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Abstract

Whilst reviewing work on the ID performance for the Technical Proposal (TP), George
Trilling pointed out:

� The impact parameter resolution cannot be trivially parameterised as �(d0) = A�B=p.

� The resolutions in x-y and r-z should be the same in the limit that multiple-scattering
(MS) dominates, ie. as p! 0.

I have considered this numerically and present some results to illustrate the above. This study
is largely academic, although there is a clear warning to take care in obtaining numerical
estimates of the parameter B.

Having never thought about these things before, the results of all of this were a mild
surprise to me. I apologise to all those who already knew these things, or who know where
they are written up. I hope for some people, this work will be illuminating.

1 Introduction

The numbers presented in this note are not intended to provide de�nitive estimates of impact parameter
resolutions for Atlas. The numbers depend on the input parameters and the assumptions which are
made about systematic errors. I have considered tracks with j�j = 0 - however, the angular dependence
is well understood (see Atlas TP). I have assumed that detectors measure r� and z independently, and
so the rotation of the error-ellipses of the stereo SCT strips is ignored.

Detector Radii (cm) �(r�) (�m) �(z) (�m) X0 (%)

Beam-pipe 2.5 0.3
Pixels 4, 11.5, 16.5 14 87 1.1
Stereo strips 30, 40, 50, 60 16 550 1.6

Table 1: Barrel layers with total coordinate errors.
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A particle moving in a uniform magnetic �eld in the absence of MS is described by a helix. For high
momentum, the helix approximates to a parabola in the bending plane (x-y):

r� = �d0 + �0r+
1

2R
r2 (1)

and a straight line in r-z:
z = z0 + tan� r (2)

The de�nition of the helix parameters is as follows:
R�1 Inverse radius of curvature, proportional to p�1T .
�0 Direction of track in x-y at point of closest approach.
tan� Tangent of dip-angle.
d0 Impact parameter, de�ned as distance of closest approach to the beam-line.

Sign is positive if track has positive angular-momentum around beam-line.
z0 z `impact parameter', de�ned as the value of z at point on track where d0 is evaluated.

When particles cross material at normal incidence (j�j = 0) and the measurement errors are
independent in r� and z, then the measurements of the parabola and line are independent. These
approximations are used throughout for illustration, even when the limit of high momentum is far from
attained.

2 Analytical Approach

To start, let us consider the impact parameter �tted in r-z, ie. z0. Consider a set of measurements on
n planes f(ri; zi); i = 1; ng with an error matrix V = V0+Vms where V0 are the measurement errors, which
are uncorrelated plane to plane (hence V0 is diagonal), and Vms are the MS terms, which are proportional
to 1=p2 (at least in the high momentum limit) and which do contain correlations between planes.

We can form a chi-squared:

�2 =
nX
ij

(zi � ẑ(ri))Iij(zj � ẑ(rj)) (3)

where I = V �1 and ẑ(r) is the function of r given by Equation 2 which predicts the helix position at
radius r.

If ẑ is a function of parameters fp�g, then the inverse error matrix for these parameters is given by
@2�2=@p�@p�. For a polynomial �t, ẑ(ri) =

P
� p�r

�
i - in this case, p0 = z0 and p1 = tan�. The inverse

error matrix is

EM�1 =

 Pn

ij Iij
Pn

ij riIijPn

ij rjIij
Pn

ij rirjIij

!
(4)

Inverting this matrix gives the resolution of z0:

�(z0)
2 =

P
rirjIijP

Iij �
P
rirjIij � (

P
riIij)2

(5)

This can be found in the Particle Data Book (PDB) and other statistics books.

Two measuring planes

If we now consider just two measuring planes, ie. n = 2, it can be shown that

�(z0)
2 =

r2
1
I11 + r2

2
I22 + 2r1r2I12

(r1 � r2)2(I11I22 � I212)
(6)
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We recognise I11I22 � I2
12

as the determinant of I , and the terms like Iij= det(I) are nothing more than
the elements of the inverse matrix of I , ie. V . This yields:

�(z0)
2 =

r2
1
V22 + r2

2
V11 � 2r1r2V12

(r1 � r2)2
(7)

From Equation 7 we see that for two measuring planes (and an inde�nite number of scattering planes),
the resolution on the impact parameter does actually reduce to the quadratic sum of the form A�B=p.

Figure 1: Measuring the impact parameter z0 with two planes.

The case of two planes can be treated more intuitively using the illustration of Figure 1. By geometry,
z0 is given by

z0 =
r1z2 � r2z1

r1 � r2
(8)

This leads to a resolution which is exactly the same as given by Equation 7. If the only MS occurs at the
measuring planes, then there is no correlation between z1 and z2 and the only relevant MS comes from
the scattering on plane 1. The displacement of the measurement z2 from MS is (r2 � r1) 1 and  1 has
an rms �1=p, for which an expression is given in the PDB. If the intrinsic measurement errors are �1;2,
then the resolution on z0 is given by:

�(z0)
2 =

r2
1
(�2

2
+ (r2 � r1)

2�2
1
=p2) + r2

2
�2
1

(r1 � r2)2
=
r2
1
�2
2
+ r2

2
�2
1

(r1 � r2)2
+ (

r1�1

p
)2 (9)

It is obvious that this expression represents the sum of terms arising from the extrapolation to r = 0 and
the MS de
ection at r = r1.

n measuring planes

With n planes, I is an n� n matrix. If we were to hope for the same kind of reduction of Equation 5 as
was seen for 2 planes, then we would need to identify the determinant of I in the denominator. det(I) is
of the order of In yet the denominator is only of the order of I2. So it seems implausible that in general
one will �nd the elements of I�1 = V = V0+Vms appearing to power one in the nominator of Equation 5.
Hence the impact parameter will not reduce to the quadratic sum in general.

3



If one explicitly attempts to write down the expression for n = 3 (as George Trilling has done), then
one soon ends up with a complicated expression. In general, the form of �(z0)

2 will be the ratio of two
polynomials in p�2, the numerator of order 2n� 1, the denominator of order 2n� 2. This will approach
the form A2 + B2=p2 only in the limit p�1 !1.

Parabolic �t

For a parabolic �t (allowing for magnetic bending) to obtain �(d0), the expressions get even more messy.
The matrix in Equation 4 becomes

EM�1 =

0
B@
Pn

ij Iij
Pn

ij riIij
Pn

ij r
2

i IijPn

ij rjIij
Pn

ij rirjIij
Pn

ij r
2

i rjIijPn

ij r
2

jIij
Pn

ij rir
2

jIij
Pn

ij r
2

i r
2

jIij

1
CA (10)

The equation corresponding to Equation 5 becomes even more complicated and in general there is no
simple reduction.

Comparison between x-y and r-z

The resolutions of d0 and z0 will typically be quite di�erent due to the big di�erence in precision between
r� and z measurements in the proposed Atlas ID layouts. As p�1 ! 1, so MS dominates and the
error matrices in the two projections both tend to the same form, ie. Vms - for normal incidence, there is
no distinction between the projections, the MS is `isotropic'. Nevertheless, the resolution derived for d0
from Equation 10 will be di�erent from that derived from Equation 4 for z0, even though the terms Iij
are the same. However, it is clear that despite the low momentum, provided that the curvature is not to
signi�cant and that the most important measuring planes are the �rst two (all but the �rst plane having
relatively large radii and radiation lengths), then the situation will approximate to that illustrated in
Figure 1 and that the resolutions of d0 and z0 will be similar.

A special case

The way in which the determinant of I can be identi�ed in the denominator of Equation 5 appears rather

ukey. George Trilling pointed out to me that there is a good reason for this. If a �t is made to n
measurements to obtain n parameters (as in the example of a linear �t with two measuring planes, or a
parabolic �t with three planes), then the solution is exactly determined, and the parameters fp�; � = 1; ng
can be determined from the n simultaneous equations: zi =

P
p�r

�
i . The values of p� which are obtained

are linear combinations of the measurements zi and do not involve the measurement errors. Hence the
covariance matrix cov(p�; p�) will be a linear combination of terms of the error matrix V = V0 + Vms,
and so the quadratic separation of the intrinsic and MS terms occurs.

In the more likely (and desirable) situation that the �t is overdetermined, then the measurements
are weighted by expressions involving the elements of the error matrix V . This brings about the more
complex functional dependence on the MS.

3 Numerical Approach

To investigate the expressions for �(d0) and �(z0) more fully, I have written a program to obtain the
error matrix components contained in Equations 4 and 10. In doing this, there are several approximations
which apply equally to the analytic approach of the previous section:

� The approximations outlined in the Introduction are used.
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� The particles are not tracked through the detector, so no check is made as to whether a track
actually crosses a detector plane, and if so, at what angle.

� The dependence of Vms / p�2 on the �tted parameter R�1 / p�1T is ignored (to avoid the
pathological solution of p = 0 providing the minimal chi-squared).

� The TRT has not been included; if it is, the improvement on �(d0) is O(10%).

In some of the plots, values of the resolutions are given for momenta which are far to small to be
measured. This is done for illustration.

The form of �(z0) and �(d0)

In Figure 2, the values of �(z0) are shown as points for di�erent values of p. The curves correspond to
the expression A � B=p, where A is obtained from values of �(z0) at large p and B is chosen so that
the curve �ts the resolutions at the speci�ed momenta. If the parameters are chosen to �t the curve in
the asymptotic regions as p ! 0 and as p ! 1, then it underestimates the resolution in the region of
low (but plausible) momenta O(1) GeV. Nevertheless, the discrepancies between the resolutions and the
parameterisations are � O(10%). If B is derived from �(z0) at p = 1 GeV, then the parameterisation
provides a reasonable description over the interesting range. However, if the resolution at p = 3 GeV is
used, then the parameterisation signi�cantly overestimates �(z0) for p � 1 GeV. Similar remarks can be
made for �(d0) shown in Figure 3. Table 2 shows the values of B derived1 for di�erent values of p. This
variation is considered further in Figure 6. Comparison is made with the numbers corresponding to the
Binary Pixel readout option of the TP using 15 �m precision rather than 14 �m.

Resolution This work TP
A �B=p A B A B

p = 0 p = 1 p = 3

�(z0) 87 49 85 110 84 130

�(d0) 16 51 54 67 18 61

Table 2: Parameterisation of impact parameter resolutions.

Comparison between impact parameters in two projections

In Figure 4, the resolutions for the impact parameters in x-y (hollow symbols) and r-z (�lled symbols) are
shown. At high momentum, the measurements of d0 are manifestly better since the intrinsic resolution
of the detectors is better in x-y. As p! 0, the resolutions are very similar for d0 and z0, however �(d0)
is slightly worse by about 4% due to the parabolic �t (this cannot be seen on the log scale). If a linear
�t is applied using the measurement errors provided in x-y, then the resolutions are slightly reduced and
at low p asymptotically approach those of z0.

Comparison between other helix parameters

In Figure 5, the relative variations of the helix parameter resolutions with momentum are shown. All
the resolutions approximately exhibit the behaviour: � = A � B=p. This can be tested by determining
A from the high momentum limit and then solving for B as was done earlier. The constancy of B as a
function of p shows how well the quadratic parameterisation works. This is shown in Figure 6.

1Namely: B = p
p
�2 �A2, where A is taken as the value of � as p!1.
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From Figure 5, it can be seen that as the momentum is reduced from large values, the MS `turns on'
more quickly for the parameters �tted in the x-y plane, because the MS errors become compatible with
the smaller r� measurement errors at larger values of p. This is even more the case for the determination
of the inverse radius of curvature R�1, since it relies heavily on the measurements at large radii which
are signi�cantly a�ected by the MS caused by all the material at smaller radii.

4 Conclusions

It is true that the resolutions of the impact parameters d0 and z0 are not perfectly described by expressions
of the form A�B=p. This can lead to big variations in the values of the parameter B depending on how
it is estimated. Consequently some parameterisations may provide poor descriptions of the resolutions.
If B can be determined from the resolutions at low momentum (p � 1 GeV), then the discrepancies
between the resolutions and the parameterisations are � O(10%). In practice, more signi�cant problems
in parameterising the resolutions are likely to arise from understanding the distribution of material and
non-Gaussian tails in the MS. The parameterisation is more accurate for the other helix parameters.

It is also true that the resolutions of d0 and z0 are (almost) the same in the MS limit. However,
this is only a good approximation for p � O(0.1) GeV. A transverse momentum of 0.1 GeV corresponds
to a radius of curvature of about 16 cm in a 2 T �eld. Such a track would cross the pixel layers
(r = 4; 11:5; 16:5 cm) but only graze the �rst stereo layer and many of the approximations made are no
longer valid.
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Figure 2: Impact parameter resolution �(z0) as a function of momentum.
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Figure 3: Impact parameter resolution �(d0) as a function of momentum.

Figure 4: Impact parameter resolution in x-y and r-z planes.
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Figure 5: Resolution of helix parameters relative to high momentum limit as a function of momentum.

Figure 6: Relative values of B in expression � = A � B=p for di�erent helix parameter resolutions as a
function of momentum.
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