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Abstract

Itis known that non-commuting observables in quantum mechanics do not have joint probability.
This statement refers to the precise (additive) probability model. I show that the joint distribution of
any non-commuting pair of variables can be quantified via upper and lower probabilities, i.e. the joint
probability is described by an interval instead of a number (imprecise probability). I propose
transparent axioms from which the upper and lower probability operators follow. The imprecise
probability depend on the non-commuting observables, is linear over the state (density matrix) and
reverts to the usual expression for commuting observables.

1. Introduction

Non-commuting observables in quantum mechanics do not have a joint probability [1-5] (see appendix A.1 for
areminder). This is the departure point of quantum mechanics from classical probabilistic theories [6]; it lies in
the core of all quantum oddities. There are various quasi-probabilities (e.g., Wigner function) which have
features of joint probability for (loosely defined) semiclassical states [7—9, 13]. Quasi-probabilities do have two
problems: (i) they (must) get negative for a class of quantum states, thereby preventing any probabilistic
interpretation for them'. (ii) Even if the quasi-probability is positive on a certain state, it is not unique, i.e. there
can be other (equally legitimate) quasi-probability that is positive (and has other expected features of
probability) on this state, e.g. there are Wigner function, P-function, Terletsky—Margenau—Hill function etc
[15, 16]. Despite of the drawbacks, quasi-probabilities do have many applications [7—12], since they still possess
certain features of joint probability, e.g. they reproduce the marginals [2, 4, 7-9, 12]. In particular, there are
applications in equilibrium quantum statistical mechanics, where the Wigner quasi-probability and the
Terletsky—Margenau—Hill function [ 15, 16] are routinely employed for studying equilibrium relations in

the semi-classical domain®[17]. Applications in non-equilibrium quantum statistical mechanics are even

more known, since whole chapters of open-system dynamics are written in terms of quasi-probabilities;

see e.g. [10]. Another application of the Terletsky—Margenau—Hill quasi-probability for quantum non-
equilibrium thermodynamics was proposed recently in the context of fluctuations of work and fluctuation
theorems [12].

As a possible alternative to quasi-probabilities, one can relax the requirement that the sought joint
probability correctly reproduces the marginals’. This is done when studying joint measurements of non-
commuting variables [4, 5, 21-26]. Such measurements have to be approximate, since they operate on an
arbitrary initial state [4, 5]. They produce positive probabilities for the measurement results, but it is not clear to
which extent these probabilities are intrinsic [27], i.e. to which extent they characterize the system itself, and not

! Negative probabilities were not found to admit a direct physical meaning [ 14] (what can be less possible, than the impossible?). In certain
cases what seemed to be a negative probability was later on found to be alocal value of a physical quantity, i.e. physically meaningful, but not
aprobability [14]. Mathematical meaning of negative probability is discussed in [ 18, 19].

% One should stress here that the usage of quasi-probabilities in statistical mechanics is frequently implicit, but is nevertheless essential. For
instance, the routine introduction of symmetrized correlators of non-commuting variables [ 17] implies an implicit choice of the underlying
Terletsky—Margenau—Hill quasi-probability, because the symmetrized correlators are the ‘real’ correlators with respect to this quasi-
probability. This point is seen in the standard quantum fluctuation—dissipation theorem [17].

3 L. . . ..
Employing instead the unbiasedness: the averages of the non-commuting quantities are reproduced correctly [22].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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approximate measurements employed. Alternatively, one can consider two consecutive measurements of the
non-commuting observables [28, 29]. These two-time probabilities do not (generally) qualify for the joint
probability of the non-commuting observables; see appendix A.2.

Itis assumed that the sought joint probability is linear over the state (density matrix). If this condition is
skipped, there are positive probabilities that correctly reproduce marginals for non-commuting observables
[20,24], e.g. simply the product of two marginals [13]. However, they do not reduce to the usual form of the
joint quantum probability for commuting observables*; hence their physical meaning is unclear [13].

The statement on the non-existence of joint probability concern the usual precise and additive probability.
This is not the only model of uncertainty. It was recognized since early days of probability theory [49] that the
probability need not be precise: instead of being a definite number, it can be a definite interval [51-54]; see [55]
for an elementary introduction”.

Instead of a precise probability for an event E, the measure of uncertainty is now an interval [p (E), p (E)],
where 0 < p(E) < p (E) are called lower and upper probabilities, respectively. Qualitatively, p (E) (1 — p (E))
is a measure of a sure evidence in favor (against) of E. The event E is surely more probable than E', if
Pp(E) > p (E'). The usual probability is recovered for p (E) = p (E). Two different pairs [p (E), p (E)]and
[p'(E), p’(E)]canhold simultaneously (i.e. they are consistent), provided that p’(E) < p(E)and
p'(E) > p (E) forall E. In particular, every imprecise probability is consistent with® p’(E) = 0, p'(E) = 1.

Itis not assumed that for all E there is a true (precise, but unknown) probability that lies in [p(E), p(E)]
This assumption is frequently (but not always [34]) made in applications” [52, 53], and it did motivate the
generalized Kolmogorovian axiomatics of imprecise probability [54]; see appendix B.1. Imprecise joint
probabilities in quantum mechanics are to be regarded as fundamental entities, not reducible to alack of
knowledge. They do need an independent axiomatic ground.

My purpose here is to propose a transparent set of conditions (axioms) that lead to quantum lower and
upper joint probabilities. They depend only on the involved non-commuting observables (and on the quantum
state).

The next section discusses previous attempts to introduce imprecise probability in quantum physics.
Section 3 recalls standard linear algebra notations employed in this work. Section 4 describes physical conditions
thatare imposed on the sought imprecise probability. Section 5 outlines the main linear-algebra tool (CS-
representation for projection operators) that is employed for finding the imprecise probability operators. Details
of this representation are outlined in appendix C. Section 6 presents the main result: formulas for upper and
lower probability operators. Their detailed derivation can be followed in appendix D. Several physical features of
these operators are discussed in section 7 and also in appendices E and F. Section 8 discusses upper and lower
probabilities for coordinate and momentum. I summarize in the last section. There I also mention several open
problems related to this research.

2. Previous work

In 1967 Prugovecki tried to describe the joint probability of two non-commuting observables in a way that
resembles imprecise probabilities [30]. But his expression was not correct, since it still can be negative [13]; cf
footnote 1 and see also [18] in this context.

In 1991 Suppes and Zanotti proposed a local upper probability model for the standard setup of Bell
inequalities (two entangled spins) [31]; see also [32, 33]. The formulation was given in the classical event space of
hidden variables, and it is not unique even for the particular case considered. It violates classical observability
conditions for the imprecise probability [31, 34, 54]. In particular, no lower probability exists in this scheme.
Despite of such drawbacks, the pertinent message of [31] is that one should attempt at quantum applications of
the upper probabilities that go beyond its classical axioms.

More recently, Galvan attempted to empoy (classical) imprecise probabilities for describing quantum
dynamics in configuration space [37]. For a general discussion on quantum versus classical probabilities
see [38].

4 Given two projectors P and Q and state p, this productis tr(pP)tr(pQ), while the correct form for PQ = QP is tr (pPQ).

> Ellsberg’s paradox is an example in psychology, where the ordinary probability theory does not apply, while imprecise probabilities can be
used fruitfully for explaining experimental results on human decision making [50].

[ I 5 . e . . . . e
This ‘nothing is known’ situation cannot be represented by usual probabilities, the simplest example showing that imprecise probabilities
can model types of uncertainty that are not captured by the precise model.

The assumption is legitimate in statistics, where one bounds the unknown (additive) probability via a finite number of observations [52]. It
is not forbidden in subjective theories, where one aims at quantifying an uncertain human opinion via probabilities [53].
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3. Notations

All operators (matrices) live in a finite-dimensional Hilbert space H. For two Hermitean operators Yand Z,
Y > Z means that all eigenvalues of Y — Z are non-negative, i.e. (| (Y — Z)y) > Oforany|y) € H. The
directsum Y @ Z of two operators refers to the following block-diagonal matrix:
Y 0
voz=(1 ).

ran(Y) is the range of Y (set of vectors Y |y), where [yr) € H). I is the unity operator of H. ker (Y) is the
subspace of vectors |¢p) with Y |¢p) = 0.

I, and 0, are the n X n unity and zero matrices, respectively.

In the direct sum of two sub-spaces, H @ G it is always understood that Hand G are orthogonal. The vector
sum of (not necessarily orthogonal) sub-spaces A and B will be denoted as A + B. This space is formed by all
vectors |y) + |¢), where |y) € Aand|¢p) € B.

4. Axioms for quantum imprecise probability

Existing axioms for imprecise probability are formulated on a classical event space with usual notions of con-
and disjunction and complemention [51, 51-54]; see appendix B for a reminder. For quantum probability it is
natural to start from a Hilbert space and introduce upper and lower probabilities as operators. The axioms below
require only the most basic feature of upper and lower probability and demand its consistency with the quantum
joint probability whenever the latter is well-defined.

The usual quantum probability can be defined over (Hermitean) projectors P = P?[39, 40]. A projector
generalizes the classical notion of characteristic function. Each P uniquely relates to its eigenspace ran (P). P
refers to a set of Hermitean operators {P}:

[P,P]=PP—-PP=0. (1)

P isaprojector to an eigenspace of P or to a direct sum of such eigenspaces, i.e. P refers to an eigenvalue of P or
to aunion of several eigenvalues. The quantum (precise and additive) probability to observe P = 1is tr [pP],
where the density matrix 0 < p < I defines the quantum state [4, 5, 39, 40].

Let Q be another projector which refers to the set {Q} of observables. Generally, [P, Q] = 0.Given the
density matrix p, we seek upper and lower joint probabilities of P and Q (i.e. of the corresponding eigenvalues of
Pand Q):

P P,Q =tulpa(P, Q) plpP Q =trlp @(P, Q)), (2)

where @ (P, Q) and @ (P, Q) are Hermitean operators. Note that the upper and lower probabilities in (2) are
assumed to have the usual Born’s form, as far as their dependence on p is concerned.
We impose the following conditions (axioms):

0<2P, Q<P QLI (3)

o(P,Q =w(QP), &P Q=a(QP), (4)

@, Q =P, Q =PQ, if [P,Q] =0, (5)

tr(p (P, Q) <tr(p PQ) < tr(p @ (P, Q)), if [P, p] =0, or if [p, Q] =0, (6)
[0(P, Q), Q] =[w(P,Q), Pl =0, w=0,o. (7)

Equation (2) implies that p and p depend on {P}and {Q} only through P and Q. This non-contextuality
feature holds also for the ordinary (one-variable) quantum probability [43, 44]. Provided that the operators @
and @ are found, p and p can be determined in the usual way of quantum averages.

Conditions (3)_stem from0 < p(p; P, Q) < p (p; P, Q) < 1thatare demanded for all density matrices p.
Equation (4) is the symmetry condition necessary for the joint probability. Equation (5) is reversion to the
commuting case. In particular, (5) ensures @ (P, 0) = @ (P, 0) = 0 and

w(P, ) =& (P, I)=P. (8)

Since Q = I means that Q isanywhere, (8) is the reproduction of the marginal probability. The latter cannot be
recovered by summation, since the very probability model is not additive.

For [P, Q] = 0 thejoint probabilityis tr (oQP) = tr(pPQ). This expression is well-defined (i.e. positive,
symmetric and additive) also for [p, Q] = 0 or[p, P] = 0 (butnotnecessarily [P, Q] = 0).If[p, Q] = 0,0ne
obtains tr (pQP) by measuring Q (p is not disturbed) and then P. Alternatively, one can obtain it by measuring
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the average of an Hermitean observable % (PQ + QP). Thus (5), (6) demands that p (p; P, Q)and p(p; P, Q)

are consistent with the joint probability tr(p PQ), whenever the latter is well-defined.

Finally, equation (7) means that w (P, Q) (w = w, @) can be measured simultaneously and precisely with P
or with Q (on any quantum state), a natural condition for the joint probability (operators)®.

If there are several candidates satisfying (3)—(7) we shall naturally select the ones providing the largest lower
probability and the smallest upper probability.

5. CS-representation

This representation will be our main tool. Given the projectors P and Q, Hilbert space H can be represented as a
direct sum [45-47] (see appendix C)

H=H" @& H;; & H;y @& Hy; & Hyo, 9)

where the sub-space H,; of dimension 1, is formed by common eigenvectors of P and Q having eigenvalue
(for P) and f§ (for Q). Depending on P and Q every sub-space can be absent; all of them can be present only for
dimH > 6. Now H;; = ran(P) N ran(Q) is the intersection of the ranges of P and Q. H’ has even dimension 2
m [46,47], this is the only sub-space in (9) that is not formed by common eigenvectors of P and Q. There exists a
unitary transformation

P=UPU', Q=UQU', UU'=1I, (10)
sothat Pand Q get the following block-diagonal form related to (9) [46]:
\ I, O,
Q=Q’@Iﬂ’l”®[mlo®01ﬂm®0mgo) QIE(O 0 )) (11)
. 2
P=P @l ® Oy ® Ly ® O0pyy P' = (C CS], (12)
CS §?
where Cand S are invertible square matrices of the same size holding
C*+8*=1, [C Sl =0. (13)
Now ran(P’) and ran (Q’) are sub-spaces of H". One has C = cos T and S = sin T, where T'is the operator
analogue of the angle between two spaces. H,,,, are absent, if Pand Q do not have any common eigenvector.
This, in particular, happens in dim (H) = 2.
6. The main result
Note that if (3)—(7) holds for P and Q, they hold as well for Pand Q, because @ (P, Q) = U'w (P, Q) U for
® = w, @.Appendix D shows how to get @ (P, Q)and @ (P, Q) from (3)—(7)and (11), (12):
A c* o
a_)(P; Q) = " &%) Im“ &) 0m10+m01+m00: (14)
0, C?
Q(ﬁ; Q) =0y, ® Imu ® 0m|o+m01+m00' (15)

Let g (P, Q) = g(Q, P)be the projector onto intersection ran (P) N ran(Q) of ran (P) and ran(Q). We now
return from (10), (14) and (15) to original projectors P and Q (see appendix D) and obtain the main formulas:

(P, Q) =g (P, Q), (16)
@(P,Q=1-(P-Q*-g(I-P,I1-Q). (17)

For [P, Q] = 0, g (P, Q) = PQ,andwerevertto @ (P, Q) = @ (P, Q) = PQ. Note that
[P, (P- Q)] =1[Q, (P- Q)] =0.

7. Physical meaning of upper and lower probability operators

When looking for a joint probability defined over two projectors P and Q one wonders whether it is just not
some (operator) mean of P and Q. For ordinary numbers a > 0and b > 0 there are three means: arithmetic

Without condition (7), I was not able to fix the upper probability operator, i.e. without (7) there are many operator candidates that are not
consistent with each other, i.e. not related by operator analogues of larger or smaller.

4
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%b, geometric Jab and harmonic %. Now (16) is precisely the operator harmonic mean of P and Q [57]
g(P,Q=2P(P+ Q" Q=2Q(P+Q)P, (18)

where A~ is the inverse of A if it exists, otherwise it is the pseudo-inverse; see appendix E for various
representations of @ (P, Q) and @ (P, Q). More familiar formula is

g(P’ Q) = limn—wOQ (PQ)n = hmn—»ooP(QP)n- (19)

The intersection projector g (P, Q) appears in [39—43]. It was stressed that g (P, Q) cannot be ajoint
probability for non-commutative P and Q [21]. Its meaning is clear by now: it is the lower probability for P and
Q. Note that

gP,Q =0, if [P,Q] = 0 and tr(P) =tr(Q) =1, (20)

since two different rays (P and Q) cross only at zero. Thus, g (P, Q) is non-zero for [P, Q] = 0,onlyif
tr(P) > 2 (or tr(Q) > 2).1consider this as a natural features of the quantum lower probability, because the
classical case—where the lower probability is expected to be non-zero and close to the upper probability—can
be generically reached due to the coarse-graining, i.e. due to tr (P) (or tr(Q), or both) being sufficiently larger
than 1.

Let us now turn to @. The transition probability between two pure states is determined by the squared cosine
of the angle between them: | (y |¢) | = cos® 6. Equation (14) shows that @ (P, Q) dependson C* = cos* T,

where T'is the operator angle between Pand Q Note from (11), (12) that the eigenvalues A of PQ, which hold
0 < A < 1arethe eigenvalues of C*, and | as seen from (14)—they are also (doubly-degenerate) eigenvalues of
@ (P, Q). Thus we have a physical interpretation not only for tr (PQ) (transition probability), but also for
eigenvalues of PQ (PQ and QP have the same eigenvalues).

Equations (10), (14) and (15) imply that the upper and lower probability operators can be measured
simultaneously on any state (cf (7)):

[@(P, Q), @(P, Q)] = 0. (21)

The operator @ (P, Q) — w (P, Q) quantifies the uncertainty for joint probability, the physical meaning of this
characteristics of non-commutativity is new.

Appendix G calculates the upper and lower probabilities for several examples.

Note that the conditional (upper and lower) probabilities are straighforward to define, e.g. (cf(2)):
P (p; P|Q) = p (p; P, Q)/tr(pQ).

The distance between two probability intervals [p, p]and [p’, p’] can be calculated via the Haussdorff
metric [56]

max[ |p - p'|, 15 - 71, (22)

which nullifiesifand onlyif p = p’and p = p’, and which reduces to the ordinary distance |p — p’|for usual
(precise) probabilities.
Let us see when we can use the notion of ‘surely more probable’. Now

tr(ﬂ Q(Pl) Ql)) >tr(.05(P) Q))) (23)

means that the pair of projectors (B, Q) is surely more probable (on p) than (P, Q);see appendix G for
examples. Note from (16), (17) thatif

tr(pw(P, Q) > tr(pw(l - P, 1 -Q)), (24)

holds for ® = @, thenitalso hods for @ = @ (and vice versa). Though in a weaker sense than (23), (24) means
that P and Q together is more probable than neither of them together (which is the pair (I — P, I — Q)).
equations (23), (24) are examples of comparative (modal) probability statements; see [36] in this context.

Further features of @ and @ are uncovered when looking at a monotonic change of their arguments; see
appendix F. Appendix G discusses concrete examples that illustrate these features. Yet another example is
provided below.

8. Coordinate and momentum

Coordinate x and momentum p operators, [x, p] = i (# = 1) is the most known example of non-commutativity
in quantum mechanics. Hence I shall illustrate the upper and lower probability for this example. In the (one-

dimensional) x-representation, x-operator amounts to multiplication, while p = —15. For intervals

x € X = (X}, Xp)and p € Y = (Y}, V») the corresponding projectors read in the coordinate representation

5
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Figure 1. The upper probability (¢, |@ (Qx, B,)|¢, ), where @ (Qx, B, )is given by (28) with X = (X;, o0o)and Y = [— 0.5, 0.5] (red
curve), Y = [— 1, 1] (bluecurve), Y = [— 1.5, 1.5] (green curve), Y = [— 2, 2] (black curve). Here ¢, (x) = (4/7:)1/4966”‘2/2 is the
wave-function of the first excited level for the harmonic oscillator with Hamiltonian H = (p? + x2)/2. This example of ¢, is chosen,
because the Wigner function for the excited states of the harmonic oscillator is negative [8] and thus cannot serve for probabilistic
reasoning. Note that for small values of X (left plateau on the figure), (¢, |@ (Qx, B,) |¢,) tends to (¢, | B, |¢, ), while for large values
of X ittendsto 1 — (¢, |P, |4, ). For the eigen-functions of H = (p*> + x2)/2, the (marginal) distributions of the coordinate and
momentum are equal, e.g. (¢, [Py |¢,) = (¢ |Qx |, ).

1 Y . ,
Qx(x x) =6(x — x)zy (x),  B(x,x)=— [ dyevt), (25)
2 J v
where yy (x) = 0 (x — X;)6 (X, — x)is the characteristic function of interval X. Recall that Qyand B, are linked
via the Fourier transform:

B =F*QyF~, [F*pl(y) = % / dx =V (y). (26)

The first thing to note is that if X and Y are finite intervals, then g (Qx, B,) = 0,i.e. B, ¢ = ¢pand Qx¢p = ¢plead
to ¢ = 0. Thisis a well-known result in the Fourier analysis; see, e.g. [61-63]. The simplest way to show it is to
note (from (26)) that Qy F~¢ has a finite support, hence F*Qy F~¢p = ¢ is analytic. On the other hand, ¢
should have a finite support. Thus ¢ = 0. This argument extends to the case, where (say) Yis semi-infinite, e.g.
Y = (Y, o0), while X differs from (—o0, o0) by a finite (or semi-infinite) interval [63]. Indeed, now
[P, (x) = % /dé e [Qy F~¢] (&) is analytic for Im x > 0, while from Qx ¢ = ¢ it follows that ¢ (x) is
zero in a finite interval at least.

Thus, for finite (or at least one semi-infinite) intervals X and Y the lower probability for the joint distribution
of the coordinate and momentum is zero (cf (16) )

Q(QX) PY) zg(QX> PY) =0. (27)

However, if both X and Yare finite intervals, g (I — Qx, I — B,) = 0, e.g. theabove analiticity argument
does not work. Moreover, g (I — Qx, I — B, ) has adiscrete spectrum, and its range is infinite-dimensional
[61, 62]. We shall avoid this complication by looking at those case, where (atleast) one of X and Y'is semi-
infinite. Then (27) still holds, while the upper probability operator @ (Qy, B, ) reduces to (cf (17))

@(Qx, B) =1-(Qx - R), (28)

and is straightforward to calculate via (25). Several examples of the upper probability calculated from (28) are
presented in figure 1.

9. Summary and open problems

The main message of this work is that while joint precise probability for non-commuting observables does not
exist, there are well-defined operator expressions for upper and lower imprecise probabilities. They are not
additive, but otherwise they do satisfy a number of reasonable conditions: positivity, reproduction of correct
marginals, direct observability via quantum averages, consistency with the (effectively) commuting case, where
the joint probability is well-defined etc.

Several open questions are suggested by this research. First of all, it is not clear what is the suitable way of
defining averages over the imprecise probability. This would be necessary for defining various correlation
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functions. Recall that the average (X ') of a random variable X that has a precise probability is defined via two
conditions (see e.g. [60]): linearity, (aX + bY) = a(X) + b(Y),and monotonicity, X < Y implies (X) < (Y).
Presumably, these conditions are to be modified for imprecise probability; in addition the sought average should
reduce to the usual one when averaging over a single observable. This question should be clarified before the
imprecise probability can be efficiently applied in quantum statistical mechanics.

Another open issue relates to the point (see (6)) that whenever the joint probability tr (pPQ) for non-
commuting projectors P and Q is well defined due to e.g. [p, P] = 0 (see the discussion after (8)), the upper and
lower probabilities p (p; P, Q)and p (p; P, Q) are merely consistent with the exact probability tr (pPQ), butare
not equal to it, which would be a more desired outcome. It is thus not completely clear whether the found
imprecise probabilities cannot be made more precise by looking at more general conditions (axioms), e.g. those
thatinvolve a nonlinear dependence on the density matrix p; c¢f (2). Such a dependence might however impede
the direct observability of imprecise probabilities; the resulting issues need further investigations.

In a more remote perspective, one can ask about the joint imprecise probability of 3 (and more) non-
commuting observables. In contrast to the previous two open problems, where the progress looks to be feasible,
this is a difficult problem, because no analogue of the CS-representation for 3 (or more) non-commuting
projectors seems to exists; see however [64].
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Appendices

All 6 appendices can be read independently from each other.

Appendices A—C recall, respectively, the no-go statements for the joint quantum probability, generalized
axiomatics for the imprecise probability and the CS-representation. This material is not new, but is presented in
afocused form, adapted from several different sources.

Appendix D contains the derivation of the main result, while appendices E and F demonstrate various
feature of quantum imprecise probability.

Appendix G illustrates it with simple physical examples.

Appendix A. Non-existence of (precise) joint probability for non-commuting observables

A.1. The basic argument
Given two sets of non-commuting Hermitean projectors:
np
YP=1, PP=06iP, np<n, (A1)
k=1
1nQ
YQe=1 QQi=6xQp no<n, (A2)
k=1

we are looking for non-negative operators IT; > 0 such that for an arbitrary density matrix p
owlplli) =1, Y u(plly) = r(pPy), Y tr(plly) = tr(pQs). (A3)
ik i k

These relations imply

N=1, Mx<Qi My< P (A4)
ik

Now the second (third) relation in (A4) implies ran (/T ) C ran(Q;) (ran(/Ty) C ran(F,)). Hence
ran(ITy) C ran(Q;) N ran(B,).

Thus, if ran(Q;) N ran(B,) = 0 (e.g. when P, and Q; are one-dimensional (1D)), then T = 0, which
means that the sought joint probability does not exist.

Ifran(Q;) N ran(B,) = 0,thenthelargest IT; thatholds the second and third relation in (A4) is the
projection g (B, Q;)onran(Q;) N ran(B,) = 0. However, the first relation in (A4) is still impossible to satisfy
(for [P, Qx] = 0),asseen from the superadditivity feature (F1):

7
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D8 (P Qi) < Zg[ZB, Qk] =D, Q) =Y Q=1 (A5)
k i k k

ik

A.2. Two-time probability (as a candidate for the joint probability)

Given (A1), (A2), we can carry out two successive measurements. First (second) we measure a quantity, whose
eigen-projections are {F,} ({Q;}). This results to the following joint probability for the measurement results (p is
the density matrix)

tr( Q;P,pP, ). (A6)
Likewise, if we first measure {Q; } and then {B, }, we obtain a quantity that generally differs from (A6):
tr( P QipQ; ). (A7)

If we attempt to consider (A7) (or (A6)) as ajoint additive probability for P;and Qy, we note that (A7) (and
likewise (A6)) reproduces correctly only one marginal:

nq np
D tr(QiPypPy) = tr(Pp), but Y. tr(QiPepP) =tr(Qip). (A8)

i=1 i=1

One can attempt to interpret the mean of (A6), (A7)

(A9)

P.Q:P, + Q;P,Q;
uips P, Q) = %[tr(Pinin) + tr(QiPypP,)] = tr( p (QiP + QiPQ )

2

as anon-additive probability. This object is linear over p, symmetric (with respect to interchanging P and Q;),
non-negative, and reduces to the additive joint probability for [P, Q;] = 0. Therelation u (p; B, I) = tr(pF,)
can be interpreted as consistency with the correct marginals (once y (p; P, Q;) is regarded as a non-additive
probability, there is no point in insisting that the marginals are obtained in the additive way).

However, the additive joint probability tr (pB, Q;) is well-defined also for [p, B,] = 0 (or for [p, Q;] = 0).If
[p, P.] = 0holds, u(p; B, Q;)isnot consistent with tr(pB, Q;), i.e. depending on p, Prand Q;both

u(p; P, Qi) > tr(pPQ;) and u(p; P, Qi) < tr(pPQ;) (A10)

are possible.

To summarize, the two-time measurement results do not qualify as the additive joint probability, first
because they are not unique (two different expressions (A6) and (A7) are possible), and second because they do
not reproduce the correct marginals. If we take the mean of two expressions (A6) and (A7) and attempt to

interpret it as a non-additive probability, it is not compatible with the joint probability, whenever the latter is
well-defined.

Appendix B. Axioms for classical imprecise probability

B.1. Generalized Kolmogorov’s axioms
Given the full set of events 2, p (. ) and p (. ) defined over sub-sets A, B, ...of Q2 (including the empty set {0})
satisfy [52-54]:

p({o}) =0, (B1)

p)=1, (B2)
p(A)=1-p(2-A), (B3)

p(A U B) = p(A) +p(B), if AN B=1{0}, (B4)
p(AU B <p(A) +p(B), if AN B={0}, (B5)

where 2 — A includes all elements of 2 that are notin A, and where A N B means intersection of two sets;
A N B = {0} holds for elementary events.
Here are some direct implications of (B1)—(B5)

A2B = p(A) 2p(B), (B6)
P(A) > p(B). (B7)

Equation (B7) follows directly from (B4). Equation (B6) follows from (B4), (B3). Next relation:
FAUB >F@A) +pB) >pAUB), fANB=0, (B8)
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which, in particular, implies
F(A) > p(A). (B9)
To derive (B8), note that (B4), (B3) imply p (2 — A — B) < p (2 — A) — p(B)or
P2 —A) > p(B) + p (2 — A — B),whichis the first inequality in (B8). The second inequality is derived via
" 2l)"}(11e3?()).llowing inequality generalizes the known relation of the additive probability theory
p(A) + p(B)<F(A U B +p(a N B). (B10)
To prove (B10), wedenote A’ = A — A N B,whichmeans A’ N B = {0}. Now
pAUB +p(ANB =p@A" UB) +p(AN B
>p(A) + p(A () B) + p(B) (B11)
2p(A) + p(B), (B12)

where in (B11) (resp. in (B12)) we applied the first (resp. the second) inequality in (B8).
Note that the (non-negative) difference Ap (A) = p (A) — p(A) between the upper and lower probabilities
also holds the super-additivity feature (cd (B5))

Ap(A U B) < Ap(A) + Ap(B), if A ) B=0. (B13)
Employing (BS) one can derive [58] for arbitrary A; and Ay:
(AU A2) + p(Ar N A2) < p(A) +5(A) <A U Ar) +5 (A N Ay, (B14)
P(A) +p(A2) S p(AL U Az) + P (AL N A) SP(A) + P (Ay), (B15)
POAD) + p(A) <P (A U As) + p(Ar N Ar) <P (A) + P (Ar). (B16)
B.2. Joint probability
The joint probabilities of A and B are now defined as
p(A,B)=p(ANB), p(A, B)=p(A N B). (B17)
Employing the distributivity feature
(A1 U A2) N As = (A1 N A3) U (A2 N As), (B18)
which holds for any triple A,, A, As, we obtain from (B4), (B5) for B A C = {0}
PABUO=p(ANBUMANOC)2p@A, B)+p4 0, (B19)
PABUCO=p((ANB UMANCOC)<P(A B +p(4C). (B20)

B.3. Dominated upper and lower probability

The origin of (B1)—(B5) can be related to the simplest scheme of hidden variable(s) [52]. One imagines that there
exists a precise probability By (A), where the parameter 8 is not known. Only the extremal values over the
parameter are known:

P (A) = maxy[B)(A)], p(A) =ming[R(A)], (B21)
which satisfy (B1)—(B5).

However, it is generally not true that (B1)—(B5) imply the existence of a precise probability B (A) that holds
(B21) [53].

Appendix C. Derivation of the CS-representation

C.1. The main theorem
Let Q' and P’ are two subspaces of Hilbert space H’ that hold (Q'* is the orthogonal complement of Q)

QNP=0 QNP+=0, Q* NP =0, Q* NP+=0. (C1)
The simplest example realizing (C1) is when Q" and P” are 1D subspaces of a two-dimensional (2D) H’.
Let Q' and P’ be projectors onto Q' and P’ respectively. Now I — Q' is the projector of P't, and let
g (P’, Q') bethe projector Q" N P’". Employing the known formulas (see e.g. [47])

9
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wr(Q-¢(QI-P)=tu(P-gPI1-Q), (C2)
we get from (C1)

dim P’ = dim Q' = dim P"* = dim Q" = %dim H = m, (C3)

which means that dim H’ should be even for (C1) to hold’.
Here is the statement of the CS-representation [46]: after a unitary transformation Q' and P’ can be
presented as

X I, O, . 2
Q = ( ) P = (C CS)’ C*+ §*=1,, ker[C]=ker[S] =0, (C4)
0 Oy CcSs §?

where all blocks in (C4) have the same dimension .
To prove (C4), note that Q' and P’ can be written as (cf (C3))

A L O A K' B
"= ! = T > > ! = .
Q (Om Om)) p (BT L), K'>20,L>0, tr(K'+L)=m (C5)
Next, let us show that
ker[ B] = 0. (Ce6)

e (0,
SlnceQP(I—Q)—(Om 0,

we have P'|y) € Q'+, which together with Q"+ N P’ = 0 (see (C1))leadsto |y) = 0. Equation (C6) implies
that there is the well-defined polar decomposition (B is Hermitean, while V'is unitary)

),we need to show that forany [y) € Q'+, Q'ﬁ’ll//) = O means|y) = 0.Indeed,

B=VB, B=+BB =8, v=B®BB 2=y (C7)

VE 0| afV Om)_ A (V' Ou)p(V Om K B
m / — /’ m P/ — N R C8

where K = VTV'U. We shall now employ the fact that the last matrix in (C8) is a projector:

We transform as

K=K*+ B, L=1>+8, B=BK+ LB. (C9)

The first and second relations in (C9) show that [K, B] = [L, B] = 0. Then the third relations produces
B(K + L — 1) = 0.Since B > 0 (dueto ker(B) = 0), we conclude that K + L = 1. The rest is obvious.

C.2.Joint commutant for two projectors
Given (C4), we want to find matrices that commute both with P’ and Q' [46]. Matrices that commute with Q’

read
X 0,
(Om y ) (c10)
Employing (C4), we get that (C10) commutes with pif
XC? = CX, (C11)
Y§? = §%, (C12)
XCS = CSY. (C13)

Since Cand Sare invertible, (C11), (C12) imply that [X, S] = [X, C] = [Y, S] = [Y, C] = 0. And then (C13)
implies that X =Y. Hence

X=Y, [X,C]l=[X S]=0. (C14)

C.3. General form of the CS representation
The above derivation of (C4) assumed conditions (C1). More generally, the Hilbert space H can be represented
asadirect sum [45-47]

9Equation (C3) can be derived by noting that Qt NP’ = 0implies ker(fj’ﬁ’) = 0.Indeed, if Q|p) = 0, where |p) € P’,then
Qtn P’>=0. Hence |p) = 0. Let us mention for completeness that ran (Q'P') N Q" = 0.Indeed, letusassume that |f) € Q’, |g) € P’
and (f|Q’g) = 0.Then (Q'f|g) = (f|g) = 0. The last relation means that either f=0, or Q* N P’ 0, which contradicts to (C1).

10
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H=H & H;; & Hi, & Hy & Hoo, (C15)

where the sub-space H, 4 of dimension #1, is formed by common eigenvectors of P and Q having eigenvalue
(for P)and g (for Q). Depending on P and Q every sub-space can be absent; all of them can be present only for
dimH > 6. Now H;; = ran(P) N ran(Q). H' has even dimension 2m [46, 47], this is the only sub-space that is
not formed by common eigenvectors of P and Q.

After a unitary transformation

P=UPU', Q=UQU', UU'=1I, (C16)
Pand Q get the following block-diagonal form that is related to (C15) [46] and that generalizes (C4):

. I, O,
Q = Q/ (&) Imu &) Imm D Omm &) Omo()r Ql = (0 0 )) (C17)

(C18)

A 2
P= Pl @ Imu @ Oml() @ Imm @ Om()o’ P/ = (C CS)’

cs §?
where Cand S are invertible square matrices of the same size holding

C*+8=1, [C S =0. (C19)
H’ refers to P’ and Q'. If P and Q do not have any common eigenvector, P=rPandQ= Q.

Appendix D. Derivation of the main result (equations (16), (17) of the main text)

We start with representation (C17), (C18) and axioms (3)—(7) of the main text. These axioms hold for p, Q and
p = UpU' (see (C16)) instead of P, Q and p, because w (P, Q) = U'lw (P, Q)U for w = w, @ (recall that
w (P, Q)and @ (P, Q) are Taylor expandable). Hence we now search for @ (P, Q)and @ (P, Q).

The block-diagonal form (C17), (C15) remains intact under addition and multiplication of Pand Q Hence
(P, Q)and @ (P, Q) have the block-diagonal form similar to (C17), where the diagonal blocks are to be
determined. Let now IT,4 be the projector on H,s. We get [, f = 0, 1]

Mo (P, Ol = w(a, Pllyy, o = @, @. (D1)
Hence condition (5) of the main text implies [for ® = @, @ and @' = @', @’]
A A , , o)} o
w(P: Q) =w @Imn (&) 0m10+m01+m00) @ = /ot e (DZ)
Wiy Wy
Aiming to apply (6) of the main text, we write down (C17) explicitly as
I 000O0O
000O0O0TO
~ loor1000
Q_000100' (D3)
000O0O0O
000O0O0O

The most general density matrix j that commutes with Q reads (in the same block-diagonal form)

ag; 0 ap a3 0 0
0 bu 0 0 by bs

afz 0 djz dz3 0 0

p= alg 0 a2T3 asz; 0 0 (DY)
0 by 0 0 by by
0 by 0 0 bly bs
Now $Q = Qp is seen from the fact that after permutations of rows and columns, Q and /) become
Lty © Ome g +my @0d a @ b, respectively. Note that a; > 0and bj; > 0.
Equations (D2)—(D4) imply
twr(QpP) = r(QQP) = tr(Cay + an), (D5)
tr(@(P, Qp) = tr( @ 1an + @5rdu + an), (D6)
tr(@ (P, Q)p) = tr(@ya11 + B a4 + an). (D7)

11
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Condition (7) (of the main text) and (C14) imply
(1)1/1 = a)z/z, 0)1/2 = 0, fOI' a)l = 5,, Q,. (DS)

Recall condition (6) of the main text. Itamounts to (D5) > (D6) that should hold for arbitrary a;, and b;.. Hence

we deduce: @;, = 0 and hence |, = @/, = 0. Likewise, (D7) > (D5) leads to @y, = @5, = C?, @/, = 0; recall
that we want the smallest upper probability. Now (4) (of the main text) holds, since
C* o0 L, 0
m| _ m my ' 2
[Om cz]‘(om Im) (P - QP (D9)
Thus (cf (C15))
P C? 0,
@ (P) Q) = ) &) Imn (&) 0m10+m01+mgo) (DIO)
0, C
Q(p) Q) = 02m @ Im11 @ 0m10+m01+m00- (Dll)

Now g (P, Q) = g (Q, P)isthe projector onto ran(P) N ran(Q). To return from (D10), (D11) to original
projectors P and Q, we note via (C17), (C18) (recall that IT,4 is the projector onto H,):

=g (P, Q), My=g(P,1-Q), y=gU-P,Q), Moy=gI-P,1-0Q), (D12)
(P, Q) =g(®,Q, (D13)
P=P-g’,Q-gPI1-Q), (D14)

Q=Q-g(P,Q -g(QI-P), (D15)

o, Q=1-gB,I1-Q -gUI-P,Q -g(I-P,1-Q)

~(P-Q-gB,I-Q+gU-P Q). (D16)

Weactbackby U, e.g. g (P, Q) = U'g (P, Q) U, and get finally
(P, Q) =g(P, Q), (D17)
@(P,Q =I-(P-QF -g(I-P,1-0Q). (D18)

Appendix E. Various representations of upper and lower probability operators

E.1.Representations for the upper probability operator

Let us turn into a more detailed investigation of (D18). Note from (C17), (C18) and (D12) that

I — g — P, I— Q)istheprojectorto ran(P) + ran(Q), where ran(P) + ran(Q) is the vector sum of two sub-
spaces. Note the following representation [48]:

I-g(I-PI-Q=P+Q (P+Q=P+Q(P+Q7, (E1)
where A~ is the pseudo-inverse of Hermitean A, i.e.if A = V (a @ 0) V' (where Vis unitary: VVT = I), then
A=V@leov'.

The third equality in (E1) is the obvious feature of the pseudo-inverse. The first equality in (E1) follows from
the factthat (P + Q)™ (P + Q) isthe projector on ran(P + Q) and the known relation [48]:

ran(P + Q) = ran(P) + ran(Q). (E2)
Employing (P — Q)* =1 — (I — P — Q)% @ (P, Q) can be presented as a function of P + Q (cf (E1)):
o(P,Q=01I-P-Q*-I+(P+Q((P+Q. (E3)
Note another representation for the projector to ran (P) + ran(Q) [40]
I-¢g(I-P,I-Q =min[A|A>Q,P], (E4)

where I — g(I — P, I — Q) equals to the minimal Hermitean operator A that holds two conditions after |.
E.2. Representations for the lower probability operator
Let us first show that the projector g (P, Q) into ran(P) N ran(Q) holds [57]

g(P,Q =2P(P+ Q) Q=2Q(P+ QP (E5)
where A~ is the pseudo-inverse of A (cf (E1)).

12
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Thelast equality in (E5) follows from the fact that (Q + P) (P + Q)™ is the projector to ran(P) + ran(Q)
(see (E1),E2)), which thenleadsto P(Q + P)(P+ Q)" = (Q + P)(P + Q)” P.
The first equality in (E5) is shown as follows. Let |y) € ran(P) N ran(Q). Then using (E5):

2P(P+ Q) Qly) =P+ QP+ Q) |y) = |w).

Thus, ran(2P (P + Q)"Q) 2 (ran(P) N ran(Q)). On the other hand, ran(2P (P + Q)" Q) C ran(P)and
ran(2P (P + Q)~Q) C ran(Q), where the first relation follows from the implication: if [y/) & ran(P), then

ly) & ran(2P(P + Q)"Q).
There are two other (more familiar) representations of g (P, Q) (seee.g. [40, 48]):
g(P, Q) = lim,_,Q(PQ)", (E6)
=max[A |0<A<LQ,P]. (E7)
Equation (E6) can be interpreted as a result of (infinitely many) successive measurements of P and Q.
Equation (E7) should be compared to (E4).

Yet another representation is useful in calculations, since it explicitly involves a 2 X 2 block-diagonal
representation [57]:

(R R\ (IO
P_(le Pzz)’ Q_[O Onz]’ (E8)
g(P, Q)=(R“f‘)2p2_2p” 8) (E9)

where B, B, Bjand By, are, respectively, n; X ny, ny X n,, 1y X ny, 1 X n, matrices.

E.3. Direct relation between the eigenvalues of P — Q and PQ
We can now prove directly (i.e. without employing the CS representation) that there is a direct relation between
the eigenvalues of @ (P, Q) and PQ. Let |x) be the eigenvector of Hermitean operator P — Q:

(P = Qlx) = ilx), (E10)
where —1 < 1 < 1is the eigenvalue. Multiplying both sides of (£10) by P (by Q) and using P> = P (Q* = Q)
we get
QPlx) = (1 + )Q[x), PQ|x) = (1 - 1)P|x), (E11)

which then implies

PQ(Plx)) = (1 = ) (Plx)), QP(Qlx)) = (1 —1)(Qlx)). (E12)

Thus P|x) (Q|x)) is an eigenvector of PQ (QP) with eigenvalue 1 — 12,

Asseen from (E11), the 2D linear space Span (P |x), Q|x)) formed by all superpositions of P|x) and Q|x)
remains invariant under action of both P and Q. Together with tr (P — Q) = 0 this means that if (E10) holds,
then P — Q has eigenvalue — 2 with the eigen-vector living in Span (P |x), Q|x)).

Further details on the relation between PQ and P — Q can belooked up in [59].

Appendix F. Additivity and monotonicity

We discuss here the behavior of @ (P, Q) and @ (P, Q) (given by (D17), (D18)) with respect to a monotonic
change of their arguments. For two projectors Q' and Q, Q' > Q means Q' = Q + K, where K? = K and
QK = 0.Now (D17), (D18) and (E7) imply that @ (P, Q) is operator superadditive

@(P,Q+K) 2 (P, K) + @(P, Q). (F1)
Likewise, @ (P, Q) is operator subadditive, but under an additional condition:
@o(P,Q+K)<@(P,K)+w@(P,Q), if Q+K=1 (F2)

They are the analogues of classical features (B4) and (B5), respectively. Note that (F1) and (B4) are valid under
the same conditions, since QK = 0 is the analogue of A N B = {0}. In that sense the correspondence between
(F2) and (B5) is more limited, since Q + K = I is more restrictive than QK = 0.

We focus on deriving (F1), since (F2) is derived in the same way. Note from (E7) that g (P, Q) < Qand
g(P, K) £ Kimply g(P, Q) + g(P, K) £ Q+ K.Since QK = 0, g (P, Q) + g (P, K) < P. Using (E7) for
g (P, Q + K)weobtain (F1).

13
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Note as well that both @ (P, Q) and w (P, Q) are monotonous [w = w, @ ]:
wP,Q)2w(P,Q), if P>P,Q and Q =P, Q. (F3)
Equation (F3) for ® = w follows from (F1). For @ = @ itis deduced as follows (cf (E4), (E7)):
oP,Q)2wP,Q)=g(P,Q)2I-g(I-P,1-Q) 2®d(P, Q). (F4)
Let us now discuss whether (F2) can hold under the same condition QK = 0as (F1). Now
o(P,Q+K)<@(P,Q)+m(P, K), (F5)
amounts to
¢I-PI-Q +g(I—-P,I-K)<I-P+g(I-P,I-Q-K). (F6)

First of all note thatfor Q + K = land QK = Oweget (I — Q)(I — K) = 0 and (F6) does hold for the same
reasonas (F1).

For QK = 0, equation (F6) isinvalid in 3D space (as well as for larger dimensional Hilbert spaces). Indeed,
let us assume that Q and K are 1D:

100 000
Q=]00 0|, K=o 0 0 (F7)
000 0 0 1.
Given I — Pas
ay ap ags app diz a3
I—P=|ay axn axp|=|d3 dn axs|, (F8)
31 s 433 a3 az; as;
we get (cf (E9))

ay aj; 0 a/, a/ a, a a
11 912 11 912 1Y _
I-P1-K)= / / = - as;(as;a
g( ) )=lay a3 O) ol al dy dz a5 ) 933 (a31 a32),
0O 0 O

where as; is the pseudo-inverse of ass.
Likewise

0 0 O , ,
’ ' dxy 43 az az; az\ _
g =P, 1-Q)=]0 ay axy|, , 1=\ as a “\a ay; (aiz ai3).
0 al ol a;, ai 32 as3 31
32 433

Nowg(I — P,I - Q — K) = 0,since I — Q — K isa 1d projector. We can now establish that generically

(letalone (F6)), because the difference has both positive and negative eigenvalues.
The message (F9) is that the function I — g (I — P, I — Q) isnot sub-additive.
Now consider (F5), (F6), but under additional condition that PK = 0. Now (F6) amounts to

gI-P,I-Q<K+g(I-P,1-Q~K), (F10)

which holds as equality since ran (K) C ran(P+) N ran(Q%).

Appendix G. Upper and lower probabilities for simple examples

G.1.2D Hilbert space

It should be clear from (D10), (D11) thatin 2D Hilbert space, any lower probability operator w (P, Q) is zero
(since two rays overlap only at zero), while the upper probability operator @ (P, Q) = p (p; P, Q)justreduces
to the transition probability (i.e. to anumber) tr(PQ). Thus for the present case both p and p do not depend
onp.

14
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G.2.Spin 1
G.2.1. Projectors. The 3 X 3 matrices for the spin components read
1010] 1-[0—10] 100]
=—101f =—=|1 0 -1}, I*=[0 0 o0 | (G1)
V2 010 V2 01 0 00 -1
Now P{, o for a = x, y, zare the 1D projectors to the eigenspace with eigenvalues + 1 or 0 of L*:
1 V2 1 (10 -1 1R -2 1
Pr=—l2 2 2| Bsy==[0 0 0} Ph=—|-V2 2 -2} (G2)
4 2{-10 1 4
1 V2 1 1 —V2 1
| 1 —iv2 -1 1 101 1 1 NG
P=—li2 2 -iy2| P{==|0 00} PL=~]-i2 2 iJ2) (G3)
4 , 2{1 01 4 ,
-1 2 1 -1 -2 1
100 000 000
Pf=|0 0 0| Pf=|0 1 0| PZ=]0 0 0} (G4)
000 000 001
where the zero components are orthogonal to each other:
PyP{ =Py P; = PiP{ = 0. (G5)

Other overlaps are simple as well (@ = f)
tr(PfPf)=1/4if j = Oandk 5= 0,
=1/2 if j = 0 or k = 0 but not both,
=0 if j=0and k= 0. (G6)

Given two projectors Pand Q, we defined g (P, Q) as the projector on ran(P) N ran(Q). For calculating
g (P, Q)weemploy (E5).

G.2.2. Fine-grained joint probabilities for P;, ,and P}, ,. Hereare upper probability operators for joint values
of P{, yand P},

@ (P§, Py) =0, (G7)
1
-0 0
4
1 +1
o(P*,PF)=l0 — ——|, G8
w( +1 1) 6 672 (G8)
o L 1
62 12
1 +1
— = 0
12 642
+1 1
w x,P_Z — — _ 0’ (G9
(11 1) 6\/5 6 )
0 o L
4
1
Z00
2
@(P5,Pi)=[0 0 0 (G10)
1
00 —
2
1
1
4 4
—_— X z 1
@(P5, P5)=] 0 7 o (G11)
1
-—— 0 =
4 4
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Since P{, jand P}, ;are 1D projectors, all the lower probability operators nullify. Equation (G7) means that the
precise probability of P§ and Py is zero; cf (G5).
We now get from (G7)-(G11)

1
B, 1
6 2
> D@ P =] 0 2 (G12)
k=+,0i=,0 1 3 13
- 0 =
2 6

This matrix is larger than I, since its eigenvalues are ;, ; and 2

Note from (C17), (C18) that for 3 x 3 matrices dimH’ = 2, while dim#,; = 1 (ifthis sub-space is present at
all). Hence the eigenvalues of @ relate to transition probabilities (G6). Indeed, the eigenvalues of matrices in
(G8), (G9) (resp.in (G10), (G11))is (i, i, 0) (resp. (%, %, 0)). Hence the maximal probability interval [i, 0]
that can be generated by (G8), (G9) is smaller than the maximal interval [%, 0] generated by (G10), (G11). Asan
example, let us take the upper probabilities generated on eigenstates of L” (¢, 17, y = 1, 0, —1):

u|@(px p7)P =16 if en = o0,
=1/4 if en=0,(1-e)(1—-n) = 1,y = 0,
=1/2 if en=0,(1-€)(1—-n) = 1,y=0,
=0 if e=np=y=0. (G13)

G.2.3. Coarse-grained joint probabilities for P, jand P}, ;. Letus now turn to joint probabilities, where the
lower probability is non-zero

3 1
2 2 = == 0
e oo
1 1
o(PF+PLPE+P5)=| 7 1 , @(PF+ P, PP+ Pf)=|x—= = 0| (G4
* £ - 22 2
3 3 1
0 0o -
0 0 0 "
0 0 0 Iy 0
o(Pf + Pi, PA + P = 3 T3 | @(Pr+P,PL+P;)=]|0 > Al (G15)
V22
303 T2J2 4
1
~ 00
000 2
o(P*+P*, PL+P;)=01 0| @(PF+P,PL+P)=[01 of (G16)
000
00 L
2
3 1
1 1 0 —
- 0 — 4 4
2 2 ]
o(Pf+ P, PE+Py)=[0 0 0| @(P+Ps PF+P)=| 0 > 0 |, (G17)
1 1
-~ 0 — 1 3
2 2 -~ 0 =
4 4
1 1
— 0 =
2 2
o(PF+ P, PP+ P) =P +P,PF+P)=10 0 0] (G18)
1 1
— 0 =
2 2

Now @ — @ for (G14), (G15) has eigenvalues (i, i, 0), while for for (G16), (G17) this matrix has eigenvalues
(l

> %, 0) (the last case (G18) refers to the commutative situation). Hence the probabilities for (G16), (G17) are
more uncertain.
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Next, let us establish whether certain combinations can be (surely) more probable than others.

+393 -3 1
24 4

Eigenvalues[w (Py + PX,, PF + P§) — @ (Py + P, PF + P§)] = (—, e

Once there is (one) positive eigenvalue, there is a class of states p for which
tr(p w(Py + P2, PP+ P7)) > tw(p@(Py + P P+ Fy)),
i.e. P* = 0 or —land P? = 0 or 1ismore probable than P* = 0 or 1and P? = 0 or 1. Note that
(@ (Py + P*, PP + P§), @ (Py + P~, PP + P§)] = 0.

Such examples can be easily continued, e.g.

. +57 — 3 1
Eigenvalues|w (Py + P, P* + P§) — @ (P + P}, P + P§)] = (‘T, —5)
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