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ABSTRACT OF DISSERTATION

Investigation of Spin-Independent CP Violation in Neutron and Nuclear Radiative
β Decays

CP violation is an important condition to explain the preponderance of baryons in
our universe, yet the available CP violation in the Standard Model (SM) via the
so-called Cabibbo-Kobayashi-Maskawa mechanism seems to not provide enough CP
violation. Thus searching for new sources of CP violation is one of the central tasks
of modern physics. In this thesis, we focus on a new possible source of CP violation
which generates triple-product correlations in momenta which can appear in neutron
and nuclear radiative β decay. We show that at low energies such a CP violating
correlation may arise from the exotic coupling of nucleon, photon and neutrino that
was proposed by Harvey, Hill, and Hill (HHH). One specialty of such an exotic HHH
coupling is that it does not generate the well-known CP-violating terms such as
�D-term�, �R-term�, and neutron electric dipole moment, in which particle's spins
play critical role. We show that such a new HHH-induced CP violating e�ect is
proportional to the imaginary part of c5gV , where gV is the vector coupling constant
in neutron and nuclear β decay, and c5 is the phenomenological coupling constant that
appears in chiral perturbation theory at O(M−2) with M referring to the nucleon or
nuclear mass. We consider a possible non-Abelian hidden sector model, which is
beyond the SM and may yield a nontrivial Im(c5). The available bounds on both
Im(c5) and Im(gV ) are considered, and a better limit on Im(c5) can come from a
direct measurement in radiative beta decay. We calculate the competitive e�ect that
arises from the general parameterization of the weak interaction that was proposed
by Lee and Yang in 1956. We also show that in the proposed measurements, the CP-
violating e�ect can be mimicked by the SM via �nal-state interactions (FSI). For a
better determination of the bound of Im(c5), we consider the FSI-induced mimicking
e�ect in full detail in O(α) as well as in leading recoil order. To face ongoing precision
measurements of neutron radiative β decay of up to 1% relative error, we sharpen our
calculations of the CP conserving pieces of neutron radiative β decay by considering
the largest contributions in O(α2): the �nal-state Coulomb corrections as well as the
contributions from two-photon radiation.
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Chapter 1 Introduction

One of the greatest forward steps in modern physics during the past half century is
to realize the essential role of symmetries, including many approximate symmetries.
Symmetries are related to invariances of a system. Finding a symmetry can often
allow for substantial constraints on the form of a dynamical description. The case
of a broken symmetry is often even more important, because a broken symmetry
can reveal the existence of new forces and/or of new particles, or of fundamental
properties of the vacuum. In this sense, investigation of symmetries, especially broken
symmetries, provides us an excellent tool to �nd �new physics�.

In general, symmetries can fall into one of two categories:

1. continuous symmetries, such as translational or rotational symmetry;

2. discrete symmetries, such as charge conjugation C, parity P, and time reversal
T � these 3 fundamental symmetries are especially of our interest.

Until the middle of last century, people believed that all these symmetries are univer-
sally valid, based on rather irrational statements of belief from everyday experiences
in the macroscopic world. In 1956, the discovery of parity violation in weak decays [3]
shook our earlier unconditional belief in the absolute validity of these discrete sym-
metries in the quantum world. As a compromise, one tried to argue that although P
by itself is not conserved in neutron and nuclear β decay, the combined symmetry of
charge conjugation and parity, CP, should still hold. In 1964, soon after the discovery
of the P violation, CP as a combination was also experimentally con�rmed to be vi-
olated [4] [5] [6]. With these continuing failures of assuming validity of symmetries,
the lesson is that on quantum level, symmetries should not be assumed to hold a
priori, but have to be subjected to determined experimental scrutiny.

As mentioned above, �nding a broken symmetry is often an exciting thing since
it often suggests the existence of new particles and new physics that are still beyond
the scope of our current knowledge. CP violation is an outstanding example. The
most important thing about CP violation is that it helps provide us a solution to a
very important question: how we managed to come to be.

One of the most striking achievements of cosmology of the 20th century is the
�Big Bang� scenario to explain the origin of the universe. Such a theory naturally
sews modern cosmology and modern particle physics together. Such a scenario is
supported by many cosmological observations, and thus is widely accepted as valid.
A big challenge that remains for us is to explain the so-called baryogenesis problem.
More explicitly, according to the standard point of view at the very origin of the
big bang, matter and antimatter were supposed to be produced in equal amounts at
incredibly high temperature. Due to the quick expansion, the universe cooled down,
with most of the matter and antimatter annihilating into radiations such as photons
that pervade everywhere in the universe. Based on this picture, one immediately

1



draws the conclusion that the number of photons greatly exceeds the number of
baryons, and this is in fact supported by cosmological observations. De�ning the
baryon-to-photon abundance parameter η10 ≡ 1010nbar/nγ, where nbar and nγ refer
to the number number density of baryons and number density of photons respectively,
it can be shown that [7]

η10 ≈ 274ΩBh
2, (1.1)

where ΩB ≡ ρbar/ρc, with ρc = 3H2
0/8πGN referring to the present critical mass

density, H0 is the present value of the Hubble parameter, which is de�ned via v = H0D
with v and D referring to the speed and the distance of a galaxy relative to us, and
GN is the Newton constant. The quantity h is de�ned as the present value of the
Hubble parameter in units of 100kms−1Mpc−1. The current global average value
from a variety of cosmic microwave background (CMB) experiments [8] is ΩBh

2 =
0.0223± 0.0007, corresponding to η10 = 6.11± 0.20. This implies

nbar
nγ
≈ 6.11× 10−10, (1.2)

This seems satisfactory, but a big problem arises from the imbalance between the
observed numbers of baryons and antibaryons, which would otherwise have been as-
sumed to be equal. Up to date, actual cosmological observations suggest that in our
universe the number of baryons is far beyond the number of antibaryons, this brings
people to the very theoretical challenge of the very important question �how did we
manage to beat out our antimatter twins?�. For many people in olden times, such a
subtle question may seem purely philosophical or even of a religious nature, but in
fact modern physics already has some clue. Sakharov in 1967 [9] listed three ingre-
dients that are essential for the baryogenesis to happen. Let us here brie�y present
the three conditions with a little interpretation for each.

1. There must exist transitions that are baryon number violating. This
is a fundamental condition for baryogenesis, allowing baryon number to vary in time.

2. C and CP symmetry breaking has to appear. This condition is based
on the condition 1. With N and N referring to the baryon and antibaryon states, let
us imagine that the baryon number violating transitions such as N → f do occur,
then their CP conjugate partners N → f would happen as well with exactly the same
strengths if CP symmetry is strictly respected. If so, the numbers of N and N would
decrease at the same rate, and so cannot yield baryogenesis.

3. The baryon number violating and CP violating transitions must pro-
ceed out of thermal equilibrium. To understand this condition, we just need to
recall that an equilibrium state does not vary in time, so that the T transformation
becomes irrelevant in equilibrium and has to be symmetric in any transition. If so,
the necessary requirement of CP violation would then suggest CPT combined vio-
lation. As will be discussed later, CPT combined symmetry is based on very �rm
footing, and has been con�rmed by many experiments up to date, thus allowing for

2



CPT symmetry breaking is a way too big price to pay. So, instead of violating the
CPT theorem, we'd better stick with the validity of condition 3.

From the Sakharov's conditions above, one knows that, instead of being a disas-
ter, CP violation is actually a very important ingredient in understanding the origin
of the universe, and thus it deserves thorough investigation. As will be seen in later
chapters, even though the SM does allow for the existence of CP violation via the
so-called Cabibbo-Kobayashi-Maskawa (CKM) mechanism, it does not seem to yield
a su�cient �amount� of CP violation. This forces us to broaden our scope to search
for more possible sources of CP violation that are beyond the Standard Model (BSM),
which is the main motivation of the projects to be discussed in my thesis.

Another motivation to measure CP�violating processes is that many extensions
of the Standard Model provides new sources of CP violation. These sources often
allow for signi�cant deviations from the Standard Model predictions. Consequently,
CP violation provides an excellent probe of new physics.

To make the arrangement of the thesis more transparent, here let me make a brief
outline of the thesis.

Chapter 2 serves as an introduction, which aims to introduce the basic de�nitions
and the fundamental properties of P, C, and T transformations. Within each section
of Chapter 1, I shall discuss the relevant contents according to the chronological steps
of the progress in physics, that is, �rst in classical mechanics, then in nonrelativistic
quantum mechanics, and �nally in quantum �eld theory (QFT). These theoretical
backgrounds are mainly based on [10]. I am hoping that with these theoretical
preparations the more detailed discussions in later chapters could be more easily
understood.

Chapter 3 will touch on some formal analysis of CP violation. In this chapter,
I will discuss the discovery of CP violation, and the theoretical mechanisms of CP
violation in the SM. In the same chapter, I will also take a brief review of the on-going
experimental works in searching for CP violation, such as searches for permanent
electric dipole moments, and the so-called �D-term� and �R-term� searches in β decay.
At the end of this chapter, I will discuss a new possible source of CP violation. Such
a new source is realized via a triple-product correlation in momenta in radiative β
decay, which is one of the core tasks of the thesis. More theoretical details about this
will be explicitly presented in the next few chapters.

Chapter 4 is to discuss some detailed O(α) calculations of the branching ratios in
the special case of neutron radiative β decay. Although in this chapter we will just
focus on the CP-even part, such work is still important because it is directly coupled
to our later work on CP violation. In this chapter, I will also brie�y discuss some
O(α2) corrections to the branching ratio result since such higher order corrections
can be relevant for currently on-going precision measurements of the decay rate.

In Chapter 5, I will brie�y discuss the fundamental ideas of chiral perturbation
theory (ChPT), which serves as an e�ective �eld theory of the fundamental QCD
theory at su�ciently low energies, because our concrete work is dependent on a
speci�c part of ChPT. I am hoping with the very brief discussion on ChPT in Chapter
4, at least the fundamental ideas of ChPT can be conveyed and our later work would
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not seem too abrupt.
Following the introduction of ChPT, in Chapter 6 there will be detailed analysis

of how a CP-violating triple-product correlation in momenta arises, and what kind
of BSM model could give rise to such a new source of CP violation.

In Chapter 7, I will turn to another possible BSM model that is based on Lee
and Yang's 1956 work [3], which is still popular today. This would be an interesting
reinvention of their original work that we have shown being able to give rise to a
possible CP violation via the similar triple-product correlation in momenta that is
controlled by new combinations of coe�cients that were introduced in Lee and Yang's
original paper.

In Chapter 8, I will make a full investigation of the T-odd mimicking e�ect, which
arises in the SM due to �nal-state interactions (FSI), and serves as a background in
the future measurements of the CP violation that is proposed in Chapter 6. In order
to obtain better�informed constraints of the possible mechanism in Chapter 6, we
need to �gure out the exact size of such a FSI-induced T-odd mimicking e�ect.

Chapter 9 is to perform an extension from neutron radiative β decay to more
general nuclear cases, which allow us much more and perhaps better candidates for
the relevant experiments. We shall show that such an extension requires minimal
adjustments of the formulae that we have developed in the neutron case.

Finally, Chapter 10 is to summarize the content of the whole thesis, and to discuss
some other work that awaits us in the near future.

Copyright© Daheng He, 2013.
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Chapter 2 Fundamentals of C, P, and T Discrete Symmetries

2.1 P, C, and T in Classical Mechanics

Following the treatment of Bigi and Sanda's textbook [10], we shall begin with the
explicit de�nitions of parity (P), charge conjugation (C), and time reversal (T). The
fundamental de�nition of parity transformation (P) is to change a space coordinate
x into -x, which can be realized by a mirror re�ection followed by a rotation of 180 ◦

around some relevant axis. The fundamental de�nition of charge conjugation (C)
is to reverse the sign of a charge and �ip spin. The fundamental de�nition of time
reversal is to re�ect the time t to −t while leaving x unchanged. Followed by these
basic de�nitions, we have the following parity and time reversal transformations for
3-momentum p and angular momentum l ≡ r× p:

p
P−→ −p, l

P−→ l

p
T−→ −p, l

T−→ −l. (2.1)

In the examples of Eq. (2.1), we see that some vectors like p change their signs
under parity transformation, such P-odd vectors are called polar vectors; on the other
hand, some vectors like l do not change signs under parity transformation, such P-
even vectors are called axial vectors or, in many books, pseudovectors. Apparently,
objects like p1 ·p2, where p1 and p2 are both 3-momentum, are P-even and are called
scalars; objects like p · l are P-odd and are called pseudoscalars.

The opinion of parity being a symmetry in classical mechanics �rst appears as an
intuition from everyday experience. Take me for instance, to have a healthy life style,
I push myself to go to the gym of University of Kentucky every day. There are huge
mirrors covering the whole wall right in front of the running machine that I usually
use everyday. This allows me to, while I was running, enjoy watching the TV that is
actually behind me. The TV show I see in the mirror look exactly same as in the real
one. This happens simply because everything I see in the mirrors with left and right
switched still agrees with my everyday experiences in the real world, thus I have no
way to distinguish them.

Such a mirror-re�ection equivalence is called parity conservation or parity invari-
ance in classical mechanics, and can be mathematically summarized as the invariance
of the fundamental Newton's equation of motion:

F = ma = m
d2x

dt2
, (2.2)

together with the basic de�nition of the force F:

F =
dp

dt
. (2.3)

As one can easily check, by following the mentioned transformation laws of posi-
tion x and momentum p, Newton's equation of motion is invariant under a parity
transformation.
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Of course, the situation changes when subtitles appear in the television program.
The subtitles I see in the mirror are left-right �ipped and very hard to follow, in
this way can I tell immediately whether I am watching the TV show in the mirror
or not. In other words, the existence of subtitles �breaks� the left-right symmetry
of the classical world, giving us a way to distinguish between the real world and the
one in a mirror. As we will see in later sections, in the Standard Model (SM), weak
interaction plays a role similar to that of subtitles in breaking left-right symmetry in
the quantum world.

In electrodynamics, which is governed by Maxwell's equations:

∇ · E = 4πρ

∇×B− 1

c

∂E

∂t
=

4π

c
J

∇ ·B = 0

∇× E +
1

c

∂B

∂t
= 0. (2.4)

Here C, P, and T are all involved. First of all, Eq. (2.4) is invariant under the following
manifest C transformations:

ρ
C−→ −ρ, J

C−→ −J

E
C−→ −E, B

C−→ −B. (2.5)

It can be easily imagined when two opposite charges switch their positions, corre-
sponding to a parity transformation, the electric �eld E changes its sign, similar
conclusion can be drawn for the electric current vector J, thus the following parity
transformations should hold:

ρ
P−→ ρ, J

P−→ −J

E
P−→ −E, B

P−→ B, (2.6)

note here that the magnetic �eld B does not change its sign under P. This is because
B = ∇ ×A, where A is the vector potential. Thus B is said to be an axial vector,
and it does not change sign under P. One can easily check that Maxwell's equations,
Eq. (2.4), are P invariant, in other words, electrodynamics respects parity symmetry!

As for time reversal T, it is natural to expect the vector current J and the magnetic
�eld B to reverse direction, whereas charge and the electric �eld E remain invariant,
then we have:

ρ
T−→ ρ, J

T−→ −J

E
T−→ E, B

T−→ −B. (2.7)

Under the combined T transformations, Maxwell's equations (2.4) are found to be
T invariant.
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2.2 P, C, T in Nonrelativistic Quantum Mechanics

In the quantum world, the states of a microscopic system are described by the wave
functions |a〉, |b〉, ..., which are often directly referred to as the quantum states.
Starting from the beginning of the last century, to deal with the problems in the mi-
croscopic system, people �nally developed a successful theoretical framework: quan-
tum mechanics, which serves as the foundation of the modern physics. A very basic
concept of quantum mechanics is the superposition principle, which says that if the
states |a〉 and |b〉 are vectors in a Hilbert space, so are the states |ψ〉 = α |a〉 + β |b〉
and |ψ′〉 = α′ |a〉 + β′ |b〉. An operation acting on the quantum states is represented
as an operator O with:

|ψ〉 O−→ O |ψ〉 ; 〈ψ| O−→ 〈ψ| O†. (2.8)

If such an operation represents a symmetry, we should expect the following equality
to hold:

| 〈ψ′| O†O |ψ〉 |2 = | 〈ψ′|ψ〉 |2, (2.9)

such that no outcome of a measurement is in�uenced. Apparently, Eq. (2.9) can be
satis�ed if:

〈ψ′| O†O |ψ〉 = 〈ψ′|ψ〉 =⇒ O†O = I, (2.10)

in such a case, O is called unitary operator, satisfying O† = O−1 according to
Eq. (2.10), and parity P is in fact one of this kind. Of course, as one may have
realized, the Eq. (2.10) is not necessarily the only solution to Eq. (2.9). There exist
another solution:

〈ψ′| O†O |ψ〉 = 〈ψ′|ψ〉∗ . (2.11)

An operator that satis�es Eq. (2.11) is called anti-unitary operator, which acts on a
quantum state |ψ〉 = α |a〉+ β |b〉+ ... in such a way:

O |ψ〉 = α∗O |a〉+ β∗O |b〉+ .... (2.12)

It turns out that both P and C are unitary operators, satisfying Eq. (2.10), but T is
anti-unitary, satisfying Eq. (2.11), as will be seen in a later section. Here, taking P
for instance, nonrelativistic quantum mechanics can be described by the Schrödinger
equation:

i~
∂

∂t
|ψ; t〉 = H |ψ; t〉

H =
p̂2

2m
+ V (x̂), (2.13)

where p̂ and x̂ are the momentum and position operators, respectively. In the frame-
work of quantum mechanics, if an operator is to represent a symmetric operation
that leaves the system invariant, this operator is said to be conserved, and should
commute with H. In regards to P conservation, we expect:

[P, H] = 0. (2.14)
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Thus the principle of quantummechanics tells us that if |ψ; t〉 is a solution of Eq. (2.13),
so is P |ψ; t〉. For this conclusion to be correct, we naturally need the following relation
to hold:

P−1iP = i, (2.15)

P being an unitary operator then stands.
The simple way to obtain the behavior of observables under P is to apply the

correspondence principle and to require the expectation value of the position operator
x̂ to change sign under P:

〈ψ; t|x̂|ψ; t〉 P−→ 〈ψ; t|P†x̂P|ψ; t〉 = −〈ψ; t|x̂|ψ; t〉 . (2.16)

This is guaranteed to happen if:

P†x̂P = −x̂ or {x̂,P} = 0, (2.17)

where the curly bracket in Eq. (2.17) denotes the anticommutator. Apparently, if we
apply the parity operation in Eq. (2.17) twice, we should get:

P2 = 1 =⇒ P† = P−1 = P. (2.18)

Besides the operator x̂, the behavior of the momentum operator p̂ is also important,
and can be easily identi�ed via the following reasoning. In both classical and quantum
mechanics, the momentum operator is understood as the generator of in�nitesimal
spatial translations dx:

T (dx) ' 1 +
i

~
p̂ · dx. (2.19)

Obviously, a translation that is followed by a parity transformation is equivalent to
a parity re�ection that is followed by a translation in the opposite direction, say,
T (−dx):

PT (dx) = T (−dx)P, (2.20)

inserting Eq. (2.19) into Eq. (2.20) then gives:

P(1 +
i

~
p̂ · dx) ' (1− i

~
p̂ · dx)P, (2.21)

thus we have

P†p̂P = −p̂ or {p̂,P} = 0, (2.22)

With Eq. (2.17) and Eq. (2.22), it is not hard to show that the quantization condition:

[x̂i, p̂j] = i~δij (2.23)
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is invariant, which is encouraging because the uncertainty relation Eq. (2.23) serves
as the very basis of quantum mechanics and is not supposed to change under our
construction of the parity operator. With Eq. (2.17) and Eq. (2.22), one can get the
behavior of the angular momentum Ĵ ≡ x̂× p̂ under parity transformation:

P†ĴP = Ĵ or [Ĵ,P] = 0. (2.24)

Another important conclusion that is worth knowing is that for the Hamiltonian
in Eq. (2.13), if the potential part V (x) is parity even such that:

V (−x) = V (x), (2.25)

and assuming the state ψ(x, t) is a solution to Eq. (2.13), then it can be shown that
ψ(−x, t) is also a solution. This means that the superposition ψ±(x, t) ≡ ψ(x, t) ±
ψ(−x, t) is also a solution, i.e. for a parity even potential we can express all solutions
as eigenstates of parity: ψ+(x, t) for parity even and ψ−(x, t) for parity odd.

For elementary particles or �elds one can de�ne also an intrinsic parity. If the
relevant forces, strong forces for instance, are experimentally con�rmed to conserve
parity, one can then assign an intrinsic parity as determined by the strong forces that
produce the particle in question, and then use it to constrain or test other kinds of
forces that may be also involved.

Let us now look at the charge conjugation C. The electromagnetic �eld can en-
ter the Schrödinger equation, Eq. (2.13), via the so�called minimal electromagnetic
coupling. In the presence of the electromagnetic �eld, the Hamiltonian of a charged
particle can be written as:

Ĥ =
(p̂− eÂ)2

2m
+ eφ, (2.26)

where we are following the Natural Unit System, in which the light speed �c� is taken
as unity, and e in Eq. (2.13) is the charge of the particle. Note that A is the vector
potential, and φ is the electric potential. Under C, we have the following combined
transformations:

e
C−→ −e, A

C−→ −A, φ
C−→ −φ.

Obviously the Hamiltonian, Eq. (2.26), is invariant under C. Again, just like the case
of P, applying C twice should get us back to the original charge con�guration. Thus,
with proper choice of phase convention, we have:

C2 = 1 =⇒ C† = C−1 = C. (2.27)

Finally, let us turn to the case of time reversal T, which is not a trivial repetition
of the previous P and C discussion. With the fundamental de�nition of T and the
analogous discussion of Eq. (2.17), it is not hard to deduce the following properties
of T:

[x̂,T] = 0, {p̂,T} = 0, {J,T} = 0, (2.28)

These at �rst seem to be OK, but a serious problem arises after more careful inspec-
tion. Apparently, after applying T to the commutation relation of Eq. (2.23), it seems

9



to be destroyed! As mentioned before, the quantization condition (2.23) is accepted
as the most important foundation of quantum mechanics, it is not supposed to be
perturbed by our de�nition of the T operation. The whole problem lies in our naive
assumption of T being unitary. If we instead require T being anti-unitary, such that,
according to (2.12):

T†iT = −i, (2.29)

then the quantization condition (2.23) is restored. One more satisfactory thing about
T being anti-unitary is that we can then easily con�rm that the Schrödinger equa-
tion (2.13) is T invariant. From now on, we shall keep in mind that P and C are
classi�ed as unitary transformations, but T is classi�ed as an anti-unitary transfor-
mation. One test of T invariance in the microscopic world can be realized by seeing
if a reaction:

a+ b→ c+ d, (2.30)

and its reverse
c+ d→ a+ b, (2.31)

occur with equal probability in nature. Such a test is called detailed balance.
Apparently, in high�energy particle processes such as Eqs. (2.30), (2.31), creation

and annihilation of di�erent kinds of particles are always involved, and nonrelativistic
quantum mechanics is not powerful enough to deal with such cases. This brings us
to the discussion of quantum �eld theory, which has been developed for this purpose.

2.3 P, C, T in Quantum Field Theory

As mentioned in the previous section, the frame work of quantum �eld theory has
been developed since the 1930's to handle processes with high�energy particles. The
foundation of quantum �eld theory is based on

1. the principle of special relativity;

2. the extension of the principle of quantum mechanics from a single particle to
classical �elds with in�nite degrees of freedoms.

In canonical quantization, one introduces relevant creation and annihilation oper-
ators, and they satisfy the same commutation relations as the usual quantum theory.
These creation and annihilation operators represents the �elds that are created or
annihilated in the physical vacuum, which people have realized possesses much richer
structure than a trivial state of �nothing�. The validity of the framework of quantum
�eld theory has been con�rmed by various modern particle experiments, and quantum
�eld theory is the standard language in which the Standard Model is described. After
almost a century's hard work by generations of the most gifted physicists, the SM
has been established and proven to be a self-consistent, successful theory which yields
many satisfactory theoretical predictions in perfect agreement with experiments.

Despite the many successes of SM, people are also aware of its limits and incapa-
bilities, in which CP violation is an important component. We shall talk more about

10



this in a later chapter. As for P, C, and T in quantum �eld theory, this thesis is
not aiming to repeat all of the details, since many of those are not closely related to
my projects. One can go to Bigi and Sanda's textbook [10] for more a detailed and
thorough introduction.

In the SM the fundamental �elds are:

1. fermions - the matter �elds such as e±, µ±, νe, νµ, ...;

2. gauge bosons - the particles that convey forces such as γ, W±, Z0, and g;

3. Higgs boson - the long proposed but only newly discovered particle that serves as
an important ingredient in the SM to give rise to other particles masses via the mech-
anism of spontaneous symmetry breaking, which can give all particles mass without
breaking gauge invariance.

Among these di�erent �elds in the SM, to save some space and time, I may only
focus on the fermion case 1, because they are the building blocks of matter. The
logics and procedures in the bosons cases 2 and 3 are not that di�erent with 1.

As we know, the discussion of spin-1/2 fermion �elds naturally involves represen-
tation of the Dirac matrices. Although these choices do not a�ect the �nal results of
physical observables, I would still like to make this part explicit before�hand for later
convenience. Our choices can be listed as follows: we adopt the Natural Unit System,
in which we have set both the speed of light and the reduced Planck's constant to
unity:

c = ~ = 1. (2.32)

Following the convention of Ref. [10], we write 4-vectors with upper and lower indices,
with the metric tensor gµν de�ned by:

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.33)

The 4-vectors with upper or lower indices in our convention take the following general
form:

vµ = (v0,v), vµ = gµνv
ν = (v0,−v), (2.34)

which gives, as an explicit example, the 4-momentum pµ = (E,p) and pµ = (E,−p).
The covariant derivatives are de�ned as follows:

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,−∇

)
, ∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇
)
. (2.35)

Following the standard principle in quantum mechanics, one makes the replacement
pµ → i∂µ in coordinate space for quantization. As for the Dirac matrices, we choose
the Dirac-Pauli representation:

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
, (2.36)
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where I refers to the 2 by 2 unit matrix, and σi (i = 1, 2, 3) refer to the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.37)

Finally, besides the four γ matrices γµ (µ = 0, 1, 2, 3), there is another very important
matrix γ5 with:

γ5 ≡ iγ0γ1γ2γ3 =

(
0 I
I 0

)
= γ5. (2.38)

It can be easily shown that γ5 has the following properties:

γ5 = γ†5
(γ5)2 = 1,

{γ5, γµ} = 0. (2.39)

As one has learned, the special matrix γ5 plays an important role in quantum �eld
theory.

In quantum �eld theory, a physical system is described by a corresponding La-
grangian. For a free spin-1/2 fermion �eld, the relevant Lagrangian reads:

L = ψ(t,x)(iγµ∂
µ −m)ψ(t,x), (2.40)

which yields the expected Dirac equation, and the associated Dirac current is given
by

Jµ = ψ(t,x)γµψ(t,x). (2.41)

Upon performing canonical quantization in quantum �eld theory, the fermion spinor
�eld ψ(t,x) in Eq. (2.40) and Eq. (2.41) is no longer a wave function as in the
nonrelativistic quantum mechanics, but is promoted to an operator, which contains
both creation and annihilation operators in order to create and annihilate fermions.
More explicitly we have:

ψ(t,x) =

∫
d3p

(2π)3/2

√
m

E

∑
s=±

[b(p, s)u(p, s)e−ip·x + d†(p, s)v(p, s)eip·x], (2.42)

where b[b†] and d[d†] denote annihilation [creation] operators, respectively, for fermions.
The commutation relations of b[b†] and d[d†] as well as the normalization constants
are arranged such that the following postulated anticommutation relations hold:

{ψα(t,x), ψ†β(t,y)} = δ3(x− y)δαβ

{ψα(t,x), ψβ(t,y)} = {ψ†α(t,x), ψ†β(t,y)} = 0. (2.43)

Just by following a thinking similar to that in nonrelativistic quantum mechanics, the
anticommutation relations in Eq. (2.43) are taken as the most fundamental conditions
in the quantization of fermion �elds, so that they are not disturbed by the introduction
of the operators P, C, and T into the system.
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The Dirac spinors u(p, s) and v(p, s) are solutions to the Dirac equation in mo-
mentum space for a particle and antiparticle respectively:

(/p−m)u(p, s) = 0

(/p+m)v(p, s) = 0. (2.44)

Solving the Dirac equation in Eq. (2.44) yields the solutions of u(p, s) and v(p, s):

u(p,+) =

√
E +m

2m


1
0
pz

E+m
px+ipy
E+m

 , u(p,−) =

√
E +m

2m


0
1

px−ipy
E+m
−pz
E+m

 , (2.45)

v(p,+) =

√
E +m

2m


pz

E+m
px+ipy
E+m

1
0

 , v(p,−) =

√
E +m

2m


px−ipy
E+m
−pz
E+m

0
1

 , (2.46)

here the polarization direction has been chosen to be along the z axis. Furthermore,
it turns out that the following identities are very useful for the later discussion of P,C,
and T in this section. Let me just present them here directly; the proofs are pretty
straightforward by just following the γ matrices de�ned in Eq. (2.36) together with
Eq. (2.37), and the solutions of the Dirac equation we have given. These identities
are:

u(−p, s) = γ0u(p, s)

v(−p, s) = −γ0v(p, s) (2.47)

iγ2u(p, s)∗ = sv(p,−s)
iγ2v(p, s)∗ = −su(p,−s) (2.48)

γ1γ3u(p, s)∗ = −su(−p,−s)
γ1γ3v(p, s)∗ = −sv(−p,−s) (2.49)

We now turn to the consideration of P, C, and T. Let us �rst consider parity
P. Following the classical de�nition of P � changing the spatial variable x to -x,
together with the expected behavior of a 4-vector � reversing its sign of its spatial
components, one then naturally expects the following identity for the fermion vector
current of Eq. (2.41) to hold:

PJµ(t,x)P† = Jµ(t,−x), (2.50)

which can be easily con�rmed with the help of Eq. (2.34). To make this happen, one
notices the following special identity:

γ0γ
µγ0 = γµ, (2.51)

and introduces the following parity transformation P of the fermion �eld operator
accordingly:

ψP(t,x) ≡ Pψ(t,x)P† = γ0ψ(t,−x), (2.52)
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which then correspondingly yields:

ψ
P
(t,x) ≡ Pψ(t,x)P† = ψ(t,−x)γ0. (2.53)

Apparently the introduction of P in such a manner is consistent with the natural ex-
pectation of Eq. (2.50), and it also keeps the anticommutation relations of Eq. (2.43)
unchanged. Thus we have just obtained an pretty convincing transformation law
for P. Next we shall apply the operation that we have just obtained on the explicit
form of the fermion �eld operator ψ(t,x), which is expanded in terms of the creation
and annihilation operators, as shown in Eq. (2.42). Here the logic is that we want
to see how the creation and annihilation operators transform if we impose the par-
ity transformations of ψ(t,x), Eq. (2.52) and Eq. (2.53). It is a little tedious but
straightforward to show that, using Eq. (2.42), Eq. (2.47), Eq. (2.52), and Eq. (2.53),
the following relations have to hold:

Pb(p, s)P† = b(−p, s), Pd(p, s)P† = −d(−p, s), (2.54)

from which one can immediately observe a very interesting thing: the fermions and
antifermions carry opposite intrinsic parity.

One important property here is that without any interaction presented in the
Lagrangian, the free�fermion states are parity conserving:

PL(t,x)P† = L(t,−x). (2.55)

It turns out that even when the interaction of QED or QCD are included via the
principle of local gauge invariance, the total Lagrangian is still invariant under P. In
other words, parity conservation is respected in both the electromagnetic and strong
interactions. The actual proofs are based on procedures similar to what we have
shown here, and one can show that the quanta of spin-1 boson �elds, such as photon,
must have odd intrinsic parity. Although it can be theoretically shown that E&M
and strong interactions are P conserving, the weak interaction is NOT � we shall turn
to this issue in the next chapter.

As for the charge conjugation operator C, which changes a particle into its an-
tiparticle, one would naturally require the fermion current Jµ(t,x), which is often
charged, to change its sign:

CJµ(t,x)C† = −Jµ(t,x). (2.56)

Just like what we did for P, we now need to �invent� some explicit form of the operation
to represent C such that Eq. (2.56) is satis�ed. The following C transformation is a
satisfactory option:

ψC(t,x) ≡ Cψ(t,x)C† = iγ2γ0ψ
tr

(t,x), (2.57)

where �tr� refers to �transpose�. Although obtaining Eq. (2.57) is less obvious than in
the case of parity, Eq. (2.52) and Eq. (2.53), the validity of Eq. (2.57) can be con�rmed
quickly by inserting it back into the basic fermion current de�nition, Eq. (2.41),

14



and making use of Eq. (2.48). With this introduced C transformation for fermion
�elds, one can also easily check that the fundamental anticommutation relations in
Eq. (2.43) are unchanged, which convinces us that Eq. (2.57) is an ideal option for
the charge�conjugation transformation of fermion �elds. The next step is also similar
to the case of P: we shall enforce the validity of Eq. (2.57), and see how the creation
and annihilation operators in Eq. (2.42) behave under C. The derivation is just as
straightforward as in the case of P, by inserting Eq. (2.57) into Eq. (2.56), and making
use of (2.48), one �nally obtains:

Cb(p, s)C† = sd(p,−s), (2.58)

which tells us under charge conjugation, a fermion is changed into its antipartner
with opposite spin con�guration. Also, it can be checked immediately that without
the presence of interactions, the Lagrangian of fermion �elds is invariant under C:

CL(t,x)C† = L(t,x). (2.59)

It can be further checked that both electromagnetic and strong interactions respect
C invariance.

Let us �nally concentrate on the time reversal case, which, as we have discussed
before, should be anti-unitary. Following the steps of P and C, we now shall �nd an
explicit operation T such that for the T transformed fermion �eld operator ψ(t,x):

ψT(t,x) ≡ Tψ(t,x)T−1 = Uψ(−t,x), (2.60)

the electromagnetic current transforms as:

TJµ(t,x)T−1 = Jµ(−t,x), (2.61)

which follows the fundamental de�nitions of T and the 4-vectors. Inserting ψT(t,x)
into such an expected equation above, we have:

TJµ(t,x)T−1 = ψ(−t,x)U †γµ∗Uψ(−t,x). (2.62)

Thus we must search for a matrix U to yield:

U †γµ∗U = γµ. (2.63)

It takes a few guesses, and one �nds that an special identity:

U = γ1γ3 (2.64)

does the job, and the fundamental quantization conditions of Eq. (2.43) remain un-
changed as well. This shows the validity of our construction of the T operation.
Enforcing the validity of Eq. (2.64), we can show that the creation and annihilation
operators have to have the following behavior:

Tb(p, s) = sb(−p,−s), Td(p, s) = sd(−p,−s), (2.65)
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which tells us that under time reversal transformation, both a fermion and its an-
tiparticle change the sign of its 3-momentum and spin polarization. Furthermore, it
can be checked immediately that without the presence of interactions, the Lagrangian
of fermion �elds is invariant under T:

TL(t,x)T−1 = L(−t,x). (2.66)

It can be further checked that, as one would expect, both electromagnetic and strong
interactions respect T invariance:

TL(t,x)T−1 = L(−t,x). (2.67)

Note here we have not considered the possible θ�term in the QCD Lagrangian. In
principle such a term can appear in the QCD Lagrangian, and breaks the T invariance
of strong interaction. I postpone more detailed discussion on this issue in a later
chapter.

This brings us to the end of the �rst chapter. To sum up, in this chapter we
de�ned the discrete transformations of parity P, charge conjugation C, and time re-
versal T. We discussed some of the important properties of P, C, and T in classical
mechanics, nonrelativistic quantum mechanics, and quantum �eld theory. We mean
to stress that, within the framework of SM, one is able to show strictly that both
the electromagnetic and the strong interactions respect P, C, and T symmetries si-
multaneously. However, just as mentioned at the beginning of this chapter, one shall
not take the P, C, and T symmetries, single or combined, for granted all the time.
Sometime nature �disobeys� our expectations or simple thinking in an unexpected,
fantastic way! When such disagreements happen, it is a good news because then we
have an opportunity to realize a better and deeper understanding of nature! This
brings us to Chapter 3.

Copyright© Daheng He, 2013.
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Chapter 3 CP Violation in the SM and Beyond

3.1 Discovery of CP Violation in Kaon Decay

As mentioned in Chapter 1, the intuition of parity being a symmetry arises from our
everyday experiences, which are dominated by classical mechanics. One is also allowed
to con�rm such intuition theoretically by checking the invariance of Newton's equation
of motion, Eq. (2.2), and Maxwell's equations, Eq. (2.4). Based on this doubly
con�rmed belief in P symmetry, people asserted that parity conservation is always
respected unconditionally! Such a robust assertion turned out to be broken by nature
through the weak interaction, about which physicists didn't gain real knowledge until
the middle of the 1950s. The story of the discovery of parity violation has become a
classic of modern physics. Thus I think it wouldn't be a waste of time to review very
brie�y this part of history, and reappreciate the wonderful era of the middle of the
20th century.

Shortly after the beginning of the 20th century, along with the rapid development
of the cloud chamber, attributed to Charles T. Wilson (1869�1959) [11], designed
to record tracks of many kinds of incoming particles or their decay products, via
the so-called V-shaped tracks. Thus in many high energy physics (HEP) experiments
physicists are then able to obtain a lot of important information about particles under
study. In October 1946, instead of carrying out a new HEP experiment in their lab,
Rochester and Butler decided to expose their cloud chamber directly to the sky, where
people now know is full of many kinds of cosmic rays. After carefully inspecting and
analyzing the information that was recorded in their cloud chamber, they realized
that they had observed, from the cosmic rays, the decay of a new kind of particle
with a mass of 435 MeV into two lighter particles with equal masses around 100 MeV,
or in today's language:

K0 → π+π−. (3.1)

Although at the time Rochester and Butler were carrying their observations, neither
the kaon nor pion was known to physicists, it actually did not take too long to discover
the charged pion in another experiment, in May 1947! Following the identi�cation
of pion in the same year, Rochester and Butler reported their observation, including
another exotic process besides (3.1):

K+ → π+π0. (3.2)

These early objects were studied again at the Brookhaven National Lab (BNL) in
1953 and at the Berkeley Lab in 1955. Besides the observations of the processes in
Eqs. (3.1) and (3.2), more observations were made, such as:

Λ→ π−p, (3.3)

where the Λ is now known as one of hyperons, with a mass a bit larger than the
proton. The most important reason I am mentioning the Λ decay (3.3) here is that
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the observations of the process in (3.3) led to the introduction of a new quantum
number called �strangeness,� which is carried by a whole family of particles called
�strange particles.� Kaons, and the Λ we mentioned are just members of this family.
More explicitly, sets of experiments on Λ hyperon showed a puzzle: the production
rate for Λ seemed to greatly exceed its decay rate. It was later deduced, attributed
to Pais in 1952 [12], that the production of Λ is via the strong interaction, which
has a very big reaction cross section, and the decay of Λ is via the weak interaction,
which has a much smaller cross section. The puzzle is then solved with a price of
introducing a new quantum number �strangeness,� which is conserved in the strong
interactions but not in the weak interaction! Thus any process that changes the total
strangeness will have to be a weak process. By the way, we are spending a little time
to introduce the background of kaons because they play an important role in the later
discussion of CP symmetry breaking.

Following the introduction of strangeness, the second period of study is charac-
terized by the so-called θ − τ puzzle. Two kinds of decays were observed:

θ+ → π+π0,

τ+ → π+π+π−. (3.4)

In analyzing sets of θ+ and τ+ production data, people deduce that both θ+ and τ+

has strangeness +1, and we also know that pion does not have strangeness. Thus
the total strangeness changes in the processes in Eq. (3.4). This suggests that the
two decay processes in Eq. (3.4) have to be via the weak interaction. Here the puzzle
is very easy to describe: it can be shown or experimentally con�rmed that in the
two decays in Eq. (3.4), the decayed products (pions) are in a con�guration of zero
angular momentum, which means the angular momentum part contribute trivially
to the parity consideration. Thus with the known fact that pion has internal parity
-1, one knows the two particles θ and τ have opposite internal parities based on
the requirement of parity conservation. With di�erent parities, θ and τ had to be
classi�ed as two di�erent particles. Normally this would not be a big issue, but the
problem arose when other very precise measurements failed to �nd any signi�cant
di�erence in mass and lifetime of the two particles � which is unlikely for two distinct
particles. This unpleasant situation was called θ − τ puzzle.

Ever since the emergence of the θ− τ puzzle, people had tried to solve it without
success until 1956, when T. D. Lee and C. N. Yang �rst brought people's attention to
the right track [3]. Simply speaking, their key of success was to doubt the assump-
tion of parity conservation in the weak interaction. Although parity conservation had
been con�rmed in quantum electro�dynamics (QED) theoretically and experimen-
tally, parity conservation had never been explicitly checked in any experiment at that
time. In other words, if they were right, the puzzle could be solved rapidly: parity
conservation should not be a requirement in the weak decays, and the so-called �θ+�
and �τ+� particles merely represent two allowed decay modes of the same particle,
which was later identi�ed as the K+ meson which is mentioned at the beginning of
this chapter. To con�rm this guess, in their 1956 paper Lee and Yang suggested a
direct experiment in nuclear β decay, a type of weak interaction, to test the parity
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conservation, or equivalently, the left-right symmetry. Based on their assertion of
parity violation, Lee and Yang also proposed an analytic Lagrangian to describe the
weak interaction, in the low energy region that was accessible at the time. Here could
have been a proper place to present their proposed result, but I shall postpone these
details to the next section for convenience. Shortly after Lee and Yang's 1956 paper
was published, a famous experiment, using polarized 60Co as the source of β decay,
was quickly carried out by C. S. Wu and her collaborators at NIST [13]. This experi-
ment followed the same picture proposed by Lee and Yang, as shown in Fig. (3.1), and

Figure 3.1: An illustration of the experiment by Ambler et al. on parity violation in
60Co β decay, selected from Ref. [1].

was designed to give a fundamental test of the parity symmetry in weak interaction.
The result shocked many people at that time, because the experiment con�rmed that
in weak decays the parity conservation was violated. It was also con�rmed in the
same experiment that charge conjugation symmetry was also broken. We refer to
the original paper [13] for more details and appreciate this amazing era of history.
Here we take a quick look at another simple example, serving as a quick exhibition
of symmetry breaking of P and C separately, in, namely, pion weak decay [14]:

π+ → µ+νL,µ, (3.5)

where νL,µ refers to muon left�handed neutrino. If we apply the parity transformation
P on the decay process in Eq. (3.5), we would have expected a corresponding process
such as:

π+ → µ+νR,µ, (3.6)

A problem lies in that in any particle experiment that involves neutrinos up to now,
only the left�handed neutrino νL, and the right handed antineutrino ν̄R are present
� nothing like νR,µ ever been found. Thus the expected process in Eq. (3.6), deduced
from the assumption of P symmetry, does not actually happen � P symmetry is
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violated. One could use very similar reasoning to con�rm that C symmetry is also
violated. For the �rst time, after thousands of years of accumulated science, people
�nally entered a new region, where some seemingly valid principles, purely based on
people's intuitions and past experiences, should not be taken for granted. Instead,
one should use caution, and rely on strict experimental tests before asserting the
validity of a symmetry.

As one may have noticed in the π+ weak decay to illustrate P and C symmetry
breaking in last section, there seems to be a combined symmetry of CP � performing
the P and C transformations simultaneously yields an expected weak decay process:

π− → µ−ν̄R,µ, (3.7)

which does happen in nature, and such kind of phenomena can also be con�rmed in
many other weak processes! Shall we then assert that although neither P nor C is a
symmetry in weak decay, the combined symmetry transformation CP is still respected
in weak interaction? The quick answer is still NO! To see more details about this, we
shall now look at the case where CP symmetry is violated � kaon nonleptonic weak
decays.

Corresponding to the neutral kaon weak decay, Eq. (3.1), there also exists another
process:

K0 → π−π+, (3.8)

where K0 refers to the antiparticle of the K0 meson. Since K0 and K0 carry opposite
strangeness, they cannot be the same type of particle, but as one can see in Eqs. (3.1)
and (3.8), the decay products are identical! Here an interesting question arises natu-
rally: how can we tell K0 and its antipartner K0 apart? Such a theoretical challenge
was taken up successfully by Gell-Mann and Pais through careful quantum mechan-
ical reasoning [15]. Their reasoning starts with temporarily �turning o�� the weak
interaction, thus K0 and K0 can neither decay nor transform into each other. One
can then technically treat them as two orthonormal quantum bases, and construct a
wave function:

Ψ(t) = a(t) |K0〉+ b(t) |K0〉 ≡
(
a(t)
b(t)

)
, (3.9)

which varies according to the free Schrödinger equation for Ψ(t):

i~
∂

∂t
Ψ = HΨ, (3.10)

where H denotes the free Hamiltonian operator when any additional interaction term
is absent:

H =

(
MK 0

0 MK

)
. (3.11)

Now imagine we �turn on� the weak interaction, so that the decay processes in
Eqs. (3.1) and (3.8) both come back accordingly, and an additional interaction term
that mixes K0 and K0 via the chain K0 → π+π− → K0 can enter. We do not re-
ally need to know the explicit form of such a mixing term, but only denote it as ∆.
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Since we are aware that ∆ arises from weak interaction, it is certainly much smaller
than the kaon mass term. With the introduction of the mixing term ∆, treated as a
perturbation to H, we have:

H =

(
MK ∆
∆ MK

)
. (3.12)

Using the standard perturbative treatment of quantum mechanics, one can easily
check that now the new eigenstates become:

|KS〉 ≡ 1√
2

(|K0〉+ |K0〉),

|KL〉 ≡ 1√
2

(|K0〉 − |K0〉). (3.13)

With
CP |K0〉 = |K0〉 , (3.14)

one immediately gets CP |KS〉 = + |KS〉, and CP |KL〉 = − |KL〉. It is also known
that CP |π+π−〉 = + |π+π−〉, thus, assuming CP conservation, only KS → π+π− is
allowed, whereas KL → π+π− is forbidden. The leading decay process for KL then
has to be:

KL → πππ, (3.15)

where we note here that the phase space for the decay process in Eq. (3.15) is very
restricted. Explicitly, the parent particle KL has a mass of ∼ 500MeV, and the total
mass of the decay products is about 3 ·Mπ ∼ 420MeV. This leads to a much smaller
allowed phase space than in KS decay. Thus we expect that the KS decays much
faster than the KL does. Indeed this is why we call them KS and KL, respectively, in
the �rst place, with the subscript �S� denoting �short lived� and �L� denoting �long
lived�.

The point here is that the unexpected processes KL → π+π− does happen, and
has been con�rmed in several experiments independently [4], [5], [6]. Thus CP
conservation is also broken by nature!

3.2 Mechanisms of CP Violation in the SM and Beyond

As mentioned in the last section, the observations of KL → π+π− in a series of
independent experiments demonstrate that CP symmetry is broken. Is this a disaster?
Is it really allowed by the SM? The answer is that CP violation is allowed by the SM.
In quantum �eld theory, the γ matrices play a critical role in the discrete symmetries
P, C, and T. As we have seen, the fermion vector current in Eq. (2.41), carrying a
factor of �γµ�, transforms as a 4-vector current. With the introduction of the special
matrices �γ5� as shown in Eq. (2.38), we can also have another type of current:

Jµ5 = ψ(t,x)γµγ5ψ(t,x). (3.16)

With the property of γ5, as shown in Eq. (2.39), and the proposed transformation of P,
Eq. (2.52), one can show that the current in Eq. (3.16) transforms as a pseudovector.
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Based on Eq. (2.41) and Eq. (3.16), one can build the so-called left-handed and right-
handed currents (a more thorough analysis of the left-handed and right-handed �elds
and currents will be discussed in later chapters when we are concentrating on the
axial anomaly in QCD):

JµL = ψ(t,x)γµ
1− γ5

2
ψ(t,x), JµR = ψ(t,x)γµ

1 + γ5

2
ψ(t,x). (3.17)

Using the transformation of P, one can easily check that under P, the left-handed and
right-handed currents transform into each other. Apparently the linear superposition
of JµL and JµR with equal weight, JµL + JµR = Jµ, yields a vector current, and leaves
the fermionic dynamical system symmetric under P, but either JµL or JµR by itself is
not. Based on this simple observation, in order to describe the semi-leptonic neutron
and nuclear weak decay, Lee and Yang in their 1956 paper proposed the most general
and straightforward e�ective Hamiltonian of the interaction that meets the basic
requirement of parity violation [3]:

Hint = (ψpψn)(CSψeψν − C ′Sψeγ5ψν) + (ψpγ
µψn)(CV ψeγµψν − C ′V ψeγµγ5ψν)

+(ψpγ5ψn)(CPψeγ5ψν − C ′Pψeψν)− (ψpγ
µγ5ψn)(CAψeγµγ5ψν − C ′Aψeγµψν)

+
1

2
(ψpσ

µνψn)(CTψeσµνψν − C ′Tψeσµνγ5ψν) + h.c. , (3.18)

where, following their original notation, h.c. refers to the hermitian conjugate, and

the coe�cients C
(′)
S , C

(′)
P , C

(′)
V , C

(′)
A , and C

(′)
T refer to the phenomenological coupling

constants of scalar, pseudoscalar, vector, axial vector, and tensor type, respectively.
Equation (3.18) treats the neutron �eld ψn, and the proton �eld ψp as the fundamen-
tal degrees of freedom in the neutron β decay. In the 1950's, neither quarks nor the
electroweak theory were known yet, so that even though Lee and Yang's parameter-
ization in Eq. (3.18) was not written in terms of fundamental degrees of freedom, it
was really the best thing people could do at that time. Most importantly, it works at
su�ciently low energy. Now in modern terms, such an e�ective theory is embedded
in a more fundamental theory � the SM, in which electromagnetic interaction and
weak interaction are uni�ed through the SU(2)L × U(1)Y gauge theory. In the SM,

the only nonvanishing terms in the parameterization of Eq. (3.18) are the C
(′)
V and

C
(′)
A terms with CV = C

′
V , and CA = C

′
A, whose absolute values can also be obtained

(in principle) from the more fundamental theory � quantum chromodynamics (QCD).
Regardless, we now have an e�ective Hamiltonian for the semi-leptonic weak decay
at su�ciently low energy:

Hint = (ψpγ
µψn)(CV ψeγµψν − C ′V ψeγµγ5ψν)− (ψpγ

µγ5ψn)(CAψeγµγ5ψν

−C ′Aψeγµψν) + h.c., (3.19)

where this is a speci�c description of neutron β decay. Based on Eq. (3.19), we now
restrict ourselves to consideration of a simpli�ed case of the weak interaction, as a
toy model, whose generic structure is still embedded in that of Eq. (3.19). Such a toy
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model allows us a quick demonstration of how CP violation can arise. We have

H = aV +
µ (t,x)V µ,−(t,x) + bA+

µ (t,x)Aµ,−(t,x) + cV +
µ (t,x)Aµ,−(t,x)

+c∗A+
µ (t,x)V µ,−(t,x), (3.20)

where the V ±µ and A±µ represent the charged vector current of Eq. (2.41) and the

axial vector current of Eq. (3.16), respectively, and the coe�cients a, b, c(∗) are
coupling constants, which act just as CV and CA, etc. do in Eq. (3.19). Under CP
transformation, one has:

CPHCP† = aV −µ (t,−x)V µ,+(t,−x) + bA−µ (t,−x)Aµ,+(t,−x)

+cV −µ (t,−x)Aµ,+(t,−x) + c∗A−µ (t,−x)V µ,+(t,−x). (3.21)

Comparing Eq. (3.20) with its CP-transformed case Eq. (3.21), one �nds that CP is
conserved if the coupling constant c is real. Although Eq. (3.20) is just a simpli�ed
example, it turns out that the conclusion is pretty general. That is, it is generally
true that for a Hamiltonian H and its subsets of local terms Hi:

H =
∑
i

aiHi + h.c., (3.22)

with CPHiCP† = H†i , CP is conserved if all the coe�cients ai are real. In other
words, in many cases, if not all, searching for sources of CP violations is associated
with �nding complex phases of certain coupling constants. We should keep this in
mind, because our later work just serves as an exhibition of this case.

Finally, let us continue to look at the simpli�ed example of Eq. (3.20); we can
very easily con�rm that even when c is complex, Eq. (3.20) remains invariant under
the combined transformations of CP together with T, which, as discussed before,
is an anti-unitary operator. This CPT invariance turns out to be true not only in
our simpli�ed toy model of Eq. (3.20), but in completely general cases. Strictly
speaking, we are introducing the so-called CPT theorem, which states local quantum
�eld theories respect CPT, i.e.,

CPTL(t,x)(CPT)−1 = L(−t,−x). (3.23)

The CPT theorem (3.23) can be proven rigorously based on the following assump-
tions [16]:

1. Lorentz invariance;

2. the existence of a unique vacuum state;

3. weak local commutativity obeying the �right� statistics.

It can be shown that the CPT theorem demands the equality of masses and total
widths of lifetimes for particles and their antipartners. As we have been emphasizing,
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in the quantum world one should not take validity of any symmetry for granted, but
should rather rely on actual experimental tests. Some very accurate experiments to
test the validity of CPT symmetry have been carried out and no signi�cant violation
has ever been identi�ed at least up to now. Throughout our later works we assume
the validity of CPT symmetry.

One apparent consequence of the CPT theoremof Eq. (3.23) is that it tells us
that CP violation is always connected with the T violation simultaneously, since
the combined CPT transformation is required to be a symmetry. Thus T violating
observables also serve as an important way to study sources of CP violation. In fact,
this is exactly the track that we are following in our work to be presented in the
following chapters.

Based on the above discussion, asking if the SM can handle CP violation is more
or less the same as asking whether complex coupling constants can enter in the SM
in a natural manner. As we know, the answer is yes. A complex coupling can enter
via the so-called Cabibbo-Kobayashi-Maskawa mechanism, which was introduced to
deal with weak transitions between di�erent quark �avors. In this subsection, we
make a very brief review of how this works. Here we are not aiming at an exact
historical description, so that some of the reasoning simply does not represent the
actual sequence of footprints in the history of physics.

Even long before the development of the fundamental electroweak uni�ed theory,
it had been a known experimental fact that many di�erent types of weak processes
appear with similar strength, being universally controlled by the Fermi constant GF .
Such a broadly supported universality made people believe that there must be an
universal underlying description behind all the observed weak processes.

It is now known that hadrons are made of quarks, which are bound by strong
color forces. So far people have identi�ed 6 di�erent types of quarks: u, d, s, c, b,
and t. These quarks are grouped, for strong physical reasons, into 3 generations:(

u
d

)
,

(
c
s

)
, and

(
t
b

)
. (3.24)

In fact, the heaviest t quark was con�rmed only very lately � in 1995. As the �rst
step of our discussion, we temporarily focus on the 2-generation case. The underlying
process of neutron β decay, n → p + e− + νe, is a weak transition from a d quark
to u quark. Apparently, this transition happens within the same generation. When
the second generation of quarks (c, s) are introduced, one would naively think, out
of an assumption of simplicity, there would only be a weak transition within this
generation, between c and s quarks. But such a naive extension is vetoed by the
observed kaon weak decay process: K+ → µ+νµ. More explicitly, we know that K+

meson is a bound state of u quark and s̄ quark, which disappears in the �nal state, so
that there must also exist a weak coupling between the u quark and s quark so that
the u− s̄ annihilation is permitted. At �rst glance, it might seem that one would want
to introduce a new weak coupling constant to accommodate this, but such a track
is obviously not appealing because it is neither economical nor accordant with our
wish of having an universal description of weak interaction. Consequently, instead of
stu�ng more and more phenomenological coupling constants into our theory, Cabibbo

24



in 1963 [17] �rst proposed the following idea: one shall assume the charged weak
current only couples �rotated� generations of quark states:(

u
d′

)
,

(
c
s′

)
, (3.25)

where

d′ = d cos θc + s sin θc

s′ = −d sin θc + s cos θc, (3.26)

or equivalently in the matrix form,(
d′

s′

)
=

(
cos θc sin θc
−sin θc cos θc

)(
d
s

)
(3.27)

By following this scenario, one is then able to maintain an universal description of
the weak interaction, with a minimal introduction of parameters � the quark mixing
angle θc is usually called the Cabibbo angle. Such a mechanism has been con�rmed
to be valid by a series of experiments, and the beauty of this mechanism is that it
can be easily extended to an arbitrary number of generations of quarks. The compact
form of the extension can be understood as N generations of left-handed �rotated�
quark doublets: (

ui
d′i

)
with i = 1, 2, ..., N (3.28)

where d′i refer to mixtures of the �down-type� mass eigenstates di:

d′i =
N∑
j

Vijdj. (3.29)

Here the rotation matrix V is a N × N unitary matrix to be determined by the
�avor-changing weak processes. In the two-generation case, we already see that V
contains only one observable parameter � the Cabibbo angle θc. How many observable
parameters does V contain in the case of an arbitrary number of generation of quarks?
A simple reasoning is as follows: each of the N quark states can tolerate a phase
change independently without a�ecting the physics, therefore V contains N2−2N+1
real parameters. Note here that the one overall phase change which leaves V invariant
is omitted. When we have N = 2 generations, the number of parameter is 1 � the
Cabibbo angle. What is more interesting is that since an orthogonal N ×N matrix
can contain at most N(N − 1)/2 real parameters, one will have to allow for at least:

N2 − 2N + 1− 1

2
N(N − 1) =

1

2
(N − 1)(N − 2) (3.30)

remaining phase factors. For the case of N = 2, there is no phase factor, thus no
complex coupling can enter. Now it is a good time for us to look at the actual
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case in the real world; we have three generations of quarks, as shown in Eq. (3.24).
For N = 3, the matrix V is usually called the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, and now there is one phase factor �eiδ� allowed to enter V , and we have
obtained a complex coupling constant in the SM from parameter counting. This is
to say that CP violation can enter the SM in a natural manner if the number of
generations of quarks is larger than 3. In fact, CKM mixing is the only source of CP
violation in the weakly-interacting quark sector of the SM.

Unlike the simple 2-generation case with the Cabibbo angle �θc� as the only free
parameter, the realistic 3-generation case with three �down-type� quarks d, s, and
b calls for 3 real angles and 1 complex phase factor. There are in principle in�nite
numbers of equivalent ways to parametrize the CKM matrix Vij with i, j = 1, 2, 3.
In the original work of Kobayashi and Maskawa [18], one representation has been
proposed:

Vij =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (3.31)

where cij ≡ cos θij, and sij ≡ sin θij, with θ12, θ13, and θ23 referring to the 3 real weak
angles in total analogy with the Cabibbo angle θc.

Before going further, let us be clear on the two types of relations that arise from
the requirement of unitarity of CKM matrix:

3∑
i=1

|Vij|2 = 1; j = 1, ..., 3 (3.32)

3∑
i=1

VjiV
∗
ki =

3∑
i=1

VijV
∗
ik = 0; j, k = 1, ..., 3, j 6= k. (3.33)

Equation (3.33) is more relevant to us here, because it suggests that with the existence
of a nonvanishing CP-violating phase the products of CKM matrix elements as shown
in Eq. (3.33) in the complex plane form triangles, and we shall see that these triangles
appear to have very di�erent shapes according to the experimental data of the CKM
matrix elements. Based on data from the 2012 compilation of the Particle Data
Group (PDG) [19], we have

|Vij| =
 |Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

 0.97427 0.22534 0.00351
0.2252 0.97344 0.0412
0.00867 0.0404 0.999146

 . (3.34)

From these experimentally determined values of |Vij|, we see that the CKM matrix
Vij possesses an intriguing structure. That is,
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1. the diagonal elements |Vud|, |Vcs|, and |Vtb| are all close to unity, and they are
much larger than the o�-diagonal elements;

2. as the elements are further from diagonal, they get smaller and smaller.

Such a special structure is directly related to the unexpected long life time of B
mesons [20], and it suggests that although the original representation in Eq. (3.31)
is theoretically correct, it is not convenient for practical purposes. To account for
these special structures, people prefer another representation, which is due to Wolfen-
stein [21]:

Vij =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (3.35)

As can be seen in Eq. (3.35), there are four free parameters in the CKM matrix
elements. Note that λ is a small parameter, for which the current world average
value is λ = 0.22535 ± 0.00065 [19], and we are only keeping terms through O(λ3).
The other free parameters |A|, |ρ|, and |η| are all of order unity. Let us also keep in
mind that the CKM phase factor can still be changed into di�erent places, and it will
rotate the whole triangle in the complex plane. With such a representation, it is now
convenient to discuss the di�erent patterns of the CKM triangles that are formed by
the products of CKM matrix elements in the complex plane. Working out the details
of Eq. (3.33) one gets 6 triangles with di�erent patterns [21]:

V ∗udVus[O(λ)] + V ∗cdVcs[O(λ)] + V ∗tdVts[O(λ5)] = 0 (3.36)

VudV
∗
cd[O(λ)] + VusV

∗
cs[O(λ)] + VubV

∗
cb[O(λ5)] = 0 (3.37)

V ∗usVub[O(λ4)] + V ∗csVcb[O(λ2)] + V ∗tsVtb[O(λ2)] = 0 (3.38)

VtdV
∗
cd[O(λ4)] + VtsV

∗
cs[O(λ2)] + VtbV

∗
cb[O(λ2)] = 0 (3.39)

VtdV
∗
ud[O(λ3)] + VtsV

∗
us[O(λ3)] + VtbV

∗
ub[O(λ3)] = 0 (3.40)

VudV
∗
ub[O(λ3)] + VcdV

∗
cb[O(λ3)] + VtdV

∗
tb[O(λ3)] = 0, (3.41)

where the square brackets denote the rough lengths of sides of each triangle in powers
of the small parameter λ. Apparently, these triangles in the complex plane can be
basically categorized into 2 cases:

1. Equations (3.36) through (3.39) describe triangles containing two sides that are
much longer than the third due to the relative suppression factor λ4 ∼ 10−3 and
λ2 ∼ 10−2. Such a badly �squashed� pattern refers to the weak transitions between
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the neighboring generations of quarks, and it is roughly presented as the �rst plot in
Fig. (3.2).

2. Equations (3.40) and (3.41) describe triangles in which all three sides have roughly
the same order, with each of the three angles being ∼ a few×10◦. Such a pattern
refers to the weak transitions between the �rst and the third generations, and is
roughly presented as the second plot in Fig. (3.2).

The second case is especially of interest to us, because with all sides the same

(a)

(b)

Figure 3.2: Rough exhibition of CKM triangles. The plot (a) with two sides of
the triangle much longer are accessible in kaon decays; the plot (b) with all the three
sides roughly of the same order denotes the transitions between accessible in B-meson
decays.

size tests of the relationships between the matrix elements become experimentally
accessible. Note that among Eq. (3.40) and (3.41) in the second case, Eq. (3.40) is
closely related to the t quark decays, but t quark is the known heaviest quark �a-
vor and is very short lived. Thus it is not an ideal material for experiments. It is
Eq. (3.41) that is most important to us: it is closely related to the b quark decays
with b quark much lighter than t quark, and the B meson has long life. All the infor-
mation of the triangle can be determined by experiments � the sides of the triangle
can be determined by measuring decay rates, and the three CP-violating angles can
be measured by various asymmetries in B meson decays. Such an area has become a
broad and popular area usually called �B physics�, shortly after the beauty quark and
B meson were discovered in 1977 [22]. Also, this is the motivation of the projects be-
hind the construction of �B-factories�, which were designed to produce a large number
of B mesons. The Belle experiment at the KEKB collider in Tsukuba, Japan, and
the BaBar experiment at the PEP-II collider at SLAC laboratory in California, USA,
completed data collection in 2010 and 2008, respectively. The B-factories yielded rich
results, including the �rst observation of CP violation outside of the kaon system. For
a better understanding of the experimental outcomes of the B-factory era, let us look
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at the triangle in Fig. (3.3) described by Eq. (3.41) more closely. In the complex

VudV
∗
ub VtdV

∗
tb

VcdV
∗
cb

φ2

φ3 φ1

Figure 3.3: CKM triangle of Eq. (3.41) in the complex plane.

plane, it can be found that

φ1 = π − arg

(
V ∗tbVtd
V ∗cbVcd

)
,

φ2 = arg

(
V ∗tbVtd
−V ∗ubVud

)
,

φ3 = arg

(
V ∗ubVud
−V ∗cbVcd

)
. (3.42)

Note in many papers another notation is used, in which the three CKM angles
are speci�ed as α, β, and γ. One has α = φ2, β = φ1, and γ = φ3. All of
these CKM phases can directly measured via the asymmetries appearing in dif-
ferent modes of B�meson decays. For example, φ1 can be obtained via the CP-
violating asymmetry realized from the interference of B0 − B0 mixing and the di-
rect decay B0 → charmoniumKS,L [23] [24]; φ2 can be similarly obtained via B →
ππ, ρρ, ρπ [25] decays; and φ3 can be obtained via the interference of B− → D0K−

and B− → D0K− [25] [26]. According to the 2012 PDG [19], the central values of
the world average values of the angles in Eq. (3.42) are:

φ1 ≈ 21.4◦, φ2 ≈ 89◦, φ3 ≈ 68◦, (3.43)

which can be summed to give a total inner angle φ1 + φ2 + φ3 ≈ 178◦, very close to
the standard expectation of 180◦. On combining all the experimental data, one can
also obtain the �t for the Wolfenstein parameters:

λ = 0.22535± 0.00065, A = 0.811+0.022
−0.012, ρ̄ = 0.131+0.026

−0.013, η̄ = 0.345+0.013
−0.014. (3.44)

With the discussion thus far, we con�rm that the SM does allow for CP viola-
tion naturally in the manner of CKM mechanism, and this has been experimen-
tally veri�ed. The problem is that detailed theoretical analysis reveals that CP
violation due to the CKM mechanism is not su�cient to explain the puzzle of
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BAU [27] [28] [29] [30] [31] [32] [33] [34]. This in turn reveals that there must ex-
ist additional mechanism that is BSM, in which some nontrivial complex coupling
constants can appear.

I think it might also be worth spending a little time to mention brie�y another
interesting CP-violating source in QCD � the so-called �θ term�. Besides the CKM
scenario above, SM could have permitted, in principle, another possible and econom-
ical way to violate CP symmetry in the strong interaction, but it does not operate
though we do not know why � this is the �strong CP problem.� Since this topic is
not so relevant to our work, here I shall just very brief picture without going into a
lot of detail.

In the QCD sector of the SM, the QCD Lagrangian as a theoretical extension of
Yang-Mills theory [35] is written as:

LQCD = Qf i /DQf −Qf RMQf L − 1

4
Ga
µνG

µν,a + h.c., (3.45)

where the subscript f denotes the six quark �avors u, d, c, s, t, and b. For each of
these �avors, there are 3 color degrees of freedom as well:

Qf =

 Qf r

Qf g

Qf b

 (3.46)

with the indices r, g, and b denoting the color �red�, �green�, and �blue� respec-
tively. Note in QCD theory, the number of colors Nc is three to account for the
observed baryon states ∆++(uuu), ∆−(ddd), and Ω−(sss), which contain three iden-
tical fermions and thus the minimum of Nc = 3 is required. As will be discussed
later, Nc = 3 is necessary in understanding the pi0 lifetime, and it also plays an
important role in the anomaly cancellation of the SM. Furthermore, M is the quark
mass matrix, and Dµ is de�ned as the covariant derivative:

Dµ ≡ ∂µ − igtaAaµ, (3.47)

with ta referring to the eight SU(3) generators, Aaµ the gluon �eld, and g the strong
coupling constant. Ga

µν denotes the gluon��eld strength tensor:

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (3.48)

where fabc is referred to as the structure constant of SU(3) gauge group. The whole
construction of LQCD, Eq. (3.45), is based on the fundamental requirement of local
gauge invariance of SU(3)c. It can be shown, as stressed before, that the standard
QCD Lagrangian of Eq. (3.45) conserves all the C, P, and T symmetries separately
� and of course CP is conserved accordingly. However, there could have been, by all
means, another possible term, which reads:

LeffQCD = LQCD +
θg2

32π2
εµναβGa

µνG
a
αβ. (3.49)
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where θ is a constant, representing the strength of the additional term �εµναβGa
µνG

a
αβ.�

Let us emphasize that one can show [36] [37] that, in the framework of the U(1)
axial anomaly, allowing for a possible imaginary part of the quark mass in the QCD
Lagrangian also leads to a term of the similar form εµναβGa

µνG
a
αβ that is proportional

to Arg [Det (Mq)], whereMq refers to the quark mass matrix. Thus it is really the θ ≡
θ + Arg [Det (Mq)] that serves as the physical observable. With the additional term
added, Lorentz invariance as well as SU(3) gauge invariance are still respected. Thus,
based on the fundamental spirit of constructing a local gauge�invariant quantum �eld
theory, there is no reason to exclude such an additional term, so that strictly speaking,
we should have included such a term in the QCD Lagrangian from the very beginning,
and if so, we have a CP�violating term in QCD. It can be easily checked [38] that
the original gluon dynamical term Ga

µνG
µν,a leads to:

Ga
µνG

µν,a ∝
∑
a

(|Ea|2 + |Ba|2), (3.50)

where |Ea|2 and |Ba|2 are called color electric and color magnetic �elds, which trans-
form under P, C, and T in a way similar to the electromagnetic �elds, such as Eq. (2.6)
and Eq. (2.7). Thus we have:

Ea
P−→ −Ea, Ea

T−→ Ea, (3.51)

Ba
P−→ Ba, Ba

T−→ −Ba, (3.52)

from which one immediately sees that the original gluon dynamical term, �Ga
µνG

µν,a�,
is de�nitely symmetric under P and T. Based on the similar argument, however, one
can also show:

εµναβGa
µνG

a
αβ ∝

∑
a

Ea ·Ba, (3.53)

which is obviously both P-violating and T-violating!
As one may have noticed, a similar CP-violating term such as εµναβFµνFαβ could

also enter the QED Lagrangian; if so, do we expect a CP violation in QED also? The
quick answer is NO. Essentially, in both QED and QCD, the CP-violating term can
be written as a total divergence. In the case of QED, because the associated U(1)
gauge group possesses very simple topological structure of the ground, or vacuum
state, such a CP-violating term can be argued away by an allowed choice of Aµ = 0
at in�nity. In the case of QCD, however, the complex topological structure of the
QCD ground state stops one from setting Aaµ = 0, so that the T-violating term cannot
be simply argued away [39] [40].

To sum up, the term �εµναβGa
µνG

a
αβ� in QCD could have been chosen by nature to

serve as a very economical source of CP violation, but interestingly it was not. In fact,
detailed analysis reveals a connection between the nEDM and the term �εµναβGa

µνG
a
αβ�

such that dn ≈ 10−16θ e cm [41] [37]. With the current experimental limit of dn [42]:

dn < 2.9× 10−26 (90% C.L.), (3.54)
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one �nds a bound on θ̄ such that:

θ . 10−10, (3.55)

which suggests no evidence of the existence of such a term in QCD. Is there any
hidden theory or symmetry making the �θ term� forbidden? The question why the
seemingly allowed �θ term� is so tiny remains an open question, and we are sure that
the strong CP problem provides a important clue to new physics. The discussions on
this issue have lead to several proposed BSM models such as models which have a
massless u-quark as reviewed by Ref. [43], the Peccei-Quinn mechanism [44] [45], as
well as various supersymmetry (SUSY) and string theory compacti�cations where CP
is an exact gauge symmetry and must be spontaneously broken [46] [47]. Roughly
speaking, the Peccei-Quinn mechanism assumes that the Standard Model may be
augmented by appropriate additional �elds and admits a symmetry U(1)PQ, which
acts on states charged under SU(3)C . Assuming this symmetry is spontaneously
broken at some necessarily high-scale fa, a pseudo-scalar Goldstone boson � the axion
� results. Symmetry dictates that the essential components of the axion Lagrangian:

La =
1

2
∂µa∂

µa+
a(x)

fa

αs
8π
GG̃, (3.56)

where a(x) refers to the proposed axion �eld, and G̃ ≡ εµνρσGρσ � the Gµν dual.
Apparently, Eq. (3.56) provides a �eld-dependent shift of θ:

θ → θ +
a(x)

fa
. (3.57)

Furthermore, one �nds that below the QCD scale U(1)PQ is explicitly broken by
the chiral anomaly, and thus the axion is in reality a pseudo-Goldstone boson and
acquires a potential

Leffa =
1

2
∂µa∂

µa− 1

2
χ(0)

(
θ +

a(x)

fa

)2

, (3.58)

where χ(0) is a constant, known as the topological susceptibility. We see from
Eq. (3.57) that the vacuum expectation value of the axion �eld 〈a(x)〉 renormal-
izes the value of θ so that all observables depend on the combination θ + 〈a(x)〉

fa
. At

the same time, such a combination must vanish in the vacuum as it minimizes the
value of the axion potential in Eq. (3.58). The strong CP problem is then solved in
the Peccei-Quinn mechanism, which is independent of the initial value of θ and thus
seems very appealing. However, the Peccei-Quinn mechanism calls for the con�rma-
tion of the axion as a new particle that is beyond the SM. One can show that the
excitations around 〈a〉 correspond to a massive axion particle with a mass

ma ∼ 1

fa
|χ(0)|2. (3.59)

For large fa the axion should be very light and thus should have had signi�cant
phenomenological consequences. Yet the direct and indirect searches for �invisible
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axions� up to date yield null results [48] [49] [50] [51] [19], setting the lower bound of
fa > 1010 GeV. Currently, axion theory is still an active area.

There are also other ways to solve the strong CP problem. People suggest that
perhaps CP (maybe even both P and CP) is an exact symmetry of nature at some
very high energy scale. One can then declare that the θ term must vanish as a result
of symmetry at that very high energy scale. To account for the CP violation that
has been observed in the SM via the CKM mechanism, one has to assume that the
CP symmetry is spontaneously broken at a particular scale Λ(P,CP). The theoretical
challenge here is that one is forced to ensure that such a spontaneously broken CP
symmetry allows for a signi�cant CP-violating CKM phase δCKM, yet keeps the θ term
very small. Among the attempts of this type, a scenario in SUSY [52] [53] [54] exists,
it states that there exist two very distinct symmetry-breaking scales, one for CP,
the other for SUSY, and the CP-breaking scale ΛCP is much higher than the SUSY-
breaking scale ΛSUSY. Were this true, strong interactions in the CP-breaking sector
can then generate a large CKM phase, while a SUSY nonrenormalization theorem
ensures that θ is not generated until down to the much lower scale ΛSUSY where SUSY
is broken. One expects the corrections to θ to be highly suppressed by power(s) of
the small ratio ΛSUSY/ΛCP.

3.3 Experiments at Low Energies to Probe CP Violation

Besides the observed CP violation in both kaon and B�meson decays, CP violation
could also arise in other possible places. Here we focus on the case of neutron observ-
ables. In the following short sections, we shall brie�y mention other possible probes
of CP violation � the neutron electric dipole moment (nEDM), the D and R term in
neutron β decay, and a triple-product correlation in momenta in radiative β decay,
which is the main goal we are pursuing.

3.3.1 Electric Dipole Moments

The basic de�nition of an EDM d in a composite system is:

d ≡
∑
i

riQi, (3.60)

where �i� refers to a particular constituent inside the particle under discussion, not
to be confused with a vector's component indices. According to Eq. (3.60), a nonva-
nishing value of d of an object signals an asymmetric charge distribution. Such an
asymmetric charge distribution can be permanent or induced due to the presence of
an external electric �eld. For a system, such as an elementary particle, an atom, or a
molecule placed in a weak electric �eld E, the energy shift, ∆E , due to the external
electric �eld can be, in general, expanded in a power series in E:

∆E = d · E + dijEiEj + . . . , (3.61)

where d in the �rst term is the permanent EDM, which leads to an energy shift
linear in E, and that of the second term is the induced EDM, which leads to an
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energy shift quadratic in E. This is easy to understand because the electric �eld E
must be used to induce an EDM. In such a way, one is able to distinguish between a
permanent EDM and an induced EDM. Obviously, a non-vanishing expectation value
of the dipole moment operator for a certain particle implies that the dynamics acting
on the particle violates parity symmetry. This is such a simple fact that people had
realized it a long time ago. In fact, Purcell and Ramsey used this argument to test
parity conservation in nuclear forces in the early 1950's. It can also be shown that a
permanent EDM also violates T symmetry [55]. It can be understood in the following
way: for a nondegenerate ground state of a particle, say a neutron, one assumes that
no other internal quantum numbers but the spin S serves as the only 3-component
object characterizing a free static neutron, thus if the nEDM is present, the following
proportionality then inevitably holds:

〈n, s|d |n, s〉 = Cs 〈n, s|S |n, s〉 , (3.62)

where Cs is just a constant. With presence of an external electric �eld E as well as
T transformation, the scalor product E · d is not to be a�ected, but E · S is. With
the spin polarization S transforming as angular momentum, one has:

TE · dT−1 = E · d, (3.63)

TE · ST−1 = −E · S. (3.64)

Thus we know that nEDM has to vanish if T is conserved, an observation of non-
vanishing nEDM unambiguously signals T violation, as well as CP violation according
to the CPT theorem.

Up to date, searching for non-vanishing permanent nEDM has been an important
and ongoing area in nuclear physics. The current record of the accepted upper limit
of |d| ≡ dn, obtained from [42], is:

dn < 2.9× 10−26 e cm (90% C.L.). (3.65)

New projects have been proposed, and are already on their way to push the limit to the
level of 10−28 e cm [56], allowing us better understanding of CP violation. More details
of the proposals for the future experiments can be found in Ref. [57] [58] [59] [60] [61].

3.3.2 T-odd Decay Correlations in Neutron β Decay

As the second example of the possible places where CP violation could enter, we now
look at the polarized neutron β decay:

~n → p+ e− + νe, (3.66)

which can be described with the Feynman diagram of Fig. (3.4), in which pn, pp,
le, and lν refer to the 4-momentum of the neutron, proton, electron, and electron
antineutrino respectively. Within this subsection, we are assuming that the neutron
is at rest in the lab frame, and polarized along a direction chosen to be the z direction.
The component �

⊗
� in Fig. (3.4) represents an e�ective coupling vertex at su�ciently
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n(pn)

p(pp)

e−(le)

νe(lν)

Figure 3.4: Neutron β decay, n → p+ e− + νe.

low energy. Roughly speaking, the momentum transfer in neutron β decay is only
about 1 MeV, which is much less than the W±�boson mass of ∼ 80 GeV. In this case,
the W±�boson propagator �shrinks� to a point, controlled by Fermi constant GF .
Following the standard Feynman rules, one can readily write down the amplitude for
the decay process (3.66) at tree level:

M =
GF√

2
ueγ

µ(1− γ5)uνup(gV γµ − gAγµγ5)
1 + γ5/S

2
un, (3.67)

where ue, uν , up, and un refer to the Dirac spinors of the electron, neutrino, proton,
and neutron, respectively. The coupling gV and gA are of vector and axial vector
character, respectively. Apparently, Eq. (3.67) agrees with Eq. (3.19) with only some
minor changes in notation. The insertion of the operator �(1 + γ5/S)/2� is to account
for the neutron spin polarization, with Sµ the spin polarization operator. To obtain
the decay rate Γ � a physical observable, one just needs to take the absolute square
ofM in Eq. (3.67), and employ the Cli�ord (γ-matrices) algebra. A straightforward
calculation [62] yields:

dΓ ∝ |M|2 ∝ 1 + a
le · lν
EeEν

+ b
me

Ee
+ A

S · le
Ee

+B
S · lν
Eν

+D
S · (le × lν)

EeEν
, (3.68)

with the following T and P transformation properties of S, le, and lν :

S
P−→ S; S

T−→ −S;

le
P−→ −le; le

T−→ −le;

lν
P−→ −lν ; lν

T−→ −lν . (3.69)

Thus, the �A� and �B� related terms are parity-violating, and they account for the
observed parity violation in the weak interaction. What is more interesting is that
the so-called �D� term, which is proportional to the triple product S · (le × lν), is a
T-odd correlation, and can signal the presence of CP violating physics if D 6= 0. Here
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let us keep in mind that such a T-odd correlation is not really a true test of T but
only probes motional invariance. Thus it can be mimicked by �nal�state interactions
(FSI). In fact, such a FSI mimicking e�ect is universal to many T-odd correlations;
we will see more details about this in neutron radiative β decay in a later chapter.
One can work out the actual analytic form of D [62], which reads:

D ∝ Im(gV g
∗
A). (3.70)

Currently the most precise measurement [63] yields D = [−0.96 ± 1.89(stat) ±
1.01(sys)]× 10−4. One can show that the contribution from the FSI mimicking e�ect
is only of order 10−5 [64].

In the discussion of the �D-term� thus far, we consider the polarized neutron but
leave the �nal electron unpolarized. Many other possible CP-violating observables
have been discussed in Ref. [62]. Among these possibilities one more observable that
could also be experimentally viable comes from the case where both neutron and
electron are polarized. One �nds a T-odd correlation in the di�erential decay rate in
such a case:

|M|2T−odd = R
Ŝn × pe × Ŝe

Ee
, (3.71)

where to distinguish the polarizations of neutron and electron, we denote them as Sn
and Se respectively, and the hat symbol means the unit vector. The coe�cient R is
a T odd, P odd correlation. On applying the Lee and Yang's general Hamiltonian of
Eq. (3.18), and ignoring the e�ect of �nal-state interactions, one �nds [62]:

R = −0.128 Im

(
CS + C ′S
CV

)
+ 0.335 Im

(
CT + C ′T
CA

)
. (3.72)

A recent measurement [65] yieldsR = 0.004±0.012(stat)±0.005(sys). Inspecting both
the �D-term� and the �R-term�, we see that to allow for a non-vanishing CP violation
in neutron β decay, at least some of the coupling constants must be complex. This
is in agreement with our earlier discussion of the conditions for CP violation in a
simpli�ed model, Eq. (3.20). As will be seen in later chapters, this is in fact the track
we are following in searching for T-odd correlations.

3.3.3 T-odd Decay Correlations in Neutron Radiative β Decay

Although we are presenting this topic as a short subsection, there is really much to
say. We are postponing a general discussion to later chapters. Here we will only
motivate that later study.

As seen in the discussions so far, the searches for CP violation in both the nEDM
and the T-odd decay correlations in neutron β decay are inevitably involved with the
neutron spin. Now suppose the spin polarization is �turned o��, or, say, we consider
unpolarized neutron β decay, are we still able to track down a CP-violating source?
The quick answer is YES, because even without a spin S, one can still, in principle,
�nd another kind of correlation, a triple-product correlation in momenta,∼ p1 · (p2×
p3). This kind of correlation is not available in regular neutron β decay, because it
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does not have enough number of independent 3-momenta. To allow for a nontrivial
triple-product correlation in momenta, one needs at least three independent momenta
in the �nal state, but regular neutron β decay only has two due to energy-momentum
conservation. Thus, to have enough independent momenta, neutron radiative β decay
is needed.

Simply speaking, neutron radiative β decay refers to the regular neutron β decay
accompanied by the emission of one or more photons. In neutron decay, the electron
and proton decay products are both charged particles, photon(s) can be emitted due
to the presence of these charged particles, and this has been observed recently [66].
In the language of QED perturbation theory, the contribution of multiple�photon
emission is suppressed by higher powers in the �ne-structure constant α ∼ 1/137, so
that for now we just consider the single photon case. In the very end of the thesis, we
will turn to a detailed analysis of the case of two photons emission, since this issue
can be important for soft photon momenta.

More precisely, we describe radiative neutron β decay as:

n → p+ e− + νe + γ, (3.73)

which can be realized via standard QED bremsstrahlung due to the electron and pro-
ton, and some other possible processes which depend on hadron structure. For now,
we just focus on the contribution of QED bremsstrahlung, which is unambiguously
described in the SM. One obtains the relevant Feynman diagrams, Fig. (3.5), where
we denote the �nal states with the momenta of the relevant particles. The processes

pn

lν

le

k

pp
(01)

pn

lν

le

k

pp
(02)

Figure 3.5: Neutron radiative β decay, n → p+ e− + νe + γ.

shown in Fig. (3.5) serve as a starting point for our later work, and the SM already
provides us with all the essential information. Following the Feynman rules, one is
able to obtain the amplitude and to carry out all the relevant calculations in just the
same way as in the usual neutron β decay case. The only di�erence is that because
the electron and proton lines are now dressed with the photon emission, more com-
plicated spin sums are involved. The calculations are more tedious, but still doable
by hand, one just needs more patience and time. Alternatively, a symbolic manipu-
lation form, such as FORM, can be employed. As stressed before, in this section we
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just quickly point out that in neutron radiative β decay, we are now able to form a
nontrivial triple-product correlation in momenta, le · (lν × k). More details will be
presented in the later chapters.

Copyright© Daheng He, 2013.
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Chapter 4 CP-Conserving Observables in Neutron Radiative β Decay

In this chapter, we discuss the SM calculations on the neutron radiative β de-
cay [67] [68]. For now we are assuming, with great con�dence, that the main contri-
bution to the electromagnetic radiation is the QED bremsstrahlung, which has been
understood very well in the SM. We can then calculate the di�erential and total ra-
diative decay rate as a function of the lowest detected photon energy ωmin. The decay
rate for a �xed ωmin can also be converted into a branching ratio (BR), and it can be
used to compare with high-precision experimental measurements [69]. contributions
that are BSM if any signi�cant discrepancy identi�ed. As we will see in later chapters,
another newly proposed mechanism can also contribute to the radiative β decay.

Throughout the chapter, our calculations are restricted to leading recoil order
(LRO) for simplicity. By LRO we mean that all the contributions of O(E/MN) are
ignored, where E ∼ 1 MeV refers to the typical energy scale of the electron mass and
the kinetic energies of the decay products, and MN ∼ 103 MeV refers to the average
of the proton and neutron masses. The relative error that arises from the LRO
approximation can then be evaluated as E/MN ∼ 10−3, which has been con�rmed by
the explicit calculations in [68] and is far beyond the precision that experiments have
been able to achieve up to date! Thus we can ignore the recoil�order terms without
losing any predictive power. Throughout the rest of this thesis, the Natural Unit
System, in which the speed of light c and Plank constant h are both set to unity, is
assumed unless stated otherwise.

We consider the neutron case only in this chapter. The more general case of
nuclear radiative β decay is discussed in a later chapter.

4.1 Neutron Radiative β Decay in Leading Order

We start with neutron radiative β decay with a single photon detected. As we have
noted, here only the bremsstrahlung process is needed. One can show that the con-
tributions that are beyond bremsstrahlung are beyond LRO [68]. In this section, we
work in leading order, which means that we are only keeping the contributions of
LRO as well as of O(α). Furthermore, as a rough estimate, the typical radius of both
neutron and the proton, RN , has been experimentally determined to be less than 1
fm [19], so that:

RN .
1

197
MeV−1. (4.1)

As for the wavelength of the photon, λγ, since the typical energy carried by the
emitted photon, Eγ, is surely less than 1 MeV, we have:

λγ =
ch

Eγ
> 1MeV−1 � RN . (4.2)

Equations (4.1) and (4.2) shows us we can take the long-wavelength limit and treat
the neutron as well as the proton as point�like objects. Or more simply speaking, at
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su�ciently low energy, the emitted photon �sees� no structure, such as quarks and
gluons, inside the neutron and proton. This justi�es our earlier approximation of
treating the neutron and proton as fundamental spin-1/2 fermions. The interactions
resulting from the deeper stucture of nucleon can be treated systematically in chiral
perturbation theory [68], which we will discuss in a later chapter.

With this preparation, we are now ready to carry out the calculations. In Chapter
3, we have shown the relevant Feynman diagrams in Fig. (3.5) with bremsstrahlung.
The scattering amplitude reads:

M0 =
egVGF√

2
(M01 −M02), (4.3)

whereM01 andM02 describe the bremsstrahlung diagrams (01) and (02) in Fig. (3.5).
There can be other possible contributions that are beyond bremsstrahlung, but they
are only subleading. We postpone the discussions of such contributions to a later
section.

For the diagram (01) in Fig. (3.5) we have, following Ref. [70] for all conventions:

M01(le, k, pp) = ūe(le)
2le · ε∗ + /ε∗/k

2le · k γρ(1− γ5)vν(lν)ūp(pp)γ
ρ(1− λγ5)un(pn), (4.4)

and for the diagram (02) in Fig. (3.5) we have:

M02(le, k, pp) = ūe(le)γρ(1− γ5)vν(lν)ūp(pp)
2pp · ε∗ + /ε∗/k

2pp · k γρ(1− λγ5)un(pn), (4.5)

where ue(le), vν(lν), up(pp) and un(pn) are Dirac spinors describing the asymptotic
states of the electron, neutrino, proton, and neutron, respectively, with their momen-
tum dependence shown explicitly � we do this for later convenience. In Eq. (4.3),
e refers to the unit of electric charge, which, following Heaviside-Lorentz convention
as per [70], satis�es e2/4π = α ≈ 1/137; gV refers to the vector current coupling
constant; GF is the Fermi constant; λ is de�ned as λ ≡ gA/gV = 1.2701 [19] with gA
the axial vector current coupling constant.

In Eq. (4.3),M01 andM02 di�er by a minus sign because the electron and proton
carry opposite electric charges. Such a relative minus sign is important for the Ward
identity � a fundamental requirement of QED gauge invariance which states that the
total amplitude has to vanish on the replacement of a photon's polarization vector
εµ with its momentum kµ [70]. Replacing εµ with kµ in both Eq. (4.4) and Eq. (4.5)
combined with the identity:

/k/k = k · k = m2
γ = 0, (4.6)

shows that the Ward Identity:

M0|εµ→kµ = 0 (4.7)

holds manifestly.
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With the amplitude M0, Eq. (4.3), in association with Eq. (4.4) and Eq. (4.5),
one is able to obtain much important information for the neutron radiative β decay.
The decay rate Γ as a physical observable is our aim in this section. To get the decay
rate, we �rst need to calculate |M0|2, which of contains:

|M0|2 =
e2g2

VG
2
F

2

(|M01|2 + |M02|2 − 2Re(M01M∗
02)
)
, (4.8)

Before starting the detailed calculations, it is worth pointing out that the term
�(/ε∗/k)/(2pp ·k)� in Eq. (4.5) only gives a contribution of recoil order, which, based on
the LRO approximation, is negligible. So we shall simply drop this term throughout
our calculations. We just work out the terms in Eq. (4.8) one by one. Although the
procedures to work out |M0|2 are standard, I am thinking that since I had a hard
time handling the analytic calculations of |M0|2, both as a basic training and as a
preparation for later projects, it still seems worthwhile to go a little bit further than
simply saying something like �it is easy to show...�. In fact, the details here are also
useful for later discussion of the extension of the neutron to nuclear cases.

Take the calculation of |M01|2 for example, one has:

|M01|2 = M01 · M∗
01 = ūe

2le · ε∗ + /ε∗/k

2le · k γρ(1− γ5)vν ūpγ
ρ(1− λγ5)un · v̄ν(1 + γ5)γδ

2le · ε+ /k/ε

2le · k ueūn(1 + λγ5)γδup, (4.9)

which can be reorganized into a product of two tensors, which we classify as the
baryonic tensor Hρδ:

Hρδ ≡ ūpγ
ρ(1− λγ5)unūn(1 + λγ5)γδup

= Tr
[
(/pp +mp)γ

ρ(1− λγ5)(/pn +mn)(1 + λγ5)γδ
]
, (4.10)

where mn and mp refer to neutron and proton mass, respectively. The leptonic tensor
Lee
ρδ reads:

Lee
ρδ ≡

1

4
ūe(2le · ε∗ + /ε∗/k)γρ(1− γ5)vν v̄ν(1 + γ5)γδ(2le · ε+ /k/ε)ue

=
1

2
Tr
[
(/l e +me)(2le · ε∗ + /ε∗/k)γρ/l ν(1 + γ5)γδ(2le · ε+ /k/ε)

]
, (4.11)

such that we have:

|M01|2 =
1

(le · k)2
Lee
ρδ ·Hρδ. (4.12)

The remaining jobs are just to work out Leeρδ andH
ρδ, with great patience, by following

the trace theorems that are usually available in many QFT textbooks, such as [70].
One more issue that might be worth of mentioning here concerns the manipulation
of the photon polarization term �ε∗µεν ,� which will certainly appear in the detailed
calculations. Let me just say a few words on this issue here. It can be shown that, on

41



summing over all the photon polarizations, if the Ward identity Eq. (9.43) is satis�ed,
then the following replacement: ∑

s

ε∗µεν → −gµν (4.13)

is valid. In Peskin and Schroeder's QFT textbook [70], Eq. (4.13) is called the �gauge
replacement trick,� which helps simplify our calculation.

With the short statements of the general procedures we have listed, we are now
ready to present the �nal results, which can also be found in Refs. [68] [71]:

Lee
ρδH

ρδ = −64mnmp

(
m2
e − le · k

) (
(1 + 3λ2)Eν(Ee + ω) + (1− λ2)(le · lν + lν · k)

)
,

(4.14)
The rest of the terms in Eq. (4.8) can be processed in pretty much the same way. We
have:

|M02|2 =
1

m2
pω

2
Lρδ ·Hee

ρδ, (4.15)

with
Lρδ ·Hee

ρδ = −64mnm
3
p

(
(1 + 3λ2)EνEe + (1− λ2)le · lν

)
, (4.16)

and �nally the mixing term:

2Re(M01M∗
02) =

1

mpω(le · k)
M ee

mix (4.17)

with

M ee
mix = −64mnm

2
p

(
(1 + 3λ2)Eν(2E

2
e + Eeω − le · k) + (1− λ2)Ee(2le · lν + lν · k)

)
.

(4.18)
Apparently, according to Eq. (4.14), Eq. (4.16), and Eq. (4.18), |M0|2 only contains
terms that are both P-even and T-even. In later chapters we will see how T-odd
correlations arise. Also, the result for |M0|2 is obtained by summing over all the
particles' spin orientations, thus in the following calculation of decay rate Γ, we shall
average over the neutron's spin polarization by associating |M0|2 with an extra factor
of 1/2.

With |M0|2 obtained, one can then calculate the physical observable, the decay
rate Γ. In QFT, an unpolarized decay rate Γ in the particle rest frame can be
computed according to the following formula [70]:

Γ =
1

2mA

∫ ∏
i

d3pi
(2π)32Ei

(
1

2

∑
spin

|M|2
)

(2π)4δ4

(
pA −

∑
i

pi

)
, (4.19)

where mA refers to the mass of the parent particle, and the index i runs over all the
decayed products. For neutron radiative β decay, we have:

Γ =
1

(2π)82mn

∫
d3pp
2Ep

d3le
2Ee

d3lν
2Eν

d3k

2ω

(
1

2
|M0|2

)
δ4 (pn − pp − le − lν − k) . (4.20)
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The actual phase space integrations could have been very complicated, but the LRO
approximation helps reduce the complexity greatly. Simply speaking, we work in the
neutron rest frame, so that pn only has its zeroth component mn. We can also drop
the momentum pp in the heavy particle limit, so that in the actual evaluations only
the zeroth components mn and mp contribute. In this way, many degrees of freedom
are removed. Our speci�c choice of the coordinate system is shown in Fig.( 4.1): we
choose the direction of the electron 3-momentum le as the z direction, and we can
also let the two vectors, le and k, determine the x-z plane. The convenience in such a

(le)

x̂

ŷ

ẑ

k

lν

θk
θν

φν

Figure 4.1: The coordinate system for the calculation of neutron radiative β decay.

speci�c coordinate system is that some integrations become trivial, for instance, the
integration over the electron solid angle Ωe simply gives 4π, and the integration over
the photon azimuthal angle φk simply yields 2π. A bit more calculations yields the
ultimate expression for neutron radiative β decay rate:

Γ(ωmin) =
1

16m2
n(2π)6

∫ ωmax

ωmin

ωdω

∫ Emax
e (ω)

me

|le|dEe
∫ 1

−1

dxk

∫ 1

−1

dxν

∫ 2π

0

dφνEν

×
(

1

2
|M0|2

) ∣∣∣∣∣
pp, Eν

(4.21)

where xk ≡ cos (θk), xν ≡ cos (θν), and E
max
e (ω) = mn −mp − ω. In Eq. (4.21), the

conditions on |M0|2| refer to the constraint of the energy-momentum conservation
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pn− pp− le− lν − k = 0 , as demanded by the δ function in Eq. (4.20), which can be
shown to yield the second condition Eν = mn−mp−Ee− ω in LRO approximation.
The highest possible value of ω is ωmax = mn − mp − me ≈ 0.782MeV, whereas
ωmin refers to the lowest detectable photon energy that is decided by experimental
consideration. Note here we are not allowing ω to go to zero, because a photon of
zero energy cannot be detected. Thus there is no infrared divergence to worry about.
Although Eq. (4.21) looks quite ready for numerical evaluation, it can be further
simpli�ed still. One is able to work out the integrations of

∫
dφν as well as

∫
dxν

analytically, thus leaving at most 3 integrations to numerical evaluation, which can
be done e�ciently.

As suggested by Eq. (4.21), Γ depends on ωmin, which refers to the minimum
detectable photon energy that is determined by the sensitivity threshold of the ex-
perimental devices. As for the electron energy integration, we have for each chosen
ω, Emax

e (ω) = mn −mp − ω, and therefore when the electron is at rest, ω reaches its
maximum ωmax = mn −mp −me ≈ 0.782 MeV.

With Γ obtained, we translate it into a branching ratio (BR), which is a more
accessible experimental quantity in the case of neutron decay because knowledge of
the initial neutron �ux is not needed. In general, the BR for a particular decay
mode is de�ned as the ratio of the number of atoms decaying by that decay mode to
the number decaying in total. In terms of decay rate, BR can also be equivalently
obtained by:

BRi =
Γi

Γtot

, (4.22)

where Γi refers to the i
th allowed decay mode. For the total decay rate Γtot, which may

include many decay modes, some of which may have not discovered yet in experiments
for being tiny, it can be deduced from the measured total lifetime since Γtot = 1/τ ,
where τ refers to the total lifetime of the parent particle. In the most recent PDG [19],
one �nds for neutron τn = 880.1± 1.1 s, which needs to be converted into the natural
unit system for consistency. We have:

1 s =
1022

6.582122
MeV−1. (4.23)

To be more transparent for possible double checking, I am listing our actual numerical
inputs here; that is, we employ the following: neutron mass mn = 939.56533 MeV;
proton mass mp = 938.272 MeV; electron mass me = 0.511 MeV; �ne-structure con-
stant α = 1/137.036; Fermi constant GF = 1.16639 × 10−11 MeV−2; λ ≡ gA/gV =
1.2701; gV =

√
1 + ∆rVud with the Vud = 0.974, and ∆r = 0.024, representing a

small radiative correction. The branching ratios at some speci�ed values of ωmin are
listed in Tab. (4.1), where BR0 means that the �nal-state Coulomb correction is not
included. In a later section, we will discuss the �nal-state Coulomb correction in
more detail. As a speci�c comparison between the theoretical calculation and a re-
cent measurement of the branching ratios of neutron radiative β decay, we obtain
that in the photon energy range ω ∈ [0.015, 0.340]MeV, the theoretical prediction of
the BR value is BR0

theo ≈ 2.85× 10−3. As will be seen in a later section, the correc-
tion due to the Coulomb correction will be a few percent. The experimental value is
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Table 4.1: Branching ratios of neutron radiative β decay for various ωmin, where the
�nal-state Coulomb correction has not been included.

ωmin(MeV) BR0(n)
0.01 3.45× 10−3

0.05 1.41× 10−3

0.1 7.19× 10−4

0.3 8.60× 10−5

BRexp = (3.09 ± 0.32) × 10−3 [69]. Nevertheless, we see they agree well within the
error bar.

There is another important reason for us to have the discussion of CP-conserving
part here. We discuss the T-even part �rst to get prepared for the later work. In
later chapters where we will talk about a T-odd asymmetry, and we will de�ne the
physical observable A:

A =
Γ+ − Γ−
Γ+ + Γ−

, (4.24)

where Γ refers to the radiative β decay rate. The subscript �+� and �-� refer to the
positive and negative hemisphere of the phase space integral with respect to the sign of
the triple-product correlation in momenta lν ·(le×k). Clearly, the CP-conserving part
of Γ that we have obtained in this chapter plays a dominant role in the denominator
of Eq. (4.24). With the CP-conserving part we have computed in this chapter, we
will be able to compute the asymmetry A provided that the T-odd part is obtained.
This is just what we will be doing in later chapters.

Also, as one may have noticed, in this section we do not consider the e�ect of �nal-
state Coulomb correction, but we know that since the decayed proton and electron are
both charged particles, right after they appear in the decay they certainly feel a non-
negligible attractive Coulomb force between them as they �y apart. The in�uence of
such a process starts as a higher order term in α. A careful work should not simply
ignore such an e�ect even if it is a small correction; this and other like corrections will
be discussed in full detail to give a sharper prediction for the experimental energy
spectrum of neutron radiative β decay.

4.2 Higher�Order Corrections

From the discussion in the previous section, we see that the SM prediction agrees well
with the experimental result within the range of uncertainty, but we also see that the
precision of the direct measurement of the neutron radiative β decay branching ratio
is currently only up to O(10%). The RDK-II collaboration is in the process of raising
the precision of the BR measurement to O(1%) [72]. We are then expecting to obtain
much more information on the decay. As emphasized at the beginning of the section,
we are considering single-photon radiation, and we have been taking the leading
order contributions as the desired accuracy. In facing an upcoming higher precision
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measurement at the level of 1%, such O(α) approximation may not be su�cient any
more. In order to sharpen the theoretical predictions against the sharper experimental
data in the future, we need to consider the higher�order contributions as well. In the
following sections, we will try to consider two important factors that may turn out
to be signi�cant corrections to our earlier calculations. One concerns the �nal-state
Coulomb interaction, which, strictly speaking, is not of �xed order but starts inO(α2),
between the electron and proton in neutron radiative β decay. The other concerns
the possibility of double photon emission, which is usually thought to be suppressed
by an additional factor of α compared to the single photon emission that we have
been assuming thus far. Although this is true, as we will show a little bit later, there
can be other compensating e�ects that can make such higher order corrections give
noticeable contribution.

4.2.1 Final-State Coulomb Interaction

As has been suggested above, the calculations thus far have not taken �nal-state
Coulomb corrections into consideration. But since the decay products, proton and
electron, are both charged particles, a long ranged, attractive Coulomb force between
them is always present, and its e�ect can be greatly enhanced for very low electron
kinetic energy. Thus to be on the safe side, such a �nal-state Coulomb interaction
deserves being investigated in detail, and it is what we present in this section.

The Coulomb correction can be described as a �distortion� of the wave functions of
the outgoing electron and proton due to the Coulomb force between them. This means
that when calculating the decay rate of neutron β decay, instead of simply assuming
that the �nal-state wave functions (Dirac spinors) of the electron and proton are
free plane waves, one should have solved for the asymptotic states using the Dirac
equation with the spherically symmetric Coulomb �eld included. In the limit of heavy
nucleon mass, such an in�uence on the proton side is only of recoil order, thus it can
be ignored in our approximation. The in�uence on the electron wave function can be
more signi�cant. One can show that, on inserting the absolute square of the distorted
electron wave function into the scattering amplitude square |M|2, the in�uence of the
distortion of the electron wave function on the total decay rate can be represented as
a modi�cation of the �nal phase space integration∫

dρ→
∫
F (Z,Ee)dρ, (4.25)

where the inserted additional factor F (Z,Ee) is referred to as the Fermi function
because this work was �rst carried out by Fermi [73] [74]. Adopting the conventions
of Wilkinson [75], we have:

F (Z,Ee) ≡ 2(1 + γ)(2|le|R)−2(1−γ) |Γ(γ + iy)|2
Γ2(2γ + 1)

eπy, (4.26)

where y is de�ned as:

y ≡ αZEe
|le| , (4.27)
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Table 4.2: Coulomb corrections (CC) to the branching ratios of neutron radiative β
decay, the subscript �0� means that the Coulomb corrections is not considered, the
subscript �CC� means that the Coulomb corrections is considered.

ωmin(MeV) BR0(n) BRCC(n)
0.01 3.45× 10−3 3.56× 10−3

0.05 1.41× 10−3 1.45× 10−3

0.1 7.19× 10−4 7.43× 10−4

0.3 8.60× 10−5 8.96× 10−5

and γ is de�ned as:
γ ≡

√
1− (αZ)2. (4.28)

We note le and Ee refer to the 3-momentum and total energy of the emitted electron;
Z is the electric charge of the daughter nucleus; R is the charge radius of the daughter
nucleus; α ≈ 1/137 is the �ne-structure constant. The general expansion of |Γ(γ+iy)|
is obtained from the following equation [75]:

log
(|Γ(γ + iy)|2) = log

(
y2

1

γ2 + y2

)
+ log

(
π

y1sinh(πy1)

)
+ log(1 + y2

1) + (1− γ)

×
[
2− log[(1 + γ)2 + y2] +

2y

1 + γ
arctan

(
y

1 + γ

)
+

1

(1 + γ)2 + y2

1

6a

]
− 3log(a),

(4.29)

which is followed by the de�nitions:

a ≡ 2

1 + γ
, (4.30)

y1 ≡ aαEe
|le| =

2

1 + γ
y. (4.31)

Equations (4.26) through (4.31) are valid for any nuclear β decay. In our discussions,
we simply assume that the nucleus is point-like, there will be corrections due to the
�nite size of nucleus [76] [77]. In this section we are just considering the neutron
case with Z = 1. The proton charge radius Rp is roughly assumed to be ≈ 1 fm.
Here we are just evaluating the correction at the �edge� of the charge distribution.
It turns out that the Fermi function Eq. (4.26) only depends on the charge radius of
the daughter nucleus very weakly, so one doesn't really need a very precise value of
Rp. Inserting Eq. (4.26) as an additional multiplicative factor into the phase space
integration of Eq. (4.21), and then proceeding to make the numerical evaluation, we
obtain the Coulomb-corrected branching ratios, BRCC , as shown in Table (4.2).

4.2.2 In�uence of Double Photon Radiation on Neutron Radiative β De-
cay

In the case of single-photon radiation, we have considered the contributions from the
tree-level Feynman diagrams in Figure (3.5), which contain one factor of e. On taking
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the absolute square of the corresponding scattering amplitudes, we obtain the dom-
inant contribution of O(α). As for the O(α2) contribution, it receives contributions
from two classes of diagrams. The �rst class refers to the ones shown in Figure (4.2)
and Figure (4.3), which are of O(e3) since they contain an additional photon loop. It
is the interference between the amplitudes obtained from Figure (3.5) and the ones
from Figure (4.2) as well as Figure (4.3) that yields a correction of O(α2). Such

pn

pp

le

lν

pn

pp

le

lν

k pn

pp

le

lν

k

pn

pp

le

lν

k pn

pp

le

lν

kpn

pp

le

lν

k

k

Figure 4.2: Neutron radiative β decay with one loop, part I.

O(α2) corrections contain unphysical infrared divergences1 arising from the loop in-
tegration, and thus is incomplete. In order to cancel the infrared divergence to get
the physical value of O(α2) correction, one is forced to include the second class of
contribution shown in Figure (4.5), where one of the k1 and k2 is set to be equal to
k, and the other is integrated out up to the lowest detectable energy ωmin, e.g., and
is thus undetectable. Following the standard procedures in Ref. [70], one can manage
to cancel the infrared divergence and get an infrared �nite O(α2) correction. Thus
we see that the two-photon radiation process serves as an important subset of the
processes to give an O(α2) correction.

The process of two-photon radiation in neutron radiative β decay is usually
thought to be suppressed by a factor of α, and thus can be ignored within certain
expectations of accuracy. In the following discussion, however, we will consider one
situation where such a process may not be simply ignored, and evaluate its contribu-
tion explicitly.

In our calculations so far, we have been working on the case of only single photon
emission. This approximation follows the general argument that although the elec-
tromagnetic �eld radiation in the real world is always composed of multiple photon

1Counterterms will also be required to control their ultraviolet behavior.
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Figure 4.3: Neutron radiative β decay with one loop, part II.

radiation, as shown in Fig. (4.4), the single photon case is dominant because each

n

p

e−
νe

Figure 4.4: An example of a higher order graph of neutron radiative β decay.

extra photon emission brings an extra factor of e in the scattering amplitude, making
it smaller than the preceding one. Normally such an argument would be valid as long
as we are only seeking for an numerical accuracy up to O(α). In some special situa-
tions, however, the argument breaks down. In QED bremsstrahlung, it is well known
that as the energy of an emitted photon becomes lower and lower, the corresponding
cross section increases logarithmically. For a su�ciently low photon energy, the extra
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α does not mean a safe suppression any more � the increases due to the lowering the
minimum photon energy may outstrip the O(α) suppression to a great degree. Such
a situation may prove especially important to an on�going experiment at National
Institute of Standards and Technology (NIST) [72].

Now let us consider the T-even part of the two�photon emission process as de-
scribed in Fig. (4.5). We should be aware of the situation that since now the �nal
state contains two photons, we should make the amplitude symmetric by including
the Feynman diagrams in which the γ1 and γ2 switch places. We have the total

n(pn)

p(pp)

e−(le)

νe(lν)

n(pn)

p(pp)

e−(le)

νe(lν)

γ2(k2)

γ1(k1)
γ1(k1)

γ2(k2)

n(pn)

p(pp)

e−(le)

νe(lν)

γ2(k2)

γ1(k1)

Figure 4.5: Two photons emission in neutron radiative β decay. We should keep in
mind the 3 diagrams as shown are accompanied by 3 additional ones with γ1 and γ2

switched due to the symmetry of two-boson system.

amplitude:

Mγγ =
e2gVGF√

2
(Mee +Mpp −Mep), (4.32)

where the superscripts ofM on the right hand side of Eq. (4.32) denote the locations
of the sources of the photon emissions. Again, one should keep in mind that Mee,
Mpp, and Mep should all be understood as symmetric arrangements under the ex-
change of γ1 and γ2. Following the Feynman rules one can write down the scattering
amplitudes, which can be readily obtained by dressing the single photon case with
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an additional photon radiation, which has been described by Eq. (4.4) and Eq. (4.5).
One has:

Mee =
1

2

(
ūe/ε

∗
2

/l e + /k2 +me

2le · k2
/ε∗1

/l e + /k0 +me

(le + k0)2 −m2
e

γρ(1− γ5)vν ūpγ
ρ(1− λγ5)un

+termee(1↔ 2)

)
(4.33)

with �termee(1↔ 2)� referring to the similar expression as the �rst term only with
the exchanges of ε1 ↔ ε2 as well as k1 ↔ k2, and k0 ≡ k1 +k2. Similarly, one can also
obtainMpp andMep:

Mpp =
1

2

(
ūeγρ(1− γ5)vν ūp/ε

∗
2

/pp + /k2 +mp

2pp · k2
/ε∗1

/pp + /k0 +mp

(pp + k0)2 −m2
p

γρ(1− λγ5)un

+termpp(1↔ 2)

)
, (4.34)

and

Mep =
1

2

(
ūe/ε

∗
1

/l e + /k1 +me

2le · k1

γρ(1− γ5)vν ūp/ε
∗
2

/pp + /k2 +mp

2pp · k2

γρ(1− λγ5)un

+termep(1↔ 2)

)
. (4.35)

It is easy to check that Mγγ satis�es Ward identity. With Eq. (4.33), Eq. (4.34)
and Eq. (4.35), one can obtain |Mγγ|2 by following the same procedures as before �
separating the γ matrices and the fermion spinors into leptonic and hadronic traces
and then work out the traces by following the standard algebra of γ matrices. But
we are here dealing with an O(α2) correction, the detailed calculations are for sure
much more complicated than the leading order calculations � and the number of
terms generated explodes in higher orders. Analytic calculations with brute force
will simply go on for ever. To make our lives easier, we employ the FORM [78] code
to handle the detailed calculations of |Mγγ|2. The detailed FORM code can be found
in Appendix B. It turns out that the output of |Mγγ|2 contains over 250 terms, which
are not even manageable for reproducing in this thesis. The numerical work is still
manageable, however.

What we are interested in here is to see its in�uence on the measurement of
neutron radiative β decay. As mentioned before, normally one would naively argue
that the contribution of two-photon bremsstrahlung is suppressed by an extra factor
of α comparing to the single-photon contribution, thus within a certain requirement
of precision, it is negligible. This looks quite convincing, and in fact it is true in
most of the occasions. But as the photon energy ω getting lower and lower, the decay
rate increases as log(ω), thus the suppression α may not be su�cient for us to ignore
them. We should consider the detailed contributions in such a situation carefully.
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In ongoing neutron radiative β decay experiments at NIST, the Monte Carlo
programs, which simulate the experiment, have thus far assumed that only single
photon emission occurs [79]. Our goal here is to compute the two-photon emission
rate and to provide some way to help tell the two-photon events apart from the
one-photon ones. Here we focus on the angular correlation, that is, we want to
know at certain selected energies of the two photons, what is the di�erential decay
rate as a function of the two�photon opening angle θk1k2? This would provide us
some useful information as to whether the photon signal is really from the expected
single�photon events, or just from some unexpected two�photon signal. For this
goal, the original choice of coordinate system, where le are chosen to be parallel to
z-axis, is not convenient; we shall make a little di�erent choice: we make k1 as the
z-axis, and let le sit in the x-z plane. This way helps expose the dependence of
the di�erential decay rate on the relative angle between k1 and k2. Fig. (4.6) and
Fig. (4.7) show the di�erential decay rate dΓγγ/dω1dω2dcos(θk1k2) vs cosθk1k2 . From
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Figure 4.6: dΓγγ/dω1dω2dcos(θk1k2) (in natural unit) versus cos(θk1k2) when ω1 =
0.01 MeV, ω2 = 0.5 MeV.

Fig. (4.6) and Fig. (4.7), we see that the in�uence of the two�photon contribution to
the di�erential decay rate gets more and more signi�cant for smaller ω1 and ω2. Also,
at lower energies, the two emitted photons show a clear preference for being collinear.
Such a preference in turn makes its inclusion important for the interpretation of the
experimental data. With our numerical analysis and analytic results, we believe we
have a better theoretical description of the experimental results.

Copyright© Daheng He, 2013.
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Figure 4.7: dΓγγ/dω1dω2dcos(θk1k2) (in natural unit) versus cos(θk1k2) when ω1 =
0.02 MeV, ω2 = 0.1 MeV.
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Chapter 5 Topics in Low-Energy Physics for BSM Searches (in
Charged�Current Processes)

After brie�y discussing the T-even correlations of the neutron radiative β decay in
Chapter 4, we now turn to one of the major topics of this thesis � the possibil-
ity of a triple-product correlation in momenta, serving as a T-odd and thus CP-
violating source. Such a T-odd correlation arises from the interference between the
SM-induced coupling and the exotic coupling that is proposed by Harvey, Hill, and
Hill [80] [81] [82]. From this point onwards, I will refer to their theoretical work as
�HHH.� Understanding their work requires discussion of the following topics:

1. axial anomaly in gauge �eld theory (QED and QCD).

2. the chiral e�ective theory.

Brie�y introducing these topics is the main job in this chapter, so that we have
a context for the discussion of HHH in the next chapter.

5.1 Introduction to Axial Anomaly Theory

discussions, We now make a very quick review of the problem of the axial anomaly in
QED and QCD in order to set the stage for later discussion. revealing the fundamental
physical idea that is going to be suggestive to the later contents of this chapter.

In Chapter 3 of the general discussions of parity violation, I mentioned the idea of
the left-handed current JµL and the right-handed current JµR by introducing the left-
handed and right-handed projection operator PL and PR. In this chapter I include
more details on this issue [70] [83]. Let us return to the original Dirac equation for a
free fermion �eld ψ with mass m:

(i/∂ −m)ψ = 0, (5.1)

which, in the chiral limit, or, equivalently, in the limit of vanishing fermionic mass,
clearly gives:

i/∂ψ = 0. (5.2)

On multiplying γ5 on both sides of Eq. (5.2) and applying the commutation relation
{γ5, γµ} = 0, we have:

i/∂γ5ψ = 0. (5.3)

We can then superpose Eq. (5.2) and Eq. (5.3) to form the combinations:

ψL =
1

2
(1− γ5)ψ ≡ PLψ, ψR =

1

2
(1 + γ5)ψ ≡ PRψ. (5.4)

As mentioned before, ψL and ψR are two independent solutions of the massless Dirac
equation with de�nite chirality (i.e., handedness). For a massless fermion moving
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with precise momentum, these solutions correspond respectively to the spin being
anti-aligned (left-handed) and aligned (right-handed) relative to the momentum.
Eq. (5.2) and Eq. (5.3) can also be easily obtained from the left-right decoupled
fermion Lagrangian:

L = iψ̄L/∂ψL + iψ̄R/∂ψR. (5.5)

Apparently, here L is invariant under the separate global chiral transformations:

ψL → ψ′L = e−iαLψL,

ψR → ψ′R = e−iαRψR, (5.6)

where αL and αR refer to left-handed and right-handed real-valued rotations. Ac-
cording to Noether's theorem, such global chiral transformations yield two separate
conserved currents:

JµL,R ≡ ψ̄L,Rγ
µψL,R, (5.7)

∂µJ
µ
L,R = 0, (5.8)

which can be readily reorganized into the conserved vector current V µ, and the con-
served axial-vector current Aµ:

V µ = JµL + JµR = ψ̄γµψ,

∂µV
µ = 0; (5.9)

Aµ = JµL − JµR = ψ̄γµγ5ψ,

∂µA
µ = 0. (5.10)

Such a straightforward derivation is based on the classical point of view and can be
trivially extended to the case of the quark �elds. For simplicity, let us only focus
on the SU(2) �avor (SU(2)f ) group, so that only the lightest quarks u and d, are
considered. Similar considerations exist for SU(3)f , which concerns the three lightest
quark �avors u, d, and s. In the chiral limit we set the small masses of the u and d
quarks to zero. Thus they form left�handed and right-handed quark isospin doublets:

QL ≡
(
uL
dL

)
, QR ≡

(
uR
dR

)
, (5.11)

following which there would then be four separate symmetric unitary global transfor-
mations, both

QL → exp(iθ
(s)
L )QL, QR → exp(iθ

(s)
R )QR (5.12)

with the superscript �(s)� meaning the isosinglet, where θ
(s)
L,R are two independent

parameters, and

QL → exp(iτaθaL)QL, QR → exp(iτaθaR)QR (5.13)

where τa refer to the SU(2) group generators with a = 1, 2, 3, and θaL,R are indepen-
dent transformation parameters. The four independent symmetric transformations
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above are commonly denoted as SU(2)L × SU(2)R × U(1)L × U(1)R symmetry, and
lead to the following 4 conserved left- and right- handed currents:

JµL,R = Q̄L,Rγ
µQL,R, (5.14)

JµaL,R = Q̄L.Rγ
µτaQL,R, (5.15)

which, on using Q = QL + QR = PLQ + PRQ, leads to the following two conserved
axial-vector currents:

Jµ5 = Q̄γµγ5Q,

∂µj
µ5 = 0, (5.16)

Jµ5a = Q̄γµγ5τaQ,

∂µJ
µ5a = 0. (5.17)

The conservation of the axial-vector currents shown in Eq. (5.16) and Eq. (5.17) seem
to be on a �rm footing; however, more careful investigations that are strictly based
on the fundamental principles of QFT, however, reveal that the seemingly �awless
conclusion in Eq. (5.16) does not hold if a gluon gauge �eld present. In fact, even
in the simpler Abelian U(1) case, such a problem is also present. Historically, such
a result that is apparently against the expectation of classical �eld theory gained
the unpleasant name �anomaly.� It was later realized that the failure of Eq. (5.16)
is because of quantum corrections. One �nds that generally the conservation of the
axial vector current in QED and QCD is incompatible with gauge invariance, and the
so-called anomaly actually plays a very important role, without which some special
observed processes cannot be explained.

There can be many ways to reveal the nonconservation of Jµ5. First let us re-
call the fundamental QCD Lagrangian, Eq. (3.45), with only u and d quarks in the
presence of a gluon �eld. On ignoring the quark masses, we have:

LQCD = Qi /DQ− 1

4
Ga
µνG

µν,a, (5.18)

where a refers to the color index, the covariant derivative Dµ is de�ned by Eq. (3.47),
and the gluon �eld strength tensor Ga

µν is de�ned by Eq. (3.48). One may perform
detailed and careful calculations of the so-called triangular diagrams as shown in
Fig. (5.1) to reveal the nonconservation of Jµ5. Note there is one subtlety here:
the evaluation of Fig. (5.1) involves dimensional regularization, which introduces
extra dimensions into the loop integrals, but we know that γ5 is an intrinsically four-
dimensional object, thus an extension of the de�nition of γ5 into d dimensions is
needed [84]. The actual procedures are rather tedious and are unneeded later, so
that let us directly quote the results [70]:

∂µJ
µ5 = − g2

s

16π2
εµνρσGa

µνG
a
ρσ 6= 0, (5.19)

∂µJ
µ5a = − g2

s

16π2
εµνρσGc

µνG
d
ρσTr(τa)Tr(tctd) = 0, (5.20)
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γµγ5

γνtd
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γµγ5

γµtc

γνtd

qµ qµ

Figure 5.1: Summing over the two Feynman diagrams yields ∂µJ
µ5 6= 0. The internal

lines refer to massless quark propagators, and the two curvy lines refer to the gluon
�elds.

where tc and td are the color matrices with Tr(tctd) ∝ δcd. We stress that similar
relation as in Eq. (5.19) also holds for QED, where the gluon �eld strength Ga

µν is to
be replaced by the electromagnetic �eld strength Fµν with the color factor removed.
We focus on the QCD case in what follows.

From Eq. (5.19) we see that the isosinglet axial-vector current Jµ5 is not conserved
in the �rst place due to QCD quantum e�ects. The isospin nonsinglet axial-vector
current Jµ5a, however, remains conserved because in Eq. (5.20) we have Tr(τa) = 0.
Note that this conclusion only holds in strict QCD; the axial anomaly still plays a
role in non-singlet currents because of QED e�ects. Eq. (5.19) and Eq. (5.20) tell us
that if the Lagrangian of QCD that only contains the lightest quark �avors of u and
d, it only possesses the symmetry SU(2)L × SU(2)R × U(1)V � the U(1)A part does
not represent a symmetry in the �rst place. Let us keep this conclusion in mind since
it will be important for the later discussions in this chapter.

There is yet a more elegant and illuminating way to reveal the existence of the
axial anomaly, which is based on the path integral treatment. It was �rst introduced
by Fujikawa [85]. The detailed derivations are not quite relevant to us here, let us
directly jump to the essence. In the standard path integral treatment, a physical
massless quark system can be described by the generating functional

W [Aaµ] =

∫
DψDψ̄exp

(
i

∫
d4xLQCD(ψ, ψ̄, Aaµ)

)
(5.21)

in the absence of any source term. Here ψ and ψ̄ represent two Grassman �elds,
which are characterized by the anticommutative nature, which is in accordance with
the fundamental property of spin-1/2 fermion. In the language of path integrals, in
order to get a conserved Jµ5, W [Aaµ] must remain invariant under the transformation
of Eq. (5.6). We have already shown the invariance of Lagrangian LQCD(ψ, ψ̄, Aaµ)
under Eq. (5.6), but we need to be more careful here because a chiral transformation
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of the Grassman �eld results in the following identity on the measure sector:∫
DψDψ̄ →

∫
Dψ′Dψ̄′J 2, (5.22)

where J is the Jacobian accompanying the change of variables, thusW [Aaµ] cannot be
said to be invariant unless one can also show that the Jacobian J = 1. Interestingly,
detailed analysis that is based on the special nature of Grassman algebra tells us that,
in the presence of the gauge �eld Aµ, J 6= 1! Thus our quick conclusion that the
conserved Jµ5 is conserved is false, it is really not conserved at the quantum level,
and detailed calculations in path integral method [70] can also reproduce the results
of Eq. (5.19) and Eq. (5.20).

We have so far considered the U(1) axial anomaly with the lightest two quark
�avors u and d in QCD. In fact, similar idea can also apply when these quarks couple
to the electromagnetic �eld. People have learned that the mechanism of anomalies
has wide applications in modern physics. A very typical example is the so-called
isovector axial current Jµ5(3), which transforms as the third component of an SU(2)
�avor doublet

Jµ5(3) = ūγµγ5u− d̄γµγ5d, (5.23)

contains an anomaly when the light quarks are coupled to an external electromagnetic
�eld. Such an anomaly plays a critical role in describing the neutral pion decay process
π0 → γγ. In other words, without the axial anomaly, one cannot explain the observed
decay of π0 → γγ.

Let us summarize the gist of this section on the axial anomaly. That is, even
though the existence of some symmetries seem quite convincing based on Lagrangian�
level arguments, they may receive quantum corrections and be explicitly broken. In
such cases, the language of path integrals turns out to be especially illuminating: it
tells us that even if a seemingly symmetric transformation does leave the relevant
Lagrangian or action invariant � the classical condition for a symmetry to hold � it
may still lead to a Jacobian which deviates from unity, and thus signi�es an explicit
breaking of the symmetry. Instead of being a disaster, such anomaly e�ects indeed
play critical roles in understanding certain particle processes. Anomalies happen not
only in the fundamental QCD theory, but also in its low-energy e�ective theories such
as chiral perturbation theory, which will be discussed later.

There is an additional important area where an anomaly can enter: it provides
a possible mechanism in the electroweak gauge theory to allow for baryon number
violation. So far we have brie�y discussed the picture of chiral anomaly arising from
the global chiral transformations such as the one in Eq. (5.13) in QED and QCD,
where the fundamental couplings between matter �elds and gauge �elds are always
of vector type. In the Weinberg-Salam model [86] [87], on the other hand, a special
chiral nature has been built in the electroweak Lagrangian� left-handed fermions
couple di�erently from right-handed fermions. In the left-handed sector, matter �elds
interact with charged gauge �elds via the �V-A� law. Evaluations of the triangular
quark loops that are very similar to Figure (5.1), only with gluons replaced by W±,
would generate another anomaly: the anomalous baryon number current, denoted by
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JµBar [10]:

∂µJ
µ
Bar = ∂µ

∑
q

(qLγ
µqL) =

g2
W

16π2
TrGµνG̃µν , (5.24)

where q refers to all the quark �avors, gW denotes the SU(2)L gauge coupling constant,
and Gµν the electroweak �eld strength tensor

Gµν = τa(∂µA
a
ν − ∂νAaµ + gεabcAbµA

c
ν) (5.25)

with the τa being SU(2) generators. Equation (5.24) gives rise to baryon number vi-
olation, which, as mentioned in Chapter 1, is another necessary condition to generate
baryogenesis. In this sense, SM can provide a possible mechanism, via an anomaly
in the electroweak gauge theory, to allow for baryon number violation. However one
encounters the similar problem here as in the case of CP violation: SM in principle
does allow for baryon number violation to understand baryogenesis, but it is not suf-
�cient due to the smallness of the electroweak coupling [88] [89]. It is argued that
although the anomaly-induced baryon number violation is badly suppressed at low
energies, the suppression could be greatly relaxed at su�ciently high energies (or
temperatures), and baryon number violation can become operative [90] [91].

To end this section, let us brie�y discuss the issue of gauge anomaly cancellation.
Generally speaking, if an anomaly is associated with a global symmetry, then it does
not indicate any inconsistency of the theory, and can often have important physical
consequences � the anomalies we have discussed before are of this type. On the other
hand, if an anomaly is associated with a local (gauge) symmetry, then it indicates
a fundamental inconsistency of the theory and must vanish. Thus one must �nd a
way within the framework of SM to cancel the anomaly. Remarkably, this is indeed
achieved in SM � the gauge anomaly arising from the quark sector gains a total
cancellation with the one arising from the lepton sector that transforms via the elec-
troweak symmetry group SU(2)L×U(1)Y . Here the necessary conditions are [70] [92]:

1. there are three colors in QCD;

2. there are an equal number of generations of quark and lepton, and in fact the
anomaly cancellation occurs generation by generation;

3. speci�c assigned couplings of the quarks and leptons.

As discussed before, we convince ourselves that the number of color degrees of freedom
is three. Also, three generations of quarks:(

u
d

)
,

(
c
s

)
,

(
t
b

)
, (5.26)

and three generations of leptons:(
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
(5.27)

have been observed. We say that the SM is gauge anomaly free.
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5.2 Introduction to Chiral Perturbation Theory

As another important part of this chapter, we consider chiral perturbation theory,
which is an important example of an e�ective �eld theory. implementation of the
quantum ladder. In constructing theories to describe the real world, we have to
accept that even our most well-considered theoretical framework, the SM, is probably
an e�ective �eld theory in the sense that it is a low energy approximation of some
underlying, more �fundamental� theory. We should keep in mind that the SM is
theoretically consistent up to very high energy scales, thus the �new physics� energy
scale can also be very high [93]. In general, as the energy increases and smaller
distances are probed, new degrees of freedom become relevant that must be included
in the theory. At the same time, other �elds may lose their status as fundamental
�elds if the corresponding states are recognized as bound states of new degrees of
freedom. On the other hand, as the energy is lowered, some degrees of freedom are
frozen out and disappear from the accessible spectrum of states. To construct the
e�ective �eld theory at low energies, we rely on the symmetries of the fundamental, or
underlying, theory. The Lagrangian must contain all terms allowed by the symmetries
of the fundamental theory for the given set of �elds, so that the e�ective theory can
be the low-energy limit of the fundamental theory [94].

As an explicit example, chiral perturbation theory (ChPT) serves as a systemat-
ically improveable method of analyzing strong interaction processes at low-energies,
following the symmetries of quantum chromodynamics (QCD). To understand the
origin of chiral perturbation theory, we �rst return to the fundamental theory of the
strong interaction, QCD [95] [96][97]. Here let us recall the QCD Lagrangian:

LQCD =
∑

f=u,d,s,c,b,t

Qf i /DQf −Qf,RMQf,L − 1

4
Ga
µνG

µν,a + h.c., (5.28)

where Qf refers to a quark state of �avor f , noting f can be either a u, d, s, c, b, or t
quark. The matrix M is the quark mass matrix, and Dµ is the covariant derivative:

Dµ ≡ ∂µ − igtaAaµ, (5.29)

with ta referring to any of eight SU(3) generators, Aaµ the gluon �eld, and g the strong
coupling constant. The tensor Ga

µν denotes the gluon �eld strength tensor:

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (5.30)

with fabc the structure constant de�ned by[
ta

2
,
tb

2

]
= ifabc

tc

2
. (5.31)

Such a theoretical construction of the strong interaction is based on the assumption
of a local SU(3)C gauge symmetry. Comparing Eq. (5.28) with the standard theory
of QED, we see that QCD provides a language similar to QED in describing the
strong interactions: just as the interactions between electrically charged particles are
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mediated by the exchange of virtual photons, the strong interactions between quarks
are mediated by the exchange of virtual particles � the gluons, of which there are
eight in number in a SU(3) theory. is now established that So far everything looks
quite beautiful, but SU(N)C gauge theory has a special behavior called �asymptotic
freedom� in the interaction between quarks [98] [99]. It means that when the momen-
tum transfer between the quarks gets smaller and smaller, or, equivalently, when the
separation of any two quarks in a hadron gets larger and larger apart, the coupling
constant g in QCD increases faster and faster. Roughly speaking, it is a feature of the
non-Abelian group that gives rise to such a special property: unlike the QED case,
where the gauge particle, photon, does not carry electric charge, the QCD gauge
particle, gluon, also carries color charge just like the quarks do, and thus interact
with gluons themselves. QCD and QED use a similar QFT language to describe
interactions, but their structures are fundamentally very di�erent. For example, the
resulting large coupling constant g in QCD at low energies vetoes the validity of the
traditional method of perturbative expansion in powers of the coupling strength. The
latter works very well in the case of QED because it has a relatively much smaller
coupling strength and possesses no behavior of asymptotic freedom.

The nonperturbative nature of QCD at low momentum transfer makes any precise
numerical analysis of a hadronic process a big challenge. People have been working
on di�erent methods for handling the strong interaction at low energies. Among
these frameworks, ChPT is a successful and widely accepted one. There have been
a variety of papers and review articles on this topic [100] [101] [102] [103] [104]
[105] [106] [107] [108] [109]. We now review the basic aspects of chiral perturbation
theory, which is developed as a theoretical tool to deal with the strong-coupling
problem in the event that only light quarks (u, d, s) involved.

Being an example of e�ective �eld theory, the basic idea of ChPT is that one does
not need to know everything in order to make a sensible description of the physical
process that one is interested in. Instead of directly solving the underlying more
fundamental theory, low-energy physics may be described with a set of variables that
is suited for the particular energy region we are interested in. ChPT can then be used
to calculate physical quantities in terms of an expansion in p/Λ, where p stands for
momenta or masses that are supposed to be much smaller than a certain momentum
or mass scale Λ. In this way, one is able to retain the basic spirit of perturbation
theory.

5.2.1 QCD in the Chiral Limit

The core spirit of constructing ChPT is that the fundamental symmetries of the
underlying fundamental theory should be kept in writing down the e�ective La-
grangian [110]. Only in this way can the validity of the low energy extension be
placed on a �rm footing. To see the relevant symmetry of the fundamental QCD
theory, let us return to Eq. (5.28), and consider the case of u, d, and s quarks only in
the limit in which their masses are negligible relative to all the other energy scales in
the problem. This limit is called the chiral limit. With the recently updated values
of quark masses mu ≈ 3MeV, md ≈ 5MeV, and ms ≈ 100MeV [19], we conclude that
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light quark masses are much smaller than the masses of the mesons and baryons of
comparable �avor content. We note that the pion is comprised of u and d quarks,
whereas the kaon contains either s and d or s and u quarks, depending on its electric
charge. Let us check the masses of the lightest baryons that are composed of u, d,
and s quarks. For the proton, which is made of two u quarks and one d quark:

mp ≈ 938 MeV� 2mu +md, (5.32)

and whereas for the Λ0, which is made of u, d, and s quarks:

mΛ0 ≈ 1116 MeV� mu +md +ms. (5.33)

These observations tell us that the masses of light quarks play only a minor role in
the masses of the light hadrons; the same conclusion does not hold, however, for the
much heavier c, b, and t quarks. Thus, within a certain expectation of precision, the
mass terms of the light quarks u, d and s may be ignored at the starting point of
the discussion. Based this observation, we set mu = md = ms = 0, and the QCD
e�ective Lagrangian in the light quarks reads:

L0
QCD =

∑
f=u,d,s

Qf i /DQf − 1

4
Ga
µνG

µν,a + h.c.. (5.34)

In the �rst section of the chapter, we have already mentioned the left and right
currents, Eq. (3.17). The left and right projection operators are de�ned as:

PL ≡ 1

2
(1− γ5); PR ≡ 1

2
(1 + γ5), (5.35)

with the apparent properties:

PL + PR = 1,

(PL)2 = PL,

(PR)2 = PR,

PLPR = PRPL = 0. (5.36)

The operators PL and PR act on the general quark �elds Q to yield the so-called �left�
and �right� quark �elds QL,R:

QL ≡ PLQ; QR ≡ PRQ. (5.37)

With Eq. (5.36) and the commutation relation between γµ and γ5 as shown in
Eq. (2.39), one can easily check that

L0
QCD =

∑
f=u,d,s

(QL,f i /DQL,f +QR,f i /DQR,f )− 1

4
Ga
µνG

µν,a + h.c.. (5.38)

Equation (5.38) shows that in the chiral limit, the left-handed and right-handed quark
�elds are completely decoupled.
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Furthermore, because the covariant derivative in Eq. (5.29) is blind to quark �avor,
and the masses of u, d, and s have been set equal to 0, one is then allowed to organize
the three light quark �avors into a 3-component spinor such as:

Q =

 u
d
s

 , (5.39)

and one can also easily show that Eq. (5.38) is invariant under the following four
independent global transformations:

QL =

 uL
dL
sL

→ Q′L = e−iα
L

 uL
dL
sL

 , (5.40)

and

QR =

 uR
dR
sR

→ Q′R = e−iα
R

 uR
dR
sR

 , (5.41)

which are U(1)L and U(1)R global transformations, respectively, with αL and αR two
independent constants. Besides these, we also have the SU(3)L as well as SU(3)R
transformations

QL =

 uL
dL
sL

→ Q′L = VL

 uL
dL
sL

 = exp

(
−i

8∑
a=1

ΘL
a

λa
2

) uL
dL
sL

 , (5.42)

and

QR =

 uR
dR
sR

→ Q′R = VR

 uR
dR
sR

 = exp

(
−i

8∑
a=1

ΘR
a

λa
2

) uR
dR
sR

 , (5.43)

where ΘL
a and ΘR

a refer to two distinct sets of eight arbitrary angular parameters.
The λa refer to the eight generators of the SU(3) group, speaking of which, let us be
very clear on what we are doing here: the SU(3) group transformation here acts on
the �avor space, it stems from the approximate treatment of setting the masses of the
three lightest �avors u, d and s zero; on the other hand, the SU(3) gauge group in the
real QCD theory applies to the color space, based on the fundamental assumption of
each quark �avor carrying 3 possible quantum numbers of color, usually referred to
as �red�, �green�, and �blue�. In one words, the SU(3) group symmetry in ChPT and
the one in fundamental QCD are totally di�erent.

With the invariance under the combined transformations as in Eq. (5.40), Eq. (5.41),
Eq. (5.42), and Eq. (5.43), we say that L0

QCD possesses a SU(3)L×SU(3)R×U(1)L×
U(1)R symmetry. There is actually an alternative way to express such a combined
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symmetry: one may simply recombine the left-handed and right-handed transforma-
tions UL and UR to yield:

VV = VL + VR, VA = VL − VR, (5.44)

which are understood as vector and axial-vector transformations. Correspondingly,
the symmetry of L0

QCD can also be equivalently presented as SU(3)V × SU(3)A ×
U(1)V × U(1)A. So far so good! However, let us not forget our important discussion
of the U(1) axial anomaly in the last section: even in the massless limit, where
the U(1)A symmetry is supposed to hold in the classical point of view, it is still
explicitly broken by quantum e�ects, as can be seen in Eq. (5.19). We conclude
that the so-called �U(1)A� symmetry really does not exist, and there is no associated
isosinglet Nambu-Goldstone boson. Thus, the more quantitative conclusion is that
in the chiral limit L0

QCD possesses a SU(3)V × SU(3)A × U(1)V , or, equivalently, a
SU(3)L×SU(3)R×U(1)V symmetry, which is to be inherited by ChPT in constructing
the low-energy e�ective Lagrangian.

5.2.2 Symmetry Breaking and Nambu-Goldstone Bosons

The next step in understanding the ChPT is to understand the mechanism of sym-
metry breaking. Imagine a Lagrangian of a physical system that possesses a certain
symmetry, there are two ways to break the symmetry:

1. by introducing terms that do not respect the symmetry into the Lagrangian;
this is called explicit symmetry breaking;

2. the ground state of the Lagrangian does not have the same symmetry as that
of the Lagrangian � this is called spontaneous symmetry breaking.

Some general conclusions can be drawn in each of the two cases: in the second case,
if a global continuous symmetry is broken spontaneously, that is, if the Lagrangian
is globally symmetric under a group G of order nG, but the ground state of the La-
grangian is only symmetric under a smaller group H of order nH , then, according to
the Nambu-Goldstone theorem, nG − nH massless bosons will appear in the theory.
These are usually called Goldstone (or Nambu-Goldstone) bosons [111] [112] [113]. If
the continuous symmetry is only approximate, so that the �rst case also happens si-
multaneously, the massless bosons will then acquire non-zero mass; in this event they
are usually called pseudo-Goldstone bosons. It turns out that ChPT employs both
mechanisms. Since detailed discussions of ChPT is not our main goal in this thesis,
in the following discussions, I will just make a very brief statement of its fundamental
logic and its most important conclusions. Based on the experimental observation
of the low-lying hadron spectrum, namely, that there are eight "light" pseudoscalar
mesons, there are strong indications that spontaneous symmetry breaking does hap-
pen in the low energy QCD. The original global symmetry SU(3)L× SU(3)R is spon-
taneously broken [114]. The remaining SU(3)V can never be broken in the case of
chiral limit, or more strictly, mu = md = ms, because symmetries which are not

64



broken by quark mass are not spontaneously broken either [115]. The U(1)V also
remains a valid symmetry and serves as the basic condition for the baryon number
conservation. One thus expects the spontaneous symmetry breaking:

SU(3)L × SU(3)R × U(1)V → SU(3)V × U(1)V (5.45)

following which there would arise eight pseudoscalar (0−) mesons as massless Nambu-
Goldstone bosons. They are π+, π0, π−, K+, K−, K0, K0, and η. Although a strict
theoretical understanding of spontaneous symmetry breaking as shown in Eq. (5.45)
is not clearly known yet due to the very complicated nonperturbative nature of QCD
theory, one is still able to show that a nonvanishing singlet scalar quark condensate

〈0| qq |0〉 6= 0 (5.46)

serves as a su�cient but not necessary condition to realize Eq. (5.45) [116]. The most
practical way to reveal the existence of Eq. (5.46) may be through the tool of lattice
QCD, which has yielded promising results [117] [118]. In the real world these eight
pseudoscalar (0−) mesons are considerably lighter in mass than the low-lying vector
(1−−) mesons or baryons, but they are clearly not massless. The non-vanishing masses
of the eight pseudoscalar (0−) mesons are widely believed to arise from the non-zero
quark masses terms in the QCD Lagrangian [119]. Note that an alternative scenario,
which enlarges the framework of the standard ChPT and thus is called generalized
chiral perturbation theory, exists [120]. In that case it is argued that spontaneous
symmetry breaking only occurs if quark masses are not zero, and thus the masses are
quadratic in the explicit symmetry breaking parameter. Note that such a scenario is
disfavored by π�π scattering lengths in Kl4 by the DIRAC experiment [121] [122].

5.2.3 ChPT for Pseudoscalar Mesons

Now let us turn to the ChPT for pseudoscalar mesons. The following discussions
follow the �ow of the introduction in Ref. [109].

Due to the asymptotic freedom property of QCD, at low energies only the color-
neutral bound states of quarks, known as hadrons, can be the actual physical ob-
servables. The more fundamental and very complicated color interactions among the
quarks and gluons are buried deep inside the hadrons and are not relevant to the
theoretical description of the low�energy hadron processes. As a metaphor, a tape
measure is a perfect tool to measure the size of a desk or even a house, but it would be
de�nitely a bad idea to use a tape measure to measure the distance between Lexington
and New York, although one is allowed to do so in principle. The eight pseudoscalar
mesons (π+, π0, π−), (K+, K−), (K0, K0), and η are the actual degrees of freedom
of ChPT in the meson sector. Note that there is the ninth 0− pseudoscalar meson η′,
but it is not treated as a Goldston boson since it is so heavy which is believed to be
related to axial anomaly, it is not a degree of freedom of ChPT.

As mentioned before, the principle of constructing the e�ective Lagrangian of
ChPT is that with light hadrons as the fundamental degrees of freedom one still
keeps the original SU(3)L × SU(3)R ×U(1)V symmetry of the underlying L0

QCD, and
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the ground state should only possess the SU(3)V × U(1)V symmetry. The e�ective
Lagrangian of the pseudoscalar meson sector can be constructed as follows. First we
introduce the dynamical variables in the SU(3) matrix U(x):

U(x) = exp

(
i
φ(x)

F0

)
, (5.47)

where F0 is temporarily understood as a free parameter that is to be determined later.
The function φ(x) is de�ned as a special collection of color singlets of pseudoscalar
mesons:

φ(x) =
8∑

a=1

λaφa(x) ≡

 π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K0 − 2√

3
η

 . (5.48)

The lowest massless e�ective Lagrangian of ChPT of the pseudoscalar mesons sector
then reads [100] [101]:

L(2)
eff =

F 2
0

4
Tr
(
∂µU∂

µU †
)
. (5.49)

It can be shown [109] that the SU(3)L × SU(3)R transformation corresponds to:

U(x)→ U ′(x) = VRU(x)V †L , (5.50)

where the left-handed and right-handed SU(3) transformations VL and VR are de�ned
as in Eq. (5.42) and Eq. (5.43) respectively. One can easily show that Eq. (5.49) is
invariant under such a combined global transformation. Note here the superscript
�2� stresses that it contains 2 factors of the 4-derivative, which in momentum space
is to be replaced by 4-momentum pµ, serving as a small quantity in the low energy
expansion. Thus L(2)

eff is of O(p2). Equation (5.49) is organized in such a way that
to lowest order one can restore the familiar form of the kinematic term � 1

2
∂µφ∂

µφ�,
which can be easily con�rmed by expanding U(x) up to the linear terms in φ. An
expansion of U(x) to higher order of φ would result in extra factors of 1/4πF0, which
is roughly of O(M−1

p ), and thus is negligible at su�ciently low energies. Let us also
emphasize that up to the order of only two derivatives, Eq. (5.49) is the only possible
choice.

Apparently, Eq. (5.49) does not contain mass terms, so that it is not quite complete
to the lowest order. To account for the relatively small masses of the pseudoscalar
mesons, one may add to Eq. (5.49) a mass term. As mentioned before, the non-
vanishing masses of the pseudoscalar mesons are supposed to arise from the non-
vanishing light�quark mass matrix:

M =

 mu 0 0
0 md 0
0 0 ms

 , (5.51)

which adds explicit symmetry breaking terms to L0
QCD. Thus, to the lowest order, the

mass term in L(2)
eff should be arranged to be linearly dependent on the quark masses
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matrix M . Forcing the following transformation of the quark masses matrix M :

M →M ′ = VRMV †L , (5.52)

we can construct the mass-related term for ChPT to the lowest order [100] [101]:

LM =
F 2

0B0

2
Tr
(
MU † + UM †) , (5.53)

which is also SU(3)L × SU(3)R ×U(1)V invariant. For a better understanding of the
validity of the construction of LM , we can just expand U(x) to the second power in
φ. Keeping in mind that M is in fact a real matrix, we �nd:

LM ≈ −B0

2
Tr
(
φ2M

)
. (5.54)

On substituting the concrete form of φ as shown in Eq. (5.48), we have

Tr
(
φ2M

)
= 2(mu +md)π

+π− + 2(mu +ms)K
+K− + 2(md +ms)K

0K0 +

(mu +md)π
0π0 +

2√
3

(mu −md)π
0η +

mu +md + 4ms

3
η2. (5.55)

Within the limit of SU(2) isospin symmetry, one has mu = md ≡ m, and Eq. (5.55)
leads to the following results:

M2
π = 2B0m;

M2
K = B0(m+ms);

M2
η =

2

3
B0(m+ 2ms), (5.56)

which in turn yields the following relation:

4M2
K = 3M2

η +M2
π , (5.57)

which is the well-known Gell-Mann-Okubo relation [123] [124] [125].
Thus far we have obtained the lowest order e�ective chiral Lagrangian that pos-

sesses a global SU(3)L × SU(3)R × U(1)V symmetry [100] [101]:

L(2)
eff =

F 2
0

4
Tr
(
∂µU∂

µU †
)

+
F 2

0B0

2
Tr
(
MU † + UM †) , (5.58)

where F0 and B0 serve as two free parameters to be determined. Equation (5.58)
represents the lowest order mesonic ChPT Lagrangian. The most general chiral La-
grangian describing the dynamics of the Goldstone bosons is organized as a string of
terms with an increasing number of derivatives and quark mass terms:

Leff = L(2)
eff + L(4)

eff + L(6)
eff + ..., (5.59)

where the superscripts refer to the order in a momentum and quark mass expansion.
The index �4�, for example, denotes either four derivatives or two quark mass terms.
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We have obtained the complete form of L(2)
eff . As for L(4)

eff and higher orders, the
constructions still follow exactly the same logic, which is to simply sum over all
the possible combinations of U(x) and M with the proper number of derivatives to
yield the most general Lagrangian that is invariant under SU(3)L × SU(3)R ×U(1)V
symmetry. For each linearly independent term, one assigns a new free parameter. As
one can imagine, as the order of the ChPT gets higher and higher, the number of the
allowed terms and so the number of free parameters increases very fast. Since here we
are only aiming at demonstrating the fundamental idea of ChPT, we do not need to
show the concrete forms of the higher order terms. Let me just stress that these free
parameters arising from the chiral expansions order by order are generally believed
to be deducible from the underlying QCD theory, but so far this connection has only
been explored in a limited way because QCD is very hard to solve. Irrespective of this,
these free parameters can be determined by directly confronting ChPT with relevant
experimental data. Once all the free parameters have been �xed in this way, one can
then use ChPT to solve other hadron-related problems to a precision determined by
the size of the neglected subleading terms.

To solve more realistic problems, there is an additional important point that needs
to be mentioned here. Equation (5.59) is only invariant under a global SU(3)L ×
SU(3)R×U(1)V symmetry and contains only hadron degrees of freedom. Apparently,
Eq. (5.59) is only suitable for solving problems involving only pseudoscalar mesons,
such as strong meson-meson scattering problems. Clearly this does not show the
full power of ChPT. Indeed, ChPT can be much more powerful by promoting the
global SU(3)L × SU(3)R × U(1)V symmetry to a local SU(3)L × SU(3)R × U(1)V
symmetry, which means that the space-time-independent constants ΘL

a and ΘR
a in

the chiral rotations de�ned in Eq. (5.42) and Eq. (5.43) are now forced to be local:
ΘL
a → ΘL

a (x) and ΘR
a → ΘR

a (x). invariance and the interactions naturally arise from
the introduction of covariant derivatives. The principle of constructing the covariant
derivative is to make the covariant derivative DµU(x) transform in the same way as
U(x) under the local group transformation. In addition, by including external sources
of di�ering Lorentz character, one can build e�ective theories in which the hadrons
interact via electroweak forces, in addition to strong forces. Through these methods,
one can also build terms which include quark mass e�ects. Following the theoretical
work of Gasser and Leutwyler [100] [101], we introduce the covariant derivative in
the following way. For any object U(x) transforming as VRU(x)V †L , the covariant
derivative Dµ is de�ned as:

DµU(x) ≡ ∂µU(x)− irµU(x) + iU(x)lµ, (5.60)

where rµ and lµ are right-handed and left-handed external �elds, respectively. Cor-
respondingly, the �rst term in Eq. (5.58) becomes:

L(2)
eff =

F 2
0

4
Tr
(
DµUD

µU †
)

+
F 2

0B0

2
Tr
(
MU † + UM †) . (5.61)

These �elds are introduced to cancel the additional terms arising from the local
symmetry transformations. To restore the local SU(3)L×SU(3)R×U(1)V invariance,

68



rµ and lµ are associated with the following chiral transformation rules:

rµ → r′µ = VRrµV
†
R + iVR∂µV

†
R,

lµ → l′µ = VLlµV
†
L + iVL∂µV

†
L . (5.62)

In constructing the most general chiral Lagrangian that is invariant under the local
SU(3)L × SU(3)R × U(1)V symmetry in the presence of external �elds, there are
two other possible external sources: the scalar �eld s and the pseudo�scalar �eld p
appearing as a combination of Leff χ ≡ 2B0(s + ip), which by itself is not chiral
invariant, so that χ is to be accompanied by a factor of U(x). With the introduction
of the external �elds rµ, lµ, s, and p, one is now able to deal with many hadron-
involved problems beyond strictly strong-interaction processes. As a simple sample
application of ChPT, let us brie�y look at pseudoscalar meson weak decay. Following
the SM, we promote the external �elds to the charged weak gauge boson �eld W±:

lµ = − g√
2

(W+
µ T+ + h.c.),

rµ = 0, (5.63)

with

T+ =

 0 Vud Vus
0 0 0
0 0 0

 , (5.64)

where Vud and Vus are CKM matrix elements that were mentioned in the earlier
chapter. Such an external �eld could couple to the muonic lepton current µγµ(1 −
γ5)νµ + h.c. also. On substituting lµ in Eq. (5.61) and expanding U(x) to the linear
term in φ, one is able to get meson weak decay amplitudes. For example, after a bit
of straightforward computation with the heavy degree of freedom of W+ integrated
out implicitly, one is able to �nd the amplitude of pion weak decay:

M = −GFVudF0ūνµ/p(1− γ5)νµ. (5.65)

The standard treatment yields a theoretical expression for the pion weak decay rate:

Γ(π+ → µ+νµ) =
G2
F |Vud|2
4π

F 2
0Mπm

2
µ

(
1− m2

µ

M2
π

)2

, (5.66)

which gives the free parameter F0, which in this order is just the pion decay constant
Fπ, which is about 92.4 MeV.

With the very brief introduction of mesonic ChPT I have given, I am hoping to
have conveyed at least the general ideas. As emphasized before, since this chapter
is not really designed to be a complete reference on ChPT, we have skipped several
important topics, such as the actual form of the chiral Lagrangian in higher orders
and the regularization and renormalization procedures because they are not relevant
to our concrete projects.
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5.2.4 ChPT for Baryons

Thus far we have considered the purely mesonic sector involving the interactions of
Goldstone bosons with each other and with external �elds. The e�ective dynamics
of light baryons that are the bound states of the light u, d and s quarks can also
be analyzed in ChPT at su�ciently low energies [119] [126] [127] [128] [129]. The
fundamental principle is still to follow the constraints of SU(3)L × SU(3)R × U(1)V
symmetry. The construction of a ChPT in the baryonic sector is much more com-
plicated than in the mesonic sector, and in fact there are di�erent scenarios in this
new context, though the theoretical foundations are just the same. The following
discussions follow Ref. [109]. To show the basic idea, we will just work within the
smaller chiral symmetry group SU(2)L × SU(2)R × U(1)V , where only proton and
neutron appear as the lightest baryons. One can put the proton and neutron in a
nucleon isospin doublet:

N =

(
p
n

)
, (5.67)

where p and n represent proton and neutron �elds, respectively, both of which are
four-component Dirac spinors. The core task is that, for nucleons being spin-1/2
fermions, one expects to construct the most general ChPT Lagrangian of nucleons
in the form of N̄ÔN , noting here that Ô refers to the collection of operators to be
constructed and keeps the object N̄ÔN invariant under the transformation SU(2)L×
SU(2)R × U(1)V .

Just as we did in the meson sector, we �rst need to set up the nonlinear realization
of the SU(2)L × SU(2)R symmetry on the nucleon doublet N . against the Nambu-
Goldstone theorem. A thorough analysis reveals a special way to realize the ideal
transformation, which actually induces a coupling between pseudoscalar mesons and
nucleons. Let me stress again that since here we only concentrate on the SU(2) sub-
group, the hadronic degrees of freedom only include the nucleon and pion. Following
Gasser's procedures [126], one �rst introduces a special �eld u(x) as the square root
of the pseudoscalar meson collection �eld U(x) as shown in Eq. (5.48):

u(x) ≡
√
U(x), (5.68)

where, as has been mentioned, U(x) transforms as VRU(x)V †L . Following this realiza-
tion, one then introduces a special quantity called compensator �eld K that is VL,R
and U(x) dependent via the following identity:

u(x)→ u′(x) = VRu(x)K−1 = Ku(x)V −1
L . (5.69)

It can be shown that the following nonlinear realization of SU(2)L × SU(2)R trans-
formation on the nucleon sector reads:

N → N ′ = K(VL, VR, U)N. (5.70)

Apparently, such a nonlinear realization induces a direct coupling between the pion
and nucleon. The next general step is to de�ne a covariant derivative Dµ such that
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DµN transforms in the same way as N under the local SU(2)L × SU(2)R × U(1)V
transformation. One �nds that such a covariant derivative can do the job:

DµN = (∂µ + Γµ − iv(s)
µ )N, (5.71)

where Γµ is de�ned as:

Γµ ≡ 1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
, (5.72)

where rµ and lµ are the same external sources as introduced in the meson sector, they

transform according to Eq. (5.62), and v
(s)
µ as an additional source to take care of the

U(1)V part, with the corresponding local gauge transformation:

v(s)
µ → v′

(s)
µ = v(s)

µ − ∂µΘ, (5.73)

where Θ refers to the arbitrary rotation under U(1)V . It is easy to see that the �eld
Γµ is O(p). Besides Γµ which is even under parity P, there can also exist another
Hermitian building block:

Aµ ≡
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
, (5.74)

which is a P-odd axial �eld.
With these building blocks, one can obtain the lowest O(p) ChPT Lagrangian

that contains the pion-nucleon couplings [126]. We have:

LπN = N̄(i /D −mN +
1

2
gAγµγ5Aµ)N, (5.75)

where gA is called axial-vector coupling constant, which can be inferred from neutron
β decay. As one can check, the pion-nucleon interaction described in Eq. (5.75)
reproduces the result of a simple model called the linear sigma model [130], which
represents an early trial of constructing an e�ective and operational theory to describe
the interactions between the nucleon and pion.

The construction of the baryonic ChPT Lagrangian to higher orders is more com-
plicated than the mesonic case. Unlike the relatively simpler mesonic case, the power
counting in the baryonic sector requires one to use more caution. For example, in the
mesonic case, the pseudoscalar mesons' masses vanish in the strict chiral limit, thus
the factorDµU serves as an O(p) building block. On the baryonic sector, however, the
nucleon mass does not vanish in the chiral limit, thus �DµN � cannot be simply taken
as being O(p) because the ∂0N part gives a large contribution to O(p0). Observing
that the baryonic chiral expansion always takes the bilinear form �N̄ΓN � with �Γ�
referring to possible combinations of Dirac γ matrices, detailed analysis yields the
following general conclusions of power counting [109]:

N, N̄ ∼ O(p0), DµN ∼ O(p0), (i /D −mN)N ∼ O(p),

1, γµ, γµγ5, σµν ∼ O(p0), γ5 ∼ O(p),
(5.76)
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which, with the external source terms rµ and lµ still as O(p) building blocks, serve as
the basic building blocks in constructing a baryonic ChPT. The concrete construction
of baryonic ChPT can take di�erent forms in di�erent scenarios, such an area is still
under development. In the pseudoscalar meson ChPT, we have chosen �4πFπ�, which
are close to 1 GeV, as the large scale suppression factor. In the later part of the thesis,
we are following Richard Hill's work [129], where the nucleon mass M serves as the
large scale suppression factor � the higher order terms are thus O(M−1) suppressed.
As will be seen later, we will present Hill's work, which performed analyzed baryonic
ChPT on the full SU(2)L×U(1)Y electroweak gauge symmetry up to O(M−2). After
this, we will discuss in detail our theoretical work on a possible new source of CP
violation contributing to certain terms in the chiral Lagrangian.

Copyright© Daheng He, 2013.
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Chapter 6 New Sources of CP Violation at Low Energies

6.1 Chiral E�ective Theory for Electroweak Processes

Although the preceding discussion of axial anomalies and ChPT in the last chapter
are rather simpli�ed, I am still hoping that at least the main ideas are transparent.

1. A symmetry that is expected to hold on the classical level may not hold on
the quantum level due to quantum corrections. This means that the expected sym-
metry simply is not there. Such an explicit symmetry-breaking e�ect is called an
anomaly, and its existence can be established via the Jacobian that is associated with
a transformation of the fermionic �elds. The lesson here is that one should use cau-
tion before asserting the validity of any symmetry based only on classical arguments.

2. In the discussion of ChPT, we �rst showed that the fundamental QCD Lagrangian
possesses the chiral symmetry SU(3)L × SU(3)R in the chiral limit, and we see the
chiral symmetry plays the most important role in constructing the low-energy ChPT
Lagrangian, which has the low�lying pseudoscalar meson octet and nucleons as its
fundamental degrees of freedom.

The juxtaposition of items 1 and 2 immediately suggests an obvious question: since
the chiral symmetry SU(3)L × SU(3)R we have been using in constructing the La-
grangian of ChPT is deduced from classical arguments, is it a�ected by the axial
anomaly? A careful investigation that was �rst carried out by Wess and Zumino in
1971 [131] reveals that the local SU(3)L × SU(3)R chiral symmetry is explicitly vio-
lated by the anomaly at the fundamental QCD level. This tells us that the e�ective
Lagrangian we have discussed in last chapter is based on a semi-classical footing, not
on the full quantum �eld theory footing. If the local chiral symmetry is explicitly
broken on the fundamental QCD level, such an anomalous e�ect must also be present
in its low energy e�ective description, so that our earlier constructions of ChPT La-
grangian are not complete yet; we are forced to adopt an additional term into the
ChPT Lagrangian to account for such an anomaly. The introduction of such an ad-
ditional term turns out to be complicated. In fact, Wess and Zumino noted that the
result could not even be expressed as a single local e�ective Lagrangian, but only
as a Taylor expansion representation, known as the Wess-Zumino contribution [131].
It was Witten who subsequently gave an elegant representation of the Wess-Zumino
contribution as an integral over a �ve-dimensional space whose boundary is physical
four-dimensional spacetime [132]. This is usually called Wess-Zumino-Witten (WZW)
term, which appears as an e�ective functional. Although the basic idea is very similar
to the path integral method we talked about in the section on anomalies in the last
chapter � one needs to �nd the Jacobian in association with the transformations of
the nucleon �elds, which are also spin-1/2 fermions. The actual derivation of the
WZW term is rather formal and complicated. Here we just quote the �nal result,
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which was originally presented in [132] and can also be found in [106]:

Γ[U, `, r]WZW = − iNc

240π2

∫
d5xεijklm Tr

(
ΣL
i ΣL

j ΣL
kΣL

l ΣL
m

)−
iNc

48π2

∫
d4x εµναβ

[
W (U, l, r)µναβ −W (1, l, r)µναβ

]
, (6.1)

with the �ve dimensional antisymmetric Levi-Civita tensor chosen to satisfy ε50123 =
+1. The parameter Nc refers to the number of colors in QCD, and l and r refer to
the left-handed and right-handed external �elds as discussed in Chapter 4. Also, we
have

W (U, l, r)µναβ = Tr(UlµlνlαU
†rβ +

1

4
UlµU

†rνUlαU
†rβ + iU∂µlνlαU

†rβ +

i∂µrνUlαU
†rβ − iΣL

µ lνU
†rαUlβ + ΣL

µU
†∂νrαUlβ −

ΣL
µΣL

νU
†rαUlβ + ΣL

µ lν∂αlβ + ΣL
µ∂νlαlβ − iΣL

µ lνlαlβ +

1

2
ΣL
µ lνΣ

L
αlβ − iΣL

µΣL
νΣL

αlβ)− (L↔ R), (6.2)

where ΣL
µ = U †∂µU, ΣR

µ = U∂µU
†, and (L↔ R) stands for the interchanges U ↔ U †,

lµ ↔ rµ and ΣL
µ ↔ ΣR

µ .
Let us not worry about the complicated appearance of the WZW term as shown

in Eq. (6.1) and Eq. (6.2) too much. The important things for us to know are
that (1) the new terms are not strictly chirally invariant but their variation under the
broken symmetry is a spacetime derivative, so that the action associated with the new
term remains invariant [133]; (2) it allows for the description of hadronic processes
with an odd number of mesons. As one can check, the �primitive� building blocks
in the original ChPT Lagrangian in last chapter only contain an even number of
hadronic degrees of freedom in any order of power expansion; thus they are incapable
of describing processes involving an odd number of hadrons such as π0 → γγ, γ →
πππ, and K0K0 → πππ. It was the WZW term that came to rescue! For instance,
the process K0K0 → πππ in which �ve pseudoscalar mesons participate in the WZW
term is contained in the �rst line of Eq. (6.1). On substituting ΣL

µ = U †∂µU with
U expanded to the lowest order, one �nds the relevant Lagrangian that concerns the
process K0K0 → πππ:

L =
Nc

240π2F 5
π

εµναβTr (φ∂µφ∂νφ∂αφ∂βφ) , (6.3)

where φ is de�ned by Eq. (5.48). Note in Eq. (6.3), four derivatives enter, thus we say
the process KK → 3π occurs in O(p4) in ChPT. Based on this discussion, we draw
the conclusion that the WZW term generates an essential part of the physics, and it
should be placed on the same footing as the other terms in the ChPT Lagrangian.

So far so good! In 2008, however, Je�rey Harvey, Christopher Hill, and Richard
Hill pointed out that more attention need to be paid to the gauging of the WZW term
under the full electroweak SU(2)L × U(1)Y gauge symmetry group [80] [81] [82]. In
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their paper, they carefully investigated a special situation: with a set of fundamental
(generic) electroweak gauge �eldsW±, Z0, and γ, if we turn on a classical background
vector �eld Bµ that couples to the axial vector current J5

µ with BµJ5
µ, then the

vector current is no longer conserved, but develops a mixed anomaly ∼ εµνρσF
µν
EWF

ρσ
B

that arises from the WZW term. This would cause serious problem because the
conservation of the gauge vector current is closely connected to the gauge invariance
and thus the renormalizability. So it is essential to maintain the gauge vector current
conservation with the presence of any background �eld. To ensure this, a usual way
is to incorporate a necessary counterterm into the WZW term of ChPT Lagrangian
to cancel the new unpleasant gauge vector current anomaly. The remarkable result of
their theoretical work is that, with the promotion of the classical background vector
�eld Bµ to the physical spin-1 vector meson �elds such as ω and ρ at low energies, the
necessary counterterm gives rise to a contact interaction of the pseudo Chern-Simons
(pCS) form, for example, ∼ εµνρσωµZνFρσ, as well as the charged current analogy
∼ εµνρσρµW

±
ν Fρσ, where ω and ρ refer to the omega and rho mesonic background

�elds, Z the Z boson and Fµν the photon �eld strength. According to HHH, on
the fundamental quark level such exotic pCS term can be induced via the triangle
coupling as shown in Fig. (6.1).

W− γ

ρ−

u

ud

Figure 6.1: A possible triangle diagram on the fundamental quark level that could
give rise to HHH's exotic coupling. Here we demonstrate the case of a charged current.

The ω or ρ mesons in turn can couple to the nucleon current, and Z to the lepton
current. On integrating out the heavy degrees of freedoms of ρ mesons and W with
the presence of nucleon current at low energies, we can obtain the following form of
contact coupling for the case of charged weak current [80]:

L = κ εσµνρp̄γσnψ̄eLγµψνeLFνρ, (6.4)
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where ψe and ψνe refers to the �nal electron and neutrino asymptotic states, and we
have 2ψeL = (1− γ5)ψe. The n and p spinors refer to the initial neutron and the �nal
proton states, and Fνρ is the electromagnetic �eld strength tensor. Equation (6.4)
contains a phenomenological coupling constant κ, and it denotes the strength of an
exotic contact interaction of the nucleon, leptons, and photon. Let us recall our
earlier discussions of neutron radiative β decay, in which the QED bremsstrahlung
was taken as the only source of the radiated photon. Equation (6.4) reveals an
additional possible contribution and demands an adjustment of our original thinking.

Based on the earlier discussion of anomalies, we know that the appearance of a
gauge anomaly in a gauge �eld theory threatens the renormalizability of the theory,
and thus it must be cancelled exactly, usually by introducing in the Lagrangian a
certain counterterm, which cancels the deviation of the Jacobian that arises from the
corresponding local transformation of fermion �elds from unity. This is the motivation
of the recent work by Richard Hill in chiral e�ective theory [129]. Upon including
the necessary counterterm of the electroweak gauge anomaly of WZW term with
explicit choices of the external currents, he proposed the following low energy e�ective
Lagrangian of a ChPT that is complete up to O(M−2) in the nucleon sector:

L = ML(0) + L(1) +
1

M
L(2) +

1

M2
L(3) + . . . , (6.5)

where M refers to the nucleon mass. With the nucleon doublet N de�ned as:

N ≡
(
p
n

)
, (6.6)

the detailed expansions are:
L(0) = −c(0)N̄N, (6.7)

L(1) = N̄ [c
(1)
1 i /D − c(1)

2
/Aγ5]N. (6.8)

Apparently, we see the form of ML(0) +L(1) is in agreement with Eq. (5.75) provided

that the phenomenological low energy coupling constants c(0) = c
(1)
1 = 1, and c

(1)
2 =

gA. Assuming the SM and T symmetry, the rest of the expansion reads:

L(2) = N̄

[
−c(2)

1

i

2
σµνTr([iDµ, iDν ])− c(2)

2

i

2
σµντaTr(τa[iDµ, iDν ]) + . . .

]
N, (6.9)

L(3) = N̄

[
c

(3)
1 γν [iDµ,Tr([iDµ, iDν ])] + c

(3)
2 γν [iDµ, τ

aTr(τa[iDµ, iDν ])] +

c
(3)
3 γνγ5[iDµ, [iD

µ, Aν ]] + c
(3)
4 iεµνρσγσTr({Aµ, [iDν , iDρ]}) +

c
(3)
5 iεµνρσγστ

aTr(τa{Aµ, [iDν , iDρ]}) + c
(3)
6 γνγ5[[iDµ, iDν ], A

µ] +

c
(3)
7

1

4M2
γνγ5{[[iDµ, iDν ], Aρ], {iDµ, iDρ}}+ . . .

]
N. (6.10)
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In the chiral expansions above, τa, with a = 1, 2, 3, refers to the SU(2) group gener-
ators, and the covariant derivative Dµ is de�ned as:

iDµ ≡ i∂µ + V ′µ, (6.11)

where V ′µ represents a collection of electroweak source �elds:

V ′µ =
g2

4

(
1
cW

(1− 4s2
W )Zµ

√
2W+

µ√
2W−

µ − 1
cW
Zµ

)
+ e

(
Aem
µ 0
0 0

)
+ . . . , (6.12)

and the axial-vector source �eld Aµ reads:

Aµ =
g2

4

(
1
cW
Zµ

√
2W+

µ√
2W−

µ − 1
cW
Zµ

)
− 1

2fπ

(
∂µπ

0
√

2π+√
2π− −∂µπ0

)
+ . . . , (6.13)

where dots denote terms with two or more �elds. Also, sW ≡ sinθW , and cW ≡ cosθW ,
with s2

W ≈ 0.231. We see from Eq. (6.10), Eq. (6.12), and Eq. (6.13) that there is
a �HHH� term of comparable strength to be found in various processes, e.g., parity
violating π π photoproduction from a proton as well as in muon radiative capture on
a nucleon.

6.2 Spin-Independent CP Violation and Constraints Thereon

Now let us apply the chiral Lagrangian of Hill [129], discussed in the previous section,
to neutron radiative β decay [134]. Here we are interested in the �c5�-dependent term,
which appears in the O(M−2) chiral expansion. Let us take this term out and present
it here for later convenience:

L(c5) =
c5

M2
N̄iεµνρσγστ

aTr(τa{Aµ, [iDν , iDρ]})N, (6.14)

where the superscript �(3)� indicating the order of chiral expansion has been dropped
to minimize confusion. Equation (6.14) has the following properties:
1. it allows for a contact coupling among the nucleons N , weak gauge bosonW±, and
electromagnetic �eld Fµν ; such a contact coupling could serve as an extra contribution
to the neutron radiative β decay in addition to the standard QED bremsstrahlung;
2. it contains a special component �εµνρσ,� which makes the interaction of pseudo�
Chern�Simons form [80]. It is the interference between such a pseudo Chern-Simon
term and the standard bremsstrahlung process which gives rise to the triple-product
correlation in momenta, which is P-odd and T-odd.

To obtain the explicit form of the interaction relevant to the process n(pn) →
p(pp) + e−(le) + νe(lν) + γ(k), we substitute the covariant derivative Dµ, de�ned by
Eq. (6.12), as well as the axial-vector �eld Aµ, de�ned by Eq. (6.13), and work out
the (anti)commutations carefully, and we �nd:

L(c5) = − 4c5

M2

eGFVud√
2

εσµνρp̄γσnψ̄eLγµψνeLFνρ. (6.15)
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where the heavy degree of freedom of W− has been integrated out to yield the low-
energy weak coupling constant GF . As one can easily check, Eq. (6.14) reproduces
Eq. (6.4) with κ = −4c5eGFVud/

√
2M2. An analogous interference term is possible

in neutral weak current processes, which is described by the c
(3)
4 -dependent term

in L(3) [80]. We make the factor of Vud associated with the physical nucleon basis
explicit. Thus the baryon weak vector current can mediate parity violation on its
own, through the interference of the leading vector amplitude mediated by

GFVud√
2

gV p̄γ
µnψ̄eγµ(1− γ5)ψνe , (6.16)

dressed by bremsstrahlung from the charged particles, with the c5 term. On including
the contact coupling of Eq. (6.15), we have the Feynman diagrams in Fig. (6.2), where
the diagrams (01) and (02) refer to the standard bremsstrahlung, and (03) refers to
the contact coupling from the HHH term, Eq. (6.16).

pn

lν

le

k

pp
(01)

pn

lν

le

k

pp
(02)

pn

lν

le

k

pp
(03)

Figure 6.2: Contributions to neutron radiative β decay, n → p+ e− + νe + γ, with
the HHH contribution, Eq. (6.15), denoted by (03).

Noting Figure (6.2), we have:

|M|2 = (M0 +M03) · (M†
0 +M†

03)

= |M0|2 + 2Re(M0 · M†
03) + |M03|2, (6.17)

where M0 is de�ned by Eq. (4.3), and the calculation of |M0|2 has been worked
out in full detail in Chapter 3. The contribution |M03|2 is proportional to (c5/M

2)2,
which is assumed to be subleading with respect to the other terms, though we should
emphasize that |M03|2 can still play a role in determining a possible constraint on
|Im(c5/M

2)| based on the current precision measurement of the branching ratio of
neutron radiative β decay. We will discuss this further later in this section. The most
interesting part is the interference 2Re(M0 · M†

03), de�ned as |M|2c5 . Following the
standard procedures of the Feynman rules, we �nd after computing the needed spin
sums and average:

|M|2c5 = 256e2G2
F |Vud|2Im (c5 gV )

Ee
le · k (le × k) · lν , (6.18)
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Table 6.1: T-odd asymmetries arising from Eq. (6.18), in units of Im [(c5/M
2)gV ], for

the neutron. The branching ratios are reported as well as per Table (4.1).

ωmin(MeV) AHHH(n) BR(n)
0.01 −5.61× 10−3 3.45× 10−3

0.05 −1.30× 10−2 1.41× 10−3

0.1 −2.20× 10−2 7.19× 10−4

0.3 −5.34× 10−2 8.60× 10−5

which is obviously P-odd and T-odd due to the triple-product correlation in momenta
(le × k) · lν . As shown in Eq. (6.18), such a T-odd correlation probes the imaginary
part of c5gV , which we de�ne as Im CHHH; thus it represents a real CP violating e�ect.
And just as pointed out at the beginning of this thesis, such a new source of CP
violation does not depend on the particles' spins; this distinguishes the HHH-induced
CP violation from the other low�energy sources of CP violation which are under
experimental investigation presently.

Working in units of Im [(c5/M
2)gV ] and de�ning ξ ≡ (le×k)·lν , we partition phase

space into regions of de�nite sign, so that we form an asymmetry as per Eq. (4.24):

A(ωmin) ≡ Γ+(ωmin)− Γ−(ωmin)

Γ+(ωmin) + Γ−(ωmin)
, (6.19)

where Γ± contains an integral of the (spin-averaged) |M|2c5 over the region of phase

space with ξ >
< 0, respectively, neglecting corrections of recoil order. We work out

the asymmetries AHHH(n) at some selected photon energy thresholds ωmin as listed
in Table (6.1). As one can check from Eq. (6.18), and con�rm from Table (6.1), the
HHH-induced T-odd asymmetry increases at larger photon threshold energy.

One question naturally arises here: what are the possible constraints that are
based on current experimental data on Im CHHH? To address this question, we con-
sider existing empirical constraints on the coe�cients of Eq. (6.18). For the part of
|Im(c5/M

2)|, the best and perhaps only constraint comes from the precision measure-
ment of the branching ratio of neutron radiative β decay, which has a contribution
which goes as |c5|2. We note |Im(c5/M

2)| < 12MeV−2 at 68% CL from the most
recent measurement of the branching ratio for neutron radiative β decay [69], for
which ω ∈ [15, 340] keV. The constraint is poor because the radiative decay rate is
driven by the contributions from the lowest photon energies, for which |M|2 is pro-
portional to ω−2. If one could measure the photon energy spectrum, e.g., close to its
endpoint, then the constraint could be much stronger. That is, in the event that one
could measure the BR to within 1% of its SM value for ωmin = 100 keV, or for ωmin ≈
ωmax = 782 keV, one would �nd at 68% CL the limits |Im(c5/M

2)| < 0.88MeV−2

and |Im(c5/M
2)| < 0.15MeV−2, respectively. As for the value of Im(gV ), it can be

bounded from the deviation of the empirical CKM unitarity test, the most recent
data in PDG [19] shows that |Vud|2 + |Vus|2 + |Vub|2 = 0.99995± 0.00061 from unity,
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to yield Im(gV ) < 0.024 at 68% CL, the limit from the D term is much sharper,
however: Im(gV ) < 7× 10−4 at 68% CL [135].

6.3 Possible Model to Yield Im(c5)

After calculating the numerical results of the T-odd asymmetry induced by the HHH
theory, let us address another important issue: how could the Im(c5) coe�cient of
Eq. (6.18) be generated? In this section we consider this, and we illustrate some
possibilities in Fig. (6.3), which include mixing with new degrees of freedom, which
possess a hidden gauge symmetry that is decoupled from the ones in the SM. Such
a scenario is motivated by searches for the particle origin of the dark matter which
pervades the Universe. There can be di�erent ways for the known matter to couple
to a hidden sector, see Ref. [136] for a recent review. Here we will just pick one way �
a �hidden sector� ρ′, though complex phases associated with the production of known
nucleon resonances, or N∗'s are also possible [134]. Here we are more attracted to the
mechanism of ρ− ρ′ kinetic mixing. We now develop a rudimentary model in which
the ρ′ helps mediate a di�erence in the radiative n and n̄ β decay rates. The notion
of a hidden sector of strongly coupled matter is of some standing [137] [138], and
has more recently been discussed in the context of models which provide a common
origin to baryons and dark matter [139] [140], though the mechanism need not be
realized through strong dynamics [141] [142] � we note Ref. [143] for a recent review.
Intriguing astrophysical anomalies have prompted the study of hidden sector models
which permit couplings to SM leptons; speci�cally, the visible and hidden sectors are
connected through the kinetic mixing of the gauge bosons of their respective U(1)
symmetries, notably through a SM hypercharge U(1)Y portal [144] [145] [146] [147].
Constraints on long-range interactions between dark-matter particles are su�ciently
severe [148] [149] [150] that in such models the dark gauge symmetries are also broken
through some dark Higgs sector [147].

In fact there can be other kinds of portals between the visible and hidden sectors.
In addition to the Abelian portal that was mentioned above, there can be non-Abelian
ones, too. As an explicit example, we consider a non-Abelian portal, mediated, e.g.,
by heavy scalars Φ which transform under the adjoint representation of the group;

n p

γW−

N∗

n p

γ

W−

ρ′

n p

γ

W−

ρ

ρ′

Figure 6.3: Processes which could give rise to the Im(c5)-dependent interaction of
Eq. (6.18). We use �N∗� to denote a nucleon resonance, and �⊗� for ρ− ρ′ mixing.
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such an interaction can also be realized through kinetic mixing, generalizing from
Ref. [147], through Tr(ΦFµν)Tr(Φ̃F̃ µν), as well as εµνρσTr(ΦFµν)Tr(Φ̃F̃ρσ), where F aµν

is the SM SU(3)c �eld strength, and Φ̃a and F̃ aµν are �elds and �eld strengths of a
hidden strongly-coupled sector, nominally based on SU(3)c̃. We anticipate that the
dark matter candidate is a color singlet, so that there are no dark long-range forces
to negate. The connector is not a marginal operator, but the appearance of QCD-like
couplings should make it more important in the infrared. To build a pertinent model
at low energies we recall the hidden local symmetry model of QCD [151] [152], in
which the ρ mesons function as e�ective gauge bosons of the strong interaction. Upon
including electromagnetism this becomes a vector-meson dominance model [153] [154],
noting �VMD1� of Ref. [154], which we adapt to this case as

Lmix = −1

4
ρaµνρ

aµν−1

4
ρ′ aµνρ

′ aµν+
ε

2
ρaµνρ

′ aµν+
m2
ρ

2
ρaµρ

aµ+
m2
ρ′

2
ρ′ aµ ρ

′ aµ+gρJ
µaρaµ (6.20)

where Jaµ denotes the baryon vector current and ρ(′) a are the gauge bosons of a
hidden local SU(2) symmetry � though ρ

(′) a
µν = ∂µρ

(′) a
ν − ∂νρ(′) a

µ [154]. Our model
resembles those in Refs. [144] [145] [146] [147] but contains two massive vector �elds.
With J±µ = J1

µ ± iJ2
µ and ρ±µ = (ρ1

µ ∓ iρ2
µ)/
√

2, the charged current pieces, dropping
the mass terms, become

L±mix = −1

4
ρ+µνρ−µν −

1

4
ρ′+µνρ′ −µν +

ε

2

(
ρ+µνρ′ −µν + ρ−µνρ′+µν

)
+

gρ√
2

(ρ+
µ J

+µ + ρ−µ J
−µ) .

(6.21)
The kinetic mixing term can be removed through the �eld rede�nition ρ̃±µ = ρ±µ−ερ′ ±µ ,
thus yielding a coupling of the baryon vector current to ρ′, as illustrated in the
�rst panel of Fig. (6.3), mimicking the role of the �dark photon� in �xed target
experiments [155]. The ρ′ ± does not couple to photons; indeed, the particles of the
hidden sector couple only to strongly interacting particles � we refer to Ref. [143] for
discussion of models with generalized conserved charges. We consider mq ∼ O(mq′)
but with con�nement scales Λ′ < Λ so that mρ′ < mρ, noting that dark and baryonic
matter can have a common origin even if the dark matter candidate is lighter than the
proton in mass [156]. Unlike related �quirk� models [157], the collider signatures of our
scenario are minimal and are hidden within hadronization uncertainties. However, if
mρ′ . 1 MeV it can be constrained by other low-energy experiments and observations;
e.g., it can appear as a mismatch in the value of the neutron lifetime inferred from
counting surviving neutrons from that inferred from counting SM decay products.
It is also possible to build a model with additional hidden-sector portals. With a
U(1)Y portal, e.g., the hidden quarks are allowed to have a milli-electric charge if
the dark-matter particle is an electrically neutral composite [158]. This possibility is
illustrated in the �mixed basis� in the central panel of Fig. (6.3). Limits on the SU(2)L
and U(1)em couplings follow, e.g., from studies of the W± width and the running of
α and are signi�cant; for simplicity we set this possibility aside. Thus limits on the
T-odd asymmetry, for which a statistical error of O(10−3) could be achievable [159],
limits Im(c5/M

2) = 2ε Imε g2
ρ0/(16π2m2

ρ′) with gρ0 ∼ 3.3 [160].
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Chapter 7 CP Violation Arising from Lee and Yang's Weak Hamiltonian

In the discussion of the possible new spin-independent source of CP violation that
may arise from the �c5� term in HHH's theory, we see that the current constraints on
Im(c5/M

2) that comes from the highest precision measurement of the branching ratio
of neutron radiative β decay is very poor. In fact, a branching ratio measurement is
not a very e�cient way to bound Im(c5/M

2) because one can only bound the square
of Im(c5). Maybe the most e�cient way for us is to perform a direct measurement of
the T-odd asymmetry in neutron or nuclear radiative β decay. Thus it is necessary to
address an important question: in proposing a direct measurement of Im(gV c5/M

2)-
dependent new physics, can the possible T-odd asymmetry be generated in any other
way? In other words, if in a future experiment one did observe a nonzero T-odd
asymmetry, how likely is it that it is really contributed by the HHH term?

Our analysis shows that the competitive e�ects do exist � the T-odd asymme-
try arising from a triple-product correlation in momenta could have multiple origins,
which, in general, can be categorized into the following two cases:
1. some mechanism gives rise to a triple-product correlation in momenta, and repre-
sents a real source of CP violation;
2. some mechanism does NOT represent a real CP violation, but could still generate
a T-odd correlation acting as a �noise�.
We will investigate both of these cases in this thesis. In this chapter, we focus on the
�rst case. The second case will be fully addressed in later chapters.

As the beginning of this short chapter, let us �rst recall the weak interaction
Hamiltonian that was proposed by Lee and Yang in 1956 [3], Eq. (3.18). As explained
before, Lee and Yang proposed the existence of parity violation in the weak interac-
tion to explain the so-called θ − τ puzzle. The standard theory of the electroweak
uni�cation was proposed by Glashow in 1963 [161] and later revised by Salam and
Weinberg independently [86] [87], but at the time of 1950's, people had no idea about
it. Thus Lee and Yang proposed the most general decomposition form of Eq. (3.18)
that is consistent with their assumption of parity violation and of a semileptonic de-
cay. The V-A part in Eq. (3.18) is con�rmed by the standard electroweak theory at
low energies, but there is in fact no strong reasons to reject other terms, because they
may as well exist due to some unknown mechanism that is beyond the SM. In our
research, we realize that the application of the Lee and Yang's general decomposition
Eq. (3.18) in the neutron radiative β decay results in a real CP violation, which is
also signaled by a triple-product correlation in momenta as in the �HHH� case. Here
to describe the additional radiation that was not present in Eq. (3.18), we are simply
assuming the bremsstrahlung as the leading order contribution and thus dress the
charged particles states with a photon radiation as per the standard treatment of
QED; the other parts remains una�ected. Such a treatment results in the following
interaction for the neutron radiative β decay:

HnRDK
int = eHeγ

int − eHpγ
int, (7.1)
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where the superscripts eγ and pγ imply the source of photon bremsstrahlung:

Heγ
int = (ψpψn)(CSψe

2le · ε∗ + /ε∗/k

2le · k ψν − C ′Sψe
2le · ε∗ + /ε∗/k

2le · k γ5ψν) + (ψpγ
µψn)

(CV ψe
2le · ε∗ + /ε∗/k

2le · k γµψν − C ′V ψe
2le · ε∗ + /ε∗/k

2le · k γµγ5ψν) + (ψpγ5ψn)

(CPψe
2le · ε∗ + /ε∗/k

2le · k γ5ψν − C ′Pψe
2le · ε∗ + /ε∗/k

2le · k ψν)− (ψpγ
µγ5ψn)

(CAψe
2le · ε∗ + /ε∗/k

2le · k γµγ5ψν − C ′Aψe
2le · ε∗ + /ε∗/k

2le · k γµψν) +
1

2
(ψpσ

µνψn)

(CTψe
2le · ε∗ + /ε∗/k

2le · k σµνψν − C ′Tψe
2le · ε∗ + /ε∗/k

2le · k σµνγ5ψν), (7.2)

and

Hpγ
int =

pp · ε∗
pp · k Hint, (7.3)

where Hint is de�ned in Eq. (3.18). Here we are only taking the leading recoil order
contribution, so that the proton term has been neglected and only the pp ·ε∗/pp ·k part
survives. In the original work of Lee and Yang, the Fermi constant GF is hidden in
the sets of coupling constants. For example, the CV and C ′V have the correspondence
in SM:

C ′V = CV = −GFVudgV√
2

. (7.4)

To be consistent with the standard convention, here we will rede�ne the original cou-
pling constants by abstracting a factor of GFVud√

2
out of each one the original coupling

constants such that:
C

(′)
i ≡ GFVudC̃

(′)
i /
√

2. (7.5)

With the interaction given by Eq. (7.1), Eq. (7.2), and Eq. (7.3), one easily obtains:

|M|2T−odd,LY = 16e2G2
F |Vud|2M lν ·(le×k)

1

le · k Im[C̃T (C̃ ′∗S +C̃ ′∗P )+C̃ ′T (C̃∗S+C̃∗P )], (7.6)

where M refers to the nucleon mass which is the average of the proton and neutron
massses � in leading recoil order, the e�ect of the di�erence between neutron and pro-
ton mass is subleading. In Eq. (7.6) we see that the T-odd asymmetry is proportional
to the imaginary part of the special combination C̃T (C̃ ′∗S + C̃ ′∗P )+ C̃ ′T (C̃∗S + C̃∗P ); such a
complex-phase dependence suggests that such a T-odd correlation leads to a genuine
CP violation. We can also see in Eq. (7.6) that the T-odd asymmetry is of recoil
order, since in our de�nition of the asymmetry factor A, Eq. (4.24), the denominator
that is always controlled by the T-even part of neutron radiative β decay, which is of
order M2.

As per the de�nition of A in Eq. (4.24), we have worked out the numerical results
for the T-odd asymmetry induced by Lee and Yang's general Hamiltonian. The
tabulated results are in units of Im[C̃T (C̃ ′∗S +C̃ ′∗P )+C̃ ′T (C̃∗S+C̃∗P )] ≡ Im(CLY). Tab. (7.1)
con�rms the estimation that the T-odd asymmetry induced by Lee and Yang's general
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Table 7.1: T-odd asymmetry in neutron radiative β decay induced by Lee and Yang's
general Hamiltonian dressed by photon bremsstrahlung, Eq. (7.2) and Eq. (7.2), in
units of Im(CLY).

ωmin(MeV) ALY(n)
0.01 4.98× 10−7

0.05 1.16× 10−6

0.1 1.98× 10−6

0.3 5.21× 10−6

Hamiltonian in neutron radiative β decay is only to recoil order. This, combined with
existing constraints on the C̃'s [162], means that a measurement at anticipated levels
of sensitivity would not be generated by this mechanism. In future measurements,
such a real source of CP violation is not able to compete with another mechanism,
which is in the SM and gives a more signi�cant mimicking e�ect of the T-odd triple-
product correlation in momenta. Here by �mimicking� we mean the SM can also give
rise to a T-odd correlation, which is in analogy with the ones we have obtained in
both HHH's and Lee and Yang's mechanisms, but let us just say such a SM-induced
T-odd correlation does not represent a real CP violation. It only acts as a background
noise in the measurements of the T-odd asymmetry searching for new sources of CP
violation. This brings us to the next chapter.

Copyright© Daheng He, 2013.
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Chapter 8 Final�State�Interaction�Induced Triple�Product Momentum
Correlation in Radiative β Decay in the SM

In the previous chapters, we have discussed in detail the possibility of obtaining a
triple-product correlation in momenta, le · (lν × k), in radiative β decay from the
interference between the tree level QED bremsstrahlung mechanism in the SM and
terms generated through new sources of CP violation from BSM physics. The lat-
ter include not only the �HHH� term we have discussed in Chapter 6 and 7, but
also the non-V-A terms in the Lee-Yang beta-decay Lagrangian, dressed by QED
bremsstrahlung e�ects. The T-odd and P-odd correlation arising from both of the
mechanisms signi�es possible new sources of CP violation which are controlled by
either the coe�cient Im(gV c5) or Im(CLY). But as per our detailed analysis, the
mechanism of Lee and Yang's general decompositions can only yield a T-odd asym-
metry that is only of recoil order; it has to be very small and thus does not concern
us that much. Current nuclear data has already set a pretty severe bound on Im(gV )
� the best constraint on Im gV comes from the recent D term measurement [63] [135],
to yield Im gV < 7×10−4 at 68% CL [135]. The bound on Im(c5), on the other hand,
is poor. According to our earlier analysis, it seems that the most e�cient way to set a
bound for Im(c5) is to measure the size of the triple-momentum correlation in neutron
and/or nuclear radiative β decay directly. Such a measurement gives us a window on
possible new CP-violating physics at low energies. So far this picture looks quite nice
and simple, but a serious problem exists � as mentioned in last chapter, such �T-odd�
decay correlations can be mimicked by the SM. It happens because of the �nal-state
interactions (FSI) between the charged particles in the �nal state [10]. In such a
situation, even if in a future experiment, a sizable T-odd correlation is observed, it
may have been due to the SM mimicking e�ect, which actually neither signi�es the
real CP violation nor helps us set a real bound on Im(c5). In this sense, such an �evil�
SM background e�ect has to be tracked down and well understood, and we will do
this in this chapter. Unlike the calculations of the HHH-induced T-odd term in the
previous chapter, �nding the exact behavior of the mimicking T-odd e�ect is much
more complicated, because of the following:

1. The mimicking e�ect arises from the interference of tree with loop diagrams,
which give us many terms to handle.

2. Some special mathematical tricks are involved.

3. One has to treat subtle e�ects such as the cancellation of infrared divergences
carefully.

With these requirements, making the whole work more logically accessible is a chal-
lenge. A similar kind of problem has been investigated in the context of K+

l3γ de-
cay [163]. The T-odd asymmetry computed in [163] from electromagnetic �nal-state
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interactions has recently been recalculated and is in signi�cant disagreement with the
earlier result [164].

Following the similar path of [163] and [164], we have managed to solve such a
problem in neutron radiative β decay [165]. We shall split this chapter into four
sections. The �rst section is to discuss how such a mimicking e�ect arises due to
the �nal-state interactions, with the �Cutkosky cut� [166] being the major theoretical
tool. The second section is to introduce a nice mathematical tool that turns out
critical for our later calculations. In the third section, both of the tools that are
explained in the �rst two sections are to be applied for the full calculations of the
�nal-state-interaction-induced mimicking e�ect, and, as will be seen, a �phantom� of
infrared divergence appears and haunts us. The �nal section is to show the �phantom�
that haunted us in the past section is only an illusion, we are really infrared �nite.

8.1 Imaginary Part of Looped Diagrams and Cutkosky Rules

As has been shown in many examples so far, the nonvanishing of imaginary parts of
coupling constants play crucial roles in generating T-odd correlations. In the technical
sense, the triple product correlation in momenta arises from the interference between
the vector current, which contains no γ5, and the axial vector current pieces containing
a γ5, which in doing the spin sums always results in a factor of the Levi-Civita tensor
�εµνρσ� which also gives rise to a triple-product correlation in momenta. According to
the basic de�nition of γ5, Eq. (2.38), one sees that γ5 by itself contains a factor of i,
thus for tree-level |M|2 being real, the mixing terms between vector and axial vector
pieces have to vanish unless we can �nd an extra factor of i to make the �nal result
of |M|2 real. This is the actual reason for the appearance of Im(gV c5) and Im(CLY)
in Chapter 6 and Chapter 7. We shall show, however, that the SM also allows for the
appearance of such an extra factor of i, arising from the imaginary part ofM, which
can be obtained from the �nal-state interactions in the loop diagrams.

As per the general de�nition of S-matrix in QFT, S = 1 + iT , where T is related
to the scattering amplitudeM byM = 〈f |T |i〉 (2π)4δ(4)(

∑
pi−

∑
pf ), where the δ

function is to guarantee the 4-momentum conservation. The operator S is required
to be unitary, such that S†S = 1, from which one obtains:

−i(T − T †) = T †T. (8.1)

On sandwiching Eq. (8.1) between the initial state |i〉 and �nal state |f〉 as well as
insertion of the complete set of intermediate states in the right hand side, one �nally
obtains [70]:

− i(M−M∗) = 2Im(M)

=
∑
n

n∏
i=1

∫
d3qi

(2π)32Ei
M∗(i→ qi)M(f → qi)(2π)4δ(4)

(∑
pf −

∑
qi

)
,

(8.2)

where
∑
pf and

∑
qi refer to the sum of the four-momenta in the �nal state and

intermediate state, respectively. Equation (8.2) shows us that, although the inser-
tion of the complete set of intermediate states usually represents loops in the QFT

86



perturbative calculations in QFT, calculating the imaginary part of M puts these
intermediate states on their mass shells � the phase space integrations on the right
hand side of Eq. (8.2) takes exactly the same form as a real physical process has. To
gain better understanding of this issue, let us recall that in the very original intro-
duction of a propagator in QFT, there is a factor of �iε� in its denominator. As long
as the denominator of a propagator does not vanish, or equivalently, the intermediate
particle is o�-shell, the factor �iε� is always irrelevant, and thusM is just real. The
situation is totally di�erent when an intermediate particle is put to be on-shell, in
this case the denominator of the propagator vanishes and now the factor �iε� matters.
As one remembers, such a factor represents a branch cut across the real axis, starting
at the threshold energy of the intermediate particle, and the discontinuity reads:

Disc(M) = 2iIm(M). (8.3)

Combining Eq. (8.2) and Eq. (8.3) gives us the explicit way of calculating a discon-
tinuity Disc(M):

Disc(M) = 2iIm(M)

= i
∑
n

n∏
i=1

∫
d3qi

(2π)32Ei
M∗(i→ qi)M(f → qi)(2π)4δ(4)

(∑
pf −

∑
qi

)
,

(8.4)

Cutkosky proved that the form of Eq. (8.4) is completely general [166]. One can
quickly reproduce Eq. (8.4) by performing the Cutkosky rules [166] [70], which states:
1. Cut through the diagram in all possible ways such that the cut propagators
can simultaneously be put on shell. The thus-constrained cut propagators represent
physical scattering.
2. For each cut, perform the replacement �1/(p2 −m2 + iε) → −2πiδ(p2 −m2)� in
each cut propagator, then perform the standard loop integrals.
3. Sum the contributions of all possible cuts.

We can now apply the Cutkosky rules as shown above to the neutron radiative
β decay. It turns out that due to the very low energy release, the only relevant
loops are the photon loops, representing the electromagnetic �nal-state interactions.
Performing the Cutkosky cuts gives us the imaginary part of the scattering amplitude
M. In mathematical terms this can be understood as:

|M|2 = |Mtree|2 +Mtree · M∗
loop +Mloop · M∗

tree +O(α2)

≈ |Mtree|2 + 2Re(Mtree · M∗
loop), (8.5)

where the meanings of Mtree and Mloop are assumed to be transparent. As dis-
cussed before, the imaginary part can only arise from the loop diagrams, and it is the
imaginary part ofMloop that makes the mixing terms between the vector and axial
vector piece nontrivial. As an explicit example of the application of Cutkosky rules,
we take a look at one example in the actual calculation, as shown in Figure (8.1),
which is only one of many possible cuts. I hope with the following detailed sample
procedure, the ideas and procedures in all the rest of cuts, which are similar, become
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Figure 8.1: An example of a Cutkosky cut in neutron radiative β decay. The two
crosses denote a physical two-particle cut.

clear. In Figure (8.1), the cross symbols �×××� on the internal electron and photon
lines represent the Cutkosky cuts, which, according to the Cutkosky rules, imply
the following simultaneous replacements of the denominators of the cut electron and
photon propagators with delta functions:

1

l′2e −m2
e

→ −2πiδ(l′2e −m2
e),

1

k′2
→ −2πiδ(k′2), (8.6)

which are also associated with the relevant loop integrals over l′e and k
′:∫

d4l′e
(2π)4

d4k′

(2π)4
(2π)4δ(4)(l′e + k′ − le − k). (8.7)

After the cut in Figure (8.1), let us look at the left hand side of the cuts, such
a �partial� diagram looks the same as the tree level diagram of neutron radiative
β decay, which is seen as the diagram (02) in Figure (3.5), with only some minor
changes of arguments: le → l′e and k → k′. We thus can directly write down its
amplitude M02(l′e, k

′, pp), as per Eq. (4.5). As for the right hand side of the cuts
in Figure (8.1), the partial diagram looks like Compton scattering, which can be
described with the Feynman diagrams of Figure (8.2). Obviously, the example we are
discussing here only concerns the �rst diagram in Figure (8.2), and let us temporarily
denote it asMcom. With this preparation, we are ready to write down the expression
for Im(Mloop) in our speci�c example of Figure (8.1):

ImMloop =
∑
s

∫
d4l′ed

4k′

2(2π)2
δ(4)(l′e + k′ − le − k)δ(l′2e −m2

e)δ(k
′2)M∗

comM02(l′e, k
′, pp)

=
1

8π2

∑
s

∫
d3l′e
2E ′e

d3k′

2ω′
M∗

comM02(l′e, k
′, pp)δ

(4)(l′e + k′ − le − k), (8.8)
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Figure 8.2: Compton scattering arising from Cutkosky cuts.

which is in principle solvable on the substitution ofM∗
com, andM02(l′e, k

′, pp).
Thus far we have given a complete example of how to hunt down the imaginary

part of a scattering amplitude, arising from a loop diagrams, and which generates
a �nal-state interaction. As stressed before, we have so far considered only one of
the many possible cuts. In the future section, we shall list all the cuts. Since the
logics and procedures are similar to what we have seen in this example, in the future
discussions, we will not repeat all these details. I am hoping this detailed sample will
provide a clear blueprint for the rest of the work.

Let us end this section by emphasizing a technical di�culty that arises from the
intermediate phase space integrations, which are involved with quite entangled angu-
lar integrations. Even if one managed to solve this simple case, let us not forget that
we still have many other cases with totally di�erent angular integrations! Handling
them one by one would be painful and slow. There has got to be a better way to
handle it, and in fact there is! Thanks to Veltman and Passarino, we have a very
nice trick, which is now usually referred to as Veltman-Passarino reduction [167], to
reduce the many seemingly complicated intermediate phase space integrations down
to only a few simpler ones. This brings us to the next section.

8.2 Veltman-Passarino Reduction

The Veltman-Passarino reduction (VPR) [167] was �rst introduced to handle very
complicated loop integrations. It is based on completely general principles, so that it
works equally well in our problem. It serves as an important mathematical tool to deal
with the very complicated intermediate phase space integrations that one encounters
in �nding the imaginary part ofMloop. Because of the importance of this theoretical
tool, I am thinking it deserves its own section for a quick review. For technical
reasons, I will present the idea of Veltman-Passarino reduction by considering a very
concrete example, which should su�ce in helping to understand our later work.

We consider a sample loop diagram that can appear in the scalar φ3 theory.
The triangular diagram contains three vertices, as shown in Figure (8.3). To expose
the essence of the VPR more easily, we shall assume the 3 internal propagators in
Figure (8.3) are massless. The presence of masses would not a�ect the method,
but would just make the illustration more involved. Figure (8.3) has 3 external
lines, carrying momentum p1, p2, and p3 respectively, but due to the 4-momentum
conservation on a closed loop, only two of them are independent. We can randomly
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p1 p2
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l + p1
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Figure 8.3: A sample loop diagram that can appear in scalar φ3 theory with l as the
internal 4-momentum.

choose p1 and p2 as the two independent momenta, p3 is then determined as p3 =
−(p1 + p2). Imagine we are calculating some scattering amplitude that contains such
a 3-point loop, the denominator that is contributed by this loop is always of form
l2(l + p1)2(l + p1 + p2)2 � if the particles are massless. The numerator, on the other
hand, can be categorized into di�erent cases as per the power of lµ it contains. Let
us see the simplest cases that are relevant to our future calculations:
1. it contains zero power of lµ � the scalar case, and the resulting loop integration
reads: ∫

d4l

(2π)4

1

l2(l + p1)2(l + p1 + p2)2
≡ I3; (8.9)

2. it contains one power of lµ - the vector case, the resulting form of loop integration
reads: ∫

d4l

(2π)4

lµ

l2(l + p1)2(l + p1 + p2)2
; (8.10)

3. it contains two powers of lµ � the tensor case, and the resulting loop integration
reads: ∫

d4l

(2π)4

lµlν

l2(l + p1)2(l + p1 + p2)2
. (8.11)

Cases with even higher powers of lµ are possible and become more and more com-
plicated, but fortunately they are not relevant to us. Among the 3 equations above,
Eq. (8.9) has to be solved either exactly or numerically, but Eq. (8.10) and Eq. (8.11)
do not have to be. To handle Eq. (8.10), we argue that since in the loop diagram
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of Fig. (8.3) the only independent external degrees of freedom are p1 and p2, the
following decomposition identity for Eq. (8.10) must hold:∫

d4l

(2π)4

lµ

l2(l + p1)2(l + p1 + p2)2
= C1p

µ
1 + C2p

µ
2 . (8.12)

We just need to �nd the coe�cients C1 and C2. Contracting both sides with p1µ

gives: ∫
d4l

(2π)4

l · p1

l2(l + p1)2(l + p1 + p2)2
= C1p

2
1 + C2p1 · p2. (8.13)

Using

l · p1 =
1

2

(
(l + p1)2 − l2 − p2

1

)
(8.14)

we have

p2
1C1 + p1 · p2C2 =

1

2
(I1 − I2 − p2

1I3), (8.15)

where I3 is already de�ned as in Eq. (8.9). We note I1 and I2 are de�ned as:∫
d4l

(2π)4

1

l2(l + p1 + p2)2
≡ I1, (8.16)

and ∫
d4l

(2π)4

1

(l + p1)2(l + p1 + p2)2
≡ I2. (8.17)

Likewise, we can also contract with p2µ and have:∫
d4l

(2π)4

l · p2

l2(l + p1)2(l + p1 + p2)2
= C1p1 · p2 + C2p

2
2. (8.18)

Using

l · p2 =
1

2

(
(l + p1 + p2)2 − (l − p1)2 + p2

1 − (p1 + p2)2
)

(8.19)

we have

p1 · p2C1 + p2
2C2 =

1

2
(I4 − I1 − (2p1 · p2 + p2

2)I3), (8.20)

where I4 is de�ned as: ∫
d4l

(2π)4

1

l2(l + p1)2
≡ I4. (8.21)

What have we actually done so far? With the manipulations listed above, instead of
painfully solving each unique loop integral, we only need to solve the sets of equations
Eq. (8.15) and Eq. (8.20) to �nd C1 and C2. The only loop integrals that really need to
be computed are I1, I2, I3, and I4, but such integrals contain no l

µ in their numerators.
Thus the angular integrations are much more straightforward, and are usually much
easier to handle. Even in the worst case, one can still solve I1 through I4 numerically.

The manipulation of the loop integrals of the tensor case, Eq. (8.11), proceeds
along a very similar track. As one may have already guessed, we are still seeking
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a decomposition � a tensor decomposition. Since the numerator in Eq. (8.11) is
symmetric on exchanging the indices µ and ν, we are then seeking a complete tensor
decomposition that is symmetric about µ and ν. Out of the available degrees of
freedom pµ1 and p

µ
2 , one can build the linearly independent tensors: p

µ
1p

ν
1, p

µ
2p

ν
2, (pµ1p

ν
2 +

pµ2p
ν
1). Besides these, we'd better not forget about an additional one: gµν . With these

building blocks, we have the decomposition:∫
d4l

(2π)4

lµlν

l2(l + p1)2(l + p1 + p2)2
= D00g

µν +D11p
µ
1p

ν
1 +D22p

µ
2p

ν
2 +D12(pµ1p

ν
2 + pµ2p

ν
1).

(8.22)
The remaining tasks are similar to the vector case. One just needs to contract each
of the tensor terms on the right hand side of Eq. (8.22) in turn to obtain four linear
equations to solve the coe�cients D00, D11, D22, and D12. Just like the vector case,
there will be some fundamental integrations to be solved, but again these integrations
usually possess much simpler geometric structures, and thus are not hard to handle.
The beauty of this part is that in the tensor case some of the fundamental integrations
are I1, I2, I3, and I4, which have already been solved in the vector case. Out of space
limitations, we shall skip the detailed procedures of the tensor case, but I still hope
that with the quick demonstrations thus far in this section, the basic picture has
been conveyed with minimal confusion. In neutron radiative β decay, the situation
is certainly much more complicated than the examples discussed in this section, but
the logic is still exactly same. That is, instead of working on each loop integration,
we �rst take complete decompositions for both the vector and tensor cases, then
contract them with independent degrees of freedom to build su�cient, independent
linear equations to solve for the coe�cients of the decomposition. In doing this, some
remaining fundamental scalar integrations cannot be reduced further, and thus have
to be solved, but these remaining integrations are usually much easier to handle.

With the Cutkosky rules discussed in last section, and the VPR discussed in this
section, we now should be ready to demonstrate the actual calculations of the T-odd
mimicking e�ect due to the �nal-state interactions in the neutron radiative β decay,
which brings us to the next section.

8.3 Calculating the FSI-induced T-odd Correlation in Neutron Radiative
β Decay

We are now ready to turn to the real calculations of the T-odd mimicking e�ect in
neutron radiative β decay [165]. As shown before, the critical step in �nding the
T-odd mimicking correlation lν ·(le×k) is to �nd the imaginary part ofMloop. Based
on the Cutkosky rules and in analogy to Eq. (8.8), we have:

Im(Mloop) =
1

8π2

∑
n

∫
dρn

∑
sn

MfnM∗
in =

1

8π2

∑
n

∫
dρn

∑
sn

MfnMni, (8.23)

where n refers to all the possible cut intermediate states. In the neutron case only
QED loops are relevant due to the low energy release. The integral

∫
dρn refers to
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the intermediate phase space integration over the relevant intermediate momenta for
each possible cut. The Cutkosky cuts put the internal lines on shell, which makes
the resulting cut diagrams behave exactly the same as the two physical ones, which
allow us to write down the scattering amplitude according to the standard Feynman
rules for each part of the cut diagrams. This is re�ected by the termsMfn andMni,
referring to the two tree-level diagrams after a physical cut. We have seen this in the
example of Figure (8.1), where Mni describes the tree-level nRDK process (02) of
Figure (3.5), andMfn describes the tree-level Compton scattering process described
in Figure (8.2). Also, the spin sums for the cut internal lines are included manifestly.

As one can double check, there are multiple loop diagrams, and associated with
each loop diagram there are multiple possible two-body cuts. It turns out that there
are 14 allowed cuts in all, which are summarized and numbered in Fig. (8.4), where
an �×××� on the internal lines represents a Cutkosky cut. First of all, one question
arises naturally: since there are so many loops in association with the cuts, are we
sure we have collected all of them? The quick answer is yes, because we can use QED
gauge invariance as a standard check � as long as all the possible loops and cuts are
collected, the Ward identity of Eq. (9.43) must hold. The cuts that are collected in
Fig. (8.4) indeed respect the Ward identity Eq. (9.43). Thus we convince ourselves
that the loops and cuts are complete without omission. We will see this more easily
shortly.

Looking at Fig. (8.4) more closely, we �nd that we can categorize the cuts as
per the sorts of processes involved. That is, Mfn describes the manner in which
selected particles rescatter, so that we can have Compton scattering or electron-
proton scattering, the latter with or without the emission of an additional photon.
The family of diagrams given by (1), (2), (5.1), and (6.2) contain Compton scattering
from the electron, as illustrated in Figure (8.2), whereas the family comprised of (3),
(4), (7.2), and (8.3) contain Compton scattering from the proton. In these families
Mfn is captured by one of the following expressions that follow the conventions in
Ref. [70]:

Md
γe(l

′
e, k
′, le, k) = −e2ūe(le)

2le · ε∗ + /ε∗/k

2le · k /ε′ue(l
′
e) , (8.24)

Mc
γe(l

′
e, k
′, le, k) = e2ūe(le)

2le · ε′ − /ε′ /k′
2l′e · k

/ε∗ue(l
′
e) , (8.25)

Md
γp(p

′
p, k
′, pp, k) = −e2ūp(pp)

2pp · ε∗ + /ε∗/k

2pp · k /ε′up(p
′
p) , (8.26)

or

Mc
γp(p

′
p, k
′, pp, k) = e2ūp(pp)

2pp · ε′ − /ε′ /k′
2p′p · k

/ε∗up(p
′
p) , (8.27)

where ε′ ≡ ε(k′), and the superscript �c� and �d� refer to the direct and cross Compton
scattering. Correspondingly,Mni is given by the tree-level neutron radiative β-decay
amplitude, as per the form of M01 and M02, de�ned in Eq. (4.4) and Eq. (4.5),
with only some of the arguments changed. Technically we de�ne a �family� to be
those contributions to the T-odd correlation which cancel amongst themselves to
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Figure 8.4: All two-particle cut contributions to n(pn)→ p(pp)+e−(le)+ ν̄e(lν)+γ(k)
which appear in O(α) up to corrections of recoil order.

yield zero when we replace ε or ε∗ by k or ε′ or ε′∗ by k′ as per the Ward-Takahashi
identities. Here we can quickly con�rm that the Ward-Takahashi identities do hold
for the �γ−e� and �γ−p� families respectively. Furthermore, let us clearly de�ne the
relevant intermediate phase space integrations over the kinematically allowed phase
space. For γ − e scattering we have∫

dργe ≡
∫
d3l′e
2E ′e

d3k′

2ω′
δ(4)(l′e + k′ − P0e) (8.28)

with P0e ≡ le + k, whereas for γ − p scattering we have∫
dργp ≡

∫
d3p′p
2E ′p

d3k′

2ω′
δ(4)(p′p + k′ − P0p) (8.29)
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Figure 8.5: Diagrams which appear in Im(Mloop) for e − p scattering with elec-
tron bremsstrahlung. We denote the two graphs by Mef

epγ(l
′
e, p
′
p, le, k, pp) and

Mei
epγ(l

′
e, p
′
p, le, k, pp), respectively. The diagrams and amplitudes appropriate to pro-

ton bremsstrahlung follow from exchanging electron and proton variables.

with P0p ≡ pp + k. Collecting the pieces, we have

Im(M1) =
1

8π2

∫
dργe

∑
sγe

Md
γe(l

′
e, k
′, le, k)M01(l′e, k

′, pp) , (8.30)

Im(M2) =
1

8π2

∫
dργe

∑
sγe

Mc
γe(l

′
e, k
′, le, k)M01(l′e, k

′, pp) , (8.31)

Im(M5.1) =
1

8π2

∫
dργe

∑
sγe

Md
γe(l

′
e, k
′, le, k)M02(l′e, k

′, pp) , (8.32)

Im(M6.2) =
1

8π2

∫
dργe

∑
sγe

Mc
γe(l

′
e, k
′, le, k)M02(l′e, k

′, pp) , (8.33)

for the �γ − e� cuts, and

Im(M3) =
1

8π2

∫
dργp

∑
sγp

Md
γp(p

′
p, k
′, pp, k)M02(le, k

′, p′p) , (8.34)

Im(M4) =
1

8π2

∫
dργp

∑
sγp

Mc
γp(p

′
p, k
′, pp, k)M02(le, k

′, p′p) , (8.35)

Im(M7.2) =
1

8π2

∫
dργp

∑
sγp

Md
γp(p

′
p, k
′, pp, k)M01(le, k

′, p′p) , (8.36)

Im(M8.3) =
1

8π2

∫
dργp

∑
sγp

Mc
γp(p

′
p, k
′, pp, k)M01(le, k

′, p′p) , (8.37)

for the �γ − p� cuts.
In addition to the families of Compton cuts, there are cuts in which Mfn is

determined by electron-proton scattering either with and without bremsstrahlung,
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and, correspondingly,Mni is determined by either nonradiative or radiative β-decay.
Referring to Figure (8.4), we see for cuts in which the electron and proton scatter
with bremsstrahlung that diagrams (5.2) and (6.1) comprise the family associated
with electron bremsstrahlung, as shown in Figure (8.5), and (7.1) and (8.1) comprise
the family associated with proton bremsstrahlung. In these familiesMfn is given by
one of the following:

Mef
epγ(l

′
e, p
′
p, le, k, pp) = −e3ūe(le)

2le · ε∗ + /ε∗/k

2le · k γµue(l
′
e)

gµν
(p′p − pp)2

ūp(pp)γ
νup(p

′
p) ,

(8.38)

Mei
epγ(l

′
e, p
′
p, le, k, pp) = e3ūe(le)γ

µ2l′e · ε∗ − /k/ε∗
2l′e · k

ue(l
′
e)

gµν
(p′p − pp)2

ūp(pp)γ
νup(p

′
p) ,

(8.39)

Mpf
epγ(l

′
e, p
′
p, le, k, pp) = e3ūp(pp)

2pp · ε∗ + /ε∗/k

2pp · k γµup(p
′
p)

gµν
(l′e − le)2

ūe(le)γ
νue(l

′
e) ,

(8.40)
or

Mpi
epγ(l

′
e, p
′
p, le, k, pp) = −e3ūp(pp)γ

µ
2p′p · ε∗ − /k/ε∗

2p′p · k
up(p

′
p)

gµν
(l′e − le)2

ūe(le)γ
νue(l

′
e) .

(8.41)
Moreover,Mni is given by neutron β-decay, which has been shown in Fig. (3.4). Up
to recoil-order corrections, we have:

MDK(l′e, p
′
p) =

gVGF√
2
ūe(l

′
e)γρ(1− γ5)vν(lν)ūp(p

′
p)γ

ρ(1− λγ5)un(pn), (8.42)

which is similar to Eq. (3.67), only with the spin polarization projection operator
�(1 + γ5/S)/2� dropped since we are considering unpolarized neutron decay. Thus we
�nd

Im(M5.2) =
1

8π2

∫
dρepγ

∑
sep

Mef
epγ(l

′
e, p
′
p, le, k, pp)MDK(l′e, p

′
p) , (8.43)

Im(M6.1) =
1

8π2

∫
dρepγ

∑
sep

Mei
epγ(l

′
e, p
′
p, le, k, pp)MDK(l′e, p

′
p) , (8.44)

and

Im(M7.1) =
1

8π2

∫
dρepγ

∑
sep

Mpf
epγ(l

′
e, p
′
p, le, k, pp)MDK(l′e, p

′
p) , (8.45)

Im(M8.1) =
1

8π2

∫
dρepγ

∑
sep

Mpi
epγ(l

′
e, p
′
p, le, k, pp)MDK(l′e, p

′
p) (8.46)
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Figure 8.6: Diagram which appears in Im(Mloop) for e− p scattering. We denote the
graph byMep(l

′
e, p
′
p, le, pp).

for the �e − p − γ� cuts. The relevant intermediate phase space integration for the
�e− p− γ� cuts reads:∫

dρepγ ≡
∫
d3l′e
2E ′e

d3p′p
2E ′p

δ(4)(l′e + p′p − P0e − pp). (8.47)

Let us also note that the Ward-Takahashi identities holds for the �e− p− γ� family.
The last family of cuts is given by (6.3) and (8.2) in Fig. (8.4). In this caseMfn

is given by e− p scattering, shown as in Fig. (8.6), and we have:

Mep(l
′
e, p
′
p, le, pp) = −e2ūe(le)γ

µue(l
′
e)

gµν
(l′e − le)2

ūp(pp)γ
νup(p

′
p) . (8.48)

The correspondingMni is given byM01(l′e, k, p
′
p) for (6.3) andM02(l′e, k, p

′
p) for (8.2).

We thus have:

Im(M6.3) =
1

8π2

∫
dρep

∑
sep

Mep(l
′
e, p
′
p, le, pp)M01(l′e, k, p

′
p) , (8.49)

Im(M8.2) =
1

8π2

∫
dρep

∑
sep

Mep(l
′
e, p
′
p, le, pp)M02(l′e, k, p

′
p) (8.50)

for the �e − p� cuts. The intermediate phase space integration for the �e − p� cuts
reads: ∫

dρep ≡
∫
d3l′e
2E ′e

d3p′p
2E ′p

δ(4)(l′e + p′p − le − pp). (8.51)

Again, one can readily check that the Ward-Takahashi identities does hold for the
�e-p� family. This completes our earlier claim that the Ward identity is respected
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within each type of the cuts, thus our exhaustive list of loops and cuts in Fig. (8.4)
is complete.

Based on the listed building blocks collected from all of the loop diagrams, we
thus obtain the spin-averaged T-odd mimicking correlation from the SM physics as
per:

|M|2(SM)

T−odd ≡
1

2

∑
spins

|M|2(SM)

T−odd =
1

2

∑
spins

(2Re(MtreeiImM∗
loop)), (8.52)

Further calculations can be carried out by following the steps similar to those
demonstrated in Chapter 3. That is, one can make spin sums and recombine the
involved spinors with the γ matrices into traces of leptonic and baryonic components.
The big challenge then is that we are now facing much more complicated trace cal-
culations � the complexity grows tremendously fast with the number of γ matrices
involved. Usually the calculation of a trace containing six γ matrices is already a
time consuming job, but in Eq. (8.52) one is challenged by traces containing up to
twelve γ matrices, which is too di�cult to handle by hand! We had to handle the
calculations in Eq. (8.52) by computer. We used the program �FORM� to compute
the traces [168]. In what follows we will directly report the results of the T-odd cor-
relation in O(α) up to corrections of recoil order. We organize the results as per the
various gauge-invariant families we describe in the main body of the text, employing
the subscript convention which follows the labeling in Fig. (3.5) and Fig. (8.4). The
coe�cients that appear in the following results are introduced by the applications of
the VPR, which is demonstrated in last section. The details of �nding the required
linear equations as well as solving the relevant fundamental integrations follow ex-
actly the ideas as explained in the last section. They are just much more tedious.
We reserve these details for Appendix A.

With ξ referring to the triple-product in momenta, ξ ≡ lν ·(le×k), we here present
the results directly. We �rst de�ne the T-odd piece in Eq. (8.5) via

2Re(Mtree · M∗
loop) ≡ |M|2(SM)

T−odd. (8.53)

Since |M|2(SM)

T−odd is obtained from the interference between the tree level processes,
which are labeled as (01) and (02) in Figure (3.5), and the loop diagrams which are
labeled as (1) through (8.3) in Figure (8.4), we denote each di�erent family in such a
way: the labels of loop diagrams followed by a �dot� and then the labels of tree level
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diagrams. The result for the γ − e family is

|M|2(SM)

T−odd [1.01 + 1.02 + 2.01 + 2.02 + 5.1.01 + 5.1.02 + 6.2.01 + 6.2.02]

= −α2g2
VG

2
F ξ64M2(1− λ2)

(
m2
e

(le · k)2ω
a1 +

m2
e

(le · k)2ω
J1 +

1

le · k ωc2 +
1

le · k ωa1

− 1

le · k ωJ1 +
m2
e

le · k ωb2 +
m2
e

le · k ωa2 − m2
e

le · k ωJ2 +
MEe
ω

k6.2 +
MEe
ω

g6.2 − MEe
ω

b6.2

−2MEe
ω

a6.2 +
MEe
ω

J6.2 +
MEe
le · k ωb5.1 − MEe

le · k ωJ5.1 − MEe
2le · kg6.2 +

MEe
2le · kf6.2

+
MEe
le · k a6.2 +

M2

ω
i6.2 − M2

2ω
c6.2 − M2Ee

le · k c6.2 +
M2Ee
le · k h6.2 +

M2

2le · k ωa5.1

+
M3

2le · ke6.2

)
, (8.54)

where M is de�ned as M ≡ (Mn + Mp)/2, the average value of Mn and Mp. Using
M suggests that we are ignoring the small relative di�erence between Mn and Mp

for simpli�cation of the theoretical computations, and the validity of this is justi�ed
since we work in LRO approximation. The coe�cients a1, ... in Eq. (8.54) and also
in all the rest of families are just the parameters that are introduced in performing
the VPR, and they are solved in Appendix A.

The result for the γ − p family is

|M|2(SM)

T−odd [3.01 + 3.02 + 4.01 + 4.02 + 7.2.01 + 7.2.02 + 8.3.01 + 8.3.02]

= −α2g2
VG

2
F ξ64M3(1− λ2)

(
Ee

le · k ωa7.2 +
Ee

le · k ωJ7.2 − 1

le · k ω2
J3 − MEe

le · k b8.3

−M
ω
a8.3 +

MEe
le · k a8.3 − MEe

le · k J8.3 +
M

2le · k ωb7.2 +
M

le · k ωJ4 − M2

2le · kc8.3

)
= 0 +O(M). (8.55)

Note here we have determined that the contribution to the �γ − p� family vanishes
in leading order in M based on the solutions of the relevant coe�cients, which are
discussed in Appendix A. The results for the e− p− γ families are

|M|2(SM)

T−odd [5.2.01 + 5.2.02 + 6.1.01 + 6.1.02]

= −α2g2
VG

2
F ξ64M3(1− λ2)

(
2Ee
ω
k6.1 +

2M

ω
i6.1 − M

ω
c6.1 − 2Ee

le · k
1

ω
a5.2 − 2m2

e

le · kk6.1

+
m2
e

le · kf6.1 +
m2
e

le · kJ6.1 − M

le · k
1

ω
c5.2 − 2MEe

le · k i6.1 +
2MEe
le · k h6.1 +

2MEe
le · k c6.1

+
M2

le · ke6.1

)
, (8.56)
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and

|M|2(SM)

T−odd [7.1.01 + 7.1.02 + 8.1.01 + 8.1.02]

= −α2g2
VG

2
F ξ64M3(1− λ2)

(
2Ee
le · k ωa7.1 +

M

le · k ωb7.1 − 2MEe
le · k a7.1 − 2M

ω
b7.1

+
2MEe
le · k b7.1 − M2

le · kc8.1

)
= 0 +O(M), (8.57)

where we have determined that the contribution to this family also vanishes in leading
order in M , which can be easily double checked with the solutions of the relevant
coe�cients, which are discussed in Appendix A. Finally, the result for the e − p
family is

|M|2(SM)

T−odd [6.3.01 + 6.3.02 + 8.2.01 + 8.2.02]

= −α2g2
VG

2
F ξ64M3(1− λ2)

(
2m2

e

le · kk6.3 − 2Ee
ω
k6.3 − 2Ee

ω
a6.3 − 2M

ω
i6.3 − M

ω
c6.3

− m2
e

le · kf6.3 +
2m2

e

le · ka6.3 − m2
e

le · kJ6.3 +
2MEe
le · k a8.2 +

2MEe
le · k i6.3 − 2MEe

le · k h6.3

+
M2

le · kc8.2 − M2

le · ke6.3

)
. (8.58)

The coe�cients that appear in Eqs. (8.54) through (8.58) can obtained by solving
the sets of linear equations as listed in detail in Appendix A.

As one �nal technical point, let me stress that it is most convenient to choose
a restricted range in the γ − e opening angle. As one can see from the formulae in
Appendix A, the solutions to the Passarino-Veltman equations become invalid if the
opening angle θeγ between the outgoing electron and the photon is exactly equal to 0
or to π. There is no physical divergences. Rather, the spatial components of the vector
and tensor equations to determine the relevant coe�cients become degenerate at such
a boundary. Potentially one could remove this di�culty by solving the equations for
in�nitesimal values of θeγ or (θeγ − π) and then interpolating the solutions to the
needed θeγ = 0 and π points. In our present work, we simply choose a restricted
range xk ≡ cos θeγ ∈ [−0.9, 0.9], which spans the angular range over which the neutron
radiative decay rate is largest [169].

8.4 Cancellation of Infrared Divergences

Before presenting the �nal results, let us �rst brie�y discuss an important issue �
the control of infrared divergences. As mentioned at the beginning of this chapter,
we encountered an infrared divergence in our calculations. In the case of e− p cuts,
the intermediate momenta satisfy l′e + p′p = le + pp. Obviously, the diagrams (6.3)
and (8.2) are each infrared divergent when l′e = le since they both contain the term
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1/(l′e−le)2 arising from the photon propagator as shown in Fig. (8.6). Such an infrared
divergent problem bothered us for a while. But as expected by the so-called KLN
theorem [170] [171], the observed process should be infrared �nite. Thus we are sure
that the divergence under consideration should eventually cancel. We analyzed this
problem carefully and have shown that the infrared divergences do cancel. The key to
this problem lies in the fundamental requirement of the Ward identity within the e−p
family. To guarantee the Ward identity, the diagrams (6.3) and (8.2) in Fig. (8.4) has
to be considered together � either (6.3) or (8.2) by itself does not have any physical
meaning. To allow the calculation of e− p family to proceed, we can �rst regularize
the divergence by giving the intermediate photon propagator a �ctitious mass mγ.
After �nishing all the relevant integrals, the infrared divergence in the mγ → 0 limit
can be isolated as a common factor of log

(
m2
γ/4|le|2

)
. On taking the large nucleon

mass limit M →∞, the detailed calculations of the coe�cients in this family showed
that the common divergent factor �log

(
m2
γ/4|le|2

)
� completely cancels, thus we can

safely set mγ to zero in the remaining pieces to yield a �nite result in LRO.

8.5 Results

We can now present our results for A
(SM)
ξ . As can be seen explicitly, all of the

contributions to |M|2(SM)

T−odd are found to be proportional to (1 − λ2), so that the
resulting asymmetry goes as (1 − λ2)/(1 + 3λ2), up to recoil-order corrections. The

dependence on λ in |M|2(SM)

T−odd stems from the special nature of the T-odd correlation.
It is a real triple product in momenta arising from the interference of a tree-level
diagram with an imaginary part of an one-loop diagram after summing over the
particles' spins. To leading order in M , the only surviving contribution is obtained
from the product of the symmetric part of the lepton tensor, which is determined
by a trace containing γ5, namely, l

ρ
νε
αβγδ + lδνε

αβγρ − gρδlν µεαβγµ, where α, β, and γ
refer to photon or lepton indices, with the symmetric part of the hadron tensor. The
latter is proportional to (1 + λ2)pρpδ − λ2M2gρδ, where p is a baryon momentum
and p2 = M2. As one can easily check, this special combination generates an overall
(1 − λ2) coe�cient. We use λ = −1.2701 ± 0.0025 [19] in our numerical evaluation.
For de�niteness, let us restate the remaining input parameters we employ are me =
0.510999MeV, Mn = 939.565MeV, Mp = 938.272MeV, and α−1 = 137.0360 � these
quantities can be regarded as exact for our current purposes [19]. We show our results
for the T-odd asymmetry in neutron radiative β-decay in Table (8.1) and Fig. (8.7).
We see that the asymmetry is rather smaller than α.

As of this point we have completed our analysis of the T-odd mimicking e�ect
due to the �nal-state interaction in SM for neutron radiative β decay. One important
thing we should know about this mimicking e�ect is that although it gives a T-odd
signal, but it actually does not represent a true source of CP violation [10]. Such
a mimicking e�ect stems from the CP conserving Lagrangian if we assume all the
coe�cients real. A quick way to distinguish this mimicking e�ect is that for the
presence of a real CP violating source, when all the involved particles are changed
to their antipartners, the total decay rate will also change, revealing a real di�erence
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Table 8.1: T-odd asymmetry as a function of ωmin for neutron radiative β-decay.

ωmin(MeV) Aξ
0.01 1.76× 10−5

0.05 3.86× 10−5

0.1 6.07× 10−5

0.2 9.94× 10−5

0.3 1.31× 10−4

0.4 1.54× 10−4

0.5 1.70× 10−4

0.6 1.81× 10−4

0.7 1.89× 10−4
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Figure 8.7: The asymmetry Aξ versus the smallest detectable photon energy ωmin in
neutron radiative β-decay. Note that the asymmetry is determined from integrals
over the complete phase space with the constraints ω > ωmin and xk ∈ [−0.9, 0.9].

between the properties of matter and antimatter; for the mimicking e�ect, on the
other hand, changing all the involved particles by their antipartners does not a�ect
the �nal decay rate.

Furthermore, as has been stressed, the mimicking T-odd asymmetry is controlled
by the factor (1− λ2), and an interesting question naturally arises: if in some cases,
say for some nuclear radiative β decays, if a similar structure also exists, characterized
by a λeff which happens to be close to unity, then the T-odd mimicking e�ect can be
greatly suppressed. Such a system might serve as an ideal experimental candidate in
the search for real sources of CP violation, such as the HHH interaction. This is a
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part of our work � extending all of our calculations to the case of nuclear decay. As
will be seen in later sections, detailed analysis shows that such an extension is quite
practical with scarcely new mathematical manipulations.

Copyright© Daheng He, 2013.
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Chapter 9 Extending from Neutron to Nuclear Radiative β Decay

In principle, nuclear β decays need not be very di�erent from neutron β decay. Nu-
cleus are bound systems of nucleons, which are held together by strong forces. At
su�ciently low energies the details of nuclear structure may not matter; the decay
may still be e�ectively viewed as that of a point-like object. The situation here is
similar to the neutron case. As mentioned before, we know the neutron is a hadronic
bound state of one u quark and two d quarks, and when it undergoes weak decay, it
is really one of its d quarks that undergoes weak decay, into a u quark, as shown in
Fig. (9.1). At su�ciently low energies, however, one does not detect the fundamental
degree of freedom of quarks, thus we e�ectively view the neutron as the fundamental
particle that undergoes weak decay. The transition from the description on the fun-

d

u

W−

ν̄e

e−

d

u

u
d

Figure 9.1: Real picture of neutron β decay on the fundamental quarks level.

damental quark level to the e�ective description on the neutron level is represented
by the e�ective axial-vector coupling constant λ = 1.2701, which is otherwise equal
to unity on the quark level. In the mean time, we should keep in mind that treating
nuclei as point-like objects is only a crude picture due to the larger sizes of nuclei.

There is a big di�erence, however, between the neutron and nuclear β decay. In the
isolated neutron case, since neutron has a bit higher mass than proton, then only the
case of neutron decaying into proton is allowed, since the proton as the lightest and the
most stable baryon cannot undergo a weak decay into a neutron. In the nuclear case,
on the other hand, due to the complicated strongly interacting environment within
the nucleus, the inverse process p → n + e+ + νe becomes possible. Thus in nuclear
β decays, there are two possible types of weak decay as per the sign of the charge of
the lepton decay electronic product. That is, N(Z)→ N ′(Z±1) + e∓+ ν̄e(νe), where
Z refers to the total number of protons in the parent nucleus N .
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Based on our calculations of the HHH-induced T-odd correlation and the FSI-
induced T-odd mimicking e�ect in the neutron radiative β decay, we observed that

1. the HHH-induced T-odd correlation as a real CP violation gets larger when the
energy release gets higher;

2. the T-odd mimicking e�ect due to �nal�state interactions is modulated by the
overall factor (1− λ2), where λ ≡ gA/gV = 1.2701.

These two observations made us wonder whether a nuclear radiative decay might
be better suited to an experimental search. That is, if in some radiative β decay the
energy release does get enhanced and the associated λeff happens to be very close
to unity, then we can expect a much larger HHH-induced T-odd e�ect along with a
greatly suppressed FSI-induced mimicking e�ect. We expect such a candidate may
exist among the very rich nuclear β decays, and we have found some suitable choices.
This is our motivation in performing the extension.

In this chapter we extend our investigations of the spin-independent T-odd cor-
relation from the neutron radiative β decay into the more general nuclear radiative
β decays. To do this, we will �rst look at the special case, 19Ne radiative β decay:
19Ne→19 F + e+ + νe + γ. The specialty of such a nuclear weak decay lies in the fact
that both the parent nucleus 19Ne and the daughter nucleus 19F are spin-1/2 parti-
cles, in complete analogy with the neutron and proton. In such a situation, we can
translate what we have done in the neutron case to the nuclear case rather directly.
This helps us expose the similarities as well as the di�erences between the neutron
and nuclear radiative β decays, and illuminates the way to perform the extension. It
turns out, as we will see in the end, there are great similarities between the neutron
and nuclear cases, and the di�erence is minimal as long as we work only in leading
recoil order, so that only minor adjustments in the formulae we have developed so far
are ultimately needed.

9.1 19Ne Radiative β Decay as a Total Analogy of the Neutron Case

In trying to extend our treatment from neutron to nuclear radiative β decay, it
is the 19Ne case that �rst came into our scope. From the nuclear data table, we
know that the nucleus 19Ne is a spin-1/2, isospin-1/2 particle. Moreover, it can
undergo the decay 19Ne→19 F + e+ + νe, with

19F also being a spin-1/2, isospin-1/2
particle. In comparison with the neutron case, 19Ne could seemingly be viewed as a
�fat neutron,� and allowing us to apply the previous formulae directly. This is false,
however, because there is a major di�erence between the cases: in the 19Ne case both
the parent and daughter nuclei are charged particles. Thus, when dressing the weak
processes with QED bremsstrahlung to describe the 19Ne radiative β decay, there
will be more Feynman diagrams. The leading order 19Ne radiative β decay can be
described by three Feynman diagrams (01), (02), and (02') as shown in Fig. (9.2).
Comparing with the neutron case, Fig. (3.5), we see that the diagrams (01) and (02)
in Fig. (9.2) are just same as in the neutron case, but the diagram (02') is new. The
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Figure 9.2: QED bremsstrahlung processes in 19Ne(P )→19 F(P ′) + e+(le) + νe(lν) +
γ(k).

additional diagram (02') appears due to the fact that the parent nucleus 19Ne also
carries electric charge, thus it can also couple to the electromagnetic �eld. It seems
that we are now forced to deal with totally di�erent calculations and to develop new
and more complicated sets of formulae. It turns out that the situation is not that bad
as long as we constrain ourselves within the leading recoil order contribution; many
of the new contributions cancel.

To be more explicit, let us �rst write down the scattering amplitude as per the
Feynman diagrams of Fig. (9.2):

M =
egeffV GF√

2
(M01 +M02 +M02′), (9.1)

where the overall coupling constants egeffV GF/
√

2 has been taken out, and we have:

M01 = ūe(le)
2le · ε∗ + /ε∗/k

2le · k γρ(1− γ5)vν(lν)ūFγ
ρ(1− λeffγ5)uNe, (9.2)

M02 = Zūe(le)γρ(1− γ5)vν(lν)ūF
2P ′ · ε∗ + /ε∗/k

2P ′ · k γρ(1− λeffγ5)uNe, (9.3)

M02′ = (Z + 1)ūe(le)γρ(1− γ5)vν(lν)ūFγ
ρ(1− λeffγ5)

2P · ε∗ − /k/ε∗
−2P · k uNe, (9.4)

where Z = 9 is the total electric charge of the 19F nucleus. Since we are working at
low energies, we are treating both the parent nucleus 19Ne and the daughter nucleus
19F as spin-1/2 point-like particles, just as we did in the neutron case. We see that
M possesses the following properties:

1. on replacing the photon polarization vector ε and its complex conjugate ε∗ with
its 4-momentum k, we have

M|ε, ε∗→k = 0, (9.5)

so that QED gauge invariance is satis�ed. This allows us to perform the gauge re-
placement trick

∑
s ε
∗
µεν → −gµν .
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2. In determining the leading recoil order contribution, we have 1/P · k ∼ 1/P ′ · k ∼
1/M , where M is de�ned as the average mass of the 19Ne and 19F, M ≡ (M19Ne +
M19F)/2. We can ignore the subleading term /ε∗/k in Eq. (9.3) and Eq. (9.4).

On combining these properties, we get

M02 = Zεµūe(le)γρ(1− γ5)vν(lν)ūF
P
′µ

P ′ · kγ
ρ(1− λeffγ5)uNe, (9.6)

and

M02′ = (Z + 1)εµūe(le)γρ(1− γ5)vν(lν)ūFγ
ρ(1− λeffγ5)

P µ

−P · kuNe. (9.7)

The di�erence between P and P ′ is only to the recoil order, so that we can just set
P ′ = P . Thus, to leading recoil order, we have:

M02 +M02′ = −εµūe(le)γρ(1− γ5)vν(lν)ūFγ
ρ(1− λeffγ5)

P µ

P · kuNe. (9.8)

Comparing Eq. (9.8) with Eq. (4.5), we �nd that even though the 19Ne radiative
β decay does receive an additional contribution M02′ , the sum of M02′ and M02

still returns a result similar to the neutron case if we only work to leading recoil
order. Thus, at least for the QED bremsstrahlung contribution to 19Ne radiative β
decay, one can almost directly transplate with only minor adjustments in the actual
numerical evaluations � we just need to replace the nucleons' masses with the masses
of 19Ne and 19F, also, the factor λ = 1.2701 in the neutron case should be replaced
by λeff , which is de�ned by λeff = ρ/

√
3 and ρ is called the Gamow-Teller-to-Fermi-

transition parameter [172]. The values of ρ are nuclear�structure dependent and vary
a lot among di�erent nuclei. It is challenging to calculate theoretically, but it can be
deduced from the measured Ft values of nuclei. We found that for the 19Ne radiative
β decay λeff ≈ 0.920 according to the measured value of ρ = 1.5933 ± 0.0030 [172].
With these replacements, we can easily obtain the branching ratio for 19Ne radiative
β decay. We will leave a summary of numerical results to tables at the very end of
the chapter.

As discussed before, in weak decays, the Coulomb correction due to the Coulomb
interaction between the charged decay products deserves to be considered carefully,
and in the nuclear cases, due to the larger charges carried by the daughter nucleus,
the Coulomb correction can be much more enhanced than in the neutron case. We
can also easily perform the calculation of the Coulomb correction in the 19Ne case;
the only changes here are that we have Z = 9 for 19F, and the e�ective electric charge
radius of 19F is R = 2.85(9) fm [173].

For the calculations of HHH-induced T-odd asymmetry in the 19Ne radiative β
decay, the transition is almost trivial � the only thing that needs to be replaced is
the nucleon vector current p̄γµn in Eq. (6.15), to be replaced with the nuclear case
ūFγµuNe.

After showing the intimate connection between neutron and 19Ne radiative β
decay, there is still another important issue to be addressed: what about the SM
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FSI-induced T-odd mimicking e�ect in the 19Ne case? As one can imagine, there are
new kinds of loop diagrams and associated Cutkosky cuts due to the presence of the
electric charges of the parent nucleus. Can we still take advantage of the formulae
that were developed in the neutron case, without having to perform any new and
tedious manipulations? Fortunately, YES! We �nd that even in the very complicated
FSI-induced T-odd mimicking e�ect, we are still able to apply most of the neutron
formulae. To show this, let us see all the one-loop diagrams for the 19Ne radiative
β decay. There are many more diagrams than in the neutron case. To make the
discussions more logically accessible, we shall present the loop diagrams with cuts
as per the di�erent types of post-cut processes, which describe the Mfn and Min

that were introduced in Eq. (8.23). Just as we did in the neutron case, we shall
organize the cuts into di�erent groups, within each of which QED gauge invariance is
manifestly satis�ed. Following this guideline, in the Feynman diagrams we will label
each diagram as per the convention of the neutron case. That is, if the loop diagram
has the same look as in the neutron case, we will label it with the same number as in
Fig. (8.4); on the other hand, if a diagram of a certain family is brand new compared
to the earlier neutron case, we will label it with a primed number.

First is the positron Compton scattering as shown in Fig. (9.3). On the two
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Figure 9.3: The positron Compton rescattering cuts in 19Ne(P )→19 F(P ′)+e+(le)+
νe(lν) + γ(k).

sides of the cuts, which are denoted by the cross symbols, we get the diagrams of
positron Compton scattering, describingMfn, and the ones forMin that describes
the tree-level 19Ne radiative β decay process, as shown in Fig. (9.2). Apparently the
Mfn part is identical to the neutron case since it represents charged lepton Comp-
ton scattering. As for the Min part, based on the earlier discussions, although the
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tree-level diagrams for 19Ne radiative β decay receives an extra diagram, the leading
recoil order approximation immediately allows for a cancellation and yields a struc-
ture identical to the case of tree-level neutron radiative β decay. Thus we draw the
conclusion that in the positron Compton rescattering cuts of 19Ne radiative β decay,
the formal structure remains unchanged, and the relevant formulae we developed in
the neutron case directly apply with only some corresponding modi�cations needed
in the �nal phase space integration, such as the nucleons' masses being replaced with
the nuclei's masses.

Next, let us check the nucleus Compton scattering as shown in Fig. (9.5). This
family resembles the positron Compton rescattering cuts, only with positron being
replaced by nucleus. After the cuts, on the two sides of cross symbols, one gets
the tree-level 19Ne radiative β decay and the nucleus Compton scattering. Again,

P

lν
le

k

P ′

k′

(3)

P

lν
le

k

P ′
k′

(4)

lν
le

P ′
k

P

k′

(3′)

lν
le

P ′k

P

k′

(4′)

P

lν

le

k

P ′

k′

(7.2)

lν

le

k

k′

(8.3)

P

P ′k

(7.2′)

P

lν

le

P ′

k′

k

(8.3′)

P

lν

le

P ′

k′

Figure 9.4: Nucleus Compton rescattering cuts in 19Ne(P ) →19 F(P ′) + e+(le) +
νe(lν) + γ(k), part I.
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Figure 9.5: Nucleus Compton rescattering cuts in 19Ne(P ) →19 F(P ′) + e+(le) +
νe(lν) + γ(k), part II.

following the very similar analysis as in the positron Compton scattering cuts, we �nd
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that the nucleus Compton scattering cuts in the 19Ne case has a structure identical
to that of the proton Compton scattering cuts in the neutron case. It is easy to
show (see Appendix A) that the cuts of the nucleus Compton scattering do not give
a leading recoil contribution, thus we do not need to consider such cuts any further.

The third family of cuts are those withMfn describing the positron-nucleus rescat-
tering with photon emission, as shown in Fig. (9.6). Comparing Fig. (9.6) with the
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Figure 9.6: Feynman diagrams of the positron-nucleus-photon rescattering cuts in
19Ne(P )→19 F(P ′) + e+(le) + νe(lν) + γ(k).

neutron case, we see that this family shares a structure similar to the neutron case.
The only di�erence here is that in the positron-nucleus rescattering the positron feels
a stronger electromagnetic �eld because the daughter nucleus 19F has Z = 9, yet in
the neutron case, the electron only experiences the electromagnetic �eld generated by
the single proton. A straightforward analysis shows that the formulae we developed
in the neutron case for this type of cuts are almost directly applicable, but we should
just keep in mind thatMfn in this family should come with an extra multiplicative
factor of Z, which is the total charge of 19F.

The last family are cuts with Mfn describing the positron-nucleus rescattering
without photon emission, as shown in Fig. (9.7). This family also shares a structure
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klν
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le k
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Figure 9.7: The positron-nucleus rescattering cuts in 19Ne(P )→19 F(P ′) + e+(le) +
νe(lν) + γ(k).

similar to the same family in the neutron case. We note Min describes tree-level
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19Ne radiative β decay, andMfn describes the positron-nucleus rescattering without
photon emission. Just as in the positron-nucleus-photon rescattering cuts, here the
positron also experiences the electromagnetic �eld that is generated by the Z charges
of 19F, so that we can directly apply the formulae of e − p cuts in the neutron case,
with an extra multiplicative factor of Z in the calculation ofMfn. Also, as discussed
in the neutron case, such a positron-nucleus rescattering cuts come with the infra-
red divergence problem, we need to keep this whole family together in the whole
calculations so that the infrared divergence arising from the diagram (6.3) is �nally
cancelled by the combination of the diagrams (8.2) and (8.2') in Fig. (9.7).

Let us summarize what we have concluded so far:

1. in the case of 19Ne radiative β decay, 19Ne →19 F + e+ + νe + γ, the parent
nucleus 19Ne radiative β and the daughter nucleus 19F happen to share the same
spin-1/2 quantum number with the neutron and proton;

2. in very low energies processes, the structure of the nucleus is not really rele-
vant to us, so that we can treat both of the nuclei as point-like particles.

Combining the two conditions allows us to draw similar Feynman diagrams and follow
the standard Feynman rules to �nd that even though the 19Ne radiative β decay has
more diagrams than the neutron case does, there are cancellations due to the leading
recoil order approximation, and eventually the formulae we have developed for the
neutron case are just enough for us to perform the evaluations of the 19Ne case, with
only some minor adjustments such as the replacements of nucleus masses and the
extra factor of Z = 9 in the diagrams of Fig. (9.6) and Fig. (9.7). This encourages us
to believe that the T-odd calculations in the nuclear cases should not di�er from the
neutron one very much.

Of course 19Ne radiative β decay is just a very special case that allows us to use the
language of quantum �eld theory and apply standard Feynman rules to demonstrate
our analysis and justify our claim. For more general nuclear cases with general spin
con�gurations, however, we may not be able to enjoy such convenience any more.
Even so, as will be seen in the next section, the conclusion in this section still holds,
that is, the formulae that we have developed for the neutron radiative β decay are
really su�cient for the more general nuclear cases.

9.2 Alternative Treatments of Nuclear β Decay

In last section, we took the 19Ne radiative β decay as a simple model to demonstrate
how we can translate, almost directly, the formulae we have developed for the neutron
radiative β decay to the nuclear case. The main theoretical language we used was
the standard Feynman rules, which were allowed because both the parent nucleus
19Ne and the daughter 19F are spin-1/2 point-like particles. For more general nuclear
cases, such a tricky method may not apply. We need to �gure out a more general way
to deal with the problem. In this section, we very brie�y discuss the general idea.
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Cutkosky cuts suggests that after performing the cuts the loop diagrams can be
viewed as two physical processes described byMfn andMin. This holds for all kinds
of spin con�gurations. Let us �rst take a closer look at the scattering amplitudes in
Eq. (9.2), Eq. (9.6), and Eq. (9.7), where the leading recoil order approximation has
been considered. The three scattering amplitudes can be simply denoted as:

M01 = l1ρh
ρ
1, (9.9)

M02 = l2ρh
ρ
2, (9.10)

M02′ = l2ρh
ρ
2′ , (9.11)

where lρ and hρ are de�ned as the leptonic and hadronic current respectively, and we
have:

l1ρ = ūe(le)
2le · ε∗ + /ε∗/k

2le · k γρ(1− γ5)vν(lν), (9.12)

l2ρ = ūe(le)γρ(1− γ5)vν(lν), (9.13)

hρ1 = ūFγ
ρ(1− λeffγ5)uNe, (9.14)

hρ2 = εµūF
P
′µ

P ′ · kγ
ρ(1− λeffγ5)uNe, (9.15)

hρ2′ = εµūFγ
ρ(1− λeffγ5)

P µ

−P · kuNe. (9.16)

which are of course very easily obtained by following the Feynman rules. But the
scattering amplitudes by themselves are not directly related with the physical ob-
servable - the decay rate, it is their absolute squares that matters. Thus we have, for
example,

|M01|2 = l1ρl
∗
1δh

ρ
1h

δ∗
1 = l11ρδh

ρδ
11,

|M02|2 = l2ρl
∗
2δh

ρ
2h

δ∗
2 = l22ρδh

ρδ
22,

|M02′|2 = l2ρl
∗
2δh

ρ
2′h

δ∗
2′ = l22ρδh

ρδ
2′2′ . (9.17)

Thus it is really the tensors in Eq. (9.17) that determine the �nal result of |M|2. If we
can �nd the expressions of the currents that can yield the same results of the tensors
as the ones obtained by following the Feynman rules, we then do not really have to
rely on the Feynman rules any more. We are seeking for such kind of alternative
path because the spin con�gurations of general nuclei can be multiple and QED-like
Feynman rules may not apply in many cases.

In fact, since on the leptonic current side the electron (positron) as well as the
(anti)neutrino are universally present in any nuclear β decay, the Feynman rules
always work well on this side! The major job for us is to �nd alternative and more
general path to describe the hadronic currents that interact with electroweak gauge
bosons such as W± and photon.

Let us start with the regular nuclear β decay, that is, with no photon radiation
involved. For de�niteness, we consider the case of β decay. In general we have the
diagram depicted in Fig. (9.8) for a nuclear β decay. We de�ne
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Figure 9.8: A nuclear β decay α(p1)→ β(p2) + e−(le) + ν̄e(lν). The double lines refer
to the nuclei.

P = p1 + p2; q = p1 − p2 = le + lν ;

MN =
1

2
(Mα +Mβ); ∆ = Mα −Mβ. (9.18)

The scattering amplitudeM can be generally written as the product of the nuclear
current and the leptonic current:

M =
GFVud√

2
〈β|Vµ + Aµ |α〉 lµ, (9.19)

where lµ refers to the leptonic current, which can always be obtained easily by fol-
lowing the Feynman rules:

lµ = ūe(le)γ
µ(1− γ5)vν(lν). (9.20)

Following the basic requirement of parity violation in weak decay, the nuclear current
in Eq. (9.19) contains both vector and axial-vector components. Based on rotational
invariance and the parity consideration, several equivalent representations of the nu-
clear weak current have been proposed, such as in Ref. [174] [175] [176]. Here let
us just take Holstein's representations [174] [175]. That is, we suppose the parent
nucleus has spin J with its third component M , and the daughter nucleus has spin
J ′ with its third component M ′. Translational invariance dictates that the nuclear
current is only dependent on the momentum transfer q, and we have [175]:

〈β|V0 |α〉 =
∑
j=even

j∑
m=−j

CM ′m;M
J ′j;J

(
4π

2j + 1

) 1
2

Y m
j (q̂)F V

j (q2)

( |q|
2MN

)j
,

〈β|V |α〉 =
∑
l=odd

l+1∑
j=l−1

j∑
m=−j

CM ′m;M
J ′j;J

(
4π

2l + 1

) 1
2

Tm
jl (q̂)F

V
jl (q

2)

( |q|
2MN

)l
,

(9.21)
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for the nuclear vector current, and

〈β|A0 |α〉 =
∑
j=odd

j∑
m=−j

CM ′m;M
J ′j;J

(
4π

2l + 1

) 1
2

Y m
j (q̂)FA

j (q2)

( |q|
2MN

)j
,

〈β|A |α〉 =
∑
l=even

l+1∑
j=l−1

j∑
m=−j

CM ′m;M
J ′j;J

(
4π

2l + 1

) 1
2

Tm
jl (q̂)F

A
jl (q

2)

( |q|
2MN

)l
,

(9.22)

for the nuclear axial-vector current. In Eq. (9.21) and Eq. (9.22), Y m
j and Tm

jl refer to
the spherical harmonics and vector spherical harmonics, de�ned in Rose's book [177].

We note CM ′m;M
J ′j;J is the Clebsch-Gordan coe�cient, and F V

j (q2), F V
jl (q

2), FA
j (q2), and

FA
jl (q

2) are form factors.
The expressions in Eq. (9.21) and Eq. (9.22) look quite complicated since they

contain all the information apropos the nuclear vector and axial-vector currents. Here,
however, we are only interested in the leading recoil order contributions, so that
we can simply drop all the nonleading terms, which greatly simpli�es the nuclear
currents. For example, we see that for the zeroth component of the nuclear vector
current, 〈β|V0 |α〉 in Eq. (9.21), the only leading order term is such that j = 0, so that
m = 0; otherwise, we have 〈β|V |α〉=0. Similarly the only leading order contribution
in the axial-vector current comes from the vector components in Eq. (9.22) when
l = 0, and the zeroth component of the axial-vector current vanishes: 〈β|A0 |α〉 = 0.
Based on such simpli�cations, one �nds that for the allowed nuclear weak decay
with ∆J = 0, ±1, the leading recoil order pieces of the nuclear weak current can be
rewritten the following form:

V0 = (−1)J
′−M ′√2J + 1

(
J ′ 0 J
−M ′ 0 M

)
F V

0 , (9.23)

V = 0, (9.24)

and

A0 = 0, (9.25)

A =
∑
m

(−1)J
′−M ′√2J + 1

(
J ′ 1 J
−M ′ m M

)√
4πYm

10
∗FA

10, (9.26)

where, following the general convention, F V
0 corresponds to gV , and F

A
10 corresponds to√

3gA for the neutron β decay. We know YM
Jl are called �vector spherical harmonics,�

de�ned as:

YM
Jl =

∑
m,q

Ylm 〈l,m, 1, q|l, 1, J,M〉 êq, (q = −1, 0,+1), (9.27)

where êq is unit vector. This yields the result for Ym
10
∗:

Ym
10
∗ =

∑
q

Y00 〈0, 0, 1, q|0, 1, 1,m〉 êq =
1√
4π
êm. (9.28)
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Furthermore, we see that the so-called �3-jm symbol� appears in the expressions for
the nuclear weak currents. The 3-jm symbol plays an important role in dealing with
the geometry of angular momenta. It is closely connected to the Clebsch-Gordan
(CG) coe�cients such that(

j1 j2 j3

m1 m2 −m3

)
= (−1)−j1+j2−m3

1√
2j3 + 1

〈j1,m1, j2,m2|j3,m3〉 , (9.29)

where 〈j1,m1, j2,m2|j3,m3〉 refers to the C-G coe�cient. It is not hard to see that
following the de�nition of 3-jm symbol, we have:(

J ′ 0 J
−M ′ 0 M

)
= (−1)J−M

′ 1√
2J ′ + 1

〈0, 0, J,M |J ′,M ′〉 ,

= (−1)J
′−M ′ 1√

2J + 1
δJJ ′δMM ′ , (9.30)

which yields the �nal spin-independent result for the vector current:

V0 = F V
0 δJJ ′δMM ′ . (9.31)

Following a similar procedure, it is also easy to �nd the non-trivial piece of the axial-
vector current:

A =
+1∑

m=−1

(−1)J
′−M ′√2J + 1

(
J ′ 1 J
−M ′ m M

)
FA

10êm. (9.32)

With Eq. (9.31) and Eq. (9.31), together with V = 0, A0 = 0, we are ready to
calculate the hadronic (nuclear) tensor that is the actual quantity that determines
the scattering amplitude square:

hµν = (Vµ + Aµ)(Vν + Aν)

= VµVν + VµAν + AµVν + AµAν . (9.33)

There are basically three cases:

1. µ = 0 and ν = 0, we have:

h00 = V0V0 = (F V
0 )2δJJ ′ (9.34)

2. µ = 0 and ν = i for i = 1, 2, 3, or the other way around, we have:

h0i = hi0 = V0Ai ∝ (−1)J
′−M ′√2J + 1

(
J ′ 1 J
−M ′ m M

)
δJJ ′δMM ′

= (−1)J−M
√

2J + 1

(
J 1 J
−M m M

)
. (9.35)
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The 3-jm symbol above can be nontrivial only when m = 0 and J = 1/2, which
means M = ±1/2. Since we are considering unpolarized processes, so we should sum
over the nucleus' polarization M , therefore we have

V0Ai ∝ (−1)0

(
1/2 1 1/2
−1/2 0 1/2

)
+ (−1)1

(
1/2 1 1/2
1/2 0 −1/2

)
= 0, (9.36)

which tells us that h0i = hi0 = 0. Finally we have the µ = i, ν = j, or the other way
around, we have:

hij = hji = AiAj, (9.37)

which on using the orthogonality relation of the 3-jm symbol:

(2J + 1)
∑
m,n

(
J ′ 1 J
−M ′ m M

)(
J ′ 1 J
−M ′ n M

)
= δmn (9.38)

we get

hij = (FA
10)2 (if i = j)

hij = 0 (if i 6= j), (9.39)

which, following the standard convention, we have (F V
0 )2 = g2

V and (FA
10)2 = 3g2

A.
Now let us compare hµν we have got so far with the one which we have got for

the neutron case by applying the Feynman rules for spin-1/2 fermions:

hµν = hµh
∗
ν = ūpγµ(gV − λgA)unūn(gV + λgA)γνup

= Tr
[
(/pp +mp)γµ(gV − λgA)(/pn +mn)(gV + λgA)γν

]
= 8(PµPνg

2
V + PµPνg

2
A − gµνM2g2

A), (9.40)

where the leading recoil order approximation has been taken in the last line, with
P µ ≡ pµp + pµn, and M = P 0 ≡ (mp +mn)/2. From Eq. (9.40), we see that h00 ∼ g2

V ,
h0i = hi0 = 0, hij ∼ 3g2

A if i = j, and hij = 0 if i 6= j. Thus we �nd the same
tensor structure as the one that is obtained for the spin-1/2 fermions by following
the standard Feynman rules. In other words, the concrete spin con�gurations of
di�erent nuclei really do not a�ect our calculations of the nuclear β decays in the
LRO approximation.

So far we have shown that in nuclear β decays, the formulae can be translated
from the neutron case with only some minor modi�cations, is this still true in the
case of radiative β decay? The answer is still yes.

In the case of QED bremmstrahlung, the only di�erence between the nuclear ra-
diative β decay and the neutron radiative β decay is that the electrically charged
currents are dressed with photon bremmstrahlung. We do not worry about the case
where photon couples to the electron since we have standard Feynman rules for the
lepton current, and there is an alternative representation of the nuclear electroweak
current with di�erent spin con�gurations playing no role in LRO approximation.
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When the photon couples to the nuclear current, the situation becomes a little bit
more complicated. After the Cutkosky cuts, as we have seen in both neutron and
19Ne radiative β decays, the loop diagrams are split into two parts, represented by
Mfn and Min such that the Min describes tree-level regular or radiative β decay,
and theMfn describes either Compton-like processes or electron-nucleus rescattering
processes. The following questions arise:

1. What is the alternative representation of the nuclear electric current in the corre-
spondingMfn?

2. When the emitted photon couples to the nuclear sector via the bremmstrahlung
processes, how does it appear in the current?

The �rst question is more or less trivial since the earlier discussion on the alter-
native representation of nuclear electroweak current already provides us some clue.
The electromagnetic coupling is a vector coupling, and there is no axial vector piece.
When the electric nuclear current is not dressed with photon bremmstrahlung, we
can just pick up the vector piece from Eq. (9.19) and thus Eq. (9.31) in LRO � with
the coupling F V

0 being replaced by the electric charge of the involved nucleus. Con-
sequently, we �nd the nuclear electric tensor h00

EM = V 0V 0∗ = (Ze)2 This is in fact
consistent with the electric current obtained by following the QED Feynman rule in
the proton case, where we have the proton electromagnetic current

hµEM = eūpγ
µup, (9.41)

which gives the proton electromagnetic tensor

h00
EM = 8M2e2 (9.42)

with all other components vanishing in LRO. The extra factor of 8M2 can be trivially
absorbed into a choice of convention of the �nal phase space integrations.

Let us discuss the second question listed above � how should we handle the nuclear
photon bremsstrahlung? From the considerations of both neutron and the 19Ne cases,
we see that in LRO, such a process only brings an extra factor of ZeεµP

′µ/P ′ · k or
−(Z + 1)eεµP

µ/P · k into the regular radiative β decay. It turns out that such a
property is universal in any LRO nuclear bremsstrahlung because it is closely related
to the Ward-Takahashi identity that holds up to arbitrary order. In LRO, the Ward-
Takahashi identity in QED reads:

qµΓµ(p, q, p+ q) = Q
(
S−1
F (p+ q)− S−1

F (p)
)

(9.43)

with a relevant diagram shown in Figure (9.9), which is to represent the case where
the photon couples to the daughter nucleus. On multiplying SF (p + q) (from left)
and SF (p) (from right) on both sides of Eq. (9.43), we have

qµSF (p+ q)Γµ(p, q, p+ q)SF (p) = Q (SF (p)− SF (p+ q)) . (9.44)
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SF (p + q)

q

SF (p)Q

Figure 9.9: A demonstrative diagram to show the Ward-Takahashi identity. SF refers
to the renormalized propagator of a charged matter �eld with certain 4-momentum
and electric charge Q (=Ze), the q refers to the 4-momentum of photon. The grayed
blob denotes any other processes that connect to the bremsstrahlung.

De�ning SF (p+ q)Γµ(p, q, p+ q) ≡ Jµ, which represents the in�uence of an insertion
of photon bremsstrahlung into the diagram. We have then

qµJµSF (p) = Q (SF (p)− SF (p+ q)) . (9.45)

For arbitrary p, we have
qµJµ = Q. (9.46)

In our consideration, the only two independent degrees of freedom are p and q, thus
we must have Jµ = apµ + bqµ. The qµ part is irrelevant since it will eventually be
combined with the photon polarization vector εµ and have ε · q = 0. Thus only the
apµ is left. To determine a, we multiply q

µ to Jµ, and �nd a = Q/p · q, thus we show
that

Jµ = Q
pµ

p · q , (9.47)

which is the expected result we have seen in both neutron and 19Ne radiative β decays.
The bremsstrahlung that dresses the parent nucleus can also be derived by following
very similar way, and gives

Jµ = −Q′ p
′µ

p′ · q (9.48)

with Q′ = (Z+1)e and p′ denoting the charge and 4-momentum carried by the parent
nucleus. Apparently, in LRO approximation, the sum of Eq. (9.47) and Eq. (9.48)
would yield a net contribution of −eP µ/P · k, which is just what we see in the
neutron and 19Ne case. In one words, what we have shown here is that in LRO
approximation the insertion of a photon bremsstrahlung will only add the similar
factor of ZeεµP

′µ/P ′ · k or −(Z + 1)eεµP
µ/P · k into the nonradiative amplitudes for

any spin con�gurations. Thus it does not alter any of our earlier formulae that are
developed in the neutron case.
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To sum up, we have shown that in the nuclear case in LRO neither the electroweak
nor the electromagnetic current depends on the spin con�gurations, and we can draw
the conclusion that even without applying the standard Feynman rules for spin-1/2
fermions, the general nuclear radiative β decay with more general spin-con�gurations
still have the same structure as the spin-1/2 fermions do, so that the formulae that we
have developed for spin-1/2 case can be applied to the more general nuclear cases. We
should stress that due to the daughter nucleus charge factor Z, the scattering ampli-
tudes for the lepton-nucleus rescattering cuts should be given an extra multiplicative
factor of Z accordingly.

9.3 Numerical Results

In this section, we present the numerical results of the neutron radiative β decay as
well as the nuclear cases of 6He, 19Ne, and 35Ar. We have computed the branching
ratios, HHH-induced CP-violating asymmetries in units of Im CHHH, and SM FSI-
induced T-odd mimicking e�ects. Due to the larger electric charges carried by the
nuclei than proton, the Coulomb correction can be more signi�cant, so that we also
evaluated the Coulomb corrections to these cases.

The decay rate is proportional to the overall factor �(1 + ρ2)� with ρ de�ned
as Gamow-Teller-to-Fermi-transition parameter [172], which can be determined from
both the �A� correlation in the decay rate and the lifetime measurements. The FSI-
induced T-odd mimicking e�ect is controlled by the overall factor �(1−ρ2/3)(1+ρ2)�,
thus the parameter ρ is important. In the neutron case we have ρ[n] =

√
3λ =√

3gA/gV . The branching ratios with and without the Coulomb correction have been
presented in Table (4.2). Here we just present the comparison of the numerical results
of AHHH versus AFSI for the neutron, to be seen in Table (9.1), where the subscript
�0� implies the evaluations are without Coulomb corrections and �CC� implies that
Coulomb corrections have been included.

For 6He radiative β decay, 6He → 6Li + e− + νe + γ, we have ρ[He] = 2.74913,
which is deduced from the lifetime measurements of 6He [178], and the electric charge
radius R[6Li] ≈ 2.589 ± 0.039fm [179]. With these numerical inputs, we evaluate
the BR, to be seen in Table (9.2) and the HHH-induced asymmetry AHHH as well
as the FSI-induced T-odd mimicking e�ect AFSI, to be seen in Table (9.3). The
di�erential decay rate of 6He radiative β decay has been measured years ago [2]. This
allows us a chance to check if our formulae works for the general nuclear radiative β
decay by comparing our theoretical results with the experimental results. Without
being o�ered the actual data, we have to read o� the approximate data from the
original plot. Note the original measurements on the di�erential decay rate was
taken in arbitrary unit, we need to �x a point for the overall multiplicative factor,
and compare the rest of the points. The theory versus experiment plot is presented
in Fig. (9.10). We see that they agree fairly well, and this supports the validity
of our procedure. One specialty here is that in 6He radiative β decay, the parent
nucleus 6He is spin-0, yet the daughter nucleus 6Li is spin-1, thus the initial spin J
and the �nal spin J ′ are not equal. Following the earlier discussion of Eq. (9.31), we
assert that there is no vector weak current piece in the 6He case � this means that
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Table 9.1: Summary of the numerical results for AHHH(n) and AFSI(n) in neutron
decay at some selected ωmin. AHHH is in unit of Im CHHH.

ωmin(MeV) AFSI
0 (n) AFSI

CC(n) AHHH
0 (n) AHHH

CC (n)
0.01 1.76× 10−5 1.78× 10−5 −0.561× 10−2 −0.565× 10−2

0.05 3.86× 10−5 3.88× 10−5 −1.30× 10−2 −1.31× 10−2

0.1 6.07× 10−5 6.11× 10−5 −2.20× 10−2 −2.20× 10−2

0.3 1.31× 10−4 1.31× 10−4 −5.34× 10−2 −5.33× 10−2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

R
el

at
iv

e 
C

ou
nt

in
g 

R
at

e

ω(MeV)

Figure 9.10: Di�erential decay rate of 6He radiative β decay, where the line repre-
sents the theoretical prediction and the dots with error bars represents experimental
data [2].

we have a pure Gamow-Teller transition, so that no HHH-induced e�ect in this case
simply because such an asymmetry is proportional to Im(c5 gV ). In this sense, the
6He radiative β decay serves as an ideal candidate for a clean test of the FSI-induced
T-odd mimicking e�ect.

For the 19Ne radiative β decay, 19Ne→ 19F+e++νe+γ, ρ can be deduced from the
measurements of the nuclear lifetimes. We �nd that ρ[Ne] = −1.5933± 0.0030 [172].
For the numerical evaluation of the Coulomb correction based on Eq. (4.26), we have
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Table 9.2: Summary of the numerical results for the BR in 6He decay at some selected
ωmin.

ωmin(MeV) BR0(6He) BRCC(6He)
0.01 8.02× 10−3 8.64× 10−3

0.05 4.77× 10−3 5.14× 10−3

0.1 3.44× 10−3 3.71× 10−3

0.3 1.59× 10−3 1.72× 10−3

Table 9.3: Summary of the numerical results for AHHH(6He) and AFSI(6He) in 6He
decay at some selected ωmin. AHHH is in unit of Im CHHH.

ωmin(MeV) AFSI
0 (6He) AFSI

CC(6He) AHHH
0 (6He) AHHH

CC (6He)
0.01 6.98× 10−5 7.08× 10−5 0 0
0.05 1.14× 10−4 1.16× 10−4 0 0
0.1 1.52× 10−4 1.54× 10−4 0 0
0.3 2.63× 10−4 2.66× 10−4 0 0

Table 9.4: Summary of numerical results for the BR in 19Ne decay at some selected
ωmin.

ωmin(MeV) BR0(19Ne) BRCC(19Ne)
0.01 4.82× 10−2 6.10× 10−2

0.05 2.82× 10−2 3.57× 10−2

0.1 2.01× 10−2 2.55× 10−2

0.3 0.886× 10−2 1.14× 10−2

the electric charge radius R[19F], which we �nd R[19F] ≈ 2.85(9)fm [180]. With these
numerical input, we evaluate the BR, to be seen in Table (9.4), and the HHH-induced
asymmetry AHHH with the FSI-induced T-odd mimicking e�ect AFSI, to be seen in
Table (9.5).

For the 35Ar radiative β decay, 35Ar → 35Cl + e+ + νe + γ, we have ρ[Ar] =
0.2841 ± 0.0025 [172], and the electric charge radius R[35Cl] ≈ 3.335(18)fm [180].
With these numerical inputs, we evaluate the BR, to be seen in Table (9.6); and the
HHH-induced asymmetry AHHH with the FSI-induced T-odd mimicking e�ect AFSI,
to be seen in Table (9.7).

From the numerical results listed in Table 9.1, Table 9.5, Table 9.7, we see that
the 19Ne case has the higher ratio of the absolute size of AHHH

CC /AFSI
CC , which implies

a good candidate. The 35Ar may be a good candidate as well simply because the
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Table 9.5: Summary of numerical results for AHHH(19Ne) and AFSI(19Ne) in 19Ne
decay at some selected ωmin. AHHH is in unit of Im CHHH.

ωmin(MeV) AFSI
0 (19Ne) AFSI

CC(19Ne) AHHH
0 (19Ne) AHHH

CC (19Ne)
0.01 −2.86× 10−5 −2.99× 10−5 −3.60× 10−2 −3.64× 10−2

0.05 −4.76× 10−5 −4.97× 10−5 −6.13× 10−2 −6.18× 10−2

0.1 −6.40× 10−5 −6.68× 10−5 −8.46× 10−2 −8.52× 10−2

0.3 −1.14× 10−4 −1.18× 10−4 −16.5× 10−2 −16.5× 10−2

Table 9.6: Summary of numerical results for the BR in 35Ar decay at some selected
ωmin.

ωmin(MeV) BR0(35Ar) BRCC(35Ar)
0.01 6.55× 10−2 10.2× 10−2

0.05 4.24× 10−2 6.63× 10−2

0.1 3.28× 10−2 5.13× 10−2

0.3 1.85× 10−2 2.91× 10−2

Table 9.7: Summary of numerical results for AHHH(35Ar) and AFSI(35Ar) in 35Ar
decay at some selected ωmin. AHHH is in unit of Im CHHH.

ωmin(MeV) AFSI
0 (35Ar) AFSI

CC(35Ar) AHHH
0 (35Ar) AHHH

CC (35Ar)
0.01 −0.835× 10−3 −0.875× 10−3 −0.280 −0.283
0.05 −1.26× 10−3 −1.32× 10−3 −0.431 −0.435
0.1 −1.60× 10−3 −1.67× 10−3 −0.556 −0.559
0.3 −2.55× 10−3 −2.65× 10−3 −0.943 −0.945

e�ect is enhanced among the nuclear examples to reveal the possible existence of
the Im(c5), which in turn signi�es the underlying BSM contributions as discussed in
Chapter 6. This happens mainly because in the 19Ne radiative β decay the e�ective
factor ρ = 1.5933 → ρ2/3 ≈ 0.85, which is pretty close to unity and thus provides
higher suppression on the FSI-induced T-odd mimicking e�ect via its overall factor
�(1− ρ2/3)(1 + ρ2)� than in the other nuclear examples. We are taking these nuclear
examples to demonstrate the basic principles involved in selecting the most ideal
candidate to search for a nontrivial Im(c5). Due to the very special analytic structure
�(1− ρ2/3)(1 + ρ2)� in the FSI-induced mimicking e�ect in SM, we are looking for a
nuclear candidate with its e�ective ρ very close to unity, which consequently greatly
suppresses the SM baseline and makes the exotic CP-violating signal more visible.

Copyright© Daheng He, 2013.
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Chapter 10 Summary and Outlook

10.1 What We Have Learned

Let me brie�y summarize the work I have done. In this thesis, we focus on the study
of CP violation which appears in the form of a triple-product correlation in momenta,
in both the neutron and nuclear radiative β decays. CP violation is an important and
necessary element in explaining the BAU problem � if there were no CP violation,
all the matter and antimatter that were created in the Big Bang would have totally
annihilated when the universe cooled during its expansion. With the fundamental
introduction of P, C, and T transformations in this thesis, we see that to allow
for CP violation in the framework of quantum �eld theory, at least some coupling
constants have to be complex, so that the Hamiltonian or equivalently Lagrangian
can be di�erent under the combined CP transformation. In the spirit of the CPT
theorem, which is on a �rm footing, CP violation is equivalent to T violation.

To understand CP violation, people �rst checked the SM, which has been con-
�rmed as a very successful theoretical framework of modern physics. As discussed in
the thesis, CP violation can be allowed to arise in two ways:

1. the so�called �θ-term� which could have entered the QCD Lagrangian;

2. the complex weak phase(s) that are introduced in the CKM mechanism in a
natural manner when there are more than 2 quarks generations.

In the �rst way, we saw that even though such a mechanism could have been an
economical and even an ideal way to allow for CP violation, that nature somehow
rejected this option. The reason why this happens remains an open question to mod-
ern physics. In the second way, the nontrivial weak phase for 3 generations of quarks
(u, d), (c, s), (t, b) has been con�rmed. Due to the special CKM matrix structure,
which is largely correlated with the unexpected long lifetime of b quark, we discuss
that the CP-violating e�ects in B-mesons-relevant weak processes are expected to be
greatly enhanced in other cases, and the B-factories, Belle and BaBar, have achieved
rich results. It turns out, however, that the CKM-induced CP violation is still not
su�cient to solve the BAU problem. This clearly reminds us that the SM is not
complete, people are seeking for answers in theories that are beyond the SM, this is
also one of the main goals of modern physics.

There are many on�going searches for CP-violating signals. In this thesis, we
talked about several possible directions:

1. neutron EDM;

2. �D-term� and �R-term� in neutron radiative β decay;
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3. triple-product correlation in momenta.

The SM prediction that is based on the CKM mechanism states that the neutron
can possess a nontrivial EDM that is of O(10−33) e − cm, whereas current experi-
mental data reveals null result up to the order of O(10−26) e − cm. People are now
constructing an experiment to push the precision down to O(10−28) e− cm. We also
see that in both the neutron EDM and the �D-term�/�R-term� measurements, the
spin polarization plays an essential role. Yet the third direction that we are mainly
focusing on in this thesis has no dependence on neutron spin. We have demonstrated
that such a T-odd and P-odd correlation in terms of (le × k) · lν can arise from the
neutron and nuclear radiative β decay via three possible mechanisms:

1. the general parameterization of weak interaction Hamiltonian that was �rst pro-
posed by Lee and Yang [3];

2. the HHH-induced exotic contact coupling between the baryon current and the
weak charged current at su�ciently low energies [80] [81] [129];

3. a T-odd mimicking e�ect that arises from �nal-state interactions in the SM. As
has been emphasized before, unlike the �rst two cases which are generated by real
CP violating e�ects, the FSI-induced T-odd mimicking e�ect does not represent a
real CP violating e�ect.

We analyzed both of the two cases in detail, and showed that the Lee and Yang's
general parameterization leads to a possible triple-product correlation in momenta
only in recoil order, thus in the future experiments we are suggesting, such a con-
tribution should be relatively negligible in comparison with the FSI-induced T-odd
mimicking e�ect. We showed that the HHH-induced T-odd correlation is controlled
by the overall factor Im [(c5/M

2)gV ], and it serves as a new candidate in searching
for CP violation in theories beyond the SM. We also discussed a possible model that
could give rise to a nontrivial imaginary part of the exotic coupling c5 � via the pos-
sible hidden sector �ρ′� meson interaction. In the measurements of such a possible
T-odd, CP-violating correlation in the future experiments, we have to face the chal-
lenge of the FSI-induced T-odd mimicking e�ect, which behaves pretty much in the
same way as the HHH contribution but does not really signify a real CP violation.
Such a SM mimicking e�ect forms a baseline that calls for detailed investigation. We
have analyzed this e�ect in full detail up to recoil order e�ects. It has been shown
that the mimicking e�ect in neutron radiative β decay is only of O(10−4), which
leaves an optimal window to constrain Im [(c5/M

2)gV ). It has also been shown that
the mimicking e�ect is controlled by the overall factor �(1 − ρ2/3)(1 + ρ2)�, where
ρ =

√
3λ =

√
3gA/gV in the neutron case. This suggests that if in some nuclear

radiative β decay with ρ happens to be very close to
√

3, the FSI-induced mimick-
ing e�ect can be greatly suppressed, making a much better candidate for detecting
the HHH-induced CP violation. We show that in leading recoil order the nuclear
cases are very similar to the neutron case with only minor adjustments, and we have
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considered 6He, 19Ne, and 35Ar as examples.
Furthermore, in the currently on-going precision measurements on the neutron

radiative β decay at NIST, people are pushing the error down to the level of 1%.
Following the new upcoming record of precision, one is forced to consider more con-
tributions that previously have been ignored. In this thesis, we considered two major
corrections that can a�ect the numerical evaluations at the order of 1%. The �rst is
the �nal-state Coulomb corrections that arise from electromagnetic interactions be-
tween the charged decay products. In the neutron case, we found that such correction
has about a 3% contribution to the branching ratio. Second, as has been argued, the
contribution of two photon radiation in neutron and nuclear weak decay processes
can be important in the regions of phase space where the photons are of low energy
because the radiative decay rate is logarithmically enhanced in these regions and the
additional O(α) suppression does not guarantee a negligible contribution. Currently
the analysis of neutron radiative β decay at NIST has not taken this contribution
into account. We have analyzed its behavior and impact, hoping that this can be
helpful to the experimentalists in improving data analysis.

10.2 Outlook

In the whole thesis our numerical evaluations have centered around the T-odd correla-
tions associated with radiative weak processes, particularly those due to the charged
electroweak currents induced by the exchange of W± gauge bosons, which gives rise
to neutron and nuclear β decay. In fact, the potential exotic interactions contained
in Eq. (6.10) are very rich. There are many other possible channels that are worth
investigating. Taking another look at the chiral Lagrangian in Eq. (6.10), we see that
inserting the external source terms V ′µ and Aµ de�ned in Eq. (6.12) and Eq. (6.13) and

carefully taking care of the (anti)commutations in L(3), there are also exotic couplings
among nucleons, the photon, and the Z0 boson or pions. The neutral current pieces
arise from the c

(3)
4 -related terms and the charged current pieces arise from the c

(3)
5 -

related terms. The phenomenological coupling constants c
(3)
4 and c

(3)
5 are supposed to

be of the same order. For example, in keeping the leading order terms, we �nd the
exotic couplings:

L(3)
pnWγ ∼ c

(3)
5 iεµνρσp̄γσnWµFνρ, (10.1)

L(3)

pZ0γ ∼ c
(3)
4 iεµνρσp̄γσpZ

0
µFνρ, (10.2)

L(3)

pπ0γ ∼ c
(3)
4 iεµνρσp̄γσp∂µπ

0Fνρ. (10.3)

We have discussed some of the applications of Eq. (10.1) in neutron radiative β decay.
In fact one can also apply such an e�ective low energy coupling to Eq. (10.1) in the
muon radiative capture process: µ−+ p→ n+γ+ νµ, which has been investigated in
next leading order in heavy-baryon ChPT [181]. In comparing with the experimental
result [182], we are expecting to be able to set a sharper constraint on the absolute size
of |c5| and possibly o�er an explanation for the observed di�erences in the ordinary
and radiative muon capture results. The exotic coupling given in Eq. (10.3) can
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be applied in the γ-proton scattering process: γ + p → π0 + p as well as γ + p →
π+ +π−+ p. Due to the special tensor structure that are proportional to εµνρσ, these
exotic interactions could also give rise to additonal parity-violating e�ects. From
the experience we have gained in neutron and nuclear radiative β decays, we know
that the T-odd, P-odd e�ects we have studied are generally proportional to the total
energy release. In the neutron and nuclear radiative β decays, the total energy release
in mainly determined by the parent and daughter particles mass di�erences, which is
out of our control. In collision processes, however, one is able to control the energies
of the incoming particles, thus one can hope to �nd larger signals of these T-odd,
P-odd interactions.

Copyright© Daheng He, 2013.
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Chapter A Intermediate Phase Space Integrals

This appendix is taken from [165]. The computation of the imaginary parts of the
loop diagrams requires an integration over the allowed phase space of the intermediate
momenta as �xed by the momenta of the �nal-state particles and energy-momentum
conservation. In this Appendix we report the integrals which appear in the diagrams
of Fig. 8.4 and label them as per the diagrams in that �gure. For diagrams with cuts
which yield Compton scattering from electrons our results can be compared to, and
agree with, those of Refs. [163] and [183]. In what follows we report the integrals which
arise from γ−e cuts: (1), (2), (5.1), and (6.2), and then the integrals which arise from
the cutting of electron and proton lines to generate physical ep → epγ scattering,
namely, (5.2) and (6.1), and ep → ep scattering, (6.3) and (8.2). The integrals
associated with the rest of the cuts in Fig. 8.4 are not given explicitly because they
do not contribute in leading order in the recoil expansion, as we note in the main
body of the text. Nevertheless, we note the relationships between these integrals
which appear in the largeMp limit in order to make the cancellations associated with
these terms transparent.

From diagram (1), de�ning P0e ≡ le + k, we have

J1 ≡
∫
d3l′e
2E ′e

d3k′

2ω′
δ(4)(l′e + k′ − P0e) ≡

∫
dργe

=
π

2

(
1− m2

e

P 2
0e

)
, (A.1)

as well as

Kµ
1 ≡

∫
dργek

′µ = a1P
µ
0e (A.2)

with

a1 =
π

4

(
1− m2

e

P 2
0e

)2

.

From diagram (2) we have

J2 ≡
∫
dργe

1

le · k′ =
π

2le · k log

(
P 2

0e

m2
e

)
. (A.3)

We apply the Passarino-Veltman reduction method to compute integrals which con-
tain additional powers of the intermediate momenta [167]. That is, writing

Kµ
2 =

∫
dργe

k′µ

le · k′ = a2l
µ
e + b2P

µ
0e , (A.4)

the values of a2 and b2 are �xed by the solution of the set of equations

J1 = a2m
2
e + b2le · P0e ,

le · kJ2 = a2le · P0e + b2P
2
0e .
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Moreover,

Lµν2 =

∫
dργe

k′µk′ ν

le · k′ = c2g
µν + d2l

µ
e l
ν
e + e2P

µ
0eP

ν
0e + f2(lµeP

ν
0e + P µ

0el
ν
e ) , (A.5)

where c2, d2, e2, and f2 are given by the solution of the set of equations

0 = 4c2 + d2m
2
e + e2P

2
0e + 2f2le · P0e ,

0 = c2 + d2m
2
e + f2le · P0e ,

a1 = e2le · P0e + f2m
2
e ,

le · kb2 = c2 + e2P
2
0e + f2le · P0e .

For integrals which depend on Mp we report their form in the large Mp limit for
subsequent use. Note that M rather than Mp appears in the limiting form because
the n−pmass di�erence itself is of higher order in the recoil expansion. From diagram
(5.1) we have

J5.1 =

∫
dργe

1

pp · k′ =
π

2I0e

log

(
pp · P0e + I0e

pp · P0e − I0e

)
, (A.6)

with I0e =
√

(pp · P0e)2 −M2
pP

2
0e, noting

J5.1 ∼ π

2M |k + le| log

(
Ee + ω + |k + le|
Ee + ω − |k + le|

)
(A.7)

as Mp →∞. In addition

Kµ
5.1 =

∫
dργe

k′µ

pp · k′ = a5.1p
µ
p + b5.1P

µ
0e , (A.8)

where a5.1 and b5.1 are given by the solution of the set of equations

J1 = a5.1M
2
p + b5.1pp · P0e ,

le · kJ5.1 = a5.1pp · P0e + b5.1P
2
0e .

In the large Mp limit b5.1 ∼ 1/M and a5.1 ∼ 1/M2. We postpone discussion of the
integrals from diagrams (5.2) and (6.1) to consider the integrals from the remaining
diagrams with Compton cuts. From diagram (6.2) we have

J6.2 =

∫
dργe

1

(le · k′)(pp · k′) =
π

2(le · k)Ie
log

(
pp · le + Ie
pp · le − Ie

)
, (A.9)

with Ie =
√

(pp · le)2 −M2
pm

2
e and

J6.2 ∼ π

2M |le|k · le log

(
Ee + |le|
Ee − |le|

)
. (A.10)
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as Mp →∞. In addition

Kµ
6.2 =

∫
dργe

k′µ

(le · k′)(pp · k′) = a6.2P
µ
0e + b6.2l

µ
e + c6.2p

µ
p , (A.11)

where a6.2, b6.2, and c6.2 are given by the solution to the set of equations

J2 = a6.2pp · P0e + b6.2pp · le + c6.2M
2
p ,

J5.1 = a6.2le · P0e + b6.2m
2
e + c6.2pp · le ,

le · kJ6.2 = a6.2P
2
0e + b6.2le · P0e + c6.2pp · P0e .

and in the large Mp limit a6.2, b6.2 ∼ 1/M and c6.2 ∼ 1/M2. Finally

Lµν6.2 =

∫
dργe

k′µk′ν

(le · k′)(pp · k′)
= d6.2g

µν + e6.2p
µ
pp

ν
p + f6.2l

µ
e l
ν
e + g6.2P

µ
0eP

ν
0e + h6.2(pµp l

ν
e + lµe p

ν
p)

+i6.2(pµpP
ν
0e + P µ

0ep
ν
p) + k6.2(lµeP

ν
0e + P µ

0el
ν
e ) , (A.12)

where the coe�cients which appear are given by the solution to set of the equations

4d6.2 + e6.2M
2
p + f6.2m

2
e + g6.2P

2
0e + 2h6.2pp · le + 2i6.2pp · P0e + 2k6.2le · P0e = 0 ,

d6.2 + f6.2m
2
e + h6.2pp · le + k6.2le · P0e = 0 ,

e6.2pp · le + h6.2m
2
e + i6.2le · P0e = a5.1 ,

g6.2le · P0e + i6.2pp · le + k6.2m
2
e = b5.1 ,

d6.2 + e6.2M
2
p + h6.2pp · le + i6.2pp · P0e = 0 ,

g6.2pp · P0e + i6.2M
2
p + k6.2pp · le = b2 ,

d6.2 + g6.2P
2
0e + i6.2pp · P0e + k6.2le · P0e = le · ka6.2 .

Note that the equations have been chosen to yield a self-consistent solution for the
six coe�cients.

The integrals associated with the γ−p cuts can be found if necessary by replacing
the intermediate momentum l′e by p

′
p as well as le by pp in the γ− e integrals we have

provided. Speci�cally we note

J3 ≡
∫
d3p′p
2E ′p

d3k′

2ω′
δ(4)(p′p + k′ − P0p) ≡

∫
dργp ,

where P0p ≡ pp + k, and

J4 =

∫
dργp

1

pp · k′ (A.13)

so that

J4 ∼ 1

Mω
J3 ∼ O

(
1

M2

)
(A.14)

as Mp →∞. Moreover,

J7.2 =

∫
dργp

1

le · k′ (A.15)
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and

Kµ
7.2 =

∫
dργp

k′µ

le · k′ = a7.2l
µ
e + b7.2p

µ
p , (A.16)

whereas

J8.3 =

∫
dργp

1

(le · k′)(pp · k′) (A.17)

and

Kµ
8.3 =

∫
dργp

k′µ

(le · k′)(pp · k′) = a8.3k
µ + b8.3l

µ
e + c8.3p

µ
p , (A.18)

so that

J8.3 ∼ 1

Mω
J7.2 ∼ O

(
1

M2

)
; a8.3 ∼ 0 +O

(
1

M3

)
,

b8.3 ∼ 1

Mω
a7.2 +O

(
1

M3

)
; c8.3 ∼ 1

Mω
b7.2 +O

(
1

M4

)
(A.19)

as Mp →∞.
The integrals in the remaining diagrams of Fig. 8.4 arise from cutting the electron

and proton lines to generate physical ep→ epγ or ep→ ep scattering. The interme-
diate phase space integrals in these cases are more complicated than those associated
with the Compton cuts; fortunately, closed-form expressions for the integrals in the
large Mp limit su�ce to leading order in the recoil expansion. With P0 ≡ pp + le + k,
we note for diagram (5.2)

I5.2 =

∫
d3l′e
2E ′e

d3p′p
2E ′p

δ(4)(l′e + p′p − P0) ≡
∫
dρepγ

=
π

2P 2
0

√
(P 2

0 −M2
p +m2

e)
2 − 4P 2

0m
2
e ∼

π

M

√
(Ee + ω)2 −m2

e (A.20)

as Mp →∞. Moreover,

J5.2 =

∫
dρepγ

1

(p′p − pp)2
(A.21)

and

J5.2 ∼ π

4M |le + k| log

(
m2
e + le · k − (Ee + ω)2 +

√
(Ee + ω)2 −m2

e |le + k|
m2
e + le · k − (Ee + ω)2 −√(Ee + ω)2 −m2

e |le + k|

)
(A.22)

as Mp →∞. In addition,

Kµ
5.2 =

∫
dρepγ

l′µe
(p′p − pp)2

= a5.2P
µ
0e + c5.2p

µ
p , (A.23)

where a5.2 and c5.2 are given by the solution to

(m2
e + le · k)J5.2 − I5.2

2
= a5.2P

2
0e + c5.2pp · P0e ,

pp · P0eJ5.2 +
1

2
I5.2 = a5.2pp · P0e + c5.2M

2
p ,
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so that in the large Mp limit a5.2 ∼ 1/M and c5.2 ∼ 1/M2. Turning to the integrals
from diagram (6.1) we have

I6.1 =

∫
dρepγ

1

(l′e · k)
, (A.24)

so that as Mp →∞

I6.1 ∼ π

2Mω
log

(
Ee + ω +

√
(Ee + ω)2 −m2

e

Ee + ω −√(Ee + ω)2 −m2
e

)
, (A.25)

as well as

I ′6.1 =

∫
dρepγ

(p′p − pp)2

(l′e · k)
, (A.26)

where as Mp →∞

I ′6.1 ∼ 2(m2
e + le · k)I6.1 − 2I5.2 − 2Ĩ6.1 (A.27)

with

Ĩ6.1 =
πk · le
Mω2

(√
(Ee + ω)2 −m2

e +

(Ee + ω)k · le
2k · le log

(
Ee + ω +

√
(Ee + ω)2 −m2

e

Ee + ω −√(Ee + ω)2 −m2
e

))
. (A.28)

Moreover,

J6.1 =

∫
dρepγ

1

(l′e · k)(pp − p′p)2
, (A.29)

so that as Mp →∞

J6.1 ∼ π

4M |le|k · le

(
log

(
A+

A−

)
− log

(
B+

B−

))
, (A.30)

where
A± = m2

e + le · k − (Ee + ω)2 ± |le + k|
√

(Ee + ω)2 −m2
e (A.31)

and

B± = |le|2(le · k)2 − (ω2m2
e − Eeω(le · k)

)
A±

+|le|(le · k)
(

(Ee + ω)ω|le + k| ∓ (ω2 + le · k)
√

(Ee + ω)2 −m2
e

)
(A.32)

In addition,

Kµ
6.1 =

∫
dρepγ

l′µe
(l′e · k)(pp − p′p)2

= a6.1l
µ
e + b6.1k

µ + c6.1p
µ
p , (A.33)
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where the undetermined coe�cients are �xed by the solution to

J5.2 = a6.1le · k + c6.1pp · k ,
(m2

e + le · k)J6.1 − I6.1

2
= a6.1(m2

e + le · k) + b6.1le · k + c6.1pp · P0e ,

pp · P0eJ6.1 = a6.1pp · le + b6.1pp · k + c6.1M
2
p ,

so that in the large Mp limit a6.1, b6.1 ∼ 1/M and c6.1 ∼ 1/M2. Also

Lµν6.1 =

∫
dρepγ

l′µe l
′ν
e

(l′e · k)(pp − p′p)2
= d6.1g

µν + e6.1p
µ
pp

ν
p + f6.1l

µ
e l
ν
e + g6.1k

µkν

+h6.1(pµp l
ν
e + lµe p

ν
p) + i6.1(pµpk

ν + kµpνp) + k6.1(lµe k
ν + kµlνe ) ,

where the undetermined coe�cients are �xed by the solution to

4d6.1 + e6.1M
2
p + f6.1m

2
e + 2h6.1pp · le + 2i6.1pp · k + 2k6.1le · k = m2

eJ6.1 ,

d6.1 + e6.1M
2
p + h6.1pp · le + i6.1pp · k = pp · P0ec6.1 ,

g6.1pp · k + i6.1M
2
p + k6.1pp · le = pp · P0eb6.1 ,

f6.1pp · le + h6.1M
2
p + k6.1pp · k = pp · P0ea6.1 ,

e6.1pp · k + h6.1le · k = c5.2 ,

f6.1le · k + h6.1pp · k = a5.2 ,

d6.1P
2
0e + e6.1(pp · P0e)

2 + f6.1(le · P0e)
2 + g6.1(le · k)2 + 2h6.1pp · P0ele · P0e

+2i6.1pp · P0ele · k + 2k6.1le · P0ele · k = (m2
e + le · k)2J6.1 − (m2

e + le · k)I6.1 +

I ′6.1
4
.

For the remaining e− p− γ cuts we have

J7.1 =

∫
dρepγ

1

(l′e − le)2
∼ O

(
1

M

)
(A.34)

and

Kµ
7.1 =

∫
dρepγ

l′µe
(l′e − le)2

= a7.1l
µ
e + b7.1p

µ
p , (A.35)

whereas

J8.1 =

∫
dρep

1

(p′p · k)(l′e − le)2
(A.36)

and

Kµ
8.1 =

∫
dρep

l′µe
(p′p · k)(l′e − le)2

= a8.1l
µ
e + b8.1k

µ + c8.1p
µ
p , (A.37)

so that

J8.1 ∼ 1

Mω
J7.1 ∼ O

(
1

M2

)
; b8.1 ∼ 0 +O

(
1

M3

)
,

a8.1 ∼ 1

Mω
a7.1 +O

(
1

M3

)
; c8.1 ∼ 1

Mω
b7.1 +O

(
1

M4

)
(A.38)
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as Mp →∞.
The integrals for the e − p cuts follow from those we have just analyzed under

the replacement of P0 with P̃0 ≡ le + pp. In this case, however, there is an added
complication because the integrals become infrared divergent when p′p = pp. This
divergence cancels once we construct an observable quantity; nevertheless, we regulate
the integrals as they stand by adding a �ctitious photon mass m2

γ � this will allow
us to track the infrared divergences through the course of the calculation, so that we
can demonstrate the divergence cancellation manifestly. In what follows we set m2

γ

to zero in all terms which are �nite in the m2
γ → 0 limit. We have

I8.2 =

∫
d3l′e
2E ′e

d3p′p
2E ′p

δ(4)(l′e + p′p − P̃0) ≡
∫
dρep

∼ π|le|
M

(A.39)

as Mp →∞. In addition,

J8.2 =

∫
dρep

1

p′p · k
1

(p′p − pp)2 −m2
γ

(A.40)

∼ π

4|le|ωM2
log

(
m2
γ

4|le|2
)

asMp →∞. Thus we see that J8.2 vanishes in this limit save for the infrared divergent
piece, which we de�ne as Jdiv

8.2 . In addition,

Kµ
8.2 =

∫
dρep

1

p′p · k
l′µe

(p′p − pp)2 −m2
γ

= a8.2l
µ
e + b8.2k

µ + c8.2p
µ
p . (A.41)

The coe�cients are given by the solution to

m2
eJ8.2 − 1

2
Ĩ8.2 = a8.2m

2
e + b8.2le · k + c8.2pp · le ,

pp · leJ8.2 +
1

2
Ĩ8.2 = a8.2pp · le + b8.2pp · k + c8.2M

2
p ,

(le + pp) · kJ8.2 − I ′8.2 = a8.2le · k + c8.2pp · k ,
where

Ĩ8.2 =

∫
dρep

1

p′p · k
; I ′8.2 =

∫
dρep

1

(p′p − pp)2 −m2
γ

. (A.42)

In the large Mp limit we note that

Kµ
8.2 ∼

1

Mω
I ′8.2 (A.43)

so that b8.2 ∼ 0, and we need only solve

m2
eJ8.2 − I8.2

2Mω
= a8.2m

2
e + c8.2MEe ,

EeJ8.2 = a8.2Ee + c8.2M (A.44)
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to determine the leading-order expressions for a8.2 and c8.2. We can track the infrared
divergence in J8.2 in a8.2 and c8.2 by solving these equations with I8.2 = 0 and J8.2 =
Jdiv

8.2 , which yields adiv
8.2 ∼ Jdiv

8.2 and cdiv
8.2 ∼ 0 in leading order.

The integrals from diagram (6.3) are

I6.3 =

∫
dρep

1

(l′e · k)
(A.45)

∼ π

2ωM
log

(
Ee + |le|
Ee − |le|

)
as Mp →∞ and

I ′6.3 =

∫
dρep

(p′p − pp)2

(l′e · k)
(A.46)

∼ 2m2
eI6.3 − 2Ĩ6.3

with

Ĩ6.3 ∼ π

2Mω

(
(E2

e − Ee|le| cos θe) log

(
Ee + |le|
Ee − |le|

)
+ 2|le|2 cos θe

)
(A.47)

as Mp →∞. We de�ne k · le ≡ |k||le| cos θe. Moreover,

J6.3 =

∫
dρep

1

(l′e · k)

1

(pp − p′p)2 −m2
γ

(A.48)

∼ π

4|le|(le · k)M

(
log

m2
γ

4|le|2 + log
m2
eω

2

(le · k)2

)
asMp →∞. In this case we see that J6.3 has both infrared �nite and divergent pieces
in the Mp →∞ limit � the latter we de�ne as Jdiv

6.3 . Finally

Kµ
6.3 =

∫
dρep

1

(l′e · k)

l′µe
(pp − p′p)2 −m2

γ

= a6.3l
µ
e + b6.3k

µ + c6.3p
µ
p , (A.49)

where the undetermined coe�cients are �xed by the solution to

pp · kJ8.2 = a6.3le · k + c6.3pp · k ,
m2
eJ6.3 − I6.3

2
= a6.3m

2
e + b6.3le · k + c6.3pp · le ,

pp · leJ6.3 = a6.3pp · le + b6.3pp · k + c6.3M
2
p .

Also

Lµν6.3 =

∫
dρep

1

(l′e · k)

l′µe l
′ν
e

(pp − p′p)2 −m2
γ

= d6.3g
µν + e6.3p

µ
pp

ν
p + f6.3l

µ
e l
ν
e + g6.3k

µkν

+h6.3(pµp l
ν
e + lµe p

ν
p) + i6.3(pµpk

ν + kµpνp) + k6.3(lµe k
ν + kµlνe ) ,
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where the undetermined coe�cients are �xed by the solution to

4d6.3 + e6.3M
2
p + f6.3m

2
e + 2h6.3pp · le + 2i6.3pp · k + 2k6.3le · k = m2

eJ6.3 ,

d6.3 + e6.3M
2
p + h6.3pp · le + i6.3pp · k = pp · lec6.3 ,

g6.3pp · k + i6.3M
2
p + k6.3pp · le = pp · leb6.3 ,

f6.3pp · le + h6.3M
2
p + k6.3pp · k = pp · lea6.3 ,

e6.3pp · k + h6.3le · k = pp · kc8.2 ,

f6.3le · k + h6.3pp · k = pp · ka8.2 ,

d6.3m
2
e + e6.3(pp · le)2 + f6.3m

4
e + g6.3(le · k)2 + 2h6.3pp · lem2

e + 2i6.3pp · lele · k
+2k6.3m

2
ele · k = m4

eJ6.3 −m2
eI6.3 +

I ′6.3
4
.

We can track the infrared divergence in J6.3 in the solutions for the vector and
tensor coe�cients by solving the equations in the large Mp limit with I6.3 ∼ I ′6.3 ∼ 0
and J6.3 ∼ Jdiv

6.3 , with a8.2 ∼ adiv
8.2 , which yields adiv

6.3 ∼ fdiv
6.3 ∼ Jdiv

6.3 with all other
coe�cients zero in this limit.

Copyright© Daheng He, 2013.
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Chapter B FORM Code for the Calculation of |Mγγ|2

Off S t a t i s t i c s ;
Vectors P, Le , Lv , K, K1, K2, K0 ;
Symbols M, Mt, Me, Ee , Ek , Ek1 , Ek2 , Ev , lambda ,

K0denominator , K0denominator2 , int01 , int02 , int11 , int12 ,
int21 , int22 , Pi ;

I nd i c e s mu, nu , rho , de l ta , alpha , beta ;

***************************************************************

*This box i s to c a l c u l a t e the nRDK with double−photon
emis s ion .

*−−−−−−−−−−−−−−−−−−−−−−−−
* eeee terms :
Local [ Meeee11 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1

)+Me ) /( 2*Le .K1 ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_
(1 , nu) *( g_(1 , Le )+g_(1 ,K1)+Me ) /( 2*Le .K1 ) *g_(1 ,mu) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) ;

Local [ Meeee12 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1
)+Me ) /( 2*Le .K1 ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_
(1 ,mu) *( g_(1 , Le )+g_(1 ,K2)+Me ) /( 2*Le .K2 ) *g_(1 , nu ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) ;

Local [ Meeee21 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_
(1 , nu) *( g_(1 , Le )+g_(1 ,K1)+Me ) /( 2*Le .K1 ) *g_(1 ,mu) *
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( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) ;

Local [ Meeee22 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_
(1 ,mu) *( g_(1 , Le )+g_(1 ,K2)+Me ) /( 2*Le .K2 ) *g_(1 , nu ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) ;

Local [ Meeee ] = ( [ Meeee11 ] + [ Meeee12 ] + [ Meeee21 ] + [
Meeee22 ] ) *K0denominator2 /4 ;

*−−−−−−−−−−−−−−−−−−−−−−−−
* eeep terms :
Local [ Meeep11 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1

)+Me ) /( 2*Le .K1 ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K1)+Me ) *g_
(1 ,mu) /( 2*Le .K1 ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) *P(nu) /(P.K2) ;

Local [ Meeep12 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1
)+Me ) /( 2*Le .K1 ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K2)+Me ) *g_
(1 , nu) /( 2*Le .K2 ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) *P(mu) /(P.K1) ;

Local [ Meeep21 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K1)+Me ) *g_
(1 ,mu) /( 2*Le .K1 ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) *P(nu) /(P.K2) ;
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Local [ Meeep22 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K2)+Me ) *g_
(1 , nu) /( 2*Le .K2 ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) *P(mu) /(P.K1) ;

Local [ Meeep ] = ( [ Meeep11 ] + [ Meeep12 ] + [ Meeep21 ] + [
Meeep22 ] ) *K0denominator /4 ;

*−−−−−−−−−−−−−−−−−−−−−−−−
*eepp terms :
Local [ Meepp11 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1

)+Me ) /( 2*Le .K1 ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(

1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /(
2*P.K0 ) *g_(2 , nu ) *P(mu) /(P.K1) ;

Local [ Meepp12 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1
)+Me ) /( 2*Le .K1 ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(

1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /(
2*P.K0 ) *g_(2 ,mu) *P(nu) /(P.K2) ;

Local [ Meepp21 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(

1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /(
2*P.K0 ) *g_(2 , nu ) *P(mu) /(P.K1) ;

Local [ Meepp22 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K0)+Me ) *g_(1 ,
rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
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( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /(
2*P.K0 ) *g_(2 ,mu) *P(nu) /(P.K2) ;

Local [Meepp ] = ( [ Meepp11 ] + [Meepp12 ] + [Meepp21 ] + [
Meepp22 ] ) *K0denominator /4 ;

*−−−−−−−−−−−−−−−−−−−−−−−−
*epep terms :
Local [ Mepep11 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1

)+Me ) /( 2*Le .K1 ) *g_(1 , rho ) *( 1−g5_(1) ) *
g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K1)+Me ) *g_

(1 ,mu) /( 2*Le .K1 ) *
( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(

1+lambda*g5_(2) ) *g_(2 , d e l t a ) *P(nu) /(P.K2) *P(nu) /(P.K2) ;

Local [ Mepep12 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1
)+Me ) /( 2*Le .K1 ) *g_(1 , rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K2)+Me ) *g_
(1 , nu) /( 2*Le .K2 ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) *P(nu) /(P.K2) *P(mu) /(P.K1) ;

Local [ Mepep21 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 , rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K1)+Me ) *g_
(1 ,mu) /( 2*Le .K1 ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) *P(mu) /(P.K1) *P(nu) /(P.K2) ;

Local [ Mepep22 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 , rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *( g_(1 , Le )+g_(1 ,K2)+Me ) *g_
(1 , nu) /( 2*Le .K2 ) *

( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(
1+lambda*g5_(2) ) *g_(2 , d e l t a ) *P(mu) /(P.K1) *P(mu) /(P.K1) ;

Local [Mepep ] = ( [ Mepep11 ] + [Mepep12 ] + [Mepep21 ] + [
Mepep22 ] ) /4 ;
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*−−−−−−−−−−−−−−−−−−−−−−−−
*eppp terms :
Local [Meppp11 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1

)+Me ) /( 2*Le .K1 ) *g_(1 , rho ) *( 1−g5_(1) ) *
g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(

1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /(
2*P.K0 ) *g_(2 , nu ) *P(nu) /(P.K2) *P(mu) /(P.K1) ;

Local [Meppp12 ] = ( g_(1 , Le )+Me ) *g_(1 ,mu) *( g_(1 , Le )+g_(1 ,K1
)+Me ) /( 2*Le .K1 ) *g_(1 , rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(

1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /(
2*P.K0 ) *g_(2 ,mu) *P(nu) /(P.K2) *P(nu) /(P.K2) ;

Local [Meppp21 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 , rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(

1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /(
2*P.K0 ) *g_(2 , nu ) *P(mu) /(P.K1) *P(mu) /(P.K1) ;

Local [Meppp22 ] = ( g_(1 , Le )+Me ) *g_(1 , nu ) *( g_(1 , Le )+g_(1 ,K2
)+Me ) /( 2*Le .K2 ) *g_(1 , rho ) *( 1−g5_(1) ) *

g_(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
( g_(2 ,P)+M ) *g_(2 , rho ) *( 1−lambda*g5_(2) ) *( g_(2 ,P)+M ) *(

1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /(
2*P.K0 ) *g_(2 ,mu) *P(mu) /(P.K1) *P(nu) /(P.K2) ;

Local [Meppp ] = ( [Meppp11 ] + [Meppp12 ] + [Meppp21 ] + [
Meppp22 ] ) /4 ;

*−−−−−−−−−−−−−−−−−−−−−−−−
*pppp terms :
Local [Mpppp11 ] = ( g_(1 , Le )+Me ) *g_(1 , rho ) *( 1−g5_(1) ) *g_

(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *
( g_(2 ,P)+M ) *g_(2 , nu ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /( 2*P.K0 ) *g_

(2 , rho ) *( 1−lambda*g5_(2) ) *
( g_(2 ,P)+M ) *( 1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,

K0)*0+M ) /( 2*P.K0 ) *g_(2 , nu ) *P(mu) /(P.K1) *P(mu) /(P.K1) ;
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Local [Mpppp12 ] = ( g_(1 , Le )+Me ) *g_(1 , rho ) *( 1−g5_(1) ) *g_
(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *

( g_(2 ,P)+M ) *g_(2 , nu ) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /( 2*P.K0 ) *g_
(2 , rho ) *( 1−lambda*g5_(2) ) *

( g_(2 ,P)+M ) *( 1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,
K0)*0+M ) /( 2*P.K0 ) *g_(2 ,mu) *P(mu) /(P.K1) *P(nu) /(P.K2) ;

Local [Mpppp21 ] = ( g_(1 , Le )+Me ) *g_(1 , rho ) *( 1−g5_(1) ) *g_
(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *

( g_(2 ,P)+M ) *g_(2 ,mu) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /( 2*P.K0 ) *g_
(2 , rho ) *( 1−lambda*g5_(2) ) *

( g_(2 ,P)+M ) *( 1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,
K0)*0+M ) /( 2*P.K0 ) *g_(2 , nu ) *P(nu) /(P.K2) *P(mu) /(P.K1) ;

Local [Mpppp22 ] = ( g_(1 , Le )+Me ) *g_(1 , rho ) *( 1−g5_(1) ) *g_
(1 ,Lv) *( 1+g5_(1) ) *g_(1 , d e l t a ) *

( g_(2 ,P)+M ) *g_(2 ,mu) *( g_(2 ,P)+g_(2 ,K0)*0+M ) /( 2*P.K0 ) *g_
(2 , rho ) *( 1−lambda*g5_(2) ) *

( g_(2 ,P)+M ) *( 1+lambda*g5_(2) ) *g_(2 , d e l t a ) *( g_(2 ,P)+g_(2 ,
K0)*0+M ) /( 2*P.K0 ) *g_(2 ,mu) *P(nu) /(P.K2) *P(nu) /(P.K2) ;

Local [Mpppp ] = ( [Mpppp11 ] + [Mpppp12 ] + [Mpppp21 ] + [
Mpppp22 ] ) /4 ;

*−−−−−−−−−−−−−−−−−−−−−−−−
*Now sum up a l l the components above and take t r a c e :
Local [M_2gamma] = [ Meeee ] − 2* [Meeep ] + 2* [Meepp ] + [Mepep ]
− 2* [Meppp ] + [Mpppp ] ;

Trace4 , 1 ;
Trace4 , 2 ;

id K0=K1+K2 ;
id K1 .K1=0;
id K2 .K2=0;
id Le . Le=Me^2;
id P.P=M^2;
id P.K1=M*Ek1 ;
id P.K2=M*Ek2 ;
id P. Le=M*Ee ;
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id P. Lv=M*Ev ;
id P.K1^−1=M^(−1)*Ek1^(−1) ;
id P.K2^−1=M^(−1)*Ek2^(−1) ;
id P.K0^−1=M^(−1)*(Ek1+Ek2)^(−1) ;

*−−−−−−−−−−−
* t h i s sub box i s to p r ep roc e s s some i n t e g r a t i o n s over Lv and

the phi ang le o f K2 .
id Le . Lv=Ee*Ev ;
id Lv .K1=Ev*Ek1 ;
id Lv .K2=Ev*Ek2 ;
id Lv .K=Ev*Ek ;

*−−−−−−−−−−−

. s o r t

***************************************************************

id e_(mu? ,nu? , rho ? , d e l t a ?)=0;

Bracket e_ ,M;
Format 140 ;
Pr int [M_2gamma ] ;
. end
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