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Abstract. Quantum metrology offers enhanced performance in experiments
on topics such as gravitational wave-detection, magnetometry or atomic clock
frequency calibration. The enhancement, however, requires a delicate tuning of
relevant quantum features, such as entanglement or squeezing. For any practical
application, the inevitable impact of decoherence needs to be taken into account
in order to correctly quantify the ultimate attainable gain in precision. We
compare the applicability and the effectiveness of various methods of calculating
the ultimate precision bounds resulting from the presence of decoherence. This
allows us to place a number of seemingly unrelated concepts into a common
framework and arrive at an explicit hierarchy of quantum metrological methods
in terms of the tightness of the bounds they provide. In particular, we show a way
to extend the techniques originally proposed in Demkowicz-Dobrzański et al
(2012 Nature Commun. 3 1063), so that they can be efficiently applied not only
in the asymptotic but also in the finite number of particles regime. As a result, we
obtain a simple and direct method, yielding bounds that interpolate between the
quantum enhanced scaling characteristic for a small number of particles and the
asymptotic regime, where quantum enhancement amounts to a constant factor
improvement. Methods are applied to numerous models, including noisy phase
and frequency estimation, as well as the estimation of the decoherence strength
itself.
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1. Introduction

Quantum enhanced metrology has recently enjoyed great success at the experimental level
leading to new results in atomic spectroscopy [1–4], magnetometry [5–7] and optical
interferometry [8–11] with prominent achievements in gravitational wave sensing [12]. As
predicted in the incipient theoretical results of [13–17], a physical parameter unitarily encoded
into a quantum system—a probe—consisting of N entangled, non-interacting particles (atoms
or photons) can be extracted with a precision that is limited by the quantum-mechanical
uncertainty relations and not the more restrictive central limit theorem of classical statistics.
Hence, the uncertainty in reconstructing the encoded parameter, such as e.g. optical phase delay
or frequency difference, can in principle be proportional to 1/N , the so-called Heisenberg limit
(HL), rather than 1/

√
N , commonly referred to as the standard quantum limit (SQL) or the

shot (projection) noise. However, this dramatic scaling improvement can be illusive, as both the
experimental results and theoretical toy-models have indicated that achieving the ideal HL is
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a hard task owing to the strong destructive impact of imperfections, which should be always
accounted for in realistic scenarios.

An important question that has been addressed considerably by many researchers [18–32]
reads: how and to what extent can the noise effects be compensated in quantum metrological
setups? In the case of atomic spectroscopy, it has already been indicated in [24, 25] that the
effects of uncorrelated noise independently affecting the atoms within a probe, have a dramatic
impact on quantum protocols—most likely restricting the ultimate precision scaling to become
SQL-like for high enough N , so that the quantum enhancement is asymptotically limited to a
multiplicative constant factor. In optical interferometry, photonic loss is the main obstacle to the
practical implementation of quantum enhanced protocols [27–30] and the asymptotic SQL-like
scaling is again inevitable, as proven in [31, 32]. Similarly to the atomic case, the asymptotic
improvement constant becomes an essential feature that determines the achievable precision
for high N . Following the above exemplary models, methods of quantifying the asymptotic
quantum enhancement have been proposed for arbitrary kinds of probes with decoherence
present [33–39]. Recently, general procedures have been established that are capable of
deriving practical bounds on an ultimate achievable precision in realistic quantum metrological
setups [38, 39]. In particular, in the case of uncorrelated noise, it has been demonstrated that
the sole analysis of the evolution of a single particle often leads to surprisingly informative
bounds on the precision achievable with arbitrarily entangled multi-particle inputs [39]—see
figure 1 for an outline of a relevant metrological scheme and a summary of the single particle
(single channel) methods investigated further on in this paper. For completeness, it should be
noted that there are some specific metrological models with noise, in which asymptotic scaling
power enhancement is nevertheless possible [22, 23, 40]. Still, the applicability of these models
is limited, since in any practical implementation the noise types considered will always be
accompanied by some generic decoherence processes for which the constant factor bound on
the maximal quantum enhancement will force the asymptotic precision scaling to be SQL-like.

In this paper, we provide new insight into relations between seemingly unrelated methods
used for derivations of various quantum metrological bounds and order them with respect to
their predictive power. Firstly, focusing on the geometric intuitive method of channel classical
simulation (CS) introduced in [36, 39], we prove that its applicability is equivalent to the
approach proposed in [37]. Moreover, we show that the criterion for CS of a channel can be
generalized to a quantum simulation (QS) condition [36], which coincides with the channel
programmability postulate of [34]. Although the idea of QS allows one to prove the asymptotic
SQL-like behaviour for a wider range of decoherence models, we demonstrate that the channel
extension (CE) method of [39] encompasses all CS, [37], QS and [34] approaches providing
more stringent bounds on precision. We also comment on the problem of the tightness of these
bounds, as they are guaranteed to be saturable only for channels for which the estimation task
cannot be improved by allowing for an additional ancilla (extension, idler mode) entangled
with the input state. Classification of such channels is an open problem of current research
both in channel estimation [41–44] and channel discrimination [45–53] theory. The graphical
interpretation of the CS, QS and CE methods is presented in figure 1(b).

Most importantly, we go beyond the results of [39] and show that the CE method may
be applied not only in the asymptotic regime but also when dealing with finite probes of N
particles. Similarly to the asymptotic case, it corresponds then to an optimization procedure over
Kraus representations of a given channel that can be recast into an efficiently solvable semi-
definite programming task. We apply our results to phase/frequency estimation with various
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Figure 1. Quantum metrology and the single channel methods. (a) General
scheme for quantum-enhanced metrology with uncorrelated noise. The N
particles within the probe in a quantum state ψ N

in evolve and decohere
independently while sensing an unknown parameter ϕ (e.g. phase). An estimate
ϕ̃ of the parameter is inferred from a measurement result on the final state of
the probe ρN

ϕ . (b) Precision bounds from single channel analysis. The ultimate

precision is bounded by the 1/
√

N scaling (SQL), if for small variations δϕ
around ϕ the channel 3ϕ can be expressed as a parameter-independent map 8
that is also fed a classical, diagonal state pϕ , CS, or a general, quantum state
σϕ , QS, varying smoothly with ϕ. Still, for all such channels and more, the
tightest bound on precision is obtained by the CE method, in which the map
3ϕ is replaced by its extension 3ϕ ⊗ I.

noise models including: dephasing, depolarization, loss and spontaneous emission, restricting
ourselves to the cases of noise commuting with the parameterized unitary part of the evolution.
This assumption makes the analysis more transparent, but it is not indispensable, since our
methods may be effectively employed for any single particle evolution described by a general
Lindblad equation [54] reshaped into the corresponding Kraus representation [55]. What is
more, as our finite-N CE method applies to models for which its asymptotic version fails, it can
be used to upper-bound the asymptotic scaling for channels surpassing the SQL. As an example,
in [40], our new method has already been utilized to predict asymptotic super-classical scaling
for a channel with a non-commutative noise. Additionally, in order to stress the generality of
the methods, in the final section of this paper we show that they can be applied not only to noisy
unitary parameter estimation tasks but also to ones in which the decoherence strength itself is
estimated. Finally, we should also clarify that noise correlation and memory effects [26, 56–58]
are beyond the scope of this paper; while the non-Markovian effects, provided they affect each
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of the particles independently, might be analysed using the tools presented, correlations between
the decoherence processes affecting the particles does not fit well into the framework advocated
here.

This paper is organized as follows. In section 2 we introduce the mathematical tools of the
estimation theory designed to quantify the achievable precision in metrological schemes and
discuss their applicability in the quantum setting. In section 3 we study how these concepts
may be utilized when the estimated parameter is encoded during the evolution of a given
quantum system. Section 4 is devoted to quantum systems that consist of N particles undergoing
independent evolution and contains the main results of the paper—methods allowing one to
quantify the ultimate precision both in the finite-N and asymptotic N regimes as well as their
direct application to phase estimation schemes. In section 5 we show how these methods should
be accommodated in order to encompass the frequency estimation tasks of atomic spectroscopy,
whereas in section 6 when considering metrological scenarios in which the strength of noise
or loss is the parameter to be estimated. Section 7 contains additional discussion on the
consequences of the results obtained as well as an outlook on future research. Section 8
summarizes the paper.

2. Quantum Fisher information (QFI)

2.1. Classical Cramér–Rao bound

Let us assume that after measuring a physical system an outcome is obtained that can be
represented by a random variable X distributed with some probability distribution pϕ(X). If
the system is classically described, all its properties can be simultaneously determined, so that
X can in principle be multidimensional and contain as much information about the system
as allowed by the available resources. The estimation task corresponds then to determining
with highest precision the quantity ϕ based on the observed value of X . As stated by the
Cramér–Rao bound [59] any unbiased strategy to determine the unknown parameter after
repeating the procedure k times, must provide an estimate ϕ̃ with uncertainty that is lower
bounded by

1ϕ̃ >
1√

k Fcl

[
pϕ
] , where Fcl

[
pϕ
]
=

∫
dx

ṗϕ(x)
2

pϕ(x)
(1)

is the (classical) Fisher information (FI)1.
The 1/

√
k dependence in (1) is a consequence of the central limit theorem and the fact

that the k procedures are independent. This manifests itself by the additivity property of the
FI, i.e. Fcl[pk

ϕ] = k Fcl[pϕ] for X k . Equation (1) shows that the FI is a local quantity containing
information about infinitesimal variations of ϕ. That is why FI is designed to be used in the so
called local estimation approach in which small parameter fluctuations are to be sensed. This
small deviation regime may always be reached after many procedure repetitions (k → ∞) and
in this limit the Cramér–Rao bound is known to be saturable via e.g. max-likelihood estimation
schemes [59].

1 Throughout the paper, we depict derivatives w.r.t. the estimated parameter with an ‘overdot’, so that e.g.
ṗϕ(x)≡ ∂ϕ pϕ(x), ρ̇ϕ ≡ ∂ϕ ρϕ and K̇ (ϕ)≡ ∂ϕ K (ϕ).
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2.2. Quantum Cramér–Rao bound

In a quantum estimation scenario, the parameter ϕ is encoded in a quantum state ρϕ . A general
measurement, mathematically represented by the elements of the positive operator valued
measure (POVMs) Mx that satisfy Mx > 0,

∫
dx Mx = I [60, 61],2 has performed yielding

outcome statistics pϕ(X)= Tr{ρϕMX}. Establishing the optimal estimation strategy corresponds
then not only to the correct interpretation of the measurement results, but also to a non-trivial
optimization over the class of all POVMs to find the measurement scheme maximizing the
precision. In this case the quantum Cramér–Rao bound can be derived [62–64], which is
independent of the choice of the POVMs and solely determined by the dependence of the output
state on the estimated parameter

1ϕ̃ >
1√

k FQ

[
ρϕ
] with FQ

[
ρϕ
]
= Tr

{
ρϕ LS[ρϕ]

2
}

(2)

being now the quantum Fisher information (QFI). The Hermitian operator LS[ρϕ] is the
so called symmetric logarithmic derivative (SLD), which can be unambiguously defined for
any state ρϕ via the relation ρ̇ϕ =

1
2

(
ρϕLS[ρϕ] + LS[ρϕ]ρϕ

)
. Then, in the eigenbasis of ρϕ =∑

i λi(ϕ) |ei(ϕ)〉 〈ei(ϕ)| with {|ei(ϕ)〉}i forming a complete basis (∀i : 06 λi 6 1)

LS[ρϕ] =

∑
i, j

2 〈ei (ϕ)| ρ̇ϕ
∣∣e j (ϕ)

〉
λi (ϕ)+ λ j (ϕ)

|ei (ϕ)〉
〈
e j (ϕ)

∣∣ , (3)

where the sum is taken over the terms with a non-vanishing denominator. QFI is an additive
quantity on product states and in particular FQ

[
ρ⊗k
ϕ

]
= k FQ[ρϕ]. Thus, the

√
k term in the

denominator of (2) may be equivalently interpreted as the number of independent repetitions of
an experiment with a state ρϕ or a single shot experiment with a multi-party state ρ⊗k

ϕ . Crucially,
as proven in [64, 65], a measurement strategy always exists, e.g. the projection measurement
in the eigenbasis of the SLD, for which bounds (1) and (2) coincide. Hence, as in the classical
case, the saturability of (2) is guaranteed, but again only in the k → ∞ limit.

2.3. Purification-based definition of QFI

For pure states, ρϕ = |ψϕ〉〈ψϕ|, the QFI in (2) simplifies to FQ[|ψϕ〉] = 4(〈ψ̇ϕ|ψ̇ϕ〉 −

|〈ψ̇ϕ|ψϕ〉|
2).3 Yet, as indicated by (3), for general mixed states the computation of QFI involves

the diagonalization of ρϕ , which may be infeasible when dealing with large systems. That is
why it is often necessary to look for upper bounds on QFI that would be efficiently calculable
even at the expense of saturability. For this purpose, definitions of QFI were proposed that
do not involve computing the SLD, but are specified at the level of state purifications: ρϕ =

TrE {|9(ϕ)〉 〈9(ϕ)|}. In [38] the QFI of any ρϕ has been proven to be equal to the smallest QFI
of its purifications |9(ϕ)〉:4

FQ

[
ρϕ
]
= min

9(ϕ)
FQ [|9(ϕ)〉] = 4 min

9(ϕ)

{〈
9̇(ϕ)|9̇(ϕ)

〉
−
∣∣〈9̇(ϕ)|9(ϕ)〉∣∣2} . (4)

2 We denote by I—the identity operator and by I—the identity superoperator.
3 We shorten the notation of functions and superoperators of pure states, so that F[|ψ〉] ≡ F[|ψ〉〈ψ |] and
3[|ψ〉] ≡3[|ψ〉〈ψ |].
4 See also an alternative formulation based on the convex roof formula, which is valid for unitary parameter
estimation [66, 67].
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Independently in [35], another purification-based QFI definition has been constructed:

FQ

[
ρϕ
]
= 4 min

9(ϕ)

〈
9̇(ϕ)|9̇(ϕ)

〉
. (5)

Despite apparent difference, equations (4) and (5) are equivalent and one can prove that any
purification minimizing one of them is likewise optimal for the other and satisfies the condition
|9̇(ϕ)〉 =

1
2 LS[ρϕ] ⊗ IE |9(ϕ)〉 causing the second term of (4) to vanish. Although for any

suboptimal 9(ϕ) (4) must provide a strictly tighter bound on QFI than (5), the latter definition,
owing to its elegant form, allows for more agility in the minimization procedure, so that it has
been efficiently utilized in [35, 39] and is also the base for this paper.

2.4. Right logarithmic derivative (RLD)-based upper bound on QFI

On the other hand, a natural way to construct a bound on QFI and avoid the SLD computation
is to relax the Hermiticity condition of the logarithmic derivative. If a non-Hermitian L[ρϕ]
satisfying ∂ϕρϕ =

1
2

(
ρϕL[ρϕ] + L[ρϕ]†ρϕ

)
can be found, as proven in [63, 65], an upper limit

on QFI in (2) is obtained: FQ[ρϕ]6 Tr{ρϕL[ρϕ]L[ρϕ]†
}. In particular, if and only if ∂ϕρϕ is

contained within the support of ρϕ , one can construct the right logarithmic derivative (RLD) by
setting L[ρϕ] = LR[ρϕ] = ρ−1

ϕ ∂ϕρϕ and formulate an upper bound on QFI of a simpler form

FQ

[
ρϕ
]
6 FRLD

Q

[
ρϕ
]
= Tr

{
ρ−1
ϕ

(
∂ϕρϕ

)2
}
. (6)

Although (6) is tight only when LR[ρϕ] = LS[ρϕ], it still allows one to quantify precision well
for channel estimation tasks [37], as described in the following section. Lastly, one should note
that we are not considering here multi-parameter estimation schemes, for which the RLD may
sometimes provide tighter bounds than the SLD [68, 69].

3. Estimation of a quantum channel

3.1. Channel QFI

As in metrological setups, the estimated parameter is encoded in the evolution of a system, we
identify ρϕ =3ϕ[ρin] as the final state of a system that started from an input ρin. The preparation
of ρin is controlled in order to achieve the most precise estimate of ϕ that parametrizes some
general channel—a completely positive trace preserving (CPTP) map 3ϕ [60, 61]. Although
the form of 3ϕ in general strongly depends on the model considered, the quantum Cramér–Rao
bound always applies, so that precision is upper bounded according to (2) with QFI FQ[3ϕ[ρin]].
Furthermore, as the QFI is a convex quantity [70], one should restrict oneself to pure input states
when seeking the optimal one. Hence, as shown in figure 2(a), we define the channel QFI as the
maximal QFI after performing the input optimization, so that it has a concrete operational and
application-like interpretation

F
[
3ϕ

]
= max

ψin

FQ

[
3ϕ [|ψin〉]

]
. (7)

For instance, while estimating the duration of the evolution (ϕ ≡ t) in an ideal,
decoherence-free setting, the CPTP map is unitary leading to a pure channel output. Thus,
3ϕ [|ψin〉] = Ut [|ψin〉] = e−iHt |ψin〉 〈ψin| eiHt with H being the Hamiltonian of the evolution.
Hence, the definition (7) corresponds to

F [ Ut ] = max
ψin

FQ

[
e−iHt

|ψin〉
]
= 4 max

ψin

{
〈ψin| H 2

|ψin〉 − 〈ψin| H |ψin〉
2
}

= 4 max
ψin

12 H, (8)
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Figure 2. Channel QFI based on the output state purification. (a) Channel
QFI as the QFI of the output state maximized over all pure input states.
(b) Channel QFI obtained from the output state purification generated by a local,
fictitious, parameter-dependent environment rotation. (c) Extended channel QFI
independent of the maximization over the input states. The environment rotation
corresponds to a choice of Kraus representation of the channel.

and the optimal states are the ones that maximize the Hamiltonian variance. Note also that in this
case the quantum Cramér–Rao bound takes the form of the time–energy uncertainty relation,
1H ·1t̃ > 1/2 [71, 72], with 1t̃ being the uncertainty in the estimated duration.

3.2. Purification-based definition of channel QFI

In order to employ the definition (5), we utilize the Stinespring theorem [61] and express the
channel3ϕ as a unitary map U SE

ϕ on the system combined with an environment disregarded after
the evolution. In this way, the output state and its purification respectively read 3ϕ [|ψin〉] =

TrE {|9(ϕ)〉 〈9(ϕ)|} and |9(ϕ)〉 = U SE
ϕ |ψin〉 ⊗ |1〉, where |1〉 is an arbitrary fixed state chosen

to be the first vector in the basis {|i〉}r
i=1 of the environment Hilbert space Hr

E. By specifying the
dimension r of Hr

E to be equal to the rank of 3ϕ , we can generate all non-trivial purifications,
9̃(ϕ), by applying a fictitious, possibly ϕ-dependent unitary rotation, uE

ϕ , to the environment,

so that |9̃(ϕ)〉 = Ũ SE
ϕ |ψin〉 ⊗ |1〉 with Ũ SE

ϕ = uE
ϕ U SE

ϕ . Furthermore, writing the channel action

in its Kraus representation form3ϕ [|ψin〉] =
∑r

i=1 K̃i(ϕ) |ψin〉 〈ψin| K̃i(ϕ)
†, we can identify the

Kraus operators corresponding to 9̃(ϕ) as

K̃i(ϕ)= 〈i | Ũ SE
ϕ |1〉 =

r∑
j=1

uE
ϕ,i j K j(ϕ), (9)

where uE
ϕ,i j = 〈i | uE

ϕ | j〉 and K j(ϕ)= 〈 j | U SE
ϕ |1〉 are the Kraus operators of the original

purification 9(ϕ). Hence, by picking an environment unitary rotation uE
ϕ , we are, equivalently

to the purification choice, specifying a Kraus representation of 3ϕ . Moreover, as the QFI is a
local quantity, we can restrict ourselves to infinitesimal rotations, uE

ϕ = e−ih(ϕ−ϕ0), in the vicinity
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of the real values ϕ0 that are generated by some Hermitian h. Taking ϕ0 = 0 without loss of
generality, we obtain the channel version of (5) shown in figure 2(b) as

F
[
3ϕ

]
=4 max

ψin

min
h

〈
˙̃
9(ϕ)|

˙̃
9(ϕ)〉=4 max

ψin

min
h

〈ψin|

r∑
i=1

˙̃K i(ϕ)
† ˙̃K i(ϕ)|ψin〉,

(10)

where |
˙̃
9(ϕ)〉 = (U̇ SE

ϕ − ihU SE
ϕ )|ψin〉 ⊗ |1〉 and similarly ˙̃K i(ϕ)= K̇i(ϕ)− i

∑r
j=1 hi j K j(ϕ)

with hi j = 〈i | h | j〉 being the elements of the generator of Kraus representation rotations (9).
Crucially, figure 2(b) and equation (10) indicate that the optimal purification/Kraus
representation corresponds to the choice of an artificial environment that rotates locally with
ϕ hindering as much as possible information about the estimated parameter.

In order to make the reader familiar with the above formalism, we apply the definition (10)
to the previously mentioned case of the evolution duration estimation Ut [|ψin〉]. As the evolution
is unitary and r = 1, the environment/Kraus rotations just correspond to a phase variation
uE

t = e−ih t with h being a real scalar. Hence, (10) simplifies to (8) as expected:

F [ Ut ]=4 max
ψin

min
h

{
〈ψin| H 2

|ψin〉−2h 〈ψin| H |ψin〉 + h2
}
=4 max

ψin

12 H (11)

with the minimum occurring at h = 〈ψin| H |ψin〉. Consistently, we would also arrive at (8), if
we had used the other QFI purification-based definition (4) as shown in [38].

3.3. Extended channel QFI

The channel QFI (7) is affected by any ϕ-variations in the form of 3ϕ , quantifying the
distinguishability between maps 3ϕ and 3ϕ+δϕ . However, any such disturbance may be
noticeable only for input states which lead to a measurable change of the channel output that is
at best in some ‘orthogonal direction’. As a consequence, the quantity minh {. . .} in (10) depends
strongly on the pure input ψin, as the minimum occurs for Kraus operators {K opt

i (ϕ)}r
i=1 which

fulfil the condition K̇ opt
i (ϕ) |ψin〉 =

1
2 LS[3ϕ[|ψin〉]] K opt

i (ϕ) |ψin〉 required for the purification of
(4) and (5) to be optimal. Maximization of this quantity over |ψin〉 is difficult in general, due to
the impossibility of exchanging the order of max and min in (10) [35].

Yet, one may construct a natural upper bound on the channel QFI (7) by extending the input
space,HS, by an equally-large auxiliary space,HA, which is unaffected by the map and measured
along with the channel output (see figure 2(c)). This way, by employing extended input states
entangled between these two spaces,

∣∣ψ ext
in

〉
∈ HS ×HA, one may acquire the full information

available about ϕ imprinted by the map 3ϕ on the extended output state. The analogue of (10)
defines then the extended channel QFI [35]:

F
[
3ϕ ⊗ I

]
= 4 max

ρS
in

min
h

TrS

{
ρS

in

r∑
i=1

˙̃K i(ϕ)
† ˙̃K i(ϕ)

}

= 4 min
h

∥∥∥∥∥
r∑

i=1

˙̃K i(ϕ)
† ˙̃K i(ϕ)

∥∥∥∥∥ , (12)

where ‖. . .‖ represents the operator norm. The first expression is obtained by tracing
over the auxiliary space HA, which leads to the maximization over all mixed states ρS

in =

TrA

{∣∣ψ ext
in

〉 〈
ψ ext

in

∣∣}. However, this is exactly (10) with the pure input state replaced by a general
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Table 1. Channel phase estimation sensitivity quantified via QFIs and their
asymptotic bounds. The noise models of metrological relevance discussed in
the paper are listed in the first column. Decoherence strength increases with
a decrease of the η parameter (06 η < 1) (see appendix A for details). From
left to right—single channel QFI, extended channel QFI, upper bounds on
asymptotic channel QFI (16) in ascending order: CE bound (see section 4.1.3),
QS bound (see section 4.1.2), RLD-based bound (see section 3.4), CS bound
(see section 4.1.1). (n.a.—not available.)

Noise model F [3ϕ] F [3ϕ ⊗ I] F CE
as in [39] F QS

as F RLD[3ϕ ⊗ I] F CS
as in [39]

Dephasing η2 η2 η2

1 − η2

η2

1 − η2

η2

1 − η2

η2

1 − η2

Depolarization η2 2η2

1 + η

2η2

(1 − η) (1 + 2η)

2η2

(1 − η) (1 + 2η)

2η2(1 + η)

(1 − η)(1 + 3η)

4η2

(1 − η)(1 + 3η)

Loss η η
η

1 − η

η

1 − η
n.a. n.a.

Spontaneous emission η
4η

(1 +
√
η)2

4η

1 − η
n.a. n.a. n.a.

mixed one, in which case the order of max and min can be swapped [35].5 Consistently, if the
optimal input state of (12) is pure, (10) and (12) become equivalent manifesting the uselessness
of entanglement between HS and HA and the irrelevance of the auxiliary space.

Importantly, the extended channel QFI (12) can always be efficiently evaluated numerically
by means of semi-definite programming [39] and we show that this is a special case of a
more general task of bounding N -parallel channels QFI, as explained in appendix E. For
phase estimation schemes with relevant noise models including: dephasing, depolarization,
loss and spontaneous emission, we determine analytically both (10) and (12) to verify if the
use of extended, entangled input states may improve estimation at the single channel level.
The corresponding unextended/extended channel QFIs are presented in table 1, whereas the
optimal purifications yielding the minimum of (12) can be found in appendix A along with the
details of the channels considered. The results justify that extension enhances the precision only
for depolarization and spontaneous emission channels, for which the input states maximally
entangled between HS and HA are optimal.

3.4. RLD-based upper bound on extended channel QFI

In [37] the applicability of the RLD-based bound (6) has been addressed in the context of
channels. By defining the Choi–Jamiołkowski (C–J) representation [61] of a particular map 3ϕ

as �3ϕ =3ϕ ⊗ I [|I〉] with |I〉 =
∑dimHS

i=1 |i〉 ⊗ |i〉, it has been proven that the extended channel
QFI can be further upper-bounded by

F
[
3ϕ ⊗ I

]
6 FRLD

[
3ϕ ⊗ I

]
=

∥∥∥TrA
{
�̇3ϕ�

−1
3ϕ
�̇3ϕ

}∥∥∥ , (13)

5 We should stress that (12) does not correspond to the situation of using mixed states as inputs for unextended
channels, as mixed states never outperform pure state inputs due to the convexity of the QFI.
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where ‖. . .‖ is again the operator norm and �−1
3ϕ

is the inverse of �3ϕ restricted only to the
support of the C–J matrix. Most importantly, the bound (13) is determined solely by the form
of 3ϕ , i.e. its C–J representation, and does not contain any extra information about the space
of the input states accepted by the map. This contrasts with the definitions of purification-
based unextended/extended channel QFIs (10)/(12) and facilitates the analyticity of the results
presented in table 1. On the other hand, as indicated in section 2.4, both the applicability and
tightness of the RLD-based bounds are limited. The bound (13) is valid only when �̇2

3ϕ
is fully

supported by �3ϕ [37]. However, we give an intuitive reason for this restriction by proving
that this condition is equivalent (see appendix B) to the notion of channel 3ϕ being ϕ -non-
extremal, as introduced in [39] and also revisited in the following section. This confirms that
the exclusive dependence of (13) on �3ϕ has indeed a strong geometrical meaning. Moreover,
although the RLD-based bounds depicted in table 1 for the relevant channels seem to be far
above the corresponding channel QFIs—(7) and (12), they are of great significance. The bound
(13) is additive for any maps 3(1)

ϕ , 3(2)
ϕ to which it applies [37], thus

FRLD
[(
3(1)
ϕ ⊗ I

)
⊗
(
3(2)
ϕ ⊗ I

)]
= FRLD

[
3(1)
ϕ ⊗ I

]
+FRLD

[
3(2)
ϕ ⊗ I

]
,

∴ F [(3ϕ ⊗ I)⊗N ]6 FRLD[(3ϕ ⊗ I)⊗N ] = NFRLD
[
3ϕ ⊗ I

]
. (14)

Hence, it constrains not only the QFI of a single extended channel, but also restricts the QFI
of N extended channels used in parallel to scale at most linearly with N . Crucially, as the
extension can only improve the precision, (14) is also a valid upper-bound on the QFI of N
uses of an unextended channel, which asymptotic precision scaling is then limited to a constant
factor improvement over the SQL (see section 4.1).

4. Estimation of N independent quantum channels

In order to describe general metrological schemes depicted in figure 1(a), we model the
evolution of all particles within the probe as N identical, independent channels acting on a
possibly entangled, pure input state of the whole probe |ψ N

in 〉. The final output state of the probe
then reads ρN

ϕ =3⊗N
ϕ [|ψ N

in 〉] yielding the N -channel QFI:

F
[
3⊗N
ϕ

]
= max

ψN
in

FQ

[
3⊗N
ϕ

[∣∣ψ N
in

〉]]
, (15)

which linear or quadratic dependence on N dictates respectively the SQL or HL scaling
of precision. For example, when considering classical schemes that employ unentangled
probes,

∣∣ψ N
in

〉
= ⊗

N
n=1

∣∣ψ1
in

〉
, we are effectively dealing with N independent subsystems, so that

F [3⊗N
ϕ ] = N F [3ϕ] and the uncertainty of the estimate ϕ̃ decreases as 1/

√
N .

4.1. Standard quantum limit-like bounds on precision in the asymptotic N limit

To investigate channels that incorporate the uncorrelated noise restricting the asymptotic
precision scaling to SQL, we define the asymptotic channel QFI as

Fas

[
3ϕ

]
= lim

N→∞

F
[
3⊗N
ϕ

]
N

. (16)

Thus, for such SQL-bound channels, (16) is finite and Fas[3ϕ]> F [3ϕ] with equality indicating
the optimality of classical estimation schemes. Hence, (16) quantifies the maximal quantum
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Table 2. Quantum phase estimation precision enhancement from the CE method.
For all noise models specified in appendix A, the asymptotic CE bounds on
the maximal quantum precision enhancement factors, χ [•] =

√
Fas [•] /F [•],

are presented. For a general quantum map 3ϕ, the CE bound only upper-
limits χ [3ϕ] as Fas[3ϕ]6 F CE

as . Yet, for dephasing and lossy interferometry, as
indicated by ‘=’, the corresponding values of χ [3ϕ] have been shown to be
attainable [73, 74]. For an extended channel, χ [3ϕ ⊗ I] is determined by the CE
bound as Fas[3ϕ ⊗ I] = F CE

as .

Noise model Dephasing Depolarization Loss Spontaneous emission

χ [3ϕ] =

√
1

1 − η2
6

√
2

(1 − η)(1 + 2η)
=

√
1

1 − η
6

√
4

1 − η

χ [3ϕ ⊗ I] =

√
1

1 − η2
=

√
1 + η

(1 − η)(1 + 2η)
=

√
1

1 − η
=

√
1 +

√
η

1 −
√
η

precision enhancement that reads

χ
[
3ϕ

]
= lim

N→∞

1ϕ̃cl

1ϕ̃Q
=

√
Fas

[
3ϕ

]
F
[
3ϕ

] > 1. (17)

However, as the computation of (16) is generally infeasible owing to the complexity of QFI
rising exponentially with N , one normally needs to construct an upper limit on the N -channel
QFI (15), F bound[3⊗N

ϕ ], from which the asymptotic form, F bound
as , may be deduced using (16)

that upper-bounds both the N -channel QFI and the maximal quantum precision enhancement:

F
[
3⊗N
ϕ

]
6 N F bound

as , χ
[
3ϕ

]
6

√
F bound

as

[
3ϕ

]
F
[
3ϕ

] . (18)

Methods of constructing F bound
as were proposed in [39] based on the concepts of channel

CS and CE. As mentioned already, the CS method applies only to ϕ-non-extremal channels,
for which also the RLD-based bound (14) provides a valid example of F bound

as . Yet, the notion
of CS may be generalized to the idea of channel QS introduced in [36], in order to obtain
an asymptotic bound applicable to a wider class of quantum maps. All these four approaches
(F bound

as = F CS
as ,F

CE
as ,F

RLD[3ϕ ⊗ I],F QS
as respectively) are presented in table 1 for the relevant

channels. As the lossy and spontaneous emission interferometry cases are examples of
ϕ-extremal maps, they do not allow for finite F CS

as and F RLD[3ϕ ⊗ I] to be constructed. In the
case of the depolarization channel, which is full-rank [61] and hence ϕ-non-extremal, despite
the lack of a simple geometric interpretation of its value, F RLD[3ϕ ⊗ I] proves to be tighter
than F CS

as . The more general QS approach not only applies also to the (ϕ-extremal) lossy
interferometry case, but also provides as accurate bounds as the CE method. Nevertheless,
as the CE approach is proven to provide at least as tight bounds for the broadest class of
quantum channels containing ones to which the other methods apply, we use it to quantify
the maximal quantum precision enhancements (17) for the channels considered (see table 2).
Below, we describe alternately the CS, QS and CE methods—ordered according to their power
and generality.
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4.1.1. Classical simulation (CS) method. As introduced in [36] and depicted in figure 1(b), a
channel admits a CS of itself, if for any . it is expressible in the form

3ϕ[%] =8
[
%⊗ pϕ

]
=

∑
i

pϕ,i 5i [%], (19)

where pϕ =
∑

i pϕ,i |ei〉〈ei | is a classical, diagonal density matrix in some basis and 8 is a
ϕ-independent CPTP map acting on a larger input space. By defining 5i [%] =8[%⊗ |ei〉〈ei |]
one obtains the second equality in (19), so that it becomes evident that the estimated ϕ

parametrizes only the mixing probabilities of some ϕ-independent quantum maps. Then, the
N -channel QFI (15) can be simply upper-bounded via F [3⊗N

ϕ ]6 N Fcl[pϕ,i ], where Fcl[pϕ,i ] is
the discrete version of classical FI in (1) and plays the role of F bound

as in (18) [36, 39]. Moreover,
as QFI is a local quantity, in order to construct a CS-based F bound

as valid for small deviations δϕ
around a given ϕ, the CS must be feasible only locally, i.e. 3ϕ[%] =

∑
i pϕ,i 5i [%] + O(δϕ2).

Therefore, as proven in [36], if the C–J representation �3ϕ of a channel 3ϕ allows for
parameters ε± > 0 such that the matrices �5±

=�3ϕ ± ε±�̇3ϕ are positive semi-definite at
a given ϕ, the channel is ϕ-non-extremal there and the necessary pϕ,i can always be found.
This is because one can construct �3̃ϕ

= pϕ,+�5+ + pϕ,−�5−
that up to O(δϕ2) coincides with

�3ϕ by choosing pϕ,± such that �3̃ϕ
=�3ϕ and �̇3̃ϕ

= �̇3ϕ . Hence, 3ϕ[%] = 3̃ϕ[%] + O(δϕ2)

with 3̃ϕ[%] = pϕ,+5+ + pϕ,−5−, so that Fcl[pϕ,±] = 1/(ε+ε−) is a legal example of the required
finite bound valid at ϕ. Furthermore, in [39], it has been proven that for channels of the
form 3ϕ[%] =3[ Uϕ[%]] this two-point construction is always optimal at any ϕ when maximal
possible ε± are chosen6. Geometrically, imagining the convex set of all CPTP maps in their C–J
representation that share input and output spaces of 3ϕ, the channels �5±

lie at the intersection
points of the tangent generated by �̇3ϕ at �3ϕ and the boundary of the set. The F bound

as of (18),
which we refer to as the asymptotic CS bound— F CS

as = 1/(εmax
+ εmax

−
), is dictated then by the

‘distances’ εmax
±

of the channel to the boundary measured along this tangent. Although the CS
approach provides weaker bounds than the CE method [39], it gives an intuitive geometric
explanation of the inevitable asymptotic SQL-like scaling of all ϕ-non-extremal maps. These
naturally include the full-rank channels [61] that lie inside the set of CPTP maps away from its
boundary.

4.1.2. Quantum simulation (QS) method. In [36], a natural generalization of the channel CS
has been proposed, which is schematically presented in figure 1(b). This, so called, QS of a
channel corresponds to expressing its action in a form similar to (19) that reads

3ϕ[%] =8
[
%⊗ σϕ

]
= TrE8Eσ

{
U
(
%⊗

∣∣ψϕ〉E8Eσ

〈
ψϕ
∣∣)U †

}
, (20)

where now σϕ is a quantum, non-diagonal, ϕ-dependent density matrix and the purified form
on the right hand side involves both channel 8 environment space E8 as well as σϕ purification
space Eσ , such that σϕ = TrEσ {|ψϕ〉〈ψϕ|}. Note that the notion of quantum simulability is
equivalent to the channel programmability concept introduced in [34]. Following the same
argumentation as in [39] for CS, the N -channel QFI (15) of a quantum simulable channel—one
admitting a QS of the form (20) with finite FQ[σϕ]—can be linearly bounded as F [3⊗N

ϕ ]6
N FQ[σϕ], and therefore the asymptotic bound reads F bound

as = FQ[σϕ]. Similarly to CS, a channel
may admit many decompositions (20) and the optimal one must yield the lowest FQ[σϕ].

6 Yet, it may prove optimal for channels of other types, as shown for transversal dephasing in [40].
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Therefore, without loss of generality, in the search for the optimal QS, we may take U in (20)
to act on the full purified system, i.e. also in E8 and Eσ spaces. This enlarges the set of all
possible QSs beyond the original ones U = U SE8 ⊗ IEσ and yields F bound

as = FQ[|ψϕ〉], which
via (4) cannot be smaller than FQ[σϕ]. In fact, (4) assures that for any QS employing σϕ ,
there exists an ‘enlarged’ decomposition (20) leading to the same F bound

as with |ψϕ〉 being the
minimal purification in (4). In conclusion, we may seek the optimal QS by analysing all possible
decompositions of the form (20) that, owing to the locality of the QFI, must be feasible only
for small deviations δϕ from a given ϕ, so that3ϕ[%] = TrE8Eσ {U (%⊗ |ψϕ〉〈ψϕ|)U †

} + O(δϕ2).
In appendix D, we prove that, in order for the QS (20) to be possible locally at ϕ and lead to
a finite asymptotic bound, 3ϕ of rank r must admit Kraus operators {Ki(ϕ)}

r
i=1 that satisfy the

two conditions:

i
r∑

i=1

K̇i(ϕ)
†Ki(ϕ)= 0 and

r∑
i=1

K̇i(ϕ)
† K̇i(ϕ)=

1

4
FQ

[∣∣ψϕ〉] I. (21)

Hence, by optimizing over all locally equivalent Kraus representations of 3ϕ—the ones related
to one another by rotations (9) generated by any Hermitian h—that satisfy constraints (21), we
may determine the asymptotic bound given by the optimal local QS, which we refer to as the
asymptotic QS bound— F QS

as , as follows:

F QS
as = min

h
λ s.t. αK̃ =

λ

4
I, βK̃ = 0, (22)

where αK̃ =
∑r

i=1
˙̃K i(ϕ)

† ˙̃K i(ϕ), βK̃ = i
∑r

i=1
˙̃K i(ϕ)

† K̃i(ϕ) and λ has the interpretation of
F bound

as = FQ[|ψϕ〉] for a local QS of the form (20). Before revisiting the CE method explicitly
below, we should note that (22) resembles exactly the asymptotic CE bound of [39] with an
extra constraint forcing the operator αK̃ to be proportional to identity. This proves that the QS
method can indeed never outperform the CE approach.

Investigating the relevant quantum maps considered in table 1, the QS method must
naturally apply to dephasing and depolarization channels. These are ϕ-non-extremal maps,
hence their locally constructible CSs (19) serve as examples of the more general QSs (20).
Consistently, the Kraus representations utilized in [39] to obtain the asymptotic CE bounds for
these two channels fulfil the αK̃ ∝ I constraint. Thus, QS is not only feasible in their case but
also its asymptotic bound coincides with the one of the superior CE method. Significantly, also
in the case of the lossy interferometry, the optimal Kraus operators used in [39] to minimize the
asymptotic CE bound satisfy the extra QS’s constraint. This fact indicates that for ϕ-extremal
channels, QS may also prove to be as good as CE. However, in the case of spontaneous emission,
the QS method ceases to work, as the βK̃ = 0 condition fixes αK̃ to be disproportional to
identity [39].

4.1.3. Channel extension (CE) method. The CE method of [39] not only applies to the widest
class of quantum maps containing all ϕ-non-extremal ones, but also provides more stringent
bounds than the CS, RLD and QS equivalents, as respectively proven in [39], appendix C and
above. In this method, see figure 1(b), each single channel is extended by an auxiliary ancilla
as introduced in section 3.3. In [35], it has been proven that one can then effectively bound the
N -channel QFI (15) via the N-extended-channel QFI, so that

F
[
3⊗N
ϕ

]
6 F [(3ϕ ⊗ I)⊗N ]6 4 min

h

{
N
∥∥αK̃

∥∥+ N (N − 1)
∥∥βK̃

∥∥2
}
, (23)
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where again αK̃ =
∑r

i=1
˙̃K i(ϕ)

† ˙̃K i(ϕ), βK̃ = i
∑r

i=1
˙̃K i(ϕ)

† K̃i(ϕ) and h is the generator of local
Kraus representation rotations (9). Crucially, if there exists a Kraus representation for which the
second term in (23) vanishes, F [3⊗N

ϕ ] must asymptotically scale linearly in N . This requirement
corresponds to the constraint βK̃ = 0 already accounted in the QS method, which for any linearly
independent Kraus operators {Ki}

r
i=1 is equivalent to the existence of h such that [35]

r∑
i, j=1

hi j K †
i K j = i

r∑
i=1

K̇i(ϕ)
†Ki(ϕ). (24)

What is more, for any channel that admits an h fulfilling (24), one can show, based on the results
of [35], that the second inequality in (23) is saturated in the N → ∞ limit, so that the asymptotic
extended channel QFI then reads

Fas

[
3ϕ ⊗ I

]
= lim

N→∞

F [(3ϕ ⊗ I)⊗N ]

N
= 4 min

h
β

K̃
=0

∥∥∥∥∥
r∑

i=1

˙̃K i(ϕ)
† ˙̃K i(ϕ)

∥∥∥∥∥ . (25)

Importantly, (25) becomes the required asymptotic bound F bound
as of (18), which we refer to

as the asymptotic CE bound— F CE
as . We explicitly wrote the full form of (25) to emphasize

its similarity to the extended single channel QFI (12). The essential difference in (25) is the
constraint (24) yielding Fas[3ϕ ⊗ I]> F [3ϕ ⊗ I] and dictating the maximal quantum precision
enhancement for an extended channel:

χ
[
3ϕ ⊗ I

]
= lim

N→∞

1ϕ̃ext
cl

1ϕ̃ext
Q

=

√
Fas

[
3ϕ ⊗ I

]
F
[
3ϕ ⊗ I

] > 1. (26)

Similarly to (12), (25) is computable by means of semi-definite programming [39], so that
one can efficiently determine both (18) and (26). The CE-based bounds on χ [3ϕ] and the
exact values of χ [3ϕ ⊗ I] for the relevant noise models are presented in table 2. Although
generally the CE method only upper-limits the maximal quantum precision enhancement (17),
it has been proven to quantify χ [3ϕ] exactly in the case of dephasing [73] and lossy
interferometer channels [74]. This has been achieved by showing that input states utilizing
spin- and light-squeezing respectively yield a quantum enhancement that asymptotically attains
the corresponding CE-based bounds presented in table 2. On the other hand, as indicated in
table 1, these channels are also examples of ones for which the extension does not improve the
precision at the single channel level, so that χ [3ϕ] = χ [3ϕ ⊗ I] in table 2. The question—when
the lack of precision improvement due to extension at the single channel level translates to
the asymptotic regime, i.e F [3ϕ] = F [3ϕ ⊗ I] ⇐⇒

?
Fas[3ϕ] = Fas[3ϕ ⊗ I], we leave open for

future research.

4.2. Finite-N channel extension (CE) method

In section 4.1, we have presented the CE method as the most effective one out of all discussed
that provides the tightest upper limits on the maximal possible asymptotic quantum precision
enhancement. On the other hand, in the case of experiments such as optical interferometry
with moderate numbers of photons [8, 9], the asymptotic CE bounds, despite still being valid,
are far too weak to be useful. For very low values of N , the precision can be quantified
numerically, for instance by brute-force type methods computing explicitly the QFI. However,
in the intermediate N regime—being beyond the reach of computational power, yet with N too
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low for the asymptotic methods to be effective—more accurate bounds should play an important
role.

We propose the finite-N CE method which, despite being based on the properties of a single
channel, still provides bounds on precision that are relevant in the intermediate N regime. We
utilize the upper-limit (23) on the N -extended-channel QFI and construct the finite-N CE bound,
F CE

N , that reads

F [(3ϕ ⊗ I)⊗N ]

N
6 F CE

N = 4 min
h

{∥∥αK̃

∥∥+ (N − 1)
∥∥βK̃

∥∥2
}
. (27)

Following the suggestion of [39], in contrast to the asymptotic CE bound F CE
as defined in (25), we

do not impose the SQL-bounding condition βK̃ = 0 (24), but we seek at each N for the minimal
Kraus representation that is generated by some optimal h = hopt(N ) being now not only channel
but also N -dependent. Still, as shown in appendix E, F CE

N can always be efficiently evaluated
numerically by recasting the minimization over h in (27) into a semi-definite programming task.
Moreover, as the finite-N CE bound varies smoothly between N = 1 and ∞, at which it is tight,
it provides more accurate bounds than its asymptotic version. For N = 1, F CE

N coincides with
the extended channel QFI (12)— F CE

N=1 = F [3ϕ ⊗ I], whereas in the N → ∞ limit it attains the
asymptotic CE bound (25)— F CE

N→∞
= F CE

as .
What is more, when considering channels for which the asymptotic CE method fails, as it is

not possible to set βK̃ = 0 in (23) for any Kraus representation, (27) still applies; it is the finite-N
CE method that provides the correct CE-based bound in the N → ∞ limit that in principle may
then surpass the SQL-like scaling. On the other hand, when dealing with estimation schemes
in which one can moderate the effective amount of loss (i.e. the form of 3ϕ) depending on the
number of particles, the asymptotic bound F CE

as may not actually be the tightest within the CE
method. The βK̃ of (23) and (27) becomes then a function of N and it may not be asymptotically
optimal to set it equal to zero by imposing condition (24). Yet the finite-N CE method, being not
constrained with βK̃ = 0, still yields the correct CE-based bound on precision as N → ∞. This
fact has been utilized in [40], where, owing to the N -dependence of βK̃ , the finite-N CE method
provided an asymptotic bound indeed tighter than the naively calculated F CE

as . What is more, the
F CE

N→∞
has been numerically shown there to be saturable, which proves the power of the more

agile finite-N CE method. For phase estimation with various decoherence models including
dephasing, depolarization, loss and spontaneous emission described in detail in appendix A, we
observe that the finite-N CE bound is simply related to its asymptotic form as

F CE
N =

N F CE
as

N +F CE
as

, (28)

where one should substitute for F CE
as the corresponding asymptotic CE bounds presented in

table 1.7 For dephasing and loss decoherence models, we show explicitly in figure 3 both the
asymptotic and the finite-N bounds accompanied by the plots of actual precision achievable
with explicit estimation strategies optimal either in the small or large N regime.

In the first case, depicted in figure 3(a), we consider a Ramsey spectroscopy setup of
[13, 14] in which the probe consists of atoms prepared in a spin-squeezed state [73].
The parameter is then encoded in the phase of a unitary rotation generated by the total
angular momentum of the atoms that simultaneously experience uncorrelated dephasing.

7 In the case of spontaneous emission noise the formula is valid only for N > 2, which we suspect to be a
consequence of the spontaneous emission channel being an extremal map [61].
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Figure 3. Phase estimation CE method-based bounds on precision. (a) Dephas-
ing. Finite-N (dashed) and the asymptotic CE bounds (dotted) on estimation
uncertainty as compared with the precision achieved by utilizing spin-squeezed
states in a Ramsey spectroscopy setup (solid black) and GHZ states with opti-
mal measurement (solid grey) for a probe consisting of N atoms experiencing
uncorrelated dephasing with η = 0.9. (b) Loss. Lossy interferometry with parti-
cle survival probability η = 0.9, e.g. Mach–Zehnder interferometer experiencing
photonic loss in both of its arms, with effective power transmission η. The small-
est uncertainty in a phase estimation scheme is quantified by calculating the QFI
for numerically optimized N -particle input states (solid black) which only at low
N can be approximated by N00N states (solid grey). Again, finite-N (dashed) and
asymptotic CE bounds (dotted) on precision are shown for comparison.

After measuring the probe’s total angular momentum perpendicular to the one generating
the estimated phase change, the parameter is reconstructed with the uncertainty plotted
in figure 3(a). For comparison, the maximal precision theoretically achievable with
Greenberger–Horne–Zeilinger (GHZ) [75] input states is also shown. The QFI for a GHZ-based
strategy is F GHZ

N = η2N N 2 which for low N attains the finite-N CE bound. This fact proves that
in experiments with only a few particles involved, such as [1], it is optimal to use the GHZ states
as inputs despite the uncorrelated dephasing present.

In the second lossy interferometry case, shown in figure 3(b), each particle is subject
to an independent loss process with survival probability η, as in e.g. the Mach–Zehnder
interferometer with effective power transmittance η in both arms [29, 30] that represents
preparation, transmission and detection loss [31]. Here the solid black line represents the
maximal QFI achieved with the numerically optimized N -particle or equivalently N -photon
states8. As expected, it coincides for low N with the QFI attained by the so called N00N
states [76], F N00N

N = ηN N 2, which are the optical equivalents of the GHZ states previously
considered. The plot indicates that the finite-N CE bound may be considered in this case to be
tight only for moderate and very large N . Although in the case of lossy optical interferometry,
the maximal quantum enhancement of table 2 can also be achieved via an estimation strategy
that employs squeezed-light as the input with the mean number of photons constrained to
N = N̄ [74, 89], we cannot compare its precision with the one bounded through FCE

N=N̄
. As

N ·F CE
N is a convex quantity in N , one cannot use it naively to constrain precision after replacing

8 As it is optimal to consider indistinguishable, bosonic particles [30].

New Journal of Physics 15 (2013) 073043 (http://www.njp.org/)

http://www.njp.org/


18

N by the mean number of photons N̄ . This contrasts with the case of the (constant) asymptotic
CE bound, which yields N ·F CE

as being linear in N , so that it also applies to estimation strategies
employing states of indefinite photon numbers, as pointed in [39, 89].

5. Frequency estimation in atomic models

We apply the methods discussed above to the case of frequency estimation problems in
atomic spectroscopy. The general Ramsey spectroscopy setup considered in [13, 14, 22–26, 40]
corresponds to N identical two-level atoms—spin-1/2 systems—with their states separated,
where typically the detuning ω of an external oscillator frequency from the atoms transition
frequency is to be estimated. We assume that the full experiment takes an overall time T , during
which the estimation procedure is repeated k = T/t times, where t is the evolution duration of
each experimental shot. The quantum Cramér–Rao bound (2) on precision of the estimate ω̃ can
then be conveniently rewritten as

1ω̃ >
1√

T ft

[
ρN
ω (t)

] , (29)

where ft

[
%(t)

]
= FQ

[
%(t)

]
/t is now the effective QFI per shot duration and ρN

ω (t) denotes the
final state of the whole probe containing N particles being measured in each shot. The total time
T then plays the role of k in (2) and, after fixing t , the bound (29) can always be saturated as
T → ∞. The evolution of the probe can be modelled by the master equation of the Lindblad [54]
form

∂ρN
ω (t)

∂t
=

N∑
n=1

i
ω

2

[
σ
(n)
3 , ρN

ω (t)
]

+L(n)
[
ρN
ω (t)

]
, (30)

where σ (n)3 is the Pauli operator generating a unitary rotation of the nth atom around the z-axis
in its Bloch ball representation. The uncorrelated noise is represented by the Liouvillian part
L(n) acting independently on each particle, here the nth, so that effectively ρN

ω (t)=3⊗N
ω;t [|ψ N

in 〉]
with channel 3ω;t representing the overall single particle evolution over time t . To model the
decoherence, we consider the dephasing, depolarization, loss and spontaneous emission maps,
for which corresponding Liouvillians can be found in appendix A. As the estimated parameter
now corresponds to ω = ϕ/t , where ϕ is the phase of the unitary rotation, the QFI via a
parameter change just rescales, so that ft

[
%ω
]
= FQ

[
%ω
]
/t = FQ

[
%ϕ
]

t . Moreover, due to the
commutativity of the unitary and the considered decoherence maps, we can, without loss of
generality, utilize the results presented for them in the previous sections. Defining the channel
QFI for frequency estimation tasks similar to (7) as

f [3ω] = max
06t6T

max
ψin

ft

[
3ω;t [|ψin〉]

]
, (31)

we can compute all the appropriate expressions for QFIs and the asymptotic bounds of table 1,
as well as the finite-N bounds of (28), by substituting for the effective time dependence
of the decoherence strength η(t), which is determined by the master equation (30) (see
appendix A). Then, any quantity F listed in table 1 transforms to its t-optimized equivalent as
f= max06t6T F t . In table 3 we present the channel QFIs relevant for frequency estimation, their
asymptotic and finite-N CE bounds, as well as the maximal quantum precision enhancements
for each model considered. In the case of dephasing, we recover the results of [24, 38, 40],
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Table 3. QFIs, CE bounds and quantum enhancements in frequency estimation.
In frequency estimation tasks, the precision is maximized by adjusting the single
experimental shot duration t . The t-optimized (extended) channel QFIs as well
as their finite-N and asymptotic CE bounds are presented, where wx [N ] =

1 + W [ x−N
eN ], w̃ = 1 + 2 W [ 1

2
√

e ] and W [x] is the Lambert W function. As in the
case of the depolarizing channel, not all solutions possess an analytical form,
only their numerical approximations are shown with α ≈ 2.20 and β ≈ 1.32.
Right of the double-line, the maximal quantum precision enhancements are
listed for the maps considered. In the case of dephasing noise, the ultimate

√
e

factor has already been reported in [24, 38]. For unextended depolarization and
spontaneous emission maps, the derived enhancement factors may possibly not
be achievable.

Noise model f[3ω] f[3ω ⊗ I] fCE
N (N > 2) fCE

as χ [3ω] χ [3ω ⊗ I]

Dephasing
1

2 eγ

1

2 eγ

N

2γ

w1[N ]

1 +
(
ew1[N ] − 1

)
N

1

2γ
=

√
e =

√
e

Depolarization
3

4 eγ
≈1.27

3

4 eγ

3N

4γ

α wβ[N ]

2 +
(
e
α
4wβ [N ]

− 1
) (

e
α
4wβ [N ] + 2

)
N

1

γ
6
√

4e
3 ≈ 0.89

√
4e
3

Loss
1

eγ

1

eγ

N

γ

w1[N ]

1 +
(
ew1[N ] − 1

)
N

1

γ
=

√
e =

√
e

Spontaneous emission
1

eγ

4w̃

γ
(
1 + ew̃/2

)2

N

γ

4w4[N ]

4 +
(
ew4[N ] − 1

)
N

4

γ
6

√
2e =

1 + ew̃/2
√
w̃

whereas for depolarizing, loss and spontaneous emission maps we obtain the QFIs and their
bounds, which to our knowledge have not been reported in the literature before. However,
similarly to the case of quantum phase estimation summarized in table 2, the obtained quantum
enhancement factors for depolarization and spontaneous emission channels serve only as
bounds, as they are not guaranteed to be saturable.

6. Estimation of decoherence strength

Lastly, we would like to emphasize that the CS, QS and CE methods described in section 4
also apply to estimation tasks in which the estimated parameter is not encoded in the unitary,
noiseless part of the system evolution. Examples of such schemes are the experimentally
motivated ones, in which one tries to quantify the effective strength of noise or loss present
in the apparatus. That is why we consider again the channels described in appendix A, but this
time with the parameter to be estimated being the decoherence strength η. This kind of problem
has been widely considered, not only in the estimation theory [44, 77–79], but also when
examining issues of channel discrimination [45, 46] with particular application in quantum
reading [50–52]. As compared to unitary rotations, the nature of the estimated parameter is
dramatically different. In the unitary parameter case, the use of the entangled input state of N
particles results in an effective N -times higher ‘angular speed’ of rotation leading to the HL in
the absence of noise. In decoherence strength estimation tasks, a change in the parameter value
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Table 4. Decoherence strength estimation quantified via channel QFIs and their
asymptotic bounds. Definitions of channels listed in the first column can be found
in appendix A. In contrast to phase estimation examples given in table 1, the
variable to be estimated here is the decoherence parameter η (06 η < 1). Due
to the different nature of the estimated parameter, the geometrical CS method
provides bounds that not just most tightly limit the asymptotic extended channel
QFIs, but actually coincide with its value. The results prove that only in the
case of the depolarization channel can the precision be enhanced with the use of
quantum estimation strategies, as for all other cases F [3η] = F [3η ⊗ I] = Fas.

Channel considered F [3η] F [3η ⊗ I] F CS
as = F QS

as = F CE
as

Dephasing
1

1 − η2

1

1 − η2

1

1 − η2
[81]

Depolarization
1

1 − η2
[70]

3

(1 − η)(1 + 3η)
[70]

3

(1 − η)(1 + 3η)
[35, 81]

Loss
1

η(1 − η)

1

η(1 − η)

1

η(1 − η)

Spontaneous emission
1

η(1 − η)
[82]

1

η(1 − η)
[82]

1

η(1 − η)

can be geometrically interpreted in the space of all valid quantum channels as a ‘movement’
in the direction away from the boundary of the space of the relevant CPTP maps, for which
‘speed’ cannot be naively amplified N -times when employing N parallel channels. Hence, as
in the case of lossy unitary rotation estimation, the optimal entangled inputs must lead, not
to scaling, but to constant factor quantum enhancements, which again can be quantified by
the methods of section 4. This also explains that for all the four noise models considered, the
purely geometrical notion of classical simulability is enough to bound most tightly the maximal
asymptotic precision of estimation. However, as for them also F CS

as = F QS
as = F CE

as = F [3η ⊗ I],
the CS-based asymptotic quantum enhancement corresponds to the classical estimation strategy
that employs independent but extended channels. The fact that factorizable inputs—uncorrelated
in between the extended N channels but possibly requiring entanglement between each single
particle and its ancilla—are optimal for noise estimation with extended channels, has already
been noticed for the low-noise [80] and generalized Pauli [81] channels, of which the latter
contain the dephasing and depolarization maps studied here.

In the case of the dephasing channel, we further realize that the extension at the single
channel level is also unnecessary, as F [3η] = F [3η ⊗ I] = 1/(1 − η2), and the geometrically
dictated bound of CS is attainable classically just by employing unentangled qubits in any
pure state lying on the Bloch sphere equatorial plane. Similarly, the spontaneous emission
and loss maps also turn out to be fully classical. In the first case, the asymptotic CS bound
coincides with the extended and unextended channel QFIs derived in [82], whereas for the
loss channel we obtain F CS

as = F [3η] = F [3η ⊗ I] = 1/(η(1 − η)), which at the single channel
level is achieved by a photon in any mixed state with the ancilla being redundant. On the one
hand, this emphasizes that entanglement between the photons entering the interferometer is
unnecessary and agrees with the results of [77, 78] confirming that the total photon number
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fluctuations are really the ones that limit the precision. These can be reduced by employing
Gaussian states [77] or can in principle be fully eliminated by the use of Fock states [78] that
attain the CS-bound.

The case of the depolarization map is different, as it is known that for qubits [70, 83] the
precision of estimation may be improved by extending the channel, i.e. F [3η]< F [3η ⊗ I].
This leaves the space for possible enhancement thanks to the use of entangled probes between
unextended channels and indeed this fact has already been observed when considering two
depolarization channels used in parallel [70]. The results are summarized in table 4.

7. Further discussion

We would also like to point that the SQL-like bounds, universally valid in practical metrological
scenarios, allow one to avoid some of the controversies characteristic for idealized decoherence-
free scenarios. When decoherence is not present and the probe states with an indefinite number
of particles are considered, such as e.g. squeezed states of light, the exact form of HL needs to
be reconsidered [84–86] since the direct replacement of N with the mean number of particles
N̄ may make the HL invalid. Moreover, the final claims on the achievable precision scaling
may strongly depend on the form of an assumed a priori parameter knowledge and lead to some
apparent contradictions [87, 88]. These difficulties do not arise in realistic metrological schemes,
as the asymptotic SQL-like bounds are valid also when N is replaced by N̄ for an indefinite
particle number state [39, 89]. The bounds derived in the local approach (small parameter
fluctuation) based on the calculation of the QFI are saturable in a single-shot scenario unlike the
decoherence-free case when only after some number of independently repeated experiments one
may expect to approach the theoretical limits [90, 91]. This is due to the fact that by employing
input states of grouped particles, which possess no correlations in between the groupings, and by
letting the groups to be of finite but sufficiently large size, one can attain the ultimate asymptotic
SQL bound up to any precision. Since saturability of the QFI bounds for independently prepared
probes is well established [62–64, 92], the operational meaning of the QFI is also clear in the
single shot scenario. The above argument also suggests the asymptotically optimal form of the
input states, which should include ones that do not possess long-range correlations in between
the particles. This observation has already been made in [93] and indicates that in methods
designed to search for the optimal inputs in scenarios with uncorrelated noise, one may restrict
oneself to states with short-range correlations, such as for example the matrix product states of
low bond dimensions [94].

We also conjecture from the point of view of the asymptotic SQL-like bounds that the
specific form of the a priori knowledge should not play an important role. In particular, we
expect that various methods such as Bayesian [95–98] or information theoretic [99, 100] should
recover the bounds compatible with the ones obtained via the local approach considered in this
paper. This statement is known to hold in the case of optical interferometry with losses [31, 32];
it is an intriguing question whether analogous claims can be made in more general scenarios.

8. Summary and outlook

We have constructed explicit methods capable of determining fundamental bounds on quantum
enhancement in metrological setups in the presence of uncorrelated noise. The methods are
based on the study of the structure of a single-particle quantum channel that represents the
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decoherence process. The methods do not require any kind of educated guess, nor an involved
numerical optimization—given a set of Kraus operators representing the channel, bounds on
precision can be derived immediately without the need to search e.g. for the optimal input states.
We have discussed the efficiency of CS, QS, RLD and CE methods in providing asymptotic
bounds on precision for phase estimation under a number of different decoherence models.
We have also generalized the CE method in order to provide tighter bounds in the regime of
a finite number of particles and we have shown that this generalization can again be cast in
the form of a semi-definite program. The methods have also been applied to a related problem
of frequency estimation. Moreover, it has been shown that, when thinking of the estimation
of the decoherence parameter itself, the simplest approach based on the CS method already
typically provides the tightest bounds. While the methods are efficient, as they avoid the search
for the optimal many particle input states, formulation of an explicit optimal estimation strategy
may in general require performing such a search. Hopefully, the optimal states are expected to
have a relatively simple structure and can be searched within a restricted class of states, such
as e.g. squeezed or matrix product states [73, 89, 93, 94]. Once the precision calculated for a
given input state hits the fundamental bound, one is guaranteed that the optimal strategy has
been identified. The natural future work on our methods is to generalize them and study their
applicability in the multiparameter estimation schemes where it is a priori not clear which of
the different approaches will be the most fruitful and whether some nontrivial new bounds may
be derived.
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Appendix A. Channels considered

We adopt the standard notation in which Id represents a d × d identity matrix and {σi}
3
i=1 are

the Pauli operators. In section 4.2 the parameter ϕ to be estimated is the rotation angle around
the z-axis of the Bloch ball, generated by the unitary operator Uϕ = exp [iσ3ϕ/2]. We consider
maps Dη with decoherence parameter η that commute with such rotation, whence 3ϕ[%] =

Dη[Uϕ%U †
ϕ ] = UϕDη[%]U †

ϕ and are defined accordingly by the Kraus operators presented below.
For each case, we also specify the purification determining the extended channel QFI (12)
(F [3ϕ ⊗ I] in table 1) in the form of the optimal generator of the Kraus representation rotation
h, as introduced in (10). Dealing with the frequency estimation tasks discussed in section 5 we
construct the effective one-particle Kraus operators by substituting ϕ → ωt and η→ η(t) in the
nominal ones, where ω is the estimated frequency detuning. For all models, we explicitly write
the Liouvillian L(n) determining the noise affecting each particle, see (30), and the effective form
of η(t). When discussing decoherence strength estimation in section 6, we consider solely each
of the following noise maps with η now being the parameter to be estimated: 3ϕ=η = Dη.
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A.1. Dephasing

• Decoherence parameter, η, represents the final equatorial radius of the Bloch ball shrunk
uniformly in the xy plane by the channel.

• Kraus operators:

K1 =

√
1 + η

2
I2, K2 =

√
1 − η

2
σ3. (A.1)

• Optimal purification determining the extended channel QFI (12):

h =

√
1 − η2

2
σ1. (A.2)

• One-particle Liouvillian for frequency estimation tasks:

L(n)[%] =
γ

2

(
σ
(n)
3 % σ

(n)
3 − %

)
, ∴ η(t)= e−γ t . (A.3)

A.2. Depolarization

• Decoherence parameter, η, represents the final radius of the Bloch ball shrunk isotropically
by the channel.

• Kraus operators:

K1 =

√
1 + 3η

4
I2,

{
Ki =

√
1 − η

4
σi−1

}
i=2...4

. (A.4)

• Optimal purification determining the extended channel QFI (12):

h =
1

2


0 0 0 ξ

0
0

[
σ2

]
0
0

ξ 0 0 0

 with ξ =

√
(1 + 3η) (1 − η)

1 + η
. (A.5)

• One-particle Liouvillian for frequency estimation tasks:

L(n)[%] =
γ

2

(
1

3

3∑
i=1

σ
(n)
i % σ

(n)
i − %

)
, ∴ η(t)= e−

2γ
3 t . (A.6)

A.3. Loss

• Decoherence parameter, η, represents survival probability of each of the particles that
are subject to independent loss processes. The channel on a single particle is formally
a map from a two- to a three-dimensional system with the output’s third dimension
corresponding to the vacuum mode responsible for the particle loss. Although in this case
one should strictly write 3ϕ = Dη[Uϕ%U †

ϕ ] = Ũϕ Dη[%]Ũ †
ϕ with Ũϕ acting on a different

Hilbert space, the effects of Uϕ and Ũϕ are physically indistinguishable, as the particle
losses commutability with the acquired phase (for instance see [30]). In the case of optical
interferometry, η represents the effective power transmittance assumed to be equal in both
arms and accounts for preparation and transmission loss as well as detector inefficiencies
in a Mach–Zehnder setup [31].
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• Kraus operators:

K1 =

0 0
0 0
0

√
1 − η

 , K2 =

 0 0
0 0

√
1 − η 0

 , K3 =

√
η 0

0
√
η

0 0

 . (A.7)

• Optimal purification determining the extended channel QFI (12):

h = −
1

2

[ σ3

]
0
0

0 0 0

 . (A.8)

• One-particle Liouvillian for the frequency estimation tasks:

L(n)[%] = γ

1∑
m=0

(
σ (n)m,+% σ

(n)
m,− −

1

2

{
σ
(n)
m,−σ

(n)
m,+, %

})
, ∴ η(t)= e−γ t , (A.9)

where σ (n)m,+ = |vac〉〈m| are the generators of the transition to the vacuum mode from qubit
basis states |0〉 and |1〉, such that σ (n)m,− = σ

(n)†
m,+ .

The methods discussed in the paper may also easily be applied to more general loss models
such as: unequal loss in the two arms of an interferometer [29] or the models with distinguished
preparation, transmission and detection loss [101]. For the conciseness of the paper, however,
we restrict ourselves to the simplest loss model described above.

A.4. Spontaneous emission (amplitude damping)

• Decoherence parameter, η, represents the radius of the disk obtained by projecting the
deformed Bloch ball outputted by the channel onto the xy plane.

• Kraus operators:

K1 =

(
1 0
0

√
η

)
, K2 =

(
0

√
1 − η

0 0

)
. (A.10)

• Optimal purification determining the extended channel QFI (12):

h =
1

2

(
ξ 0
0 −1

)
with ξ =

1 −
√
η

1 +
√
η
. (A.11)

• One-particle Liouvillian for the frequency estimation tasks (σ± =
1
2 (σ1 ± iσ2)):

L(n)[%] = γ
(
σ (n)+ % σ

(n)
− −

1
2

{
σ
(n)
− σ

(n)
+ , %

})
, ∴ η(t)= e−γ t . (A.12)

Appendix B. Equivalence of RLD-based bound applicability and local classical
simulability of a channel

Given a channel—a CPTP map 3ϕ : Hin → Hout—we define its C–J matrix representation [61]
as �3ϕ =3ϕ ⊗ I [|I〉 〈I|] =

∑
i |Ki(ϕ)〉 〈Ki(ϕ)|, where {Ki(ϕ)}

r
i=1 are the r linearly indepen-

dent Kraus operators of 3ϕ; we adopt a concise notation for bipartite states, in which |φ〉 =∑dimHin
i, j=1 〈i |φ | j〉 |i〉 | j〉 = φ⊗ I |I〉 = I⊗φT |I〉 with |I〉 =

∑dimHin
i=1 |i〉 |i〉. For simplicity, from
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now onwards we drop the explicit ϕ dependence of operators, assuming that the estimation
is performed for small variations δϕ around a given, fixed ϕ. In the supplementary material
of [39] (equation (S9)) it has been proven that the condition for any channel to be ϕ-non-
extremal at ϕ is equivalent to the statement that there exists a non-zero Hermitian matrixµi j such
that

�̇3ϕ =

∑
i j

µi j |Ki〉
〈
K j

∣∣ . (B.1)

On the other hand, the RLD-based bound exists there if and only if [37]

P�⊥
�̇2
3ϕ

P�⊥
= 0, (B.2)

where P�⊥
is the projection onto the null-space �⊥, i.e. the subspace orthogonal to �3ϕ , so that

∀i : P�⊥
|Ki〉 = 0. The (B.1) implies (B.2), as by substitution

P�⊥

∑
i j

µi j |Ki〉
〈
K j

∣∣2

P�⊥
=

∑
i j

(∑
p

µi p

〈
K p|K p

〉
µpj

)
P�⊥

|Ki〉
〈
K j

∣∣ P�⊥
= 0, (B.3)

thus any ϕ-non-extremal channel must admit an RLD-based bound on its extended QFI. In order
to prove the other direction, we split the derivatives of each C–J eigenvector into components
supported by�3ϕ and in the null-space�⊥: |K̇i〉 =

∑
j νi j |K j〉 + |K ⊥

i 〉. Hence, after substituting
for �̇3ϕ the (B.2) then simplifies to(∑

i

∣∣K ⊥

i

〉
〈Ki |

)∑
j

∣∣K j

〉 〈
K ⊥

j

∣∣= 0 (B.4)

and since A† A = 0 implies A†
= A = 0 and {|Ki〉}i are orthogonal, we conclude that all

|K ⊥

i 〉 = 0. Thus, (B.2) implies that |K̇i〉 =
∑

j νi j |K j〉, which, due to the local ambiguity of

Kraus representations (9), is equivalent to |
˙̃K i〉 =

∑
j

(
νi j − ihi j

)
|K̃ j〉 for any Hermitian h.

Therefore, without loss of generality, we may set h = −
i
2ν

AH after splitting ν into its Hermitian

and anti-Hermitian parts ν = νH + νAH, so that |
˙̃K i〉 =

∑
j ν

H
i j |K̃ j〉 with νH

6= 0 for any non-
trivial channel. Finally, we can write

�̇ϕ =

∑
i

∣∣∣ ˙̃K i

〉 〈
K̃i

∣∣∣+
∣∣∣K̃i

〉 〈
˙̃K i

∣∣∣= 2
∑

i j

νH
j i

∣∣∣K̃i

〉 〈
K̃ j

∣∣∣ (B.5)

and satisfy the condition (B.1).

Appendix C. RLD-based bound as a special case of asymptotic CE bound

For a channel that admits an RLD-based bound, in order to obtain the CS condition (B.5) in
appendix B, we chose h = −

i
2ν

AH that actually satisfies the βK̃ = 0 constraint (24) of the CE
method. This can be verified by taking the TrHout {. . .} of both sides of the identity∑

i j

hi j

∣∣K j

〉
〈Ki | =

∑
i j

i

2

(
νi j − ν

†
i j

) ∣∣K j

〉
〈Ki | =

i

2

∑
i

∣∣K̇i

〉
〈Ki | − |Ki〉

〈
K̇i

∣∣ , (C.1)
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which results in (24). This is consistent, as the CE method must apply to any ϕ-non-extremal
channel [39] admitting an RLD-based bound. Furthermore, the asymptotic CE bound (25) is at
least as tight as the RLD-based bound (13) on the extended channel QFI (12). We prove this by
substituting (B.5) into the definition of F RLD[3ϕ ⊗ I] in (13), so that

FRLD
[
3ϕ ⊗ I

]
= 4

∥∥∥∥∥∥TrHout

∑
i j

νH
j i

∣∣∣K̃i

〉∑
pq

νH
pq

〈
K̃q

∣∣∣

∥∥∥∥∥∥= 4

∥∥∥∥∥∑
i

˙̃K
†

i
˙̃K i

∥∥∥∥∥ , (C.2)

where we have used the fact that 〈K̃ j |�
−1
ϕ |K̃ p〉 = δ j p. Hence, F RLD[3ϕ ⊗ I] is an example of an

asymptotic CE-based bound with a possibly sub-optimal Kraus representation chosen such that
∀i : |

˙̃K i〉 =
∑

j ν
H
i j |K̃ j〉 and βK̃ = 0.

Appendix D. Optimal local quantum simulation of a channel

A channel 3ϕ of rank r , in order to be locally quantum simulable within small deviations δϕ
from a given ϕ, must fulfil the condition (see section 4.1.2)

3ϕ[%] = TrE8Eσ

{
U
(
%⊗

∣∣ψϕ〉 〈ψϕ∣∣)U †
}

+ O(δϕ2)=

r ′>r∑
i=1

K̄i(ϕ) % K̄i(ϕ)
† + O(δϕ2), (D.1)

where K̄i(ϕ)= 〈i | U |ψϕ〉 and {|i〉}r ′

i=1 form any basis in the r ′ dimensional HE8 ×HEσ space
containing ψϕ . Hence, 3ϕ must admit a Kraus representation {K̃i}

r ′

i=1 (with possibly linearly
dependent Kraus operators, as for generality we assume r ′ > r ) that coincides with the one
of (D.1) up to O(δϕ2), i.e. satisfies K̃i = K̄i and ˙̃K i =

˙̄K i for all i . We construct a valid
decomposition of |ψ̇ϕ〉 into its (normalized) components parallel and perpendicular to ψϕ:
|ψ̇ϕ〉 = i a|ψϕ〉 − i b|ψ⊥

ϕ 〉, where we can choose a, b ∈ R because of ∂ϕ
〈
ψϕ|ψϕ

〉
= 0 and the

irrelevance of the global phase. Then, the asymptotic bound F bound
as of (18) determined by the

local QS (D.1) at ϕ simply reads FQ[|ψϕ〉] = 4b2 and the required Kraus operators {K̃i}
r ′

i=1 of

3ϕ must fulfil conditions K̃i = 〈i | U |ψϕ〉 and ˙̃K i = 〈i | U |ψ̇ϕ〉 = i aK̃i − i b 〈i | U |ψ⊥

ϕ 〉. Hence,
for the local QS of channel 3ϕ to be valid, b must be finite and we must always be able to
construct

U =


K̃1

a
b K̃1 + i

b
˙̃K 1 • . . . •

K̃2
a
b K̃2 + i

b
˙̃K 2 • . . . •

K̃3
a
b K̃3 + i

b
˙̃K 3

...
. . .

...
...

... • . . . •

 (D.2)

with the first two columns fixed to give for all i the correct 〈i | U |ψϕ〉 and 〈i | U |ψ⊥

ϕ 〉

respectively. Due to locality, all entries marked with • in (D.2) can be chosen freely to
satisfy the unitarity condition U †U = UU †

= I. Yet, this constraint still requires the Kraus

operators to simultaneously fulfil i
∑r ′

i=1
˙̃K

†

i K̃i = a I and
∑r ′

i=1
˙̃K

†

i
˙̃K i =

(
b2 + a2

)
I. Without loss

of generality, we may shift their phase at ϕ, so that K̃i → e−iaϕ K̃i and the conditions become

independent of a, i.e. i
∑r ′

i=1
˙̃K

†

i K̃i = 0 and
∑r ′

i=1
˙̃K

†

i
˙̃K i = b2I. Furthermore, these constraints

do not require r ′ > r , as rewriting for example the first one as i
∑r ′

i=1〈ψ̇ϕ|U |i〉 〈i | U |ψϕ〉 = 0,
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one can always resolve the identity with some basis vectors
∑r ′

i=1 |i〉 〈i | =
∑r

i=1 |ei〉 〈ei | and
define linearly independent Kraus operators {Ki = 〈ei |U |ψϕ〉}

r
i=1 also fulfilling the necessary

requirements.
Finally, we may conclude that 3ϕ is locally quantum simulable at ϕ, if it admits a Kraus

representation satisfying conditions (21) stated in the main text, which due to locality can be
generated via (9) by some Hermitian r × r matrix h.

Appendix E. Finite-N CE method as a semi-definite programming task

The finite-N CE bound has been defined in (27) as

F CE
N = 4 min

h

{∥∥αK̃

∥∥+ (N − 1)
∥∥βK̃

∥∥2
}
, (E.1)

where ‖·‖ denotes the operator norm, αK̃ =
∑

i
˙̃K

†

i
˙̃K i and βK̃ = i

∑
i

˙̃K
†

i K̃i . Given a channel
3ϕ from a din- to a dout-dimensional Hilbert space and the set of its linearly independent
Kraus operators (dout × din matrices) {Ki}

r
i=1, in order to compute F CE

N , we should minimize
(E.1) over locally equivalent Kraus representations (9) of 3ϕ generated by all Hermitian, r × r
matrices h.

Based on the results of [39], where the βK̃ = 0 constraint (24) is also imposed on (E.1),
we show that F CE

N can always be evaluated by means of semi-definite programming (SDP).
Adopting a concise notation in which K is a column vector containing the starting Kraus
operators Ki as its elements, we can associate all locally equivalent Kraus representations K̃
in (E.1) with those generated by any h via K̃ = K and ˙̃K = K̇ − ihK. By constructing matrices
(Id represents a d × d identity matrix)

A =

[
√
λaIdin

˙̃K
†

˙̃K
√
λaIr ·dout

]
, B =

√
λbIdin

(
i ˙̃K

†
~K
)†

i ˙̃K
†

~K
√
λbIdin

 , (E.2)

which positive semi-definiteness conditions correspond respectively to

αK̃ =
˙̃K

† ˙̃K6 λaIdin, β
†
K̃
βK̃ = ~K† ˙̃K ˙̃K

†
K̃6 λbIdin, (E.3)

we rewrite (E.1) into the required SDP form

F CE
N = 4 min

h
{λa + (N − 1)λb} ,

s.t. A> 0, B> 0. (E.4)

For the purpose of this paper we have implemented a semi-definite program using the CVX
package for Matlab [102], which efficiently evaluates (E.4) given the set of Kraus operators and
their derivatives of a generic channel 3ϕ . The fact that only K and K̇ are involved in (E.4) is a
consequence of the QFI, and hence the bound F CE

N , being a local quantity.
Lastly, one should note that by slightly modifying the program in (E.4) we are able to also

efficiently evaluate the extended channel QFI (12), as F [3ϕ ⊗ I] = FCE
N=1 and the asymptotic

extended channel QFI (25), Fas[3ϕ ⊗ I] = F CE
as , by setting N = 1 and imposing the βK̃ = 0

constraint (24) as already pursued in [39].
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