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ABSTRACT 

This report describes the group theoretical determination 
of the possible type of the uniform latt ice distortion 
associated with the superconducting transition when the 
order parameter belongs to a degenerate representation of 
the symmetry group of the system. The method uses the 
symmetrical property of the Ginzburg-Landau functional with 
the latt ice distortion. Systems with hexagonal (D 6) and 
tetragonal (D4) symmetry are studied in the presence of the 
spin-orbit coupling. I t  is shown that all states (except 3 
states) with the order parameter of the degenerate representation 
in regard to D 6 or D 4 are unstable to the latt ice distortion 
which breaks the symmetrical configuration. 

§I Introduction 

Recently much attention has been focused on heavy electron system 

Such as UBel3, UPt 3 and Ce Cu 2 Si 2. One of the most controversial points 

is the nature of the superconductivity : Whether i t  is a conventional 

~inglet or t r ip le t  pairing. Volovik and Gor'kovl), Ueda and Rice2), 

Blount 3), Ozaki et al 4) have investigated the possible anisotropic 

Pairing states using a Ginzburg-Landau theory. A clear identification of 

the phase has not until now been achieved. Recently Joynt and Rice 5) 

have pointed out that a uniform latt ice strain is associated with the 

~Uperconducting transition when the order parameter is anisotropic. In 

my previous paper 6) I have described the group theoretical method for 

determining of the spontaneous crystal symmetry lowering at the phase 

transition to the anisotropic superconductivity. In the paper the cubic 

~Y~tem was studied in detail in the presence and the absence of the 
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spin-orbit coupling. In this report I examine both of hexagonal (D6) and 

tetragonal (D4) systems in the presence of the spin-orbit coupling by 

this group theoretical method. 

§2 The Ginzburg-Landau (GL) functional with the latt ice distortion. 

At the original latt ice configuration R=R O, the system has the 

symmetry group GO=IIPXM due to the spin-obit coupling, where 

IIP={pu(p)]pcP}, u(p) is the spin rotation about the same rotation axis 

by the same rotation angle as peP, P is D 6 or D 4, M=@+t@, ¢:{~} 

and t are the group of the gauge and the time reversal transformation. 

For either case of singlet (s=O) or t r ip le t  (s=l) the superconductivity 

transition is classified by the single valued irreducible representation 

F of i i  P such as A I, A 2, B I, B 2, E l and E 2 for lID6 , A I, A 2, B l, B 2 and E 
for lID4 , Thus the order parameter corresponding to the representation F 

is given by 

A(k) = Zkjd(F,j) (2-I) 
3 

where kj is a complex number and d(F,j) is the basis function belonging to 

the representation F. The bases corresponding to degenerate 

representations are listed in Table I. 

Table I Basis functions of degenerate representation of D 6 and D4 

basis function d(F,j) 

D 6 : E l 

E2 

D4: E 

(s=O) (kzky, -kzkx)% 0 

(s=l) (Tzky, -Tzkx), (Tyk z, -Txkz) 

(s=O) (kx2-ky2, 2kxky) %0 

(s=l) (%xkx-Tyky, ~xky+%ykx) 

(s=O) (kzky, -kzkx)~ 0 

(s=l) (%zky, -%zkx), (Tyk z, -Txkz) 

(Tj = i6j6y) 
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G O action on {~j} is given by 

pu(p)~Xj : E D?(p)jj ' eiQ%j ' 
j (2.2) 

tpu(p)~%j = E Dr(p)jj,e-iQ%j ~ 
j '  

where D?(p) is the representation matrix of F. 

Now let  us define the G O action on the lat t ice configuration R as 

follows : 
pu(p)~R = pR, tpu(p)~R = pR (2.3) 

where pR is the la t t ice configuration obtained by rotating R by pEP. 

Then we consider the lat t ice configuration which can be obtained from 

the given symmetrical configuration R 0 (PR o : RO) by adding a linear 

Combination of the irreducible normal modes Q(y;m), 

R = R 0 + E E Q(y;m)n(yIm) (2 .4)  
y m  

where y denotes the i r r e d u c i b l e  representa t ion  of  P and Fl(y;m) is  a small 

real number. Then q(y;m) transforms as fo l lows ; 

pu(p)~q(y;m) = E DY(P)mm ' q(y:m') 
m 

tpu(p)~n(y;m) = Z DY(P)mm ' q(y;m') 
m w 

(2.5) 

Let F(n,~) be the GL functional at the lat t ice configuration R(q). 

Then F(q,~) is invariant to a simultaneous G O action on q and L ; 

F(gq,gX) : F(q,~) for g~G 0 (2,6) 

From this invariance the expansion of F(q,X) up to the fourth order of 
and the second of q has the form 

F(q,X) : F(O.X) + E C (y) E V (y;X)mq(Y;m) 
Y m 

+ E B(y) Eq(y;m) 2 (2.7) 
y m 
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where F(O,}`) is GL functional at R = R 0 (q=O) which is given in 

reference I) ,  V(y;}`) m is the irreducible bilinear form of }̀  and }`* of the 

relevant representaion I", which are given in Table I I ,  and C(y) and B(y) 

are real numbers. 

Table I I  The irreducible bilinear form V(y,}`) m for degenerate 

instabi l i ty of D 6 and D 4 

the representation 
of the instabi l i ty V(y,}`) 

D 6 : E l V(AI ; }`) = } ' I * } ` I  + }`2*}`2 
V(E2; } ` ) I  = }`I*}`I  - } '2*} '2 
V(E2; } ` )2  = }`i*~,2 + }`2"),i 

E2 

D 4 : E 

V(AI : } ` )  = }`I*}`I + }`2*}`2 
V(E2: } ` ) I  : - } ` I * } ` I  +}`2*}`2 
V(E2;} ` )2 = }`I*}`2 + }`2"}`I 

V (A I ; } ` )  " }`I*}`I + }`2*}`2 
V (B I ; } ` ) I  : }`I*}`I - }`2*}`2 
V(B2;} ` )2  = }`I*}`2 + }`2"}`I 

§3 The Possible latt ice distortion 

Using the generalized Hellmann-Feynman theorem6), 

energy E(q) up to the f i r s t  order of q(~:m) 

E(n) = E(O) + ~ C (y) ~ V (Y;}`O) n(y;m) 
y m 

we have the free 

(3.1) 

where E(O) is the free energy at q : O, }̀ 0 is the minimum point }̀  at 

q = 0 and the normalized value of }̀ 0 is given in the second column of 

Table I I I .  I f  V(y;}`O) m # 0 for some (Y,}`O), the latt ice distortion 

q(y;m) proportional to V(y;}`O) m must occur. For example in the 

D2(C2x)xR state (in the notation of Volovik and Gor'kovl)) of E l 
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transition of D 6 system, ~0 = (I .0).  Thus we have from Table I f ,  

V(AI;~ O) = I. V(E2;~O) 1 = 1 and V(E2;~O) 2 = O. 

Table I I I  Classes of singlet or t r ip le t  superconductivity derived 
by degenerate instabi l i ty,  their possible latt ice distortion and 
the residual point symmetry for D 6 and D 4 

class order parameter latt ice distortion residual 
LO point symmetry 

D6:EI 
D6(E) a) ( I / ~ 2 ) ( I , i )  . . . . .  b) D 6 

D2(C2x)C)XR d) (I,0) n(E2;I) D 2 

C2(E)xR ( I / ~ 2 ) ( I , I )  q(E2;2) C 2 

D6:E2 
D6(C2) ( I / ~ 2 ) ( I , i )  - .o . ,  D 6 

D2xR ( I ,0 )  n(E2; l)  D 2 
D2(C2)xR (0, I )  n(E2;2) D 2 

D4:(E) 
D4(E ) ( I /V2) ( l , i )  , , , , ,  D 4 

D2(C2x)xR ( I ,0 )  q(B 1 ) D2 
D2(C2y)XR (0. I )  n(B 1 ) D2 

notes to Table I I I  

a) For class we use Volovik and Gor'kov notation. 

b) All states have non-zero q(A l )  and i t  is not listed in this Table. 

c) D2(C2x ) = (E, C2x, C2ye i~, C2ze i~) 

d) R : time reversal operation 

Then we can expect the latt ice distortion to the direction q(E2;l). The 

distorted latt ice has the residual point symmetry D 2. In Table I l l ,  I 

l ls t  the type of the possible latt ice distortion and its residual point 

~mmetry. Note that the residual point symmetry P' of the distorted 
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latt ice has the form 

P' = {p~Plpu(p)~ or tpu(p)~G I} 

where G 1 is the invariance group of ~0. 

(3,2) 
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