpose of an implementation, we have built many reductions of multiple

polylogarithms into our program. Besides some general rules, such as (5.27), the

program contains a table of reductions at low weight for polylogarithms at the values

1 and −1, as well as Clausen and Glaisher functions at the values π/2, π/2, and 2π/3.

These correspond to the polylogarithms that occur in the evaluation of the log-sine

integrals at the special values π/3, π/2, 2π/3, π which are of particular importance

for applications as mentioned in the introduction. This table of reductions has been

compiled using the integer relation finding algorithm PSLQ [BBG04]. Its use is thus of

heuristic nature (as opposed to the rest of the program which is working symbolically

from the analytic results in this paper) and is therefore made optional.
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5.6 The program

5.6.1 Basic usage

As promised, we implemented1 the presented results for evaluating log-sine inte-

grals for use in the computer algebra systems Mathematica and SAGE. The basic

usage is very simple and illustrated in the next example for Mathematica2.

Example 5.6.1. Consider the log-sine integral Ls
(2)
5 (2π). The following self-explanatory

code evaluates it in terms of polylogarithms:

LsToLi[Ls[5,2,2Pi]]

This produces the output −13/45π5 as in Example 5.2.9. As a second example,

-LsToLi[Ls[5,0,Pi/3]]

results in the output

1543/19440* Pi^5 - 6*Gl[{4,1},Pi/3]

which agrees with the evaluation in Example 5.4.6. Finally,

LsToLi[Ls[5,1,Pi]]

produces

6*Li[{3,1,1},-1] + (Pi^2* Zeta [3])/4

- (105* Zeta [5])/32

as in Example 5.2.6. ♦

1The packages are freely available for download from
http://arminstraub.com/pub/log-sine-integrals

2The interface in the case of SAGE is similar but may change slightly, especially as we hope to
integrate our package into the core of SAGE.

http://arminstraub.com/pub/log-sine-integrals
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Example 5.6.2. Computing

LsToLi[Ls[6,3,Pi/3]-2*Ls[6,1,Pi/3]]

yields the value 313
204120

π6 and thus automatically proves a result of Zucker [Zuc85]. A

family of relations between log-sine integrals at π/3 generalizing the above has been

established in [NYW95]. ♦

5.6.2 Implementation

The conversion from log-sine integrals to polylogarithmic values demonstrated in

Example 5.6.1 roughly proceeds as follows:

• First, the evaluation of Ls(k)
n (σ) is reduced to the cases of 0 6 σ 6 π and

σ = 2mπ as described in Section 5.3.2.

• The cases σ = 2mπ are treated as in Section 5.2.4 and result in multiple zeta

values.

• The other cases σ result in polylogarithmic values at eiσ and are obtained using

the results of Sections 5.2.3 and 5.4.

• Finally, especially in the physically relevant cases, various reductions of the

resulting polylogarithms are performed as outlined in Section 5.5.

5.6.3 Numerical usage

The program is also useful for numerical computations provided that it is coupled

with efficient methods for evaluating polylogarithms to high precision. It complements

for instance the C++ library lsjk “for arbitrary-precision numeric evaluation of the

generalized log-sine functions” described in [KS05].
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Example 5.6.3. We evaluate

Ls
(2)
5

(
2π

3

)
= 4 Gl4,1

(
2π

3

)
− 8

3
πGl3,1

(
2π

3

)
− 8

9
π2 Gl2,1

(
2π

3

)
− 8

1215
π5.

Using specialized code3 such as [VW05], the right-hand side is readily evaluated to,

for instance, two thousand digit precision in about a minute. The first 1024 digits of

the result match the evaluation given in [KS05]. However, due to its implementation

lsjk currently is restricted to log-sine functions Ls(k)
n (θ) with k 6 9. ♦

3The C++ code we used is based on the fast Hölder transform described in [BBBL01], and is
available on request.
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Chapter 6

Log-sine evaluations of Mahler
measures

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[BS11a] Log-sine evaluations of Mahler measures
(with Jonathan M. Borwein)

to appear in Journal of the Australian Mathematical Society

Abstract We provide evaluations of several recently studied higher and multiple

Mahler measures using log-sine integrals. This is complemented with an analysis of

generating functions and identities for log-sine integrals which allows the evaluations

to be expressed in terms of zeta values or more general polylogarithmic terms. The

machinery developed is then applied to evaluation of further families of multiple

Mahler measures.

6.1 Preliminaries

For k functions (typically Laurent polynomials) in n variables the multiple Mahler

measure, introduced in [KLO08], is defined by

µ(P1, P2, . . . , Pk) :=

∫ 1

0

· · ·
∫ 1

0

k∏
j=1

log
∣∣Pj (e2πit1 , . . . , e2πitn

)∣∣ dt1dt2 . . . dtn.
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When P = P1 = P2 = · · · = Pk this devolves to the higher Mahler measure, µk(P ),

as introduced and examined in [KLO08]. When k = 1 both reduce to the standard

(logarithmic) Mahler measure [Boy81].

For n = 1, 2, . . ., we consider the log-sine integrals defined by

Lsn (σ) := −
∫ σ

0

logn−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ dθ (6.1)

and their moments for k > 0 given by

Ls(k)
n (σ) := −

∫ σ

0

θk logn−1−k
∣∣∣∣2 sin

θ

2

∣∣∣∣ dθ. (6.2)

This is the notation used by Lewin [Lew58, Lew81], and the integrals in (6.2) are

usually referred to as generalized log-sine integrals. Note that in each case the modulus

is not needed for 0 6 σ 6 2π. Various log-sine integral evaluations may be found in

Lewin’s book [Lew81, §7.6 & §7.9].

We observe that Ls1 (σ) = −σ and that Ls(0)
n (σ) = Lsn (σ). In particular,

Ls2 (σ) = Cl2 (σ) :=
∞∑
n=1

sin(nσ)

n2
(6.3)

is the Clausen function which plays a prominent role below. Generalized Clausen

functions are introduced in (1.14).

Remark 6.1.1. We remark that it is fitting given the dedication of this article and

volume that Alf van der Poorten wrote the foreword to Lewin’s “bible” [Lew81]. In

fact, he enthusiastically mentions the evaluation

−Ls
(1)
4

(π
3

)
=

17

6480
π4
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and its relation with inverse central binomial sums. This will be explained in Example

6.2.5. Evaluations of log-sine integrals at π/3 are discussed in Section 6.2.2. ♦

Example 6.1.2 (Two classical Mahler measures revisited). As we will have recourse

to the methods used in this example, we reevaluate µ(1 +x+ y) and µ(1 +x+ y+ z).

The starting point is Jensen’s formula:

∫ 1

0

log
∣∣α + e2πi t

∣∣ dt = log (max{|α|, 1}) . (6.4)

To evaluate µ(1 + x+ y), we use (6.4) to obtain

µ(1 + x+ y) =

∫ 5/6

1/6

log(2 sin(πy)) dy =
1

π
Ls2

(π
3

)
=

1

π
Cl2

(π
3

)
, (6.5)

which is a form of Smyth’s seminal 1981 result, see [Boy81, Appendix 1].

To evaluate µ(1 + x + y + z), we follow Boyd [Boy81, Appendix 1] and observe,

on applying Jensen’s formula, that for complex constants a and b

µ(ax+ b) = log |a| ∨ log |b|. (6.6)

Writing w = y/z we have

µ(1 + x+ y + z) = µ(1 + x+ z(1 + w)) = µ(log |1 + w| ∨ log |1 + x|)

=
1

π2

∫ π

0

dθ

∫ π

0

max

{
log

(
2 sin

θ

2

)
, log

(
2 sin

t

2

)}
dt

=
2

π2

∫ π

0

dθ

∫ θ

0

log

(
2 sin

θ

2

)
dt

=
2

π2

∫ π

0

θ log

(
2 sin

θ

2

)
dθ

= − 2

π2
Ls

(1)
3 (π) =

7

2

ζ(3)

π2
. (6.7)

The final result is again due originally to Smyth. ♦
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6.2 Log-sine integrals at π and π/3

The multiple Mahler measure

µk(1 + x+ y∗) := µ(1 + x+ y1, 1 + x+ y2, . . . , 1 + x+ yk) (6.8)

was studied by Sasaki [Sas10, (4.1)]. He uses Jensen’s formula (6.4) to observe that

µk(1 + x+ y∗) =

∫ 5/6

1/6

logk
∣∣1− e2πi t

∣∣ dt (6.9)

and so provides an evaluation of µ2(1+x+y∗). On the other hand, immediately from

(6.9) and the definition (6.1) of the log-sine integrals we have:

Theorem 6.2.1. For positive integers k,

µk(1 + x+ y∗) =
1

π
Lsk+1

(π
3

)
− 1

π
Lsk+1 (π) . (6.10)

In Sections 6.2.1 and 6.2.2 we will cultivate Theorem 6.2.1 by showing how to re-

cursively evaluate the log-sine integrals at π and π/3 respectively. In view of Theorem

6.2.1 this then provides evaluations of all multiple Mahler measures µk(1 + x+ y∗) as

is made explicit in Section 6.3.1.

Further Mahler measure evaluations given later in this paper will further involve

the generalized log-sine integrals, defined in (6.2), at π. These are studied in Section

6.2.3.
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6.2.1 Log-sine integrals at π

First, [Lew58, Eqn (8)] provides

Lsn+2 (π) = (−1)nn!

(
π α(n+ 1) +

n−2∑
k=1

(−1)k

(k + 1)!
α(n− k) Lsk+2 (π)

)
, (6.11)

where α(m) = (1− 21−m)ζ(m). Note that α(1) = 0 while for m > 2

α(m) = −Lim(−1) =
∞∑
k=1

(−1)k+1

km
.

This is a consequence of the exponential generating function [Lew81, Eqn. (7.109)]

for the requisite log-sine integrals:

−
∞∑
m=0

Lsm+1 (π)
xm

m!
= π

Γ (1 + x)

Γ2
(
1 + x

2

) = π

(
x

x/2

)
. (6.12)

This will be revisited and explained in Section 6.4.1.

Example 6.2.2 (Values of Lsn(π)). We have Ls2 (π) = 0 and

−Ls3 (π) =
1

12
π3,

Ls4 (π) =
3

2
π ζ(3),

−Ls5 (π) =
19

240
π5,

Ls6 (π) =
45

2
π ζ(5) +

5

4
π3ζ(3),

−Ls7 (π) =
275

1344
π7 +

45

2
π ζ2(3),

Ls8 (π) =
2835

4
π ζ(7) +

315

8
π3ζ(5) +

133

32
π5ζ(3),

and so forth. The fact that each integral is a multi-variable rational polynomial

in π and zeta values follows directly from the recursion (6.11). Alternatively, these

values may be conveniently obtained from (6.12) by a computer algebra system as
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the following snippet of Maple code demonstrates:

for k to 7 do simplify(subs(x=0,diff(Pi*binomial(x,x/2),x$k))) od ♦

6.2.2 Log-sine integrals at π/3

In this section, we turn to the log-sine integrals integrals at π/3. It is shown in

[BS11c] that the log-sine integrals Ls(k)
n (τ) can be evaluated in terms of zeta values

with the addition of multiple Clausen and Glaisher functions at τ . The gist of the

technique originates with Fuchs ([Fuc61], [Lew81, §7.10]). In the case τ = π/3 the

resulting evaluations usually allow considerable reductions. This is because the basic

sixth root of unity ω = eiπ/3 satisfies ω = ω2. As a consequence, the log-sine integrals

Ls(k)
n (π/3) are more tractable than those at other values; which fact we illustrate

next.

Example 6.2.3 (Reducibility). Proceeding as in [BS11c], in addition to Ls(n−1)
n (τ) =

−τn/n and Ls2 (τ) = Cl2 (τ), we have

−Ls3 (τ) = 2 Gl2,1 (τ) +
1

12
τ(3π2 − 3πτ + τ 2)

Ls
(1)
3 (τ) = Cl3 (τ) + τ Cl2 (τ)− ζ(3),

as well as

−Ls4 (τ) = −6 Cl2,1,1 (τ) +
3

2
Cl4 (τ) +

3

2
(π − τ) Cl3 (τ)− 3

4
(π − τ)2 Cl2 (τ)− 3

2
πζ(3),

Ls
(1)
4 (τ) =

1

180
π4 − 1

16
τ 4 +

1

6
πτ 3 − 1

8
π2τ 2 − 2 Gl3,1 (τ)− 2τ Gl2,1 (τ) ,

Ls
(2)
4 (τ) = −2 Cl4 (τ) + 2τ Cl3 (τ) + τ 2 Cl2 (τ) .

In the case τ = π/3 these evaluations can be further reduced as will be shown

in Example 6.2.4. On the other hand, it appears that, for instance, Gl2,1 (τ) is not
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reducible even for the special values τ = π/2 or τ = 2π/3. Here, reducible means

expressible in terms of multi zeta values and Glaisher (resp. Clausen) functions of the

same argument and lower weight. Yet, Gl2,1 (2π/3) is reducible to one-dimensional

polylogarithmic terms at different arguments as will be shown in (6.59).

More generally, in [BBSW12] explicit reductions for all weight-four-or-less poly-

logarithms are given. ♦

Example 6.2.4 (Values of Lsn (π/3)). The following evaluations may be obtained

with the help of the implementation1 accompanying [BS11c]:

Ls2

(π
3

)
= Cl2

(π
3

)
,

−Ls3

(π
3

)
=

7

108
π3,

Ls4

(π
3

)
=

1

2
π ζ(3) +

9

2
Cl4

(π
3

)
,

−Ls5

(π
3

)
=

1543

19440
π5 − 6 Gl4,1

(π
3

)
,

Ls6

(π
3

)
=

15

2
π ζ(5) +

35

36
π3ζ(3) +

135

2
Cl6

(π
3

)
,

−Ls7

(π
3

)
=

74369

326592
π7 +

15

2
πζ(3)2 − 135 Gl6,1

(π
3

)
,

Ls8

(π
3

)
=

13181

2592
π5ζ(3) +

1225

24
π3ζ(5) +

319445

864
πζ(7)

+
35

2
π2 Cl6

(π
3

)
+

945

4
Cl8

(π
3

)
+ 315 Cl6,1,1

(π
3

)
,

and so forth, where we note that each integral is a multivariable rational polynomial

in π as well as Cl, Gl, and zeta values.

The first presumed-irreducible value that occurs is

Gl4,1

(π
3

)
=
∞∑
n=1

∑n−1
k=1

1
k

n4
sin
(nπ

3

)
=

3341

1632960
π5 − 1

π
ζ(3)2 − 3

4π

∞∑
n=1

1(
2n
n

)
n6
. (6.13)

1available for download from http://arminstraub.com/pub/log-sine-integrals

http://arminstraub.com/pub/log-sine-integrals
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The final evaluation is described in [BBK01]. Extensive computation suggests it is

not reducible in the sense of Example 6.2.3. Indeed, conjectures are made in [BBK01,

§5] for the number of irreducible Clausen and Glaisher values at each depth. ♦

Example 6.2.5 (Central binomial sums). As suggested by (6.13), the log-sine integral

Ls(1)
n (π/3) has an appealing evaluation in terms of the central binomial sum

S±(n) :=
∞∑
k=1

(±1)k+1(
2k
k

)
kn

which is given by

− Ls
(1)
n+2

(π
3

)
= n!

(
−1

2

)n
S+(n+ 2). (6.14)

This is proven in [BBK01, Lemma 1], in connection with a study of Apéry-like sums

— of which the value 5
2
S−(3) = ζ(3) plays a role in Apéry’s proof of the later’s irra-

tionality. The story of Apéry’s proof is charmingly described in Alf van der Poorten’s

most cited paper [Poo79].

Comtet’s evaluation S+(4) = 17
36
ζ(4) thus also evaluates Ls

(1)
4

(
π
3

)
= −17π4

6480
, while

the classical arcsin series gives Ls
(1)
2

(
π
3

)
= −π2

18
. We recall from [BBK01] that, for

instance,

S+(8) =
3462601

2204496000
π8 +

1

9
π2ζ(3)2 − 38

3
ζ(3)ζ(5)− 14

15
ζ(5, 3)− 4πGl6,1

(π
3

)
.

Thus, apart from MZVs, S+(8) involves the same Clausen value Gl6,1
(
π
3

)
as appears

in Ls7

(
π
3

)
(and hence µ6(1 + x+ y∗)). In other words, µ6(1 + x+ y∗) can be written

entirely in terms of MZVs and S+(8). This is true for the other cases in Example

6.3.1 as well: µk(1 + x + y∗) can be written in terms of MZVs as well as S+(k + 2)

for k 6 6. ♦
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6.2.3 Generalized log-sine integrals at π

Following [BS11c], we demonstrate how the generalized log-sine integrals Ls(k)
n (π)

may be extracted from a generating function given in Theorem 6.2.6. As Lewin

[Lew81, §7.9] sketches, at least for small values of n and k, these log-sine integrals at π

have closed forms involving zeta values and Kummer-type constants such as Li4(1/2).

This will be made more precise in Remark 6.2.8. We start with the generating function

identity

−
∑
n,k>0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
=

∫ π

0

(
2 sin

θ

2

)λ
eiµθ dθ

= ieiπ
λ
2 B

(
µ− λ

2
, 1 + λ

)
− ieiπµB1/2

(
µ− λ

2
,−µ− λ

2

)
(6.15)

given in [Lew81]. Here Bx is the incomplete Beta function. With care — because

of the singularities at zero — (6.15) can be differentiated as needed as suggested by

Lewin.

Using the identities, valid for a, b > 0 and 0 < x < 1,

Bx(a, b) =
xa(1− x)b−1

a
2F1

(
1− b, 1
a+ 1

∣∣∣∣ x

x− 1

)
=
xa(1− x)b

a
2F1

(
a+ b, 1

a+ 1

∣∣∣∣x) ,
found for instance in [OLBC10, §8.17(ii)], the generating function (6.15) can be rewrit-

ten as

−
∑
n,k>0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
= ieiπ

λ
2

(
B1

(
µ− λ

2
, 1 + λ

)
−B−1

(
µ− λ

2
, 1 + λ

))
.

Upon expanding the right-hand side this establishes the following computationally

more accessible form given in [BS11c]:
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Theorem 6.2.6 (Generating function for Ls
(k)
n+k+1 (π)). For 2|µ| < λ < 1 we have

−
∑
n,k>0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
= i
∑
n>0

(−1)n
(
λ

n

)
eiπ

λ
2 − (−1)neiπµ

µ− λ
2

+ n
. (6.16)

The log-sine integrals Ls(k)
n (π) can be quite comfortably extracted from (6.16) by

appropriately differentiating its right-hand side. For that purpose it is very helpful

to observe that

(−1)α

α!

(
d

dλ

)α(
λ

n

)∣∣∣∣
λ=0

=
(−1)n

n

∑
n>i1>i2>...>iα−1

1

i1i2 · · · iα−1

. (6.17)

Fuller theoretical and computational details are given in [BS11c].

The general process is now exemplified for the cases Ls
(2)
4 (π) and Ls

(1)
5 (π).

Example 6.2.7 (Ls
(k)
4 (π) and Ls

(k)
5 (π)). In order to find Ls

(2)
4 (π) we differentiate

(6.16) once with respect to λ and twice with respect to µ. To further simplify com-

putation, we take advantage of the fact that the result will be real which allows us to

neglect imaginary parts:

−Ls
(2)
4 (π) =

d2

dµ2

d

dλ
i
∑
n>0

(
λ

n

)
(−1)neiπ

λ
2 − eiπµ

µ− λ
2

+ n

∣∣∣∣
λ=µ=0

= 2π
∑
n>1

(−1)n+1

n3
=

3

2
πζ(3). (6.18)

In the second step we were able to drop the term corresponding to n = 0 because its

contribution −iπ4/24 is purely imaginary.
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Similarly, writing H
(1,1)
n−1 =

∑
n>n1>n2

1
n1n2

, we obtain Ls
(1)
5 (π) as

−Ls
(1)
5 (π) =

3

4

∑
n>1

6(1− (−1)n)

n5
− π2

n3
+

8(1− (−1)n)

n4

(
nH

(1,1)
n−1 −Hn−1

)
=

9

2
(ζ(5)− Li5(−1))− 3

4
π2ζ(3)

+ 6 (Li3,1,1(1)− Li3,1,1(−1)− Li4,1(1) + Li4,1(−1))

= 2λ5

(
1
2

)
− 3

4
π2ζ(3)− 93

32
ζ(5). (6.19)

Here λ5 is as defined in (1.17). Further such evaluations include

−Ls
(1)
4 (π) = 2λ4

(
1
2

)
− 19

8
ζ(4), (6.20)

−Ls
(2)
5 (π) = 4π λ4

(
1
2

)
− 3

40
π5, (6.21)

−Ls
(3)
5 (π) =

9

4
π2ζ(3)− 93

8
ζ(5). (6.22)

Ls
(2)
5 (π) has also been evaluated in [Lew81, Eqn. (7.145)] but the exact formula was

not given correctly. ♦

Remark 6.2.8. From the form of (6.16) and (6.17) we can see that the log-sine

integrals Ls(k)
n (π) can be expressed in terms of π and the polylogarithms Lin,{1}m(±1).

Further, the duality results in [BBBL01, §6.3, and Example 2.4] show that the terms

Lin,{1}m(−1) will produce explicit multi-polylogarithmic values at 1/2. ♦

The next example illustrates the rapidly growing complexity of these integrals,

especially when compared to the evaluations given in Example 6.2.7.

Example 6.2.9 (Ls
(k)
6 (π) and Ls

(3)
7 (π)). Proceeding as in Example 6.2.7 and writing

Li±a1,...,an = Lia1,...,an(1)− Lia1,...,an(−1)
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we find

−Ls
(1)
6 (π) = −24 Li±3,1,1,1 +24 Li±4,1,1−18 Li±5,1 +12 Li±6 +3π2ζ(3, 1)− 3π2ζ(4) +

π6

480

=
43

60
log6 2− 7

12
π2 log4 2 + 9ζ(3) log3 2 +

(
24 Li4

(
1
2

)
− 1

120
π4

)
log2 2

+
(
36 Li5

(
1
2

)
− π2ζ(3)

)
log 2 + 12 Li5,1

(
1
2

)
+ 24 Li6

(
1
2

)
− 247

10080
π6

= 2λ6

(
1
2

)
− 6 Li5,1(−1)− 3ζ(3)2 − 451

10080
π6. (6.23)

In the first equality, the term π6/480 is the one corresponding to n = 0 in (6.16).

Similarly, we find

−Ls
(2)
6 (π) = 4πλ5

(
1
2

)
− π3ζ(3)− 189

16
πζ(5), (6.24)

−Ls
(3)
6 (π) = 6π2λ4

(
1
2

)
− 12 Li5,1(−1)− 6ζ(3)2 − 187

1680
π6, (6.25)

−Ls
(4)
6 (π) = −45

2
πζ(5) + 3π3ζ(3), (6.26)

as well as

−Ls
(3)
7 (π) =

9

35
log7 2 +

4

5
π2 log5 2 + 9ζ(3) log4 2− 31

30
π4 log3 2

−
(

72 Li5
(

1
2

)
− 9

8
ζ(5)− 51

4
π2ζ(3)

)
log2 2

+
(
72 Li5,1

(
1
2

)
− 216 Li6

(
1
2

)
+ 36π2 Li4

(
1
2

))
log 2 + 72 Li6,1

(
1
2

)
− 216 Li7

(
1
2

)
+ 36π2 Li5

(
1
2

)
− 1161

32
ζ(7)− 375

32
π2ζ(5) +

1

10
π4ζ(3)

= 6π2λ5

(
1
2

)
+ 36 Li5,1,1(−1)− π4ζ(3)− 759

32
π2ζ(5)− 45

32
ζ(7). (6.27)

Note that in each case the monomials in Ls(k)
n (π) are of total order n — where π is

order one, ζ(3) is order three and so on. ♦
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Remark 6.2.10. A purely real form of Theorem 6.2.6 is the following:

∫ π

0

(
2 sin

θ

2

)x
eθydθ =

∞∑
n=0

(−1)n
(
x
n

) (
y
(
(−1)n eπy − cos πx

2

)
−
(
n− x

2

)
sin πx

2

)(
n− x

2

)2
+ y2

.

(6.28)

One may now also deduce one-variable generating functions from (6.28). For instance,

∞∑
n=0

Ls
(1)
n+2 (π)

λn

n!
=
∞∑
n=0

(
λ

n

)
(−1)n cos πλ

2
− 1(

n− λ
2

)2 , (6.29)

and we may again now extract individual values. ♦

6.2.4 Hypergeometric evaluation of Lsn (π/3)

We close this section with an alternative approach to the evaluation of Lsn (π/3)

complementing the one given in Section 6.2.2.

Theorem 6.2.11 (Hypergeometric form of Lsn
(
π
3

)
). For nonnegative integers n,

(−1)n+1

n!
Lsn+1

(π
3

)
= n+2Fn+1

({
1
2

}n+2{
3
2

}n+1

∣∣∣∣14
)

=
∞∑
k=0

2−4k

(2k + 1)n+1

(
2k

k

)
. (6.30)

Consequently,

−
∞∑
n=0

Lsn+1

(π
3

) sn
n!

=
1

s+ 1
2F1

( 1
2
, s

2
+ 1

2
s
2

+ 3
2

∣∣∣∣14
)

=
∞∑
k=0

2−4k

2k + 1 + s

(
2k

k

)
.

Proof. We compute as follows:

−Lsn+1

(π
3

)
=

∫ π/3

0

logn
(

2 sin
θ

2

)
dθ

=

∫ 1

0

logn(x)√
1− x2/4

dx

=
∞∑
k=0

2−4k

(
2k

k

)∫ 1

0

x2k logn(x) dx.
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The claim thus follows from

∫ 1

0

xs−1 logn(x) dx =

∫ ∞
0

(−x)ne−sx dx =
(−1)nΓ(n+ 1)

sn+1

which is a consequence of the integral representation of the gamma function.

Observe that the sum in (6.30) converges very rapidly and so is very suitable for

computation. Also, from Example 6.2.4 we have evaluations — some known — such

as
∞∑
k=0

2−4k

(2k + 1)

(
2k

k

)
=
π

3

and
∞∑
k=0

2−4k

(2k + 1)2

(
2k

k

)
= Cl2

(π
3

)
.

Remark 6.2.12. As outlined in [DK01], the series (6.30) combined with (6.14) can

also be used to produce rapidly-convergent series for certain multi zeta values includ-

ing ζ(5, 3), ζ(7, 3) and ζ(3, 5, 3). ♦

6.3 Log-sine evaluations of multiple Mahler

measures

We first substantiate that we can recursively determine µk(1+x+y∗) from equation

(6.10) as claimed.

6.3.1 Evaluation of µk(1 + x+ y∗)

Substituting the values given in Example 6.2.4 and Example 6.2.2 into equation

(6.10) we obtain the following multiple Mahler evaluations:
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Example 6.3.1 (Values of µk(1 + x+ y∗)). We have

µ1(1 + x+ y∗) =
1

π
Cl2

(π
3

)
, (6.31)

µ2(1 + x+ y∗) =
π2

54
, (6.32)

µ3(1 + x+ y∗) =
9

2π
Cl4

(π
3

)
− ζ(3), (6.33)

µ4(1 + x+ y∗) =
6

π
Gl4,1

(π
3

)
− π4

4860
, (6.34)

µ5(1 + x+ y∗) =
135

2π
Cl6

(π
3

)
− 15ζ(5)− 5

18
π2ζ(3), (6.35)

µ6(1 + x+ y∗) =
135

π
Gl6,1

(π
3

)
+ 15ζ(3)2 − 943

40824
π6, (6.36)

and the like. The first is again a form of Smyth’s result (6.5). ♦

Remark 6.3.2. Note that we may rewrite the multiple Mahler measure µk(1+x+y∗)

as follows:

µk(1 + x+ y∗) = µ(1 + x, . . . , 1 + x︸ ︷︷ ︸
k−1

, 1 + x+ y). (6.37)

This is easily seen from Jensen’s formula (6.4). Indeed, using (6.4) the left-hand side

of (6.37) becomes

µk(1 + x+ y∗) =

∫ 1

0

· · ·
∫ 1

0

k∏
j=1

log
∣∣1 + e2πis + e2πitj

∣∣ dsdt1 · · · dtk
=

∫ 1

0

[∫ 1

0

log
∣∣1 + e2πis + e2πit

∣∣ dt]k ds

=

∫
logk

∣∣1 + e2πis
∣∣ ds

where the last integral is over 0 6 s 6 1 such that |1 + e2πis| > 1. The same integral

is obtained when applying (6.4) to the right-hand side of (6.37). ♦
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6.3.2 Evaluation of µk(1 + x+ y∗ + z∗)

We next follow a similar course for multiple Mahler measures built from 1+x+y+z

to that given for µk(1 + x+ y∗) in Section 6.3.1. Analogous to (6.8) we define:

µk(1 + x+ y∗ + z∗) := µ(1 + x+ y1 + z1, . . . , 1 + x+ yk + zk). (6.38)

Working as in (6.7) we may write

µk(1 + x+ y∗ + z∗) =
1

π

∫ π

0

[
1

π

∫ π

0

max

{
log

(
2 sin

θ

2

)
, log

(
2 sin

σ

2

)}
dσ

]k
dθ.

We observe that the inner integral with respect to σ evaluates separately, and on

recalling that Ls2 (θ) = Cl2 (θ) and Cl2 (π) = 0 we arrive at:

Theorem 6.3.3. For all positive integers k, we have

µk(1 + x+ y∗ + z∗) =
1

πk+1

∫ π

0

(
θ log

(
2 sin

θ

2

)
+ Cl2 (θ)

)k
dθ. (6.39)

Example 6.3.4 (Values of µk(1 + x + y∗ + z∗)). Thus, for µ2(1 + x + y∗ + z∗), we

obtain

π3 µ2(1 + x+ y∗ + z∗) = −Ls
(2)
5 (π) +

∫ π

0

Cl22(θ) dθ +

∫ π

0

2θ log

(
2 sin

θ

2

)
Cl2 (θ) dθ.

Applying Parseval’s equation evaluates the first integral in this equation to π5/180.

Integration by parts of the second integral shows that it equals minus the first one.

For k = 3, one term is a log-sine integral and two of the terms are equal, but we

could not completely evaluate the two remaining terms.
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Hence, from (6.39), we have:

µ1(1 + x+ y∗ + z∗) = − 2

π2
Ls

(1)
3 (π) =

7

2

ζ(3)

π2
, (6.40)

µ2(1 + x+ y∗ + z∗) = − 1

π3
Ls

(2)
5 (π) +

π2

90
=

4

π2
Li3,1(−1) +

7

360
π2, (6.41)

µ3(1 + x+ y∗ + z∗) =
2

π4

∫ π

0

Cl32(θ) dθ +
3

π4

∫ π

0

θ2 log2

(
2 sin

θ

2

)
Cl2 (θ) dθ

− 1

π4
Ls

(3)
7 (π) . (6.42)

The first of these is a form of (6.7) which originates with Smyth and Boyd [Boy81].

The relevant log-sine integrals have been discussed in Section 6.2.3. In particular,

Ls
(2)
5 (π) and Ls

(3)
7 (π) have been evaluated in (6.21) and (6.27).

It is possible to further reexpress the integrals in (6.42) but we have not so far

found an entirely satisfactory resolution. ♦

6.3.3 Evaluation of µ(1 + x, . . . , 1 + x, 1 + x+ y + z)

Recall from Remark 6.3.2 that the multiple Mahler measure µk(1 +x+ y∗) can be

rewritten as µ(1+x, . . . , 1+x, 1+x+y) with the term 1+x repeated k−1 times. This

is not possible for µk(1+x+y∗+z∗) which is distinct from µ(1+x, . . . , 1+x, 1+x+y+z)

which we study next.

Applying Jensen’s formula as in (6.7) for k = 0, 1, 2, . . . we obtain (6.43) below.

Then (6.44) follows on integrating by parts.

Theorem 6.3.5. For all nonnegative integers k we have:

µ(1 + x, . . . , 1 + x︸ ︷︷ ︸
k

, 1 + x+ y + z)

= − 1

π2
Ls

(1)
k+3 (π) +

1

π2

∫ π

0

Ls2 (θ) logk
(

2 sin
θ

2

)
dθ (6.43)

= − 1

π2
Ls

(1)
k+3 (π)− 1

π2

∫ π

0

Lsk+1 (θ) log

(
2 sin

θ

2

)
dθ. (6.44)
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Example 6.3.6. Equation (6.44) recovers (6.7) when k = 0 since Ls1 (θ) = −θ.

Setting k = 1 in (6.44) we obtain

µ(1 + x, 1 + x+ y + z) = − 1

π2
Ls

(1)
4 (π) +

1

π2

∫ π

0

Cl2 (θ) log

(
2 sin

θ

2

)
dθ

= − 1

π2
Ls

(1)
4 (π)− 1

2π2
Cl22(π)

= − 1

π2
Ls

(1)
4 (π) =

2

π2
λ4

(
1
2

)
− 19

720
π2 (6.45)

on again using Ls2 (θ) = Cl2 (θ) and Cl2 (π) = 0. The final evaluation was given in

(6.20) of Example 6.2.7. For k = 2 we have

µ(1 + x, 1 + x, 1 + x+ y + z) = − 1

π2
Ls

(1)
5 (π) +

1

π2

∫ π

0

Ls2 (θ) log2

(
2 sin

θ

2

)
dθ

= − 1

π2
Ls

(1)
5 (π)− 2

3π2
λ5

(
1
2

)
+

155

32π2
ζ(5),

where the last integral was found via PSLQ. This agrees with the more complicated

version conjectured in [Kal05]. We may use (6.19) of Example 6.2.7 to arrive at

µ(1 + x, 1 + x, 1 + x+ y + z) =
4

3π2
λ5

(
1
2

)
− 3

4
ζ(3) +

31

16π2
ζ(5). (6.46)

For k = 3, things are more complicated as is suggested by (6.23). ♦

6.4 Moments of random walks

The s-th moments of an n-step uniform random walk are given by

Wn(s) =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣∣
n∑
k=1

e2πitk

∣∣∣∣∣
s

dt1 · · · dtn (6.47)
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and their relation with Mahler measure is observed in [BSWZ11]. In particular,

W ′
n(0) = µ(1 + x1 + . . .+ xn−1)

with the cases n = 3 and n = 4 given in (6.5) and (6.7) respectively. The cases n = 5

and n = 6 are discussed in (6.75) and (6.76) respectively. Higher derivatives of Wn

correspond to higher Mahler measures:

W (k)
n (0) = µk(1 + x1 + . . .+ xn−1). (6.48)

More general moments corresponding to other Mahler measures were introduced in

[Aka09] and studied in [KLO08] as zeta Mahler measures.

6.4.1 Evaluation of µk(1 + x)

Equipped with the results of the first section, we may now fruitfully revisit another

recent result which is concerned with the evaluation of W
(k)
2 (0) = µk(1 + x).

A central evaluation in [KLO08, Thm. 3] is:

µk(1 + x) = (−1)kk!
∞∑
n=1

1

4n

∑
bj>2,

∑
bj=k

ζ(b1, b2, . . . , bn). (6.49)

We note that directly from the definition and an easy change of variables

µk(1 + x) = − 1

π
Lsk+1 (π) . (6.50)

Hence, we have closed forms such as provided by Example 6.2.2.
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Example 6.4.1. For instance,

−µ5(1 + x) =
45

2
ζ(5) +

5

4
π2ζ(3), (6.51)

µ6(1 + x) =
45

2
ζ2(3) +

275

1344
π6. (6.52)

These are derived more elaborately in [KLO08, Ex. 5] from the right of equation

(6.49). ♦

We have, inter alia, evaluated the multi zeta value sum on the right of equation

(6.49) as a simple log-sine integral.

Also, note that the evaluation W2(s) =
(
s
s/2

)
, [BSWZ11], in combination with

(6.50) thus explains and proves the generating function (6.12).

6.4.2 A generating function for µk(1 + x+ y)

The evaluation of the Mahler measures W ′
3(0) = µ(1 + x + y) and W ′

4(0) =

µ(1 + x+ y + z) is classical and was discussed in Example 6.1.2.

The derivatives W ′′
3 (0) = µ2(1 + x + y) and W ′′

4 (0) = µ2(1 + x + y + z) were

evaluated using explicit forms for W3(s) and W4(s) in [BSWZ11, §6]. For example,

W ′′
3 (0) =

π2

12
− 4 log 2

π
Cl2

(π
3

)
− 4

π

∞∑
n=0

(
2n
n

)
42n

∑n
k=0

1
2k+1

(2n+ 1)2
. (6.53)

We shall revisit these two Mahler measures in (6.58) and (6.73) of Sections 6.4.3 and

6.4.4.

As a consequence of the study of random walks in [BSWZ11] we record the fol-

lowing generating function for µk(1 + x + y) which follows from (6.48) and the hy-

pergeometric expression for W3 in [BSWZ11, Thm. 10]. There is a corresponding
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expression, using a single Meijer-G function, for W4 (i.e., µm(1 + x+ y+ z)) given in

[BSWZ11, Thm. 11].

Theorem 6.4.2. For complex |s| < 2, we may write

∞∑
m=0

µm(1+x+y)
sm

m!
= W3(s) =

√
3

2π
3s+1 Γ(1 + s/2)2

Γ(s+ 2)
3F2

( s+2
2
, s+2

2
, s+2

2

1, s+3
2

∣∣∣∣14
)
. (6.54)

The particular measure µ2(1 + x + y) will be investigated in Section 6.4.3. The

general case µm(1 + x+ y) is studied in [BBSW12].

6.4.3 Evaluation of µ2(1 + x+ y)

Example 6.4.3. A purported evaluation given in [KLO08] is:

µ2(1 + x+ y) = µ2(1 + x+ y)
?
=

5

54
π2 = 5µ2(1 + x+ y∗) (6.55)

where the last equality follows from (6.32). However, we are able to numerically

disprove (6.55).2 Indeed, we find µ2(1 + x+ y) ≈ 0.419299 while 5
54
π2 ≈ 0.913852. ♦

We note that for integer k > 1 we do have

µk(1 + x+ y) =
1

4π2

∫ 2π

0

dθ

∫ 2π

0

(
Re log

(
1− 2 sin(θ)ei ω

))k
dω, (6.56)

directly from the definition and some simple trigonometry, since Re log = log | · |.

We revisit Example 6.4.3 in the next result, in which we evaluate µ2(1 + x+ y) as a

log-sine integrals as well as in terms of polylogarithmic constants.

2There are two errors in the proof given in [KLO08, Theorem 11]. A term is dropped between
lines 8 and 9 of the proof and the limits of integration are wrong after changing s(1− s) to t.
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Theorem 6.4.4. We have

µ2(1 + x+ y) =
24

5π
Ti3

(
1√
3

)
+

2 log 3

π
Cl2

(π
3

)
− log2 3

10
− 19π2

180
(6.57)

=
π2

4
+

3

π
Ls3

(
2π

3

)
. (6.58)

Remark 6.4.5. We note that

Ls3

(
2π

3

)
= −

∫ π/3

0

log2

(
2 cos

θ

2

)
dθ

and that these log-cosine integrals have fewer explicit closed forms. Using the results

of [BS11c] to evaluate log-sine integrals in polylogarithmic terms we find that

Ls3

(
2π

3

)
= − 13

162
π3 − 2 Gl2,1

(
2π

3

)
. (6.59)

In fact, this is automatic if we employ the provided implementation. Theorem 6.4.4

thus also gives a reduction of Gl2,1
(

2π
3

)
to one-dimensional polylogarithmic constants.

♦

A preparatory result is helpful before proceeding to the proof of Theorem 6.4.4.

Proposition 6.4.6 (A dilogarithmic representation). We have:

(a)

2

π

∫ π

0

Re Li2
(
4 sin2 θ

)
dθ = 2ζ(2). (6.60)

(b)

µ2(1 + x+ y) =
1

36
π2 +

2

π

∫ π/6

0

Li2
(
4 sin2 θ

)
dθ. (6.61)

Proof. For (a) we define τ(z) := 2
π

∫ π
0

Li2
(
4z sin2 θ

)
dθ. This is an analytic function

of z. For |z| < 1/4 we may use the original series for Li2 and expand term by term
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using Wallis’ formula to derive

τ(z) =
2

π

∑
n>1

(4z)n

n2

∫ π

0

sin2n θ dθ = 4z 4F3

(
1, 1, 1, 3

2

2, 2, 2

∣∣∣∣4z)

= 4 Li2

(
1

2
− 1

2

√
1− 4z

)
− 2 log

(
1

2
+

1

2

√
1− 4z

)2

.

The final equality can be obtained in Mathematica and then verified by differentiation.

In particular, the final function provides an analytic continuation and so we obtain

τ(1) = 2ζ(2) + 4iCl2
(
π
3

)
which yields the assertion.

For (b), commencing much as in [KLO08, Thm. 11], we write

µ2(1 + x+ y) =
1

4π2

∫ π

−π

∫ π

−π
Re log

(
1− 2 sin(θ)ei ω

)2
dω dθ.

We consider the inner integral ρ(α) :=
∫ π
−π (Re log (1− α ei ω))

2
dω with α := 2 sin θ.

For |θ| 6 π/6 we directly apply Parseval’s identity to obtain

ρ(2 sin θ) = π Li2
(
4 sin2 θ

)
. (6.62)

In the remaining case we write

ρ(2 sin θ) =

∫ π

−π

{
log |α|+ Re log

(
1− α−1 ei ω

)}2
dω

= 2π log2 |α| − 2 log |α|
∫ π

−π
log
∣∣1− α−1 ei ω

∣∣ dω + π Li2

(
1

4 sin2 θ

)
= 2π log2 |2 sin θ|+ π Li2

(
1

4 sin2 θ

)
, (6.63)

where we have appealed to Parseval’s and Jensen’s formulas. Thus,

µ2(1 + x+ y) =
1

π

∫ π/6

0

Li2
(
4 sin2 θ

)
dθ +

1

π

∫ π/2

π/6

Li2

(
1

4 sin2 θ

)
dθ +

π2

54
, (6.64)
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since 2
π

∫ π/2
π/6

log2 α dθ = µ2(1 + x+ y∗) = π2

54
. Now, for α > 1, the functional equation

in [Lew58, A2.1 (6)] — Li2(α) + Li2(1/α) + 1
2

log2 α = 2ζ(2) + iπ logα — gives:

∫ π/2

π/6

{
Re Li2

(
4 sin2 θ

)
+ Li2

(
1

4 sin2 θ

)}
dθ =

5

54
π3. (6.65)

We now combine (6.60), (6.65) and (6.64) to deduce the desired result in (6.61).

We are now in a position to prove the desired evaluation of µ2(1 + x + y) as a

log-sine integral.

Proof of Theorem 6.4.4. Using Proposition 6.4.6 we have:

µ2(1 + x+ y) =
π2

36
+

2

π

∫ π/6

0

Li2
(
4 sin2w

)
dw

=
π2

36
+

2

π

∑
n>1

4n

n2

∫ π/6

0

sin2nw dw

=
π2

36
+

√
3

π

∑
n>1

(
2n−1
n−1

)
4n

∞∑
k=n

1

(2 k + 1)
(

2k
k

) , (6.66)

where the last line is a consequence of the formula

∫ π/6

0

sin2nw dw =

√
3

2

(
2n−1
n−1

)
4n

∞∑
k=n

1

(2 k + 1)
(

2k
k

)
given in [KLO08]. Hence, on using a beta-integral and then exchanging sum and

integral we obtain:

µ2(1 + x+ y) =
π2

36
+

2
√

3

π

∑
n>1

(
2n− 1

n− 1

)∫ 1/2

0

tn(1− t)n
1− t+ t2

dt

=
π2

36
+

2
√

3

π

∫ 1/2

0

∑
n>1

(
2n− 1

n− 1

)
(t(1− t))n
1− t+ t2

dt

=
π2

36
+

√
3

π

∫ 1/2

0

2 Li2 (t)− log2 (1− t)
1− t+ t2

dt (6.67)
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where the last equality comes from evaluating the power series above.

Further careful integrations by parts let us use [Lew81, Appendix A5.3, (1)] to

derive

πµ2(1 + x+ y) =
67

324
π3 + 2 Cl2

(π
3

)
log 3− 8 Im Li3

(
i
√

3
)

+ 4 Im Li3

(
3 + i

√
3

2

)
. (6.68)

Next, we note that

Im Li3

(
3 + i

√
3

2

)
=

55

1296
π3 +

5

48
π log2 3 + Im Li3

(
3− i

√
3

6

)
, (6.69)

while

Im Li3

(
i
√

3
)

=
1

16
π3 +

1

16
π log2 3− 1

6
Ti3

(
1√
3

)
. (6.70)

Above, we have had recourse to various reduction formulae [Lew81, BCC10] for higher

Clausen functions to arrive at the final form. Substituting (6.69), (6.70) in (6.68), we

arrive at the asserted result (6.57).

A connection with the log-sine integrals is made by noting that

Ti3

(
1√
3

)
=

5

8
Ls3

(
2π

3

)
− 1

2
Ti2

(
1√
3

)
log 3− 1

48
π log2 3 +

2

27
π3, (6.71)

Ti2

(
1√
3

)
=

5

6
Cl2

(π
3

)
− π

12
log 3. (6.72)

These follow from [Lew81, Eqn. (44), p. 298] and [Lew81, Eqn. (18), p. 292]

respectively. Applying (6.71) and (6.72) to (6.57) now yields (6.58).

Finally, we observe that it is possible to take the analysis of µn(1 + x + y) for

n > 3 a fair distance. This will be detailed in the forthcoming paper [BBSW12].
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6.4.4 Evaluation of µ2(1 + x+ y + z)

Paralleling the evaluation of µ2(1 + x+ y) in Theorem 6.4.4 we now give a closed

form for µ2(1+x+y+z) which was obtained in [BSWZ11] by quite different methods

to those of Theorem 6.4.4.

Theorem 6.4.7. We have

µ2(1 + x+ y + z) =
12

π2
λ4

(
1
2

)
− π2

5
(6.73)

where λ4 is as defined in (1.17).

Proof. The formula

π2W ′′
4 (0) = 24 Li4(1

2
)− 18ζ(4) + 21ζ(3) log 2− 6ζ(2) log2 2 + log4 2

was deduced in [BSWZ11]. We now observe that

24 Li4(1
2
)− 18ζ(4) + 21ζ(3) log 2− 6ζ(2) log2 2 + log4 2

= 12λ4

(
1
2

)
− π4

5
,

and appeal to equation (6.48) for µ2(1 + x+ y + z) = W ′′
4 (0).

6.4.5 A conjecture of Rodriguez-Villegas

Finally, we mention two conjectures concerning the Mahler measures µ(1 + x +

y+ z+w) and µ(1 +x+y+ z+w+v), contained in slightly different form in [Fin05].

These correspond to the moment values W ′
5(0) and W ′

6(0).
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Recall that η is the Dirichlet eta-function given by

η(τ) = η(q) := q1/24

∞∏
n=1

(1− qn) = q1/24

∞∑
n=−∞

(−1)nqn(3n+1)/2 (6.74)

where q = e2πiτ .

The following two conjectural expressions have been put forth by Rodriguez-

Villegas:

µ(1 + x+ y + z + w)
?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt

(6.75)

and

µ(1 + x+ y + z + w + v)
?
=

(
3

π2

)3 ∫ ∞
0

η2(e−t)η2(e−2t)η2(e−3t)η2(e−6t) t4 dt. (6.76)

As discussed in [BSWZ11], we have confirmed numerically that the evaluation of

µ(1 + x + y + z + w + v) in (6.75) holds to 600 places. Likewise, we have confirmed

that (6.76) holds to 80 places.

6.5 Conclusion

It is reasonable to ask what other Mahler measures can be placed in log-sine form,

and to speculate as to whether the η integrals (6.75) and (6.76) can be.

As described in [LS11], it is a long standing question due to Lehmer as to whether,

for single-variable integer polynomials P , µ(P ) can be arbitrarily close to zero. For

higher Mahler measures [LS11, Thm. 7] shows that for k = 1, 2, . . . the measure

µ2k+1 ((xn − 1)/(x− 1)) does tend to zero as n goes to infinity.
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It was shown in (6.10) that for positive integers k,

π µ(1 + x+ y1, 1 + x+ y2, . . . , 1 + x+ yk) = Lsk+1

(π
3

)
− Lsk+1 (π) . (6.77)

This rapidly tends to zero with k since |Lsk+1

(
π
3

)
− Lsk+1 (π) | 6 2π

3
logk 2. Can one

find any natural polynomial sequences so that µ(Pn, Qn) tends to zero with n and so

generalize [LS11, Thm. 7] ?
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Chapter 7

Log-sine evaluations of Mahler
measures, II

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[BBSW12] Log-sine evaluations of Mahler measures, part II
(with David Borwein, Jonathan M. Borwein, James Wan)

to appear in Integers (Selfridge memorial volume)

Abstract We continue our analysis of higher and multiple Mahler measures using

log-sine integrals as started in [BS11a, BS11c]. This motivates a detailed study of

various multiple polylogarithms [BBBL01] and worked examples are given. Our tech-

niques enable the reduction of several multiple Mahler measures, and supply an easy

proof of two conjectures by Boyd.

7.1 Introduction

In [BS11a] the classical log-sine integrals and their extensions were used to develop

a variety of results relating to higher and multiple Mahler measures [Boy81, KLO08].

The utility of this approach was such that we continue the work herein. Among

other things, it allows us to tap into a rich analytic literature [Lew81]. In [BS11c]

the computational underpinnings of such studies are illuminated. The use of related
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integrals is currently being exploited for multi-zeta value studies [Ona11]. Such eval-

uations are also useful for physics [KS05]: log-sine integrals appeared for instance

in the calculation of higher terms in the ε-expansion of various Feynman diagrams

[Dav00, Kal05]. Of particular importance are the log-sine integrals at the special

values π/3, π/2, 2π/3, and π. The log-sine integrals also come up in many settings

in number theory and analysis: classes of inverse binomial sums can be expressed in

terms of generalized log-sine integrals [BBK01, DK04].

The structure of this article is as follows. In Section 7.2 our basic tools are

described. After providing necessary results on log-sine integrals in Section 7.3, we

turn to relationships between random walks and Mahler measures in Section 7.4. In

particular, we will be interested in the multiple Mahler measure µn(1 + x+ y) which

has a fine hypergeometric generating function (7.21) and a natural trigonometric

representation (7.23) as a double integral.

In Section 7.5 we directly expand (7.21) and use known results from the ε-

expansion of hypergeometric functions [DK01, DK04] to obtain µn(1 + x + y) in

terms of multiple inverse binomial sums. In the cases n = 1, 2, 3 this leads to explicit

polylogarithmic evaluations.

An alternative approach based of the double integral representation (7.23) is taken

up in Section 7.6 which considers the evaluation of the inner integral in (7.23). Aided

by combinatorics, we show in Theorems 7.6.3 and 7.6.12 that these can always be

expressed in terms of multiple harmonic polylogarithms of weight k. Accordingly, we

demonstrate in Section 7.6.3 how these polylogarithms can be reduced explicitly for

low weights. In Section 7.7.1 we reprise from [BS11a] the evaluation of µ2(1 + x+ y).

Then in Section 7.7.2 we apply our general results from Section 7.6 to a conjectural

evaluation of µ3(1 + x+ y).

In Section 7.8 we finish with an elementary proof of two recently established 1998

conjectures of Boyd and use these tools to obtain a new Mahler measure.
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7.2 Preliminaries

For k functions (typically Laurent polynomials) in n variables the multiple Mahler

measure, introduced in [KLO08], is defined as

µ(P1, P2, . . . , Pk) :=

∫ 1

0

· · ·
∫ 1

0

k∏
j=1

log
∣∣Pj (e2πit1 , . . . , e2πitn

)∣∣ dt1dt2 . . . dtn.

When P = P1 = P2 = · · · = Pk this devolves to a higher Mahler measure, µk(P ),

as introduced and examined in [KLO08]. When k = 1 both reduce to the standard

(logarithmic) Mahler measure [Boy81].

We also recall Jensen’s formula:

∫ 1

0

log
∣∣α− e2πi t

∣∣ dt = log (|α| ∨ 1) , (7.1)

where x∨y = max(x, y). An easy consequence of Jensen’s formula is that for complex

constants a and b we have

µ(ax+ b) = log |a| ∨ log |b|. (7.2)

7.3 Log-sine integrals

For n = 1, 2, . . ., we consider the log-sine integrals defined by

Lsn (σ) := −
∫ σ

0

logn−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ dθ (7.3)

and, for k = 0, 1, . . . , n− 1, their generalized versions

Ls(k)
n (σ) := −

∫ σ

0

θk logn−1−k
∣∣∣∣2 sin

θ

2

∣∣∣∣ dθ. (7.4)
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This is the notation used by Lewin [Lew58, Lew81]. In each case the modulus is not

needed for 0 6 σ 6 2π.

We observe that Ls1 (σ) = −σ and that Ls(0)
n (σ) = Lsn (σ). In particular,

Ls2 (σ) = Cl2 (σ) :=
∞∑
n=1

sin(nσ)

n2
(7.5)

is the Clausen function introduced in (1.14). Various log-sine integral evaluations

may be found in [Lew81, §7.6 & §7.9].

7.3.1 Log-sine integrals at π

We first recall that the log-sine integrals at π can always be evaluated in terms

of zeta values. This is a consequence of the exponential generating function [Lew81,

Eqn. (7.109)]

− 1

π

∞∑
m=0

Lsm+1 (π)
um

m!
=

Γ (1 + u)

Γ2
(
1 + u

2

) =

(
u

u/2

)
. (7.6)

This will be revisited and put in context in Section 7.4. Here we only remark that, by

the very definition, log-sine integrals at π correspond to very basic multiple Mahler

measures:

µm(1 + x) = − 1

π
Lsm+1 (π) (7.7)
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Example 7.3.1 (Values of Lsn (π)). For instance, we have Ls2 (π) = 0 as well as

−Ls3 (π) =
1

12
π3

Ls4 (π) =
3

2
π ζ(3)

−Ls5 (π) =
19

240
π5

Ls6 (π) =
45

2
π ζ(5) +

5

4
π3ζ(3)

−Ls7 (π) =
275

1344
π7 +

45

2
π ζ2(3)

Ls8 (π) =
2835

4
π ζ(7) +

315

8
π3ζ(5) +

133

32
π5ζ(3),

and so forth. Note that these values may be conveniently obtained from (7.6) by a

computer algebra system as the following snippet of Maple code demonstrates:

for k to 6 do simplify(subs(x=0,diff(Pi*binomial(x,x/2),x$k))) od;

More general log-sine evaluations with an emphasis on automatic evaluations have

been studied in [BS11c]. ♦

For general log-sine integrals, the following computationally effective exponential

generating function was obtained in [BS11c].

Theorem 7.3.2 (Generating function for Ls
(k)
n+k+1 (π)). For 2|µ| < λ < 1 we have

∑
n,k>0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
= −i

∑
n>0

(
λ

n

)
(−1)n eiπ

λ
2 − eiπµ

µ− λ
2

+ n
. (7.8)

One may extract one-variable generating functions from (7.8). For instance,

∞∑
n=0

Ls
(1)
n+2 (π)

λn

n!
=
∞∑
n=0

(
λ

n

)−1 + (−1)n cos πλ
2(

n− λ
2

)2 .
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The log-sine integrals at π/3 are especially useful as illustrated in [BBK01] and are

discussed at some length in [BS11a] where other applications to Mahler measures are

given.

7.3.2 Extensions of the log-sine integrals

It is possible to extend some of these considerations to the log-sine-cosine integrals

Lscm,n (σ) := −
∫ σ

0

logm−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ logn−1

∣∣∣∣2 cos
θ

2

∣∣∣∣ dθ. (7.9)

Then Lscm,1 (σ) = Lsm (σ) and Lscm,n (σ) = Lscn,m (σ). As in (7.7), these are related

to basic multiple Mahler measures. Namely, if we set

µm,n(1− x, 1 + x) := µ(1− x, · · · , 1− x︸ ︷︷ ︸
m

, 1 + x, · · · , 1 + x︸ ︷︷ ︸
n

) (7.10)

then, immediately from the definition, we obtain the following:

Theorem 7.3.3 (Evaluation of µm,n(1− x, 1 + x)). For non-negative integers m,n,

µm,n(1− x, 1 + x) = − 1

π
Lscm+1,n+1 (π) . (7.11)

In every case this is evaluable in terms of zeta values. Indeed, using the result in

[Lew81, §7.9.2, (7.114)], we obtain the generating function

gs(u, v) := − 1

π

∞∑
m,n=0

Lscm+1,n+1 (π)
um

m!

vn

n!
=

2u+v

π

Γ
(

1+u
2

)
Γ
(

1+v
2

)
Γ
(
1 + u+v

2

) . (7.12)

From the duplication formula for the gamma function this can be rewritten as

gs(u, v) =

(
u

u/2

)(
v

v/2

)
Γ
(
1 + u

2

)
Γ
(
1 + v

2

)
Γ
(
1 + u+v

2

) ,
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so that

gs(u, 0) =

(
u

u/2

)
= gs(u, u).

From here it is apparent that (7.12) is an extension of (7.6):

Example 7.3.4 (Values of Lscn,m (π)). For instance,

µ2,1(1− x, 1 + x) = µ1,2(1− x, 1 + x) =
1

4
ζ(3),

µ3,2(1− x, 1 + x) =
3

4
ζ(5)− 1

8
π2ζ(3),

µ6,3(1− x, 1 + x) =
315

4
ζ(9) +

135

32
π2ζ(7) +

309

128
π4ζ(5)− 45

256
π6ζ(3)− 1575

32
ζ3(3).

As in Example 7.3.1 this can be easily obtained with a line of code in a computer

algebra system such as Mathematica or Maple. ♦

Remark 7.3.5. From gs(u,−u) = sec(πu/2) we may deduce that, for n = 0, 1, 2, . . .,

n∑
k=0

(−1)kµk,n−k(1− x, 1 + x) = |E2n|
(
π
2

)2n

(2n)!
=

4

π
L−4(2n+ 1),

where E2n are the even Euler numbers: 1,−1, 5,−61, 1385 . . . . ♦

A more recondite extended log-sine integral of order three is developed in [Lew81,

§8.4.3] from properties of the trilogarithm. It is defined by

Ls3 (θ, ω) := −
∫ θ

0

log
∣∣∣2 sin

σ

2

∣∣∣ log

∣∣∣∣2 sin
σ + ω

2

∣∣∣∣ dσ, (7.13)
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so that Ls3 (θ, 0) = Ls3 (θ) . This extended log-sine integral reduces as follows:

−Ls3 (2θ, 2ω) =
1

2
Ls3 (2ω)− 1

2
Ls3 (2θ)− 1

2
Ls3 (2θ + 2ω)

− 2 Im Li3

(
sin(θ)eiω

sin(θ + ω)

)
+ θ log2

(
sin(θ)

sin(θ + ω)

)
+ log

(
sin(θ)

sin(θ + ω)

)
{Cl2 (2θ) + Cl2 (2ω)− Cl2 (2θ + 2ω)} . (7.14)

We note that − 1
2π

Ls3 (2π, ω) = µ(1−x, 1−eiωx) but this is more easily evaluated

by Fourier techniques. Indeed one has:

Proposition 7.3.6 (A dilogarithmic measure, part I [KLO08]). For two complex

numbers u and v we have

µ(1− ux, 1− v x) =


1
2

Re Li2 (vu) , if |u| 6 1, |v| 6 1,

1
2

Re Li2
(
v
u

)
, if |u| > 1, |v| 6 1,

1
2

Re Li2
(

1
vu

)
+ log |u| log |v|, if |u| > 1, |v| > 1.

(7.15)

This is proven much as is (7.75) of Proposition 7.7.2. In Lewin’s terms [Lew81,

A.2.5] for 0 < θ 6 2π and r > 0 we may write

Re Li2
(
reiθ
)

=: Li2 (r, θ) = −1

2

∫ r

0

log
(
t2 + 1− 2t cos θ

) dt

t
, (7.16)

with the reflection formula

Li2 (r, θ) + Li2

(
1

r
, θ

)
= ζ(2)− 1

2
log2 r +

1

2
(π − θ)2. (7.17)

This leads to:

Proposition 7.3.7 (A dilogarithmic measure, part II). For complex numbers u = reiθ
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and v = seiτ we have

µ(1− ux, 1− v x) =


1
2

Li2 (rs, θ − τ) if r 6 1, s 6 1,

1
2

Li2
(
s
r
, θ + τ

)
, if r > 1, s 6 1,

1
2

Li2
(

1
sr
, θ − τ

)
+ log r log s, if r > 1, s > 1.

(7.18)

We remark that Proposition 7.3.7 and equation (7.17) allow for efficient numerical

computation.

7.4 Mahler measures and moments of random

walks

The s-th moments of an n-step uniform random walk are given by

Wn(s) =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣∣
n∑
k=1

e2πitk

∣∣∣∣∣
s

dt1 · · · dtn

and their relation with Mahler measure is observed in [BSWZ11]. In particular,

W ′
n(0) = µ(1 + x1 + . . .+ xn−1),

with the cases 2 6 n 6 6 discussed in [BS11a].

Higher derivatives of Wn correspond to higher Mahler measures:

W (m)
n (0) = µm(1 + x1 + . . .+ xn−1). (7.19)
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The evaluation W2(s) =
(
s
s/2

)
thus explains and proves the generating function (7.6);

in other words, we find that

W
(m)
2 (0) = − 1

π
Lsm+1 (π) . (7.20)

As a consequence of the study of random walks in [BSWZ11] we record the fol-

lowing generating function for µm(1 + x + y) which follows from (7.19) and the hy-

pergeometric expression for W3 in [BSWZ11]. There is a corresponding expression

for W4, the generating function of µm(1 + x + y + z), in terms of a single Meijer-G

function [BSWZ11].

Theorem 7.4.1 (Hypergeometric form for W3(s)). For complex |s| < 2, we may

write

W3(s) =
∞∑
n=0

µn(1 + x+ y)
sn

n!
=

√
3

2π
3s+1 Γ(1 + s

2
)2

Γ(s+ 2)
3F2

( s+2
2
, s+2

2
, s+2

2

1, s+3
2

∣∣∣∣14
)

(7.21)

=

√
3

π

(
3

2

)s+1 ∫ 1

0

z1+s
2F1

(
1+ s

2
,1+ s

2
1

∣∣∣∣ z24 )
√

1− z2
dz. (7.22)

Proof. Equation (7.21) is proven in [BSWZ11], while (7.22) is a consequence of (7.21)

and [OLBC10, Eqn. (16.5.2)].

We shall exploit Theorem 7.4.1 next, in Section 7.5. For integers n > 1 we also

have

µn(1 + x+ y) =
1

4π2

∫ 2π

0

dθ

∫ 2π

0

(
Re log

(
1− 2 sin(θ)ei ω

))n
dω, (7.23)

as follows directly from the definition and some simple trigonometry, since Re log z =

log |z|. This is the basis for the evaluations of Section 7.6. In particular, in Section 7.6

we will evaluate the inner integral in terms of multiple harmonic polylogarithms.
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7.5 Epsilon expansion of W3

In this section we use known results from the ε-expansion of hypergeometric func-

tions [DK01, DK04] to obtain µn(1+x+y) in terms of multiple inverse binomial sums.

We then derive complete evaluations of µ1(1 +x+ y), µ2(1 +x+ y) and µ3(1 +x+ y).

An alternative approach will be pursued in Sections 7.6 and 7.7.

In light of Theorem 7.4.1, the evaluation of µn(1 + x+ y) is essentially reduced to

the Taylor expansion

3F2

( ε+2
2
, ε+2

2
, ε+2

2

1, ε+3
2

∣∣∣∣14
)

=
∞∑
n=0

αnε
n. (7.24)

Indeed, from (7.21) and Leibniz’ rule we have

µn(1 + x+ y) =

√
3

2π

n∑
k=0

(
n

k

)
αkβn−k (7.25)

where βk is defined by

3ε+1 Γ(1 + ε
2
)2

Γ(2 + ε)
=
∞∑
n=0

βnε
n. (7.26)

Note that βk is easy to compute as illustrated in Example 7.3.1. The expansion of

hypergeometric functions in terms of their parameters as in (7.24) occurs in physics

[DK01, DK04] in the context of the evaluation of Feynman diagrams and is commonly

referred to as epsilon expansion, thus explaining the choice of variable in (7.24).

Remark 7.5.1. From (7.26) we see that the βn may be computed directly from the

coefficients γn defined by the Taylor expansion

Γ(1 + ε
2
)2

Γ(1 + ε)
=

1(
ε
ε/2

) =
∞∑
n=0

γnε
n.
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Appealing to (7.6) we find that γn is recursively determined by γ0 = 1 and

γn =
1

π

n∑
k=1

Lsk+1 (π)
γn−k
k!

.

In particular, the results of Section 7.3.1 show that γn can always be expressed in

terms of zeta values. Accordingly, βn evaluates in terms of log 3 and zeta values. ♦

Let Sk(j) :=
∑j

m=1
1
mk

denote the harmonic numbers of order k. Following [DK04]

we abbreviate Sk := Sk(j − 1) and S̄k := Sk(2j − 1) in order to make it more clear

which results in this reference contribute to the evaluations below. As in [DK01,

Appendix B], we use the duplication formula (2a)2j = 4j(a)j(a+ 1/2)j as well as the

expansion

(m+ aε)j
(m)j

= exp

[
−
∞∑
k=1

(−aε)k
k

[Sk(j +m− 1)− Sk(m− 1)]

]
, (7.27)

for m a positive integer, to write

3F2

( ε+2
2
, ε+2

2
, ε+2

2

1, ε+3
2

∣∣∣∣14
)

=
∞∑
j=0

(1 + ε/2)3
j

4j(j!)2(3/2 + ε/2)j

=
∞∑
j=0

(1 + ε/2)4
j

(j!)2(2 + ε)2j

=
∞∑
j=0

2

j + 1

1(
2(j+1)
j+1

) [(1 + ε/2)j
j!

]4 [
(2 + ε)2j

(2j + 1)!

]−1

=
∞∑
j=1

2

j

1(
2j
j

) exp

[
∞∑
k=1

(−ε)k
k

Ak,j

]
(7.28)

where

Ak,j := Sk(2j − 1)− 1− 4
Sk(j − 1)

2k
=

2j−1∑
m=2

2(−1)m+1 − 1

mk
. (7.29)

We can now read off the terms αn of the ε-expansion (7.24):
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Theorem 7.5.2. For n = 0, 1, 2, . . .

αn = [εn] 3F2

( ε+2
2
, ε+2

2
, ε+2

2

1, ε+3
2

∣∣∣∣14
)

= (−1)n
∞∑
j=1

2

j

1(
2j
j

)∑ n∏
k=1

Amkk,j
mk!kmk

(7.30)

where the inner sum is over all non-negative integers m1, . . . ,mn such that m1+2m2+

. . .+ nmn = n.

Proof. Equation (7.30) may be derived from (7.28) using, for instance, Faà di Bruno’s

formula for the n-th derivative of the composition of two functions.

Example 7.5.3 (α0, α1 and α2). In particular,

α1 = [ε] 3F2

( ε+2
2
, ε+2

2
, ε+2

2

1, ε+3
2

∣∣∣∣14
)

= −
∞∑
j=1

2

j

1(
2j
j

)A1,j

= −
∞∑
j=1

2

j

1(
2j
j

) [S̄1 − 2S1 − 1
]
.

Such multiple inverse binomial sums are studied in [DK04]. In particular, using

[DK04, (2.20), (2.21)] we find

α0 =
2π

3
√

3
, (7.31)

α1 =
2

3
√

3

[
π − π log 3 + Ls2

(π
3

)]
. (7.32)

For the second term α2 in the ε-expansion (7.28) produces

[ε2] 3F2

( ε+2
2
, ε+2

2
, ε+2

2

1, ε+3
2

∣∣∣∣14
)

=
∞∑
j=1

1

j

1(
2j
j

) [A2
1,j + A2,j

]
=
∞∑
j=1

1

j

1(
2j
j

) [S̄2 − S2 + (S̄1 − 2S1)2 − 2S̄1 + 4S1

]
.
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Using [DK04, (2.8),(2.22)–(2.24)] we obtain

α2 =
2

3
√

3

[
π

72
− π log 3 +

1

2
π log 3 + (1− log 3) Ls2

(π
3

)
+

3

2
Ls3

(π
3

)
+

3

2
Ls3

(
2π

3

)
− 3 Ls3 (π)

]
. (7.33)

♦

These results provide us with evaluations of µ1(1 + x + y) and µ2(1 + x + y) as

given next. As expected, the result for µ1(1 + x + y) agrees with Smyth’s original

evaluation, and the result for µ2(1+x+y) agrees with our prior evaluation in [BS11a].

The latter evaluation will be recalled in Section 7.7.1.

Theorem 7.5.4 (Evaluation of µ1(1 + x+ y) and µ2(1 + x+ y)). We have

µ1(1 + x+ y) =
1

π
Ls2

(π
3

)
, (7.34)

µ2(1 + x+ y) =
3

π
Ls3

(
2π

3

)
+
π2

4
. (7.35)

Proof. Using Theorem 7.4.1 we obtain

µ1(1 + x+ y) =
3
√

3

2π
[(log 3− 1)α0 + α1] . (7.36)

Combining this with equations (7.31) and (7.32) yields (7.34).

Again using Theorem 7.4.1 we find

µ2(1 + x+ y) =
3
√

3

2π

[
(log2 3− 2 log 3 + 2− π2

12
)α0 + 2(log 3− 1)α1 + 2α2

]
(7.37)
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and, together with equations (7.31), (7.32) and (7.33), arrive at

πµ2(1 + x+ y) = 3 Ls3

(
2π

3

)
+ 3 Ls3

(π
3

)
− 6 Ls3 (π)− π3

18

= 3 Ls3

(
2π

3

)
+
π3

4
. (7.38)

The last equality follows, for instance, automatically from the results in [BS11c].

Example 7.5.5 (α3). The evaluation of α3 is more involved and we omit some details.

Again, (7.28) produces

[ε3] 3F2

( ε+2
2
, ε+2

2
, ε+2

2

1, ε+3
2

∣∣∣∣14
)

= −1

3

∞∑
j=1

1

j

1(
2j
j

) [A3
1,j + 3A1,jA2,j + 2A3,j

]
.

Using [DK04, (2.25)–(2.28),(2.68)–(2.70),(2.81),(2.89)] as well as results from [BS11c]

we are lead to

α3 =
2

3
√

3

[
5π3

108
(1− log 3) +

1

2
π log2 3− 1

6
π log3 3 +

11

9
πζ(3)

+ Cl2

(π
3

)( 5

36
π2 − log 3 +

1

2
log2 3

)
− 3 Gl2,1

(
2π

3

)
(1− log 3)

−35

6
Cl4

(π
3

)
+ 15 Cl2,1,1

(
2π

3

)
− 3 Lsc2,3

(π
3

)]
. (7.39)

Observe the occurrence of the log-sine-cosine integral Lsc2,3

(
π
3

)
. These integrals were

defined in (7.9). ♦

Proceeding as in the proof of Theorem 7.5.4 we obtain:

Theorem 7.5.6 (Evaluation of µ3(1 + x+ y)). We have

πµ3(1 + x+ y) = 15 Ls4

(
2π

3

)
− 18 Lsc2,3

(π
3

)
− 15 Cl4

(π
3

)
− 1

4
π2 Cl2

(π
3

)
− 17πζ(3). (7.40)
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The log-sine-cosine integral Lsc2,3

(
π
3

)
appears to reduce further as

12 Lsc2,3

(π
3

)
?[1]
= 6 Ls4

(
2π

3

)
− 4 Cl4

(π
3

)
− 7πζ(3) (7.41)

= 6 Ls4

(
2π

3

)
− 8

9
Ls4

(π
3

)
− 59

9
πζ(3).

This conjectural reduction also appears in [DK01, (A.30)] where it was found via

PSLQ. Combining this with (7.40), we obtain an conjectural evaluation of µ3(1+x+y)

equivalent to (7.81).

On the other hand, it follows from [DK04, (2.18)] that

12 Lsc2,3

(π
3

)
= Ls4

(
2π

3

)
− 4 Ls4

(π
3

)
− 1

12
π log3 3

+ 24 Ti 4
1√
3

+ 12 log 3 Ti 3
1√
3

+ 3 log2 3 Ti 2
1√
3
. (7.42)

Using the known evaluations — see for instance [BS11a, (76),(77)] — for the inverse

tangent integrals of order two and three, we find that (7.41) is equivalent to

Ti 4
1√
3

?[1]
=

5

24
Ls4

(
2π

3

)
+

7

54
Ls4

(π
3

)
− 59

216
πζ(3)− 1

288
π log3 3

− 1

2
log 3 Ti 3

1√
3
− 1

8
log2 3 Ti 2

1√
3
. (7.43)

7.6 Trigonometric analysis of µn(1 + x + y)

As promised in [BS11a] — motivated by the development outlined above — we

take the analysis of µn(1+x+y) for n > 3 a fair distance. In light of (7.23) we define

ρn(α) :=
1

2π

∫ π

−π

(
Re log

(
1− α ei ω

))n
dω (7.44)
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for n > 0 so that

µn(1 + x+ y) =
1

2π

∫ π

−π
ρn(|2 sin θ|) dθ. (7.45)

We thus typically set α = |2 sin θ|. Note that ρ0(α) = 1, ρ1(α) = log(|α| ∨ 1).

Proposition 7.6.1 (Properties of ρn). Let n be a positive integer.

(a) For |α| 6 1 we have

ρn(α) = (−1)n
∞∑
m=1

αm

mn
ωn(m), (7.46)

where ωn is defined as

ωn(m) =
∑

∑n
j=1 kj=m

1

2π

∫ π

−π

n∏
j=1

m

kj
cos(kjω) dω. (7.47)

(b) For |α| > 1 we have

ρn(α) =
n∑
k=0

(
n

k

)
logn−k |α| ρk

(
1

α

)
. (7.48)

Proof. For (a) we use (7.44) to write

ρn(α) =
1

2π

∫ π

−π

(
Re log

(
1− αei ω

))n
dω

=
1

2π

∫ π

−π

{
−
∑
k>1

αk

k
cos(kω)

}n

dω

= (−1)n
∞∑
m=1

αm

mn
ωn(m),

as asserted. We note that |ωn(m)| 6 mn and so the sum is convergent.
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For (b) we now use (7.44) to write

ρn(α) =
1

2π

∫ π

−π
logn

(
|α|
∣∣1− α−1ei ω

∣∣) dω

=
1

2π

∫ π

−π

(
log |α|+ log

∣∣1− α−1ei ω
∣∣)n dω

=
n∑
k=0

(
n

k

)
logn−k |α| 1

2π

∫ π

−π
logk

∣∣1− α−1ei ω
∣∣ dω

=
n∑
k=0

(
n

k

)
logn−k |α| ρk

(
1

α

)
,

as required.

Example 7.6.2 (Evaluation of ωn and ρn for n 6 2). We have ω0(m) = 0, ω1(m) =

δ0(m), and

ω2(0) = 1, ω2(2m) = 2, ω2(2m+ 1) = 0. (7.49)

Likewise, ρ0(α) = 1, ρ1(α) = log (|α| ∨ 1), and

ρ2(α) =


1
2

Li2(α2) for |α| 6 1,

1
2

Li2
(

1
α2

)
+ log2 |α| for |α| > 1,

(7.50)

where the latter follows from (7.49) and Proposition 7.6.1. ♦

We have arrived at the following description of µn(1 + x+ y):

Theorem 7.6.3 (Evaluation of µn(1 + x+ y)). Let n be a positive integer. Then

µn(1 + x+ y) =
1

π

{
Lsn+1

(π
3

)
− Lsn+1 (π)

}
+

2

π

∫ π/6

0

ρn (2 sin θ) dθ

+
2

π

n∑
k=2

(
n

k

)∫ π/2

π/6

logn−k (2 sin θ) ρk

(
1

2 sin θ

)
dθ. (7.51)
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Proof. Since |α| < 1 exactly when |θ| < π/6 we start with (7.45) to get

µn(1 + x+ y) =
1

2π

∫ π

−π
ρn(|2 sin θ|) dθ

=
2

π

∫ π/6

0

ρn(2 sin θ) dθ +
2

π

∫ π/2

π/6

ρn(2 sin θ) dθ

=
2

π

∫ π/6

0

ρn(2 sin θ) dθ

+
n∑
k=0

(
n

k

)
2

π

∫ π/2

π/6

logn−k(2 sin θ) ρk

(
1

2 sin θ

)
dθ.

We observe that for k = 1 the contribution is zero since ρ1 is zero for |α| < 1. After

evaluating the term with k = 0 we arrive at (7.51).

As is shown in [BS11a],

1

π

{
Lsn+1

(π
3

)
− Lsn+1 (π)

}
= µ(1 + x+ y1, 1 + x+ y2, . . . , 1 + x+ yn)

is a multiple Mahler measure. While log-sine integrals at π were the subject of

Example 7.3.1 we record the following for values at π/3:

Example 7.6.4 (Values of Lsn (π/3)). The following evaluations may be obtained
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with the help of the implementation1 accompanying [BS11c].

Ls2

(π
3

)
= Cl2

(π
3

)
−Ls3

(π
3

)
=

7

108
π3

Ls4

(π
3

)
=

1

2
π ζ(3) +

9

2
Cl4

(π
3

)
−Ls5

(π
3

)
=

1543

19440
π5 − 6 Gl4,1

(π
3

)
Ls6

(π
3

)
=

15

2
π ζ(5) +

35

36
π3ζ(3) +

135

2
Cl6

(π
3

)
−Ls7

(π
3

)
=

74369

326592
π7 +

15

2
πζ(3)2 − 135 Gl6,1

(π
3

)
Ls8

(π
3

)
=

13181

2592
π5ζ(3) +

1225

24
π3ζ(5) +

319445

864
πζ(7)

+
35

2
π2 Cl6

(π
3

)
+

945

4
Cl8

(π
3

)
+ 315 Cl6,1,1

(π
3

)

♦

7.6.1 Further evaluation of ρn

To make further progress, we need first to determine ρn for n > 3. It is instructive

to explore the next few cases.

Example 7.6.5 (Evaluation of ω3 and ρ3). We use

4 cos (a) cos (b) cos (c) = cos (a + b + c) + cos (a− b− c) + cos (a− b + c) + cos (a− c + b)

and so derive

ω3(m) =
1

4

∑ {
m3

ijk
: i± j ± k = 0, i+ j + k = m

}
.

1Packages are available for download from http://arminstraub.com/pub/log-sine-integrals

http://arminstraub.com/pub/log-sine-integrals
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Note that we must have exactly one of i = j + k, j = k + i or k = i + j. We thus

learn that ω3(2m+ 1) = 0. Moreover, by symmetry,

ω3(2m) =
3

4

∑
j+k=m

(2m)3

jk(j + k)

= 6
∑

j+k=m

m2

jk
= 12m

m−1∑
k=1

1

k
. (7.52)

Hence, by Proposition 7.6.1,

ρ3(α) = −3

2

∞∑
m=1

∑m−1
k=1

1
k

m2
α2m = −3

2
Li2,1(α2) (7.53)

for |α| < 1. ♦

7.6.2 A general formula for ρn

In the general case we have

n∏
j=1

cos(xj) = 2−n
∑

ε∈{−1,1}n
cos

(
n∑
j=1

εjxj

)
(7.54)

which follows inductively from 2 cos(a) cos(b) = cos(a+ b) + cos(a− b).

Proposition 7.6.6. For integers n,m > 0 we have ωn(2m+ 1) = 0.

Proof. In light of (7.54) the summand corresponding to the indices k1, . . . , kn in (7.47)

for ωn(2m + 1) = 0 is nonzero if and only if there exists ε ∈ {−1, 1}n such that

ε1k1 + . . .+ εnkn = 0. In other words, there is a set S ⊂ {1, . . . , n} such that

∑
j∈S

kj =
∑
j 6∈S

kj.

Thus k1 + . . .+ kn = 2
∑

j∈S kj which contradicts k1 + . . .+ kn = 2m+ 1.
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Example 7.6.7 (Evaluation of ω4 and ρ4). Proceeding as in Example 7.6.5 and

employing (7.54), we find

ω4(2m) =
3

8

∑
i+j=m
k+`=m

(2m)4

ijk`
+

1

2

∑
i+j+k=m

(2m)4

ijk`

= 24m2
∑
i<m
j<m

1

ij
+ 24m2

∑
i+j<m

1

ij

= 48m2

m−1∑
i=1

1

i

i−1∑
j=1

1

j
+ 24m2

m−1∑
i=1

1

i2
+ 48m2

m−1∑
i=1

1

i

i−1∑
j=1

1

j
. (7.55)

Consequently, for |α| < 1 and appealing to Proposition 7.6.1,

ρ4(α) =
∞∑
m=1

α2m

(2m)4
ω4(2m) = 6 Li2,1,1(α2) +

3

2
Li2,2(α2). (7.56)

This suggests that ρn(α) is generally expressible as a sum of polylogarithmic terms,

as will be shown next. ♦

To help the general evaluation of ωn(2m), for integers j > 0 and m > 1, let us

define

σj(m) :=
∑

m1+...+mj=m

1

m1 · · ·mj

. (7.57)

Proposition 7.6.8. For positive integers n, m we have

ωn(2m)

mn
=

n−1∑
j=1

(
n

j

)
σj(m)σn−j(m) (7.58)

where σj is as defined in (7.57).

Proof. It follows from (7.54) that

ωn(2m) =
∑

k1+...+kn=2m

∑
ε∈{−1,1}n∑
j εjkj=0

n∏
j=1

m

kj
.
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Arguing as in Proposition 7.6.6 we therefore find that

ωn(2m) =
n−1∑
j=1

(
n

j

) ∑
k1+...+kj=m
kj+1+...+kn=m

n∏
j=1

m

kj
.

This is equivalent to (7.58).

Moreover, we have a simple useful recursion:

Proposition 7.6.9. Let m > 1. Then σ1(m) = 1/m while for j > 2 we have

σj(m) =
j

m

m−1∑
r=1

σj−1(r).

Proof. We have

σj(m) =
∑

m1+...+mj=m

1

m1 · · ·mj

=
j

m

∑
m1+...+mj=m

1

m1 · · ·mj−1

=
j

m

m−1∑
r=1

∑
m1+...+mj−1=r

1

m1 · · ·mj−1

which yields the claim.

Corollary 7.6.10. We have

σj(m) =
j!

m

∑
m>m1>...>mj−1>0

1

m1 · · ·mj−1

.

Thus, for instance, σ2(m) = 2Hm−1/m. From here, we easily re-obtain the evalua-

tions of ω3 and ω4 given in Examples 7.6.5 and 7.6.7. To further illustrate Propositions

7.6.8 and 7.6.9, we now compute ρ5 and ρ6.
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Example 7.6.11 (Evaluation of ρ5 and ρ6). From Proposition 7.6.8,

ω5(2m)

m5
= 10σ1(m)σ4(m) + 20σ2(m)σ3(m).

Consequently, for |α| < 1,

−ρ5(α) =
∞∑
m=1

α2m

(2m)5
ω5(2m)

=
10 · 4!

32
Li2,1,1,1(α2) +

20 · 2! · 3!

32

(
3 Li2,1,1,1(α2) + Li2,1,2(α2) + Li2,2,1(α2)

)
= 30 Li2,1,1,1(α2) +

15

2

(
Li2,1,2(α2) + Li2,2,1(α2)

)
. (7.59)

Similarly, we have for |α| < 1,

ρ6(α) = 180 Li2,1,1,1,1(α2) + 45
(
Li2,1,1,2(α2) + Li2,1,2,1(α2) + Li2,2,1,1(α2)

)
+

45

4
Li2,2,2(α2). (7.60)

From these examples the general pattern, established next, begins to transpire. ♦

In general, ρn evaluates as follows:

Theorem 7.6.12 (Evaluation of ρn). For |α| < 1 and integers n > 2,

ρn(α) =
(−1)nn!

4n

∑
w

4`(w) Liw(α2)

where the sum is over all indices w = (2, a2, a3, . . . , a`(w)) such that a2, a3, . . . ∈ {1, 2}

and |w| = n.

Proof. From Proposition 7.6.8 and Corollary 7.6.10 we have

ρn(α) =
(−1)nn!

2n

∞∑
m=1

α2m

m2

n−2∑
j=0

∑
m>m1>...>mj>0

m>mj+1>...>mn−2>0

1

m1 · · ·mn−2

.
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Combining the right-hand side into harmonic polylogarithms yields

ρn(α) =
(−1)nn!

2n

n−2∑
k=0

∑
a1,...,ak∈{1,2}
a1+...+ak=n−2

2c(a) Li2,a1,...,ak(α
2)

where c(a) is the number of 1s among a1, . . . , ak. The claim follows.

Example 7.6.13 (Special values of ρn). Given Theorem 7.6.12, one does not expect

to be able to evaluate ρn(α) explicitly at most points. Three exceptions are α = 0

(which is trivial), α = 1, and α = 1/
√

2. For instance we have ρ4(1) = 19
240

π4 as well

as −ρ5(1) = 45
2
ζ(5) + 5

4
ζ(3) and ρ6(1) = 275

1344
π6 + 45

2
ζ(3)2. At α = 1/

√
2 we have

ρ4

(
1√
2

)
=

7

16
log4 2 +

3

16
π2 log2 2− 39

8
ζ(3) log 2 +

13

192
π4 − 6 Li4

(
1
2

)
. (7.61)

For n > 5 the expressions are expected to be more complicated. ♦

7.6.3 Reducing harmonic polylogarithms of low weight

Theorems 7.6.3 and 7.6.12 take us closer to a closed form for µn(1 +x+ y). As ρn

are expressible in terms of multiple harmonic polylogarithms of weight n, it remains to

supply reductions for those of low weight. Such polylogarithms are reduced [BBBL01]

by the use of the differential operators

(D0f)(x) = xf ′(x) and (D1f)(x) = (1− x)f ′(x)

depending on whether the outer index is ‘2’ or ‘1’.
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1. As was known to Ramanujan, and as studied further in [BB06, §8.1], for 0 <

x < 1,

Li2,1(x) =
1

2
log2(1− x) log(x) + log(1− x) Li2(1− x)

− Li3(1− x) + ζ(3). (7.62)

Equation (7.62), also given in [Lew81], provides a useful expression numerically

and symbolically. For future use, we also record the relation, obtainable as in

[Lew81, §6.4 & §6.7],

Re Li2,1

(
1

x

)
+ Li2,1(x) = ζ(3)− 1

6
log3 x+

1

2
π2 log x

− Li2(x) log x+ Li3(x) for 0 < x < 1. (7.63)

2. For Li2,2 we work as follows. As (1− x) Li′1,2(x) = Li2 (x), integration yields

Li1,2(x) = 2 Li3(1− x)− log(1− x) Li2(x)− 2 log(1− x) Li2(1− x)

− log(1− x)2 log(x)− 2ζ(3). (7.64)

Then, since xLi′2,2(x) = Li1,2(x), on integrating again we obtain Li2,2(x) in

terms of polylogarithms up to order four. We appeal to various formulae in

[Lew81, §6.4.4] to arrive at

Li2,2(t) =
1

2
log2(1− t) log2 t− 2ζ(2) log(1− t) log t− 2ζ(3) log t− 1

2
Li22(t)

+ 2 Li3 (1− t) log t− 2

∫ t

0

Li2 (x) log x

1− x dx−
∫ t

0

log (1− x) log2 x

1− x dx.
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Expanding the penultimate integral as a series leads to

∫ t

0

Li2 (x) log x

1− x dx = Li1,2(t) log t− Li2,2(t).

Then, using [Lew81, A3.4 Eq. (12)] to evaluate the remaining integral, we

deduce that

Li2,2(t) = − 1

12
log4(1− t) +

1

3
log3(1− t) log t− ζ(2) log2(1− t)

+ 2 log(1− t) Li3(t)− 2 ζ(3) log(1− t)− 2 Li4(t)

− 2 Li4

(
t

t− 1

)
+ 2 Li4(1− t)− 2ζ(4) +

1

2
Li22(t). (7.65)

3. The form for Li3,1(t) is obtained in the same way but starting from Li2,1(t) as

given in (7.62). This leads to:

2 Li3,1(t) + Li2,2(t) =
1

2
Li22(t). (7.66)

This symmetry result, and its derivative

2 Li2,1(t) + Li1,2(t) = Li1(t) Li2(t), (7.67)

are also obtained in [Zlo07, Cor. 2 & Cor. 3] by other methods.

4. Since Li2,1,1(x) =
∫ x

0
Li1,1,1(t)/t dt and Li1,1,1(x) =

∫ x
0

Li1,1(t)/(1− t) dt, we first

compute Li1,1(x) = log2(1 − x)/2 to find that Li1,1,1(x) = − log3(1 − x)/6 (the
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pattern is clear). Hence

Li2,1,1(x) = −1

6

∫ x

0

log3(1− t)dt

t

=
π4

90
− 1

6
log(1− t)3 log t− 1

2
log(1− t)2 Li2(1− t)

+ log(1− t) Li3(1− t)− Li4(1− t). (7.68)

5. In general,

Li{1}n(x) =
(−1)n

n!
log(1− x)n, (7.69)

and therefore

Li2,{1}n−1(x) =
(−1)n

n!

∫ x

0

log(1− t)ndt

t

= ζ(n+ 1)−
n∑

m=0

(−1)n−m

(n−m)!
log(1− x)n−m Lim+1(1− x). (7.70)

We have, inter alia, provided closed reductions for all multiple polylogarithms of

weight less than five. One does not expect such complete results thereafter.

The reductions presented in this section allow us to express ρ3 and ρ4 in terms of

polylogarithms of depth 1. Equation (7.62) treats ρ3 while (7.56) leads to

ρ4

(
α2
)

= 3
(
Li3
(
α2
)
− ζ(3) + Li3

(
1− α2

))
log
(
1− α2

)
− 1

8
log4

(
1− α2

)
+ 3ζ(4)− 3 Li4

( −α2

1− α2

)
− 3 Li4

(
α2
)
− 3 Li4

(
1− α2

)
+

3

4
Li22
(
1− α2

)
− logα log3

(
1− α2

)
−
(
π2

4
+ 3 Li2

(
1− α2

))
log2

(
1− α2

)
. (7.71)
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7.7 Explicit evaluations of µn(1 + x + y) for small n

We now return to the explicit evaluation of the multiple Mahler measures µk(1 +

x+y). The starting point for this section is the evaluation of µ2(1+x+y) from [BS11a]

which is reviewed in Section 7.7.1 and was derived alternatively in Theorem 7.5.4.

Building on this, we present an informal evaluation of µ3(1 + x+ y) in Section 7.7.2.

A conjectural evaluation of µ4(1 + x + y) is presented in equation (7.107) of the

Conclusion.

7.7.1 Evaluation of µ2(1 + x+ y)

Theorem 7.7.1 (Evaluation of µ2(1 + x+ y)). We have

µ2(1 + x+ y) =
3

π
Ls3

(
2π

3

)
+
π2

4
. (7.72)

By comparison, Smyth’s original result may be written as (see [BS11a])

µ1(1 + x+ y) =
3

2π
Ls2

(
2π

3

)
=

1

π
Cl2

(π
3

)
. (7.73)

We recall from [BS11a] that the evaluation in Theorem 7.7.1 is proceeded by first

establishing the following dilogarithmic form.

Proposition 7.7.2 (A dilogarithmic representation). We have

(a)

2

π

∫ π

0

Re Li2
(
4 sin2 θ

)
dθ = 2ζ(2), (7.74)

(b)

µ2(1 + x+ y) =
π2

36
+

2

π

∫ π/6

0

Li2
(
4 sin2 θ

)
dθ. (7.75)
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We include the proof from [BS11a] as it is instructive for evaluation of µ3(1+x+y).

Proof. For (a) we define τ(z) := 2
π

∫ π
0

Li2
(
4z sin2 θ

)
dθ. This is an analytic function

of z. For |z| < 1/4 we may use the defining series for Li2 and expand term by term

using Wallis’ formula to derive

τ(z) =
2

π

∑
n>1

(4z)n

n2

∫ π

0

sin2n θ dθ = 4z 4F3

(
1, 1, 1, 3

2

2, 2, 2

∣∣∣∣4z)

= 4 Li2

(
1

2
− 1

2

√
1− 4z

)
− 2 log

(
1

2
+

1

2

√
1− 4z

)2

.

The final equality can be obtained in Mathematica and then verified by differentiation.

In particular, the final function provides an analytic continuation from which we

obtain τ(1) = 2ζ(2) + 4iCl2
(
π
3

)
. This yields the assertion.

For (b), commencing much as in [KLO08, Thm. 11], we write

µ2(1 + x+ y) =
1

4π2

∫ π

−π

∫ π

−π
Re log

(
1− 2 sin(θ)ei ω

)2
dω dθ.

We consider the inner integral ρ(α) :=
∫ π
−π (Re log (1− α ei ω))

2
dω with α := 2 sin θ.

For |θ| 6 π/6 we directly apply Parseval’s identity to obtain

ρ(2 sin θ) = π Li2
(
4 sin2 θ

)
(7.76)

which is equivalent to (7.50) since ρ(α) = 2πρ2(α). In the remaining case we write

ρ(α) =

∫ π

−π

{
log |α|+ Re log

(
1− α−1 ei ω

)}2
dω

= 2π log2 |α| − 2 log |α|
∫ π

−π
log
∣∣1− α−1 ei ω

∣∣ dω + π Li2

(
1

α2

)
= 2π log2 |α|+ π Li2

(
1

α2

)
, (7.77)
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where we have appealed to Parseval’s and Jensen’s formulae. Thus,

µ2(1 + x+ y) =
1

π

∫ π/6

0

Li2
(
4 sin2 θ

)
dθ +

1

π

∫ π/2

π/6

Li2

(
1

4 sin2 θ

)
dθ +

π2

54
, (7.78)

since 2
π

∫ π/2
π/6

log2 α dθ = µ(1 + x+ y1, 1 + x+ y2) = π2

54
. Now, for α > 1, the functional

equation in [Lew58, A2.1 (6)]

Li2(α) + Li2(1/α) +
1

2
log2 α = 2ζ(2) + iπ logα (7.79)

gives ∫ π/2

π/6

{
Re Li2

(
4 sin2 θ

)
+ Li2

(
1

4 sin2 θ

)}
dθ =

5

54
π3. (7.80)

We then combine (7.74), (7.80) and (7.78) to deduce the desired result (7.75).

7.7.2 Evaluation of µ3(1 + x+ y)

In this section we provide a remarkably concise closed form of µ3(1 + x+ y). We

were led to this form by the integer relation algorithm PSLQ [BBG04] (see Example

7.9.2 for some comments on obtaining high precision evaluations), and by considering

the evaluation (7.72) of µ2(1 + x+ y).

The details of formalization are formidable — at least by the route chosen here

— and so we proceed more informally leaving three conjectural identities.

Conjecture 7.7.3 (Evaluation of µ3(1 + x+ y)). We have

µ3(1 + x+ y)
?[1]
=

6

π
Ls4

(
2π

3

)
− 9

π
Cl4

(π
3

)
− π

4
Cl2

(π
3

)
− 13

2
ζ(3). (7.81)

This evaluation is equivalent to the conjectural identities (7.41) and (7.43).
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Proof. We first use Theorem 7.6.3 to write

µ3(1 + x+ y) =
2

π

∫ π/6

0

ρ3(2 sin θ) dθ +
2

π

∫ π/2

π/6

ρ3

(
1

2 sin θ

)
dθ (7.82)

+
3

π

∫ π/2

π/6

log(2 sin θ) Li2

(
1

4 sin2 θ

)
dθ − ζ(3) +

9

2π
Cl4

(π
3

)
,

on appealing to Examples 7.3.1 and 7.6.4.

Now the functional equation for the dilogarithm (7.79) as used above and knowl-

edge of Lsn (π/3) (see [BS11a, BS11c]) allow us to deduce

3

π

∫ π/6

0

log(2 sin θ) Li2
(
4 sin2 θ

)
dθ +

3

π

∫ π/6

0

log(2 sin θ) Li2

(
1

4 sin2 θ

)
dθ

=
3

2
ζ(3)− π

2
Cl2

(π
3

)
+

27

2π
Cl4

(π
3

)
, (7.83)

3

π

∫ π/2

π/6

log(2 sin θ) Re Li2
(
4 sin2 θ

)
dθ +

3

π

∫ π/2

π/6

log(2 sin θ) Re Li2

(
1

4 sin2 θ

)
dθ

= 3ζ(3) +
π

2
Cl2

(π
3

)
− 27

2π
Cl4

(π
3

)
. (7.84)

Moreover, we have

3

π

{∫ π/6

0

+

∫ π/2

π/6

}
log(2 sin θ) Re Li2

(
4 sin2 θ

)
dθ

?[2]
=

7

2
ζ(3)− πCl2

(π
3

)
, (7.85)

3

π

{∫ π/6

0

+

∫ π/2

π/6

}
log(2 sin θ) Re Li2

(
1

4 sin2 θ

)
dθ

?[2]
= ζ(3) + πCl2

(π
3

)
, (7.86)

which are provable as was (7.74) because, for |z| < 1/2, we have

1

π

∫ π

0

log

(
2 sin

θ

2

)
Li2

(
4 z2 sin2 θ

2

)
dθ =

∞∑
n=1

(
2n

n

)∑2n
k=1

(−1)k

k

n2
z2n.

(The latter is derivable also from (7.83), (7.84) and (7.85).)
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Thence, (7.83), (7.84) and (7.85) together establish that the equality

3

π

∫ π/2

π/6

log(2 sin θ) Li2

(
1

4 sin2 θ

)
dθ

?[3]
=

2

3
ζ(3) +

7π

12
Cl2

(π
3

)
− 17

2π
Cl4

(π
3

)
(7.87)

is true as soon as we establish

I3 :=
3

π

∫ π/6

0

log(2 sin θ) Li2
(
4 sin2 θ

)
dθ

?[3]
=

7

6
ζ(3)− 11π

12
Cl2

(π
3

)
+ 5 Cl4

(π
3

)
.

(7.88)

This can, in principle, be achieved by writing the integral as

I3 =
3

π

∞∑
n=1

1

n2

∫ 1

0

s2n

√
4− s2

log s ds

and using the binomial series to arrive at

I3 = − 3

2π

∞∑
m=0

(
2m
m

)
42m

∞∑
n=1

1

n2 (1 + 2(n+m))2 . (7.89)

This leaves us to deal with the two terms in (7.82) involving ρ3. These two terms

are in turn related by

2

π

∫ π/6

0

Li2,1
(
4 sin2 θ

)
dθ +

2

π

∫ π/6

0

Re Li2,1

(
1

4 sin2 θ

)
dθ

=
1

9

{
ζ(3)− πCl2

(π
3

)
+

6

π
Cl4

(π
3

)}
, (7.90)

as we see by integrating (7.63). Likewise,

2

π

∫ π/2

π/6

Re Li2,1
(
4 sin2 θ

)
dθ +

2

π

∫ π/2

π/6

Li2,1

(
1

4 sin2 θ

)
dθ

=
1

9

{
2ζ(3)− 5πCl2

(π
3

)
− 6

π
Cl4

(π
3

)}
. (7.91)
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Also, using (7.62) we arrive at

2

π

∫ π/6

0

Li2,1
(
4 sin2 θ

)
dθ =

20

27
ζ(3)− 8π

27
Cl2

(π
3

)
+

4

9π
Cl4

(π
3

)
+

1

π

∫ π/3

0

log2

(
1− 4 sin2 θ

2

)
log

(
2 sin

θ

2

)
dθ, (7.92)

and

2

π

∫ π/2

0

Re Li2,1
(
4 sin2 θ

)
dθ =

1

3
ζ(3)− 2π

3
Cl2

(π
3

)
. (7.93)

We may now establish — from (7.87), (7.90), (7.91), (7.92), (7.93) and (7.82) —

that

µ3(1 + x+ y) =
43

18
ζ(3)− 47π

36
Cl2

(π
3

)
− 13

3π
Cl4

(π
3

)
+

2

π

∫ π/3

0

log2

(
1− 4 sin2 θ

2

)
log

(
2 sin

θ

2

)
dθ. (7.94)

Hence, to prove (7.81) we are reduced to verifying that

− 1

π
Ls4

(
2π

3

)
?[4]
= −37

54
ζ(3) +

7π

27
Cl2

(π
3

)
− 7

9π
Cl4

(π
3

)
+

1

2π

∫ π/3

0

log2

(
1− 4 sin2 θ

2

)
log

(
2 sin

θ

2

)
dθ. (7.95)

which completes the evaluation.

Remark 7.7.4. By noting that, for integers n > 2,

Cln

(π
3

)
=

(
1

2n−1
+ (−1)n

)
Cln

(
2π

3

)
,

the arguments of the Clausen functions in the evaluation (7.81) of µ3(1 + x+ y) may

be transformed to 2π
3

.
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Many further variations are possible. For instance, it follows from [BS11c] that

Ls4

(
2π

3

)
=

31

18
πζ(3) +

π2

12
Cl2

(
2π

3

)
− 3

2
Cl4

(
2π

3

)
+ 6 Cl2,1,1

(
2π

3

)
(7.96)

in terms of multi Clausen values. ♦

7.8 Proofs of two conjectures of Boyd

We now use log-sine integrals to recapture the following evaluations conjectured

by Boyd in 1998 and first proven in [Tou08] using Bloch-Wigner logarithms. Below,

L−n denotes a primitive L-series and G is Catalan’s constant.

Theorem 7.8.1 (Two quadratic evaluations). We have

µ(y2(x+ 1)2 + y(x2 + 6x+ 1) + (x+ 1)2) =
16

3π
L−4(2) =

16

3π
G, (7.97)

as well as

µ(y2(x+ 1)2 + y(x2 − 10x+ 1) + (x+ 1)2) =
5
√

3

π
L−3(2) =

20

3 π
Cl2

(π
3

)
. (7.98)

Proof. Let Pc = y2(x + 1)2 + y(x2 + 2cx + 1) + (x + 1)2 and µc = µ(Pc) for a real

variable c. We set x = e2πit, y = e2πiu and note that

|Pc| = |(x+ 1)2(y2 + y + 1) + 2(c− 1)xy|

=
∣∣(x+ x−1 + 2)(y + 1 + y−1) + 2(c− 1)

∣∣
= |2(cos(2πt) + 1)(2 cos(2πu) + 1) + 2(c− 1)|

= 2 |c+ 2 cos(2πu) + (1 + 2 cos(2πu)) cos(2πt)|.
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It is known that (see [GR80, §4.224, Ex. 9]), for real a, b with |a| > |b| > 0,

∫ 1

0

log |2a+ 2b cos(2πθ)| dθ = log
(
|a|+

√
a2 − b2

)
. (7.99)

Applying this, with a = c+ 2 cos(2πu) and b = 1 + 2 cos(2πu)) to
∫ 1

0
|Pc| dt, we get

µc =

∫ 1

0

log
∣∣∣c+ 2 cos(2πu) +

√
(c2 − 1) + 4(c− 1) cos(2πu)

∣∣∣ du. (7.100)

If c2− 1 = ±4(c− 1), that is if c = 3 or c = −5, then the surd is a perfect square and

also |a| > |b|.

(a) When c = 3 for (7.97), by symmetry, after factorization we obtain

µ3 =
1

π

∫ π

0

log(1 + 4| cos θ|+ 4| cos2 θ|) dθ =
4

π

∫ π/2

0

log(1 + 2 cos θ) dθ

=
4

π

∫ π/2

0

log

(
2 sin 3θ

2

2 sin θ
2

)
dθ =

4

3 π

(
Ls2

(
3π

2

)
− 3 Ls2

(π
2

))
=

16

3

L−4(2)

π

as required, since Ls2

(
3π
2

)
= −Ls2

(
π
2

)
= L−4(2), which is Catalan’s constant G.

(b) When c = −5 for (7.98), we likewise obtain

µ−5 =
2

π

∫ π

0

log
(√

3 + 2 sin θ
)

dθ =
2

π

∫ 4π/3

π/3

log
(√

3 + 2 sin
(
θ − π

3

))
dθ

=
2

π

∫ 4π/3

π/3

{
log 2

(
sin

θ

2

)
+ log 2

(
sin

θ + π
3

2

)}
dθ

=
2

π

∫ 4π/3

π/3

log 2

(
sin

θ

2

)
dθ +

2

π

∫ 5π/3

2π/3

log 2

(
sin

θ

2

)
dθ

=
4

π
Cl2

(π
3

)
− 4

π
Cl2

(
4π

3

)
=

20

3π
Cl2

(π
3

)
,

since Cl2
(

4π
3

)
= −2

3
Cl2
(
π
3

)
and so we are done.
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When c = 1 the cosine in the surd disappears, and we obtain µ1 = 0, which is

trivial as in this case the polynomial factorizes as (1 +x)2(1 + y+ y2). For c = −1 we

are able, with some care, to directly integrate (7.100) and so to obtain an apparently

new Mahler measure:

Theorem 7.8.2. We have

µ−1 = µ
(
(x+ 1)2(y2 + y + 1)− 2xy

)
(7.101)

=
1

π

{
1

2
B

(
1

4
,
1

4

)
3F2

( 1
4
, 1

4
, 1

3
4
, 5

4

∣∣∣∣14
)
− 1

6
B

(
3

4
,
3

4

)
3F2

( 3
4
, 3

4
, 1

5
4
, 7

4

∣∣∣∣14
)}

.

Here, B(s, t) = Γ(s)Γ(t)
Γ(s+t)

denotes the Euler beta function.

We observe that an alternative form of µ−1 is given by

µ−1 = µ
((
x+ 1/x+ 2

√
1/x
)

(y + 1/y + 1)− 2
)
.

Remark 7.8.3. Equation (7.99) may be applied to other conjectured Mahler mea-

sures. For instance, µ(1 + x+ y + 1/x+ 1/y) = .25133043371325 . . . was conjectured

by Deninger [Fin05] to evaluate in L-series terms as

µ(1 + x+ y + 1/x+ 1/y) = 15
∞∑
n=1

an
n2
, (7.102)

where
∑∞

n=1 anq
n = η(q)η(q3)η(q5)η(q15). Here η is the Dirichlet eta-function:

η(q) := q1/24

∞∏
n=1

(1− qn) = q1/24

∞∑
n=−∞

(−1)nqn(3n+1)/2. (7.103)

This has recently been proven in [RZ11].
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Application of (7.99) shows that

µ(1 + x+ y + 1/x+ 1/y) =
1

π

∫ π/3

0

log

1 + 2 cos θ

2
+

√(
1 + 2 cos θ

2

)2

− 1

 dθ,

but the surd remains an obstacle to a direct evaluation. ♦

7.9 Conclusion

To recapitulate, µk(1 + x + y) = W
(k)
3 (0) has been evaluated in terms of log-sine

integrals for 1 6 k 6 3. Namely,

µ1(1 + x+ y) =
3

2π
Ls2

(
2π

3

)
, (7.104)

µ2(1 + x+ y) =
3

π
Ls3

(
2π

3

)
+
π2

4
, (7.105)

µ3(1 + x+ y)
?[1]
=

6

π
Ls4

(
2π

3

)
− 9

π
Cl4

(π
3

)
− π

4
Cl2

(π
3

)
− 13

2
ζ(3). (7.106)

Hence it is reasonable to ask whether µ4(1 +x+ y) and higher Mahler measures have

evaluations in similar terms.

Example 7.9.1. In the case of µ4(1 + x+ y), numerical experiments suggest that

πµ4(1 + x+ y)
?[5]
= 12 Ls5

(
2π

3

)
− 49

3
Ls5

(π
3

)
+ 81 Gl4,1

(
2π

3

)
(7.107)

+ 3π2 Gl2,1

(
2π

3

)
+ 2ζ(3) Cl2

(π
3

)
+ πCl2

(π
3

)2

− 29

90
π5

while the higher Mahler measure µ5(1 +x+ y) does not appear to have an evaluation

in terms of generalized Glaisher and Clausen values only. ♦

We close with numerical values for these quantities.
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Example 7.9.2. By computing higher-order finite differences in the right-hand side

of (7.21) we have obtained values for µn(1 + x + y) to several thousand digits. To

confirm these values we have evaluated the double-integral (7.23) to about 250 digits

for all n 6 8. These are the results for µk := µk(1 + x+ y) to fifty digits:

µ2 = 0.41929927830117445534618570174886146566170299117521, (7.108)

µ3 = 0.13072798584098927059592540295887788768895327503289, (7.109)

µ4 = 0.52153569858138778267996782141801173128244973155094, (7.110)

µ5 = −0.46811264825699083401802243892432823881642492433794. (7.111)

These values will allow a reader to confirm many of our results numerically. ♦
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Chapter 8

Ramanujan’s Master Theorem

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[AEG+11] Ramanujan’s Master Theorem
(with Tewodros Amdeberhan, Ivan Gonzalez, Marshall Harrison, Victor H. Moll)

to appear in The Ramanujan Journal

Abstract S. Ramanujan introduced a technique, known as Ramanujan’s Master

Theorem, which provides an explicit expression for the Mellin transform of a function

in terms of the analytic continuation of its Taylor coefficients. The history and proof

of this result are reviewed, and a variety of applications is presented. Finally, a

multi-dimensional extension of Ramanujan’s Master Theorem is discussed.

8.1 Introduction

Ramanujan’s Master Theorem refers to the formal identity

∫ ∞
0

xs−1

{
λ(0)− x

1!
λ(1) +

x2

2!
λ(2)− · · ·

}
dx = Γ(s)λ(−s) (8.1)

stated by S. Ramanujan’s in his Quarterly Reports [Ber85, p. 298]. It was widely

used by him as a tool in computing definite integrals and infinite series. In fact, as
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G. H. Hardy puts it in [Har78], he “was particularly fond of them [(8.1) and (8.6)],

and used them as one of his commonest tools.”

The goal of this semi-expository paper is to discuss the history of (8.1) and to

describe a selection of applications of this technique. Section 8.2 discusses evidence

that (8.1) was nearly discovered as early as 1874 by J. W. L. Glaisher and J. O’Kinealy.

Section 8.3 briefly outlines Hardy’s proof of Ramanujan’s Master Theorem. The

critical issue is the extension of the function λ from N to C. Section 8.4 presents the

evaluation of a collection of definite integrals with most of the examples coming from

the classical table [GR80]. Further examples of definite integrals are given in Section

8.8 which collects integrals derived from classical polynomials.

Section 8.5 is a recollection on the evaluation of the quartic integral

N0,4(a;m) =

∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
. (8.2)

This section provides a personal historical context: it was the evaluation of (8.2) that

lead one of the authors to (8.1).

Sections 8.6 and 8.9 outline the use of Ramanujan’s Master Theorem to ongoing

research projects: Section 8.6 deals with an integral related to the distance traveled

by a uniform random walk in a fixed number of steps; finally, Section 8.9 presents a

multi-dimensional version of the main theorem that has appeared in the context of

Feynman diagrams.

The use of Ramanujan’s Master Theorem has been restricted here mostly to the

evaluation of definite integrals. Many other applications appear in the literature.

For instance, Ramanujan himself employed it to derive various expansions: the two

examples given in [Har78, 11.9] are the expansion of e−ax in powers of xebx as well as

an expansion of the powers xr of a root of aqxp + xq = 1 in terms of powers of a.
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8.2 History

The first integral theorem in the spirit of Ramanujan’s Master Theorem appears

to have been given by Glaisher in 1874, [Gla74b]:

∫ ∞
0

(
a0 − a1x

2 + a2x
4 − . . .

)
dx =

π

2
a− 1

2
. (8.3)

Glaisher writes, “of course, an being only defined for n a positive integer, a− 1
2

is with-

out meaning. But in cases where an involves factorials, there is a strong presumption,

derived from experience in similar questions, that the formula will give correct results

if the continuity of the terms is preserved by the substitution of gamma functions for

the factorials. This I have found to be true in every case to which I have applied

(8.3).”

Glaisher in [Gla74b] formally obtained (8.3) by integrating term-by-term the iden-

tity

a0 − a1x
2 + a2x

4 − · · · = a0

1 + x2
−∆a0

x2

(1 + x2)2
+ ∆2a0

x4

(1 + x2)3
− · · · . (8.4)

Here ∆ is the forward-difference operator defined by ∆an = an+1 − an.

Glaisher’s argument, published in July 1874, was picked up in October of the same

year by O’Kinealy who critically simplified it in [O’K74]. Employing the forward-shift

operator E defined by E · λ(n) = λ(n + 1), O’Kinealy writes the left-hand side of

(8.4) as 1
1+x2E

· a0 which he then integrates treating E as a number to obtain

π

2
E−1/2 · a0 =

π

2
a− 1

2
,
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thus arriving at the identity (8.3). O’Kinealy, [O’K74], remarks that “it is evident

that there are numerous theorems of the same kind”. As an example, he proposes

integrating cos(xE) · a0 and sin(xE) · a0.

O’Kinealy’s improvements are emphatically received by Glaisher in a short letter

[Gla74a] to the editors in which he remarks that he had examined O’Kinealy’s work

and that, “after developing the method so far as to include these formulae and several

others, I communicated it, with the examples, to Professor Cayley, in a letter on the

22nd or 23rd of July, which gave rise to a short correspondence between us on the

matter at the end of July. My only reason for wishing to mention this at once is that

otherwise, as I hope soon to be able to return to the subject and somewhat develop the

principle, which is to a certain extent novel, it might be thought at some future time

that I had availed myself of Mr. O’Kinealy’s idea without proper acknowledgement.”

Unfortunately, no further work seems to have appeared along these lines so that

one can only speculate as to what Glaisher and Cayley have figured out. It is not

unreasonable to guess that they might very well have developed an idea somewhat

similar to Ramanujan’s Master Theorem (8.1). In fact, just slightly generalizing

O’Kinealy’s argument is enough to formally obtain (8.1). This is shown next.

Formal proof of (8.1).

∫ ∞
0

xs−1

∞∑
n=0

(−1)n

n!
λ(n)xn dx =

∫ ∞
0

xs−1

∞∑
n=0

(−1)n

n!
Enxn dx · λ(0)

=

∫ ∞
0

xs−1e−Ex dx · λ(0)

=
Γ(s)

Es
· λ(0)

= Γ(s)λ(−s)
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where in the penultimate step the integral representation

Γ(s) =

∫ ∞
0

xs−1e−x dx (8.5)

of the gamma function was employed and the operator E treated as a number. It is

this step which renders the proof formal: clearly the coefficient function λ(n) needs to

satisfy certain conditions for the result to be valid. This will be discussed in Section

8.3.

The identity

∫ ∞
0

xs−1
{
ϕ(0)− xϕ(1) + x2ϕ(2)− · · ·

}
dx =

π

sin sπ
ϕ(−s), (8.6)

is given by Ramanujan alongside (8.1) (see [Ber85]). The formulations are equivalent:

the relation ϕ(n) = λ(n)/Γ(n+ 1) converts (8.6) into (8.1).

The integral theorem (8.3) also appears in the text [Edw22] as Exercise 7 on

Chapter XXVI. It is attributed there to Glaisher. The exercise asks to show (8.3)

and to “apply this theorem to find
∫∞

0
sin ax
x

dx.”

The argument that Ramanujan gives for (8.1) appears in Hardy [Har78] where

the author demonstrates that, while the argument can be made rigorous in certain

cases, it usually leads to false intermediate formulae which “excludes practically all

of Ramanujan’s examples”.

A rigorous proof of (8.1) and its special case (8.3) was given in Chapter XI of

[Har78]. This text is based on a series of lectures on Ramanujan’s work given in the

Fall semester of 1936 at Harvard University.
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8.3 Rigorous treatment of the Master Theorem

The proof of Ramanujan’s Master Theorem provided by Hardy in [Har78] employs

Cauchy’s residue theorem as well as the well-known Mellin inversion formula which

is recalled next followed by an outline of the proof.

Theorem 8.3.1 (Mellin inversion formula). Assume that F (s) is analytic in the strip

a < Re s < b and define f by

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (s)x−s ds.

If this integral converges absolutely and uniformly for c ∈ (a, b) then

F (s) =

∫ ∞
0

xs−1f(x) dx.

Theorem 8.3.2 (Ramanujan’s Master Theorem). Let ϕ(z) be an analytic (single-

valued) function, defined on a half-plane

H(δ) = {z ∈ C : Re z ≥ −δ} (8.7)

for some 0 < δ < 1. Suppose that, for some A < π, ϕ satisfies the growth condition

|ϕ(v + iw)| < CePv+A|w| (8.8)

for all z = v + iw ∈ H(δ). Then (8.6) holds for all 0 < Re s < δ, that is

∫ ∞
0

xs−1
{
ϕ(0)− xϕ(1) + x2ϕ(2)− · · ·

}
dx =

π

sin sπ
ϕ(−s). (8.9)
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Proof. Let 0 < x < e−P . The growth conditions show that the series

Φ(x) = ϕ(0)− xϕ(1) + x2ϕ(2)− · · ·

converges. The residue theorem yields

Φ(x) =
1

2πi

∫ c+∞

c−i∞

π

sin πs
ϕ(−s)x−s ds (8.10)

for any 0 < c < δ. Observe that π/ sin(πs) has poles at s = −n for n = 0, 1, 2, . . .

with residue (−1)n. The integral in (8.10) converges absolutely and uniformly for

c ∈ (a, b) for any 0 < a < b < δ. The claim now follows from Theorem 8.3.1.

Remark 8.3.3. The conversion ϕ(u) = λ(u)/Γ(u+ 1) establishes Ramanujan’s Mas-

ter Theorem in the form (8.1). The condition δ < 1 ensures convergence of the

integral in (8.9). Analytic continuation may be employed to validate (8.9) to a larger

strip in which the integral converges. See also Section 8.7.

8.4 A collection of elementary examples

This section contains a collection of definite integrals that can be evaluated directly

from Ramanujan’s Master Theorem 8.3.2. For the convenience of the reader, the main

theorem in the form (8.1) is reproduced below. Its hypotheses are described in Section

8.3.

Theorem 8.4.1. Assume f admits an expansion of the form

f(x) =
∞∑
k=0

λ(k)

k!
(−x)k. (8.11)
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Then, the Mellin transform of f is given by

∫ ∞
0

xs−1f(x) dx = Γ(s)λ(−s). (8.12)

Example 8.4.2. Instances of series expansions involving factorials are particularly

well-suited for the application of Ramanujan’s Master Theorem. To illustrate this

fact, use the binomial theorem for a > 0 in the form

(1 + x)−a =
∞∑
k=0

(
k + a− 1

k

)
(−x)k =

∞∑
k=0

Γ(k + a)

Γ(a)

(−x)k

k!
. (8.13)

Ramanujan’s Master Theorem (8.1), with λ(k) = Γ(a+ k)/Γ(a), then yields

∫ ∞
0

xs−1 dx

(1 + x)a
=

Γ(s)Γ(a− s)
Γ(a)

= B(s, a− s) (8.14)

where B is the beta integral.

Example 8.4.3. Several of the functions appearing in this paper are special cases of

the hypergeometric function

pFq(c; d;−x) =
∞∑
k=0

(c1)k (c2)k · · · (cp)k
(d1)k (d2)k · · · (dq)k

(−x)k

k!
(8.15)

where c = (c1, . . . , cp), d = (d1, . . . , dq), and (a)k = a(a+1) · · · (a+k−1) denotes the

rising factorial. To apply Ramanujan’s Master Theorem, write (a)k = Γ(a+ k)/Γ(a).

The result is the standard evaluation

∫ ∞
0

xs−1
pFq(c; d;−x) dx = Γ(s)

Γ(c1 − s) · · ·Γ(cp − s)Γ(d1) · · ·Γ(dq)

Γ(c1) · · ·Γ(cp)Γ(d1 − s) · · ·Γ(dq − s)
, (8.16)

which appears as Entry 7.511 in [GR80].
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Example 8.4.4. The Bessel function Jν(x) admits the hypergeometric representation

Jν(x) =
1

Γ(ν + 1)

xν

2ν
0F1

(
−; ν + 1;−x

2

4

)
. (8.17)

Its Mellin transform is therefore obtained from (8.16) as

∫ ∞
0

xs−1Jν(x) dx =
2s−1Γ

(
s+ν

2

)
Γ
(
ν−s

2
+ 1
) . (8.18)

This formula appears as 6.561.14 in [GR80].

Example 8.4.5. The expansion

cos(t tan−1
√
x)

(1 + x)t/2
=
∞∑
k=0

Γ(t+ 2k) Γ(k + 1)

Γ(t) Γ(2k + 1)

(−x)k

k!
.

was established in [BEM03] in the process of evaluating of a class of definite inte-

grals (alternatively, as pointed out by the referee, the expansion may be deduced

hypergeometricly; in fact, the conversion is done automatically by Mathematica 7

upon expressing the series as a hypergeometric function). A direct application of

Ramanujan’s Master Theorem yields

∫ ∞
0

xν−1 cos(2t tan−1
√
x)

(1 + x)t
dx =

Γ(2t− 2ν) Γ(1− ν) Γ(ν)

Γ(2t) Γ(1− 2ν)
,

and x = tan2 θ gives

∫ π/2

0

sinµ θ cos2t−µ θ cos(2tθ) dθ =
πΓ(2t− µ− 1)

2 sin(πµ/2) Γ(2t)Γ(−µ)
. (8.19)

Similarly, the expansion

sin(2t tan−1
√
x)√

x(1 + x)t
=
∞∑
k=0

Γ(2t+ 2k + 1) Γ(k + 1)

Γ(2t)Γ(2k + 2)

(−x)k

k!
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produces

∫ π/2

0

sinµ−1 θ cos2t−µ θ sin(2tθ) dθ =
πΓ(2t− µ)

2 sin(πµ/2)Γ(2t)Γ(1− µ)
. (8.20)

Example 8.4.6. The Mellin transform of the function log(1 +x)/(1 +x) is obtained

from the expansion

log(1 + x)

1 + x
= −

∞∑
k=1

Hk(−x)k, (8.21)

where Hk = 1 + 1
2

+ · · ·+ 1
k

is the kth harmonic number. The analytic continuation of

the harmonic numbers, required for an application of Ramanujan’s Master Theorem,

is achieved by the relation

Hk = γ + ψ(k + 1), (8.22)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function and γ = −Γ′(1) is the Euler

constant. The expansion (8.21) and Ramanujan’s Master Theorem now give

∫ ∞
0

xν−1

1 + x
log(1 + x) dx = − π

sin πν
(γ + ψ(1− ν)) . (8.23)

The special case ν = 1
2

produces the logarithmic integral

∫ ∞
0

log(1 + t2)

1 + t2
dt = π log 2 (8.24)

which is equivalent to the classic evaluation

∫ π/2

0

log sinx dx = −π
2

log 2 (8.25)

given by Euler.
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Example 8.4.7. The infinite product representation of the gamma function

Γ(x) =
e−γx

x

∞∏
n=1

(
1 +

x

n

)−1

ex/n (8.26)

is equivalent to the expansion

log Γ(1 + x) = −γx+
∞∑
k=2

ζ(k)

k
(−x)k. (8.27)

Hence Ramanujan’s Master Theorem implies

∫ ∞
0

xν−1γx+ log Γ(1 + x)

x2
dx =

π

sin πν

ζ(2− ν)

2− ν , (8.28)

valid for 0 < ν < 1.

8.5 A quartic integral

The authors’ first encounter with Ramanujan’s Master Theorem occured while

evaluating the quartic integral

N0,4(a;m) =

∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
. (8.29)

The goal was to provide a proof of the experimental observation that

N0,4(a;m) =
π

2m+3/2 (a+ 1)m+1/2
Pm(a), (8.30)

where

Pm(a) = 2−2m

m∑
k=0

2k
(

2m− 2k

m− k

)(
m+ k

m

)
(a+ 1)k. (8.31)



217

The reader will find in [AM09] a variety of proofs of this identity, but it was

Ramanujan’s Master Theorem that was key to the first proof of (8.30). This proof is

outlined next.

The initial observation is that the double square root function
√
a+
√

1 + c sat-

isfies the unexpected relation

d

dc

√
a+
√

1 + c =
1

π
√

2

∫ ∞
0

dx

x4 + 2ax2 + 1 + c
. (8.32)

This leads naturally to the Taylor series expansion

√
a+
√

1 + c =
√
a+ 1 +

1

π
√

2

∞∑
k=1

(−1)k−1

k
N0,4(a; k − 1)ck. (8.33)

Thus, in terms of

λ(k) = −(k − 1)!

π
√

2
N0,4(a; k − 1), (8.34)

Ramanujan’s Master Theorem implies that

Γ(s)λ(−s) =

∫ ∞
0

cs−1

√
a+
√

1 + c dc. (8.35)

The next ingredient emerges from a direct differentiation of the integral N0,4:

(
d

da

)j
N0,4(a; k − 1) =

(−1)j2j(k + j − 1)!

(k − 1)!

∫ ∞
0

x4k+2j−2 dx

(x4 + 2ax2 + 1)k+j

Note that the integral on the right-hand side can be expressed in terms of N0,4 if

j = 1− 2k. In this case, the formal relation

(
d

da

)1−2k

λ(k) = (−2)1−2kλ(1− k) (8.36)



218

is obtained. This may be rewritten as

λ(m+ 1) =

(
−1

2

d

da

)2m+1

λ(−m) (8.37)

and relates the quartic integral N0,4(a;m), as a function in m, to its analytic contin-

uation appearing in (8.35). Combining (8.37) and (8.35) one arrives at

N0,4(a;m) =
π
√

2

22m+1(m− 1)!m!

(
d

da

)2m+1 ∫ ∞
0

cm−1

√
a+
√

1 + c dc

=
mπ
√

2

26m+2

(
4m

2m

)(
2m

m

)∫ ∞
0

cm−1 dc

(a+
√

1 + c)2m+1/2
. (8.38)

The substitution u =
√

1 + c shows that

N0,4(a;m) =
mπ
√

2

26m+1

(
4m

2m

)(
2m

m

)∫ ∞
1

fm(u)(a+ u)−(2m+1/2) du, (8.39)

with fm(u) = u(u2 − 1)m−1. This final integral can now be evaluated to give the

desired expression (8.30) for N0,4. To this end one integrates by parts and uses the

fact that the derivatives of fm at u = 1 have a closed-form evaluation. Further details

can be found in [BM01].

8.6 Random walk integrals

In this section, the n-dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πixk

∣∣∣∣∣
s

dx1dx2 · · · dxn (8.40)

is considered which has recently been studied in [BNSW11] and [BSW11]. This

integral is connected to planar random walks. In detail, such a walk is said to be

uniform if it starts at the origin and at each step takes a unit-step in a random
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direction. As such, (8.40) expresses the s-th moment of the distance to the origin

after n steps. The study of these walks originated with K. Pearson more than a

century ago [Pea05a].

For s an even integer, the moments Wn(s) take integer values. In fact, for integers

k > 0, the explicit formula

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

(8.41)

has been established in [BNSW11]. The evaluation of Wn(s) for values of s 6= 2k

is more challenging. In particular, the definition (8.40) is not well-suited for high-

precision numerical evaluations, and other representations are needed.

In the remainder of this section, it is indicated how Ramanujan’s Master Theorem

may be applied to find a one-dimensional integral representation for Wn(s). While

(8.40) may be used to justify a priori that Ramanujan’s Master Theorem 8.3.2 applies,

it should be noted that one may proceed formally with only the sequence (8.41)

given. This is the approach taken below in the proof of Theorem 8.6.1. Ramanujan’s

Master Theorem produces a formal candidate for an analytic extension of the sequence

Wn(2k). This argument yields the following Bessel integral representation of (8.40),

previously obtained by D. Broadhurst [Bro09].

Theorem 8.6.1. Let s ∈ C with 2k > Re s > max(−2,−n
2
). Then

Wn(s) = 2s+1−k Γ(1 + s
2
)

Γ(k − s
2
)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x) dx. (8.42)

Proof. The evaluation (8.41) yields the generating function for the even moments:

∑
k>0

Wn(2k)
(−x)k

(k!)2
=

(∑
k>0

(−x)k

(k!)2

)n

= J0(2
√
x)n, (8.43)



220

with J0(z) the Bessel function of the first kind as in (8.17). Applying Ramanujan’s

Master Theorem (8.1) to λ(k) = Wn(2k)/k! produces

Γ(ν)λ(−ν) =

∫ ∞
0

xν−1Jn0 (2
√
x) dx. (8.44)

A change of variables and setting s = 2ν gives

Wn(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1Jn0 (x) dx. (8.45)

The claim now follows from the fact that if F (s) is the Mellin transform of f(x) then

(s− 2)(s− 4) · · · (s− 2k)F (s− 2k) is the corresponding transform of
(
− 1
x

d
dx

)k
f(x).

The latter is a consequence of Ramanujan’s Master Theorem.

8.7 Extending the domain of validity

The region of validity of the identity given by Ramanujan’s Master Theorem

is restricted by the region of convergence of the integral. For example, the integral

representation of the gamma function given in (8.5) holds for Re s > 0. In this section

it is shown that analytic continuations of such representations are readily available

by dropping the first few terms of the Taylor series of the defining integrand. This

provides an alternative to the method used at the end of the proof of Theorem 8.6.1.

Theorem 8.7.1. Suppose ϕ satisfies the conditions of Theorem 8.3.2 so that for all

0 < Re s < δ ∫ ∞
0

xs−1

∞∑
k=0

ϕ(k)(−x)k dx =
π

sin sπ
ϕ(−s).

Then, for any positive integer N and −N < Re s < −N + 1,

∫ ∞
0

xs−1

∞∑
k=N

ϕ(k)(−x)k dx =
π

sin sπ
ϕ(−s). (8.46)
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Proof. Applying Theorem 8.3.2 to the function ϕ(·+N) shows that

∫ ∞
0

xs−1

∞∑
k=0

ϕ(k +N)(−x)k dx =
π

sin sπ
ϕ(−s+N).

Now shift s to obtain (8.46).

Example 8.7.2. Apply the result (8.46) with N = 1 to obtain

Γ(s) =

∫ ∞
0

xs−1
(
e−x − 1

)
dx. (8.47)

This integral representation now gives an analytic continuation of (8.5) to −1 <

Re s < 0.

8.8 Some classical polynomials

In this section the explicit formulas for the generating functions of classical poly-

nomials are employed to derive some definite integrals.

8.8.1 The Bernoulli polynomials

The generating function for the Bernoulli polynomials Bm(q) is given by

teqt

et − 1
=

∞∑
m=0

Bm(q)
tm

m!
. (8.48)

These polynomials relate to the Hurwitz zeta function

ζ(z, q) =
∞∑
n=0

1

(n+ q)z
(8.49)
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via Bm(q) = −mζ(1−m, q) for m ≥ 1. Then (8.48) yields

e−qt

1− e−t
− 1

t
=

∞∑
m=0

ζ(−m, q)(−t)m
m!

. (8.50)

Ramanujan’s Master Theorem now provides the integral representation

∫ ∞
0

tν−1

(
e−qt

1− e−t
− 1

t

)
dt = Γ(ν)ζ(ν, q), (8.51)

valid in the range 0 < Re ν < 1.

8.8.2 The Hermite polynomials

The generating function for the Hermite polynomials Hm(x) is

e2xt−t2 =
∞∑
m=0

Hm(x)
tm

m!
. (8.52)

Their analytic continuation, as a function in the index m, is given by

Hm(x) = 2mU

(
−m

2
,
1

2
, x2

)
(8.53)

where U is Whittaker’s confluent hypergeometric function. Ramanujan’s Master The-

orem now provides the integral evaluation

∫ ∞
0

ts−1e−2xt−t2 dt =
Γ(s)

2s
U

(
s

2
,
1

2
, x2

)
. (8.54)

An equivalent form of this evaluation appears as Entry 3.462.1 in [GR80].
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8.8.3 The Laguerre polynomials

The Laguerre polynomials Ln(x) given by

1

1− t exp

(
− xt

1− t

)
=
∞∑
n=0

Ln(x)tn (8.55)

can be expressed also as Ln(x) = M(−n, 1;x), where

M(a, c;x) = 1F1

(
a

c

∣∣∣∣x) =
∞∑
j=0

(a)j
(c)j

xj

j!
(8.56)

is the confluent hypergeometric or Kummer function. Ramanujan’s Master Theorem

yields the evaluation

∫ ∞
0

tν−1

1 + t
exp

(
xt

1 + t

)
dt = Γ(ν)Γ(1− ν)M(ν, 1;x). (8.57)

The change of variables r = t/(1 + t) then gives

M(ν, 1;x) =
1

Γ(ν)Γ(1− ν)

∫ 1

0

rν−1(1− r)−νerx dr, (8.58)

which is Entry 9.211.2 in [GR80].

8.8.4 The Jacobi polynomials

The Jacobi polynomials P
(α,β)
n (x) are defined by the generating function

∞∑
n=0

P (α,β)
n (x)tn =

2α+β

R∗(x, t)
(1− t+R∗(x, t))−α(1 + t+R∗(x, t))−β, (8.59)
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where R∗(x, t) =
√

1− 2xt+ t2. These polynomials admit the hypergeometric repre-

sentation

P (α,β)
n (x) =

Γ(n+ 1 + α)

n! Γ(1 + α)
2F1

(
n+ α + β + 1,−n; 1 + α;

1− x
2

)
. (8.60)

Now write R(x, t) = R∗(x,−t), so that R(x, t) =
√

1 + 2xt+ t2, to obtain

2α+βR−1(1 + t+R)−α(1− t+R)−β =
∞∑
k=0

λ(k)
(−t)k
k!

(8.61)

where

λ(k) =
Γ(k + 1 + α)

Γ(1 + α)
2F1

(
k + α + β + 1,−k; 1 + α;

1− x
2

)
. (8.62)

Ramanujan’s Master Theorem produces

∫ ∞
0

tν−1 dt

R(1 + t+R)α(1− t+R)β

=
B(ν, 1 + α− ν)

2α+β 2F1

(
1 + α + β − ν, ν

1 + α

∣∣∣∣1− x2

)
.

8.8.5 The Chebyshev polynomials of the second kind

These polynomials are defined by

Un(a) =
sin((n+ 1)x)

sinx
, where cosx = a, (8.63)

and have the generating function

∞∑
k=0

Uk(a)xk =
1

1− 2ax+ x2
. (8.64)
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The usual application of Ramanujan’s Master Theorem yields

∫ ∞
0

xν−1 dx

1 + 2ax+ x2
=

π

sin πν

sin[(1− ν) cos−1 a]√
1− a2

. (8.65)

This result appears as Entry 3.252.12 in [GR80].

8.9 The method of brackets

The focus of this final section will be on a multi-dimensional extension of Ra-

manujan’s Master Theorem. This has been called the method of brackets and it was

originally presented in [GS07] in the context of integrals arising from Feynman dia-

grams. A complete description of the operational rules of the method, together with

a variety of examples, was first discussed in [GM10]. The basic idea is the assignment

of a formal symbol 〈a〉 to the divergent integral

∫ ∞
0

xa−1 dx. (8.66)

The rules for operating with brackets are described below. These rules employ the

symbol

φn =
(−1)n

Γ(n+ 1)
, (8.67)

called the indicator of n.

Rule 8.9.1. The bracket expansion

1

(a1 + a2 + · · ·+ ar)α
=

∑
m1,...,mr

φm1,...,mra
m1
1 · · · amrr

〈α +m1 + · · ·+mr〉
Γ(α)
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holds. Here φm1,...,mr is a shorthand notation for the product φm1 · · ·φmr . Where there

is no possibility of confusion this will be further abridged as φ{m}. The notation
∑
{m}

is to be understood likewise.

Rule 8.9.2. A series of brackets

∑
{n}

φ{n}f(n1, . . . , nr) 〈a11n1 + · · · a1rnr + c1〉 · · · 〈ar1n1 + · · · arrnr + cr〉

is assigned the value

1

|det(A)|f(n∗1, · · · , n∗r)Γ(−n∗1) · · ·Γ(−n∗r),

where A is the matrix of coefficients (aij) and (n∗i ) is the solution of the linear system

obtained by the vanishing of the brackets. No value is assigned if the matrix A is

singular.

Rule 8.9.3. In the case where a higher dimensional series has more summation

indices than brackets, the appropriate number of free variables is chosen among the

indices. For each such choice, Rule 8.9.2 yields a series. Those converging in a

common region are added to evaluate the desired integral.

Example 8.9.4. Apply the method of brackets to

∫ ∞
0

xν−1F (x) dx (8.68)

where F has the series representation

F (x) =
∞∑
k=0

φkλ(k)xk.
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Then (8.68) can be written as the bracket series

∫ ∞
0

xν−1F (x) dx =

∫ ∞
0

∞∑
k=0

φkλ(k)xk+ν−1 dx =
∑
k

φkλ(k) 〈k + ν〉 .

Rule 8.9.2 assigns the value

∑
k

φkλ(k) 〈k + ν〉 = λ(k∗)Γ(−k∗) (8.69)

where k∗ is the solution of k + ν = 0. Thus one obtains

∫ ∞
0

xν−1F (x) dx = λ(−ν)Γ(ν). (8.70)

This is precisely Ramanujan’s Master Theorem as given by Theorem 8.3.2.

Rule 8.9.1 is a restatement of the fact that the Mellin transform of e−x is Γ(s):

Γ(s)

(a1 + . . .+ ar)
s =

∫ ∞
0

xs−1e−(a1+...+ar)x dx

=

∫ ∞
0

xs−1

r∏
i=1

∑
mi

φmi(aix)mi dx

=
∑
{m}

φ{m}a
m1
1 · · · amrr 〈s+m1 + · · ·+mr〉 .

Example 8.9.4 has shown that the 1-dimensional version of Rule 8.9.2 is Ra-

manujan’s Master Theorem. A formal argument is now presented to show that the

multi-dimensional version of Rule 8.9.2 follows upon iterating the one-dimensional

result. The exposition is restricted to the 2-dimensional case. Consider the bracket

series ∑
n1,n2

φn1φn2f(n1, n2) 〈a11n1 + a12n2 + c1〉 〈a21n1 + a22n2 + c2〉 (8.71)
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which encodes the integral

∫ ∞
0

∫ ∞
0

∑
n1,n2

φn1φn2f(n1, n2)xa11n1+a12n2+c1−1ya21n1+a22n2+c2−1 dx dy.

Substituting (u, v) = (xa11ya21 , xa12ya22) yields dxdy
xy

= 1
|a11a22−a12a21|

dudv
uv

, and hence

the above integral simplifies to

1

|a11a22 − a12a21|

∫ ∞
0

∫ ∞
0

∑
n1,n2

φn1φn2f(n1, n2)un1−n∗1−1vn2−n∗2−1 du dv.

Here (n∗1, n
∗
2) is the solution to a11n

∗
1 + a12n

∗
2 + c1 = 0, a21n

∗
1 + a22n

∗
2 + c2 = 0.

Ramanujan’s Master Theorem gives

∫ ∞
0

∑
n1

φn1f(n1, n2)un1−n∗1−1 du = f(n∗1, n2)Γ(−n∗1).

A second application of Ramanujan’s Master Theorem shows that the bracket series

(8.71) evaluates to

1

|a11a22 − a12a21|
f(n∗1, n

∗
2)Γ(−n∗1)Γ(−n∗2).

This is Rule 8.9.2.

8.9.1 A gamma-like higher dimensional integral

The next example illustrates the power and ease of the method of brackets for the

treatment of certain multidimensional integrals such as

∫ ∞
0

· · ·
∫ ∞

0

exp (−(x1 + . . .+ xn)α)
n∏
i=1

xsi−1
i dxi. (8.72)
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It should be pointed out that this class of integrals is beyond the scope of current

computer algebra systems including Mathematica 7 and Maple 12.

For simplicity of exposition, take n = 2 in (8.72). The n-dimensional case presents

no additional difficulties.

∫ ∞
0

∫ ∞
0

xs−1yt−1 exp (−(x+ y)α) dx dy

=
∑
j

φj

∫ ∞
0

∫ ∞
0

xs−1yt−1(x+ y)αj dx dy

=
∑
j

φj

∫ ∞
0

∫ ∞
0

xs−1yt−1
∑
n,m

φn,mx
nym
〈n+m− αj〉

Γ(−αj) dx dy

=
∑
j,n,m

φj,n,m
1

Γ(−αj) 〈n+m− αj〉 〈n+ s〉 〈m+ t〉

Solving the linear equations for the vanishing of the brackets gives n∗ = −s, m∗ = −t,

and j∗ = − s+t
α

. The determinant of the system is α, therefore the integral is

1

α

1

Γ(−αj∗)Γ(−n∗)Γ(−m∗)Γ(−j∗) =
1

α

Γ(s)Γ(t)

Γ(s+ t)
Γ

(
s+ t

α

)
.

The full statement of this result is presented as the next theorem.

Theorem 8.9.5.

∫ ∞
0

· · ·
∫ ∞

0

exp (−(x1 + . . .+ xn)α)
n∏
i=1

xsi−1
i dxi

=
1

α

Γ(s1)Γ(s2) . . .Γ(sn)

Γ(s1 + . . .+ sn)
Γ

(
s1 + . . .+ sn

α

)
.

Remark 8.9.6. The correct interpretation of Rule 8.9.3 is work in-progress. The

next example illustrates the subtleties associated with this question. The evaluation

∫ ∞
0

xs−1e−2x dx =
Γ(s)

2s
(8.73)



230

follows directly from the bracket expansion

∫ ∞
0

xs−1e−2x dx =
∑
n

φn2n 〈n+ s〉

and Rule 8.9.2. On the other hand, rewriting the integrand as e−2x = e−xe−x and

expanding it in a bracket series produces

∫ ∞
0

xs−1e−xe−x dx =
∑
n,m

φn,m 〈n+m+ s〉 .

The resulting bracket series has more summation indices than brackets. The choice

of n as a free variable, gives m∗ = −n − s and Rule 8.9.2 produces the convergent

series
∞∑
n=0

(−1)n

n!
Γ(n+ s) = Γ(s)1F0

(
s

−

∣∣∣∣−1

)
=

Γ(s)

2s
. (8.74)

Symmetry dictates that the choice of m as a free variable leads to the same result.

Rule 8.9.3, as stated currently, would yield the correct evaluation (8.73), twice.

The trouble has its origin in that the series in (8.74) has been evaluated at the

boundary of its region of convergence. Rule 8.9.3 should be modified by introducing

extra parameters to distinguish different regions of convergence. This remains to be

clarified. For instance,

∫ ∞
0

xs−1e−Axe−Bx dx =
∑
n,m

φn,mA
nBm 〈n+m+ s〉 (8.75)

which, upon choosing n and m as free variables, yields the two series

Γ(s)

Bs 1F0

(
s

−

∣∣∣∣−AB
)
,

Γ(s)

As
1F0

(
s

−

∣∣∣∣−BA
)

respectively. Both series evaluate to Γ(s)/(A+B)s, but it is now apparent that their

regions of convergence are different. Accordingly, they should not be added in order
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to obtain the value (8.75). The original integral (8.73) appears as the limit A,B → 1.
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Chapter 9

The method of brackets. Part 2:
Examples and applications

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[GMS10] The method of brackets. Part 2: Examples and applications
(with Ivan Gonzalez, Victor H. Moll)

published in “Gems in Experimental Mathematics”, Contemporary Mathematics, Vol. 517,

2010, p. 157-171

Abstract A new heuristic method for the evaluation of definite integrals is pre-

sented. This method of brackets has its origin in methods developed for the evalua-

tion of Feynman diagrams. The operational rules are described and the method is

illustrated with several examples. The method of brackets reduces the evaluation of

a large class of definite integrals to the solution of a linear system of equations.

9.1 Introduction

The method of brackets presented here provides a method for the evaluation of a

large class of definite integrals. The ideas were originally presented in [GS07] in the

context of integrals arising from Feynman diagrams. A complete description of the
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operational rules of the method together with a variety of examples was first discussed

in [GM10].

The method is quite simple to work with and many of the entries from the classical

table of integrals [GR80] can be derived using this method. The basic idea is to

introduce the formal symbol 〈a〉, called a bracket, which represents the divergent

integral ∫ ∞
0

xa−1 dx. (9.1)

The formal rules for operating with these brackets are described in Section 9.2 and

their justification (especially of the heuristic Rule 9.2.5) is work-in-progress. In partic-

ular, convergence issues are ignored at the moment. Roughly, each integral generates

a linear system of equations and for each choice of free variables the method yields a

series with the free variables as summation indices. A heuristic rule states that those

converging in a common region give the desired evaluation.

Section 9.3 illustrates the method by evaluating the Laplace transform of the

Bessel function Jν(x). In this example, the two resulting series converge in different

regions and are analytic continuations of each other. This is a general phenomenon

which is used in Section 9.5 to produce an explicit analytic continuation of the hy-

pergeometric function q+1Fq(x). Section 9.4 presents the evaluation of a family of

integrals Cn appearing in Statistical Mechanics. These were introduced in [BBC06]

as a toy model and their physical interpretation was discovered later. The method of

brackets is employed here to evaluate the first four values, the only known cases (an

expression for the next value C5 in terms of a double hypergeometric series is possible

but is not given here). The last section employs the method of brackets to resolve a

Feynman diagram.
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9.2 The method of brackets

The method of brackets discussed in this paper is based on the assignment of the

formal symbol 〈a〉 to the divergent integral (9.1).

Example 9.2.1. If f is given by the formal power series

f(x) =
∞∑
n=0

anx
αn+β−1,

then the improper integral of f over the positive real axis is formally written as the

bracket series ∫ ∞
0

f(x) dx =
∑
n

an 〈αn+ β〉 . (9.2)

Here, and in the sequel,
∑

n is used as a shorthand for
∑∞

n=0.

Formal rules for operating with brackets are described next. In particular, Rule

9.2.4 describes how to evaluate a bracket series such as the one appearing in (9.2).

To this end, it is useful to introduce the symbol

φn =
(−1)n

Γ(n+ 1)
, (9.3)

which is called the indicator of n.

Example 9.2.2. The gamma function has the bracket expansion

Γ(a) =

∫ ∞
0

xa−1e−x dx =
∑
n

φn 〈n+ a〉 . (9.4)

Rule 9.2.3. The bracket expansion

1

(a1 + a2 + · · ·+ ar)α
=

∑
m1,...,mr

φm1,...,mra
m1
1 · · · amrr

〈α +m1 + · · ·+mr〉
Γ(α)

(9.5)
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holds. Here φm1,...,mr is a shorthand notation for the product φm1 · · ·φmr . If there is

no possibility of confusion this will be further abridged as φ{m}. The notation
∑
{m}

is to be understood likewise.

Rule 9.2.4. A series of brackets is assigned a value according to

∑
n

φnf(n) 〈an+ b〉 =
1

|a|f(n∗)Γ(−n∗), (9.6)

where n∗ is the solution of the equation an+ b = 0. Observe that this might result in

the replacing of the index n, initially a nonnegative integer, by a complex number n∗.

Similarly, a higher dimensional bracket series, that is,

∑
{n}

φ{n}f(n1, . . . , nr) 〈a11n1 + · · · a1rnr + c1〉 · · · 〈ar1n1 + · · · arrnr + cr〉

is assigned the value

1

|det(A)|f(n∗1, · · · , n∗r)Γ(−n∗1) · · ·Γ(−n∗r), (9.7)

where A is the matrix of coefficients (aij) and (n∗i ) is the solution of the linear system

obtained by the vanishing of the brackets. The value is not defined if the matrix A is

not invertible.

Rule 9.2.5. In the case where a higher dimensional series has more summation

indices than brackets, the appropriate number of free variables is chosen among the

indices. For each such choice, Rule 9.2.4 yields a series. Those converging in a

common region are added to evaluate the desired integral.
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9.3 An example from Gradshteyn and Ryzhik

The second author is involved in a long term project of providing proofs of all the

entries from the classical table of integrals by Gradshteyn and Ryzhik [GR80]. The

proofs can be found at:

http://www.math.tulane.edu/~vhm/Table.html

In this section the method of brackets is illustrated to find

∫ ∞
0

xνe−αxJν(βx) dx =
(2β)νΓ(ν + 1

2
)√

π(α2 + β2)ν+1/2
(9.8)

which is entry 6.623.1 of [GR80]. Here

Jν(x) =
∞∑
k=0

(−1)k(x/2)2k+ν

k! Γ(k + ν + 1)
(9.9)

is the Bessel function of order ν. To this end, the integrand is expanded as

e−αxJν(βx) =

(∑
n

φn(αx)n

)(∑
k

φk
(βx

2
)2k+ν

Γ(k + ν + 1)

)
(9.10)

=
∑
k,n

φk,n
αn(β

2
)2k+ν

Γ(k + ν + 1)
xn+2k+2ν ,

so as to obtain the bracket series

∫ ∞
0

e−αxJν(βx)dx =
∑
k,n

φk,n
αn(β

2
)2k+ν

Γ(k + ν + 1)
〈n+ 2k + 2ν + 1〉 . (9.11)

The evaluation of this double sum by the method of brackets produces two series

corresponding to using either k or n as the free variable when applying Rule 9.2.4.

http://www.math.tulane.edu/~vhm/Table.html
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The index k is free

Choosing k as the free variable when applying Rule 9.2.4 to (9.11), yields n∗ =

−2k − 2ν − 1 and thus the resulting series

∑
k

φk
α−2k−2ν−1(β

2
)2k+ν

Γ(k + ν + 1)
Γ(2k + 2ν + 1) (9.12)

= α−2ν−1(β
2
)ν

Γ(2ν + 1)

Γ(ν + 1)
1F0

(
ν + 1

2

−

∣∣∣∣−β2

α2

)
.

The right-hand side employs the usual notation for the hypergeometric function

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
(9.13)

where (α)n = Γ(α+n)
Γ(α)

is the Pochhammer symbol. Note that the 1F0 in (9.12) converges

provided |β| < |α|. In this case, the standard identity 1F0(a|x) = (1− x)−a together

with the duplication formula for the Γ function shows that the series in (9.12) is

indeed equal to the right-hand side of (9.8).

The index n is free

In this second case, the linear system in Rule 9.2.4 has determinant 2 and yields

k∗ = −n/2− ν − 1/2. This gives

1

2

∑
n

φn
αn(β

2
)−n−ν−1

Γ(−n/2 + 1/2)
Γ(n/2 + ν + 1/2). (9.14)

This series now converges provided that |β| > |α| in which case it again sums to the

right-hand side of (9.8).
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Note 9.3.1. This is the typical behavior of the method of brackets. The different

choices of indices as free variables give representations of the solution valid in different

regions. Each of these is an analytic continuation of the other ones.

9.4 Integrals of the Ising class

In this section the method of brackets is used to discuss the integral

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun
un

. (9.15)

This family was introduced in [BBC06] as a caricature of the Ising susceptibility

integrals

Dn =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

∏
i<j

(
ui − uj
ui + uj

)2
1(∑n

j=1(uj + 1/uj)
)2

du1

u1

· · · dun
un

. (9.16)

Actually, the integrals Cn appear naturally in the analysis of certain amplitude trans-

forms [PT81]. The first few values are given by

C1 = 2, C2 = 1, C3 = L−3(2), C4 =
7

12
ζ(3). (9.17)

Here, LD is the Dirichlet L-function. In this case,

L−3(2) =
∞∑
n=0

(
1

(3n+ 1)2
− 1

(3n+ 2)2

)
. (9.18)

No analytic expression for Cn is known for n > 5. Similarly,

D1 = 2, D2 =
1

3
, D3 = 8 +

4π2

3
− 27L−3(2), D4 =

4π2

9
− 1

6
− 7

12
ζ(3) (9.19)
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are given in [BBC06]. High precision numerical evaluation and PSLQ experiments

have further produced the conjecture

D5 = 42− 1984Li4(1
2
) +

189

10
π4 − 74ζ(3)− 1272ζ(3) ln 2 + 40π2 ln2 2 (9.20)

− 62

3
π3 +

40

3
π2 ln 2 + 88 ln4 2 + 464 ln2 2− 40 ln 2.

The integral Cn is the special case k = 1 of the family

Cn,k =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)k+1

du1

u1

· · · dun
un

(9.21)

that also gives the moments of powers of the Bessel function K0 via

Cn,k =
2n−k+1

n! k!
cn,k :=

2n−k+1

n! k!

∫ ∞
0

tkKn
0 (t) dt. (9.22)

The values

c1,k = 2k−1Γ2

(
k + 1

2

)
, c2,k =

√
π

4

Γ3
(
k+1

2

)
Γ
(
k
2

+ 1
) , (9.23)

as well as the recursion

(k + 1)4c3,k − 2(5k2 + 20k + 21)c3,k+2 + 9c3,k+4 = 0 (9.24)

with initial data

c3,0 =
3α

32π
, c3,1 =

3

4
L−3(2), c3,2 =

α

96π
− 4π5

9α
, c3,3 = L−3(2)− 2

3
, (9.25)

where α = 2−2/3Γ6(1
3
) are given in [BBBG08] and [BS08].

The evaluation of these integrals presented in the literature usually begins with

the introduction of spherical coordinates. This reduces the dimension of Cn by two

and immediately gives the values of C1 and C2. The evaluation of C3 is reduced to
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the logarithmic integral

C3 =
2

3

∫ ∞
0

ln(1 + x) dx

x2 + x+ 1
. (9.26)

Its value is obtained by the change of variables x → 1
t
− 1 followed by an expansion

of the integrand. A systematic discussion of these type of logarithmic integrals is

provided in [MM09]. The value of C4 is obtained via the double integral representation

C4 =
1

6

∫ ∞
0

∫ ∞
0

ln(1 + x+ y)

(1 + x+ y)(1 + 1/x+ 1/y)− 1

dx

x

dy

y
. (9.27)

Moreover, the limiting behavior

lim
n→∞

Cn = 2e−2γ (9.28)

was established in [BBC06].

In this section the method of brackets is used to obtain the expressions for C2, C3,

and C4 described above. An advantage of this method is that it systematically gives

an analytic expression for these integrals. When applied to C5, the method produces

a double series representation which is not discussed here.

9.4.1 Evaluation of C2,k

The numbers C2,k are given by

C2,k = 2

∫ ∞
0

∫ ∞
0

dx dy

xy (x+ 1/x+ y + 1/y)k+1
. (9.29)

A direct application of the method of brackets, by applying Rule 9.2.3 to the integrand

as in (9.29), results in a bracket expansion involving a 4-fold sum and 3 brackets. Rules

9.2.4 and 9.2.5 translates this into a collection of series with 4 − 3 = 1 summation

indices. However, it is generally desirable to minimize the final number of summations
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by reducing the number of sums and increasing the number of brackets. In this

example this is achieved by writing

C2,k = 2

∫ ∞
0

∫ ∞
0

(xy)k dx dy

(x2y + y + xy2 + x)k+1

= 2

∫ ∞
0

∫ ∞
0

(xy)k dx dy

(xy [x+ y] + [x+ y])k+1
.

In the evaluation of these expressions, the term (x+ y) must be expanded at the last

step. The method of brackets now yields

1

(xy [x+ y] + [x+ y])k+1
=
∑
n1,n2

φn1,n2 x
n1yn1 (x+ y)n1+n2

〈k + 1 + n1 + n2〉
Γ(k + 1)

,

and the expansion of the term (x+ y) gives

1

(x+ y)−n1−n2
=
∑
n3,n4

φn3,n4 x
n3yn4

〈−n1 − n2 + n3 + n4〉
Γ (−n1 − n2)

.

Replacing in the integral produces the bracket expansion

C2,k = 2
∑
{n}

φ{n}
〈k + 1 + n1 + n2〉

Γ(k + 1)

〈−n1 − n2 + n3 + n4〉
Γ(−n1 − n2)

× 〈k + 1 + n1 + n3〉 〈k + 1 + n1 + n4〉 .

The value of this formal sum is now obtained by solving the linear system k + 1 +

n1 + n2 = 0, −n1 − n2 + n3 + n4 = 0, k + 1 + n1 + n3 = 0, and k + 1 + n1 + n4 = 0

coming from the vanishing of brackets. This system has determinant 2 and its unique

solution is n∗1 = n∗2 = n∗3 = n∗4 = −k+1
2

. It follows that

C2,k =
Γ (−n∗1) Γ (−n∗2) Γ (−n∗3) Γ (−n∗4)

Γ(k + 1)Γ (−n∗1 − n∗2)
=

Γ
(
k+1

2

)4

Γ(k + 1)2
. (9.30)



242

Note that, upon employing Legendre’s duplication formula for the Γ function, this

evaluation is equivalent to (9.23). In particular, this confirms the value C2 = C2,1 = 1

in (9.17).

Remark 9.4.1. The evaluation

C2,k(α, β) = 2

∫ ∞
0

∫ ∞
0

xα−1yβ−1 dx dy

(x+ 1/x+ y + 1/y)k+1
(9.31)

=
Γ
(
k+1+α+β

2

)
Γ
(
k+1−α−β

2

)
Γ
(
k+1+α−β

2

)
Γ
(
k+1−α+β

2

)
Γ(k + 1)2

that generalizes C2,k is obtained as a bonus. Similarly,

Jr,s(α, β) = 2

∫ ∞
0

∫ ∞
0

xα−1yβ−1 dx dy

(x+ y)r(xy + 1)s
(9.32)

=
Γ
(−r+α+β

2

)
Γ
(

2s+r−α−β
2

)
Γ
(
r+α−β

2

)
Γ
(
r−α+β

2

)
Γ(r)Γ(s)

.

Note that C2,k(α, β) = Jk+1,k+1(α + k + 1, β + k + 1).

Remark 9.4.2. The Ising susceptibility integral D2, see (9.16), is obtained directly

from the expression for Jr,s given above. Indeed,

D2 = 2

∫ ∞
0

∫ ∞
0

(x2 − 2xy + y2)
xy dx dy

(x+ y)4(xy + 1)2
(9.33)

= 2 (J4,2(4, 2)− 2J4,2(3, 3) + J4,2(2, 4))

=
1

3
.

This agrees with (9.19). This technique also yields the generalization

D2(α, β) = 2

∫ ∞
0

∫ ∞
0

(
x− y
x+ y

)2
xα−1yβ−1 dx dy

(x+ 1/x+ y + 1/y)2 (9.34)

=
(b− a)(b+ a)(2 + (b− a)2)π2

12(cos(απ)− cos(βπ))
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with limiting case D2(α, α) = 1
3

απ
sin(απ)

.

9.4.2 Evaluation of C3,k

Next, consider the integral

C3,k =
2

3

∫ ∞
0

∫ ∞
0

∫ ∞
0

dx dy dz

xyz (x+ 1/x+ y + 1/y + z + 1/z)k+1
(9.35)

=
2

3

∫ ∞
0

∫ ∞
0

∫ ∞
0

(xyz)k dx dy dz

(xyz (x+ y) + z (x+ y) + xyz2 + xy)k+1
.

The second form of the integrand is motivated by the desire to to minimize the number

of sums and to maximize the number of brackets in the expansion. The denominator

is now expanded as

∑
{n}

φ{n}(xy)n1+n3+n4zn1+n2+2n3 (x+ y)n1+n2
〈k + 1 + n1 + n2 + n3 + n4〉

Γ (k + 1)
,

and further expanding (x+ y)n1+n2 as

(x+ y)n1+n2 =
∑
n5,n6

φn5,n6 x
n5yn6

〈−n1 − n2 + n5 + n6〉
Γ(−n1 − n2)

produces a complete bracket expansion of the integrand of C3,k. Integration then

yields

C3,k =
2

3

1

k!

∑
{n}

φ{n}
〈−n1 − n2 + n5 + n6〉

Γ (−n1 − n2)
(9.36)

× 〈k + 1 + n1 + n2 + n3 + n4〉 〈k + 1 + n1 + n3 + n4 + n5〉

× 〈k + 1 + n1 + n3 + n4 + n6〉 〈k + 1 + n1 + n2 + 2n3〉 .
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This expression is regularized by replacing the bracket 〈k + 1 + n1 + n2 + 2n3〉 with

〈k + 1 + n1 + n2 + 2n3 + ε〉 with the intent of letting ε → 0. (This corresponds to

multiplying the initial integrand with zε; however, note that many other regulariza-

tions are possible and eventually lead to Theorem 9.4.3. It will become clear shortly,

see (9.38), why regularizing is necessary.) The method of brackets now gives a set

of series expansions obtained by the vanishing of the five brackets in (9.36). The

solution of the corresponding linear system (which has determinant 2) leaves one free

index and produces the integral as a series in this variable. Of the six possible free

indices, only n3 and n4 produce convergent series (more specifically, for each free in-

dex one obtains a hypergeometric series 3F2 times an expression free of the index; for

the indices n3, n4 the argument of this 3F2 is 1
4

while otherwise it is 4.) The heuristic

Rule 9.2.5 states that their sum yields the value of the integral:

C3,k =
1

3
lim
ε→0

1

k!

∞∑
n=0

(−1)n

n!
(fk,n(ε) + fk,n(−ε)) (9.37)

where

fk,n(ε) =
Γ
(
n+ k+1+ε

2

)4
Γ(−n− ε)

Γ(2n+ k + 1 + ε)
. (9.38)

Observe that the terms fk,n(ε) are contributed by the index n3 while the terms fk,n(−ε)

come from the index n4. At ε = 0, each of them has a simple pole. Consequently, the

even combination fk,n(ε) + fk,n(−ε) has no pole at ε = 0. Using the expansions

Γ(x+ ε) = Γ(x)(1 + ψ(x)ε) +O(ε2), (9.39)

for x 6= 0,−1,−2, . . ., as well as

Γ(−n+ ε) =
(−1)n

n!

(
1

ε
+ ψ(n+ 1)

)
+O(ε), (9.40)

for n = 0, 1, 2, . . ., provides the next result.
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Theorem 9.4.3. The integrals C3,k are given by

C3,k =
2

3

1

k!

∞∑
n=0

1

(n!)2

Γ
(
n+ k+1

2

)4

Γ(2n+ k + 1)

(
ψ(n+ 1)− 2ψ

(
n+ k+1

2

)
+ ψ(2n+ k + 1)

)
.

In particular, for k = 1

C3 =
2

3

∞∑
n=0

(n!)2

(2n+ 1)!
(ψ(2n+ 2)− ψ(n+ 1)) . (9.41)

The evaluation of this sum using Mathematica 7 yields a large collection of special

values of (poly-)logarithms. After simplifications, it yields C3 = L−3(2) as in (9.17).

Remark 9.4.4. An extension of Theorem 9.4.3 is presented next:

C3,k(α, β, γ) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

xα−1yβ−1zγ−1 dx dy dz

(x+ 1/x+ y + 1/y + z + 1/z)k+1
, (9.42)

for γ = 0, is given by

1

k!

∞∑
n=0

1

(n!)2

Γ
(
n+ k+1±α±β

2

)
Γ(2n+ k + 1)

(
ψ(n+ 1)− 1

2
ψ
(
n+ k+1±α±β

2

)
+ ψ(2n+ k + 1)

)

where the notation Γ(n + k+1±α±β
2

) = Γ(n + k+1+α+β
2

)Γ(n + k+1+α−β
2

) · · · as well as

ψ(n + k+1±α±β
2

) = ψ(n + k+1+α+β
2

) + ψ(n + k+1+α−β
2

) + · · · is employed. Similar

expressions can be given for other integral values of γ. In the case where γ is not

integral, C3,k(α, β, γ) can be written as a sum of two 3F2’s with Γ factors. The

symmetry of C3,k(α, β, γ) in α, β, γ, shows that this can be done if at least one of

these arguments is nonintegral.
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9.4.3 Evaluation of C4

The last example discussed here is

C4 =
1

6

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

dx dy dz dw

xyzw (x+ 1/x+ y + 1/y + z + 1/z + w + 1/w)2 .

To minimize the number of sums and to maximize the number of brackets this is

rewritten as

1

6

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

x1+εy1+εz1+εw1+ε dx dy dz dw

[Axyzw(x+ y) + zw(x+ y) + xyzw(z + w) + xy(z + w)]2

with the intent of letting ε→ 0 and A→ 1. As in the case of C3,k, the regulator pa-

rameter ε is introduced to cure the divergence of the resulting expressions. Similarly,

the parameter A is employed to divide the resulting sums into convergence groups

according to the heuristic Rule 9.2.5. The denominator expands as

∑
{n}

φ{n} A
n1xn1+n3+n4yn1+n3+n4zn1+n2+n3wn1+n2+n3

× (x+ y)n1+n2(z + w)n3+n4 〈2 + n1 + n2 + n3 + n4〉 .

As before,

(x+ y)n1+n2 =
∑
n5,n6

φn5,n6 x
n5yn6

〈−n1 − n2 + n5 + n6〉
Γ(−n1 − n2)

and

(z + w)n3+n4 =
∑
n7,n8

φn7,n8 z
n7wn8

〈−n3 − n4 + n7 + n8〉
Γ(−n3 − n4)

.
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These expansions of the integrand yield the bracket series

1

6

∑
{n}

φ{n} A
n1 〈2 + n1 + n2 + n3 + n4〉 (9.43)

× 〈−n1 − n2 + n5 + n6〉
Γ(−n1 − n2)

〈−n3 − n4 + n7 + n8〉
Γ(−n3 − n4)

× 〈2 + ε+ n1 + n3 + n4 + n5〉 〈2 + ε+ n1 + n3 + n4 + n6〉

× 〈2 + ε+ n1 + n2 + n3 + n7〉 〈2 + ε+ n1 + n2 + n3 + n8〉 .

The evaluation of this bracket series by Rules 9.2.4 and 9.2.5 yields hypergeometric

series with arguments A (n1, n2, n5, or n6 chosen as the free index) and 1/A (n3, n4,

n7, or n8 chosen as the free index). Either combination produces an expression for

the integral C4. Taking those with argument A (the indices n5 and n6 yield the same

series; however, it is only taken into account once) gives

1

12
A−εΓ2(ε)Γ2(1− ε)

(
Aε

1 + 2ε
2F1

( 1
2

+ ε, 1
3
2

+ ε

∣∣∣∣A) (9.44)

+
A−ε

1− 2ε
2F1

( 1
2
− ε, 1

3
2
− ε

∣∣∣∣A)− 22F1

( 1
2
, 1
3
2

∣∣∣∣A)).
As ε→ 0, the limiting value is

1

24
ln2A ln

(
1 +
√
A

1−
√
A

)
+

1

3
√
A

[
Li3(
√
A)− Li3(−

√
A)
]

(9.45)

− lnA

6
√
A

[
Li2(
√
A)− Li2(−

√
A)
]
.

Finally, the value of C4 is obtained by taking A→ 1:

C4 =
1

3
[Li3(1)− Li3(−1)] =

7

12
ζ(3). (9.46)

This agrees with (9.17).
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9.5 Analytic continuation of hypergeometric

functions

The hypergeometric function pFq, defined by the series

pFq(x) = pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
, (9.47)

converges for all x ∈ C if p < q + 1 and for |x| < 1 if p = q + 1. In the remaining

case, p > q + 1, the series diverges for x 6= 0. The analytic continuation of the series

q+1Fq has been recently considered in [Sko04a, Sko04b]. In this section a brackets

representation of the hypergeometric series is obtained and then employed to produce

its analytic extension.

Theorem 9.5.1. The bracket representation of the hypergeometric function is given

by

pFq(x) =
∑
n

t1,...,tp
s1,...,sq

φn,{t},{s}
[
(−1)q−1x

]n p∏
j=1

〈aj + n+ tj〉
Γ(aj)

q∏
k=1

〈1− bk − n+ sk〉
Γ(1− bk)

.

Proof. This follows from (9.47) and the representations

(aj)n =
Γ(aj + n)

Γ(aj)
=

1

Γ(aj)

∫ ∞
0

τaj+n−1e−τ dτ =
∑
tj

φtj
〈aj + n+ tj〉

Γ(aj)
(9.48)

as well as

1

(bk)n
= (−1)n

Γ(1− bk − n)

Γ(1− bk)
= (−1)n

∑
sk

φsk
〈1− bk − n+ sk〉

Γ(1− bk)
(9.49)

for the Pochhammer symbol.

The bracket expression for the hypergeometric function given in Theorem 9.5.1
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contains p+ q brackets and p+ q + 1 indices (n, tj and sk). This leads to a full rank

system

aj + n+ tj = 0 for 1 ≤ j ≤ p (9.50)

1− bk − n+ sk = 0 for 1 ≤ k ≤ q.

of linear equations of size (p+ q+ 1)× (p+ q) and determinant 1. For each choice of

an index as a free variable the method of brackets yields a one-dimensional series for

the integral.

Series with n as a free variable

Solving (9.50) yields t∗j = −aj − n and s∗k = −(1 − bk) + n with 1 ≤ j ≤ p and

1 ≤ k ≤ q. Rule 9.2.4 yields

∞∑
n=0

[(−1)qx]n

n!

p∏
j=1

Γ(n+ aj)

Γ(aj)

q∏
k=1

Γ(−n+ 1− bk)
Γ(1− bk)

=
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
.

This is the original series representation (9.47) of the hypergeometric function. In

particular, in the case q = p− 1, this series converges for |x| < 1.

Series with ti as a free variable

Fix an index i in the range 1 ≤ i ≤ p and solve (9.50) to get n∗ = −ai− ti, as well

as t∗j = ti − aj + ai for 1 ≤ j ≤ p, j 6= i, and s∗k = −(1− bk)− ai − ti for 1 ≤ k ≤ q.

The method of brackets then produces the series

∑
ti

φti
[
(−1)q−1x

]−ti−ai Γ(ti + ai)

Γ(ai)

∏
j 6=i

Γ(aj − ai − ti)
Γ(aj)

∏
k

Γ(1− bk + ai + ti)

Γ(1− bk)
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which may be rewritten as

(−x)−ai
∏
j 6=i

Γ(aj − ai)
Γ(aj)

∏
k

Γ(bk)

Γ(bk − ai)
(9.51)

× q+1Fp−1

(
ai, {1− bk + ai}16k6q

{1− aj + ai}16j6p,j 6=i

∣∣∣∣(−1)p+q−1

x

)
.

Recall that the initial hypergeometric series pFq(x) converges for some x 6= 0 if and

only if p 6 q + 1. Hence, assuming that p 6 q + 1, observe that the hypergeometric

series (9.51) converges for some x if and only if p = q + 1.

Series with si as a free variable

Proceeding as in the previous case and choosing i in the range 1 ≤ i ≤ q and then

si as the free index, gives

[
(−1)p+q−1x

]1−bi Γ(bi − 1)

Γ(1− bi)
∏
j

Γ(1− aj)
Γ(bi − aj)

∏
k 6=i

Γ(bi − bk)
Γ(1− bk)

(9.52)

× pFq

( {aj + 1− bi}16j6p

2− bi, {1− bk + bi}16k6q,k 6=i

∣∣∣∣x) .

Summary

Assume p = q + 1 and sum up the series coming from the method of brackets

converging in the common region |x| > 1. Rule 9.2.5 gives the analytic continuation

q+1Fq(x) =

q+1∑
i=1

(−x)−ai
∏
j 6=i

Γ(aj − ai)
Γ(aj)

∏
k

Γ(bk)

Γ(bk − ai)
(9.53)

× q+1Fq

(
ai, {1− bk + ai}16k6q

{1− aj + ai}16j6q+1,j 6=i

∣∣∣∣1x
)

for the series (9.47).
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On the other hand, the q + 1 functions coming from choosing n or si, 1 6 i 6

q, as the free variables form linearly independent solutions to the hypergeometric

differential equation

q+1∏
j=1

(
x

d

dx
+ aj

)
y =

q∏
k=1

(
x

d

dx
+ bk

)
y (9.54)

in a neighborhood of x = 0. Likewise, the q+1 functions (9.51) coming from choosing

ti, 1 6 i 6 q + 1, as the free variables form linearly independent solutions to (9.54)

in a neighborhood of x =∞.

Example 9.5.2. For instance, if p = 2 and q = 1 then

2F1

(
a, b

c

∣∣∣∣x) = (−x)−a
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
2F1

(
a, 1− c+ a

1− b+ a

∣∣∣∣1x
)

(9.55)

+(−x)−b
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)2F1

(
b, 1− c+ b

1− a+ b

∣∣∣∣1x
)
.

This is entry 9.132.1 of [GR80]. On the other hand, the two functions

2F1

(
a, b

c

∣∣∣∣x) , x1−c
2F1

(
a+ 1− c, b+ 1− c

2− c

∣∣∣∣x) (9.56)

form a basis of the solutions to the second-order hypergeometric differential equation

(
x

d

dx
+ a

)(
x

d

dx
+ b

)
y =

(
x

d

dx
+ c

)
y (9.57)

in a neighborhood of x = 0.

9.6 Feynman diagram application

In Quantum Field Theory the permanent contrast between experimental mea-

surements and theoretical models has been possible due to the development of novel
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and powerful analytical and numerical techniques in perturbative calculations. The

fundamental problem that arises in perturbation theory is the actual calculation of

the loop integrals associated to the Feynman diagrams, whose solution is specially

difficult since these integrals contain in general both ultraviolet (UV) and infrared

(IR) divergences. Using the dimensional regularization scheme, which extends the

dimensionality of space-time by adding a fractional piece (D = 4− 2ε), it is possible

to know the behavior of such divergences in terms of Laurent expansions with respect

to the dimensional regulator ε when it tends to zero

As an illustration of the use of method of brackets, the Feynman diagram

P2

P1

P3

// a3

��

a1
yyyy

<<yyyy
//

a2

EEE
E

""EEE
E

//

(9.58)

considered in [BD91] is resolved. In this diagram the propagator (or internal line)

associated to the index a1 has mass m and the other parameters are P 2
1 = P 2

3 = 0

and P 2
2 = (P1 + P3)2 = s. The D-dimensional representation in Minkowski space is

given by

G =

∫
dDq

iπD/2
1

[(P1 + q)2 −m2]a1 [(P3 − q)2]a2 [q2]a3
. (9.59)

In order to evaluate this integral, the Schwinger parametrization of (9.59) is considered

(see [IZ93] for details). This is given by

G =
(−1)−D/2∏3
j=1 Γ(aj)

H (9.60)

with H defined by

H =

∞∫
0

∞∫
0

∞∫
0

xa1−1
1 xa2−1

2 xa3−1
3

exp (x1m
2) exp

(
− x1x2
x1+x2+x3

s
)

(x1 + x2 + x3)D/2
dx1dx2dx3. (9.61)
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To apply the method of brackets the exponential terms are expanded as

exp
(
x1m

2
)

exp

(
− x1x2

x1 + x2 + x3

s

)
=
∑
n1,n2

φn1,n2 (−1)n1m2n1sn2
xn1+n2

1 xn2
2

(x1 + x2 + x3)n2
,

and then (9.61) is transformed into

∑
n1,n2

φn1,n2(−m2)n1sn2

∞∫
0

∞∫
0

∞∫
0

xa1+n1+n2−1
1 xa2+n2−1

2 xa3−1
3

(x1 + x2 + x3)D/2+n2
dx1dx2dx3. (9.62)

Further expanding

1

(x1 + x2 + x3)D/2+n2
=

∑
n3,n4,n5

φn3,n4,n5 x
n3
1 x

n4
2 x

n5
3

〈
D
2

+ n2 + n3 + n4 + n5

〉
Γ(D

2
+ n2)

,

and replacing into (9.62) and substituting the resulting integrals by the corresponding

brackets yields

H =
∑
{n}

φ{n}(−1)n1m2n1sn2

〈
D
2

+ n2 + n3 + n4 + n5

〉
Γ(D

2
+ n2)

(9.63)

× 〈a1 + n1 + n2 + n3〉 〈a2 + n2 + n4〉 〈a3 + n5〉 .

This bracket series is now evaluated employing Rules 9.2.4 and 9.2.5. Possible choices

for free variables are n1, n2, and n4. The series associated to n2 converges for | s
m2 | < 1,

whereas the series associated to n1, n4 converge for |m2

s
| < 1. The following two

representations for G follow from here.

Theorem 9.6.1. In the region | s
m2 | < 1,

H = η2 · 2F1

(
a1 + a2 + a3 − D

2
, a2

D
2

∣∣∣∣ sm2

)
(9.64)
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with η2 defined by

η2 =
(
−m2

)D
2
−a1−a2−a3 Γ(a2)Γ(a3)Γ

(
a1 + a2 + a3 − D

2

)
Γ
(
D
2
− a2 − a3

)
Γ
(
D
2

) .

Theorem 9.6.2. In the region |m2

s
| < 1,

H = η1 · 2F1

(
a1 + a2 + a3 − D

2
, 1 + a1 + a2 + a3 −D

1 + a1 + a3 − D
2

∣∣∣∣m2

s

)
(9.65)

+ η4 · 2F1

(
1 + a2 − D

2
, a2

1− a1 − a3 + D
2

∣∣∣∣m2

s

)

with η1, η4 defined by

η1 = s
D
2
−a1−a2−a3 Γ(a3)Γ

(
a1 + a2 + a3 − D

2

)
Γ
(
D
2
− a1 − a3

)
Γ
(
D
2
− a2 − a3

)
Γ (D − a1 − a2 − a3)

,

η4 = s−a2
(
−m2

)D
2
−a1−a3 Γ(a2)Γ(a3)Γ

(
a1 + a3 − D

2

)
Γ
(
D
2
− a2 − a3

)
Γ
(
D
2
− a2

) .

These two solutions are now specialized to a1 = a2 = a3 = 1. This situation is

specially relevant, since when an arbitrary Feynman diagram is computed, the indices

associated to the propagators are normally 1. Then, with D = 4− 2ε, the equations

(9.64) and (9.65) take the form

H = (−m2)−1−εΓ(ε− 1)2F1

(
1 + ε, 1

2− ε

∣∣∣∣ sm2

)
(9.66)

for | s
m2 | < 1, as well as

H = s−1−εΓ(−ε)2Γ(1 + ε)

Γ(1− 2ε)

(
1− m2

s

)−2ε

−m−2εΓ(ε)

εs
2F1

(
ε, 1

1− ε

∣∣∣∣m2

s

)
(9.67)

for |m2

s
| < 1. Observe that these representations both have a pole at ε = 0 of first

order (for the second representation, each of the summands has a pole of second order
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which cancel each other).

9.7 Conclusions and future work

The method of brackets provides a very effective procedure to evaluate definite

integrals over the interval [0,∞). The method is based on a heuristic list of rules on

the bracket series associated to such integrals. In particular, a variety of examples

that illustrate the power of this method has been provided. A rigorous validation of

these rules as well as a systematic study of integrals from Feynman diagrams is in

progress.
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Chapter 10

A fast numerical algorithm for the
integration of rational functions

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[MMMS10] A fast numerical algorithm for the integration of rational functions
(with Dante Manna, Luis Medina, Victor H. Moll)

published in Numerische Mathematik, Vol. 115, Nr. 2, Apr 2010, p. 289-307

Abstract A new iterative method for high-precision numerical integration of ra-

tional functions on the real line is presented. The algorithm transforms the rational

integrand into a new rational function preserving the integral on the line. The coeffi-

cients of the new function are explicit polynomials in the original ones. These trans-

formations depend on the degree of the input and the desired order of the method.

Both parameters are arbitrary. The formulas can be precomputed. Iteration yields

an approximation of the desired integral with m-th order convergence. Examples

illustrating the automatic generation of these formulas and the numerical behaviour

of this method are given.
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10.1 Introduction

The numerical integration of the elliptic integral

G(a, b) =

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

(10.1)

can be accomplished by iterating the transformation

Le : R2 → R2, (a, b) 7→
(
a+ b

2
,
√
ab

)
. (10.2)

Gauss [Gau99] established that G(a, b) is invariant under the transformation Le, i.e.,

G(Le(a, b)) = G(a, b). (10.3)

Moreover, the iterates (an, bn) defined recursively by (a0, b0) = (a, b) and (an, bn) =

Le(an−1, bn−1) for n ≥ 1, satisfy

|an+1 − bn+1| ≤
1

2
|an − bn|2, (10.4)

illustrating the quadratic convergence of an and bn to a common limit AGM(a, b).

This is the arithmetic-geometric mean of a and b. Le is known as the elliptic Landen

transformation. The reader will find in [MM08a] a survey of the diverse aspects of

this transformation and its generalizations.

The invariance of the integral G(a, b) under Le yields

G(a, b) =
π

2
AGM−1(a, b). (10.5)

In particular, the value of the elliptic integral G(a, b) can be approximated using

the iterates an (or bn). The functions G(a, b) and AGM(a, b) along with the formula
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(10.5), are at the center of highly effective computation of the basic constants of

Analysis [BB98].

A scheme for the computation of the rational integral

F (a, b) =

∫ ∞
−∞

b0x
p−2 + . . .+ bp−3x+ bp−2

a0xp + . . .+ ap−1x+ ap
dx, (10.6)

with a = (a0, a1, . . . , ap), b = (b0, b1, . . . , bp−2), is presented here. Rational Landen

transformations

Lm,p : C2p → C2p, (a, b) 7→ Lm,p(a, b) (10.7)

which preserve the integral F (a, b) are constructed. Iteration of Lm,p yields a sequence

of coefficients (an,0, an,1, · · · , an,p) and (bn,0, bn,1, · · · , bn,p−2) for a sequence of rational

functions which are shown to converge to a constant multiple of 1/(x2 + 1). The

invariance of the integral F (a, b) under Lm,p yields

F (a, b) = c

∫ ∞
−∞

dx

x2 + 1
= πc = π lim

n→∞

bn,0
an,0

, (10.8)

that determines the constant c. The sequence {πbn,0/an,0 : n = 1, 2, 3 . . .} of approx-

imations to the integral F (a, b) converges with order m; that is, the error en :=

|πbn,0/an,0 − F (a, b)| satisfies

|en+1 − en| ≤ C|en − en−1|m (10.9)

with an absolute constant C.

The outlined algorithm for computing rational integrals over the real line, pre-

sented in more detail in Section 10.6, consists of the two parts:

• Creation of the rational Landen transformation Lm,p where m is the desired

order of convergence and p is the degree of the denominator of the rational
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function to be integrated. This is discussed in Section 10.2.

• Iteration of the Landen transformation, which is analyzed in Sections 10.3 and

10.6 with the view towards complexity and implementation, respectively.

Numerical examples of this method are discussed in Section 10.4.

Remark 10.1.1. Given m and p, the map Lm,p can be precomputed and the result

can be stored for use in the second part of the algorithm. Therefore, the first part

of the algorithm carries a one-time cost and is not figured into the complexity of the

method which is discussed in Section 10.3.

Remark 10.1.2. The numerical method for the integration of rational functions

presented here is different in spirit than the standard ones: the approximation to the

integral is obtained from a recurrence acting on the coefficients of the integrand. In

particular, the domain of integration is not discretized and the integrand is never

evaluated. Examples that illustrate the method and a study of the cost involved are

presented.

Future work. The algorithm presented here is restricted to integrals on the whole

line. The extension to a finite interval requires the development of Landen transfor-

mations on the half line. This question is open, even for the simplest case of

I2(a, b, c) :=

∫ ∞
0

dx

ax2 + bx+ c
. (10.10)

The method has been coupled with Pade approximations [BCGK+10] to produce

a fast, robust integration algorithm for some non-rational integrands; namely, those

of the form R(µ(x))µ′(x) for a rational function R and an increasing change of scale

µ. Extensions to all smooth integrands remain to be completed.



260

10.2 The Landen transformation

In this section we present simple examples, and then describe the algorithm in

detail. The first two examples show the transformations L2,2 and L3,4. Both maps

are given by polynomial functions.

Example 10.2.1. The rational Landen transformation L2,2 is given by

L2,2(b0, a0, a1, a2) = (b′0, a
′
0, a
′
1, a
′
2),

with

b′0 = 2a0b0 + 2a2b0,

a′0 = 4a0a2,

a′1 = −2a0a1 + 2a1a2,

a′2 = a2
0 − a2

1 + 2a0a2 + a2
2.

Example 10.2.2. The rational Landen transformation L3,4 is computed as

L3,4(b0, b1, b2, a0, a1, a2, a3, a4) = (b′0, b
′
1, b
′
2, a
′
0, a
′
1, a
′
2, a
′
3, a
′
4)

with

b′0 = 3a2
0b0 − a2

1b0 + 10a0a2b0 + 3a2
2b0 − 6a1a3b0 − 9a2

3b0 + . . .

a′0 = a3
0 − 3a0a

2
1 + 6a2

0a2 + 9a0a
2
2 − 18a0a1a3 − 27a0a

3
3 + 18a2

0a4 + . . .

and so on. The point to be made here is that, while the formulas for the transforma-

tions Lm,p grow in size as m and p increase, these formulas only have to be computed

once.
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Remark 10.2.3. The rational Landen transformations Lm,p are given by polynomial

equations which are homogeneous of degree m. Furthermore, the a′i depend only on

the ai.

Remark 10.2.4. The invariance of F (a, b) under Lm,p implies that the set

R = {(a, b) ∈ R2p : F (a, b) is finite} (10.1)

is preserved by Lm,p. The action of Lm,p outside of R is difficult to analyze. The

reader will find in [Mol02] some illustrations for L2,6.

Remark 10.2.5. The dynamical study of L2,6 appeared in [CM06]. An extension of

this work to L3,6 and L4,6 will appear in [CEK+10] and [GNO+10], respectively.

Example 10.2.6. Iterating L2,2 with initial conditions a0,i = ai, b0,i = bi yields a

sequence (bn,0, an,0, an,1, an,2), defined by

(bn+1,0, an+1,0, an+1,1, an+1,2) := L2,2(bn,0, an,0, an,1, an,2),

which satisfies

∫ ∞
−∞

bn,0 dx

an,0x2 + an,1x+ an,2
=

∫ ∞
−∞

b0 dx

a0x2 + a1x+ a2

.

The convergence result in Section 10.5 shows that

bn,0
an,0x2 + an,1x+ an,2

∼ bn,0
an,0

1

x2 + 1

as n→∞. Furthermore the convergence is quadratic. Therefore,

∫ ∞
−∞

b0 dx

a0x2 + a1x+ a2

= π lim
n→∞

bn,0
an,0

.
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For instance, starting with 1/(x2 +4x+15), the algorithm produces L2,2(1, 1, 4, 15) =

(32, 60, 112, 240). Hence,

∫ ∞
−∞

dx

x2 + 4x+ 15
=

∫ ∞
−∞

32 dx

60x2 + 112x+ 240
.

The first two terms of the approximating sequence In = πan,0/bn,0 are given by

I0 = π and I1 = 32π/60. These approximations converge to π/
√

11, the exact value

of the integral. The error en := |In − π/
√

11| and the relative approximate error

dn := |(In+1 − In)/In+1| are given in Table 10.1. Observe that 19 iterations provide

about 100, 000 correct digits. Furthermore, this precision can be reached by using

just slightly more, say 5, than 100, 000 digits of working precision.

n 1 2 3 4 5 10 20
en 0.73 0.10 0.034 0.00042 1.2 · 10−6 7.8 · 10−197 7.0 · 10−200,886

dn 0.60 0.15 0.036 0.00044 1.3 · 10−6 8.2 · 10−197 7.4 · 10−200,886

Table 10.1: Absolute and relative approximate errors for a method of order 2.

The creation of the rational Landen transformation formulas depends on two poly-

nomial sequences. Let m ≥ 2 be an integer. Define the polynomials

Pm(x) =

bm/2c∑
j=0

(−1)j
(
m

2j

)
xm−2j (10.2)

Qm(x) =

b(m−1)/2c∑
j=0

(−1)j
(

m

2j + 1

)
xm−(2j+1),

that come from the relation

cot(mθ) = Rm(cot θ) (10.3)

satisfied by Rm = Pm/Qm. Details about these polynomials can be found in [MM07].
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Let A, B be polynomials. The change of variables y = Rm(x) yields a new pair

of polynomials A1, B1 such that

∫ ∞
−∞

B1(x)

A1(x)
dx =

∫ ∞
−∞

B(x)

A(x)
dx. (10.4)

The change of variables requires the domain to be splitted according to the branches

of the inverse R−1
m . These are specified by the intervals (qj−1, qj) where q0 = −∞,

qj = cot(πj/m) for 1 ≤ j ≤ m − 1, and qm = +∞. The function y = Rm(x) is

invertible on each of the subintervals (qj−1, qj), and the (local) inverse is denoted by

x = ωj(y). After substituting y = Rm(x) in each interval, it follows that

∫ ∞
−∞

B(x)

A(x)
dx =

m∑
j=1

∫ qj

qj−1

B(x)

A(x)
dx =

∫ ∞
−∞

m∑
j=1

B(ωj(y))

A(ωj(y))
ω′j(y)dy. (10.5)

The integrand on the right-hand side of (10.5) is indeed a rational function B1/A1;

see [MM07]. The rational Landen transformation Lm : C(x) → C(x) is defined by

B/A 7→ B1/A1. The full details are given below.

Step 1 The rational function Rm = Pm/Qm comes from (10.2). First construct the

polynomial

A1(x) := Res (A,Pm − xQm)

where Res denotes the resultant. The degrees of the polynomials involved are

p := degA and m = deg(Pm − xQm), respectively. The degree of the de-

nominator is preserved; that is, deg(A1) = deg(A). The coefficients of A1 are

polynomials in those of A.

Step 2 The polynomial Em(x) := [Pm(x)]pA1(Rm(x)) is a multiple of A. Compute

the quotient

C(x) := E(x)
B(x)

A(x)
=

s∑
k=0

ckx
s−k,
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with s := mp− 2.

Step 3 Define the expressions

Tx(a, b) :=
x∑
j=0

(−1)a−x+j

(
a

x− j

)(
b

j

)
,

M1(j, α, β, γ) := (−1)j+α−βc2j
22(α−β)α

2α− β

(
2α− β
β

)(
ν − α− 1 + β

γ

)
×

(Tλ+αm(2j, s− 2j) + Tλ−αm(2j, s− 2j)) ,

M2(j, α, β, γ) := (−1)j+βc2j+122β+1

(
α + β

2β + 1

)(
ν − 2− β

γ

)
×

(Tλ+αm(2j + 1, s− 2j − 1)− Tλ−αm(2j + 1, s− 2j − 1)) ,

where ν := p/2 and λ := (mp− 2)/2.

Step 4 Define

B1(x) :=
1

2s

ν−1∑
γ=0

((
ν − 1

γ

) λ∑
j=0

(−1)jc2jTλ(2j, s− 2j)

)
x2γ

+
1

2s

ν−2∑
γ=0

(
λ∑
j=0

ν−1−γ∑
α=1

α∑
β=0

M1(j, α, β, γ)

)
x2γ

+
1

2s

ν−1∑
γ=1

(
λ∑
j=0

ν−1∑
α=ν−γ

α∑
β=α−ν+γ+1

M1(j, α, β, γ)

)
x2γ

+
1

2s

ν−2∑
γ=0

(
λ−1∑
j=0

ν−1−γ∑
α=1

α−1∑
β=0

M2(j, α, β, γ)

)
x2γ+1

+
1

2s

ν−2∑
γ=1

(
λ−1∑
j=0

ν−1∑
α=ν−γ

α−1∑
β=0

M2(j, α, β, γ)

)
x2γ+1.

The following theorem has been established in [MM07].

Theorem 10.2.7. The rational function B1/A1 satisfies

∫ ∞
−∞

B1(x)

A1(x)
dx =

∫ ∞
−∞

B(x)

A(x)
dx (10.6)
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whenever one of the integrals is finite. Moreover degA1 = degA.

Definition 10.2.8. The rational Landen transformation Lm : C(x)→ C(x) is defined

by Lm(B/A) = B1/A1. When Lm is acting on the coefficients of a rational function of

degree p we write Lm,p(b0, b1, . . . , bp−2, a0, a1, . . . , ap) as in (10.7) and Example 10.2.6.

Precomputed formulas for the Lm,p as well as a program written in Mathematica

that generates these formulas following the above algorithm and featuring the numer-

ical integration of rational functions over the real line, as outlined in the introduction,

are available for download from the authors. Some details of the implementation will

be discussed in Section 10.6.

10.3 Complexity of the algorithm

This section discusses the complexity of computing definite integrals using Landen

transformations. The analysis is restricted to the cost of one iteration. The actual

generation of the Landen transformation is not considered since it is a one-time cost.

Examples 10.2.1 and 10.2.2 illustrate the fact that Lm,p is a mapping C2p → C2p

defined by polynomial equations with integer coefficients. Assume that these polyno-

mial equations appear in expanded form. The number of multiplications cm,p involved

in computing Lm,p not including multiplications with constants is now counted. Ad-

ditions and multiplying with constants have lower complexity than multiplication

which is why they are not included in this count.
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Example 10.3.1. Example 10.2.1 gives L2,2(b0, a0, a1, a2) = (b′0, a
′
0, a
′
1, a
′
2) with

b′0 = 2a0b0 + 2a2b0,

a′0 = 4a0a2,

a′1 = −2a0a1 + 2a1a2,

a′2 = a2
0 − a2

1 + 2a0a2 + a2
2.

Hence L2,2 requires c2,2 = 9 multiplications. More values cm,p are given in Table 10.2.

p\m 2 3 4 5
2 9 32 75 144
4 36 204 702 1896
6 94 756 3492 12040
8 195 2056 11895 49712
10 351 4600 31923 156512
12 574 9012 72858 409688

Table 10.2: Number of operations involved in Lm,p.

The data above suggest that cm,p = O(pm+1). Moreover, for m = 2 and m = 3

the number of multiplications cm,2p seem to be exactly

c2,2p =
1

2
(p+ 1)

(
2 + 3p+ 4p2

)
, (10.1)

c3,2p =
2

3
p
(
15 + 13p+ 12p2 + 8p3

)
. (10.2)

Remark 10.3.2. As noted in Remark 10.2.3, the Landen transformation Lm,p only

involves monomials of degree m. Therefore, cm,p is the number of these monomials

times m−1. Writing the polynomial expressions defining Lm,p in a different form, one

may hope to decrease the cost of its computation. Experiments conducted in Math-

ematica show that writing these polynomials in multivariate Horner form decreases

the order of growth to O(pm).
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Remark 10.3.3. From a practical point of view, the Landen transformations of order

2 are generally preferable to higher order ones. This is because combining n Landen

iterations L2,p into one step gives a method of order 2n (in fact, Ln2,p = L2n,p) which

requires nc2,p multiplications. Multiple experiments show that nc2,p � c2n,p.

10.4 Some numerical examples

In this section two examples that illustrate the procedure described in this work

are presented.

Example 10.4.1. This first example illustrates the behavior on highly oscillatory

integrands which, as it turns out, is basically no different from the behaviour on more

regular integrands. A Landen transformation of order 2 is applied to the rational

function

fk(x) =
2kPk(x/2)(
k
bk/2c

)
(x2k + 1)

, (10.1)

where Pk is the Legendre polynomial. The normalization factor is chosen so that

|fk(0)| = 1 for even k.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 10.1: The oscillatory rational function f50(x)

The number of steps nk(d) needed for the relative error to drop below 10−d is

tabulated in Table 10.3. These calculations only require a working precision of a few

more, say 5, than d digits. Observe that, as expected, to obtain the 10 fold precision

only about log(2, 10) ≈ 3.32 additional iterations are necessary.
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k 2 4 6 8 10 20 30 40 50
nk(20) 6 7 8 8 9 10 10 11 11
nk(50) 8 9 9 10 10 11 12 12 12
nk(100) 9 10 10 11 11 12 13 13 13
nk(1000) 12 13 14 14 14 15 16 16 17
nk(10000) 15 16 17 17 18 19 19 20 20

Table 10.3: Number of steps nk(d) needed to get relative error less than 10−d.

Example 10.4.2. The method proposed here is also applicable to problems that are

nearly singular, that is, to rational functions with poles arbitrarily close to the real

axis. For fixed ε > 0, apply L2,2 to the rational function

fε(x) =
1

(x− 1)2 + ε2
=

1

x2 − 2x+ (1 + ε2)
(10.2)

which over the real line integrates to 1/ε. For decreasing values of ε = 10−k the

number of steps nk(d) needed so that the relative error is less than 10−d can be found

in Table 10.4. In this case, it is sufficient to use a working precision of d + 2k. The

data in Table 10.4 suggest that the number of steps nk(d) grows linear in k and, as

expected, logarithmic in d.

k 1 2 3 4 5 10 20 40
nk(20) 9 13 16 19 23 39 72 139
nk(50) 11 14 17 21 24 41 74 140
nk(100) 12 15 18 22 25 42 75 141
nk(1000) 15 18 22 25 28 45 78 145
nk(10000) 18 22 25 28 32 48 81 148

Table 10.4: Number of steps nk(d) needed to get relative error less than 10−d when
integrating f10−k .
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10.5 Convergence of Landen iterates

In this section the convergence of the iterates of the Landen transformation Lm,p
starting at the rational function

f(x) =
B(x)

A(x)
=
b0x

p−2 + . . .+ bp−3x+ bp−2

a0xp + . . .+ ap−1x+ ap

is considered. Denote by fn = Bn/An the Landen iterates Lnm,p(f). Assuming that f

has no poles on the real line, Theorem 10.5.7 shows that, as n→∞,

fn →
c

x2 + 1
, (10.1)

where c is determined by the integral of f (and vice versa). Moreover, convergence is

of order m. This implies the convergence of the coefficients of An = an,0x
p+an,1x

p−1+

. . . + an,p and Bn = bn,0x
p−2 + bn,1x

p−3 + . . . + bn,p−2 as described in the following

proposition.

Proposition 10.5.1. Let λ+ be the number of roots of A with positive imaginary part

and λ− the number of roots with negative imaginary part (note that λ+ + λ− is the

degree of A). Then for the constant c defined in (10.1)

Bn

an,0
→ c(x− i)λ+−1(x+ i)λ−−1,

An
an,0
→ (x− i)λ+(x+ i)λ− .

Note that the constant c in (10.1) vanishes if either λ+ = 0 or λ− = 0.

Proof. The proof is given for m = 2, the general case can be established by similar

methods. Recall that the denominator An only depends on A and it is transformed

according to

An+1(x) = Resz(An(z), z2 − 2xz − 1). (10.2)
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Hence, if An/an,0 =
∏

k(x− λn,k) then

An+1/an,0 =
∏
k

(
λ2
n,k − 2λn,kx− 1

)
.

Therefore the roots of An+1(x) are λn+1,k =
λ2n,k−1

2λn,k
. Note that

Im

(
λ2 − 1

2λ

)
=

1

2

(
1 +

1

|λ|2
)

Im(λ),

which implies that the signs of the imaginary part of the roots of A are preserved

by the Landen iterations. In particular, this shows that the integrablity of a rational

function is preserved by Lm,p.

The transformation λ 7→ λ2 − 1

2λ
= λ − λ2 + 1

2λ
is the Newton map of λ2 + 1.

Therefore, each root λn,k converges to i or −i depending on the sign of Im λ1,k.

Furthermore, the Newton map is known to exhibit quadratic convergence. This es-

tablishes the result about An. Theorem 10.5.7 shows that Bn/An → c/(x2 + 1). This

gives the corresponding result for Bn.

Corollary 10.5.2. If A has only real coefficients, then p is even and

Bn

an,0
→ c(x2 + 1)p/2−1,

An
an,0
→ (x2 + 1)p/2.

Remark 10.5.3. An explicit and curious formula for the denominator A1 of L2(1/A)

is described next. This is an expression independent of the roots of A. In the compu-

tation of A1(x) = Resz(A(z), z2 − 2xz − 1), reduce A(z) modulo z2 − 2xz − 1 before

computing the resultant. Proceeding in a recursive manner, write zn ≡ an(x)+bn(x)z.

Then z2 ≡ 1 + 2xz leads to the recurrence

an+1(x) = bn(x), bn+1(x) = an(x) + 2xbn(x).
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Therefore zn ≡ bn−1(x) + bn(x)z where bn(x) is defined by

bn+1(x) = 2xbn(x) + bn−1(x), b0 = 0, b1 = 1. (10.3)

It follows that zn ≡ Fn−1(2x)+Fn(2x)z where Fn(x) is the nth Fibonacci polynomial.

These polynomials are defined recursively by F0(x) = 0, F1(x) = 1 and Fn+1(x) =

xFn(x) + Fn−1(x) and they are explicitely given by

Fn+1(x) =

bn/2c∑
k=0

(
n− k
k

)
xn−2k.

If A(z) =
∑
akz

k then A(z) ≡ a(x) + b(x)z for a(x) =
∑
akFk−1(2x) and b(x) =∑

akFk(2x). It follows that

A1(x) = a(x)2 − b(x)2 + 2a(x)b(x)x

= a(x)(a(x) + 2xb(x))− b(x)2

=
(∑

akFk−1

)(∑
akFk+1

)
−
(∑

akFk

)2

where Fk is used to abbreviate Fk(2x).

Remark 10.5.4. The proof of Proposition 10.5.1 contains explicitly the transforma-

tion of the denominator under the Landen transformation L2 in terms of its roots. In

particular,

L2

(
1

x− λ

)
=

−2λ

−2λx+ λ2 − 1
=

1

x− λ2−1
2λ

.

For a rational function f = B/A, with no repeated poles off the real line and

deg(B) ≤ deg(A) − 2 (for integrability), consider the partial fraction decomposition

f =
∑

k bk/(x− λk). Then, by linearity of L2,

L2(f) = L2

(∑
k

bk
x− λk

)
=
∑
k

bk

x− λ2k−1

2λk

.
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Assume that the poles of Ln2 (f) remain simple. Then

Ln2f →
∑
k

bk
x− λ∞,k

where λ∞,k is either i or −i depending on the sign of Im λk. Thus, for some constants

c±,

Ln2f →
c+

x− i +
c−
x+ i

=
c

x2 + 1
,

where the last equality follows from Theorem 10.2.7 and the fact that a Landen

transformation preserves integrability.

The general proof requires some machinery from complex analysis. To this end,

identify the integral of the rational function f = B/A over the real line with the

integral of the holomorphic 1-form φ = f(z)dz over the real projective line RP 1; that

is, ∫ ∞
−∞

f(x)dx =

∫
RP 1

φ,

where RP 1 is the completed real axis sitting inside the Riemann sphere CP 1. Recall

that f being a rational function corresponds to a holomorphic function on CP 1.

The next required concept is that of a pull-back of a holomorphic 1-form. After

the definition, recall the change of variables formula that connects the integral of a

1-form to that of its pull-back. The reader will find all these concepts in [Sha94].

Definition 10.5.5. Let φ be a 1-form on a Riemann surface S, and π : S → T a

holomorphic mapping between Riemann surfaces. The pull-back of φ induced by π is

defined as

π∗φ|U =
k∑
i=1

σ∗i φ,

on all U ⊂ T simply connected and containing no critical values of π. Here σ1, ..., σk :

U → S are the distinct sections of π.
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It is an elementary consequence of this definition that for holomorphic mappings

π1 : S2 7→ S3 and π2 : S1 7→ S2,

π1∗π2∗φ = (π1 ◦ π2)∗φ

for any 1-form φ on S1. The next lemma concerning holomorphic pull-backs and their

path integrals is again an immediate consequence of the definition.

Lemma 10.5.6. If π : S → T is a holomorphism of Riemann surfaces, and φ is a

holomorphic 1-form on S, then π∗φ is a holomorphic 1-form on T . Furthermore, for

any oriented rectifiable curve γ on T , the identity

∫
γ

π∗φ =

∫
π−1γ

φ (10.4)

holds.

Let f = B/A be a rational function. The pull-back of the 1-form φ = f(z)dz on

CP 1 induced by Rm : CP 1 → CP 1 is the 1-form

(Rm)∗φ =
m∑
j=1

B(ωj(y))

A(ωj(y))
ω′j(y)dy.

Note that the right-hand side of (10.5) is precisely the integral of (Rm)∗φ over the

projective real line. In this case, Lemma 10.5.6 amounts to (10.5). The map Lm may

therefore be identified with (Rm)∗. The following is a restatement of (10.1).

Theorem 10.5.7. Let φ be a holomorphic 1-form in a neighborhood U of RP 1 ⊂ CP 1.

Then

lim
n→∞

(Rm)n∗φ =
1

π

(∫
RP 1

φ

)
dz

z2 + 1

where the convergence is of order m and uniform on compact subsets of U .
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Remark 10.5.8. Let f = B/A be a rational function such that its integral over the

real line is finite. Then the 1-form f(z)dz on CP 1 is holomorphic on some open set

U ⊃ RP 1. In particular, for β = min{| Im x| : A(x) = 0}, and N = max{|x| : A(x) =

0}, f(z)dz is holomorphic on

Vε = {x ∈ CP 1 : | Im x| < β − ε} ∪ {x ∈ CP 1 : |x| > N + ε}

for all ε < β.

A statement equivalent to Theorem 10.5.7 is proved now. This follows from con-

jugation by the map M(z) = z+i
z−i . Recall that Rm = M−1 ◦ fm ◦M , see for instance

[MM07], where fm(z) = zm, so that Rn
m = M−1 ◦ fnm ◦M and therefore

lim
n→∞

(Rm∗)
nφ = M−1

∗ lim
n→∞

(fm∗)
nφ1

where φ1 = M∗φ. On the other hand, one verifies that

M∗
dz

z2 + 1
= − dz

2iz
.

Finally, observe that, by Lemma 10.5.6,

∫
RP 1

φ =

∫
RP 1

M−1
∗ φ1 = −

∫
S1

φ1

where S1 denotes the path that rotates once around the unit circle in counterclockwise

direction. Theorem 10.5.7 is therefore equivalent to the following statement.

Theorem 10.5.9. Let φ be a holomorphic 1-form in a neighborhood U of S1. Then

lim
n→∞

(fm)n∗φ =
1

2πi

(∫
S1

φ

)
dz

z
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where the convergence is of order m and uniform on compact subsets of U .

Proof. Using the local coordinate z, write φ = φ(z)dz where φ(z) is analytic on an

annulus 1
R
< |z| < R for some R > 1. The function φ(z) admits a Laurent expansion

φ(z) =
∞∑

k=−∞

akz
k

and the coefficients ak satisfy

‖φ‖ :=
∞∑

k=−∞

|ak|R|k| <∞.

Since

a−1 =
1

2πi

∫
S1

φ(z)dz

it is required to show that

lim
n→∞

(fm)n∗ φ = a−1
dz

z
.

In order to verify this, start with

(fm)∗φ =
m∑
j=1

σ∗j (φ(z)dz) =
∞∑

k=−∞

m∑
j=1

akσ
∗
j (z

kdz) =
∞∑

k=−∞

ak(fm)∗(z
kdz)

where σ1(w), ..., σm(w) are the m-th root sections of w = fm(z) = zm, defined by

σj(w) = e2πij/mσ0(w)

where σ0(w) = w1/m is the value of the complex m-th root whose argument is between



276

0 and 2π/m. A direct calculation yields

(fm)∗(z
kdz) =

m∑
j=1

σ∗j (z
kdz)

=
m∑
j=1

e2πijk/mwk/m
(

1

m
e2πij/mw1/m−1

)
dw

=
1

m

(
m∑
j=1

e2πij(k+1)/m

)
w(k+1−m)/mdw

=

 z(k+1−m)/mdz if m|k + 1,

0 if m|k + 1.

This establishes the formula

(fm)∗φ =
∞∑

k=−∞

am(k+1)−1z
kdz.

Consequently,

∥∥∥∥(fm)n∗φ− a−1
dz

z

∥∥∥∥ =

∥∥∥∥∥
∞∑

k=−∞

amn(k+1)−1z
kdz − a−1

dz

z

∥∥∥∥∥
=

∞∑
k=−∞,k 6=−1

|amn(k+1)−1|R|k|

=
∞∑

k=−∞,k 6=−1

|amn(k+1)−1|R|m
n(k+1)−1| R|k|

R|mn(k+1)−1|

≤ R

Rmn

∞∑
k=−∞,k 6=−1

|amn(k+1)−1|R|m
n(k+1)−1|

≤ R

Rmn

∥∥∥∥φ− a−1
dz

z

∥∥∥∥ .
As n→∞, this quantity converges to zero to order m.
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Corollary 10.5.10. For a rational function f

∫ ∞
−∞

f(x)dx = π lim
n→∞

Lnm(f)(0)

provided that the integral is finite. In that case, convergence is of order m.

10.6 Implementation

In this section the implementation of the numerical scheme proposed in the pre-

vious sections is discussed. Assume that A and B are polynomials and let

I :=

∫ ∞
−∞

B(x)

A(x)
dx. (10.1)

The first issue under consideration is that the exact evaluation of the iterates of

Lnm,p(B/A) usually leads to extreme growth in the size of the coefficients. Therefore,

while computing these iterates numerically, the coefficients are normalized after each

iteration by keeping the denominator polynomial with leading coefficient 1.

Example 10.6.1. This continues Example 10.2.6 where

∫ ∞
−∞

dx

x2 + 4x+ 15
=

π√
11

is approximated using L2,2. The first iterate is 32
60x2+112x+240

. The next two Landen

iterates are

19200

57600x2 + 40320x+ 77456
,

5186150400

17845862400x2 + 1601187840x+ 16614420736
.

Experiments show that the number of digits in the coefficients grows exponentially

even if common factors are cancelled.
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Fix m ∈ N and let p = deg(A). The normalization proceeds as follows: let

b0 = (b0,0, b0,1, . . . , b0,p−2) and a0 = (a0,0, a0,1, . . . , a0,p) (10.2)

be the coefficients of the initial rational function B/A. For n ≥ 1, let

(bn, an) =
1

a′n,0
(b′n, a

′
n), where (b′n, a

′
n) = Lm,p(bn−1, an−1). (10.3)

Recall that the rational Landen transformations preserve the degree of the denomina-

tor. Hence, a′n,0 6= 0 throughout. If the integral of B/A converges, then by Corollary

10.5.10 its value is given by π limn→∞ bn,0.

Proposition 10.5.1 shows that, if the integral over B/A is finite, then an converges

to the coefficients ck of one of the p+ 1 candidates

(x− i)k(x+ i)p−k, 0 ≤ k ≤ p, (10.4)

depending on the number k of roots of A with positive imaginary part. In particular,

Corollary 10.5.2 shows that if all coefficients are real, then an will converge to

((
p/2

0

)
, 0,

(
p/2

1

)
, 0, . . . ,

(
p/2

p/2− 1

)
, 0,

(
p/2

p/2

))
. (10.5)

Conversely, if convergence to one of the candidates in (10.4) is observed, then

the invariance of the integral under Lm shows that the initial integral must be finite.

Thus the algorithm also detects the integrability of rational functions.

After each step, the implementation checks if the approximate relative error |(bn,0−

bn−1,0)/bn,0| is less than the precision goal. The distance of the coefficients an to their

limiting values is also monitored. While computations may be made symbolically

(provided that the initial coefficients are known exactly) it is generally sensible to
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work with a fixed precision throughout. For most integrands (compare Examples

10.2.6 and 10.4.1) this working precision need only be slightly larger, say 5 digits, than

the precision goal. In case of almost singular integrands (compare Example 10.4.2)

the working precision may need to be chosen somewhat higher. For the problems

considered by the authors, a reasonable choice (currently used as a default in the

Mathematica implementation mentioned below) seems to be 20 additional digits.

The implementation of the Landen iteration method is given below in pseudo code.

Input: the coefficients (b0, a0) of the rational function B/A of degree p, the order m

of the method, and the precision goal ε > 0.

Output: an approximation (produced using Landen iterations of order m) to the

integral of B/A over the real line with (approximate) relative error less than ε.

n := 0

repeat

n := n+ 1

(b′n, a
′
n) := Lm,p(bn−1, an−1)

(bn, an) := 1
a′n,0

(b′n, a
′
n)

until |(bn,0 − bn−1,0)/bn,0| < ε and |(an,j − ck,j)/ck,j| < ε

for all j and some 0 ≤ k ≤ p

OUTPUT πbn,0

The described method for integrating rational functions over the real line has been

implemented in Mathematica and can be downloaded from the website

http://www.math.tulane.edu/∼vhm

The Landen transformations can be either generated by the package, following the

description in Section 10.2, or downloaded as well. The following examples demon-
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strate the basic usage of this package. Further examples can be obtained from the

above website.

Example 10.6.2. Given a rational function f , its integral over the entire real line

can be computed using the function NLandenIntegrate. For instance, to compute

the integral of 1/(x2 + 4x+ 15) to a precision of 100 digits, input:

NLandenIntegrate[1/(x^2+4x+15), PrecisionGoal->100]

> 0.94722582509948293642963438181697406661998807...

By default the Landen transformation is chosen to be of order 2 (see Remark 10.3.3 for

why this is desirable) but higher orders m may be used by setting MethodOrder->m.

Further options exist to control the number of iterations, set the working precision

manually, or to obtain the intermediate Landen iterates.

Example 10.6.3. Before using the function NLandenIntegrate demonstrated in the

previous example the corresponding Landen transformation needs to be available.

The command

GenerateLandenTransforms[10]

will generate the Landen transformations of order 2 for degrees up to 10. Note that

on a modern desktop computer this will take less than half a second. After execution,

the Landen transformations are directly available as follows, compare example 10.2.1:

LandenStep[{{b0}, {a0,a1,a2}}, 2]

> {{2a0b0+2a2b0}, {4a0a2, -2a0a1+2a1a2, a0^2-a1^2+2a0a2+a2^2}}

Again, higher orders than 2 can be generated using the option MethodOrder. Once

generated, these Landen transformations may be stored to a file. Alternatively, pre-

generated Landen transformations are available for download.
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10.7 Conclusions

A numerical method for the integration of rational functions on the real line has

been described. The method has order of convergence prescribed by the user. Its

convergence and robustness have been analyzed. Examples illustrating speed of con-

vergence as well as the flexibility of this method have been provided. A Mathematica

package is available for the general public.

Future work will attempt to couple this method with Pade approximations of

the integrand to produce a highly efficient numerical scheme for smooth integrable

functions. The construction of a numerical scheme for the finite interval case requires

the theory of Landen transformations on a half-line. This is an open question.
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Chapter 11

Closed-form evaluation of integrals
appearing in positronium decay

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[AMS09] Closed-form evaluation of integrals appearing in positronium decay
(with Tewodros Amdeberhan, Victor H. Moll)

published in Journal of Mathematical Physics, Vol. 50, Nr. 10, Oct 2009, 6 p.

Abstract A theoretical prediction for the total width of the positronium decay in

QED has been given by B. Kniehl et al. in the form of an expansion in Sommerfeld’s

fine-structure constant. The coefficients of this expansion are given in the form of two-

dimensional definite integrals, with an integrand involving the polylogarithm function.

We provide here an analytic expression for the one-loop contribution to this problem.

11.1 Introduction

The single-scale problems in multi-loop analytic calculations from quantum field

theories yield interesting classes of integrals. Some examples have appeared in the

recent work by B. Kniehl et al [KKV08a] and [KKV08b] dealing with the lifetime of

one of the two ground states of the positronium. This is the electromagnetic bound
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state of the electron e− and the positron e+. The main result of [KKV08b] is a

theoretical prediction for the total width of positronium decay in QED given by

Γ(theory) = Γ0

[
1 +

Aα

π
+

1

3
α2 lnα +B

(α
π

)2

− 3α3 ln2 α

2π
+
Cα3 lnα

π

]
, (11.1)

where α is Sommerfeld’s fine-structure constant. The leading order term Γ0 = 2(π2−

9)mα6/9π, as well as the O (α2 lnα) and O
(
α3 ln2 α

)
terms are in the literature

(with A, B, C in numerical form only). The remarkable contribution of [KKV08b]

is to provide the first analytic expression for the coefficients A and C in (11.1). An

analogous expression for B still remains to be completed. The formulas for A and C

consist of a formidable collection of terms involving special values of lnx, the Riemann

zeta function ζ(x), the polylogarithm Lin(x) and the function

Sn,p(x) =
(−1)n+p−1

(n− 1)! p!

∫ 1

0

lnn−1 t lnp(1− tx) dt. (11.2)

The explicit formulas can be found in [KKV08b].

The one-loop contribution to the width is given as

Γ1 =
mα7

36π2

∫ 1

0

dx1

x1

dx2

x2

dx3

x3

δ(2− x1 − x2 − x3)× [F (x1, x3) + · · · ] , (11.3)

where xi, with 0 ≤ xi ≤ 1, is the normalized energy of the i-th photon and “. . .” repre-

sents F applied to each of the other five permutations of the variables. The evaluation

of the integral (11.3) presents considerable analytic difficulties. After reparametriza-

tion, some terms in the function F involve integrals of the form

I1(x1, x2) =

∫ 1

0

log[x1 + (1− x1)y2]

(1− x1)x2 − x1(1− x2)y2
dy (11.4)

I2(x1, x2) =

∫ 1

0

log[x1 + (1− x1)y2]

x1x2 − (1− x1)(1− x2)y2
dy.
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The goal of this note is to present an analytic evaluation of the integrals (11.4).

This evaluation includes elementary functions as well as the dilogarithm function

Li2(z) =
∞∑
k=1

zk

k2
= −

∫ z

0

log(1− t)
t

dt. (11.5)

Remark 1.1. D. Zagier states in [Zag88] that ‘the dilogarithm is one of the simplest

non-elementary functions. It is also one of the strangest. . . . Almost all of its ap-

pearances in mathematics, and almost all formulas relating to it, have something of

the fantastical in them, as if this function alone among all others possessed a sense

of humor.’

The following basic relations are due to Euler:

Li2(z) + Li2(1− z) =
π2

6
− log z log(1− z),

Li2(z) + Li2(−z) =
1

2
Li2(z2),

Li2(z) + Li2(1/z) =
π2

3
− 1

2
log2(z)− iπ log z.

Information about dilogarithms can be found in [Lew81].

Notation. For a ∈ R, we let a∗ :=
1− a
1 + a

. Note that (a∗)∗ = a, and 0 < a < 1 if and

only if 0 < a∗ < 1. For a ∈ C, the condition |a∗| ≤ 1 is equivalent to Re a > 0. The

functions

`(a, b) = Li2

(
1− a
1− b

)
(11.6)

and

`s(a, b) = `(a, b)− `(−a, b)− `(a,−b) + `(−a,−b) (11.7)

are used to give an analytic expression for the integrals I1 and I2.
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Theorem 11.1.1. The positronium integrals are given by

I1

(
1

1− t21
,

1

1− t22

)
= −(1− t21)(1− t22)

2t1t2

(
log t∗1 log

(
(t2/t

2
1)∗
)
− `s(t1, t21/t2)

)
,

I2

(
1

1− t21
,

1

1− t22

)
=

(1− t21)(1− t22)

2t1t2
(log t∗1 log t∗2 − `s(t1, 1/t2)) .

Remark 1.2. Kummer’s formula for the dilogarithm [Lew81] is

Li2

(
x(1− y)2

y(1− x)2

)
= Li2

(
x(1− y)

x− 1

)
+ Li2

(
1− y

y(x− 1)

)
+ Li2

(
x(1− y)

y(1− x)

)
+ Li2

(
1− y
1− x

)
+

1

2
log2 y.

A change of variable gives the identity

`(a, b) + `(−a, b) + `(a,−b) + `(−a,−b) = `(a2, b2)− 1

2
log2(−b∗) (11.8)

and shows that `s(a, b) may be expressed as a sum of three dilogarithms plus elemen-

tary functions.

11.2 Some logarithmic integrals

The hypergeometric function

pFq

(
a1, a2, · · · , ap
b1, b2, · · · , bq

; z

)
:=

∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

zk

k!
. (11.1)

is now employed to establish the results in this section.

Lemma 11.2.1. For a 6= b

∫
(1− ax)λ−1(1− bx)µ−1dx =

1

λ

(1− ax)λ(1− bx)µ

b− a 2F1

(
1, λ+ µ

λ+ 1
;

1− ax
1− a/b

)
.
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Proof. This is verified by differentiation both sides with respect to x.

Proposition 11.2.2. For a 6= b

∫ 1

0

log(1− ax)

1− bx dx =
1

b

[
Li2

(
1

1− a/b

)
− Li2

(
1− a

1− a/b

)
− log(1− a) log

(
1− b

1− b/a

)]
,∫ 1

0

log(1− a2x2)

1− b2x2
dx =

1

2b

[
`s(a, a/b) + log a∗ log((b/a)∗)− log b∗ log(1− a2)

]
.

Proof. Lemma 11.2.1 yields

∫
(1− ax)λ−1

1− bx dx =
1

λ

(1− ax)λ

b− a 2F1

(
1, λ

λ+ 1
;

1− ax
1− a/b

)
.

Observe that

d

dλ
2F1

(
1, λ

λ+ 1
; z

)
=

z

(1 + λ)2 3F2

(
2, λ+ 1, λ+ 1

λ+ 2, λ+ 2
; z

)
. (11.2)

Differentiating with respect to λ leads to

∫
log(1− ax)

(1− ax)λ−1

1− bx dx =

1

λ

(1− ax)λ

b− a

[(
log(1− ax)− 1

λ

)
2F1

(
1, λ

λ+ 1
;

1− ax
1− a/b

)

+
1− ax

(1− a/b)(1 + λ)2 3F2

(
2, λ+ 1, λ+ 1

λ+ 2, λ+ 2
;

1− ax
1− a/b

)]
.

Now set λ = 1 and use Li1(z) = − log(1− z), as well as

3F2

(
2, 2, 2

3, 3
; z

)
= − 4

z2
[log(1− z) + Li2(z)] (11.3)

to establish the first claim. The factorization (1− a2x2) = (1− ax)(1 + ax) and the
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partial fraction decomposition

2

1− b2x2
=

1

1− bx +
1

1 + bx
(11.4)

give the second evaluation.

11.3 A trigonometric integral

The results in Section 11.2 provide the value of an interesting trigonometric inte-

gral in terms of Legendre’s χ2 function

χ2(a) :=
1

2
(Li2(a)− Li2(−a)) . (11.1)

Proposition 11.3.1. For a ∈ R

∫ ∞
b

tan−1(ax)

1 + x2
dx = χ2(a) +

1

2
log a log a∗ +

1

4
`s(a, i/b). (11.2)

Proof. Observe that

d

da

∫ ∞
b

tan−1(ax) dx

1 + x2
=

∫ ∞
b

x dx

(1 + a2x2)(1 + x2)

=
1

2(1− a2)

(
log(1 + a2b2)− 2 log a− log(1 + b2)

)
.

The original integral is recovered via

∫ a

0

ds

1− s2
=

1

2
log

(
1 + a

1− a

)
= −1

2
log a∗, (11.3)
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as well as

∫ a

0

2 log s ds

1− s2
= Li2(1− a)− Li2(1) + Li2(−a) + log a log(1 + a). (11.4)

The last term to evaluate

∫ a

0

log(1 + s2b2)

1− s2
ds = a

∫ 1

0

log(1 + a2b2x2)

1− a2x2
dx, (11.5)

is given by Proposition 11.2.2 as

1

2

[
`s(iab, ib) + log((iab)∗) log(−(ib)∗)− log(a∗) log(1 + a2b2)

]
. (11.6)

The result now follows from Euler’s transformations for the dilogarithm given after

Remark 1.1.

Letting b→ 0 produces the integral over the half-line.

Corollary 11.3.2. The evaluation

∫ ∞
0

tan−1(ax) dx

1 + x2
= χ2(a) +

1

2
log a log(a∗). (11.7)

holds.

11.4 Application to the positronium decay

integrals

For the convenience of the reader we reproduce Theorem 11.1.1:
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Theorem 11.4.1. The positronium integrals are given by

I1

(
1

1− t21
,

1

1− t22

)
= −(1− t21)(1− t22)

2t1t2

(
log t∗1 log

(
(t2/t

2
1)∗
)
− `s(t1, t21/t2)

)
,

I2

(
1

1− t21
,

1

1− t22

)
=

(1− t21)(1− t22)

2t1t2
(log t∗1 log t∗2 − `s(t1, 1/t2)) .

Proof. The integral I1(x1, x2) is written as

−t21
(1− t21)(1− t22)

I1

(
1

1− t21
,

1

1− t22

)
=

∫ 1

0

log

(
1− t21y2

1− t21

)
dy

1− (t2/t1)2y2
. (11.1)

Proposition 11.2.2 yields

∫ 1

0

log

(
1− t21y2

1− t21

)
dy

1− (t2/t1)2y2
=

∫ 1

0

log(1− t21y2)

1− (t2/t1)2y2
dy −

∫ 1

0

log(1− t21)

1− (t2/t1)2y2
dy

=
t1
2t2

[
log t∗1 log((t2/t

2
1)∗)− `s(t1, t21/t2)

]
.

The second positronium integral is evaluated analogously.

The following special case is recorded.

Corollary 11.4.2. Assume 0 < a < 1. Then

∫ 1

0

log(a+ (1− a)x2)

1− x2
dx = − arctan2

(√
1− a
a

)
. (11.2)

Proof. Let a = 1/(1− t2). Then

∫ 1

0

log(a+ (1− a)x2)

1− x2
dx = a(1− a)I1(a, a)

=
1

2
[log t∗ log((1/t)∗)− `s(t, t)] .
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It follows from Remark 1.1 that

`s(t, t) =
π2

3
− Li2

(
1− t
1 + t

)
− Li2

(
1 + t

1− t

)
=

1

2
log2 t∗ + iπ log t∗. (11.3)

Thus ∫ 1

0

log(a+ (1− a)x2)

1− x2
dx =

(
1

2
log t∗

)2

(11.4)

and this is (11.2).
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Chapter 12

Wallis-Ramanujan-Schur-Feynman

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[AEMS10] Wallis-Ramanujan-Schur-Feynman
(with Tewodros Amdeberhan, Olivier Espinosa, Victor H. Moll)

published in American Mathematical Monthly, Vol. 117, Nr. 15, Aug 2010, p. 618-632

Abstract One of the earliest examples of analytic representations for π is given by

an infinite product provided by Wallis in 1655. The modern literature often presents

this evaluation based on the integral formula

2

π

∫ ∞
0

dx

(x2 + 1)n+1
=

1

22n

(
2n

n

)
.

In trying to understand the behavior of this integral when the integrand is replaced

by the inverse of a product of distinct quadratic factors, the authors encounter re-

lations to some formulas of Ramanujan, expressions involving Schur functions, and

Matsubara sums that have appeared in the context of Feynman diagrams.
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12.1 Wallis’ infinite product for π

Among the earliest analytic expressions for π one finds two infinite products: the

first one given by Vieta [Vie70] in 1593,

2

π
=

√
1

2

√
1

2
+

1

2

√
1

2

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
· · · ,

and the second by Wallis [Wal86] in 1655,

2

π
=

1 · 3
2 · 2 ·

3 · 5
4 · 4 ·

5 · 7
6 · 6 ·

7 · 9
8 · 8 · · · . (12.1)

In this journal, T. Osler [Osl99] has presented the remarkable formula

2

π
=

p∏
n=1

√√√√√1

2
+

1

2

√√√√1

2
+

√
1

2
+ · · ·+ 1

2

√
1

2

∞∏
n=1

2p+1n− 1

2p+1n
· 2p+1n+ 1

2p+1n
,

where the nth term in the first product has n radical signs. This equation becomes

Wallis’ product when p = 0 and Vieta’s formula as p→∞. It is surprising that such

a connection between the two products was not discovered earlier.

The collection [BBB97] contains both original papers of Vieta and Wallis as well as

other fundamental papers in the history of π. Indeed, there are many good historical

sources on π. The text by P. Eymard and J. P. Lafon [EL04] is an excellent place to

start.

Wallis’ formula (12.1) is equivalent to

Wn :=
n∏
k=1

(2k) · (2k)

(2k − 1) · (2k + 1)
=

24n(
2n
n

) (
2n+1
n

)
(n+ 1)

→ π

2
(12.2)
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as n→∞. This may be established using Stirling’s approximation

m! ∼
√

2πm
(m
e

)m
.

Alternatively, there are many elementary proofs of (12.2) in the literature. Among

them, [Was07] and [LD09] have recently appeared in this journal.

Section 12.3 presents a proof of (12.2) based on the evaluation of the rational

integral

Gn :=
2

π

∫ ∞
0

dx

(x2 + 1)n
. (12.3)

This integral is discussed in the next section. The motivation to generalize (12.3) has

produced interesting links to symmetric functions from combinatorics and to one-loop

Feynman diagrams from particle physics. The goal of this work is to present these

connections.

12.2 A rational integral and its trigonometric

version

The method of partial fractions reduces the integration of a rational function

to an algebraic problem: the factorization of its denominator. The integral (12.3)

corresponds to the presence of purely imaginary poles. See [BM04] for a treatment

of these ideas.

A recurrence for Gn is obtained by writing 1 = (x2 + 1)− x2 for the numerator of

(12.3) and integrating by parts. The result is

Gn+1 =
2n− 1

2n
Gn. (12.4)
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Since G1 = 1 it follows that

Gn+1 =
1

22n

(
2n

n

)
. (12.5)

The choice of a new variable is one of the fundamental tools in the evaluation of

definite integrals. The new variable, if carefully chosen, usually simplifies the prob-

lem or opens up unsuspected possibilities. Trigonometric changes of variables are

considered elementary because these functions appear early in the scientific training.

Unfortunately, this hides the fact that this change of variables introduces a transcen-

dental function with a multivalued inverse. One has to proceed with care.

The change of variables x = tan θ in the definition (12.3) of Gn gives

Gn+1 =
2

π

∫ π/2

0

(cos θ)2n dθ.

In this context, the recurrence (12.4) is obtained by writing

(cos θ)2n = (cos θ)2n−2 +
sin θ

2n− 1

d

dθ
(cos θ)2n−1

and then integrating by parts. Yet another recurrence for Gn is obtained by a double-

angle substitution yielding

Gn+1 =
2

π

∫ π/2

0

(
1 + cos 2θ

2

)n
dθ,

and a binomial expansion (observe that the odd powers of cosine integrate to zero).

It follows that

Gn+1 = 2−n
bn/2c∑
k=0

(
n

2k

)
Gk+1.

Thus, (12.5) is equivalent to proving the finite sum identity

bn/2c∑
k=0

2−2k

(
n

2k

)(
2k

k

)
= 2−n

(
2n

n

)
. (12.6)
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There are many possible ways to prove this identity. For instance, it is a perfect

candidate for the truly 21st-century WZ method [PWZ96] that provides automatic

proofs; or, as pointed out by M. Hirschhorn in [Hir02], it is a disguised form of the

Chu-Vandermonde identity

∑
k≥0

(
x

k

)(
y

k

)
=

(
x+ y

x

)
(12.7)

(which was discovered first in 1303 by Zhu Shijie). Namely, upon employing Legen-

dre’s duplication formula for the gamma function

Γ(1
2
)Γ(2z + 1) = 22zΓ(z + 1)Γ(z + 1

2
),

the identity (12.6) can be rewritten as

∑
k≥0

(
n
2

k

)(
n
2
− 1

2

k

)
=

(
n− 1

2
n
2
− 1

2

)
.

This is a special case of (12.7). Another, particularly nice and direct, proof of (12.6),

as kindly pointed out by one of the referees, is obtained from looking at the constant

coefficient of (
x

2
+
x−1

2
+ 1

)n
= 2−n

(
x1/2 + x−1/2

)2n
.

Remark 12.2.1. The idea of double-angle reduction lies at the heart of the rational

Landen transformations. These are polynomial maps on the coefficient of the integral

of a rational function that preserve its value. See [MM08a] for a survey on Landen

transformations and open questions.
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12.3 A squeezing method

In this section we employ the explicit expression for Gn given in (12.5) to establish

Wallis’ formula (12.1). This approach is also contained in Stewart’s calculus text book

[Ste07] in the form of several guided exercises (45, 46, and 68 of Section 7.1). The

proof is based on analyzing the integrals

In :=

∫ π/2

0

(sinx)n dx.

The formula

I2n =

∫ π/2

0

(sinx)2n dx =
(2n− 1)!!

(2n)!!

π

2

follows from (12.5) by symmetry. Its companion integral

I2n+1 =

∫ π/2

0

(sinx)2n+1 dx =
(2n)!!

(2n+ 1)!!

is of the same flavor. Here n!! = n(n − 2)(n − 4) · · · {1 or 2} denotes the double

factorial. The ratio of these two integrals gives

WnI2n/I2n+1 =
π

2
,

where Wn is defined by (12.2). The convergence of Wn to π/2 now follows from the

inequalities 1 ≤ I2n/I2n+1 ≤ 1 + 1/(2n). The first of these inequalities is equivalent

to I2n+1 ≤ I2n, which holds because (sinx)2n+1 ≤ (sinx)2n. The second is equivalent

to

2n

∫ π/2

0

(sinx)2n dx ≤ (2n+ 1)

∫ π/2

0

(sinx)2n+1 dx,

which follows directly from the bound I2n ≤ I2n−1 and the recurrence (2n+1)I2n+1 =

2nI2n−1. Alternatively, the second inequality can be proven by observing that the
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function

f(s) = s

∫ π/2

0

(sinx)s dx

is increasing. This may be seen from the change of variables t = sin x and a series

expansion of the new integrand yielding

f ′(s) =
∞∑
k=0

1

22k

(
2k

k

)
2k + 1

(2k + s+ 1)2
> 0. (12.8)

Remark 12.3.1. Comparing the series (12.8) at s = 0 with the limit

f ′(0) = lim
s→0

f(s)

s
= lim

s→0

∫ π/2

0

sins x dx =
π

2

immediately proves
∞∑
k=0

(
2k

k

)
2−2k

2k + 1
=
π

2
.

This value may also be obtained by letting x = 1
2

in the series

∞∑
k=0

(
2k

k

)
x2k

2k + 1
=

arcsin2x

2x
.

The reader will find in [Leh85] a host of other interesting series that involve the central

binomial coefficients.

12.4 An example of Ramanujan and a

generalization

A natural generalization of Wallis’ integral (12.3) is given by

Gn(q) =
2

π

∫ ∞
0

n∏
k=1

1

x2 + q2
k

dx, (12.9)
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where q = (q1, q2, . . . , qn) with qk ∈ C. This notation will be employed throughout.

Similarly, qα is used to denote (qα1 , q
α
2 , . . . , q

α
n). As the value of the integral (12.9) is

fixed under a change of sign of the parameters qk, it is assumed that Re qk > 0. Note

that the integral Gn(q) is a symmetric function of q that reduces to Gn in the special

case q1 = · · · = qn = 1.

The special case n = 4 appears as Entry 13, Chapter 13 of volume 2 of B. Berndt’s

Ramanujan’s Notebooks [Ber89], in the form1:

Example 12.4.1. Let q1, q2, q3, and q4 be positive real numbers. Then

2

π

∫ ∞
0

dx

(x2 + q2
1)(x2 + q2

2)(x2 + q2
3)(x2 + q2

4)
=

(q1 + q2 + q3 + q4)3 − (q3
1 + q3

2 + q3
3 + q3

4)

3q1q2q3q4(q1 + q2)(q2 + q3)(q1 + q3)(q1 + q4)(q2 + q4)(q3 + q4)
.

Using partial fractions the following general formula for Gn(q) is obtained. In the

next section a representation in terms of Schur functions is presented.

Lemma 12.4.2. Let q = (q1, . . . , qn) be distinct and Re qk > 0. Then

Gn(q) =
n∑
k=1

1

qk

n∏
j=1

j 6=k

1

q2
j − q2

k

. (12.10)

Proof. Observe first that if b1, b2, . . . , bn are distinct then

n∏
k=1

1

y + bk
=

n∑
k=1

1

y + bk

n∏
j=1

j 6=k

1

bj − bk
. (12.11)

Replacing y by x2 and bk by q2
k and using the elementary integral

2

π

∫ ∞
0

dx

x2 + q2
=

1

q

1A minor correction from [Ber89].
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produces the desired evaluation of Gn(q).

Remark 12.4.3. Gn(q), as defined by (12.9), is a symmetric function in the qi’s which

remains finite if two of these parameters coincide. Therefore, the factors qj − qk in

the denominator of the right-hand side of (12.10) cancel out. This may be checked

directly by combining the summands corresponding to j and k. Alternatively, note

that the right-hand side of (12.10) is symmetric while the critical factors qj − qk

in the denominator combine to form the antisymmetric Vandermonde determinant.

Accordingly, they have to cancel.

Example 12.4.4. The identities

2

π

∫ ∞
0

n+1∏
j=1

1

x2 + j2
dx =

1

(2n+ 1)n!(n+ 1)!
,

2

π

∫ ∞
0

n+1∏
j=1

1

x2 + (2j − 1)2
dx =

1

22n(2n+ 1)(n!)2
,

2

π

∫ ∞
0

n∏
j=1

1

x2 + 1/j2
dx =

2A(2n− 1, n− 1)(
2n
n

)
may be deduced inductively from Lemma 12.4.2. Here, A(n, k) are the Eulerian

numbers which count the number of permutations of n objects with exactly k de-

scents. Recall that a permutation σ of the n letters 1, 2, . . . , n, here written as

σ(1)σ(2) . . . σ(n), has a descent at position k if σ(k) > σ(k + 1). For instance,

A(3, 1) = 4 because there are 4 permutations of 1, 2, 3, namely 1 3 2, 2 1 3, 2 3 1, and

3 1 2, which have exactly one descent.

The problem of finding an explicit formula for the numerator appearing on the

right-hand side of (12.10) when put on the lowest common denominator is discussed

in the next section.
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12.5 Representation in terms of Schur functions

The expression for Gn(q) developed in this section is given in terms of Schur

functions. The reader is referred to [Bre99] for a motivated introduction to these

functions in the context of alternating sign matrices and to [Sag01] for their role

in the representation theory of the symmetric group. Among the many equivalent

definitions for Schur functions, we now recall their definition in terms of quotients of

alternants. Using this approach, we are able to associate a Schur function not only

to a partition but more generally to an arbitrary vector.

Here, a vector µ = (µ1, µ2, . . .) means a finite sequence of real numbers. µ is

further called a partition (of m) if µ1 > µ2 > · · · and all the parts µj are positive

integers (summing up to m). Write 1n for the partition with n ones, and denote by

λ(n) the partition

λ(n) = (n− 1, n− 2, . . . , 1).

Vectors and partitions may be added componentwise. In case they are of different

length, the shorter one is padded with zeroes. For instance, one has λ(n + 1) =

λ(n)+1n. Likewise, vectors and partitions may be multiplied by scalars. In particular,

a · 1n is the partition with n a’s.

Fix n and consider q = (q1, q2, . . . , qn). Let µ = (µ1, µ2, . . .) be a vector of length

at most n. The corresponding alternant aµ is defined as the determinant

aµ(q) =
∣∣qµji ∣∣16i,j6n .

Again, µ is padded with zeroes if necessary. Note that the alternant aλ(n) is the

classical Vandermonde determinant

aλ(n)(q) =
∣∣qn−ji

∣∣
16i,j6n

=
∏

16i<j6n

(qi − qj).
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The Schur function sµ associated with the vector µ can now be defined as

sµ(q) =
aµ+λ(n)(q)

aλ(n)(q)
.

If µ is a partition with integer entries this is a symmetric polynomial. Indeed, as µ

ranges over the partitions of m of length at most n, the Schur functions sµ(q) form a

basis for the homogeneous symmetric polynomials in q of degree m.

The Schur functions include as special cases the elementary symmetric functions

ek and the complete homogeneous symmetric functions hk. Namely, ek(q) = s1k(q)

and hk(q) = s(k)(q).

The next result expresses the integral Gn(q) defined in (12.9) as a quotient of

Schur functions.

Theorem 12.5.1. Let q = (q1, . . . , qn) and Re qk > 0. Then

Gn(q) =
sλ(n−1)(q)

sλ(n+1)(q)
=

sλ(n−1)(q)

en(q)sλ(n)(q)
. (12.12)

Proof. The equality en(q)sλ(n)(q) = sλ(n+1)(q) amounts to the identity

q1q2 · · · qn
∣∣q2n−2j
i

∣∣
i,j

=
∣∣q2n−2j+1
i

∣∣
i,j
,

which follows directly by inserting the factor qi into row i of the matrix.

From the previous definition of Schur functions, the right-hand side of (12.12)

becomes

sλ(n−1)(q)

en(q) sλ(n)(q)
=
aλ(n−1)+λ(n)(q)

en(q)a2λ(n)(q)
.

Observe that a2λ(n)(q) = |q2n−2j
i |i,j = aλ(n)(q

2) is simply the Vandermonde determi-

nant with qi replaced by q2
i . Next, expand the determinant aλ(n−1)+λ(n) by the last
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column (which consists of 1’s only) to find

aλ(n−1)+λ(n)(q) = en(q)
n∑
k=1

(−1)n−k

qk
aλ(n−1)(q

2
1, q

2
2, . . . , q

2
k−1, q

2
k+1, . . . , q

2
n).

Therefore

aλ(n−1)+λ(n)(q)

en(q) a2λ(n)(q)
=

n∑
k=1

(−1)n−k

qk

∏
i<j

i,j 6=k

(q2
i − q2

j )
/∏

i<j

(q2
i − q2

j ). (12.13)

Observe that the only terms that do not cancel in the quotient above are those for

which i = k or j = k. The change of sign required to transform the factors q2
k − q2

j to

q2
j−q2

k eliminates the factor (−1)n−k. The expression on the right-hand side of (12.13)

is precisely the value (12.10) of the integral Gn(q) produced by partial fractions.

The next example illustrates Theorem 12.5.1 with the principal specialization of

the parameters q.

Example 12.5.2. The special case qk = qk produces the evaluation

2

π

∫ ∞
0

n∏
k=1

1

x2 + q2k
=

1

qn2

n−1∏
j=1

1− q2j−1

1− q2j
. (12.14)

This can be obtained inductively from Lemma 12.4.2 but may also be derived from

Theorem 12.5.1 in combination with the evaluation (12.15) of the principal special-

ization of Schur functions as in Theorem 7.21.2 of [Sta99].

Taking the limit q → 1 in (12.14) reproduces formula (12.5) for Gn. In other

words, (12.14) is a q-analog [GR90] of (12.5). Similarly,

πq
1 + q

= q1/4

∞∏
n=1

1− q2n

1− q2n−1

1− q2n

1− q2n+1
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is a useful q-analog of Wallis’ formula (12.2) which naturally appears in [Jr.00], where

Gosper studies q-analogs of trigonometric functions (in fact, Gosper arrives at the

above expression as a definition for πq while q-generalizing the reflection formula

Γ(z)Γ(1− z) = π
sinπz

).

The proof of Theorem 12.5.1 extends to the following more general result.

Lemma 12.5.3.
n∑
k=1

1

qα−βk

n∏
j=1

j 6=k

1

qαj − qαk
=
sλ(q)

sµ(q)
,

where

λ = (α− 1) · λ(n)− β · 1n−1,

µ = (α− 1) · λ(n+ 1)− (β − 1) · 1n.

As a consequence, one obtains the following integral evaluation which generalizes

the evaluation of Gn(q) given in Theorem 12.5.1.

Theorem 12.5.4. Let q = (q1, . . . , qn) and Re qk > 0. Further, let α and β be given

such that α > 0, 0 < β < αn, and β is not an integer multiple of α. Then

Gn,α,β(q) :=
sin(πβ/α)

π/α

∫ ∞
0

xβ−1∏n
k=1(xα + qαk )

dx =
sλ(q)

sµ(q)
,

where λ and µ are as in Lemma 12.5.3.

Proof. Upon writing β = bα + β1 for b < n a positive integer and 0 < β1 < α, the

assertion follows from the partial fraction decomposition

xbα∏n
k=1(xα + qαk )

= (−1)b
n∑
k=1

qbαk
xα + qαk

∏
j 6=k

1

qαj − qαk
,
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the integral evaluation

∫ ∞
0

xβ1−1dx

xα + qα
=

1

qα−β1
π/α

sin(πβ1/α)
,

and Lemma 12.5.3.

12.6 Schur functions in terms of SSYT

The Schur function sλ(q) associated to a partition λ also admits a representation

in terms of semi-standard Young tableaux (SSYT). The reader will find information

about this topic in [Bre99]. Given a partition λ = (λ1, λ2, . . . , λm), the Young diagram

of shape λ is an array of boxes, arranged in left-justified rows, consisting of λ1 boxes

in the first row, λ2 in the second row, and so on, ending with λm boxes in the mth

row. A SSYT of shape λ is a Young diagram of shape λ in which the boxes have been

filled with positive integers. These integers are restricted to be weakly increasing

across rows (repetitions are allowed) and strictly increasing down columns. From this

point of view, the Schur function sλ(q) = sλ(q1, . . . , qn) can be defined as

sλ(q) =
∑
T

qT ,

where the sum is over all SSYT of shape λ with entries from {1, 2, . . . , n}. The symbol

qT is a monomial in the variables qj in which the exponent of qj is the number of

appearances of j in T . For example, the array shown in Figure 12.1 is a tableau T for

the partition (6, 4, 3, 3). The corresponding monomial qT is given by q1q
3
2q3q

3
4q

4
5q

2
6q7q8.

The number Nn(λ) of SSYT of shape λ with entries from {1, 2, . . . , n} can be
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1 2 2 4 5 5
2 3 4 5
4 6 6
5 7 8

Figure 12.1: A tableau T for the partition (6, 4, 3, 3).

obtained by letting q → 1 in the formula

sλ(1, q, q
2, . . . , qn−1) =

∏
1≤i<j≤n

qλi+n−i − qλj+n−j
qj−1 − qi−1

(12.15)

(see page 375 of [Sta99]). This yields

Nn(λ) =
∏

1≤i<j≤n

λi − λj + j − i
j − i . (12.16)

The evaluation (12.5) of Wallis’ integral (12.3) may be recovered from here as

Gn+1 =
sλ(n)(1

n+1)

sλ(n+2)(1
n+1)

=
Nn+1(λ(n))

Nn+1(λ(n+ 2))
=

1

22n

(
2n

n

)
.

12.7 A counting problem

The k-central binomial coefficients c(n, k), defined by the generating function

(1− k2x)−1/k =
∑
n≥0

c(n, k)xn,

are given by

c(n, k) =
kn

n!

n−1∏
m=1

(1 + km).

For k = 2 these coefficients reduce to the central binomial coefficients
(

2n
n

)
. The

numbers c(n, k) are integers in general and their divisibility properties have been
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studied in [SMA09]. In particular, the authors establish that the k-central binomial

coefficients are always divisible by k and characterize their p-adic valuations.

The next result attempts an (admittedly somewhat contrived) interpretation of

what the numbers −c(n,−k) count.

Corollary 12.7.1. Let λ and µ be the partitions given by

λ = (k − 1) · λ(n)− 1n−1,

µ = (k − 1) · λ(n+ 1).

Then the integer −c(n,−k) enumerates the ratio between the total number of SSYT

of shapes λ and µ with entries from {1, 2, . . . , n} times the factor k2n−1/n.

Proof. By Theorem 12.5.4,

Nn(λ)

Nn(µ)
=
sλ(1

n)

sµ(1n)
= Gn,k,1(1n) =

sin(π/k)

π/k

∫ ∞
0

1

(xk + 1)n
dx,

and the expression on the right-hand side is routine to evaluate:

Nn(λ)

Nn(µ)
=

Γ(n− 1
k
)

Γ(n)Γ(1− 1
k
)

=
n−1∏
m=1

km− 1

km
.

This product equals −c(n,−k) divided by k2n−1/n.

Remark 12.7.2. R. Stanley pointed out some interesting Schur function quotient

results. See exercises 7.30 and 7.32 in [Sta99].

12.8 An integral from Gradshteyn and Ryzhik

It is now demonstrated how the previous results may be used to prove an integral

evaluation found as entry 3.112 in [GR80]. The main tool is the (dual) Jacobi-Trudi
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identity which expresses a Schur function in terms of elementary symmetric functions.

Namely, if λ is a partition such that its conjugate λ′ (the unique partition whose Young

diagram, see Section 12.6, is obtained from the one of λ by interchanging rows and

columns) has length at most m then

sλ =
∣∣eλ′i−i+j∣∣16i,j6m .

This identity may be found for instance in [Sta99, Corollary 7.16.2].

Theorem 12.8.1. Let fn and gn be polynomials of the form

gn(x) = b0x
2n−2 + b1x

2n−4 + . . .+ bn−1,

fn(x) = a0x
n + a1x

n−1 + . . .+ an,

and assume that all roots of fn lie in the upper half-plane. Then

∫ ∞
−∞

gn(x)dx

fn(x)fn(−x)
=
πi

a0

Mn

∆n

,

where

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . 0

a0 a2 a4 0

0 a1 a3 0

...
. . .

0 0 0 an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, Mn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 b1 b2 . . . bn−1

a0 a2 a4 0

0 a1 a3 0

...
. . .

0 0 0 an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Write fn(x) = a0

∏n
j=1(x− iqj). By assumption, Re qj > 0. Further,

fn(x)fn(−x) = (−1)na2
0

n∏
j=1

(x2 + q2
j ).
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Let q = (q1, q2, . . . , qn). It follows from Theorem 12.5.4 that

∫ ∞
−∞

x2βdx

fn(x)fn(−x)
=

(−1)n+βπ

a2
0

sλ(n−1)−2β·1n−1(q)

sλ(n+1)−2β·1n(q)
=

(−1)nπ

a2
0

sλ′(q)

sλ(n+1)(q)

where λ = λ(n−1) + 2 ·1β. The latter equality is obtained by writing the quotient of

Schur functions as a quotient of alternants, multiplying the kth row of each matrix by

q2β
k , and reordering the columns of the determinant in the numerator. The right-hand

side now is a quotient of Schur functions to which the Jacobi-Trudi identity may be

applied. In the denominator, this gives

sλ(n+1)(q) = |en+1−2k+j(q)|16k,j6n = |e2k−j(q)|16k,j6n .

Note that em(q) = 0 whenever m < 0 or m > n. Further, ek(q) = ikak/a0. Hence,

sλ(n+1)(q) = in(n+1)/2∆n/a
n
0 . The term sλ′(q) is dealt with analogously. The claim

follows by expanding the determinant Mn with respect to the first row.

12.9 A sum related to Feynman diagrams

Particle scattering in quantum field theory is usually described in terms of Feyn-

man diagrams. A Feynman diagram is a graphical representation of a particular term

arising in the expansion of the relevant quantum-mechanical scattering amplitude

as a power series in the coupling constants that parametrize the strengths of the

interactions.

From the mathematical point of view, a Feynman diagram is a graph to which

a certain function is associated. If the graph has circuits (loops, in the physics ter-

minology) then this function is defined in terms of a number of integrals over the
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4-dimensional momentum space (k0,k), where k0 is the energy integration variable

and k is a 3-dimensional momentum variable.

Feynman diagrams also appear in calculations of the thermodynamic properties

of a system described by quantum fields. In this context, the integral over the energy

component of a Feynman loop diagram is replaced by a summation over discrete

energy values. These Matsubara sums were introduced in [Mat55]. A general method

to compute these sums in terms of an associated integral was presented in [Esp10].

These techniques, applied to the expression (12.10) for the integral Gn(q), give

the value of the sum associated with the one-loop Feynman diagram consisting of n

vertices and vanishing external momenta, Ni = 0, as depicted in Figure 12.2.

Figure 12.2: The one-loop Feynman diagram with n vertices and vanishing external
momenta. m is the summation variable associated to each of the internal lines.

The Matsubara sum associated to the diagram in Figure 12.2 is

Mn(q) :=
∞∑

m=−∞

n∏
k=1

1

m2 + q2
k

, (12.17)

where the variables qk are related to the kinematic energies carried by the (virtual)

particles in the Feynman diagram. This sum was denoted by SG in [Esp10]; the

notation has been changed here to avoid confusion.
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Example 12.9.1. The first few Matsubara sums are

M1(q1) = π
D1

q1

,

M2(q1, q2) = π
q2D1 − q1D2

q1q2(q2
2 − q2

1)
,

M3(q1, q2, q3) = π
q2q3(q2

2 − q2
3)D1 + q3q1(q2

3 − q2
1)D2 + q1q2(q2

1 − q2
2)D3

q1q2q3(q2
3 − q2

2)(q2
2 − q2

1)(q2
1 − q2

3)
,

with Dj = coth(πqj).

Theorem 12.9.2. The Matsubara sum Mn(q) is given by

Mn(q) = π
n∑
k=1

coth(πqk)

qk

n∏
j=1

j 6=k

1

q2
j − q2

k

.

Proof 1. This follows from the partial fraction expansion

n∏
k=1

1

m2 + q2
k

=
n∑
k=1

1

q2
k +m2

∏
j 6=k

1

q2
j − q2

k

,

which is a special case of (12.11), switching the order of summation, and employing

the classical

π coth(πz)

z
=

∞∑
m=−∞

1

z2 +m2
.

Proof 2. The method developed in [Esp10] shows that

Mn(q) = π

[
1 +

n∑
m=1

nb(qm)(1−Rm)

]
Gn(q), (12.18)

where Gn(q) is the integral defined in (12.9),

nb(q) =
1

e2πq − 1
=

1

2
(cothπq − 1) ,
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and Rm is the reflection operator defined by

Rmf(q1, . . . , qm, . . .) = f(q1, . . . ,−qm, . . .).

To use (12.18) combined with the evaluation (12.10) of Gn(q) it is required to compute

the action of each 1−Rm on the summands of (12.10). Namely,

(1−Rm)
1

qk

n∏
j=1

j 6=k

1

q2
j − q2

k

=
2δkm
qk

n∏
j=1

j 6=k

1

q2
j − q2

k

,

where δkm is the Kronecker delta. Therefore

nb(qm)(1−Rm)Gn(q) =
2 nb(qm)

qm

n∏
j=1

j 6=m

1

q2
j − q2

m

,

and the result follows from 2 nb(q) = coth(πq)− 1.

Finally, an expansion of Mn(q) in terms of symmetric functions is given. Starting

with the classical expansion

π coth qk
qk

=
1

q2
k

− 2
∞∑
m=1

(−1)mq2m−2
k ζ(2m),

where ζ(s) denotes the Riemann zeta function, it follows that

Mn(q) =
n∑
k=1

1

q2
k

∏
j 6=k

1

q2
j − q2

k

− 2
∞∑
m=1

(−1)mζ(2m)
n∑
k=1

q
2(m−1)
k

∏
j 6=k

1

q2
j − q2

k

.

Using the identity (hj being the complete homogeneous symmetric function)

hm−n(x1, . . . , xn) = (−1)n−1

n∑
k=1

xm−1
k

∏
j 6=k

1

xj − xk
,
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which follows from Lemma 12.5.3 (or see page 450, Exercise 7.4 of [Sta99]), this

proves:

Corollary 12.9.3. The Matsubara sum Mn(q), defined in (12.17), is given by

Mn(q) =
1

en(q2)
+ 2

∞∑
m=0

(−1)mζ(2m+ 2n)hm(q2).

12.10 Conclusions

The evaluation of definite integrals has the charming quality of taking the reader

for a tour of many parts of mathematics. An innocent-looking generalization of one

of the oldest formulas in analysis has been shown to connect the work of the four

authors in the title.
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Chapter 13

A sinc that sank

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[BBS12] A sinc that sank
(with David Borwein, Jonathan M. Borwein)

to appear in American Mathematical Monthly, Vol. 119, Nr. 7, Aug-Sep 2012

Abstract We resolve and further study a sinc integral evaluation, first posed in this

Monthly in [1967, p. 1015], which was solved in [1968, p. 914] and withdrawn in

[1970, p. 657]. After a short introduction to the problem and its history, we give a

general evaluation which we make entirely explicit in the case of the product of three

sinc functions. Finally, we exhibit some more general structure of the integrals in

question.

13.1 Introduction and background

In [1967, #5529, p. 1015] D. Mitrinović asked in this Monthly for an evaluation

of

In :=

∫ ∞
−∞

n∏
j=1

sin (kj(x− aj))
x− aj

dx (13.1)
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for real numbers aj, kj with 1 6 j 6 n. We shall write In

(
a1,...,an
k1,...,kn

)
when we wish to

emphasize the dependence on the parameters. Up to a constant factor, (13.1) is an

integral over a product of sinc functions: sinc x := sinx
x

.

The next year a solution [1968, #5529, p. 914] was published in the form of

In = π
n∏
j=2

sin (kj(a1 − aj))
a1 − aj

(13.2)

under the assumption that k1 > k2 > . . . > kn > 0. This solution, as M. Klamkin

pointed out in [1970, p. 657], can not be correct, since it is not symmetric in the

parameters while In is. Indeed, in the case k1 = k2 = k3 = 1 the evaluation (13.2)

is not symmetric in the variables aj and gives differing answers on permuting the

a’s. The proof given relies on formally correct Fourier analysis; but there are missing

constraints on the kj variables which have the effect that it is seldom right for more

than two variables. Indeed, as shown then by D. Djoković and L. Glasser [Gla11]

— who were both working in Waterloo at the time — the evaluation (13.2) holds

true under the restriction k1 > k2 + k3 + . . . + kn when all of the kj are positive.

However, no simple general fix appeared possible — and indeed for n > 2 the issue is

somewhat complex. The problem while recorded several times in later Monthly lists

of unsolved problems appears (from a JSTOR hunt1) to have disappeared without

trace in the later 1980’s.

The precise issues regarding evaluation of sinc integrals are described in detail in

[BB01] or [BBG04, Chapter 2] along with some remarkable consequences [BBB08,

BB01, BBG04]. In the two-variable case, the 1968 solution is essentially correct; we

do obtain

I2 = π
sin ((k1 ∧ k2)(a1 − a2))

a1 − a2

(13.3)

1A search on JSTOR through all Monthly volumes, suggests that the solutions were never
published and indeed for some years the original problem reappeared on lists of unsolved Monthly
problems before apparently disappearing from view. Such a JSTOR search is not totally convincing
since there is no complete indexing of problems and their status.
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for a1 6= a2 as will be made explicit below. Here a ∧ b := min{a, b}. Some of the

delicacy is a consequence of the fact that the classical sinc evaluation given next is

only conditionally true [BB01]. We have

∫ ∞
−∞

sin(kx)

x
dx = π sgn(k), (13.4)

where sgn(0) = 0, sgn(k) = 1 for k > 0 and sgn(k) = −1 for k < 0.

In (13.4) the integral is absolutely divergent and is best interpreted as a Cauchy-

Riemann limit. Thus the evaluation of (13.1) yields I1 = π sgn(k1) which has a

discontinuity at k1 = 0. For n > 2, however, In is an absolutely convergent integral

which is (jointly) continuous as a function of all kj and all aj. This follows from

Lebesgue’s dominated convergence theorem since the absolute value of the integrand

is less than
∏n

j=1 |kj| for all x and less than 2/x2 for all sufficiently large |x|.

It is worth observing that the oscillatory structure of the integrals, see Figure 13.1,

means that their evaluation both numerically and symbolically calls for a significant

amount of care.

-Π Π

-0.05

0.05

0.1

Figure 13.1: Integrand in (13.1) with a = (−3,−2,−1, 0, 1, 2), k = (1, 2, 3, 4, 5, 6)

We wish to emphasize the continuing fascination with similar sinc integrals [GNJ87].

Indeed, the work in [BB01] was triggered by the exact problem described by K. Morri-
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son in this Monthly [Mor95]. This led also to a lovely Monthly article on random

series [Sch03], and there is further related work in [BG02].

A most satisfactory introduction to the many applications and properties of the

sinc function is given in [GS90]. Additionally, T. Feeman’s recent book on medical

imaging [Fee10] chose to begin with the example given at the beginning of Section 13.4.

The paper [MM08b] makes a careful and historically informed study of the geometric

results implicit in the study of related multiple sinc integrals. This includes recording

that G. Pólya in his 1912 doctoral thesis showed that if k = (k1, . . . , kn) has nonzero

coefficients and

Sk(θ) := {x ∈ Rn : |〈k, x〉| 6 θ/2, x ∈ Cn}

denotes the slab inside the hypercube Cn =
[
−1

2
, 1

2

]n
cut off by the hyperplanes

〈k, x〉 = ±θ/2, then

Voln(Sk(θ)) =
1

π

∫ ∞
−∞

sin(θx)

x

n∏
j=1

sin(kjx)

kjx
dx, (13.5)

a relationship we return to in Section 13.4. More general polyhedra volumes deter-

mined by multidimensional sinc integrals are examined in [BBM02]. As a consequence

of (13.5) and described for instance in [BB01], the integral (13.5) may also be inter-

preted as the probability that ∣∣∣∣∣
n∑
j=1

kjXj

∣∣∣∣∣ 6 θ (13.6)

where Xj are independent random variables uniformly distributed on [−1, 1].

13.2 Evaluation of In

Without loss of generality, we assume that all kj are strictly positive. In this

section, we shall only consider the case when all the aj are distinct. As illustrated
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in Sections 13.3.2 and 13.3.3, the special cases can be treated by taking limits. We

begin with the classical and simple partial fraction expression

n∏
j=1

1

x− aj
=

n∑
j=1

1

x− aj
∏
i 6=j

1

aj − ai
(13.7)

valid when the aj are distinct. Applying (13.7) to the integral In we then have

In =
n∑
j=1

∫ ∞
−∞

sin(kj(x− aj))
x− aj

∏
i 6=j

sin(ki(x− ai))
aj − ai

dx

=
n∑
j=1

∫ ∞
−∞

sin(kjx)

x

∏
i 6=j

sin(ki(x+ (aj − ai)))
aj − ai

dx. (13.8)

We pause and illustrate the general approach in the case of n = 2 variables.

Example 13.2.1 (Two variables). We apply (13.8) to write

I2 =

∫ ∞
−∞

sin(k1x)

x

sin (k2(x+ a1 − a2))

a2 − a1

dx

+

∫ ∞
−∞

sin(k2x)

x

sin (k1(x+ a2 − a1))

a1 − a2

dx

=
sin (k2(a1 − a2))

a1 − a2

∫ ∞
−∞

sin(k1x)

x
cos(k2x) dx

+
sin (k1(a2 − a1))

a2 − a1

∫ ∞
−∞

sin(k2x)

x
cos(k1x) dx

where for the second equation we have used the addition formula for the sine and

noticed that the sine-only integrands (being odd) integrate to zero. Finally, we either

appeal to [BB01, Theorem 3] or express

∫ ∞
−∞

sin(k1x)

x
cos(k2x) dx =

1

2

∫ ∞
−∞

sin ((k1 + k2)x)

x
dx

+
1

2

∫ ∞
−∞

sin ((k1 − k2)x)

x
dx,
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and appeal twice to (13.4) to obtain the final elegant cancellation

I2 = π
sin ((k1 ∧ k2)(a1 − a2))

a1 − a2

(13.9)

valid for a1 6= a2. We observe that the result remains true for a1 = a2, in which case

the right-hand side of (13.9) attains the limiting value π(k1 ∧ k2). ♦

Let us observe that after the first step in Example 13.2.1 — independent of the

exact final formula — the integrals to be obtained have lost their dependence on the

aj. This is what we exploit more generally. Proceeding as in Example 13.2.1 and

applying the addition formula to (13.8) we write,

In =
n∑
j=1

∑
A,B

Cj,A,B αj,A,B (13.10)

where the sum is over all sets A and B partitioning {1, 2 . . . , j − 1, j + 1, . . . n}, and

Cj,A,B :=
∏
i∈A

cos(ki(aj − ai))
aj − ai

∏
i∈B

sin(ki(aj − ai))
aj − ai

(13.11)

while

αj,A,B :=

∫ ∞
−∞

∏
i∈A∪{j}

sin(kix)
∏
i∈B

cos(kix)
dx

x
. (13.12)

Notice that we may assume the cardinality |A| of A to be even since the integral in

(13.12) vanishes if |A| is odd.

To further treat (13.10), we write the products of sines and cosines in terms of

sums of single trigonometric functions. The general formulae are made explicit next.
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Proposition 13.2.2 (Cosine product).

r∏
j=1

cos(xj) = 2−r
∑

ε∈{−1,1}r
cos

(
r∑
j=1

εjxj

)
. (13.13)

Proof. The formula follows from the trigonometric identity 2 cos(a) cos(b) = cos(a +

b) + cos(a− b) applied inductively.

Observe that by taking derivatives with respect to some of the xj in (13.13), we

obtain similar formulae for general products of sines and cosines.

Corollary 13.2.3 (Sine and cosine product).

s∏
j=1

sin(xj)
r∏

j=s+1

cos(xj) = 2−r
∑

ε∈{−1,1}r

(
s∏
j=1

εi

)
cos

(
r∑
j=1

εjxj −
sπ

2

)
. (13.14)

Here, we used d
dx

cos(x) = cos(x− π/2) to write the evaluation rather compactly.

Note that when s = 2k+1 is odd then cos(x−sπ/2) = (−1)k sin(x). Applying (13.14)

to the definition (13.12), it thus follows that, for even |A|,

αj,A,B = (−1)|A|/2
∫ ∞
−∞

1

2n

∑
ε∈{−1,1}n

 ∏
i∈A∪{j}

εi

 sin

(
n∑
i=1

εikix

)
dx

x

= π (−1)|A|/2
1

2n

∑
ε∈{−1,1}n

 ∏
i∈A∪{j}

εi

 sgn

(
n∑
i=1

εiki

)
. (13.15)

Then, on combining (13.15) with (13.10), we obtain the following general evaluation.

Theorem 13.2.4 (General evaluation). We have

In =
n∑
j=1

∑
A,B

αj,A,B Cj,A,B (13.16)
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where the inner summation is over disjoint sets A, B such that |A| is even and

A ∪B = {1, 2, . . . , j − 1, j + 1, . . . , n}. The trigonometric products

Cj,A,B =
∏
i∈A

cos(ki(aj − ai))
aj − ai

∏
i∈B

sin(ki(aj − ai))
aj − ai

are as in (13.11) and αj,A,B is given by (13.15).

Note that in dimension n > 2, there are n2n−2 elements Cj,A,B which may or may

not be distinct.

Remark 13.2.5. Note that, just like for the defining integral for In, it is apparent

that the terms Cj,A,B and hence the evaluation of In given in (13.16) only depend

on the parameters aj up to a common shift. In particular, setting bj = aj − an for

j = 1, . . . , n− 1 the evaluation in (13.16) can be written as a symmetric function in

the n− 1 variables bj. ♦

As an immediate consequence of Theorem 13.2.4 we have:

Corollary 13.2.6 (Simplest case). Assume, without loss, that k1, k2, . . . , kn > 0.

Suppose that there is an index ` such that

k` >
1

2

∑
ki.

In that case, the original solution to the Monthly problem is valid; that is,

In =

∫ ∞
−∞

n∏
i=1

sin(ki(x− ai))
x− ai

dx = π
∏
i 6=`

sin(ki(a` − ai))
a` − ai

.

This result was independently obtained by Djoković and Glasser [Gla11].

Proof. In this case,

sgn

(
n∑
i=1

εiki

)
= ε`
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for all values of the εi. The claim now follows from Theorem 13.2.4. More precisely,

if there is some index k 6= ` such that k ∈ A or j = k, then αj,A,B = 0. This is

because the term in (13.15) contributed by ε ∈ {−1, 1}n has opposite sign than the

term contributed by ε′, where ε′ is obtained from ε by flipping the sign of εk. It

remains to observe that α`,∅,B = π according to (13.15). This is the only surviving

term.

13.2.1 Alternative evaluation of In

In 1970 Djoković sent in a solution to the Monthly after the original solution

was withdrawn [Gla11]. He used the following identity involving the principal value

(PV) of the integral

(PV)

∫ ∞
−∞

eitx

x− aj
dx = lim

δ→0+

{∫ aj−δ

−∞
+

∫ ∞
aj+δ

}
eitx

x− aj
dx = πi sgn(t)eitaj

where t is real. Note that setting aj = 0 and taking the imaginary part gives (13.4).

He then showed, using the same partial fraction expansion as above, that

In =
πi

(2i)n

n∑
j=1

{
Aj

∑
ε∈{−1,1}n

(
n∏
r=1

εr

)
sgn

(
n∑
r=1

εrkr

)
(13.17)

· exp

(
i

n∑
r=1

εrkr(aj − ar)
)}

where a1, a2, . . . , an are distinct and

Aj :=
1∏

r 6=j(aj − ar)
. (13.18)

The formula (13.17) is quite elegant and also allows one to derive Corollary 13.2.6,

which was independently found by Glasser [Gla11]. For instance, it suffices to appeal
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to the case r = s of (13.14). However, as we will demonstrate in the remainder, the

evaluation given in Theorem 13.2.4 has the advantage of making significant additional

structure of the integrals In more apparent. Before doing so in Section 13.5 we next

consider the case I3 in detail.

13.3 The case n = 3

We can completely dispose of the three-dimensional integral I3 by considering the

three cases: a1, a2, a3 distinct; a1 distinct from a2 = a3; and a1 = a2 = a3.

-Π Π
-1

1

2

3

-Π Π
-1

1

2

3

-Π Π
-1

1

2

3

Figure 13.2: Integrands in (13.1) with parameters a = (−1, 0, 1) and k = (k1, 2, 1)
where k1 = 2, 4, 7

13.3.1 The case n = 3 when a1, a2, a3 are distinct

As demonstrated in this section, the evaluation of I3 will depend on which in-

equalities are satisfied by the parameters k1, k2, k3. For n = 3, Theorem 13.2.4 yields:

I3

(
a1, a2, a3

k1, k2, k3

)
=

1

8

3∑
j=1

∑
ε∈{−1,1}3

[
εj sgn(ε1k1 + ε2k2 + ε3k3)

∏
i 6=j

sin(ki(aj − ai))
aj − ai

− ε1ε2ε3 sgn(ε1k1 + ε2k2 + ε3k3)
∏
i 6=j

cos(ki(aj − ai))
aj − ai

]
. (13.19)
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Remark 13.3.1 (Recovering Djoković’s evaluation). Upon using the trigonometric

identity sin(x) sin(y)− cos(x) cos(y) = − cos(x+ y) to combine the two products, the

right-hand side of equation (13.19) can be reexpressed in the symmetric form

−1

8

∑
ε∈{−1,1}3

ε1ε2ε3 sgn(ε1k1 + ε2k2 + ε3k3)
3∑
j=1

cos(
∑

i 6=j εiki(aj − ai))∏
i 6=j(aj − ai)

.

This is precisely Djoković’s evaluation (13.17). ♦

In fact, distinguishing between two cases, illustrated in Figure 13.3, the evaluation

(13.19) of I3 can be made entirely explicit:

Corollary 13.3.2 (a1, a2, a3 distinct). Assume that k1, k2, k3 > 0. Then

1. If 1
2

∑
ki 6 k`, as can happen for at most one index `, then

I3

(
a1, a2, a3

k1, k2, k3

)
= π

∏
i 6=`

sin(ki(a` − ai))
a` − ai

. (13.20)

2. Otherwise, that is if max ki <
1
2

∑
ki, then

I3

(
a1, a2, a3

k1, k2, k3

)
=
π

2

3∑
j=1

[∏
i 6=j

sin(ki(aj − ai))
aj − ai

+
∏
i 6=j

cos(ki(aj − ai))
aj − ai

]
. (13.21)

Proof. The first case is a special case of Corollary 13.2.6. Alternatively, assuming

without loss that the inequality for k` is strict, it follows directly from (13.19) (because

sgn(ε1k1 + ε2k2 + ε3k3) = ε`, all but one sum over ε ∈ {−1, 1}3 cancel to zero).

In the second case, k1 < k2 + k3, k2 < k3 + k1, k3 < k1 + k2. Therefore

1

8

∑
ε∈{−1,1}3

εj sgn(ε1k1 + ε2k2 + ε3k3) =
1

2
for all j,

−1

8

∑
ε∈{−1,1}3

ε1ε2ε3 sgn(ε1k1 + ε2k2 + ε3k3) =
1

2
.
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ℓ = 3 ℓ = 1

ℓ = 2

k3

k2k2

0 k3 k1k1

Figure 13.3: The constraints on the parameters kj in Corollary 13.3.2 — if k1, k2 take
values in the shaded regions then (13.20) holds with the indicated choice of `

The claim then follows from (13.19).

Remark 13.3.3 (Hidden trigonometric identities). Observe that because of the con-

tinuity of I3 as a function of k1, k2, and k3, we must have the nonobvious identity

∏
i 6=1

[
sin(ki(a1 − ai))

a1 − ai

]
=

1

2

3∑
j=1

[∏
i 6=j

sin(ki(aj − ai))
aj − ai

+
∏
i 6=j

cos(ki(aj − ai))
aj − ai

]
(13.22)

when k1 = k2 + k3. We record that Mathematica 7 is able to verify (13.22); however,

it struggles with the analogous identities arising for n > 4. ♦

13.3.2 The case n = 3 when a1 6= a2 = a3

As a limiting case of Corollary 13.3.2 we obtain the following.

Corollary 13.3.4 (a1 6= a2 = a3). Assume that k1, k2, k3 > 0 and a1 6= a2. Set

a := a2 − a1.
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1. If k1 > 1
2

∑
ki, then

I3

(
a1, a2, a2

k1, k2, k3

)
= π

sin(k2a)

a

sin(k3a)

a
. (13.23)

2. If max(k2, k3) > 1
2

∑
ki, then

I3

(
a1, a2, a2

k1, k2, k3

)
= πmin(k2, k3)

sin(k1a)

a
. (13.24)

3. Otherwise, that is if max ki <
1
2

∑
ki, then

I3

(
a1, a2, a2

k1, k2, k3

)
=
π

2

cos((k2 − k3)a)− cos(k1a)

a2
+
π

2

(k2 + k3 − k1) sin(k1a)

a
.

(13.25)

Proof. The first two cases are immediate consequences of (13.20) upon taking the

limit a3 → a2.

Likewise, the third case follows from (13.21) with just a little bit of care. The

contribution of the sine products from (13.21) is

π

2

sin(k2a) sin(k3a)

a2
+
π

2

(k2 + k3) sin(k1a)

a
.

On the other hand, writing a3 = a2 + ε with the intent of letting ε → 0, the cosine

products contribute

π

2

[
cos(k2a) cos(k3a)

a2
− cos(k1a) cos(k3ε)

aε
+

cos(k1(a+ ε)) cos(k2ε)

(a+ ε)ε

]
.

The claim therefore follows once we show

cos(k1a) cos(k3ε)

aε
− cos(k1(a+ ε)) cos(k2ε)

(a+ ε)ε
→ cos(k1a)

a2
+
k1 sin(k1a)

a
.
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This is easily verified by expanding the left-hand side in a Taylor series with respect

to ε. In fact, all the steps in this proof can be done automatically using, for instance,

Mathematica 7.

Observe that, since In is invariant under changing the order of its arguments,

Corollary 13.3.4 covers all cases where exactly two of the parameters aj agree.

Remark 13.3.5 (Alternative approach). We remark that Corollary 13.3.4 can al-

ternatively be proved in analogy with the proof given for Theorem 13.2.4 — that is

by starting with a partial fraction decomposition and evaluating the occurring basic

integrals. Besides integrals covered by equation (13.15), this includes formulae such

as

∫ ∞
−∞

sin(k2x)

x

sin(k3x)

x
cos(k1x)dx

=
π

8

∑
ε∈{−1,1}3

ε2ε3(ε1k1 + ε2k2 + ε3k3) sgn(ε1k1 + ε2k2 + ε3k3). (13.26)

This evaluation follows from [BB01, Theorem 3(ii)]. In fact, (13.26) is an immediate

consequence of equation (13.15) with n = 3 and A = ∅ after integrating with respect

to one of the parameters ki where i ∈ B. Clearly, this strategy evaluates a large class

of integrals, similar to (13.26), over the real line with integrands products of sines

and cosines as well as powers of the integration variable (see also [BB01]). ♦

13.3.3 The case n = 3 when a1 = a2 = a3

In this case,

I3 =

∫ ∞
−∞

sin(k1(x− a1))

x− a1

sin(k2(x− a1))

x− a1

sin(k3(x− a1))

x− a1

dx

=

∫ ∞
−∞

sin(k1x)

x

sin(k2x)

x

sin(k3x)

x
dx. (13.27)
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Corollary 13.3.6 (a1 = a2 = a3). Assume, without loss, that k1 > k2 > k3 > 0.

Then

1. If k1 > k2 + k3, then

I3

(
a1, a1, a1

k1, k2, k3

)
= π k2k3.

2. If k1 6 k2 + k3, then

I3

(
a1, a1, a1

k1, k2, k3

)
= π

(
k2k3 −

(k2 + k3 − k1)2

4

)
.

Proof. The first part follows from Theorem 2 and the second from Corollary 1 in

[BB01].

Alternatively, Corollary 13.3.6 may be derived from Corollary 13.3.4 on letting a

tend to zero. Again, this can be automatically done in a computer algebra system

such as Mathematica 7 or Maple 14.

13.4 Especially special cases of sinc integrals

The same phenomenon as in equation (13.5) and in Corollary 13.3.6 leads to

one of the most striking examples in [BB01]. Consider the following example of a

re-normalized In integral, in which we set

Jn :=

∫ ∞
−∞

sincx · sinc
(x

3

)
· · · sinc

(
x

2n+ 1

)
dx.
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Then — as Maple and Mathematica are able to confirm — we have the following

evaluations:

J0 =

∫ ∞
−∞

sincx dx = π,

J1 =

∫ ∞
−∞

sincx · sinc
(x

3

)
dx = π,

...

J6 =

∫ ∞
−∞

sincx · sinc
(x

3

)
· · · sinc

( x
13

)
dx = π.

As explained in detail in [BB01] or [BBG04, Chapter 2], the seemingly obvious

pattern — a consequence of Corollary 13.2.6 — is then confounded by

J7 =

∫ ∞
−∞

sincx · sinc
(x

3

)
· · · sinc

( x
15

)
dx

=
467807924713440738696537864469

467807924720320453655260875000
π < π,

where the fraction is approximately 0.99999999998529 . . . which, depending on the

precision of calculation, numerically might not even be distinguished from 1.

This is a consequence of the following general evaluation given in [BB01].

Theorem 13.4.1 (First bite). Denote Km = k0 + k1 + . . .+ km. If 2kj > kn > 0 for

j = 0, 1, . . . , n− 1 and Kn > 2k0 > Kn−1, then

∫ ∞
−∞

n∏
j=0

sin(kjx)

x
dx = πk1k2 · · · kn −

π

2n−1n!
(Kn − 2k0)n. (13.28)

Note that Theorem 13.4.1 is a “first-bite” extension of Corollary 13.2.6; assuming

only that kj > 0 for j = 0, 1, . . . , n then if 2k0 > Kn the integral evaluates to

πk1k2 · · · kn.
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Theorem 13.4.1 makes clear that the pattern Jn = π for n = 0, 1, . . . , 6 breaks for

J7 because

1

3
+

1

5
+ . . .+

1

15
> 1

whereas all earlier partial sums are less than 1. Geometrically, the situation is as

follows. In light of (13.5), the integral Jn may be interpreted as the volume of the

part of a hypercube lying between two planes. For n = 7 these planes intersect with

the hypercube for the first time.

Example 13.4.2 (A probabilistic interpretation). Let us illustrate Theorem 13.4.1

using the probabilistic point of view mentioned in (13.6) at the end of the introduction.

As such the integral

1

π

∫ ∞
−∞

sin(k0x)

x

sin(k1x)

k1x

sin(k2x)

k2x
dx

is the probability that |k1X1 + k2X2| 6 k0 where X1, X2 are independent random

variables distributed uniformly on [−1, 1].

-1
-

2

3
0 2

3
1

-1

-

1

2

1

2

1

Figure 13.4: The event |3X1 + 2X2| 6 4

In the case k0 = 4, k1 = 3, k2 = 2, for example, this event is represented as the

shaded area in Figure 13.4. Since each of the removed triangular corners has sides



330

of length 1/2 and 1/3, this region has area 23/6. Because the total area is 4, the

probability of the event in question is 23/24. Thus,

1

π

∫ ∞
−∞

sin(4x)

x

sin(3x)

3x

sin(2x)

2x
dx =

23

24
=

1

3 · 2

(
3 · 2− (3 + 2− 4)2

2 · 2

)

in agreement with Theorem 13.4.1. ♦

Let us return to the example of the integrals Jn. Even past n = 7, we do have

a surprising equality [BBB08] of these integrals and corresponding Riemann sums.

This alternative evaluation of the integrals Jn is

∫ ∞
−∞

n∏
j=0

sinc

(
x

2j + 1

)
dx =

∞∑
m=−∞

n∏
j=0

sinc

(
m

2j + 1

)
(13.29)

which is valid for n = 1, 2, . . . , 7, 8, . . . , 40248. The “first-bite” phenomenon is seen

here again but at larger n. For n > 40248 this equality fails as well; the sum being

strictly bigger than the integral. As in the case of (13.28), there is nothing special

about the choice of parameters kj = 1
2j+1

in the sinc functions. Indeed, the following

general result is proved in [BBB08].

Theorem 13.4.3. Suppose that k1, k2, . . . , kn > 0. If k1 + k2 + . . .+ kn < 2π, then

∫ ∞
−∞

n∏
j=1

sinc(kjx) dx =
∞∑

m=−∞

n∏
j=1

sinc(kjm). (13.30)

Note that the condition k1 + k2 + . . . + kn < 2π may always be satisfied through

a common rescaling kj → τkj of the parameters kj at the expense of writing the sinc

integral as a sinc sum with differently scaled parameters.

As a consequence of Theorem 13.4.3, we see that (13.29) holds for n provided that

n∑
j=0

1

2j + 1
< 2π
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which is true precisely for the range of n specified above.

Remark 13.4.4. With this insight, it is not hard to contrive more persistent exam-

ples. An entertaining example given in [BBB08] is taking the reciprocals of primes.

Using the Prime Number Theorem, one estimates that the sinc integrals equal the

sinc sums until the number of products is about 10176. That of course makes it rather

unlikely to find, by mere testing, an example where the two are unequal. Even worse

for the naive tester is the fact that the discrepancy between integral and sum is always

less than 10−1086 (and even smaller if the Riemann hypothesis is true). ♦

A related integral, which because of its varied applications has appeared repeat-

edly in the literature, see e.g. [MR65] and the references therein, is

2

π

∫ ∞
0

(
sinx

x

)n
cos(bx) dx (13.31)

which, for 0 6 b < n, has the closed form

1

2n−1(n− 1)!

∑
06k<(n+b)/2

(−1)k
(
n

k

)
(n+ b− 2k)n−1.

To give an idea of the range of applications, we only note that the authors of [MR65]

considered the integral (13.31) because it is proportional to “the intermodulation

distortion generated by taking the nth power of a narrow-band, high-frequency white

noise”; on the other hand, the recent [Ali08] uses (13.31) with b = 0 to obtain an

improved lower bound for the Erdős-Moser problem.

If b > n, then the integral (13.31) vanishes. The case b = 0 in (13.31) is the

interesting special case of In with k1 = . . . = kn = 1 and a1, . . . , an = 0. Its evaluation

appears as an exercise in [WW27, p. 123]; in [BB01] it is demonstrated how it may

be derived using the present methods.
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13.5 The case n > 4

Returning to Theorem 13.2.4, we now show — somewhat briefly — that in certain

general cases the evaluation of the integral In may in essence be reduced to the evalua-

tion of the integral Im for some m < n. In particular, we will see that Corollary 13.2.6

is the most basic such case — corresponding to m = 1.

In order to exhibit this general structure of the integrals In, we introduce the

notation

In,j :=
∑
A,B

αj,A,B Cj,A,B (13.32)

so that, by (13.16), In =
∑n

j=1 In,j.

Theorem 13.5.1 (Substructure). Assume that k1 > k2 > . . . > kn > 0, and that

a1, a2, . . . , an are distinct. Suppose that there is some m such that for all ε ∈ {−1, 1}n

we have

sgn(ε1k1 + . . .+ εmkm + . . .+ εnkn) = sgn(ε1k1 + . . .+ εmkm). (13.33)

Then

In =
m∑
j=1

Im,j
∏
i>m

sin(ki(aj − ai))
aj − ai

. (13.34)

Proof. Note that in light of (13.15) and (13.33) we have αj,A,B = 0 unless {m +

1, . . . , n} ⊂ B. To see this, assume that there is some index k > m such that k ∈ A

or k = j. Then the term in (13.15) contributed by ε ∈ {−1, 1}n has opposite sign

as the term contributed by ε′, where ε′ is obtained from ε by flipping the sign of εk.

The claim now follows from Theorem 13.2.4.
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Remark 13.5.2. The condition (13.33) may equivalently be stated as

min |ε1k1 + . . .+ εmkm| > km+1 + . . .+ kn (13.35)

where the minimum is taken over ε ∈ {−1, 1}m. We idly remark that, for large m,

computing this minimum is a hard problem. In fact, in the special case of integral

kj, just deciding whether the minimum is zero (which is equivalent to the partition

problem of deciding whether the parameters kj can be partitioned into two sets with

the same sum) is well-known to be NP-complete [GJ79, Section 3.1.5]. ♦

Observe that the case m = 1 of Theorem 13.5.1, together with the basic evaluation

(13.4), immediately implies Corollary 13.2.6. This is because the condition (13.33)

holds for m = 1 precisely if k1 > k2 + . . .+ kn.

If (13.33) holds for m = 2, then it actually holds for m = 1 provided that the

assumed inequality k1 > k2 is strict. Therefore the next interesting case is m = 3.

The final evaluation makes this case explicit. It follows from Corollary 13.3.2.

Corollary 13.5.3 (A second n-dimensional case). Let n > 3. Assume that k1 > k2 >

. . . > kn > 0, and that a1, a2, . . . , an are distinct. If

k1 6 k2 + . . .+ kn and k2 + k3 − k1 > k4 + . . .+ kn,

then

In =
π

2

3∑
j=1

∏
i>4

sin(ki(aj − ai))
aj − ai

[ ∏
i63,i 6=j

sin(ki(aj − ai))
aj − ai

+
∏

i63,i 6=j

cos(ki(aj − ai))
aj − ai

]
.

The cases m > 4 quickly become much more involved. In particular, the condition

(13.33) becomes a set of inequalities. To close, we illustrate with the first case not

covered by Corollaries 13.2.6 and 13.5.3:
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Example 13.5.4. As usual, assume that k1 > k2 > k3 > k4 > 0, and that a1, a2, a3, a4

are distinct. If k1 < k2 +k3 +k4 (hence Corollary 13.2.6 does not apply) and k1 +k4 >

k2 + k3 (hence Corollary 13.5.3 does not apply either), then

I4 =
π

4

4∑
j=1

∑
A,B

Cj,A,B +
π

2

∏
i 6=1

sin(ki(a1 − ai))
a1 − ai

(13.36)

− π

2

4∑
j=2

sin(k1(aj − a1))

aj − a1

∏
i 6=1,j

cos(ki(aj − ai))
aj − ai

where the summation in the first sum is as in Theorem 13.2.4. Note that the terms

I4,j of (13.32) are implicit in (13.36) and may be used to make the case m = 4 of

Theorem 13.5.1 explicit as has been done in Corollary 13.5.3 for m = 3. ♦

13.6 Conclusions

We present these results for several reasons. First is the intrinsic beauty and utility

of the sinc function. It is important in so many areas of computing, approximation

theory, and numerical analysis. It is used in interpolation and approximation of

functions, approximate evaluation of transforms — e.g., Hilbert, Fourier, Laplace,

Hankel, and Mellin transforms as well as the fast Fourier transform — see [Ste93].

It is used in approximating solutions of differential and integral equations, in image

processing [Fee10], in other signal processing and in information theory. It is the

Fourier transform of the box filter and so central to the understanding of the Gibbs

phenomenon [Str81] and its descendants. Much of this is nicely described in [GS90].

Second is that the forensic nature of the mathematics was entertaining. It also

made us reflect on how computer packages and databases have changed mathematics

over the past forty to fifty years. As our hunt for the history of this Monthly

problem indicates, better tools for searching our literature are much needed. Finally
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some of the evaluations merit being better known as they are excellent tests of both

computer algebra and numerical integration.
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Chapter 14

The p-adic valuation of k-central
binomial coefficients

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[SMA09] The p-adic valuation of k-central binomial coefficients
(with Tewodros Amdeberhan, Victor H. Moll)

published in Acta Arithmetica, Vol. 140, 2009, p. 31-42

Abstract The coefficients c(n, k) defined by

(1− k2x)−1/k =
∑
n≥0

c(n, k)xn

reduce to the central binomial coefficients
(

2n
n

)
for k = 2. Motivated by a question of

H. Montgomery and H. Shapiro for the case k = 3, we prove that c(n, k) are integers

and study their divisibility properties.

14.1 Introduction

In a recent issue of the American Mathematical Monthly, Hugh Montgomery and

Harold S. Shapiro proposed the following problem (Problem 11380, August-September

2008):
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For x ∈ R, let (
x

n

)
=

1

n!

n−1∏
j=0

(x− j). (14.1)

For n ≥ 1, let an be the numerator and qn the denominator of the rational number(−1/3
n

)
expressed as a reduced fraction, with qn > 0.

1. Show that qn is a power of 3.

2. Show that an is odd if and only if n is a sum of distinct powers of 4.

Our approach to this problem employs Legendre’s remarkable expression [Leg30]:

νp(n!) =
n− sp(n)

p− 1
, (14.2)

that relates the p-adic valuation of factorials to the sum of digits of n in base p. For

m ∈ N and a prime p, the p-adic valuation of m, denoted by νp(m), is the highest

power of p that divides m. The expansion of m ∈ N in base p is written as

m = a0 + a1p+ · · ·+ adp
d, (14.3)

with integers 0 ≤ aj ≤ p− 1 and ad 6= 0. The function sp in (14.2) is defined by

sp(m) := a0 + a1 + · · ·+ ad. (14.4)

Since, for n > 1, νp(n) = νp(n!)− νp((n− 1)!), it follows from (14.2) that

νp(n) =
1 + sp(n− 1)− sp(n)

p− 1
. (14.5)

The p-adic valuations of binomial coefficients can be expressed in terms of the

function sp:

νp

((
n

k

))
=
sp(k) + sp(n− k)− sp(n)

p− 1
. (14.6)



338

In particular, for the central binomial coefficients Cn :=
(

2n
n

)
and p = 2, we have

ν2 (Cn) = 2s2(n)− s2(2n) = s2(n). (14.7)

Therefore, Cn is always even and 1
2
Cn is odd precisely whenever n is a power of 2.

This is a well-known result.

The central binomial coefficients Cn have the generating function

(1− 4x)−1/2 =
∑
n≥0

Cnx
n. (14.8)

The binomial theorem shows that the numbers in the Montgomery-Shapiro problem

bear a similar generating function

(1− 9x)−1/3 =
∑
n≥0

(−1
3

n

)
(−9x)n. (14.9)

It is natural to consider the coeffients c(n, k) defined by

(1− k2x)−1/k =
∑
n≥0

c(n, k)xn, (14.10)

which include the central binomial coefficients as a special case. We call c(n, k) the

k-central binomial coefficients. The expression

c(n, k) = (−1)n
(− 1

k

n

)
k2n (14.11)

comes directly from the binomial theorem. Thus, the Montgomery-Shapiro question

from (14.1) deals with arithmetic properties of

(−1
3

n

)
= (−1)n

c(n, 3)

32n
. (14.12)
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14.2 The integrality of c(n, k)

It is a simple matter to verify that the coefficients c(n, k) are rational numbers.

The expression produced in the next proposition is then employed to prove that

c(n, k) are actually integers. The next section will explore divisibility properties of

the integers c(n, k).

Proposition 14.2.1. The coefficient c(n, k) is given by

c(n, k) =
kn

n!

n−1∏
m=1

(1 + km). (14.13)

Proof. The binomial theorem yields

(1− k2x)−1/k =
∑
n≥0

(− 1
k

n

)
(−k2x)n

=
∑
n≥0

kn

n!

(
n−1∏
m=1

(1 + km)

)
xn,

and (14.13) has been established.

An alternative proof of the previous result is obtained from the simple recurrence

c(n+ 1, k) =
k(1 + kn)

n+ 1
c(n, k), for n ≥ 0, (14.14)

and its initial condition c(0, k) = 1. To prove (14.14), simply differentiate (14.10) to

produce

k(1− k2x)−1/k−1 =
∑
n≥0

(n+ 1)c(n+ 1, k)xn (14.15)

and multiply both sides by 1− k2x to get the result.
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Note 14.2.2. The coefficients c(n, k) can be written in terms of the Beta function as

c(n, k) =
k2n

nB(n, 1/k)
. (14.16)

This expression follows directly by writing the product in (14.13) in terms of the

Pochhammer symbol (a)n = a(a+ 1) · · · (a+ n− 1) and the identity

(a)n =
Γ(a+ n)

Γ(a)
. (14.17)

The proof employs only the most elementary properties of the Euler’s Gamma and

Beta functions. The reader can find details in [BM04]. The conclusion is that we

have an integral expression for c(n, k), given by

c(n, k)

∫ 1

0

(1− u1/n)1/k−1 du = k2n. (14.18)

It is unclear how to use it to further investigate c(n, k).

In the case k = 2, we have that c(n, 2) = Cn is a positive integer. This result

extends to all values of k.

Theorem 14.2.3. The coefficient c(n, k) is a positive integer.

Proof. First observe that if p is a prime dividing k, then the product in (14.10) is

relatively prime to p. Therefore we need to check that νp(n!) ≤ νp(k
n). This is simple:

νp(n!) =
n− sp(n)

p− 1
≤ n ≤ νp(k

n). (14.19)

Now let p be a prime not dividing k. Clearly,

νp(c(n, k)) = νp

(∏
m<n

(1 + km)

)
− νp

(∏
m<n

(1 +m)

)
. (14.20)
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To prove that c(n, k) is an integer, we compare the p-adic valuations of 1 + km and

1+m. Observe that 1+m is divisible by pα if and only if m is of the form λpα−1. On

the other hand, 1+km is divisible by pα precisely when m is of the form λpα− ipα(k),

where ipα(k) denotes the inverse of k modulo pα in the range 1, 2, · · · , pα − 1. Thus,

νp(c(n, k)) =
∑
α≥1

⌊
n+ipα (k)−1

pα

⌋
−
⌊
n
pα

⌋
. (14.21)

The claim now follows from ipα(k) ≥ 1.

Next, Theorem 14.2.3 will be slightly strengthened and an alternative proof be

provided.

Theorem 14.2.4. For n > 0, the coefficient c(n, k) is a positive integer divisible by

k.

Proof. Expanding the right hand side of the identity

(1− k2x)−1 =
(
(1− k2x)−1/k

)k
(14.22)

by the Cauchy product formula gives

∑
i1+···+ik=m

c(i1, k)c(i2, k) · · · c(ik, k) = k2m, (14.23)

where the multisum runs through all the k-tuples of non-negative integers. Obviously

c(0, k) = 1 and it is easy to check that c(1, k) = k. We proceed by induction on n,

so we assume the assertion is valid for c(1, k), c(2, k), · · · , c(n − 1, k). We prove the

same is true for c(n, k). To this end, break up (14.23) as

kc(n, k) +
∑

i1+···+ik=n
0≤ij<n

c(i1, k)c(i2, k) · · · c(ik, k) = k2n. (14.24)
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Hence by the induction assumption kc(n, k) is an integer.

To complete the proof, divide (14.24) through by k2 and rewrite as follows

c(n, k)

k
= k2n−2 − 1

k2

∑
i1+···+ik=n

0≤ij<n

c(i1, k)c(i2, k) · · · c(ik, k). (14.25)

The key point is that each summand in (14.25) contains at least two terms, each one

divisible by k.

Note 14.2.5. W. Lang [Lan00] has studied the numbers appearing in the generating

function

c2(l;x) :=
1− (1− l2x)1/l

lx
, (14.26)

that bears close relation to the case k = −l < 0 of equation (14.10). The special

case l = 2 yields the Catalan numbers. The author establishes the integrality of the

coefficients in the expansion of c2 and other related functions.

14.3 The valuation of c(n, k)

We consider now the p-adic valuation of c(n, k). The special case when p divides

k is easy, so we deal with it first.

Proposition 14.3.1. Let p be a prime that divides k. Then

νp(c(n, p)) = νp(k)n− n− sp(n)

p− 1
. (14.27)

Proof. The p-adic valuation of c(n, p) is given by

νp(c(n, p)) = νp(k)n− νp(n!) = νp(k)n− n− sp(n)

p− 1
. (14.28)
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Finally note that sp(n) = O(log n).

Note 14.3.2. For p, k 6= 2, we have νp(c(n, p)) ∼
(
νp(k)− 1

p−1

)
n, as n→∞.

We now turn attention to the case where p does not divide k. Under this as-

sumption, the congruence kx ≡ 1 mod pα has a solution. Elementary arguments of

p-adic analysis can be used to produce a p-adic integer that yields the inverse of k.

This construction proceeds as follows: first choose b0 in the range {1, 2, · · · , p − 1}

to satisfy kb0 ≡ 1 mod p. Next, choose c1, satisfying kc1 ≡ 1 mod p2 and write it as

c1 = b0 + kb1 with 0 ≤ b1 ≤ p− 1. Proceeding in this manner, we obtain a sequence

of integers {bj : j ≥ 0}, such that 0 ≤ bj ≤ p− 1 and the partial sums of the formal

object x = b0 + b1p+ b2p
2 + · · · satisfy

k
(
b0 + b1p+ · · ·+ bj−1p

j−1
)
≡ 1 mod pj. (14.29)

This is the standard definition of a p-adic integer and

ip∞(k) =
∞∑
j=0

bjp
j (14.30)

is the inverse of k in the ring of p-adic integers. The reader will find in [Gou97] and

[Mur02] information about this topic.

Note 14.3.3. It is convenient to modify the notation in (14.30) and write it as

ip∞(k) = 1 +
∞∑
j=0

bjp
j (14.31)

which is always possible since the first coefficient cannot be zero. The reader is invited

to check that, when doing so, the bj are periodic in j with period the multiplicative or-

der of p in Z/kZ. Furthermore, the bj take values amongst bp/kc, b2p/kc, . . . , b(k − 1)p/kc.

This will be exemplified in the case k = 3 later.
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The analysis of νp(c(n, k)) for those primes p not dividing k begins with a charac-

terization of those indices for which νp(c(n, k)) = 0, that is, p does not divide c(n, k).

The result is expressed in terms of the expansions of n in base p, written as

n = a0 + a1p+ a2p
2 + · · ·+ adp

d, (14.32)

and the p-adic expansion of the inverse of k as given by (14.31).

Theorem 14.3.4. Let p be a prime that does not divide k. Then νp(c(n, k)) = 0 if

and only if aj + bj < p for all j in the range 1 ≤ j ≤ d.

Proof. It follows from (14.21) that c(n, k) is not divisible by p precisely when

⌊
1
pα

(
n+

∑
j bjp

j
)⌋

=
⌊
n
pα

⌋
, (14.33)

for all α ≥ 1, or equivalently, if and only if

α−1∑
j=0

(aj + bj)p
j < pα, (14.34)

for all α ≥ 1. An inductive argument shows that this is equivalent to the condition

aj + bj < p for all j. Naturally, the aj vanish for j > d, so it is sufficient to check

aj + bj < p for all j ≤ d.

Corollary 14.3.5. For all primes p > k and d ∈ N, we have νp(c(p
d, k)) = 0.

Proof. The coefficients of n = pd in Theorem 14.3.4 are aj = 0 for 0 ≤ j ≤ d− 1 and

ad = 1. Therefore the restrictions on the coefficients bj become bj < p for 0 ≤ j ≤ d−1

and bd < p− 1. It turns out that bj 6= p− 1 for all j ∈ N. Otherwise, for some r ∈ N,

we have br = p− 1 and the equation

k

(
1 +

r−1∑
j=0

bjp
j + brp

r

)
≡ k

(
1 +

r−1∑
j=0

bjp
j − pr

)
≡ 1 mod pr+1, (14.35)
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is impossible in view of

− kpr < k

(
1 +

r−1∑
j=0

bjp
j − pr

)
< 0. (14.36)

Now we return again to the Montgomery-Shapiro question. The identity (14.12)

shows that the denominator qn is a power of 3. We now consider the indices n for

which c(n, 3) is odd and provide a proof of the second part of their problem.

Corollary 14.3.6. The coefficient c(n, 3) is odd precisely when n is a sum of distinct

powers of 4.

Proof. The result follows from Theorem 14.3.4 and the explicit formula

i2∞(3) = 1 +
∞∑
j=0

22j+1, (14.37)

for the inverse of 3, so that b2j = 0 and b2j+1 = 1. Therefore, if c(n, 3) is odd, the

theorem now shows that aj = 0 for j odd, as claimed.

More generally, the discussion of νp(c(n, 3)) = 0 is divided according to the residue

of p modulo 3. This division is a consequence of the fact that for p = 3u+ 1, we have

ip∞(3) = 1 + 2u
∞∑
m=0

pm, (14.38)

and for p = 3u+ 2, one computes p2 = 3(3u2 + 4u+ 1) + 1, to conclude that

ip∞(3) = 1 + 2(3u2 + 4u+ 1)
∞∑
m=0

p2m = 1 +
∞∑
m=0

up2m + (2u+ 1)p2m+1. (14.39)
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Theorem 14.3.7. Let p 6= 3 be a prime and n = a0 + a1p + a2p
2 + . . . + adp

d as

before. Then p does not divide c(n, 3) if and only if the p-adic digits of n satisfy

aj <


p/3 if j is odd or p = 3u+ 1,

2p/3 otherwise.

(14.40)

For general k we have the following analogous statement.

Theorem 14.3.8. Let p = ku+ 1 be a prime. Then p does not divide c(n, k) if and

only if the p-adic digits of n are less than p/k.

Observe that Theorem 14.3.8 implies the following well-known property of the

central binomial coefficients: Cn is not divisible by p 6= 2 if and only if the p-adic

digits of n are less than p/2.

Now we return to (14.21) which will be written as

νp(c(n, k)) =
∑
α≥0

⌊
1

pα+1

∑α
m=0 (am + bm)pm

⌋
. (14.41)

From here, we bound

α∑
m=0

(am + bm)pm ≤
α∑

m=0

(2p− 2)pm = 2(pα+1 − 1) < 2pα+1. (14.42)

Therefore, each summand in (14.41) is either 0 or 1. The p-adic valuation of c(n, p)

counts the number of 1’s in this sum. This proves the final result.

Theorem 14.3.9. Let p be a prime that does not divide k. Then, with the previous

notation for am and bm, we have that νp(c(n, k)) is the number of indices m such that

either

• am + bm ≥ p or
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• there is j ≤ m such that am−i+bm−i = p−1 for 0 ≤ i ≤ j−1 and am−j+bm−j ≥

p.

Corollary 14.3.10. Let p be a prime that does not divide k, and write n =
∑
amp

m

and ip∞(k) = 1 +
∑
bmp

m, as before. Let v1 and v2 be the number of indices m such

that am + bm ≥ p and am + bm ≥ p− 1, respectively. Then

v1 ≤ νp(c(n, k)) ≤ v2. (14.43)

14.4 A q-generalization of c(n, k)

A standard procedure to generalize an integer expression is to replace n ∈ N by

the polynomial

[q]n :=
1− qn
1− q = 1 + q + q2 + . . .+ qn−1. (14.44)

The original expression is recovered as the limiting case q → 1. For example, the

factorial n! is extended to the polynomial

[n]q! := [n]q[n− 1]q . . . [2]q[1]q =
n∏
j=1

1− qj
1− q . (14.45)

The reader will find in [KC02] an introduction to this q-world.

In this spirit we generalize the integers

c(n, k) =
kn

n!

n−1∏
m=0

(km+ 1) =
n∏

m=1

k(k(m− 1) + 1)

m
, (14.46)

into the q-world as

Fn,k(q) :=
n∏

m=1

[km]q[k(m− 1) + 1]q
[m]2q

. (14.47)
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Note that this expression indeed gives c(n, k) as q → 1. The corresponding extension

of Theorem 14.2.3 is stated in the next result. The proof is similar to that given

above, so it is left to the curious reader.

Theorem 14.4.1. The function

Fn,k(q) :=
n∏

m=1

(1− qkm)(1− qk(m−1)+1)

(1− qm)2
(14.48)

is a polynomial in q with integer coefficients.

14.5 Future directions

In this final section we discuss some questions related to the integers c(n, k).

A combinatorial interpretation The integers c(n, 2) are given by the central bi-

nomial coefficients Cn =
(

2n
n

)
. These coefficients appear in many counting situations:

Cn gives the number of walks of length 2n on an infinite linear lattice that begin and

end at the origin. Moreover, they provide the exact answer for the elementary sum

n∑
k=0

(
n

k

)2

= Cn. (14.49)

Is it possible to produce similar results for c(n, k), with k 6= 2? In particular, what

do the numbers c(n, k) count?

A further generalization The polynomial Fn,k(q) can be written as

Fn,k(q) =
(1− q)

(1− qkn+1)

n∏
m=1

(1− qkm)(1− qkm+1)

(1− qm)2
(14.50)
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which suggests the extension

Gn,k(q, t) :=
(1− q)

(1− tqkn)

n∏
m=1

(1− qkm)(1− tqkm)

(1− qm)2
(14.51)

so that Fn,k(q) = Gn,k(q, q). Observe that Gn,k(q, t) is not always a polynomial. For

example,

G2,1(q, t) =
1− qt
1− q2

. (14.52)

On the other hand,

G1,2(q, t) = q + 1. (14.53)

The following functional equation is easy to establish.

Proposition 14.5.1. The function Gn,k(q, t) satisfies

Gn,k(q, tq
k) =

(1− qknt)
(1− qkt) Gn,k(q, t). (14.54)

The reader is invited to explore its properties. In particular, find minimal condi-

tions on n and k to guarantee that Gn,k(q, t) is a polynomial.

Consider now the function

Hn,k,j(q) := Gn,k(q, q
j) (14.55)

that extends Fn,k(q) = Hn,k,1(q). The following statement predicts the situation where

Hn,k,j(q) is a polynomial.

Problem 14.5.2. Show that Hn,k,j(q) is a polynomial precisely if the indices satisfy

k ≡ 0 mod gcd(n, j).

A result of Erdös, Graham, Ruzsa and Strauss In this paper we have explored

the conditions on n that result in νp(c(n, k)) = 0. Given two distinct primes p and



350

q, P. Erdös et al. [EGRS75] discuss the existence of indices n for which νp(Cn) =

νq(Cn) = 0. Recall that by Theorem 14.3.8 such numbers n are characterized by

having p-adic digits less than p/2 and q-adic digits less than q/2. The following result

of [EGRS75] proves the existence of infinitely many such n.

Theorem 14.5.3. Let A, B ∈ N such that A/(p − 1) + B/(q − 1) ≥ 1. Then there

exist infinitely many numbers n with p-adic digits ≤ A and q-adic digits ≤ B.

This leaves open the question for k > 2 whether or not there exist infinitely many

numbers n such that c(n, k) is neither divisible by p nor by q. The extension to more

than two primes is open even in the case k = 2. In particular, a prize of $1000 has

been offered by R. Graham for just showing that there are infinitely many n such

that Cn is coprime to 105 = 3 · 5 · 7. On the other hand, it is conjectured that there

are only finitely many indices n such that Cn is not divisible by any of 3, 5, 7 and 11.

Finally, we remark that Erdös et al. conjectured in [EGRS75] that the central

binomial coefficients Cn are never squarefree for n > 4 which has been proved by

Granville and Ramare in [GR96]. Define

c̃(n, k) := Numerator
(
k−nc(n, k)

)
. (14.56)

We have some empirical evidence which suggests the existence of an index n0(k), such

that c̃(n, k) is not squarefree for n ≥ n0(k). The value of n0(k) could be large. For

instance

c̃(178, 5) = 10233168474238806048538224953529562250076040177895261

58561031939088200683714293748693318575050979745244814

765545543340634517536617935393944411414694781142
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is squarefree, so that n0(5) ≥ 178. The numbers c̃(n, k) present new challeges, even

in the case k = 2. Recall that 1
2
Cn is odd if and only if n is a power of 2. Therefore,

C786 is not squarefree. On the other hand, the complete factorization of C786 shows

that c̃(786, 2) is squarefree. We conclude that n0(2) ≥ 786.
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Chapter 15

Positivity of Szegö’s rational
function

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[Str08] Positivity of Szego’s rational function
published in Advances in Applied Mathematics, Vol. 41, Issue 2, Aug 2008, p. 255-264

Abstract We consider the problem of deciding whether a given rational function has

a power series expansion with all its coefficients positive. Introducing an elementary

transformation that preserves such positivity we are able to provide an elementary

proof for the positivity of Szegö’s function

1

(1− x)(1− y) + (1− y)(1− z) + (1− z)(1− x)

which has been at the historical root of this subject starting with Szegö. We then

demonstrate how to apply the transformation to prove a 4-dimensional generalization

of the above function, and close with discussing the set of parameters (a, b) such that

1

1− (x+ y + z) + a(xy + yz + zx) + bxyz

has positive coefficients.
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15.1 Introduction

A rational function is called positive if all its Taylor coefficients are positive. In

1930 H. Lewy and K. Friedrichs conjectured the positivity of the rational function

1

(1− x)(1− y) + (1− y)(1− z) + (1− z)(1− x)
=

∑
k,m,n>0

a(k,m, n)xkymzn. (15.1)

The positivity of the a(k,m, n) was proved shortly after by G. Szegö employing heavy

machinery in [Sze33], but he remarks himself “die angewendeten Hilfsmittel stehen

allerdings in keinem Verhältnis zu der Einfachheit des Satzes”1. Motivated by these

words, T. Kaluza gave an elementary but technically difficult proof that was pub-

lished in the very same journal [Kal33]. R. Askey and G. Gasper also proved the

above positivity in [AG72] using some of Szegö’s observations but avoiding the use

of Bessel functions in favour of Legendre polynomials. The problem has also been

considered in the recent paper [Kau07] by M. Kauers from the viewpoint of computer

algebra, and Kauers establishes the result under the constraint that k 6 16 by find-

ing appropriate recurrences. We provide an elementary proof of Szegö’s result with

the main ingredient being a simple positivity preserving operation in the spirit of

[GRZ83], whence we reduce the positivity of the coefficients a(k,m, n) to the posi-

tivity of another rational function that is easier to handle. While our proof is indeed

elementary, to check that the latter rational function is positive is most conveniently

done with the aid of computer algebra.

1“the used tools, however, are disproportionate to the simplicity of the statement”
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15.2 Positivity preserving operations

The following elementary proposition is closely related to the positivity preserving

operations given by J. Gillis, B. Reznick and D. Zeilberger in [GRZ83, Proposition

2].

Proposition 15.2.1. Fix n > 1. Let 1 6 j 6 n and suppose that the polynomial

p(x1, . . . , xn) is linear in xj. If 1/p(x1, . . . , xn) is positive then so is

Tj,λ

(
1

p(x1, . . . , xn)

)
:=

1

p(x1, . . . , xn)− λxjp(x1, . . . , xj−1, 0, xj+1, . . . , xn)

whenever λ > 0. In other words, the operator Tj,λ as defined above is positivity

preserving for λ > 0.

Proof. We may assume j = 1. Write p(x1, . . . , xn) = a(x2, . . . , xn)− x1b(x2, . . . , xn).

Since

1

p
=

1

a− x1b
=
∑
n>0

bn

an+1
xn1

has positive coefficients so does bn/an+1. The quotient

bn

an+1

xn1
(1− λx1)n+1

has nonnegative coefficients, and for n = 0 they are all positive. This finally implies

the positivity of

∑
n>0

(x1b)
n

((1− λx1)a)n+1 =
1

(1− λx1)a− x1b
=

1

p− λx1a
.
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In this paper, we will only be interested in the positivity of symmetric rational

functions 1/p. We therefore introduce another operator which preserves both posi-

tivity and symmetry.

Corollary 15.2.2. The operator Tλ defined by

Tλ := Tn,λ · · ·T2,λT1,λ

is positivity preserving for λ > 0.

Note that Tλ(1/p) is only defined for polynomials p which are linear in each of their

variables. Further note that Tj,λ is invertible with T−1
j,λ = Tj,−λ. Since the operators

T1,λ, T2,λ, . . . , Tn,λ commute, this shows that Tλ is invertible as well and T−1
λ = T−λ.

Hence, in order to establish the positivity of 1/p it is sufficient to do so for some

T−λ(1/p) with λ > 0. That Tλ preserves symmetry also follows from the fact that

T1,λ, . . . , Tn,λ commute.

Example 15.2.3. To prove positivity of 1/p(x, y, z), assuming p to be linear in each

of x, y, z, it suffices to prove positivity of

T−1

(
1

p(x, y, z)

)
=

(p(x, y, z) + xp(0, y, z) + yp(x, 0, z) + zp(x, y, 0)

+xyp(0, 0, z) + yzp(x, 0, 0) + zxp(0, y, 0) + xyzp(0, 0, 0))−1

Notice that the right-hand side is indeed a symmetric rational function if p is sym-

metric itself.
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15.3 Szegö’s rational function

15.3.1 Positivity of Szegö’s rational function

Theorem 15.3.1. Szegö’s rational function

f(x, y, z) :=
1

1− 2(x+ y + z) + 3(xy + yz + zx)

is positive.

Remark 15.3.2. Note that up to rescaling this is the rational function from (15.1),

namely

1

3
f
(x

3
,
y

3
,
z

3

)
=

1

(1− x)(1− y) + (1− y)(1− z) + (1− z)(1− x)
.

Proof. The denominator of f is linear in all the variables x, y, z, so we can apply our

inverted positivity preserving operation T−1. We obtain

g(x, y, z) := T−1(f(x, y, z)) =
1

1− (x+ y + z) + 4xyz
.

By Corollary 15.2.2 positivity of g implies positivity of f . The positivity of g, however,

is well-known, and several short proofs have been given in the literature (not so, to

our knowledge, for f). One possibility is to note that the coefficients b(k,m, n) of g

satisfy the following recurrence, first observed by J. Gillis and J. Kleeman [GK79],

(1+n)b(k+1,m+1, n+1) = 2(n+m−k)b(k+1,m, n)+(1+n−m+k)b(k+1,m+1, n),

which together with the initial b(0, 0, 0) = 1 proves positivity of the b(k,m, n) by

induction. That the b(k,m, n) satisfy this recurrence is verified by just checking that

their generating function g solves the corresponding differential equation.
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Remark 15.3.3. Kauers describes in [Kau07] how to automatically find positivity

proving recurrences with computer algebra, and also remarks that no such first-order

recurrence with linear coefficients exists for Szegö’s f .

Another simple proof of the positivity of g based on MacMahon’s master theorem

is given by M. Ismail and M. Tamhankar in [IT79]. We will discuss this theorem

in Section 15.3.3. The reason for doing so is that we discovered the transformation

presented in Corollary 15.2.2 by applying MacMahon’s master theorem, whence it is

possible to just see its impact.

15.3.2 A 4-dimensional generalization

Following [Sze33, §3] we define

qn(t) =
n∏
k=1

(t− xk),

and observe that one can recover Szegö’s function as

1

q′3(1)
=

1

(1− x1)(1− x2) + (1− x2)(1− x3) + (1− x3)(1− x1)
.

Szegö proves that 1/q′n(1) as a rational function in x1, . . . , xn has positive Taylor

coefficients for all n > 2, and remarks that the essential difficulty lies in the cases

n = 3 and n = 4. While our previous discussion covers n = 3, we now want to briefly

demonstrate how to use the operators Tλ from Corollary 15.2.2 to also establish the

case n = 4 in an elementary way.

Theorem 15.3.4. The rational function

1

q′4(1)
=

1∑
i<j<k(1− xi)(1− xj)(1− xk)

,
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where i, j, k = 1, 2, 3, 4, is positive.

Proof. Expanding the denominator of 1/q′4(1) and rescaling produces the rational

function

1

1− 3
∑

i xi + 8
∑

i<j xixj − 16
∑

i<j<k xixjxk
.

Applying T−2 we find that it suffices to establish positivity of

1

1−∑i xi + 4
∑

i<j<k xixjxk − 16x1x2x3x4

.

This again is a well-known result. In particular, Gillis, Reznick and Zeilberger demon-

strate in [GRZ83] how a single application of their elementary methods can be used

to deduce the desired positivity.

For other possible generalizations of Szegö’s function the interested reader is re-

ferred to [AG72], [Ask74]. In [AIK78] relations to rearrangement problems and inte-

grals of products of Laguerre polynomials are studied.

15.3.3 MacMahon’s master theorem

The following is a celebrated result of P. A. MacMahon published in [Mac15], and

coined by himself as “a master theorem in the Theory of Permutations”.

Theorem 15.3.5 (MacMahon, 1915). Let R be a commutative ring, A ∈ Rn×n a

matrix, and x = (x1, . . . , xn) commuting indeterminants. For every multi-index m =

(m1, . . . ,mn) ∈ Zn>0

[xm]
n∏
i=1

(
n∑
j=1

Ai,jxi

)mi

= [xm] det

In − A


x1

. . .

xn



−1

,
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where [xm] denotes the coefficient of xm1
1 · · ·xmnn in the expansion of what follows.

We find, preferably by using computer algebra, that Szegö’s function f(x, y, z)

can be expressed as

1

1− 2(x+ y + z) + 3(xy + yz + zx)
= det

I3 −


2 −1 −1

−1 2 −1

−1 −1 2




x

y

z



−1

.

MacMahon’s theorem 15.3.5 now asserts that the coefficient a(k,m, n) of xkymzn in

this expansion is equal to the coefficient of xkymzn in

(2x− y − z)k(−x+ 2y − z)m(−x− y + 2z)n.

Using the binomial theorem this product is equal to

∑
r,s,t

(
k

r

)(
m

s

)(
n

t

)
xk−rym−szn−t(x− y − z)r(−x+ y − z)s(−x− y + z)t,

which shows that in order to establish positivity of the a(k,m, n) it is sufficient to

prove positivity of the coefficient of xryszt in

(x− y − z)r(−x+ y − z)s(−x− y + z)t.

By applying MacMahon’s master theorem 15.3.5 backwards we find that

det

I3 −


1 −1 −1

−1 1 −1

−1 −1 1




x

y

z



−1

=
1

1− (x+ y + z) + 4xyz
,

which once more reduces positivity of f to the positivity of g.
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With this example in mind, we see the following relation to the positivity preserv-

ing operations Tλ: Let f be a rational function that Tλ can be applied to and which

can be represented as f = 1/ det(I − AX) for some matrix A (here X denotes the

diagonal matrix with the variables of f as its entries). Then Tλ(f) = 1/ det(I−AλX)

where Aλ is obtained from A by increasing all its diagonal entries by λ. Similarly,

application of Tj,λ corresponds to increasing the j-th diagonal element by λ. Thus

when working with a matrix A corresponding to f instead of with f itself, the action

of the positivity preserving operators described here is plainly visible.

15.4 On positivity of a family of rational

functions

Kauers states that “it is easy to show that there can be no algorithm which for

a given multivariate rational function decides whether all its series coefficients are

positive”, see [Kau07]. Therefore we focus on the reciprocals of certain symmetric

polynomials. In the 3-dimensional case we have the 4 elementary symmetric polyno-

mials

1, x+ y + z, xy + yz + zx, xyz,

and if we further require that every variable appears at most linearly, the most general

normalized candidate for positivity is

ha,b(x, y, z) =
1

1− (x+ y + z) + a(xy + yz + zx) + bxyz
.

We are interested in the set of all (a, b) such that ha,b has positive coefficients. First,

we note that positivity of some ha,b implies positivity of ha′,b′ whenever a′ 6 a and

b′ 6 b. This is a consequence of the following general fact.
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Proposition 15.4.1. Let 1/p(x1, . . . , xr) be a positive rational function, and q(x1, . . . , xr)

any polynomial with non-negative coefficients. Then the rational function

1

p− q

is positive provided that it has no pole at the origin.

Proof. This follows from the geometric summation

1

p− q =
1

p

∑
n>0

(
q

p

)n
.

Example 15.4.2. We shortly demonstrate another application of this fact. In [Kau07],

it was conjectured that the rational function

1

1− (x+ y + z) + 1
4
(x2 + y2 + z2)

is positive. Clearly,

1

(1− x)2

has positive coefficents, and thus has

1

(1− x+y+z
2

)2
=

1

1− (x+ y + z) + 1
2
(xy + yz + zx) + 1

4
(x2 + y2 + z2)

.

Proposition 15.4.1 now implies positivity of the function considered by Kauers.

Based upon numerical evidence and partial proofs, which will be provided in the

sequel, we present the following conjecture attempting to describe the set of all (a, b)

such that ha,b has positive coefficients.
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Conjecture 15.4.3. The rational function ha,b has positive coefficients if and only if


b < 6(1− a)

b 6 2− 3a+ 2(1− a)3/2

a 6 1

.

Figure 15.1 shows the region defined by the restrictions given in Conjecture 15.4.3

with the points corresponding to Szegö’s function f(x, y, z) = h3/4,0(2x, 2y, 2z) and

g = h0,4 marked.

5

10

15

20
bb

−2 −1 1

aa

Figure 15.1: Region of Positivity of ha,b

First, we turn to the “if” part of Conjecture 15.4.3, that is conditions for the (a, b)

that are sufficient for positivity of ha,b.

Proposition 15.4.4. ha,b is positive if 0 6 a 6 1 and b 6 2− 3a+ 2(1− a)3/2.

Proof. Let λ > 0. By Corollary 15.2.2 positivity of some ha,b implies positivity of

ha′,b′ := Tλ(ha,b) (here we mean that ha′,b′ equals Tλ(ha,b) up to rescaling the variables),

where

a′ =
a+ 2λ+ λ2

(1 + λ)2
, b′ =

b− 3λa− 3λ2 − λ3

(1 + λ)3
.
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Starting with the positivity of g = h0,4, that is (a, b) = (0, 4), we find that b′ =

2 − 3a′ + 2(1 − a′)3/2. Using Proposition 15.4.1 this proves the case 0 6 a < 1. For

a = 1 observe that

h1,−1(x, y, z) =
1

(1− x)(1− y)(1− z)

is obviously positive.

Using the positivity of g and the positivity preserving operations Tλ we have thus

been able to prove the “if” part of Conjecture 15.4.3 under the hypothesis that a > 0.

Clearly, we can strengthen this hypothesis to a > a1 if we succeed in proving the

positivity of ha1,b1 with b1 = 2− 3a1 + 2(1−a1)3/2. However, according to Conjecture

15.4.3 we neccessarily have a1 > a0, where a0 ≈ −1.81451 is the unique real solution

of

2− 3a0 + 2(1− a0)3/2 = 6(1− a0).

Let’s now consider the “only if” direction of Conjecture 15.4.3.

Proposition 15.4.5. ha,b is positive only if b < 6(1− a) and a 6 1.

Proof. Observe that the coefficient of xyz in the expansion of ha,b(x, y, z) evaluates

as 6(1− a)− b which proves that b < 6(1− a) for positivity.

For the second claim we expand ha,b(x, y, 0) as

ha,b(x, y, 0) =
1

1− x− y + axy
=
∑
n>0

(1− ax)n

(1− x)n+1
yn.

Using

1

(1− x)n+1
=
∑
m>0

(
n+m

n

)
xm,

we deduce that the coefficient of xyn in ha,b(x, y, z) is given by n+ 1− na. Positivity

of ha,b thus implies that

a <
n+ 1

n
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for all positive integers n.

Proposition 15.4.4 is based upon the positivity of g = h0,4, which by Proposition

15.4.1 implies that b 6 4 suffices for positivity of h0,b. This bound turns out to be

sharp.

Proposition 15.4.6. h0,b is positive only if b 6 4.

Proof. We expand h0,b as

h0,b(x, y, z) =
1

1− x− y − z + bxyz
=
∑
n>0

(1− bxy)n

(1− x− y)n+1
zn.

Using

1

(1− x− y)n+1
=
∑
m>0

(
n+m

n

)
(x+ y)m,

we conclude that the coefficient of xynzn in h0,b(x, y, z) is given by

(n+ 1)

(
2n+ 1

n

)
− bn

(
2n− 1

n

)
.

Positivity of h0,b then implies that

b <
2(2n+ 1)

n

for all integers n > 0.

Corollary 15.4.7. Let a 6 0. Then ha,b is positive only if b 6 2− 3a+ 2(1− a)3/2.

Proof. Otherwise an application of Tλ with appropriate λ > 0 would produce (after

normalization) a positive h0,b′ with b′ > 4 contradicting Proposition 15.4.6.

To improve on the hypothesis a 6 0, it would be desirable to show optimality

of Szegö’s function, that is that ha,0 is positive only if a 6 3/4. As in the proof of
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Proposition 15.4.6 we believe that it suffices to consider the coefficients of xynzn in

ha,0(x, y, z). While we readily find a second order recurrence for those coefficients we

didn’t see how to derive the necessity of a 6 3/4 in order to prove positivity.

Example 15.4.8. By computing the first 100 coefficients of xynzn in ha,0(x, y, z) we

learn that ha,0 is positive only if a < 0.75188.

The (conjectured) optimality of Szegö’s function f is surprising in this context

since f = T1(g) allows us to conclude the positivity of f from the positivity of g

but not vice versa. Yet, the positivity preserving operator T1 still provided us with

an optimal result. In fact, more seems to be true. As stated in Conjecture 15.4.3,

starting with a positive ha,b which is optimal (in the sense that increasing either a

or b will destroy positivity) the positivity preserving operators Tλ, λ > 0, not only

yield a positive rational function Tλ(ha,b) but again they seem to produce an optimal

rational function.



366

Chapter 16

A q-analog of Ljunggren’s binomial
congruence

The contents of this chapter (apart from minor corrections or adaptions) have

been published as:

[Str11] A q-analog of Ljunggren’s binomial congruence
published in DMTCS Proceedings: 23rd International Conference on Formal Power Series

and Algebraic Combinatorics (FPSAC), Jun 2011, p. 897-902

Abstract We prove a q-analog of a classical binomial congruence due to Ljunggren

which states that (
ap

bp

)
≡
(
a

b

)
modulo p3 for primes p > 5. This congruence subsumes and builds on earlier congru-

ences by Babbage, Wolstenholme and Glaisher for which we recall existing q-analogs.

Our congruence generalizes an earlier result of Clark.

16.1 Introduction and notation

Recently, q-analogs of classical congruences have been studied by several authors

including [Cla95], [And99], [SP07], [Pan07], [CP08], [Dil08]. Here, we consider the

classical congruence (
ap

bp

)
≡
(
a

b

)
mod p3 (16.1)
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which holds true for primes p > 5. This also appears as Problem 1.6 (d) in [Sta97].

Congruence (16.1) was proved in 1952 by Ljunggren, see [Gra97], and subsequently

generalized by Jacobsthal, see Remark 16.4.2.

Let [n]q := 1 + q + . . . qn−1, [n]q! := [n]q[n− 1]q · · · [1]q and

(
n

k

)
q

:=
[n]q!

[k]q![n− k]q!

denote the usual q-analogs of numbers, factorials and binomial coefficients respec-

tively. Observe that [n]1 = n so that in the case q = 1 we recover the usual factorials

and binomial coefficients as well. Also, recall that the q-binomial coefficients are poly-

nomials in q with nonnegative integer coefficients. An introduction to these q-analogs

can be found in [Sta97].

We establish the following q-analog of (16.1):

Theorem 16.1.1. For primes p > 5 and nonnegative integers a, b,

(
ap

bp

)
q

≡
(
a

b

)
qp2
−
(

a

b+ 1

)(
b+ 1

2

)
p2 − 1

12
(qp − 1)2 mod [p]3q. (16.2)

The congruence (16.2) and similar ones to follow are to be understood over the

ring of polynomials in q with integer coefficients. We remark that p2 − 1 is divisible

by 12 for all primes p > 5.

Observe that (16.2) is indeed a q-analog of (16.1): as q → 1 we recover (16.1).

Example 16.1.2. Choosing p = 13, a = 2, and b = 1, we have

(
26

13

)
q

= 1 + q169 − 14(q13 − 1)2 + (1 + q + . . .+ q12)3f(q)

where f(q) = 14 − 41q + 41q2 − . . . + q132 is an irreducible polynomial with integer

coefficients. Upon setting q = 1, we obtain
(

26
13

)
≡ 2 modulo 133.
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Since our treatment very much parallels the classical case, we give a brief history

of the congruence (16.1) in the next section before turning to the proof of Theorem

16.1.1.

16.2 A bit of history

A classical result of Wilson states that (n − 1)! + 1 is divisible by n if and only

if n is a prime number. “In attempting to discover some analogous expression which

should be divisible by n2, whenever n is a prime, but not divisible if n is a composite

number”, [Bab19], Babbage is led to the congruence

(
2p− 1

p− 1

)
≡ 1 mod p2 (16.3)

for primes p > 3. In 1862 Wolstenholme, [Wol62], discovered (16.3) to hold modulo

p3, “for several cases, in testing numerically a result of certain investigations, and

after some trouble succeeded in proving it to hold universally” for p > 5. To this end,

he proves the fractional congruences

p−1∑
i=1

1

i
≡ 0 mod p2, (16.4)

p−1∑
i=1

1

i2
≡ 0 mod p (16.5)

for primes p > 5. Using (16.4) and (16.5) he then extends Babbage’s congruence

(16.3) to hold modulo p3: (
2p− 1

p− 1

)
≡ 1 mod p3 (16.6)

for all primes p > 5. Note that (16.6) can be rewritten as
(

2p
p

)
≡ 2 modulo p3.

The further generalization of (16.6) to (16.1), according to [Gra97], was found by
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Ljunggren in 1952. The case b = 1 of (16.1) was obtained by Glaisher, [Gla00], in

1900.

In fact, Wolstenholme’s congruence (16.6) is central to the further generalization

(16.1). This is just as true when considering the q-analogs of these congruences as we

will see here in Lemma 16.4.1.

A q-analog of the congruence of Babbage has been found by Clark [Cla95] who

proved that (
ap

bp

)
q

≡
(
a

b

)
qp2

mod [p]2q. (16.7)

We generalize this congruence to obtain the q-analog (16.2) of Ljunggren’s congruence

(16.1). A result similar to (16.7) has also been given by Andrews in [And99].

Our proof of the q-analog proceeds very closely to the history just outlined. Be-

sides the q-analog (16.7) of Babbage’s congruence (16.3) we will employ q-analogs of

Wolstenholme’s harmonic congruences (16.4) and (16.5) which were recently supplied

by Shi and Pan, [SP07]:

Theorem 16.2.1. For primes p > 5,

p−1∑
i=1

1

[i]q
≡ −p− 1

2
(q − 1) +

p2 − 1

24
(q − 1)2[p]q mod [p]2q (16.8)

as well as
p−1∑
i=1

1

[i]2q
≡ −(p− 1)(p− 5)

12
(q − 1)2 mod [p]q. (16.9)

This generalizes an earlier result [And99] of Andrews.

16.3 A q-analog of Ljunggren’s congruence

In the classical case, the typical proof of Ljunggren’s congruence (16.1) starts with

the Chu-Vandermonde identity which has the following well-known q-analog:
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Theorem 16.3.1.

(
m+ n

k

)
q

=
∑
j

(
m

j

)
q

(
n

k − j

)
q

qj(n−k+j).

We are now in a position to prove the q-analog of (16.1).

Proof of Theorem 16.1.1. As in [Cla95] we start with the identity

(
ap

bp

)
q

=
∑

c1+...+ca=bp

(
p

c1

)
q

(
p

c2

)
q

· · ·
(
p

ca

)
q

q
p
∑

16i6a(i−1)ci−
∑

16i<j6a cicj
(16.10)

which follows inductively from the q-analog of the Chu-Vandermonde identity given

in Theorem 16.3.1. The summands which are not divisible by [p]2q correspond to the

ci taking only the values 0 and p. Since each such summand is determined by the

indices 1 6 j1 < j2 < . . . < jb 6 a for which ci = p, the total contribution of these

terms is

∑
16j1<...<jb6a

qp
2
∑b
k=1(jk−1)−p2(b2) =

∑
06i16...6ib6a−b

qp
2
∑b
k=1 ik =

(
a

b

)
qp2
.

This completes the proof of (16.7) given in [Cla95].

To obtain (16.2) we now consider those summands in (16.10) which are divisible

by [p]2q but not divisible by [p]3q. These correspond to all but two of the ci taking

values 0 or p. More precisely, such a summand is determined by indices 1 6 j1 <

j2 < . . . < jb < jb+1 6 a, two subindices 1 6 k < ` 6 b + 1, and 1 6 d 6 p − 1 such

that

ci =



d for i = jk,

p− d for i = j`,

p for i ∈ {j1, . . . , jb+1}\{jk, j`},

0 for i 6∈ {j1, . . . , jb+1}.
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For each fixed choice of the ji and k, ` the contribution of the corresponding summands

is
p−1∑
d=1

(
p

d

)
q

(
p

p− d

)
q

qp
∑

16i6a(i−1)ci−
∑

16i<j6a cicj

which, using that qp ≡ 1 modulo [p]q, reduces modulo [p]3q to

p−1∑
d=1

(
p

d

)
q

(
p

p− d

)
q

qd
2

=

(
2p

p

)
q

− [2]qp2 .

We conclude that

(
ap

bp

)
q

≡
(
a

b

)
qp2

+

(
a

b+ 1

)(
b+ 1

2

)((
2p

p

)
q

− [2]qp2

)
mod [p]3q. (16.11)

The general result therefore follows from the special case a = 2, b = 1 which is

separately proved next.

16.4 A q-analog of Wolstenholme’s congruence

We have thus shown that, as in the classical case, the congruence (16.2) can be

reduced, via (16.11), to the case a = 2, b = 1. The next result therefore is a q-analog

of Wolstenholme’s congruence (16.6).

Lemma 16.4.1. For primes p > 5,

(
2p

p

)
q

≡ [2]qp2 −
p2 − 1

12
(qp − 1)2 mod [p]3q.

Proof. Using that [an]q = [a]qn [n]q and [n+m]q = [n]q + qn [m]q we compute

(
2p

p

)
q

=
[2p]q [2p− 1]q · · · [p+ 1]q

[p]q [p− 1]q · · · [1]q
=

[2]qp

[p− 1]q!

p−1∏
k=1

(
[p]q + qp [p− k]q

)
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which modulo [p]3q reduces to (note that [p− 1]q! is relatively prime to [p]3q)

[2]qp

(
q(p−1)p + q(p−2)p

∑
16i6p−1

[p]q
[i]q

+ q(p−3)p
∑

16i<j6p−1

[p]q [p]q
[i]q [j]q

)
. (16.12)

Combining the results (16.8) and (16.9) of Shi and Pan, [SP07], given in Theorem

16.2.1, we deduce that for primes p > 5,

∑
16i<j6p−1

1

[i]q [j]q
≡ (p− 1)(p− 2)

6
(q − 1)2 mod [p]q. (16.13)

Together with (16.8) this allows us to rewrite (16.12) modulo [p]3q as

[2]qp

(
q(p−1)p + q(p−2)p

(
−p− 1

2
(qp − 1) +

p2 − 1

24
(qp − 1)2

)
+

+q(p−3)p (p− 1)(p− 2)

6
(qp − 1)2

)
.

Using the binomial expansion

qmp = ((qp − 1) + 1)m =
∑
k

(
m

k

)
(qp − 1)k

to reduce the terms qmp as well as [2]qp = 1 + qp modulo the appropriate power of [p]q

we obtain

(
2p

p

)
q

≡ 2 + p(qp − 1) +
(p− 1)(5p− 1)

12
(qp − 1)2 mod [p]3q.

Since

[2]qp2 ≡ 2 + p(qp − 1) +
(p− 1)p

2
(qp − 1)2 mod [p]3q

the result follows.

Remark 16.4.2. Jacobsthal, see [Gra97], generalized the congruence (16.1) to hold
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modulo p3+r where r is the p-adic valuation of

ab(a− b)
(
a

b

)
= 2a

(
a

b+ 1

)(
b+ 1

2

)
.

It would be interesting to see if this generalization has a nice analog in the q-world.
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Chapter 17

Outlook

In the following two final sections we comment on certain aspects of two methods

which have been in repeated use throughout this thesis: the method of brackets and

the method of creative telescoping. We demonstrate how, at least in each particular

instance, the method of brackets can be made rigorous by translating its application

into the framework of Mellin–Barnes contour integrals. Finally we describe a situaton

in which a direct application of creative telescoping is prevented by the divergence

of the involved integrals. It is pointed out that, on the level of Mellin calculus, the

difficulties at hand can be dealt with by considering distributions instead of classical

functions. For both methods this indicates opportunities for further investigation.

17.1 The method of brackets and similar

approaches

The method of brackets has been discussed in Chapters 8 and 9. In particular, it

was shown that it can be regarded as a multi-dimensional extension of Ramanujan’s

Master Theorem in the form

∫ ∞
0

xs−1

[
∞∑
n=0

(−1)n

n!
λ(n)xn

]
dx = Γ(s)λ(−s). (17.1)
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In Section 17.1.1 below, we briefly sketch the negative dimensional integration

(NDIM) approach [HR87] which led [GS07] to the method of brackets, initially re-

ferred to as optimized NDIM. While the fundamental (formal) objects in NDIM are

the integrals ∫ ∞
−∞

(x2)α dDx,

a very natural choice in the context of the evaluation of Feynman integrals, the

method of brackets revolves around the (formal) integrals

∫ ∞
0

xα−1 dx,

which are usually more convenient for the evaluation of general definite integrals as

collected, for instance, in [GR80].

In Section 17.1.2 we describe, mostly by example, how an application of the

method of brackets can be made rigorous by writing the integrand in terms of Mellin–

Barnes contour integrals which is a common practice in the context of evaluating

Feynman integrals [Smi06]. The heuristic part of the method of brackets is Rule 8.9.3

which postulates that an integral is evaluated as the joint contribution of the sum-

mations (each corresponding to a choice of free variables) converging in a common

region. As will become clear, this situation corresponds to a representation of the

desired integral as a multiple Mellin–Barnes integral: closing the contours in a par-

ticular way and collecting the appropriate residues yields a series which gives the

integral in its region of convergence. For future investigations, it would be interesting

to make the relation between combinations of free variables and collections of residues

more explicit. Further, given a multiple Mellin–Barnes integral

1

(2πi)n

∫ c1+i∞

c1−i∞
· · ·
∫ cn+i∞

cn−i∞

∏r
k=1 Γ(Lk(s1, . . . , sn))∏s
k=r+1 Γ(Lk(s1, . . . , sn))

x−s11 · · ·x−snn ds1 · · · dsn, (17.2)
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where the Lk are affine, it would be useful to have a systematic way of determining

appropriate sets of residues whose sum represents (17.2) in a chosen region. For n = 2

this problem is discussed in [FG12].

17.1.1 Negative dimensional integration

In the negative dimensional integration (NDIM) approach, advocated in [HR87],

one makes the formal definition

∫ ∞
−∞

(x2)α dDx = (−1)απD/2Γ(α + 1) δα+D/2,0. (17.3)

Here, x = (x1, . . . , xD), x2 = x2
1 + . . .+x2

D and δi,j is the Kronecker delta. This formal

identity is used for nonnegative α and gives a non-zero value only when the D 6 0,

which explains the label of negative dimensionality.

Initially, α is a positive integer and the definition (17.3) is motivated by taking

the limit β → 0 of

∫ ∞
−∞

(x2)α

(x2 +M2)β
dDx = πD/2(M2)D/2+α−βΓ(α +D/2)Γ(β − α−D/2)

Γ(D/2)Γ(β)
. (17.4)

It is then observed in [HR87] that, using the formal rule (17.3), the Gaussian

integral evaluates as

∫ ∞
−∞

e−αx
2

dDx =
∑
n

(−α)n

n!

∫ ∞
−∞

(x2)ndDx (17.5)

=
∑
n

(−α)n

n!
(−1)nπD/2Γ(n+ 1) δn+D/2,0

=
(π
α

)D/2
.
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In turn, the formal equality

∑
n

(−α)n

n!

∫ ∞
−∞

(x2)ndDx =
(π
α

)D/2
may be used to motivate the definition (17.3).

The method of brackets, as first presented in [GS07], started from the same under-

lying idea. Instead of formally expanding the Gaussian integral (17.5), one expands

Γ(s)

αs
=

∫ ∞
0

xs−1e−αx dx =
∑
n

(−α)n

n!

∫ ∞
0

xn+s−1 dx,

which leads to the formal definition [GS07, (A.2)]

∫ ∞
0

xn+s−1 dx =
Γ(s)Γ(n+ 1)

(−1)n
δn+s,0. (17.6)

Gonzalez and Schmidt then introduce the notation 〈n+ s〉 for the left-hand side and

go on to develop the formal rules that are presented in Section 8.9 of Chapter 8.

One advantage of the modified approach (17.6) over the original (17.3) is that it

is easier to apply to integrals outside the context of Feynman integrals. A variety of

examples is given in [GM10].

17.1.2 Mellin–Barnes integrals

Another standard practice, especially in particle physics [Smi06], is the intro-

duction of Mellin–Barnes representations to evaluate definite integrals. The final

(multiple) Mellin–Barnes integral may then be solved by closing the contours and

collecting the appropriate residues. By way of several examples, we will illustrate

that an application of the method of brackets corresponds to a way of systematically

introducing Mellin–Barnes representations. The rigor that may be obtained in this
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fashion comes at the price of introducing, along the way, arguably more technically

involved contour integrals and having to collect appropriate sets of residues.

We begin by illustrating the correspondence by observing that a Taylor expan-

sion of a function f(x) may be expressed as a Mellin–Barnes integral representation.

Namely, if

f(x) =
∞∑
n=0

(−1)n

n!
a(n)xn, (17.7)

then, by Ramanujan’s Master Theorem and under appropriate conditions on a(n) as

stated for instance in Theorem 8.3.2, we have

∫ ∞
0

xs−1f(x) dx = Γ(s)a(−s). (17.8)

Hence, by Mellin inversion, proved in Theorem 17.1.6, f(x) has the Mellin–Barnes

integral representation

f(x) =
1

2πi

∫ i∞

−i∞
Γ(s)a(−s)x−s ds. (17.9)

Here, and below, the exact contour is meant to be chosen appropriately. In this case

that means that the poles of Γ(s) lie to the left of the contour and that, on this side,

a(−s) is analytic.

Example 17.1.1. In the case f(x) = 1
1+x

we have a(n) = Γ(n+ 1) and hence

1

1 + x
=

1

2πi

∫ i∞

−i∞
Γ(s)Γ(1− s)x−s ds. (17.10)

We remark that closing the contour to the left reproduces the Taylor expansion of

f(x) at 0 which converges for |x| < 1. The Mellin–Barnes representation of f(x) also

allows the contour to be closed to the right. In that case, one sums the residues at
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the poles s = n+ 1 for n = 0, 1, . . . to obtain the series

∞∑
n=0

(−1)n

n!
Γ(n+ 1)x−(n+1) =

1

x

1

1 + 1
x

=
1

1 + x
,

which also represents f(x), but now for |x| > 1. It is this well-known aspect of Mellin–

Barnes representations [AAR99] that is responsible for the fact that the method of

brackets is able to give different evaluations of a given integral which are valid in

different regions and analytic continuations of each other.

The bracket expansion

1

(a1 + a2)α
=
∑
m1,m2

(−1)m1+m2

m1!m2!
am1

1 am2
2

〈α +m1 +m2〉
Γ(α)

(17.11)

stated more generally as Rule 8.9.1 has the following Mellin–Barnes analog:

1

(a1 + a2)α
=

1

2πi

∫ i∞

−i∞

Γ(−s)Γ(α + s)

Γ(α)
as1a

−α−s
2 ds (17.12)

Here, | arg a1− arg a2| < π and the contour is understood to be such that it separates

the poles s = 0, 1, 2, . . . of Γ(−s) from the poles s = −α,−α− 1, . . . of Γ(α + s).

Remark 17.1.2. Equation (17.12) is a special case of the Mellin–Barnes representa-

tion, see [PK01, Section 3.4.2], for the hypergeometric function, valid for | arg(x)| < π,

Γ(a)Γ(b)

Γ(c)
2F1

(
a, b

c

∣∣∣∣−x) =
1

2πi

∫ i∞

−i∞

Γ(a+ s)Γ(b+ s)

Γ(c+ s)
Γ(−s)xs ds,

and the fact that, when b = c, the left-hand side reduces to Γ(a)
(1+x)a

.

In a sequence of examples we now show how these tools, coupled with the inverse

Mellin transform which is shortly reviewed in Section 17.1.3, allow evaluation of

definite integrals along the lines of an application of the method of brackets.
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Example 17.1.3. As in Section 8.9.1 we consider, for illustration, the integral

∫ ∞
0

∫ ∞
0

xs−1yt−1 exp (−(x+ y)α) dx dy.

Using the Mellin–Barnes integral (17.9) for the exponential function, followed by an

application of (17.12), we have

exp (−(x+ y)α) =
1

2πi

∫ i∞

−i∞
Γ(σ)(x+ y)−σα dσ

=
1

(2πi)2

∫ i∞

−i∞

∫ i∞

−i∞

Γ(σ)Γ(−τ)Γ(σα + τ)

Γ(σα)
xτy−σα−τ dτ dσ

=
1

(2πi)2

∫ i∞

−i∞

∫ i∞

−i∞

1

α

Γ( s+t
α

)Γ(s)Γ(t)

Γ(s+ t)
x−sy−t ds dt.

In the last step we performed the change of variables −s = τ and −t = −σα−τ . Thus

an application of the (multiple) inverse Mellin transform, stated as Theorem 17.1.6,

yields the integral evaluation

∫ ∞
0

∫ ∞
0

xs−1yt−1 exp (−(x+ y)α) dx dy =
1

α

Γ( s+t
α

)Γ(s)Γ(t)

Γ(s+ t)
.

This agrees with the result obtained in Section 8.9.1 using the method of brackets.

Example 17.1.4. Consider, for α, β, ν > 0, the integral

∫ ∞
0

xνe−αxJν(βx) dx =
(2β)νΓ(ν + 1

2
)√

π(α2 + β2)ν+1/2
(17.13)

that was evaluated in Section 9.3 using the method of brackets. The relevant Mellin–

Barnes representations, equivalent through (17.9) to the respective Taylor expansions,
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are

e−αx =
1

2πi

∫ i∞

−i∞

Γ(s)

αs
x−s ds,

xνJν(βx) =
1

2πi

∫ i∞

−i∞

1

2

(
2

β

)t+ν Γ(ν + t
2
)

Γ(1− t
2
)
x−t dt,

valid for Re s > 0 and −2ν < Re t < 3/2 − ν, respectively. Recall that the contour

integrals are understood to seperate the increasing from the decreasing sequence of

poles.

After the change of variables u = s+ t, v = t/2, we have

e−αxxνJν(βx) =
1

(2πi)2

∫ i∞

−i∞

∫ i∞

−i∞

Γ(u− 2v)

αu−2v

(
2

β

)2v+ν
Γ(ν + v)

Γ(1− v)
x−u dv du.

It then follows that the left-hand side of (17.13) is given by setting u = 1 in

∫ ∞
0

xu+ν−1e−αxJν(βx) dx =
1

2πi

∫ i∞

−i∞

Γ(u− 2v)

αu−2v

(
2

β

)2v+ν
Γ(ν + v)

Γ(1− v)
dv. (17.14)

Note that the integrand has two sequences of poles: an increasing sequence of poles at

2v = u, u+1, u+2, . . . and a decreasing sequence of poles at v = −ν,−ν−1,−ν−2, . . ..

Closing the contour to the left, that is collecting the residues of the poles at v = −ν−n

for n ∈ Z>0, yields

1

αu+ν

∞∑
n=0

(−1)n

n!

Γ(u+ 2ν + 2n)

Γ(1 + ν + n)

(
β

2α

)ν+2n

.

In the case u = 1 this is precisely the series (9.12) obtained previously by the method

of brackets. In particular, one obtains, for |β| < |α|, the evaluation (17.13).

On the other hand, closing the contour in (17.14) to the right, yields the series

1

2

(
2

β

)u+ν ∞∑
n=0

(−1)n

n!

(
2α

β

)n
Γ(ν + u/2 + n/2)

Γ(1− u/2− n/2)
,
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which, for u = 1, coincides with (9.14). This second series converges for |β| > |α|.

Example 17.1.5. In this example we will illustrate the heuristic Rule 8.9.3 of the

method of brackets by evaluating the integral

∫ ∞
0

J0(αx)
xs−1

(1 + x2)λ
dx, (17.15)

first by employing the method of brackets and then, in the corresponding fashion, by

the Mellin–Barnes approach. For this integral, the method of brackets yields three

bracket series, one of which is divergent. The two other series converge in a common

region and add up to (17.15). This is confirmed in the Mellin–Barnes approach which

results in a Mellin–Barnes contour integral representing (17.15): closing the contour

to the right produces a divergent asymptotic expansion while closing the contour to

the left results in two series of residues which together give (17.15).

Applying the method of brackets, we have

∫ ∞
0

J0(αx)
xs−1

(1 + x2)λ
dx

=
∑
k

φk

∫ ∞
0

(α
2

)2k 1

Γ(k + 1)

x2k+s−1

(1 + x2)λ
dx

=
1

Γ(λ)

∑
k,n,m

φk,n,m

(α
2

)2k 1

Γ(k + 1)
〈n+m+ λ〉 〈2m+ 2k + s〉 .

There are 3 indices and 2 brackets which leaves 1 free variable to be chosen. If k is

chosen as the free variable, then m∗ = −k− s
2

and n∗ = −λ+ k+ s
2
. Since | det | = 2,
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the contribution is

1

2Γ(λ)

∑
k

φk

(α
2

)2k 1

Γ(k + 1)
Γ(−n∗)Γ(−m∗) (17.16)

=
1

2Γ(λ)

∑
k

(−1)k

(k!)2

(α
2

)2k

Γ(λ− k − s
2
)Γ(k + s

2
)

=
Γ( s

2
)Γ(λ− s

2
)

2Γ(λ)
1F2

(
s
2

1, 1− λ+ s
2

∣∣∣∣α2

4

)
.

This converges for
∣∣∣α2

4

∣∣∣ < 1. Similarly, the contribution with n as the free variable is

(α
2

)2λ−s Γ(−λ+ s
2
)

2Γ(λ+ 1− s
2
)

1F2

(
λ

1 + λ− s
2
, 1 + λ− s

2

∣∣∣∣α2

4

)
, (17.17)

which converges in the same region. On the other hand, with m as free variable one

obtains the divergent series

1

2Γ(λ)

∑
m

(−1)m

m!

(α
2

)−2m−s Γ(m+ λ)Γ(m+ s
2
)

Γ(1−m− s
2
)

. (17.18)

Combining the two convergent series, we therefore have the evaluation

∫ ∞
0

J0(αx)
xs−1

(1 + x2)λ
dx =

Γ( s
2
)Γ(λ− s

2
)

2Γ(λ)
1F2

(
s
2

1, 1− λ+ s
2

∣∣∣∣α2

4

)
+
(α

2

)2λ−s Γ(−λ+ s
2
)

2Γ(λ+ 1− s
2
)

1F2

(
λ

1 + λ− s
2
, 1 + λ− s

2

∣∣∣∣α2

4

)
.

We remark that in the special case s = 2 this combines pleasantly to

∫ ∞
0

J0(αx)
x

(1 + x2)λ+1
dx =

(α
2

)λ Kλ(α)

λ!
,

and, even more specially,

∫ ∞
0

J0(αx)
x

(1 + x2)3/2
dx = e−α.
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Let us now evaluate (17.15) by using the Mellin–Barnes approach. In that case we

commence with

J0(αx) =
1

2πi

∫ i∞

−i∞

1

2

(
2

α

)s
Γ(s/2)

Γ(1− s/2)
x−s ds

which, as in (17.9), is equivalent to the series expansion of J0(αx). By (17.12),

introduced as the analog of Rule 8.9.1, we further have

1

(1 + x2)λ
=

1

2πi

∫ i∞

−i∞

Γ(−t)Γ(λ+ t)

Γ(λ)
x2t dt.

Hence, after the change of variables u = s− 2t,

J0(αx)

(1 + x2)λ
=

1

2πi

∫ i∞

−i∞

[
1

2πi

∫ i∞

−i∞

1

2

(
2

α

)u+2t
Γ(u/2 + t)Γ(−t)Γ(λ+ t)

Γ(1− u/2− t)Γ(λ)
dt

]
x−u du.

By the Mellin inversion formula, Theorem 17.1.6, it follows that

∫ ∞
0

J0(αx)
xs−1

(1 + x2)λ
dx =

1

2πi

∫ i∞

−i∞

1

2

(
2

α

)s+2t
Γ(s/2 + t)Γ(−t)Γ(λ+ t)

Γ(1− s/2− t)Γ(λ)
dt.

(17.19)

The integrand has decreasing sequences of poles at t = −s/2− n and t = −λ− n for

n ∈ Z>0. The residues of the poles at t = −s/2− n sum to

1

2

∞∑
n=0

(−1)n

n!

(α
2

)2n Γ(s/2 + n)Γ(λ− s/2− n)

Γ(1 + n)Γ(λ)
, (17.20)

which coincides with (17.16). Likewise the residues of the poles at t = −λ − n sum

to

1

2

∞∑
n=0

(−1)n

n!

(α
2

)2n+2λ−s Γ(λ+ n)Γ(s/2− λ− n)

Γ(1− s/2 + λ+ n)Γ(λ)
, (17.21)

which rewrites to (17.17). If, on the other hand, one closes the contour in (17.19) to

the right then the residues at t = 0, 1, 2, . . . yield the divergent asymptotic expansion
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(17.18).

17.1.3 Mellin transform

For completeness and convenience of the reader we include here a proof of the

Mellin inversion theorem which is at the heart of Section 17.1.2. The proof given here

is adopted from the two-dimensional case discussed in [Ree44, Fox57] which is based

on Mellin’s original treatment; it thus is most likely precisely the classical one.

Theorem 17.1.6 (Mellin inversion formula). Assume that F (s) is analytic in the

strip a < Re s < b and that F (s) → 0 as | Im s| → ∞. upon restricting to compact

[a’,b’]) Define f by

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (s)x−s ds. (17.22)

If this integral converges absolutely for all c ∈ (a, b), then

F (s) =

∫ ∞
0

xs−1f(x) dx.

Proof. First, note that the integral (17.22) does not depend on the specific value of

c ∈ (a, b). Given s with a < Re s < b we can therefore write, for any c1, c2 satisfying

a < c1 < Re s < c2 < b,

∫ ∞
0

xs−1f(x) dx =

∫ 1

0

xs−1 1

2πi

∫ c1+i∞

c1−i∞
F (t)x−t dt dx

+

∫ ∞
1

xs−1 1

2πi

∫ c2+i∞

c2−i∞
F (t)x−t dt dx

= − 1

2πi

∫ c1+i∞

c1−i∞

F (t)

t− s dt+
1

2πi

∫ c2+i∞

c2−i∞

F (t)

t− s dt,

where in the last step we used that the involved integrals are absolutely convergent

to justify switching the order of integration. By Cauchy’s residue theorem we have,
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for M > | Im s|,

1

2πi

[∫ c2+iM

c2−iM
−
∫ c2+iM

c1+iM

−
∫ c1+iM

c1−iM
+

∫ c2−iM

c1−iM

]
F (t)

t− s dt = F (s).

By the assumed convergence F (t) → 0 as | Im t| → ∞, the two auxiliary horizontal

line integrals vanish as M →∞. Hence

∫ ∞
0

xs−1f(x) dx = F (s)

as claimed.

The Mellin inversion theorem and its proof extend to several variables. The two-

dimensional case, which results in no loss of generality, is proven in [Ree44] along the

lines of the proof just given.

Theorem 17.1.7. Assume that F (s1, . . . , sn), as a function of sk, is analytic in the

strip ak < Re sk < bk for each k = 1, . . . , n. Further, assume that F (s1, . . . , sn)→ 0

as | Im s1|, . . . , | Im sn| → ∞, independently of each other. Define f by

f(x1, . . . , xn) =
1

(2πi)n

∫ c1+i∞

c1−i∞
· · ·
∫ cn+i∞

cn−i∞
F (s1, . . . , sn)x−s11 · · ·x−snn ds1 · · · dsn.

(17.23)

If this integral converges absolutely for all c1, . . . , cn with ck ∈ (ak, bk) then

F (s1, . . . , sn) =

∫ ∞
0

· · ·
∫ ∞

0

xs1−1
1 · · ·xsn−1

n f(x1, . . . , xn) dx1 · · · dxn.
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17.2 Creative telescoping leading to divergent

integrals

In this section, we apply the creative telescoping approach to the problem, consid-

ered in Chapter 4, of obtaining the differential equation satisfied by the probability

density function p4. This problem splits into two parts: finding the differential equa-

tion and proving that p4 is one of its solutions. As we are going to illustrate, the

first part of this problem is straightforward to solve using creative telescoping. Yet,

the step of proving, which in other applications of creative telescoping often reduces

to routine verification, poses certain issues, described below, which include that ap-

plying differential operators and taking limits do not commute. We do not offer a

satisfactory resolution but remark that a general approach to solving the issues at

hand would be interesting: when deducing the differential equation in Chapter 4 we

had to use the distributional Mellin transform to work around the issues.

The probability density of the distance travelled by a four-step random walk, as

discussed in Chapter 4, is

p4(x) =

∫ ∞
0

xtJ0(t)4J0(xt) dt, (17.24)

where J0 is a Bessel function. Using Mellin calculus and the relation of p4 to the mo-

ments W4, it was shown in Example 4.2.3 of Chapter 4 that p4 satisfies the differential

equation A4 · p4 = 0 with

A4 = x4(θ + 1)3 − 4x2θ(5θ2 + 3) + 64(θ − 1)3 (17.25)

= (x− 4)(x− 2)x3(x+ 2)(x+ 4)D3
x + 6x4

(
x2 − 10

)
D2
x

+ x
(
7x4 − 32x2 + 64

)
Dx +

(
x2 − 8

) (
x2 + 8

)
.

Here θ = xDx = x d
dx

.
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In this section, we will discuss the issue of finding and establishing this differen-

tial equation using creative telescoping. A nice introduction to the ideas underlying

creative telescoping is [PWZ96], and a very useful implementation (in Mathematica) of

the creative telescoping algorithm is given in the package HolonomicFunctions [Kou10]

by Christoph Koutschan.

We denote the integrand of (17.24) by f4(x, t) = xtJ0(t)4J0(xt). Using creative

telescoping we find operators A = A(x,Dx) and B = B(x,Dx, t, Dt) such that

(A+DtB) · f4 = 0. (17.26)

Indeed, using for instance HolonomicFunctions, we obtain

A = A4,

B = t3x2D4
t + 7t2x2D3

t − 5t2x3DxD
3
t − tx2

(
10x2t2 − 20t2 − 1

)
D2
t

− 4x2
(
5x2t2 − 15t2 − 1

)
Dt + 5x3

(
2x2t2 − 12t2 − 1

)
DxDt

+
x2 (5x4t4 − 60x2t4 + 64t4 − 28t2 − 4)

t
− 5x3 (2x2t2 − 12t2 − 1)Dx

t
.

Note that the operator A found by creative telescoping coincides with the differential

operator A4 from (17.25). In other words, we succeeded in finding the differential

equation we were looking for.

The second step is to use the relation (17.26) to show that p4 indeed solves the

differential equation A · p4 = 0. However,

A ·
∫ t

0

f4(x, s)ds =

∫ t

0

A · f4(x, s)ds =

∫ t

0

−DtB · f4(x, s)ds = −B · f4(x, t) (17.27)

and the right-hand side does not converge as t→∞. This is illustrated for x = 3/2

in Figure 17.1.
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Figure 17.1: −B · f4(3/2, t)

In fact, it is not true that, as t→∞,

Dn
x ·
∫ t

0

f4(x, s)ds −→ Dn
x ·
∫ ∞

0

f4(x, s)ds = p
(n)
4 (x). (17.28)

To see the failure of (17.28), note that in the case n = 2

D2
x ·
∫ t

0

f4(x, s)ds =

∫ t

0

D2
x · f4(x, s)ds = −

∫ t

0

s2J0(s)4 (xsJ0(xs) + J1(xs)) ds.

(17.29)

In light of the asymptotic form

Jα(x) ≈
√

2

πx
cos
(
x− απ

2
− π

4

)
,

the integral (17.29) is seen to not converge as t→∞. The integrand and the integral

are depicted in Figure 17.2.

It is unclear to the author how to proceed from here.

Remark 17.2.1. From (17.27), as suggested by Manuel Kauers, one can proceed by

seeking an operator C = C(x,Dx, t) which annihilates the right-hand side of (17.27).

For such C and for all t > 0, we will then have

CA ·
∫ t

0

f4(x, s)ds = 0. (17.30)
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Figure 17.2: The integrand of the RHS of (17.29) and the integral (17.29) when
x = 1/2

Using, for instance, once more the functionality of the package HolonomicFunctions

we indeed find such C of order 10 in Dx and degree 10 in both x and t. Moreover,

the only monomial in C which involves t10 is of the form x10t10; in other words,

C

t10
−→ x10 as t→∞.

At this point, we would like to take the limit t → ∞ in (17.30) after dividing both

sides by t10. If possible, this would allow us to conclude that x10A · p4 = 0 which, of

course, implies A · p4 = 0. In light of (17.28), there is, however, similar trouble as in

(17.27): the limit t→∞ in (17.30) can not be taken individually for each monomial

of CA.

Remark 17.2.2. Maybe it is worth pointing out that the integral (17.29) as t→∞

seems to approach the desired value p′′4(x) in a certain “average sense”: as illustrated

in Figure 17.3, the oscillations, though increasing in magnitude, appear to stabilize

about p′′4(x). The same phenomenon can be observed in equation (17.27) and Figure

17.1 where the desired value is zero.

Remark 17.2.3. As suggested by Doron Zeilberger, one way to circumvent the ap-

pearance of integrals that do not converge is to replace the integrand f4(x, t) by

e−λtf4(x, t) with an extra parameter λ > 0. In other words, instead of for p4, as in
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Figure 17.3: The integral (17.29) when x = 1/2 with p′′4(1/2) = −0.266 superimposed

(17.24), we set out to find a differential equation for

∫ ∞
0

xtJ0(t)4J0(xt)e−λt dt. (17.31)

In the resulting equations we finally take the limit λ→ 0.

While this approach can solve the problem of finding and proving a differential

equation for p4, it does so not via the relation (17.26) for the integrand f4(x, t) but

via a corresponding relation for the generalized integrand e−λtf4(x, t). This latter

relation, as well as finding it, is much more involved. It would be nice to deduce, by

some general principle, the differential equation directly from (17.26).

In conclusion, it would be very interesting to have an a priori reason of some

sort that would allow us to conclude (in this and other cases) that the differential

operator A+DtB, from (17.26), found by the creative telescoping method yields the

desired differential operator A annihilating p4 (even though we cannot do the usual

interchange of differentiation and integration). In light of Remark 17.2.2 and the

success of the distributional Mellin transform in this instance, distributions may well

be the right framework for further insight.
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