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Abstract. Primordial black holes have important observational implications through Hawking
evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those
black holes may have formed in the early universe typically with the mass scale contained within
the Hubble horizon at the formation epoch and subsequently accreted the mass surrounding
them. Numerical relativity simulation shows that primordial black holes of different masses
do not accrete much, which contrasts with a simplistic Newtonian argument. Primordial black
holes larger than the cosmological horizon have non-standard global structure, suggesting that
they may have formed in inflationary cosmology.

1. Introduction
Primordial black holes (PBHs) may have formed in the early universe [1]. Those black holes may
contribute to current gamma-ray and cosmic ray backgrounds through Hawking evaporation.
They may also contribute to the cosmic density and behave as cold dark matter. They could
be a promising target for ground-based interferometric gravitational wave detectors [2, 3]. Thus
we can obtain information of the early universe. In particular, we can constrain the probability
of PBH formation in the early universe [4]. See [5] for a recent review of theoretical and
observational background and development in the studies of PBHs.

PBHs are usually assumed to have formed with the mass scale Mh,f � G−1c3tf which
was contained within the Hubble horizon at the formation epoch, where G, c and tf are the
gravitational constant, the light speed and the formation time from big bang, respectively.
This is based on the argument of the Jeans scale, gravitational radius and separate universe
condition [4, 6]. This picture was subsequently modified after the discovery of critical behaviour
in the formation of PBHs [7]. Nevertheless, the typical mass scale of the formed PBHs is still
the horizon mass scale at the formation epoch, i.e.,

MPBH,f � Mh,f �
c3tf
G

� 1M�

(
Tf

100 MeV

)−2

. (1)

2. Newtonian argument of PBH growth
The accretion onto a PBH could change the mass scale of PBHs in principle. If we assume
spherically symmetric and quasi-stationary flow onto a PBH and also neglects cosmological
expansion, we can estimate the mass accretion rate of the black hole as

dM

dt
= 4παr2

Avsρ∞, (2)
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where rA = GM/v2
s is the accretion radius, vs is the sound speed, ρ∞ is the density at infinity

and α is a constant of order unity. To apply the above equation for the growth of PBHs in the
early universe, we assume that ρ∞ is given by the density of the background Friedmann universe
and vs is the order of the speed of light. Then the above equation is integrated to give [6, 8]

M =
At

1 + t
tf

(
Atf
Mf

− 1
) , (3)

where A � c3/G is a constant and Mf is the PBH mass at the time tf of formation. Figure 1 shows
three categories of solutions expressed by Eq. (3). In this argument, the effects of cosmological
expansion are neglected. Since such effects will be important only for the cosmological horizon
scale, the above analysis for PBHs much smaller than the cosmological horizon scale is expected
to be valid. On the other hand, for PBHs as large as or larger than the cosmological horizon,
which are naturally realised just after the formation, the above analysis is suspect.
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Figure 1. PBH mass growth based on the
Newtonian argument. Three categories of
solutions, sub-horizon, self-similar and super-
horizon, are shown.

3. Numerical relativity of PBH growth in a scalar field universe
Since the observation of cosmological acceleration at the present epoch, matter fields with huge
negative pressure have attracted much attention. One of the typical models is a scalar field
slowly rolling down on the slope of the potential, which is called quintessence. Recently, Bean
and Magueijo [9] applied a quasi-Newtonian argument for the accretion of a quintessence field
onto a PBH, which leads to solutions given by Eq. (3), and claimed that PBHs of inflation origin
could be the seeds for supermassive black holes.

To get insight into the growth of horizon-scale PBHs in the context of the quintessence/scalar
field cosmology, we implement fully general relativistic numerical simulation of the growth of
PBHs in a universe containing a massless scalar field. We solve the Einstein equation and the
equation for the scalar field. Since the system is inhomogeneous and dynamical, we solve these
equations numerically. The line element in spherically symmetric spacetimes is given by

ds2 = −a2(u, v)dudv + r2(u, v)(dθ2 + sin2 θdφ2), (4)

in the double-null coordinates and henceforth we use the geometrised units G = c = 1. The
equations in this coordinate system are given in [10] explicitly. For the present problem, this
scheme is advantageous because it has no apparent coordinate singularity and it also fits the
characteristics of the propagation of the scalar field. The details of the numerical scheme and
implementation are described in [10, 11].
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In the double null-formulation, it is most natural to provide initial data on the null
hypersurfaces u = u0 and v = v0 and solve a diamond region u0 < u < u1 and v0 < v < v1. As
for initial data we adopt the simplest model, in which the Schwarzschild region is surrounded
by the flat Friedmann background. To avoid the discontinuity at the matching surface, we set
the smoothing region to retain the numerical accuracy.

Since we have null infinity in the flat Friedmann spacetime, we can define an event horizon.
On the other hand, the notion of trapping horizons [12], which is very similar to apparent
horizons, is also useful. This is defined as a hypersurface foliated by marginal surfaces and
the definition is local. Although the event horizon and the trapping horizon coincide for the
Schwarzschild black hole, they are different from each other for general dynamical cases.

4. Numerical results
Here we present the results for three models. See [11, 13] for the details of the chosen parameter
values. We define the mass of the black hole using the Misner-Sharp mass [14] on the event
horizon. Figure 2 shows the time evolution of the PBH mass and the mass contained within
the cosmological apparent horizon denoted as ‘POTH’ as the abbreviation of the past outer
trapping horizon. We can see that sub-horizon PBHs do not accrete much, the accretion onto
horizon-scale PBHs is suppressed and super-horizon PBHs decrease their mass.
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Figure 2. The masses of the black hole
event horizon and the cosmological apparent
horizon as functions of v. The upper left,
upper right and lower left panels show the
results for the initial mass ratio of the PBH to
the cosmological apparent horizon to be 0.22,
0.97 and 2.12, respectively.

The evolution of PBHs of different masses is understood in terms of the mass accretion
equation [11, 13]:

mBHEH,v = −8πr2r,u(Ψ,v)2

a2
, (5)

where the right-hand side should be estimated on the event horizon. The sign of the mass growth
rate is governed by r,u on the event horizon. This corresponds to the expansion of ingoing null
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geodesic congruence on the event horizon. This is negative inside the cosmological horizon,
but zero on and positive outside it. Figure 3 schematically summarises the results of general
relativistic numerical simulations in contrast to Fig. 1.

For the models where the initial event horizon is past trapped, we can show that both first
outgoing null ray u = u0 and ingoing null ray v = v0 reach infinity. This means we have two
distinct null infinities and this results cannot be embedded into the standard diagram of the
PBH. This implies the inflationary origin of super-horizon PBHs.

5. Summary
The cosmic expansion is crucial for the growth of horizon-scale PBHs. The numerical relativity
of scalar field PBHs shows that the accretion onto a PBH is significantly suppressed when
the PBH is as large as the cosmological apparent horizon. The mass of super-horizon PBHs
decreases although it always swallows the scalar field. In any case, PBHs do not accrete very
much even during a scalar-field-dominated era. A complementary work is in preparation on
the non-existence of PBHs growing self-similarly in a universe containing a scalar field whether
massless or with a potential.
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Figure 3. Schematic figure showing the
mass growth of PBHs in a universe containing
a massless scalar field, based on general
relativistic numerical simulations.
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