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Abstract: We consider realizations of GUT models in F-theory. Adopting a bottom up

approach, the assumption that the dynamics of the GUT model can in principle decouple

from Planck scale physics leads to a surprisingly predictive framework. An internal U(1)

hypercharge flux Higgses the GUT group directly to the MSSM or to a flipped GUT model,

a mechanism unavailable in heterotic models. This new ingredient automatically addresses

a number of puzzles present in traditional GUT models. The internal U(1) hyperflux allows

us to solve the doublet-triplet splitting problem, and explains the qualitative features of

the distorted GUT mass relations for lighter generations due to the Aharanov-Bohm effect.

These models typically come with nearly exact global symmetries which prevent bare µ

terms and also forbid dangerous baryon number violating operators. Strong curvature

around our brane leads to a repulsion mechanism for Landau wave functions for neutral

fields. This leads to large hierarchies of the form exp(−c/ε2γ) where c and γ are order one

parameters and ε ∼ α−1
GUTMGUT/Mpl. This effect can simultaneously generate a viably

small µ term as well as an acceptable Dirac neutrino mass on the order of 0.5 × 10−2±0.5

eV. In another scenario, we find a modified seesaw mechanism which predicts that the light

neutrinos have masses in the expected range while the Majorana mass term for the heavy

neutrinos is ∼ 3 × 1012±1.5 GeV. Communicating supersymmetry breaking to the MSSM

can be elegantly realized through gauge mediation. In one scenario, the same repulsion

mechanism also leads to messenger masses which are naturally much lighter than the GUT

scale.
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1. Introduction

Despite many theoretical advances in our understanding of string theory, this progress has

not produced a single verifiable prediction which can be tested against available experi-

ments. Part of the problem is that in its current formulation, string theory admits a vast

landscape of consistent low energy vacua which look more or less like the real world.

Reinforcing this gloomy state of affairs is the fact that the particle content of the

Standard Model is generically of the type encountered in string theory. Indeed, the gauge

group of the Standard Model is of the form
∏

i U(Ni) and the chiral matter content cor-

responds to bi-fundamental fields transforming in representations such as (Ni,N j). While

this may reinforce the idea that string theory is on the right track, precisely because this

appears to be such a generic feature of string constructions, this also unfortunately limits

the predictivity of the theory. To rectify this situation, we must impose additional criteria

to narrow down the search in the vast landscape.

From a top down approach, one idea is to further incorporate some specifically stringy

principles. For instance, we have learned that the large N limit of many U(N) gauge theo-

ries causes the gauge system to ‘melt’ into a dual gravitational background [1]. Moreover,

this large N gauge theory can undergo a duality cascade to a small N gauge theory [2].

Indeed, the Standard Model could potentially emerge at the end of such a process. In the

string theory literature, this idea has been explored in [3 – 5]. Interesting as this idea is, it

does not incorporate the idea of grand unification of the gauge forces into one gauge factor

in any way.

From a bottom up approach, it is natural to ask whether there is some way to incor-

porate the important fact that the gauge coupling constants of:

Gstd ≡ SU(3)C × SU(2)L × U(1)Y (1.1)

seem to unify in the minimal supersymmetric extension of the Standard Model (MSSM).

This not only supports the idea that supersymmetry is realized at low energies, but also

suggests that the multiple gauge group factors of the Standard Model unify into a single

simple group such as SU(5) or SO(10). Moreover, the fact that the matter content of

the Standard Model economically organizes into representations of the groups SU(5) and

SO(10) provides a strong hint that the basic idea of grand unified theories (GUTs) is correct.

For example, it is quite intriguing that all of the chiral matter of a single generation precisely

organizes into the spinor representation 16 of SO(10). Hence, we ask whether the principle

of grand unification can narrow down the large list of candidate vacua in the landscape to

a more tractable, and predictive subset.

Despite the many attractive features of the basic GUT framework, the simplest imple-

mentations of this idea in four-dimensional models suffer from some serious drawbacks. For

example, the minimal four-dimensional supersymmetric SU(5) GUT with standard Higgs

content seems to be inconsistent with present bounds on proton decay [6]. In the absence

of higher dimensional representations of SU(5) or somewhat elaborate higher dimension

operator contributions to the effective superpotential, this model also leads to mass rela-

tions and over-simplified mixing matrices which are generically too strong to be correct.
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This presents an opportunity for string theory to intervene: Can string theory preserve the

nice features of GUT models while avoiding their drawbacks?

Indeed, the E8 × E8 heterotic string seems very successful in this regard because the

usual GUT groups SU(5) and SO(10) can naturally embed in one of the E8 factors. See [7]

for an early review on how GUT models could potentially originate from compactifying

the heterotic string on a Calabi-Yau threefold. Moreover, because no appropriate four-

dimensional GUT Higgs field is typically available to break the GUT group to the Standard

Model gauge group, it is necessary to employ a higher-dimensional breaking mechanism.

When the internal space has non-trivial fundamental group, the gauge group can break via a

discrete Wilson line. In this way, the gauge group in four dimensions is always the Standard

Model gauge group but the matter content and gauge couplings still unify. Moreover, such

higher dimensional GUTs provide natural mechanisms to suppress proton decay and avoid

unwanted mass relations. See [8 – 12] for some recent attempts in this direction.

However, the heterotic string has its own drawbacks simply because it is rather difficult

to break the gauge symmetry down to Gstd.1 One popular method is to use internal Wilson

lines to directly break the gauge symmetry to that of the MSSM. This requires that the

fundamental group of the Calabi-Yau must be non-trivial. Although this can certainly

be arranged, the generic Calabi-Yau threefold is simply connected and this mechanism is

unavailable. Moreover, when the GUT group has rank five or higher, gauge group breaking

by Wilson lines can also leave behind additional massless U(1) gauge bosons besides U(1)

hypercharge. Present constraints on additional long rang forces are quite stringent, and

in many cases it is not always clear how to remove these unwanted states from the low

energy spectrum. In the absence of a basic principle which naturally favors a non-trivial

fundamental group, it therefore seems reasonable to look for other potential realizations of

the GUT paradigm in string theory.

There are two other natural ways that GUTs can appear in string theory. These

possibilities correspond to non-perturbatively realized four-dimensional N = 1 compactifi-

cations of type IIA and IIB string theory. In the type IIA case, the GUT models originate

from the compactification of M-theory on manifolds with G2 holonomy. For type IIB the-

ories, the corresponding vacua are realized as compactifications of F-theory on Calabi-Yau

fourfolds. In the latter case, the gauge theory degrees of freedom of the GUT localize on the

worldvolume of a non-perturbative seven-brane. The ADE gauge group on the seven-brane

corresponds to the discriminant locus of the elliptic model where the degeneration is locally

of ADE type. Of these two possibilities, the holomorphic geometry of Calabi-Yau mani-

folds provides a more tractable starting point for addressing detailed model building issues.

It was with this aim that we initiated an analysis of how GUT models can be realized in F-

theory [15]. See [16, 17] for related discussions in the context of F-theory/heterotic duality.

Even so, there is a certain tension between string theory and the GUT paradigm. From

a top down perspective, it is a priori unclear why there should be any distinction between

1At a pragmatic level, the perturbative regime of the heterotic string also seems to be inconsistent with

the relation between the GUT scale MGUT and the four-dimensional Planck scale Mpl. A discussion of this

discrepancy and related issues may be found in [13]. One potential way to bypass this problem requires

going to the regime of strong coupling [14].
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the Planck scale Mpl and the GUT scale MGUT. In the bottom up approach, the situation

is completely reversed. Indeed, insofar as effective field theory is valid at the GUT scale,

it is quite important that MGUT/Mpl is small and not an order one number. For example,

in the extreme situation where the only chiral matter content of a four-dimensional GUT

model originates from the MSSM, the resulting theory is asymptotically free.

In geometrically engineered gauge theories in string theory, asymptotic freedom trans-

lates to the existence of a consistent decompactification limit. It is therefore quite natural

to ask if at least in principle we could have decoupled the two scales MGUT and Mpl.

This is also in accord with the bottom up approach to string phenomenology [18 – 21] . In

the present paper our main focus will therefore be to search for vacua which at least in

principle admit a limit where Mpl → ∞ while MGUT remains finite. Of course, in realistic

applications Mpl should also remain finite. For completeness, we shall also present some

examples of models where MGUT and Mpl cannot be decoupled. In such cases, we note

that it is not a priori clear whether the correct value of MGUT can be achieved.

Nevertheless, the mere existence of a decoupling limit turns out to endow the resulting

candidate models with surprising predictive power. It turns out that the only way to

achieve such a decoupling limit requires that the spacetime filling seven-brane must wrap

a del Pezzo surface. The fact that the relevant part of the internal geometry in this setup

is limited to just ten distinct topological types is very welcome! In a certain sense, there is

a unique choice corresponding to the del Pezzo 8 surface because all of the other del Pezzo

surfaces can be obtained from this one by blowing down various two-cycles.

At the next level of analysis, we must determine what kind of seven-brane should wrap

the del Pezzo surface. As explained in [15], realizing the primary ingredients of GUT models

requires that the singularity type associated with the seven-brane should correspond to a

subgroup of the exceptional group E8. Because the Standard Model gauge group has rank

four, this determines a lower bound on the rank of any putative GUT group. At rank

four, SU(5) is the only available GUT group. Hence, the most ‘minimal’ choice is to have

an SU(5) seven-brane wrapping the del Pezzo 8 surface. We will indeed find that this

minimal scenario is viable. The upper bound on the rank of a candidate GUT group is

six. This bound comes about from the fact that if the rank is any higher, the model will

generically contain localized light degrees of freedom at points on the del Pezzo surface

which do not appear to admit a standard interpretation in gauge theory [22, 15]. This

is because on complex codimension one subspaces, the rank of the gauge group goes up

by one, and on complex codimension two subspaces, i.e. points, the rank goes up by two.

Hence, if the rank is greater than six, the compactification contains points on the del Pezzo

with singularities of rank nine and higher which do not admit a standard gauge theoretic

interpretation because E8 is the maximal compact exceptional group.

In the minimal scenario where the seven-brane has gauge group SU(5), we find that

there is an essentially unique mechanism by which the GUT group can break to a four-

dimensional model with gauge group Gstd. This breaking pattern occurs in vacua where

the U(1) hypercharge flux in the internal directions of the seven-brane is non-trivial. This

mechanism is unavailable in heterotic compactifications because the U(1) hypercharge al-

ways develops a string scale mass via the Green-Schwarz mechanism [23]. As noted for
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example in [23], in order to preserve a massless U(1) hypercharge gauge boson, additional

U(1) factors must mix non-trivially with this direction, which runs somewhat counter to

the idea of grand unification. Nevertheless, for suitable values of the gauge coupling con-

stants for these other factors, a semblance of unification can be maintained. See [24 – 27]

for further discussion on vacua of this type.

In F-theory, we show that there is no such generic obstruction. This is a consequence of

the fact that while the cohomology class of the flux on the seven-brane can be non-trivial, it

can nevertheless represent a trivial class in the base of the F-theory compactification. This

topological condition is necessary and also sufficient for the corresponding four-dimensional

U(1) gauge boson to remain massless. An important consequence of this fact is that these

F-theory vacua do not possess a heterotic dual.

The particular choice of internal U(1) flux which breaks the GUT group is also unique.

To see how this comes about, we first recall that the middle cohomology of the del Pezzo 8

surface splits as the span of the canonical class and the collection of two-cycles orthogonal

to this one-dimensional lattice. With respect to the intersection form on two-cycles, this

orthogonal subspace corresponds to the root lattice of E8. Moreover, the admissible fluxes

of the U(1) hypercharge are in one to one correspondence with the roots of E8. This

restriction occurs because for more generic choices of U(1) flux, the low energy spectrum

contains exotic matter which if present would ruin the unification of the gauge coupling

constants. In keeping with the general philosophy outlined in [15], we always specify the

appropriate line bundle first and only then determine whether an appropriate Kähler class

exists so that the vacuum is supersymmetric. In this sense, there is a unique choice of flux

because the Weyl group of E8 acts transitively on the roots of E8. On general grounds, this

internal flux will also induce a small threshold correction near the GUT scale. Determining

the size and sign of this correction would clearly be of interest to study.2

The matter and Higgs fields localize on Riemann surfaces in the del Pezzo surface.

In F-theory, these Riemann surfaces are located at the intersection between the GUT

model seven-brane and additional seven-branes in the full compactification. Along these

intersections, the rank of the singularity type increases by one. This severely limits the

available representation content so that the matter fields can only transform in the 5 or 5

along an enhancement to SU(6) and the 10 or 10 for local enhancement to SO(10).

The internal hypercharge flux automatically distinguishes the Higgs fields from the

other chiral matter content of the MSSM. The Higgs fields localize on matter curves where

the U(1) hypercharge flux is non-vanishing, and the chiral matter of the MSSM localizes on

Riemann surfaces where the net flux vanishes. In other words, the two-cycles for the Higgs

curves intersect the root corresponding to this internal flux while all the other chiral matter

of the MSSM localizes on two-cycles orthogonal to this choice of flux. This internal choice

of flux implies that the chiral matter content will always fill out complete representations

of SU(5), while the Higgs doublets can never complete to full GUT multiplets. Moreover,

by a suitable choice of flux on the other seven-branes, the spectrum will contain no extra-

neous Higgs triplets, thus solving the doublet-triplet splitting problem. In certain cases,

2After our work appeared, this question has been studied in [28, 29].
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superheavy Higgs triplets can still cause the proton to decay too quickly. In traditional

four-dimensional GUT models the missing partner mechanism is often invoked to avoid

generating dangerous dimension five operators which violate baryon number. Here, this

condition translates into the simple geometric condition that the Higgs up and down fields

must localize on distinct matter curves.

In our study of Yukawa couplings, we shall occasionally encounter situations involving

two fields charged under the GUT group and one neutral field (for example a 1 × 5 × 5

interaction). In such cases, the neutral field lives on a matter curve normal to the del Pezzo

which intersects this surface at a point. In order to determine the strength of the Yukawa

couplings, we need to estimate the strength of the corresponding zero mode wave functions

at the intersection point. It turns out that since the del Pezzo is strongly positively curved

(R ∼M2
GUT), the normal geometry is negatively curved. Moreover, this leads to the wave

function being either attracted to, or repelled away from our brane, depending on the choice

of the gauge flux on the normal intersecting seven-branes. In one case the wave function is

attracted to our seven-brane, making it behave as if the wave function is localized inside

the brane. In another case the wave function is repelled away from our brane, leading

to an exponentially small amplitude at our brane. The exponential hierarchy is given

by exp(−cR2
⊥/R

2
GUT) where c is a positive order one constant, R⊥ is the radius of the

normal geometry to the brane, and RGUT is the length associated to GUT. The estimate

for R⊥ depends on assumptions about how the geometry normal to our brane looks, and

in particular to what extent it is tubular. We find that:

R⊥

RGUT
= ε−γ (1.2)

where 1/3 . γ . 1 is a measure of the normal eccentricity and ε is a small parameter:

ε ∼ MGUT

αGUTMpl
∼ 7.5 × 10−2. (1.3)

This leads to a natural hierarchy given by

exp

(
−c R2

⊥

R2
GUT

)
∼ exp

(
−c 1

ε2γ

)
. (1.4)

There are various vector-like pairs which can only develop a mass through a cubic Yukawa

coupling with a third field coming from a neutral normal wave function. This suppression

mechanism will be useful in many such cases, including solving the µ problem and also

obtaining a small Dirac neutrino mass leading to realistic light neutrino masses without

using the seesaw mechanism.

There are two ways we can solve the µ problem. Perhaps most simply, we can consider

geometries where the Higgs up and down fields localize on distinct matter curves which do

not intersect. In this case, the µ term is identically zero. When these curves do intersect,

the value of the µ term depends on the details of a gauge singlet wave function which

localizes on a matter curve normal to the del Pezzo surface. In the case of attraction, the
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µ term is near the GUT scale, which is untenable. In the repulsive case, the µ term is

suppressed to a much lower value:

µ

MGUT
∼ exp

(
−c 1

ε2γ

)
, (1.5)

so that the resulting value of µ can then naturally fall in a phenomenologically viable range.

In fact, a similar exponential suppression in the wave functions of the right-handed

neutrinos can generate small Dirac neutrino masses of the form:

mD
ν ∼ µε−γ

〈Hu〉
× 〈Hu〉2
MGUT

∼ 0.5 × 10−2±0.5 eV (1.6)

which differs by a factor of µε−γ/ 〈Hu〉 from the value predicted by the simplest type of see-

saw mechanisms with Majorana masses at the GUT scale. We note that the value we obtain

is in reasonable agreement with recent experimental results on neutrino oscillations. In this

case, the Majorana mass term must identically vanish to remain in accord with observation.

A variant of the standard seesaw mechanism is also available when the right-handed

neutrino wave functions are attracted to the del Pezzo surface. In this case, the Majorana

mass terms in the neutrino sector are suppressed by some overall volume factors. Although

the standard seesaw mechanism again generates naturally light neutrino masses ∼ 2 ×
10−1±1.5 eV, we find that the Majorana mass term is naturally somewhat lighter than the

GUT scale and is on the order of ∼ 3 × 1012±1.5 GeV. It is interesting that the numerical

values we obtain in either scenario are both in a range of values consistent with leptogenesis,

as well as the observed light neutrino masses.

Non-trivial flavor structures can potentially arise in a number of ways in this class of

models. For example, one common approach in the model building literature is to use a

discrete symmetry to induce additional structure in the form of the Yukawa couplings. The

Weyl group symmetries of the exceptional groups naturally act on the del Pezzo surfaces.

This symmetry can be partially broken by the choice of the Kähler classes of two-cycles.

This may potentially lead to a model of flavor based on the discrete symmetry groups S3,

A4 or S4. Indeed, these are all subgroups of the Weyl group of E8.

One of the main conceptual issues with the usual GUT framework is to explain why

mb ∼ mτ at the GUT scale while the lighter generations do not satisfy such a simple mass

relation. At a qualitative level, the behavior of the omnipresent internal U(1) hypercharge

flux again plays a central role in the resolution of this issue. Although the net hypercharge

flux vanishes on curves which support full GUT multiplets, in general it will not vanish

pointwise. Hence, the hypercharge flux can still leave behind an important imprint on

the wave functions of the fields in the MSSM. Indeed, because the individual components

of a GUT multiplet have different hypercharge, the Aharonov-Bohm effect will alter the

distinct components of a GUT multiplet differently, leading to violations in the most naive

mass relations. In fact, because the mass of a generation is higher the smaller the volume

of the matter curve, the amount of flux which can pierce the curve also decreases. In this

way, the most naive mass relations remain approximately intact for the heaviest generation

but will in general receive corrections for the lighter generations.

– 8 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

In the next to minimal GUT scenario, we can consider seven-branes where the bulk

gauge group has rank five. In this case there are three choices corresponding to SO(10),

SO(11) and SU(6). In this paper we mainly focus on the SO(10) = E5 case because it fits

most closely with our general philosophy that the exceptional groups play a distinguished

role in GUT models. It turns out that this model can only descend to the MSSM by a

sequence of breaking patterns where the eight-dimensional theory first breaks to a four-

dimensional flipped SU(5) model with gauge group SU(5)×U(1). The model then operates

as a traditional four-dimensional flipped SU(5) GUT which breaks to the Standard Model

gauge group when a field in the 10−1 of SU(5) × U(1) develops a suitable vev. Indeed,

direct breaking of SO(10) to the Standard Model gauge group via fluxes taking values in a

U(1) × U(1) subgroup always generates exotic matter which would ruin the unification of

the gauge coupling constants. Many of the more refined features of these models such as

textures and our solution to the µ problem share a common origin to those studied in the

minimal SU(5) model.

Even though our main emphasis in this paper is on models which admit a decoupling

limit, we also consider models where such a limit does not exist. In such cases the problem

of engineering a GUT model becomes more flexible because the local model is incomplete.

We study examples of this situation because there are well-known difficulties in heterotic

models in realizing traditional four-dimensional GUT group breaking via fields in the ad-

joint representation. This is due to the fact that in many cases, the requisite adjoint-valued

fields do not exist. Indeed, gauge group breaking by Wilson lines is not so much an el-

egant ingredient in heterotic constructions as much as it is a necessary element of any

construction.3 Gauge group breaking via Wilson lines can also occur in F-theory when

the surface wrapped by the seven-brane has non-trivial fundamental group. For example,

a well-studied surface with π1(S) 6= 0 is the Enriques surface which can be viewed as the

Z2 quotient of a K3 surface.

Given the large proliferation of four-dimensional GUT models which exist in the model

building literature, it is also natural to ask whether there exist purely four-dimensional

GUT models in F-theory with adjoint-valued GUT Higgs fields. We find that this can

be done provided the surface wrapped by the seven-brane has non-zero Hodge number

h2,0(S) 6= 0. But in contrast to the usual approach to four-dimensional effective field theo-

ries where it is common to assume that Planck scale physics can in principle be decoupled,

here we see that the traditional four-dimensional GUT cannot be decoupled from Planck

scale physics.

We also briefly consider supersymmetry breaking in our setup. This is surprisingly

simple to accommodate because extra messenger fields can naturally arise from additional

matter curves which do not intersect any of the other curves on which the matter content

of the MSSM localizes. Supersymmetry breaking can then communicate to the MSSM via

the usual gauge mediation mechanism. We note that because the µ term naturally devel-

3It is also possible to avoid this constraint in heterotic models which descend to a four-dimensional

flipped SU(5) GUT. See [30, 31, 25] for further details on this approach. We also note that in certain

cases, chiral superfields transforming in other representations can arise from higher Kac-Moody levels of

the heterotic string.
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ops a value around the electroweak scale independently of any supersymmetry breaking

mechanism, we can retain many of the best features of gauge mediation such as the absence

of additional flavor changing neutral currents (FCNCs) while avoiding some of the prob-

lematic elements of this scenario which are related to generating appropriate values for the

µ and Bµ terms. Depending on the local behavior of the wave functions which propagate

in directions normal to the del Pezzo surface, the messenger scale can quite flexibly range

from values slightly below the GUT scale to much lower but still phenomenologically viable

mass scales.

The organization of this paper is as follows. In section 2, we formulate what we wish to

achieve in our GUT constructions. In section 3 we review and slightly extend our previous

work on realizing GUT models in F-theory. To this end, we describe many of the necessary

ingredients for an analysis of the matter content and interaction terms of any potential

model. Before proceeding to any particular class of models, in section 4 we discuss the

various mass scales which will generically appear throughout this paper. In section 5, we

give a general overview of the class of GUT models in F-theory we shall study. These

models intrinsically divide based on how the GUT breaks to the MSSM. We first study

models where the GUT scale cannot be decoupled from the Planck scale. In section 6 we

discuss models where GUT breaking proceeds just as in four-dimensional models. Next, we

discuss GUT breaking via discrete Wilson lines in section 7. In the remainder of the paper

we focus on the primary case of interest where a decoupling limit exists. Section 8 reviews

some relevant geometrical facts about del Pezzo surfaces. This is followed in section 9 by a

study of GUT breaking to the MSSM via an internal U(1) hypercharge flux. In section 10

we determine which bulk gauge groups can break directly to the Standard Model gauge

group via internal fluxes. We also explain in greater detail how to obtain the exact spectrum

of the MSSM from such models. In section 11 we discuss a geometric realization of matter

parity, and in section 12 we study the interrelation between proton decay and doublet triplet

splitting in our models. After giving a simple criterion for avoiding the simplest dimension

five operators responsible for proton decay, in section 13 we explain how extra global U(1)

symmetries in the low energy effective theory are encoded geometrically in F-theory, and

in particular, how these symmetries can forbid potentially dangerous higher dimension

operators. In section 14 we discuss some coarse properties of Yukawa couplings and also

speculate on how further details of flavor physics could in principle be incorporated. In

this same section we also provide a qualitative explanation for why the usual mass relations

of GUT models become increasingly distorted as the mass of a generation decreases. In

section 15 we show that interaction terms involving matter fields which localize on Riemann

surfaces outside of the surface can generate hierarchically small values for both the µ term

as well as Dirac neutrino masses. We also study a variant on the usual seesaw mechanism

which generates the expected mass scale for the light neutrinos. Intriguingly, the Majorana

mass of the right-handed neutrinos is somewhat lower than the value expected in typical

GUT models. In section 16 we propose how supersymmetry breaking could communicate

to the MSSM, and in section 17 we present an SU(5) model which incorporates some (but

not all!) of the mechanisms developed in previous sections. Our expectation is that further

refinements are possible which are potentially more realistic. In a similar vein, in section 18

– 10 –
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4d MSSM
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8d SO(10)8d SU(5) 4d GUTs, 8d GUTs, ...

Decoupling Limit?

Figure 1: General overview of how GUT breaking constrains the type of GUT model.

we present a flipped SU(5) model. Section 19 collects various numerical estimates obtained

throughout the paper, and section 20 presents our conclusions. The appendices contain

further background material used in the main body of the paper and which may also be of

use in future model building efforts.

2. Constraints from low energy physics

In this section we define the criteria by which we shall evaluate how successfully our models

reproduce features of low energy physics obtained by a minimal extrapolation of experi-

mental data to the MSSM. There are a number of open questions in both phenomenology

and string theory which must ultimately be addressed in any approach. See [32, 33] for an

expanded discussion of some of the issues we briefly address here.

At the crudest level, we require that any viable model contain precisely three genera-

tions of chiral matter. It is an experimental fact that the chiral matter content of the Stan-

dard Model organizes into SU(5) and SO(10) GUT multiplets. Coupled with the fact that

the gauge couplings of the MSSM appear to unify at an energy scale MGUT ∼ 3×1016 GeV,

we shall aim to reproduce these features in all of the models we shall consider. For all of

these reasons, we require that the low energy content of all of our models must match to
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the matter content of the MSSM. By this we mean that in addition to achieving the correct

chiral matter content and Higgs content of the MSSM, all additional matter charged under

the gauge groups must at the very least fit into vector-like pairs of complete GUT multi-

plets in order to retain gauge coupling unification.4 In the minimal incarnation of GUT

models considered here, we shall further require that the low energy spectrum of particles

charged under the Standard Model gauge group must exactly match to the matter content

of the MSSM. We note that historically, even this qualitative requirement has been difficult

to achieve in Calabi-Yau compactifications of the perturbative heterotic string.

Although the correct particle content is a necessary step in achieving a realistic model,

it is certainly not sufficient because we must also reproduce the superpotential of the

MSSM:

W = µHuHd + λu
ijQ

iU jHu + λd
ijQ

iDjHd + λl
ijL

iEjHd + λν
ijL

iN j
RHu + . . . (2.1)

where the indices i and j label the three generations. While the precise form of the Yukawa

matrices labeled by the λ’s will lead to masses and mixing terms between the generations,

a necessary first step is that there are in principle non-zero contributions to the above

superpotential! As a first approximation, we require that the tree level superpotential

of the theory at high energy scales generate a non-trivial interaction term for the third

generation so that there is a rough hierarchy in mass scales. In the context of GUT models,

it is well-known that because the particle content of the Standard Model organizes into

complete GUT multiplets, the Yukawa couplings couple universally to fields organized in

such multiplets. One attractive feature of the tree level superpotential in most GUT models

is that the third generation obeys a simple mass relation of the form mb/mτ ∼ 1 at the

GUT scale. Evolving this relation under the renormalization group to the weak scale yields

the relation mb/mτ ∼ 3 which is roughly in agreement with experiment. Unfortunately,

this relation is violated for the lighter generations. Ideally, it would be of interest to find

models which naturally preserve the mass relations of the third generation while modifying

the relations of the first two generations.

At the next level of approximation, any model should be consistent with current ex-

perimental bounds on the lifetime of the proton (≥ 1031−1033 yrs [36]). This requires that

certain operators must be absent or sufficiently suppressed in the low energy superpoten-

tial. Indeed, note that in equation (2.1), we have implicitly only included renormalizable

R-parity invariant couplings because if present, the interaction terms λijkU
iDjDk and

λ′ijkL
iLjEk will cause the proton to decay too rapidly. We shall consider models with

and without R-parity. In the latter case, we therefore must present alternative reasons to

expect renormalizable operators responsible for R-parity to vanish.

Proton decay is a hallmark of GUT models. Aside from renormalizable interaction

terms, the dominant contribution to proton decay in the simplest GUT models comes from

4While it is in principle possible to consider models where vector-like exotics preserve gauge coupling

unification, we believe this runs contrary to the spirit of GUT models. Although we shall not entertain this

possibility here, see [34, 35] for further discussion of this possibility.
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the dimension five operator [37, 38]:5

O5 =
c5

MGUT

∫
d2θQQQL (2.2)

and the dimension six operator:

O6 =
c6

M2
GUT

∫
d4θQQU †E†. (2.3)

The operator O5 can originate from the exchange of heavy Higgs triplets and can cause the

decay p → K+ν. The operator O6 can originate from the exchange of heavy off-diagonal

GUT group gauge bosons and can cause the decay p → e+π0. To remain in accord with

current bounds on nucleon decay, c6 can typically be an order one coefficient whereas c5
must be suppressed at least to the order of 10−7. See [39] for further discussion on proton

decay in GUT models.

In four-dimensional GUT models, this issue is closely related to the mechanism re-

sponsible for removing the Higgs triplets from the low energy spectrum. One common

approach is to invoke some continuous or discrete symmetry to sufficiently suppress this

operator. The use of discrete symmetries in compactifications of M-theory on manifolds

with G2 holonomy has been studied in [40]. Note that while the Higgs triplet must develop

a sufficiently large mass in order to reproduce the particle content of the MSSM, we must

also require that the supersymmetric Higgs mass µ should be on the order of the weak scale.

While the above problems are necessary requirements for any potentially viable model,

there are many additional phenomenological constraints which must be satisfied in a fully

realistic compactification. In principle, a complete model should also naturally accommo-

date hierarchical masses for the quarks and leptons. For example, in conventional GUT

models, the seesaw mechanism allows the neutrino masses in the Standard Model to be

much lighter than the electroweak scale. At a more refined level, a full model should ex-

plain why the CKM matrix is nearly equal to the identity matrix whereas the MNS matrix

contains nearly maximal mixing between the neutrinos.

A fully realistic model must of course specify how supersymmetry is broken and provide

a mechanism for communicating this breaking to the MSSM. Our expectation is that this

issue can be treated independently from the supersymmetric models which shall be our

primary focus here. We note that for general string compactifications, supersymmetry

breaking is closely entangled with moduli stabilization. While we will not specify a method

for stabilizing moduli, we note that F-theory provides a natural arena for further study of

this issue. See [41] for a particular example of moduli stabilization in F-theory and [42] for

a review of this active area of research.

3. Basic setup

In this section we review the basic properties of exceptional seven-branes in F-theory.

In particular, we explain how to compute the low energy matter spectrum as well as the

effective superpotential of the four-dimensional theory. Further details may be found in [15].

5There is an additional contribution to the superpotential given by UUDE. At the level of discussion

in this paper, it is sufficient to only deal with the term QQQL.
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F-theory compactified on an elliptically fibered Calabi-Yau fourfold preserves N = 1

supersymmetry in the four uncompactified spacetime dimensions. Letting B3 denote the

base of the Calabi-Yau fourfold, the discriminant locus of the elliptic fibration determines

a subvariety ∆ of complex codimension one in the base B3. Denoting by S the Kähler

surface defined by an irreducible component of ∆, when this degeneration locus is a sin-

gularity of ADE type, the resulting eight-dimensional theory defines the worldvolume of

an exceptional seven-brane with gauge group GS of ADE type. This singularity type can

enhance along complex codimension one curves in S to a singularity of type GΣ and can

further enhance at complex codimension two points in S to a singularity of type Gp. Such

points correspond to the triple intersection of three matter curves. Because the Cartan

subalgebra of each singularity type is visible to the geometry [43, 44], these enhancements

satisfy the containment relations:

GS × U(1) × U(1) ⊂ GΣ × U(1) ⊂ Gp. (3.1)

As argued in [15], many necessary features of even semi-realistic GUT models require that

Gp ⊂ E8. In particular, this implies that the rank of the bulk gauge group GS is at most

six. This significantly limits the available bulk gauge groups because the rank of GS must

be at least four in order to contain the Standard Model gauge group.

In this paper we shall assume that given a choice of matter curves, there exists a

Calabi-Yau fourfold which contains the corresponding local enhancement in singularity

type. While this assumption is clearly not fully justified for compact models, in the context

of local models this can always be done. As an example, we now engineer a local model

where the bulk gauge group E6 enhances along a matter curve Σ in S to an E7 singularity.

A local elliptic model of this type is:

y2 = x3 + fxz3 + q2z4. (3.2)

In the above, q is a section of OS(Σ), f is a section of L⊗K−3
S and the coordinates (x, y, z)

transform as a section of [15]:

L2 ⊕ L3 ⊕ L⊗KS (3.3)

where KS denotes the canonical bundle on S and L is a line bundle which can be expressed

in terms of KS and OS(Σ). The essential point of this example is that in a local model,

there always exists a line bundle L such that the resulting local model is well-defined. For

example, in this case we have:

L = OS(Σ) ⊗K2
S . (3.4)

Further, we shall make the additional assumption that there is no mathematical obstruction

to various twofold enhancements in the rank of the singularity at points of the surface S.

It would certainly be of interest to study this issue.

We now describe in greater detail the effective action of exceptional seven-branes. In

terms of four-dimensional N = 1 superfields, the matter content of the theory consists of an

N = 1 vector multiplet which transforms as a scalar on S, a collection of chiral superfields

Ai which transform as a (0, 1) form on S (the bulk gauge bosons) and a collection of chiral
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superfields Φ which transform as a holomorphic (2, 0) form on S. The bulk modes couple

through the superpotential term:

WS =

∫

S

Tr
[(
∂A + A ∧ A

)
∧ Φ

]
. (3.5)

When two irreducible components S and S′ of ∆ intersect on a Riemann surface Σ, the

singularity type enhances further. In this case, additional six-dimensional hypermultiplets

localize along Σ. As in [44], the representation content of these fields is given by decom-

posing the adjoint representation of the enhanced singularity to the product GS × GS′

associated with the gauge groups on S and S′. In terms of four-dimensional N = 1 super-

fields, the matter content localized on a curve consists of chiral superfields Λ and Λc which

transform as spinors on Σ. The bulk modes couple to matter fields localized on the curve

via the superpotential term:

WΣ =

∫

Σ

〈
Λc, (∂ + A + A

′)Λ
〉

(3.6)

where 〈·, ·〉 denotes the natural pairing which is independent of any metric data.

Finally, when three irreducible components of ∆ intersect at a point p, the singularity

type can enhance even further. Evaluating the overlap of three Λ’s for three matter curves

yields a further contribution to the four-dimensional effective superpotential:

Wp = Λ1Λ2Λ3|p. (3.7)

An analysis similar to that given below equation (3.2) shows that given three matter curves

which form a triple intersection, so long as the resulting interaction term is consistent with

group theoretic considerations, there exists a local Calabi-Yau fourfold with the desired

twofold enhancement in singularity type.

Having specified the individual contributions to the quasi-topological eight-dimensional

theory, the superpotential is:

W [Φ, A,Λ] = WS1 + . . .+WSl
+WΣ1 + . . .+WΣm +Wp1 + . . .+Wpn +Wflux +Wnp. (3.8)

In the above, the corresponding fields entering the above expression are to be viewed as a

large collection of four-dimensional chiral superfields labeled by points of the complex sur-

faces Si and the Riemann surfaces Σi. We have also included the contribution from the flux-

induced superpotential which couples to the various (2, 0) forms of the seven-branes and in-

directly to matter fields localized on curves. As explained in [15], the vevs for the (2, 0) form

and fields localized on matter curves correspond to complex deformations of the Calabi-Yau

fourfold. Because the flux-induced superpotential couples to the complex structure moduli

of the Calabi-Yau fourfold, such terms will generically be present. In equation (3.8), we have

also included the term Wnp which denotes all non-perturbative contributions from wrapped

Euclidean three-branes. These terms are proportional to exp(−aV ol(S)) ∼ exp(−c/αGUT)

where c is an order one positive constant. In a GUT model where the gauge coupling

constants unify perturbatively, such contributions are negligible.
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The fields of the four-dimensional effective theory correspond to zero mode solutions

in the presence of a background field configuration. As in [15], we shall confine our analysis

of the matter spectrum to backgrounds where all fields other than the bulk gauge field are

expanded about zero. In the presence of a non-trivial background gauge field configuration,

the chiral matter content of the four-dimensional effective theory descends from bulk modes

on S and Riemann surfaces which we denote by the generic label Σ. An instanton taking val-

ues in a subgroup HS will break GS to the commutant subgroup. Decomposing the adjoint

representation of GS to the maximal subgroup of the form ΓS×HS, the chiral matter trans-

forming in a representation τ of ΓS descends from the bundle-valued cohomology groups:

τ ∈ H0
∂
(S,T ∗)∗ ⊕H1

∂
(S,T ) ⊕H2

∂
(S,T ∗)∗ (3.9)

where T denotes a bundle transforming in the representation T of HS obtained by the

decomposition of the adjoint representation of the associated principle GS bundle on S.

When S is a del Pezzo surface, the cohomology groups H0
∂

and H2
∂

vanish for supersym-

metric gauge field configurations so that the number of zero modes transforming in the

representation τ is given by an index:

nτ = χ(S,T ) = −
(

1 +
1

2
c1(S) · c1(T ) +

1

2
c1(T ) · c1(T )

)
. (3.10)

An analogous computation holds for the zero mode content localized on a Riemann

surface transforming in a representation ν × ν ′ of HS ×HS′ :

ν × ν ′ ∈ H0
∂
(Σ,K

1/2
Σ ⊗ V ⊗ V ′) (3.11)

so that the net number of zero modes is given by the index:

nν×ν′ − nν×ν′ = deg
(
V ⊗ V ′

)
. (3.12)

In many cases we shall compute the relevant cohomology groups in equation (3.11) by

assuming a canonical choice of spin structure. As argued in [15], this can always be done

when the curve corresponds to the vanishing locus of the holomorphic (2, 0) form in the

eight-dimensional theory.

When π1(S) 6= 0, it is also possible to consider vacua with non-trivial Wilson lines.

In order to avoid complications from the reduction of additional supergravity modes, we

shall always assume that π1(S) is a finite group. The discussion closely parallels a similar

analysis in heterotic compactifications (see for example [45]). Recall that admissible Wilson

lines are specified by a choice of element ρS ∈ Hom(π1(S), GS). In order to maintain

continuity with the discussion reviewed above, we shall require that the non-trivial portion

of the discrete Wilson line takes values in the subgroup ΓS ⊂ GS defined above. More

generally, this restriction can be lifted and may allow additional possibilities for projecting

out phenomenologically unviable representations from the low energy spectrum. Under

these restrictions, the unbroken four-dimensional gauge group is given by the commutant

subgroup of ρS(π1(S)) ×HS in GS .
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We now determine the zero mode content of the theory in the presence of a non-

trivial discrete Wilson line. As in Calabi-Yau compactifications of the heterotic string,

our strategy will be to lift all computations to a covering theory. Because π1(S) is finite,

the universal cover of S denoted by S̃ is a compact Kähler surface. Letting p : S̃ → S

denote the covering map, the bundle T on S now lifts to a bundle T̃ = p∗(T ) on S̃. Under

the present restrictions, the Wilson line corresponds to a flat ΓS-bundle induced from the

covering map from S̃ to S. The deck transformation defined by the action of π1(S) on S̃ also

determines a group action of π1(S) on the cohomology groupsH i
∂
(S̃, T̃ ). Treating H i

∂
(S̃, T̃ )

as a complex vector space, the eigenspace decomposition of H i
∂
(S̃, T̃ ) is of the form:

H i
∂
(S̃, T̃ ) ≃ ⊕

λ
Cλ (3.13)

in the obvious notation. The irreducible representation of ΓS defined by τ decomposes into

irreducible representations of the maximal subgroup Γ × ρS(π1(S)) ⊂ ΓS as:

τ ≃ ⊕
i
τi ⊗Ri. (3.14)

The zero modes transforming in the representation τi are therefore specified by the ρS

invariant subspaces:

τi :
[
H0

∂
(S̃, T̃ ∗)∗ ⊗Ri

]ρS ⊕
[
H1

∂
(S̃, T̃ ∗)∗ ⊗Ri

]ρS ⊕
[
H2

∂
(S̃, T̃ ∗)∗ ⊗Ri

]ρS

. (3.15)

Having specified the zero mode content of the theory, we can now in principle determine

the full superpotential of the low energy effective theory by integrating out all Kaluza-Klein

modes from equation (3.8). This is similar to the treatment of Chern-Simons gauge theory

as a string theory [46]. For quiver gauge theories defined by D-brane probes of Calabi-Yau

threefolds, the higher order terms of the effective superpotential are given by integrating

out all higher Kaluza-Klein modes from the associated holomorphic Chern-Simons theory

for B-branes [47].

In the present context, we can follow the procedure outlined in [48] to determine the

full expression for the effective superpotential. This is given by a bosonic partition function

with action given by the superpotential of equation (3.8). Viewing the higher-dimensional

fields as a collection of four-dimensional chiral superfields labeled by points of the internal

space, the effective superpotential is now given by the bosonic path integral:

exp (−Weff [Φ0, A0,Λ0]) =

∫

1PI

[dΦ][dA][dΛ] exp (−W [Φ + Φ0, A+A0,Λ + Λ0]) (3.16)

where the zero subscript denotes the zero mode, and the path integral is over all one particle

irreducible Feynman diagrams. In this expression, Wtree should be viewed as a bosonic

action with functional dependence identical to that of equation (3.8). The complete four-

dimensional effective superpotential for the zero modes is then determined by the partition

function of the quasi-topological theory. We emphasize that this partition function is well-

defined without any reference to metric data. A very similar procedure for extracting the

superpotential by integrating out Kaluza-Klein modes in heterotic compactifications has
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been given in [23]. Some examples of similar computations for quiver gauge theories can

be found in [49]. To conclude this section, we note that any symmetry of the full eight-

dimensional theory descends to the four-dimensional effective superpotential for the zero

modes. Neglecting the contribution due to non-perturbative effects in equation (3.8), the

extra U(1) factors which are always present when the singularity type enhances will provide

additional global symmetries in the effective theory which will typically forbid some higher

dimension operators from being generated. Although non-perturbative effects can violate

these symmetries, the corresponding contribution to Weff [Φ0, A0,Λ0] will typically be small

enough that we may safely neglect such contributions.

These general considerations already constrain the matter content of any candidate

theory. Modes propagating in the bulk of the surface S must transform in the adjoint repre-

sentation of the bulk gauge group. Moreover, although matter fields can localize on a curve

Σ inside of S, these fields must descend from the adjoint representation of GΣ. For example,

for SU(N) gauge group factors which do not embed in E8, the only available local enhance-

ments are to higher A or D type singularities. In such cases, the decomposition of the ad-

joint representation only contains two index representations. Similar restrictions apply for

SO(N) gauge group factors which do not embed in E8. In particular, the spinor representa-

tion never appears in such cases. In a sense, this is to be expected because these are precisely

the types of configurations which can be realized within perturbative type IIB vacua.

For SO(N) ⊂ E8 gauge groups, the available representations are the vector, spinor or

adjoint representations, and for SU(N) ⊂ E8 gauge groups, the only available represen-

tations are the one, two or three index anti-symmetric and the adjoint representations.6

For example, when GS = SO(10), this implies that all of the matter fields transform in

the 10, 16, 16 or 45, while for GS = SU(5), the only available representations are the 5, 5,

10, 10 or 24. in the specific case of del Pezzo models, this matter content is even more

constrained. Indeed, as explained in [15], the bulk zero mode content for del Pezzo mod-

els never contains chiral superfields which transform in the adjoint representation of the

unbroken gauge group in four dimensions.

In fact, the type of twofold enhancement strongly determines the qualitative behavior

of the associated triple intersection of matter curves. For example, the possible rank two

enhancements of SU(5) are E6, SO(12), and SU(7). In the case of E6 and SO(12), the

associated curves which form a triple intersection all live inside of S. Indeed, by group

theory considerations, the matter fields localized on each curve transform in non-trivial

representations of SU(5) [15]. On the other hand, this is qualitatively different from a local

enhancement to SU(7). In this case, two of the curves of the triple intersection support

matter in the fundamental and anti-fundamental of SU(5) and therefore live in S, while

6Strictly speaking there are additional possibilities if the rank of the bulk singularity enhances by more

than one rank. If one allows more general breaking patterns involving higher SU(N) and SO(2N) type

enhancements, it is also possible to achieve two index symmetric representations of SU(N) theories. For

example, letting A2N denote the two index anti-symmetric representation of SU(2N), A2N decomposes to

SU(N) × SU(N) as A2N → AN ⊗ 1 + 1 ⊗ AN + FN ⊗ FN . Higgsing this to the diagonal SU(N) subgroup,

we note that the product FN ⊗ FN contains two index symmetric representations. This is a rather exotic

possibility and we shall therefore not consider it further in this paper.
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the third curve of the intersection supports matter in the singlet representation.

More generally, we note that as opposed to a generic field theory, in F-theory, vector-

like pairs of the bulk gauge group can only interact through cubic superpotential terms

involving a field localized on a curve which intersects S at a point. While the vev of this

gauge singlet can induce a mass term for the vector-like pair, the dynamics of this field in

the threefold base B3 is qualitatively different from fields which localize inside of S.

4. Mass scales and decoupling limits

Before proceeding to specific models, we first present a general analysis of the relevant mass

scales in the local models we treat in this paper. Rather than specify one particular profile

for the threefold base B3, we consider both geometries where B3 is roughly tubular so that

it decomposes as the product of S with two non-compact directions orthogonal to S in B3,

as well as more homogeneous profiles. To parameterize our ignorance of the details of the

geometry, we define the length scales:

RS ≡ V ol(S)1/4 (4.1)

RB ≡ V ol(B3)
1/6 (4.2)

as well as a cutoff length scale R⊥ which measures the radius normal to S:

R⊥ ≡ RB ×
(
RB

RS

)ν

(4.3)

so that the exponent ν ranges from ν = 0 when B3 is homogeneous, to the value ν = 2 when

B3 is the product of S with two non-compact directions. Indeed, the approximations we

consider in this paper are valid in the regime 0 . ν . 2. Note that under the assumption

RB > RS , the three length scales are related by:

R⊥ > RB > RS . (4.4)

See figure 2 for a comparison of the local behavior of B3 for ν ∼ 0 and ν ∼ 2. To clarify,

although the directions normal to S are “non-compact” in our local model, in a globally

consistent compactification of F-theory they will still be quite small, and all on the order of

the GUT scale, as will be discussed below. Indeed, this is quite different from models based

on large extra dimensions which can be either flat, but still compact [50], or potentially

highly warped and of infinite extent [51].

Compactifying on a threefold base B3, the ten-dimensional Einstein-Hilbert action is:

SEH ∼M8
∗

∫

R3,1×B3

R
√−gd10x (4.5)

where M∗ is a particular mass scale associated with the supergravity limit of the F-theory

compactification. In perturbative type IIB string theory, the parameter M∗ is given in
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Figure 2: Depiction of F-theory compactified on a local model of a Calabi-Yau fourfold with non-

compact base threefold B3. The diagram shows the behavior of the geometry in the neighborhood

of a compact Kähler surface S on which the gauge degrees of freedom of the GUT model can localize

in the cases where B3 is given by a roughly tubular geometry, as in case a), as well as geometries

where B3 is more homogeneous, as in case b). In both cases, the directions orthogonal to S in

B3 are large compared to S, but not warped. To regulate the geometry of the local model it is

necessary to introduce a cutoff length scale which we denote by R⊥. The intersection locus between

the compact surface S and a non-compact surface S′ appears as a curve Σ in S. When seven-branes

wrap both surfaces, additional light states will localize on this matter curve.

string frame by the relation M8
∗ = M8

s /g
2
s . Upon reduction to four dimensions, the four-

dimensional Planck scale Mpl satisfies the relation:

M2
pl ∼M8

∗V ol(B3). (4.6)

The tension of a seven-brane wrapping a Kähler surface S in B3 determines the gauge

coupling constant of the four-dimensional effective theory. More precisely, the coefficient

of the kinetic term for the gauge field strength is of the form:7

Skin ∼ −M4
∗

∫

R3,1×S

Tr (F ∧ ∗8F ) . (4.7)

The value of the gauge coupling constant at the scale of unification is therefore:

α−1
GUT ∼M4

∗V ol(S). (4.8)

7The astute reader will notice a difference in sign between the gauge kinetic term used here, and the

convention adopted in [15]. In [15], we adopted an anti-hermitian basis of Lie algebra generators in order

to conform to conventions typically used in topological gauge theory. Because our emphasis here is on the

four-dimensional effective field theory, in this paper we have reverted back to the standard sign convention

in the physics literature so that all Lie group generators are hermitian.
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Equations (4.6) and (4.8) now imply:

V ol(B3) ∼ (αGUTMplV ol(S))2 (4.9)

or:

R6
B ∼

(
αGUTMplR

4
S

)2
. (4.10)

We now convert these geometric scales into mass scales in the low energy effective

theory. To this end, we next relate V ol(S) to the GUT scale MGUT. In most of the cases

we consider, non-zero flux in the internal directions of S will partially break the bulk gauge

group of the seven-brane. Letting
√

〈FS〉 denote the mass scale of the internal flux, we

therefore require:

M2
GUT ∼ 〈FS〉 . (4.11)

Because the flux is measured in units of length−2 on the surface S, this implies:

V ol(S) ∼M−4
GUT. (4.12)

Equation (4.9) therefore yields:

V ol(B3) ∼
(
αGUTMplM

−4
GUT

)2
. (4.13)

The radii RB and RS are therefore given by:

1

RS
∼MGUT = 3 × 1016 GeV (4.14)

1

RB
∼MGUT × ε1/3 ∼ 1016 GeV (4.15)

where we have introduced the small parameter:

ε ≡ MGUT

αGUTMpl
∼ 7.5 × 10−2. (4.16)

Collecting equations (4.9) and (4.12), the parameter R⊥ now takes the form:

1

R⊥
= MGUT × εγ ∼ 5 × 1015±0.5 GeV (4.17)

where 1/3 ≤ γ ≤ 1. We note that these numerical values for the radii satisfy the inequality

of line (4.4).

We conclude this section by discussing the normalization of Yukawa couplings in models

where the superpotential originates from the triple intersection of matter curves. In a

holomorphic basis of wave functions, the F- and D-terms are:

Lhol
F =

∑

p

ψi(p)ψj(p)ψk(p)

∫
d2θφ̃iφ̃jφ̃k (4.18)

≡ λhol
ijk

∫
d2θφ̃iφ̃j φ̃k (4.19)

Lhol
D = M2

∗

∫

Σ

d4θK(φ̃, φ̃†) (4.20)
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where in the above, ψi(p) denotes the internal value of the wave function associated with

the four-dimensional chiral superfield φ̃i evaluated at a point p in S, and the holomorphic

Yukawa couplings are defined as:

λhol
ijk =

∑

p

ψi(p)ψj(p)ψk(p). (4.21)

The behavior of the wave functions near these points can generate hierarchically small

values near nodal points, and order one values away from such nodal points.

We eventually wish to extract numerical estimates for the physical Yukawa couplings,

defined in a basis of four-dimensional chiral superfields with canonically-normalized kinetic

terms. However, if we reduce the D-term in (4.20) over Σ, we find that the kinetic term

for φ̃ is multiplied by the L2-norm on Σ of the corresponding zero-mode wave function ψ.

In general, ψ transforms on Σ as a holomorphic section of K
1/2
Σ ⊗ L, where L is a line

bundle on Σ determined by the gauge field on S. Both K
1/2
Σ and L carry natural hermitian

metrics inherited from the bulk metric and gauge field on S. Fixing the holomorphic wave

function ψ, we are interested in how the L2-norm of ψ scales with the metric on S, since

the volume of S effectively determines MGUT. For concreteness, let us write the metric

on S in local holomorphic coordinates (z,w) as ds2 = gzz dzdz + gww dwdw, where z is

a local holomorphic coordinate along Σ and w is a holomorphic coordinate normal to Σ.

Under an overall scaling g 7→ ℓg, the hermitian metric on L is unchanged, so the norm of

ψ behaves as

〈ψ|ψ〉 =

∫

Σ
d2z gzz

(
gzz
)1/2

ψψ ,

7−→ ℓ1/2 〈ψ|ψ〉 . (4.22)

Since the volume of Σ scales with ℓ, we see from (4.22) that 〈ψ|ψ〉 scales with Vol(Σ)1/2.

At first glance, the dependence of 〈ψ|ψ〉 on ℓ might appear to be the only source of

ℓ-dependence in the respective F - and D-terms in (4.18) and (4.20), since the F -term is

determined by the overlap of fixed holomorphic wavefunctions. However, in making precise

sense of this overlap, an additional ℓ-dependence also enters.

To explain this ℓ-dependence, let us consider a slightly simplified situation, for which

the holomorphic curves Σ1, Σ2, and Σ3 meet transversely at a point inside a Calabi-Yau

threefold B3. The role of the line bundle L is inessential, so on each curve we take the

wavefunction ψi to transform as a holomorphic section of K
1/2
Σi

. In local holomorphic coor-

dinates (z,w, v) around the point p of intersection, the wavefunction overlap is defined by

ψ1(p)ψ2(p)ψ3(p)

√
dz

√
dw

√
dv√

Ω(p)
. (4.23)

Here Ω is a holomorphic three-form on B3 which we must introduce so that the overlap

in (4.23) does not depend on the particular holomorphic coordinates (z,w, v) chosen at p.

Of course, Ω is unique up to scale — but it is precisely the scale of the overlap that we

are trying to fix! Given that B3 carries a metric, we fix the norm of Ω by the requirement
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that −iΩ∧Ω = ω∧ω∧ω, where ω is the Kähler form associated to the metric on B3. Once

we impose this condition, Ω scales as Ω 7→ ℓ3/2 Ω under an overall scaling of the metric on

B3. Hence the wavefunction overlap in (4.23) and thus the holomorphic Yukawa coupling

λhol
ijk actually scales as ℓ−3/4.

After canonically normalizing all kinetic terms, the physical Yukawa couplings are

given by

λphys
ijk =

λhol
ijk√

M2
∗ 〈ψi|ψi〉M2

∗ 〈ψj |ψj〉M2
∗ 〈ψk|ψk〉

. (4.24)

By the preceding discussion, under an overall scaling g 7→ ℓ g of the metric on B3, the

physical Yukawa coupling scales as λphys
ijk 7→ ℓ−3/2 λphys

ijk . Restoring the dependence on the

volumes of each curve, we find the result which one would naively guess,

λphys
ijk =

λ0
ijk√

M2
∗Vol(Σi)M2

∗Vol(Σj)M2
∗Vol(Σk)

. (4.25)

Here λ0
ijk denotes the fiducial, order one Yukawa coupling defined by (4.23) when B3 has

unit volume.

Although we have phrased the preceding discussion in the very special case that Σ1,

Σ2, and Σ3 are holomorphic curves intersecting transversely in a Calabi-Yau threefold,

the result (4.25) holds quite generally in F-theory. According to the discussion in §5.2
of [15], when Σ1, Σ2, and Σ3 are matter curves intersecting at a point p inside S, one must

choose a trivialization of
(
K

1/2
Σ1

⊗K
1/2
Σ2

⊗K
1/2
Σ3

)∣∣∣
p

to evaluate the wavefunction overlap.

This choice, analogous to the choice of Ω in (4.23), introduces the same scaling with ℓ.

Once we introduce four-dimensional chiral superfields {φi} with canonical kinetic

terms, the F -terms become

LF = λ0
ijk

∫
d2θ

φiφjφk√
M2

∗Vol(Σi)M2
∗Vol(Σj)M2

∗Vol(Σk)
. (4.26)

We note that when all matter curves have comparable volumes set by the overall size of

Vol(S), Vol(Σ)2 ∼ Vol(S) . In this case, (4.8) implies:

LF = α
3/4
GUTλ

0
ijk

∫
d2θ φiφjφk. (4.27)

In rescaling each field by an appropriate power of the volume factor, we shall typically

use the classical value of Vol(Σi). Strictly speaking, this approximation is only valid in the

supergravity limit. Due to the fact that in F-theory there is at present no perturbative

treatment of quantum corrections, most of the numerical results obtained throughout this

paper can only be reliably treated as order of magnitude estimates.

5. General overview of the models

In this section we provide a guide to the class of models we study. The choice of Kähler

surface S already determines many properties of the low energy effective theory. In keeping
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Σ

Σ

Σ

Σ

2

Σ

Σ

S

z

Σ

Σ

ψ

Figure 3: The bulk group on the Kähler surface S corresponds to a singularity of type GS . Over

complex codimension one matter curves in S which we denote by Σ, this singularity type can further

enhance so that six-dimensional matter fields localize on these curves. Over complex codimension

two points in S the singularity type can enhance further. On the left of the figure we depict a triple

intersection of matter curves in S. It is also possible for one of the matter curves to intersect S at

a point. Depending on the background gauge fluxes and local curvatures, wave functions localized

on curves normal to the GUT brane are either exponentially suppressed or of order one near the

point of contact with the GUT brane.

with our general philosophy, we require that the spectrum at low energies must not contain

any exotics. When h1,0(S) 6= 0, we expect the low energy spectrum to contain additional

states obtained by reduction of the bulk supergravity modes of the compactification. For

this reason we shall always require that π1(S) is a finite group. There are two further

possible refinements depending on whether or not the model in question admits a limit

in which MGUT remains finite while Mpl → ∞. In order to fully decouple gravity, the

extension of the local metric on S to a local Calabi-Yau fourfold must possess a limit in

which the surface S can shrink to zero size. In particular, this imposes the condition that

K−1
S must be ample. This is equivalent to the condition that S is a del Pezzo surface,

in which case h2,0(S) = 0. We note that the degree n ≥ 2 Hirzebruch surfaces satisfy

h2,0(S) = 0 but do not define fully consistent decoupled models.

In fact, even the way in which the gauge group of the GUT breaks to that of the

MSSM strongly depends on whether or not such a decoupling limit exists. For surfaces with

h2,0(S) 6= 0, the zero mode content will contain contributions from the bulk holomorphic

(2, 0) form. Because the (2, 0) form determines the position of the exceptional brane inside

of the threefold base B3, a non-zero vev for the associated zero modes corresponds to the

usual breaking of the GUT group via an adjoint-valued chiral superfield.8 Along these

lines, we present some examples of four-dimensional GUT models which can originate from

surfaces of general type. An important corollary of this condition is that the usual four-

8The potential application of this GUT breaking mechanism was noted in a footnote of [52] and has also

been discussed in [15, 16].
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dimensional field theory GUT models cannot be fully decoupled from gravity! We believe

this is important because it runs counter to the usual effective field theory philosophy that

issues pertaining to the Planck scale can always be decoupled. This is in accord with the

existence of a swampland of effective field theories which may not admit a consistent UV

completion which includes gravity [53]. Moreover, as we explain in greater detail later, it

is also possible that a generic surface of general type may not support sufficiently many

matter curves of the type needed to engineer a fully realistic four-dimensional GUT model.

When available, discrete Wilson lines in higher-dimensional theories provide another

way to break the GUT group to Gstd. Indeed, most models based on compactifications

of the heterotic string on Calabi-Yau threefolds require discrete Wilson lines to break the

gauge group and project out exotics from the low energy spectrum. When π1(S) 6= 0,

a similar mechanism for gauge group breaking is available for exceptional seven-brane

theories. As an example, we present a toy model where S is an Enriques surface and GS =

SU(5). In our specific example, we find that the zero mode content contains additional

vector-like pairs of fields in exotic representations of Gstd.

We next turn to the primary case of interest for bottom up string phenomenology

where S is a del Pezzo surface. Because h2,0(S) = 0 and π1(S) = 0 for del Pezzo surfaces,

the two mechanisms for gauge group breaking mentioned above are now unavailable. In

this case, the GUT group breaks to a smaller subgroup due to non-trivial internal fluxes.

For example, the group SU(5) can break to SU(3) × SU(2) × U(1)Y when the internal

flux takes values in the U(1)Y factor. In heterotic compactifications this mechanism is

unavailable because a non-zero internal field strength would generate a string scale mass

for the U(1) hypercharge gauge boson in four dimensions [23]. We find that in F-theory

compactifications without a heterotic dual, there is a natural topological condition for the

four-dimensional gauge boson to remain massless. Our expectation is that this condition

is satisfied for many choices of compact threefolds B3. In the remainder of this section we

discuss further properties of del Pezzo models.

Along these lines, we present models based on GS = SU(5) where the gauge group

of the eight-dimensional theory breaks directly to Gstd in four dimensions, as well as a

hybrid scenario where GS = SO(10) breaks to SU(5) × U(1) in four dimensions and then

subsequently descends from a flipped SU(5) GUT model to the MSSM. In fact, we also

present a general no go theorem showing that direct breaking of SO(10) to Gstd via abelian

fluxes always generates extraneous matter in the low energy spectrum. In both the regular

SU(5) and flipped SU(5) scenarios, we find that in order to achieve the exact spectrum of

the MSSM, all of the matter fields must localize on Riemann surfaces. In the GS = SU(5)

models, the matter fields organize into the 5 and 10 of SU(5). In the GS = SO(10) models,

a complete multiplet in the 16 of SO(10) localizes on the matter curves. In both cases, all

matter localizes on curves so that all of the tree level superpotential terms descend from

the triple intersection of matter curves. When some of the matter localizes on different

curves, this leads to texture zeroes in the Yukawa matrices.

In addition to presenting some examples of minimal del Pezzo models, one of the pri-

mary purposes of this paper is to develop a number of ingredients which can be of use in

further more refined model building efforts. A general overview of these ingredients has al-
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ready been given in the Introduction, so rather than repeat this here, we simply summarize

the primary themes of the minimal SU(5) model which recur throughout this paper. The

most prominent ingredient is the internal hypercharge flux which facilitates GUT breaking.

This hyperflux also provides a natural solution to the doublet-triplet splitting problem and

generates distorted GUT mass relations for the lighter generations. More generally, the

presence of additional global U(1) symmetries in the low energy theory forbids a number

of potentially problematic interaction terms from appearing in the superpotential. Topo-

logically, the absence of dangerous operators translates into conditions on how the matter

curves intersect inside of S. For example, proton decay is automatically suppressed when

the Higgs up and down fields localize on different matter curves. When these curves do

not intersect, the µ term is zero. When the Higgs matter curves do intersect, the resulting

µ term can be naturally suppressed. Indeed, an important feature of all the models we

consider is that while expectations from effective field theory would suggest that vector-

like pairs will always develop a suitably large mass, here we find two distinct possibilities

depending on the choice of the sign for the gauge fluxes: In one case (when the normal

wave function is attracted to our brane) we essentially recover the field theory intuition.

On the other hand, with a different choice of sign (when the normal wave function is re-

pelled from our brane) we find the opposite situation, where µ is highly suppressed. The

ostensibly large mass term corresponding to the vev of a gauge singlet is in fact exponen-

tially suppressed since its wave function is very small near our brane. Here, the principle

of decoupling is especially important because the large positive curvature of the del Pezzo

surface can lead to a natural suppression of the normal wave functions. This provides an

explanation for why the µ term is far below the GUT scale, as well as why the neutrino

masses are so far below the electroweak scale. While we discuss many of these mechanisms

in the specific context of the minimal SU(5) model, these same features carry over to the

flipped SU(5) GUT models as well. In such cases, additional well-established field theoretic

mechanisms are also available. For example, four-dimensional flipped SU(5) models already

contain an elegant mechanism for doublet-triplet splitting which also naturally suppresses

dangerous dimension five operators responsible for proton decay. In this case, we can also

utilize a conventional seesaw mechanism to generate hierarchically light neutrino masses.

6. Surfaces of general type

In this section we present some examples of models where Planck scale physics cannot be

decoupled from local GUT models. Recall that in a traditional four-dimensional GUT, the

GUT group breaks to Gstd when an adjoint-valued chiral superfield develops a suitable vev.

In F-theory, this requires that the seven-brane wraps a surface with h2,0(S) 6= 0. Before

proceeding to a discussion of GUT models based on such surfaces, we first discuss some

important constraints on matter curves and supersymmetric gauge field configurations for

such surfaces.

In many cases, some of the chiral fields of the low energy theory will localize on matter

curves in S. When h2,0(S) 6= 0, the number of available matter curves will typically be

much smaller than the dimension of H2(S,Z) would suggest. To see this, suppose that an
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element of H2(S,Z) corresponds to a holomorphic curve Σ in S. We shall also refer to the

class [Σ] as an “effective” divisor. Given a (2, 0) form Ω on S, note that:

∫

Σ

Ω =

∫

S

Ω ∧ PD(Σ) = 0 (6.1)

where PD(Σ) denotes the element of H2(S,Z) which is Poincaré dual to Σ. This last

equality follows from the fact that PD(Σ) corresponds to the first Chern class of an appro-

priate line bundle and therefore is of type (1, 1).9 We thus see that although the condition

h2,0(S) 6= 0 is satisfied by a large class of vacua, at generic points in the complex structure

moduli space each element of H2,0(S,C) imposes an additional constraint of the form given

by equation (6.1). At the level of cohomology, the divisor classes are parameterized by the

Picard lattice of S:

Pic(S) = H1,1(S,C) ∩H2(S,Z). (6.2)

For example, we note that for a generic algebraic K3 surface, Pic(S) has rank one. Indeed,

this lattice is generated by the hyperplane class inherited from the projective embedding of

a general quartic in P
3. It is only at special points in the complex structure moduli space

that additional holomorphic curves are present. An example of a K3 surface of this type

occurs when the quartic is of Fermat type. In this case, the rank of Pic(S) is instead 20.

Because there is a one to one correspondence between line bundles and divisors on S, we

conclude that a similar condition holds for the available line bundles on a generic surface.

Having stated these caveats on what we expect for generic surfaces of general type,

we now construct an SO(10) GUT model with semi-realistic Yukawa matrices. In order

to have a sufficient number of matter curves, we consider a seven-brane with worldvolume

gauge group SO(12) wrapping a surface S defined by the blowup at k points of a degree

n ≥ 5 hypersurface in P
3 with n odd. Some properties of hypersurfaces in P

3 are reviewed

in appendix B. We have introduced these blown up curves in order to simplify several

properties of our example. Indeed, as explained around equation (6.2), the Picard lattice

of a surface may have low rank. An important point is that some of the numerical invariants

such as h2,0(S) and χ(S,OS) of the degree n hypersurface remain invariant under these

blowups. Thus, for many purposes we will be able to perform many of our calculations of

the zero mode content as if the surface were a degree n hypersurface in P
3.

For n ≥ 5, we expect to find a large number of additional adjoint-valued chiral super-

fields. Geometrically, the vevs of these fields correspond to complex structure moduli in

the Calabi-Yau fourfold which can develop a mass in the presence of a suitable background

flux. We show that in the present context, a suitable profile of vevs can simultaneously

break the GUT group and lift all excess fields from the low energy spectrum.

As explained in section 3, in the context of a local model, we are free to specify

the enhancement type along codimension one matter curves inside of S. We first intro-

duce four curves Σ1,Σ2,Σ3,ΣB where the singularity type enhances to E7 so that a half-

hypermultiplet in the 32 of SO(12) localizes on each curve. With notation as in appendix B,

9This last correspondence follows from the link between divisors and line bundles.
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the homology class of each curve is:

[Σ1] = E2 (6.3)

[Σ2] = E4 (6.4)

[Σ3] = E6 (6.5)

[ΣB] = −a1l1 − E8 − E9. (6.6)

where we have written KHn = a1l1 + a2l2 + . . . for some generators li of H2(Hn,Z) such

that li · lj = 0 for i 6= j. Using the genus formula C · (C + KS) = 2g − 2, we conclude

that the genera of Σ1,Σ2,Σ3 are all zero while ΣB has genus one. We note that in order

for ΣB to represent a holomorphic curve, it may be necessary to go to some special points

in the moduli space of the surface S. In the presence of a suitable internal flux, a single

generation in the 16 of SO(10) will localize on each of the Σi’s. The fields localized on ΣB

will instead develop a suitable vev to lift extraneous matter from the low energy spectrum.

We next introduce the curve ΣR where the singularity type enhances to SO(14) so that

a hypermultiplet transforming in the 12 of SO(12) localizes on this curve. The homology

class of ΣR is:

[ΣR] = −a2l2 − E10 − E11 (6.7)

so that ΣR has genus one.

A supersymmetric U(1) gauge field configuration can simultaneously break SO(12) to

SO(10)×U(1)PQ and also induce a net chiral matter content in the four-dimensional effec-

tive theory. Representations of SO(12) decompose under the subgroup SO(10)×U(1)PQ as:

SO(12) ⊃ SO(10) × U(1)PQ (6.8)

66 → 450 + 10 + 102 + 10−2 (6.9)

32 → 161 + 16−1 (6.10)

12 → 12 + 1−2 + 100. (6.11)

All candidate Higgs fields in the 10−2 are equally charged under the group U(1)PQ and we

shall therefore loosely refer to it as a Peccei-Quinn symmetry. We consider configurations

such that one generation in the 161 of SO(10) localizes along each Σi for i = 1,2, 3. In addi-

tion to the matter content of the MSSM, we shall also require that there is extra vector-like

matter in the 161 and 16−1 localized along ΣB and a 100 and 12 localized along ΣR. When

the extra vector-like 16’s develop a vev at suitably large energy scales, they will remove an

additional U(1)B−L gauge boson from the low energy spectrum. Further, interaction terms

between the 100 and 1−2 can also serve to remove extraneous matter from the spectrum.

The above requirements are satisfied by a large class of supersymmetric line bundles.

For concreteness, we consider the line bundle:

L = OS(E1 − E2 +E3 − E4 + E5 −E6 − E10 + E12 +N(E14 − E15)) (6.12)

where to simplify some cohomology calculations, we shall sometimes take N to be a large

integer. By inspection, there exists a parametric family of Kähler classes such that the

condition:

ω ∧ c1(L) = 0 (6.13)

holds. In the above, ω denotes a particular choice of Kähler form on S.
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6.1 Bulk matter content

While all of the chiral matter of the MSSM localizes on the matter curves Σ1, Σ2 and

Σ3, the internal U(1) flux specified by the line bundle of equation (6.12) will also induce

additional bulk zero modes. The bulk matter content all descends from the adjoint rep-

resentation of SO(12). First consider the number of chiral superfields transforming in the

representation 450 + 10. These fields are neutral under U(1)PQ so that the total number

of chiral superfields transforming in this representation is h1(S,OS) + h2(S,OS). In the

present case, h1(S,OS) = 0 so that it is enough to compute h2(S,OS) = h2,0(S). The

Hodge numbers of S are computed in appendix B with the end result:
(

1

6
(n3 − 6n2 + 11n) − 1

)
× (450 + 10) ∈ H2

∂
(S,OS). (6.14)

When these fields develop a suitable vev, the GUT group will break to Gstd.

The chiral superfields transforming in the 10±2 are classified by the bundle-valued

cohomology groups:

10±2 ∈ H0
∂
(S,L∓2)∗ ⊕H1

∂
(S,L±2) ⊕H2

∂
(S,L∓2)∗. (6.15)

Now, when the integer N of equation (6.12) is sufficiently large, both H0
∂
(S,L∓2)∗ and

H2
∂
(S,L∓2)∗ will indeed vanish. The resulting dimension of H1

∂
(S,L±2) can then be com-

puted via an index formula:

h1(S,L±2) = −
(
χ(OS) +

1

2
c1(S) · c1(L±2) +

1

2
c1(L

±2)2
)

(6.16)

= −1

6
(n3 − 6n2 + 11n) + (16 + 4N2) (6.17)

so that there are an equal number of 10+2 and 10−2’s. Based on their coupling to the fields

localized along the matter curve, we shall tentatively identify these as Higgs fields.

6.2 Localized matter content

We now study the chiral matter content localized on matter curves. By construction, L

restricts to a degree one line bundle on the genus zero matter curves Σ1,Σ2,Σ3 so that

a single generation transforming in the 161 localizes on each matter curve. Further, L

restricts to a trivial line bundle on ΣB so that a single vector-like pair of 161 and 16−1

localizes along ΣB. Finally, L restricts to a degree −1 bundle, OΣR
(−p) on the genus

one matter curve ΣR where p denotes a degree one divisor of ΣR. In order to achieve

one copy of the 100, we also include a contribution to the flux from the other seven-brane

intersecting the GUT model seven-brane along ΣR so that L′
ΣR

= OΣR
(p′), where p′ is

another degree one divisor of ΣR. The total field content on ΣR is therefore given by one

100,1, three 1−2,1’s and one 1−2,−1, where the two subscripts indicate the U(1) charge with

respect to the two U(1) factors.10 The representation content and type of matter curve are

summarized in table 1.

10As we explain later in section 10, the overall normalization of the U(1) charges is somewhat inconse-

quential so long as the fields transform in mathematically well-defined line bundles.
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SO(10) Model Curve Class gΣ LΣ L′n
Σ

1 × 161 Σ1 E2 0 OΣ1(1) OΣ1

1 × 161 Σ2 E4 0 OΣ2(1) OΣ2

1 × 161 Σ3 E6 0 OΣ3(1) OΣ3

1 ×
(
161 + 16−1

)
ΣB −a1l1 − E8 − E9 1 OΣB

(0) OΣB

1 × 100,1 + 3 × 1−2,1 + 1 × 1−2,−1 ΣR −a2l2 − E10 − E11 1 OΣR
(−p) OΣR

(p′)

Table 1: Representation content, type of matter curve and line bundle assignments for an SO(10)

model based on a surface of general type.

As will be clear when we discuss the high energy superpotential, although the 1−2,−1

couples non-trivially with the 100,1 to bulk modes on S, the 1−2,1’s do not contribute to the

cubic superpotential, and we shall therefore neglect their contribution to the low energy

theory. To simplify notation, we shall therefore refer to the 100,1 as the 100 and the 1−2,−1

as the 1−2.

6.3 High energy superpotential

In the present model, the Yukawa couplings of the MSSM originate from purely bulk

couplings and couplings between bulk gauge fields and matter fields localized along matter

curves. In addition, a background flux configuration in the Calabi-Yau fourfold will also

couple to the complex structure moduli of the compactification. Indeed, as shown in [15],

the vevs of the bulk (2, 0) form and fields localized along matter curves all determine

complex deformations of the background compactification. In the case of fields localized

along the matter curve, this corresponds to the “mesonic” branch of moduli space. We

therefore conclude that fluxes can induce a non-trivial mass and vev for the corresponding

fields. At energy scales close to MGUT but below the energy scale where the first Kaluza-

Klein mode can contribute an appreciable amount, the high energy superpotential is:

Whigh = WS +WSΣΣ +Wflux +Wnp (6.18)

where:

WS = fiIJ10
(I)
+2 × 10

(J)
−2 × (45

(i)
0 + 1

(i)
0 ) (6.19)

WSΣΣ =λaJ16
(a)
1 × 16

(a)
1 × 10

(J)
−2 + αa10

(a)
2 × 100 × 1−2 (6.20)

+
(
βJ161 × 161 × 10

(J)
−2 + γJ16−1 × 16−1 × 10

(J)
2

)
(6.21)

Wflux =

∫

CY4

Ω ∧G4 (6.22)

Wnp =µ
(IJ)
−4 10

(I)
+2 × 10

(J)
+2 + µ

(IJ)
+4 10

(I)
−2 × 10

(J)
−2 (6.23)

In the above, terms proportional to the coefficients λaJ descend from the three matter

curves Σ1,Σ2,Σ3, while terms proportional to βJ and γJ descend from the matter curve
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ΣB . Here, we have also included the effects of non-perturbatively generated mass terms

for the 10’s which explicitly violate the U(1)PQ global symmetry. Such terms can originate

from exponentially suppressed higher-dimensional operators which couple the fields of the

GUT model to additional GUT group singlets. When these singlets develop a suitable

vev, they can generate terms of the type given by Wnp. In this case, the resulting µ term

will naturally be exponentially suppressed. A similar mechanism has been analyzed in the

context of type II intersecting D-brane models as a potential solution to the µ problem [54].

While stabilizing the moduli in a realistic compactification is certainly a non-trivial

task, in a local model, the vevs of the complex structure moduli can effectively be tuned

to an arbitrary value. Letting Ω(0) denote the value of the holomorphic four form of the

Calabi-Yau fourfold with the desired values of the complex structure moduli, we note that

the critical points of Wflux with G4 = λ(Ω(0) + Ω
(0)

) will indeed yield such a configuration.

For compact models, this must be appropriately adjusted because the potential for the

overall volume of the Calabi-Yau fourfold will develop a non-supersymmetric minimum.

6.4 Low energy spectrum

We now show that an appropriate choice of vevs in Whigh given by equation (6.18) can

yield a low energy effective theory with precisely the matter content of the MSSM and a

semi-realistic low energy superpotential. We first demonstrate that the above model can

indeed remove all excess matter at sufficiently high energies. To this end, first note that

when a 45
(i)
0 develops the vev:

〈450〉 = iσy ⊗ diag(a, a, a, b, b) (6.24)

the resulting gauge group will break to SU(3)C ×SU(2)L×U(1)Y ×U(1)B−L. By inspection

of equation (6.19), when a ∼ MGUT, this vev will also remove the Higgs triplets of 10
(J)
−2

(and the 10
(I)
+2’s) from the low energy spectrum. When the zero mode content contains at

least two 45’s which have distinct couplings to the product 10
(I)
+2 × 10

(J)
−2 , a suitable choice

of b for each 45 can be arranged so that at most one pair of SU(2)L doublets from one

linear combination of the 10−2’s will remain massless. We note that this is simply a variant

on the well-known Dimopoulos-Wilczek mechanism for achieving doublet-triplet splitting

in four-dimensional SO(10) GUT models [55, 56].

In the absence of other field vevs, the resulting spectrum would contain two SU(2)L
doublets from a bulk 10−2 as well as its counterpart 102. In fact, we now demonstrate that

when the flux induces a suitably large mass term for the 100 as well as a vev for the 1−2, the

resulting low energy spectrum will not contain any fields transforming in the representation

102. With the above choice of fluxes, the mass matrix for the 100 and remaining 102 is

schematically of the form:

Weff ⊃
[
102 100

] [ 0 〈1−2〉
〈1−2〉 〈Mflux〉

][
102

100

]
(6.25)

so that all extraneous 10+2’s can indeed lift from the low energy spectrum.
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The resulting spectrum is almost that of the MSSM at low energies. The only addi-

tional matter content is an additional U(1)B−L gauge boson and a vector-like pair of matter

fields 161 and 16−1 localized on ΣB . In fact, when the 161 and 16−1 develop a suitable vev,

they will break U(1)B−L.

Maximally utilizing conventional four-dimensional field theoretic mechanisms to achieve

the correct matter spectrum, this model yields the spectrum of the MSSM at low ener-

gies. Moreover, by placing the three generations on three distinct matter curves, a large

hierarchy in scales can be generated by a suitable choice of Kähler class.

The effective superpotential is now schematically of the form:

Weff = µHuHd + λu
ijQ

iU jHu + λd
ijQ

iDjHd + λl
ijL

iEjHd + λν
ijL

iN j
RHu + . . . (6.26)

where the λij ’s are all diagonal.

While it is of course possible to further refine the above model, we believe this provides

a fruitful starting point for analyzing how traditional four-dimensional GUT models can

embed in F-theory. Again, we emphasize that strictly speaking, a purely four-dimensional

effective field theory approach breaks down in this case because no decoupling limit between

MGUT and Mpl is available.

7. Surfaces with discrete Wilson lines

In the previous section we presented an example of a four-dimensional GUT model which

breaks to the MSSM when a collection of adjoint-valued chiral superfields develop appropri-

ate vevs. This requires that the surface S wrapped by the seven-brane satisfies h2,0(S) 6= 0.

When π1(S) 6= 0, it is also possible for the GUT group to spontaneously break to the gauge

group of the Standard Model via an appropriate choice of Wilson lines. In this section we

describe some features of models based on the case where S is an Enriques surface. After

reviewing some basic properties of such surfaces, we present a toy model with bulk gauge

group GS = SU(5). Although the correct matter content of the MSSM can localize on

matter curves, we find that the discrete Wilson lines also generically produce additional

vector-like pairs of zero modes transforming in exotic representations of Gstd. This can be

traced back to the fact that the universal cover of an Enriques surface is a K3 surface.

Although we do not present a complete model based on an Enriques surface, we discuss

how these problems can be avoided by including further field-theoretic mechanisms to lift

extraneous matter from the low energy spectrum. It is also possible that other surfaces

with different fundamental groups may provide additional possibilities. To this end, we

conclude by mentioning some other surfaces which have been studied in the mathematics

literature.

We begin by reviewing some relevant features of Enriques surfaces. Further details can

be found in [57]. An Enriques surface S is defined by the conditions:

K2
S = OS but KS 6= OS (7.1)

and that the “irregularity” h1,0(S) = q(S) = 0. The non-vanishing Hodge numbers of an

Enriques surface are h1,1(S) = 10 and h0,0(S) = h2,2(S) = 1. The fundamental group of
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S is π1(S) = Z2. Moreover, the universal cover of S is a K3 surface. Indeed, the Hodge

number h2,0(K3) = 1 does not survive in the quotient space. Nevertheless, we shall see

that in the presence of discrete Wilson lines, the zero mode content retains some imprint

from the underlying K3 surface.

Recall that for a K3 surface, the intersection form on H2(K3,Z) is isomorphic to:

H2(K3,Z) = (−E8) ⊕ (−E8) ⊕ U ⊕ U ⊕ U (7.2)

where −E8 denotes minus the intersection form for the Lie algebra E8 and the “hyper-

bolic element” U is the intersection form with entries given by the Pauli matrix σx. The

intersection form on S is instead given by:

H2(S,Z)/Tor = (−E8) ⊕ U (7.3)

where in the above we have modded out by possible torsional elements. As an integral

lattice, H2(S,Z) is isomorphic to:

H2(S,Z) ≃ Z
10 ⊕ Z2. (7.4)

We label the generators of H2(S,Z) as α1, . . . , α8 in correspondence with the roots of E8

and d1 and d2 for the generators associated with U such that di·dj = 1−δij. Finally, we label

the torsion element as t. An important feature of Enriques surfaces is that the Poincaré

dual homology classes for d1 and d2 both represent holomorphic elliptic curves in S.

We now present a toy model with S an Enriques surface with bulk gauge group GS =

SU(5) which spontaneously breaks to Gstd due to a discrete Wilson line taking values in the

U(1)Y factor. The example we shall now present cannot be considered even semi-realistic

because in addition to containing exotic matter, the tree level superpotential contains too

many texture zeroes. Nevertheless, it illustrates some of the elements which are necessary

in more realistic constrictions. To simplify our discussion, we shall emphasize elements

unique to having non-trivial discrete Wilson models.

Because bulk modes descend from the adjoint representation of SU(5) and all of the

matter of the Standard Model descends from other representations of SU(5), the chiral su-

perfields of the MSSM must localize on matter curves. The generic GS = SU(5) singularity

enhances to SU(6) along the Higgs and 5M matter curves and enhances to SO(10) along

the 10M matter curve. The matter curves and choice of line bundle assignment are given

in table 2.

In the above, we have also indicated how each curve lifts to K3. In this case both

matter curves Σ
(i)
M lift to the disjoint union of two curves in K3 while the Higgs curve

ΣH lifts to a curve which is fixed by the Z2 involution in K3. As an explicit example,

we can consider the case where the covering space of S is a real K3 surface and the

Z2 involution corresponds to complex conjugation. In this case, the curve Σ
(i)
M lifts to a

generic holomorphic curve and its image under complex conjugation while ΣH lifts to a

real algebraic curve in K3. We now show that in this case the discrete Wilson line projects

out the Higgs triplet from the low energy spectrum.
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Enriques Model Curve K3 curve Class gΣ LΣ L′n
Σ

1 ×
(
5H + 5H

)
ΣH Σ̃H d1 1 Z2 ⊗OΣH

OΣH

3 × 5M Σ
(1)
M Σ̃

(1)
M ∐ Σ̃

′(1)
M d2 1 O

Σ
(1)
M

O
Σ

(1)
M

(−3p1)

3 × 10M Σ
(2)
M Σ̃

(2)
M ∐ Σ̃

′(2)
M d1 1 O

Σ
(2)
M

O
Σ

(2)
M

(3p1)

Table 2: Representation content, type of matter curve and line bundle assignments for a model

based on an Enriques surface.

Because the Higgs curve is fixed by the Z2 involution, the fields localized on this

curve will transform non-trivially in the presence of a Z2 Wilson line. The analysis below

equation (3.12) applies equally well to fields localized on matter curves. Under the breaking

pattern SU(5) ⊃ SU(3)× SU(2)×U(1), the 5 of SU(5) decomposes to (1, 2)3 + (3, 1)−2. In

this case, the relevant cohomology group lifts to the Z2 odd eigenspace:

5H ∈ H0
∂
(Σ̃H ,OeΣH

) ≃ C(−). (7.5)

Hence, we conclude that the total wave function for the components of the 5H and 5H take

values in the invariant subspaces:

(1, 2)−3, (1, 2)3 ∈
[
C(−) ⊗H0

∂
(Σ̃H ,OeΣH

)
]

Z2 ≃ C (7.6)

(3, 1)−2, (3, 1)2 ∈
[
C(+) ⊗H0

∂
(Σ̃H ,OeΣH

)
]

Z2

= 0. (7.7)

Hence, the Higgs triplet is absent from the low energy spectrum while the Higgs up and

down doublets remain.

The matter content of this example is not fully realistic because it also contains con-

tributions from the bulk zero modes which appear as vector-like pairs transforming in

exotic representations of Gstd. To compute the bulk zero mode content in the presence of

the discrete Wilson line, we again apply the analysis below equation (3.12) in the special

case where the bundle T is trivial. Decomposing the adjoint representation of SU(5) to

SU(3) × SU(2) × U(1), the only irreducible representations which transform non-trivially

under the U(1) factor are the (3, 2)−5 and (3, 2)5. We now compute the number of bulk

zero modes transforming in the (3, 2)−5. In the covering K3 space, the contribution to the

number of zero modes from the holomorphic (2, 0) is given by the Z2 invariant subspace:

(3, 2)−5 ∈
[
C(−) ⊗H2

∂
(K3,OK3)

]
Z2

(7.8)

where the C(−) factors indicates the charge of the representation (3, 2)−5 under the Z2

subgroup of U(1)Y . Next recall that the Z2 group action on the holomorphic (2, 0) form

sends ϕ 7→ −ϕ. In particular, this implies that the cohomology groupH2
∂
(K3,OK3) ≃ C(−).

A similar analysis also holds for zero modes transforming in the representation (3, 2)−5.

Because C(−) ⊗ C(−) is Z2 invariant, we conclude that the low energy spectrum contains

exotic vector-like pairs.
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There are potentially several ways to avoid the presence of these exotics. For example,

when GS = SO(10), a combination of U(1) flux breaking and discrete Wilson line breaking

might avoid any contributions from bulk zero modes. Moreover, even if additional exotic

particles are present in the low energy spectrum, it is conceivable that an appropriately

engineered superpotential could cause these exotics to develop a large mass.

It is also possible to consider a more general class of surfaces with non-trivial discrete

Wilson lines. In the present context the maximal case of interest would be surfaces with

h1,0(S) = h2,0(S) = 0 and π1(S) a finite group. Some examples of surfaces such as the

classical Godeaux and Campadelli surfaces may be found in [57]. As a technical aside, we

note that one particularly interesting class of surfaces can be obtained by choosing n distinct

points of a del Pezzo 9 surface and performing an order ai logarithmic transformation at

the ith point.11 The resulting surface has the same Hodge numbers, Euler character and

signature as the del Pezzo 9 surface and is called a Dolgachev surface, D(a1, . . . , an). For

example, when n = 2 and a1 and a2 have a common divisor, the fundamental group is

π1(D(a1, a2)) ≃ Zm where m = gcd(a1, a2). See [58, 59] and references therein for further

discussion of Dolgachev surfaces defined by two logarithmic transformations. We note that

the case a1 = 2, a2 = 2 corresponds to the Enriques surface. It is also common in the

mathematics literature to treat the more general case as well. When the ai are pairwise

co-prime integers, the resulting fundamental group is [60]:

π1(D(a1, . . . , an)) = 〈t1, . . . , tn|tai
i = 1, t1 · · · tn = 1〉 . (7.9)

Given the prominent role that the del Pezzo 9 surface has played in recent heterotic models

such as [8, 9], it would be interesting to study models based on such Dolgachev surfaces.

8. Geometry of del Pezzo surfaces

In the remainder of this paper we focus on the case of primary interest where S is a del

Pezzo surface. In this case, it is at least in principle possible to consistently decouple

the Planck scale from the GUT scale. Because much of the analysis to follow relies on

properties of del Pezzo surfaces, in this section we collect various relevant facts about the

geometry of such surfaces. After giving the definition of del Pezzo surfaces, we catalogue

the moduli of such surfaces which must be stabilized in a globally consistent model. Next,

we review the beautiful connection between the homology groups of del Pezzo surfaces and

the root lattices of exceptional Lie algebras. In particular, we show that the line bundles L

on S such that both L and L−1 have trivial cohomology are in one to one correspondence

with the roots of the corresponding exceptional Lie algebra. This classification will prove

important when we study vacua with trivial bulk zero mode content.

The two simplest examples of del Pezzo surfaces are P
1 × P

1 and P
2. There are eight

additional surfaces defined as the blowup of P
2 at up to eight points in general position. We

shall refer to such surfaces as del Pezzo N (dPN ) surfaces for the case of N blown up points.

We now describe the Kähler and complex structure moduli spaces of these surfaces.

First consider the Kähler moduli of del Pezzo surfaces. P
1 × P

1 has two Kähler moduli

11See [57] for the definition and further properties of logarithmic transformations of surfaces.
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corresponding to the volume of the two P
1 factors. There is a single Kähler modulus which

fixes the overall size of P
2. In addition to the overall size of the P

2, for the del Pezzo N

surfaces, there are N further moduli corresponding to the volume of each blown up cycle.

Further properties of the Kähler cone for each del Pezzo surface are reviewed in appendix

A of [15].

In addition to the Kähler moduli of each del Pezzo surface, these surfaces may also

possess a moduli space of complex structures. For P
1 × P

1 and P
2 there is a unique choice

of complex structure. When S = dPN , the overall PGL(3) symmetry of P
2 implies that

the number of complex structure moduli is 2N − 8 so that in an isolated local model only

surfaces with 5 ≤ N ≤ 8 possess a moduli space of complex structures. In the context

of a globally consistent moduli, this distinction is somewhat artificial because the overall

PGL(3) action on P
2 may not properly extend to the compact threefold base.

We next describe the homology groups of the del Pezzo surfaces. The homology group

H2(P
1 × P

1,Z) is two dimensional and has generators σ1 and σ2 corresponding to the two

P
1 factors. These generators have intersection product:

σi · σj = 1 − δij (8.1)

where δij is the Kronecker delta. The canonical class for P
1 × P

1 is:

KP1×P1 = −c1(P1 × P
1) = −2σ1 − 2σ2. (8.2)

In particular, −KP1×P1 defines a Kähler class on P
1×P

1 where both P
1 factors have volume

two in an appropriate normalization.

The homology groupH2(dPN ,Z) isN+1 dimensional and has generatorsH, E1, . . . , EN

where H denotes the hyperplane class inherited from P
2 and the Ei denote the exceptional

divisors associated with the blowup. These generators have intersection product:

H ·H = 1, H ·Ei = 0, Ei ·Ej = −δij (8.3)

so that the signature of H2(dPN ,Z) is (+,−N ). The canonical class for dPN is:

KdPN
= −c1(dPN ) = −3H + E1 + . . .+ EN . (8.4)

There is a beautiful connection between del Pezzo N ≥ 2 surfaces and exceptional Lie

algebras. This material is reviewed for example in [61] and has played a role in proposed

M-theory dualities [62]. We now review how the sublattice of H2(dPN ,Z) orthogonal to

KdPN
is identified with the root space of the corresponding Lie algebra EN . Because dP2

admits a different treatment, first consider the dPN surfaces with N ≥ 3. The generators

of the lattice 〈KdPN
〉⊥ are:

α1 = E1 − E2, . . . , αN−1 = EN−1 − EN , αN = H − E1 − E2 −E3. (8.5)

The intersection product of the αi’s is identical to minus the Cartan matrix for the dot

product of the simple roots for the corresponding Lie algebra EN . For dP2, the single

generator of the lattice 〈KdPN
〉⊥ is given by E1 −E2, which we identify as a root of su(2).
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This correspondence further extends to include the Weyl group of the exceptional Lie

algebras. In the following we shall adopt a “geometric” convention so that the signature of

the root space is negative definite.12 The Weyl group for a simply connected Lie algebra

with simple roots α1, . . . , αN is generated by the Weyl reflections wαi . Given an element

α of the root lattice, the Weyl reflected vector wαi(α) is:

wαi(α) = α+ (α · αi)αi. (8.6)

This is precisely the action of the large group of diffeomorphisms for the del Pezzo N sur-

faces on the corresponding generators orthogonal to KdPN
. Indeed, note that the canonical

class is invariant under the action of the Weyl group.

Anticipating future applications, we now show that when S is a del Pezzo N ≥ 2

surface, the collection of all line bundles L such that:

H i
∂
(S,L±1) = 0 (8.7)

for all i are in one to one correspondence with the roots of the Lie algebra EN .

Because the indices defined by L and L−1 must separately vanish, the difference in the

two indices also vanishes:

0 = χ(dPN , L) − χ(dPN , L
−1) = c1(dPN ) · c1(L) = −KdPN

· c1(L). (8.8)

Treating c1(L) as an element of H2(dPN ,Z), c1(L) is therefore a vector in the orthogonal

complement of the canonical class. Hence, c1(L) corresponds to an element of the root

lattice of EN . Utilizing equation (8.8), the index χ(dPN , L) now takes the form:

χ(dPN , L) = 1 +
1

2
c1(L) · (c1(L) + c1(dPN )) = 1 +

1

2
c1(L) · c1(L) (8.9)

which vanishes provided:

c1(L) · c1(L) = −2 (8.10)

which is the condition for c1(L) to correspond to a root of EN . Conversely, we note

that given a root α of 〈KdPN
〉⊥, the line bundle L = OdPN

(α) defines a supersymmetric

gauge field configuration. The vanishing theorem of [63, 15] and the vanishing of the

corresponding index now imply that all cohomology groups are trivial.

A similar analysis holds for the remaining del Pezzo surfaces P
2, P

1×P
1 and dP1. When

S = P
2, we note that because H2(P

2,Z) has a single generator given by the hyperplane

class of P
2, all non-trivial line bundles L have c1(L) · c1(P2) 6= 0 so that equation (8.8) is

never satisfied.

To treat the cases S = P
1 × P

1, dP1 and in order to partially widen the scope of

our discussion, we note that these del Pezzo surfaces are also Hirzebruch surfaces. More

generally, recall that the middle homology of the degree n Hirzebruch surface Fn has

generators σ and f which have intersection pairing:

f · f = 0, f · σ = 1, σ · σ = −n. (8.11)

12With this sign convention, a root α satisfies α · α = −2.
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The canonical class for Fn is:

KFn = −c1(Fn) = −(n+ 2)f − 2σ. (8.12)

We now show that F0 is the only Hirzebruch surface which admits line bundles satisfying

equation (8.7). To this end, consider a line bundle L = OFn(af + bσ). In order to satisfy

equation (8.7), we must have:

0 = χ(Fn, L) − χ(Fn, L
−1) = c1(Fn) · c1(L) = b(n+ 2) + 2a− 2bn2. (8.13)

When this condition is satisfied, the index χ(Fn, L) vanishes provided:

0 = χ(Fn, L) = 1 +
1

2
c1(Fn) · c1(L) +

1

2
c1(L) · c1(L) (8.14)

= 1 +
1

2
(2ab− b2n2) = 1 +

1

2
(b2n2 − b2(n+ 2)) (8.15)

or,

−2 = b2(n2 − (n+ 2)). (8.16)

In order for this equation to possess a solution over the integers, b = ±1 and n2 −n = 0 so

that n = 0 or n = 1. First consider the case where n = 1. Returning to equation (8.13),

when n = 1 and b = ±1, we find that a = ±1/2, which is not an integer. We therefore

conclude that the only remaining case is n = 0. For F0, the only line bundles satisfying

equation (8.7) are L = OF0(±f ∓ σ) = OP1×P1(±σ1 ∓ σ2) where in the final equality we

have reverted to the notation of equation (8.1).

9. GUT breaking via U(1) fluxes

When S is a del Pezzo surface, the zero mode content does not contain any adjoint-valued

chiral superfields which could potentially play the role of a four-dimensional GUT Higgs

fields. In this section we present an alternative mechanism where the GUT group breaks

due to non-trivial hypercharge flux in the internal directions. Experience with other string

compactifications suggests that a non-trivial internal field strength would cause the photon

to develop a string scale mass because this gauge boson couples non-trivially to the p-form

gauge potentials of the closed string sector. In this section we present a topological criterion

for this U(1) gauge boson to remain massless. This then provides a novel mechanism for

GUT group breaking in F-theory.

To analyze whether the coupling to closed string modes will generate a mass for the

U(1) gauge boson, first recall that the ten-dimensional supergravity action contains the

terms (neglecting the overall normalization of individual terms by order one constants):13

S(10d) ⊃M8
∗

∫

R3,1×B3

C △10 C −M4
∗

∫

R3,1×S

Tr(F ∧ ∗8F ) +M4
∗

∫

R3,1×S

C(4) ∧ Tr(F ∧ F ) (9.1)

13For D-branes, the relative normalizations between these terms contains factors of gs. In the present

class of models, this distinction is ambiguous because these vacua exist in a regime of strong coupling.
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where C(4) denotes the RR four-form gauge potential and F denotes the eight-dimensional

field strength of the seven-brane. Letting 〈FS〉 denote the non-vanishing field strength in

the internal directions, integrating out C(4) yields a term in the effective action of the form:

S
(10d)
eff ⊃

∫

R3,1×B3

δR3,1×S ∧ 〈FS〉 ∧ F
1

△10
δR3,1×S ∧ 〈FS〉 ∧ F (9.2)

where δR3,1×S denotes the delta function for the seven-brane and we have dropped the

overall trace because our primary interest is in abelian instanton configurations.

Next, expand δR3,1×S ∧ 〈FS〉 in a basis of eigenmodes so that:

δR3,1×S ∧ 〈FS〉 =
∑

α

fαψα (9.3)

where △6ψα = λαψα denote eigenmodes of the Laplacian on B3 and fα denote the as-

sociated Fourier coefficients. We thus arrive at a non-local term in the four-dimensional

effective action:

L
(4d)
eff ⊃

∑

α

∫

S

F ∧ ‖fαψα|S‖2

△4 + λα
F (9.4)

=
∑

α=0

∫

S

‖fαψα|S‖2A2 +
∑

α6=0

∫

S

F ∧ ‖fαψα|S‖2

△4 + λα
F . (9.5)

so that the contribution from zero modes of ∆6 induces a mass term for the four-dimensional

gauge boson. The remaining modes induce a non-local operator which tends to zero in the

decompactification limit.

The zero modes of ∆6 which can potentially couple to the internal field on S correspond

to harmonic representatives of the cohomology group H2(B3,R) which are Poincaré dual

to elements of H4(B3,Z). For concreteness, we let Γ denote such a four-cycle. In the

same spirit as [64], we therefore conclude that the four-dimensional U(1) gauge boson will

remain massless provided the class in H2(S,Z) corresponding to 〈FS〉 integrates trivially

when wedged with any element of H2(B3,Z). In other words, given any four-cycle Γ in B3,

Γ must intersect trivially with the Poincaré dual of 〈FS〉 which we denote as [FS ] for some

element of H2(S,Z). This implies that the cycle [FS ] must be trivial in B3.
14 We note that

just as in [64], this entire discussion can be phrased in terms of the relative cohomology

between S and B3, and we refer the reader there for more details on this type of argument.

Our expectation is that this condition can be met in a large number of cases. In-

deed, in backgrounds where the (2, 0) form vanishes, a line bundle L corresponds to a

supersymmetric gauge field configuration when [15]:

ω ∧ c1(L) = 0 (9.6)

where ω denotes the Kähler form on S. In particular, if this ω descends from the Kähler

form in the threefold base B3, this is a necessary condition for the Poincaré dual of 〈FS〉
14This same observation has been made independently by M. Wijnholt.
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to lift to a trivial class in H2(B3,Z). Note that when dimH2(B3,Z) = 1, this condition is

in fact sufficient.

For illustrative purposes, we now show that there exist compactifications of F-theory

where this condition can be met. To this end, we consider an elliptically fibered Calabi-Yau

fourfold with base B3 = P
3. In this case, the homology ring H∗(P

3,Z) is generated by the

hyperplane class HP3. Introducing homogeneous coordinates x0, x1, x2, x3, we recall that

the vanishing locus of a generic degree two polynomial in the xi defines a P
1×P

1 in B3, and

the vanishing locus of a generic degree three polynomial defines a del Pezzo 6 surface in B3.

As reviewed in appendix B, a multiple of the generator HP3 restricts to the anti-canonical

class of a degree n hypersurface in P
3.

Letting σ1 and σ2 denote the generators of H2(P
1×P

1,Z) corresponding to the two P
1

factors, the class σ1−σ2 lifts to a trivial class in P
3 due to the fact that KP1×P1 ·(σ1−σ2) =

0. Similar considerations apply for the del Pezzo 6 surface because all of the two-cycles

corresponding to elements in the root lattice of E6 are orthogonal to KdP6 .

9.1 Absence of a heterotic analogue

Given the usual heterotic/F-theory duality, it is natural to ask whether GUT group break-

ing via internal fluxes can also occur in the heterotic string. A general obstruction to using

U(1) fluxes in heterotic models was already noted in [23]. In fact, in all F-theory models

which admit a heterotic dual, the mechanism described above is unavailable! To estab-

lish this, first recall that the basic heterotic/F-theory duality relates compactifications of

the heterotic string on an elliptic curve to compactifications of F-theory on an elliptically

fibered K3 [65]. Extending this duality fiberwise, the heterotic string compactified on an

elliptically fibered Calabi-Yau threefold is dual to F-theory compactified on a K3-fibered

Calabi-Yau fourfold. In this case, the threefold base of the F-theory compactification is a

P
1 fibration over a Kähler surface S.

We now establish that in this case, an internal hypercharge flux will always cause

the corresponding four-dimensional gauge boson to lift from the low energy theory. As

explained previously, it is enough to determine whether this internal flux wedges non-

trivially with any two forms in H2(B3,R). To see why this occurs, first consider the case

where the fibration is trivial so that the threefold base is of the form S × P
1 = B3. In this

case, we note that:

H2(B3,R) = H2(S × P
1,R) ≃ H2(S,R) ⊕H2(P1,R). (9.7)

This implies that all non-zero elements of H2(S,R) wedge non-trivially with some element

of H2(B3,R). Next consider the case of a non-trivial fibration. The only consequence of the

non-trivial fibration structure is that the cohomology group H2(B3,R) could potentially

contain additional contributions on top of those already present in the product formula of

equation (9.7).15 In particular, all of the elements of the cohomology group of H2(S,R)

again wedge non-trivially with some element of H2(B3,R).

15At a more formal level, this is a direct consequence of the Leray-Serre spectral sequence.
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10. Avoiding exotica

As argued in the previous section, abelian fluxes provide a potentially generic mechanism

for breaking the GUT group to Gstd. As shown in [15], such fluxes also determine the zero

mode content of the low energy effective theory. It thus follows that the zero mode content

of the theory may not match to the MSSM. In keeping with our general philosophy, we

require that all of the zero modes other than the Higgs fields must organize into complete

GUT multiplets. Indeed, if these zero modes do not fill out complete GUT multiplets, they

can potentially spoil the unification of the gauge couplings.

It is in principle possible that these restrictions can be relaxed. If all exotics come

in vector-like pairs, effective field theory arguments would appear to suggest that such

pairs will develop a large mass and lift from the low energy spectrum. We note that in

the present case, all mass terms descend from cubic or higher order superpotential terms.

Large mass terms will only result when a singlet develops a sufficiently large vev. As will

be clear in all of the models considered here, such singlets are charged under additional

gauged symmetries. In this case, such mass terms may not be sufficiently large to avoid

spoiling gauge coupling unification. For these reasons, we shall always require that the

zero mode content of the low energy theory contains no vector-like pairs of fields in exotic

representations of Gstd.

This constraint imposes important restrictions on admissible gauge bundle configura-

tions which can break the bulk gauge group GS to Gstd. In particular, when GS = SU(5),

we show that the gauge bundle configurations with no exotica are in one to one correspon-

dence with the roots of an exceptional Lie algebra corresponding to the del Pezzo surface

in question. Moreover, when GS = SO(10), we present a no go theorem which shows that

direct breaking of GS to Gstd via internal fluxes always produces exotica in the low energy

theory.

10.1 Fractional line bundles

In this section we determine which internal fluxes can break the GUT group and simulta-

neously do not generate any extraneous zero modes in the low energy spectrum. In fact, a

cursory analysis would incorrectly suggest that such states are unavoidable. For example,

the decomposition of the adjoint representation of SU(5) decomposes under Gstd as:

SU(5) ⊃ SU(3) × SU(2) × U(1) (10.1)

24 → (1, 1)0 + (8, 1)0 + (1, 3)0 + (3, 2)−5 + (3, 2)5. (10.2)

We note that no fields of the MSSM transform in the representation (3, 2)−5 or (3, 2)5.

Letting L denote the supersymmetric line bundle associated with this breaking pattern,

the bulk zero mode content therefore descends to:

(3, 2)−5 ∈ H0
∂
(S,L5)∗ ⊕H1

∂
(S,L−5) ⊕H2

∂
(S,L5)∗ (10.3)

(3, 2)5 ∈ H0
∂
(S,L−5)∗ ⊕H1

∂
(S,L5) ⊕H2

∂
(S,L−5)∗. (10.4)

Mathematically, the collection of admissible line bundles are those which have vanishing

cohomology group. As explained in section 8, when S is a del Pezzo N surface, such line
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bundles are in one to one correspondence with the roots of the Lie algebra EN , with a

similar result for P
1 × P

1. By definition, a root α satisfies the condition that nα is also

a root only when n = ±1. It now follows that if L is a line bundle, L5 cannot correspond

to a root of the Lie algebra EN . Said differently, the integral quantization of fluxes in the

bulk theory would appear to present a general obstruction towards realizing the spectrum

of the MSSM without any additional bulk matter with exotic U(1)Y charges.

We now argue that so long as all fields transform in mathematically well-defined line

bundles, fractional powers of line bundles also define consistent gauge field configurations

for the bulk theory. To establish this, first recall that when all fields of a theory with gauge

group SU(N) transform in the adjoint representation, all observables are invariant under

SU(N) modulo the center. Hence, the actual gauge group of the theory is SU(N)/ZN so

that the flux quantization condition allows gauge field configurations with 1/N fractional

flux units [66]. In the presence of quark fields charged in the fundamental of SU(N), we

note that the gauge group is indeed SU(N) rather than SU(N)/ZN .

In the present class of models, a similar fractional quantization condition holds because

all of the resulting gauge groups descend from an E8 gauge group. Indeed, recall that the

EN groups canonically embed in E8 as:

EN × SU(K)

ZK
⊂ E8 (10.5)

where N + K = 9. This result can be established as follows. Decomposing the adjoint

representations of EN and SU(K) to EN−1 × U(1) and SU(K − 1) × U(1), we find that

the resulting representations all have charge 0 or ±K. As two examples, consider the

decomposition of the adjoint representations of the algebras E6 and E5 = SO(10):

E6 ⊃ SO(10) × U(1) (10.6)

78 → 10 + 450 + 16−3 + 163 (10.7)

E5 ⊃ SU(5) × U(1) (10.8)

45 → 10 + 240 + 104 + 10−4. (10.9)

Returning to the weight space decomposition of the charged representations, it follows that

the relative normalization of the matrices which generate the Cartan subalgebras of EN

and E8 differ by 1/K. Exponentiating these matrices, we arrive at the desired condition

in the corresponding subgroups.

This fractional quantization condition demonstrates that in the above example, we may

treat L5 as a line bundle, with L a “fractional power” of a line bundle. Moreover, fields

localized on a matter curve Σ transform as sections of K
1/2
Σ ⊗La

Σ⊗L′b
Σ for integers a and b,

where LΣ and L′
Σ respectively denote the restriction of potentially fractional line bundles

on S and S′. Indeed, the common identification of the centers of the gauge groups in (10.5)

illustrates that although the individual restrictions of L and L′ to Σ may correspond to ill-

defined line bundles, their tensor product may still determine a mathematically well-defined

line bundle. We therefore conclude that so long as the resulting fields all transform in well-

defined bundles, the corresponding fractional line bundles are physically well-defined.
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10.2 A no go theorem for GS = SO(10)

The analysis of the previous subsection establishes that when GS = SU(5), there are no

exotic bulk zero modes if and only if the gauge bundle corresponds to a fractional line

bundle of the form OS(α)1/5 where α corresponds to a root associated with an element of

H2(S,Z). In this section we show that when GS = SO(10), direct breaking to Gstd via

fluxes always results in exotica in the low energy spectrum.

To establish this result, we note that the classification of appendix C shows that

the only instanton configurations which break SO(10) to Gstd take values in the subgroup

U(1)1×U(1)2 so that the commutant subgroup in SO(10) is SU(3)×SU(2)×U(1)1×U(1)2.

With respect to this decomposition, the adjoint, spinor and vector representations of SO(10)

decompose as:

SO(10) ⊃ SU(5) × U(1)2 ⊃ SU(3) × SU(2) × U(1)1 × U(1)2 (10.10)

45 → (1, 1)0,0 + (1, 1)0,0 + (8, 1)0,0 + (1, 3)0,0 (10.11)

+ (3, 2)−5,0 + (3, 2)5,0 + (3, 2)1,4 + (3, 2)−1,−4 (10.12)

+ (3, 1)−4,4 + (3, 1)4,−4 + (1, 1)6,4 + (1, 1)−6,−4 (10.13)

16 → (1, 1)0,−5 + (3, 1)2,3 + (1, 2)−3,3 (10.14)

+ (1, 1)6,−1 + (3, 2)1,−1 + (3, 1)−4,−1 (10.15)

10 → (3, 1)−2,2 + (1, 2)3,2 + (3, 1)2,−2 + (1, 2)−3,−2. (10.16)

In the MSSM, fields charged under the subgroup SU(3) × SU(2) transform in the

representations (3, 2), (1, 2) and (3, 1). Returning to the decomposition of the 45, we

conclude that the low energy spectrum must contain no fields transforming in the (3, 2)5,0,

(3, 2)−1,−4 or (3, 1)4,−4.

In F-theory, all of the matter content of the MSSM descend from the 45, 16, 16 or

10 of SO(10). As reviewed in appendix C, there are precisely two linear combinations of

U(1)1 and U(1)2 which can correspond to U(1)Y in the Standard Model:

U(1)Y = U(1)1 (10.17)

U(1)Y = −1

5
U(1)1 −

6

5
U(1)2. (10.18)

While the first case corresponds to embedding hypercharge in the usual way inside of

the SU(5) factor, the second possibility corresponds to a “flipped” embedding of hyper-

charge [67].

First suppose that U(1)Y is given by equation (10.17). Letting A ≡ L5
1 and B ≡

L−1
1 ⊗L−4

2 , the condition that the zero mode content must contain no exotic matter requires

that the following cohomology groups must vanish:

(3, 2)5,0 ∈ H1
∂
(S,A) = 0 (10.19)

(3, 2)−5,0 ∈ H1
∂
(S,A−1) = 0 (10.20)

(3, 2)−1,−4 ∈ H1
∂
(S,B) = 0 (10.21)

(3, 1)4,−4 ∈ H1
∂
(S,A⊗B) = 0 (10.22)

– 43 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

(1, 1)−6,−4 ∈ H1
∂
(S,A−1 ⊗B) = 0. (10.23)

For a supersymmetric configuration, it follows from the vanishing theorem of [15] that

the cohomology groupsH0
∂

and H2
∂

vanish for all of the above line bundles. The cohomology

group H1
∂

therefore vanishes when the index of each line bundle vanishes. Equations (10.19)

and (10.20) imply:

0 = χ(S,A) + χ(S,A−1) = 2 + c1(A) · c1(A). (10.24)

On the other hand, equations (10.21)–(10.23) imply:

0 = χ(S,A⊗B) + χ(S,A−1 ⊗B) − 2χ(S,B) = c1(A) · c1(A) (10.25)

which contradicts equation (10.24). The resulting low energy spectrum will therefore always

contain some exotic matter.

Next consider the flipped embedding of U(1)Y given by equation (10.18). With no-

tation as above, the condition that the zero mode content must contain no exotic matter

now requires that the following cohomology groups vanish:

(3, 2)−1,−4 ∈ H1
∂
(S,B) = 0 (10.26)

(3, 2)1,4 ∈ H1
∂
(S,B−1) = 0 (10.27)

(3, 2)5,0 ∈ H1
∂
(S,A) = 0 (10.28)

(3, 1)4,−4 ∈ H1
∂
(S,A⊗B) = 0 (10.29)

(1, 1)6,4 ∈ H1
∂
(S,A⊗B−1) = 0. (10.30)

These conditions are the same as those of equations (10.19)–(10.23) with the roles of A

and B interchanged. We therefore conclude that in all cases, the resulting spectrum will

contain exotic matter.

More generally, we note that the classification of possible breaking patterns provided

in appendix C requires at least one U(1) factor. When GS has rank five or more, direct

breaking to Gstd therefore requires the instanton configuration to take values in a subgroup

of GS with rank at least two. We note that while only abelian instanton configurations

are available for rank four and five bulk gauge groups, it is in principle possible that

an SU(2) valued instanton could partially break the bulk gauge group when GS = E6.

However, decomposing the adjoint representation to Gstd, the number of different exotic

representations appears to always be greater than the rank of the subgroup in which the

instanton takes values. The requirement that so many different cohomology groups must

simultaneously vanish is then an over-constrained problem so that in such cases exotics are

unavoidable.

10.3 MSSM spectrum

In this section we explain how to obtain the exact spectrum of the MSSM when S is

a del Pezzo surface. As explained in subsection 10.2, direct breaking via internal fluxes

will generate exotics when the bulk gauge group is not SU(5). Restricting to the case

– 44 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

[F  ]S

[Σ  ]M

[Σ  ]H

H  (S,Z)2

Figure 4: Letting [FS ] denote the two-cycle in H2(S,Z) which is Poincaré dual to the background

hypercharge flux 〈FS〉, there is a natural distinction between the class of the Higgs curve [ΣH ] and

the class of the chiral matter curves [ΣM ]. Indeed, while the net flux on ΣM must vanish to preserve

a full GUT multiplet, the gauge field configuration must restrict non-trivially on the Higgs curves in

order to solve the doublet triplet splitting problem. When the net flux on the Higgs curve is not zero,

this corresponds to the condition that [ΣM ] and [FS ] are orthogonal while [ΣH ] and [FS ] are not.

GS = SU(5), the only candidate bundles which will not generate exotic bulk zero modes

are in one to correspondence with the roots of an exceptional Lie algebra. In this case, all

of the matter content of the MSSM must localize on matter curves.

Individual components of a GUT multiplet will interact differently with the internal

hypercharge flux. In keeping with our general philosophy, we require that a complete GUT

multiplet must localize on a given matter curve so that on such curves, the net hypercharge

flux must vanish. Otherwise, a different index will determine the number of zero modes

coming from each component of a complete GUT multiplet. On the other hand, the gauge

field must restrict non-trivially on the Higgs curves in order to solve the doublet-triplet

splitting problem. See figure 4 for a depiction of how the corresponding elements inH2(S,Z)

intersect.

In order to achieve a chiral matter spectrum in four dimensions, the net flux on the

matter curve cannot vanish. As an example, consider a six-dimensional hypermultiplet in

the 51 of GS×GS′ = SU(5)×U(1) which localizes on an exceptional curve Σ with homology

class E1. The overall normalization of the U(1) charge is not particularly important because

we shall consider vacua with fractional line bundles. When L = OS(E2 − E3)
1/5 the

restriction of L to Σ is trivial. Letting L
′

denote the supersymmetric line bundle on the

seven-brane which intersects the GUT model seven-brane along Σ, the restriction of L′ to

Σ must be non-trivial in order to achieve a chiral matter spectrum. For example, when

L′
Σ = OΣ(−3), the zero mode content is:

0 × 5 ∈ H0
∂
(Σ,K

1/2
Σ ⊗OΣ(−3)) = 0 (10.31)

3 × 5 ∈ H0
∂
(Σ,K

1/2
Σ ⊗OΣ(3)) = H0

∂
(Σ,OΣ(2)) (10.32)

where we have also indicated the multiplicity of the zero modes. Similar considerations

apply for other GUT multiplets.

On the other hand, the Higgs fields of the MSSM do not fill out complete GUT multi-

plets at low energies. In this case, the net hypercharge flux piercing this matter curve must
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be non-zero. More precisely, recall that for minimal supersymmetric SU(5) GUT models,

the Higgs up and down fields respectively descend from the 5 and 5 of SU(5), where the 5

decomposes to (3, 1)−2 +(1, 2)3. Letting LΣ denote the restriction of the bulk gauge bundle

L to the matter curve Σ with similar notation for L′
Σ, we note that the zero mode content

is determined by the cohomology groups:

(1, 2)3 ∈ H0
∂
(Σ,K

1/2
Σ ⊗ L3

Σ ⊗ L′n
Σ ) (10.33)

(3, 1)−2 ∈ H0
∂
(Σ,K

1/2
Σ ⊗ L−2

Σ ⊗ L′n
Σ ) (10.34)

where n is an integer associated with the U(1) charge associated with the brane wrapping S′.

Mathematically, we wish to find line bundles such that K
1/2
Σ ⊗L3

Σ ⊗L′n
Σ has non-vanishing

cohomology whereas K
1/2
Σ ⊗ L−2

Σ ⊗ L′n
Σ has trivial cohomology. A necessary condition for

K
1/2
Σ ⊗L−2

Σ ⊗L′n
Σ to have trivial cohomology is that the degree of the line bundle L−2

Σ ⊗L′n
Σ

must vanish. As a brief aside, we recall the well-known fact that degree zero line bundles

are in one to one correspondence with points on the Jacobian of the curve.

As an example, consider a genus one matter curve where the line bundles LΣ and L′
Σ

are given by:

LΣ = OΣ(−np1 + np2) (10.35)

L′
Σ = OΣ(3p1 − 3p2) (10.36)

where p1 and p2 denote distinct degree one divisors on Σ which are not linearly equivalent.

Because these divisors are not linearly equivalent, the divisor p1 − p2 is not effective.16

Assuming that K
1/2
Σ is trivial, we have:

(1, 2)3 ∈ H0
∂
(Σ,OΣ(0)) ≃ C (10.37)

(3, 1)−2 ∈ H0
∂
(Σ,OΣ(5n(p1 − p2)) = 0 (10.38)

since the divisor p1 − p2 is not effective. In this case, we achieve a vector-like pair of Higgs

up/down fields on the curve Σ.

Now, there is no reason that the Higgs up and down fields must localize on the same

matter curve. In a certain sense, the above implementation of doublet triplet splitting is

somewhat artificial precisely because the distinguishing feature of the Higgs curve is that

a non-trivial flux is present. With this in mind, it seems far more natural to consider line

bundles which have non-trivial degree on the Higgs curves. In this case, a given Higgs

curve will automatically contain more Higgs up than Higgs down fields.

To give an explicit example of this type, consider a six-dimensional hypermultiplet in

the 5 of SU(5) localized on a genus zero curve Σ. In this case, the zero mode content is

determined by the cohomology groups:

(1, 2)3 ∈ H0
∂
(Σ,K

1/2
Σ ⊗ L3

Σ ⊗ L′
Σ) (10.39)

(1, 2)−3 ∈ H0
∂
(Σ,K

1/2
Σ ⊗ L−3

Σ ⊗ L′−1
Σ ) (10.40)

16More generally, recall that on a general genus g Riemann surface, a divisor D with degree ≥ g is

linearly equivalent to an effective divisor [68]. This imposes a non-trivial constraint on the ways in which

doublet-triplet splitting can arise for a general matter curve.
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(3, 1)−2 ∈ H0
∂
(Σ,K

1/2
Σ ⊗ L−2

Σ ⊗ L′
Σ) (10.41)

(3, 1)2 ∈ H0
∂
(Σ,K

1/2
Σ ⊗ L2

Σ ⊗ L′−1
Σ ). (10.42)

The zero mode content on Σ yields precisely one Higgs up field for fractional line bundle

assignments:

LΣ = OΣ(1)1/5 and L′
Σ = OΣ(1)2/5. (10.43)

Similarly, a single Higgs down field can also localize on another matter curve.

It is also possible to localize a single Higgs up field on a higher genus matter curve. For

example, with notation as above, when Σ is a genus one curve, the fractional line bundle

assignments:

LΣ = OΣ(p1)
1/5 ⊗OΣ(p1 − p2)

1/5 and L′
Σ = OΣ(p1)

2/5 ⊗OΣ(p1 − p2)
−3/5 (10.44)

will again yield a single Hu field localized on Σ.

In fact, in section 12 we will show that in order to remain in accord with current bounds

on the lifetime of the proton, the Higgs fields must localize on different matter curves. These

matter curves may or may not intersect inside of S. When these curves do not intersect,

these fields do not couple in the superpotential and the µ term is automatically zero.

Moreover, when these curves do intersect, they must interact with a third gauge singlet

which localizes on a curve that only intersects S at a point. In section 15 we estimate the

behavior of this gauge singlet wave function near the surface S and show that this naturally

yields an exponentially suppressed µ term.

10.4 Candidates for dark matter

In the MSSM with R-parity, the lightest supersymmetric partner (LSP) could be a viable

dark matter candidate. In fact, in the context of a local model, it is natural to expect a large

number of additional gauge degrees of freedom which only interact gravitationally with the

MSSM. This appears to be an automatic feature of many consistent string compactifica-

tions which will typically contain several hidden sectors. For example, in the perturbative

heterotic string, this role can be played by the hidden E8 factor. A rough comparison of the

two E8 factors would then suggest that half of the matter content in such a model could be

visible, and the other half could be dark matter. In F-theory, the analogue of the hidden

E8 factor could be the additional seven-branes which are required for the compactification

to be globally consistent. For example, F-theory compactified on K3 corresponds to a

configuration of 24 seven-branes. More generally, it would be of interest to estimate the

number of seven-branes which only interact gravitationally with the MSSM. In this case,

the total class of the seven-branes in a threefold base B3 is given by 12c1(B3). Integrating

this Chern class over an appropriate two-cycle would then yield a rough estimate on the

amount of dark matter from seven-branes. It is also in principle possible that the total

number of three-branes in the compactification could also contribute to the dark matter

content of the model. In the absence of fluxes, the total number of three-branes is given by

χ(CY4)/24. We note that in order for the Calabi-Yau fourfold to be elliptically fibered, the

threefold base B3 must be a Fano variety. For example, B3 = P
3, gives 48 seven-branes.
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Note that the GUT group involves a bound state of O(10) such seven-branes. We find

it quite amusing that this is in rough agreement with the observed ratio between visible

and dark matter in our Universe! Of course, this depends on the relative masses for the

various visible and hidden fields. There is a finite list of such manifolds [69], and it would

therefore be of interest to compare the relative number of three-branes and seven-branes

in such compactifications.

11. Geometry and matter parity

From a phenomenological viewpoint, matter parity provides a simple way to forbid renor-

malizable terms in the four-dimensional superpotential which can potentially induce proton

decay. It also naturally leads to an LSP which could potentially be a dark matter candi-

date. In a Lorentz invariant theory, this is equivalent to assigning an appropriate R-parity

to the individual components of a superfield. Indeed, the essential point is that this discrete

symmetry distinguishes the Higgs superfields from all of the other chiral superfields of the

MSSM. In this section we argue that the presence of such a Z2 symmetry is quite natural

from the perspective of F-theory.

As explained in subsection 10.3, the Higgs fields localize on matter curves pierced by a

net amount of internal hypercharge flux while the chiral matter localizes on curves where

the net hypercharge flux is trivial. This is a discrete choice which naturally distinguishes

the Higgs superfields from the rest of the chiral superfields of the MSSM.

From a more global perspective, these fluxes correspond to the localization of four-

form G-flux in the compactification. If the Calabi-Yau fourfold admits a geometric Z2

symmetry, then these fluxes will decompose into even and odd elements of H4(CY4,Z)

which we denote by H4(CY4,Z)+ and H4(CY4,Z)−. If this symmetry is well-defined, it

follows that on a given seven-brane, the corresponding line bundles must have a definite

parity under this choice of sign. For example, the parity of the line bundle on the S brane

can be even while the parity of the line bundles on the other branes may have other parities.

It now follows that the net flux on a matter curve can only be non-zero when the flux

and matter curve have the same parity. Indeed, letting F± denote a flux with parity ±1

with similar notation for matter curves Σ±, the unbroken Z2 symmetry implies:

∫

Σ−

F+
Σ− =

∫

S

F+ ∧ PD(Σ−) = −
∫

S

F+ ∧ PD(Σ−) = 0 (11.1)

∫

Σ+

F−
Σ+ =

∫

S

F− ∧ PD(Σ+) = −
∫

S

F− ∧ PD(Σ+) = 0 (11.2)

where PD(Σ±) ∈ H2(S,Z) denotes the Poincaré dual element of [Σ±] ∈ H2(S,Z). In other

words, when the integral of the flux over a curve does not vanish, the flux and curve have

the same parity.

In order for this group action to remain well-defined on the matter curves, the internal

wave functions which are sections of appropriate bundles must also have a definite sign

under the group action. First consider the parity of the Higgs fields. These wave functions

– 48 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

are defined as sections of line bundles which depend non-trivially on the restriction of line

bundles from both S as well as other transversely intersecting seven-branes. We therefore

conclude that both fluxes must have the same parity. In particular, we conclude if the

parity of the bulk gauge field is even, then the Higgs fields will also have even parity.

Next consider the parity of the remaining matter fields. Here it is essential that the

net flux contribution from S is trivial on all such matter curves. In particular, if the gauge

bundle from the transversely intersecting seven-brane is odd under matter parity, then the

corresponding sections on each matter curve will also be odd under the Z2 action on the

Calabi-Yau fourfold. Hence, we obtain on rather general grounds a geometric version of

matter parity.

12. Proton decay and doublet-triplet splitting

As argued in subsection 10.3, there exist vacua which yield the exact spectrum of the

MSSM for an appropriate choice of flux in a local intersecting seven-brane configuration.

In particular, we found that the Higgs triplets can typically be removed from the low

energy spectrum. While this mechanism provides a natural way to achieve the correct zero

mode spectrum in the Higgs sector, when the Higgs up and down fields localize on the

same matter curve, the higher Kaluza-Klein modes of the corresponding six-dimensional

fields will generate higher order superpotential terms of the form QQQL/MKK with order

one coefficients. While here we have presented the operator in terms of the Kaluza-Klein

mass scale MKK , for minimal SU(5) GUT models, we can reliably approximate MKK by

MGUT.17 If present, such operators can significantly shorten the lifetime of the proton.

We now explain how such terms could potentially be generated in our class of models.

When all Yukawa couplings to the Higgs triplets are order one parameters, the superpo-

tential terms:

WGUT = QQTu +QLTd +MKKTuTd (12.1)

will give a large mass to the Higgs triplets TuTd of order MKK . Integrating out Tu and

Td, the coefficient of the operator QQQL/MKK would then be too large to satisfy present

constraints. In fact, the geometry of the matter curves indicates precisely when we can

expect such terms to be generated. The tree level diagram which generates the offending

operator is given by drawing the intersection locus of the matter curves and interpreting

each matter curve as a leg of the corresponding Feynman diagram. See figure 5 for a

depiction of how the geometry of the matter curves quite literally translates into a statement

about diagrams in the low energy theory.

While it is in principle possible to suppress the value of this coefficient by incorporating

flavor symmetries, in the context of four dimensional supersymmetric GUT models, this

problem can be avoided by having Tu and Td develop masses by pairing with additional

17When we present some examples of four-dimensional flipped SU(5) models which descend from an

eight-dimensional SO(10) model, there can be a small discrepancy between the four-dimensional GUT scale

MGUT and MKK .
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Figure 5: Depiction of how the geometry of matter curves directly translates into amplitudes in

the low energy theory. In case a), the Higgs up and down fields localize on the same matter curve.

The resulting field theory diagram which generates the operator QQQL is given by interpreting

each matter curve as the leg of a Feynman diagram. In case b), the Higgs up and down fields

localize on distinct matter curves. In this case, the Feynman diagram involving the exchange of

massive Higgs triplets is unavailable.

heavy triplet states T ′
u and T ′

d so that the superpotential instead takes the form:18

WGUT = QQTu +QLTd +MTuT
′
d +MTdT

′
u (12.2)

which does not generate the offending dimension five operator from integrating out massive

fields at tree level. Note that this occurs automatically when the Higgs up and down fields

localize on distinct matter curves.

In compactifications of the heterotic string on Calabi-Yau threefolds, the Higgs triplet

is typically projected out of the low energy spectrum by discrete Wilson lines. In general, it

is not clear to us whether this sufficiently suppresses proton decay. Indeed, while the Higgs

triplet zero mode may be absent from the spectrum, there is an entire tower of Kaluza Klein

modes which must also be considered. If any of these modes contribute an interaction term

of the form given by equation (12.1), the coefficient of the offending dimension five operator

may still be too large to remain in accord with observation.

To summarize, we have seen that the proton decays too rapidly when the Higgs up and

down fields localize on the same matter curve. As a necessary first step, we have shown

that when these Higgs fields localize on distinct matter curves, integrating out the higher

18We thank S. Raby for emphasizing this point to us.
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Kaluza-Klein modes for the Higgs fields does not generate the offending baryon number

violating term QQQL. Even so, it is still in principle possible that some exotic process

could generate the operator QQQL. In fact, placing the Higgs fields on different matter

curves automatically equips them with additional global symmetries in the low energy

effective theory. As we now explain, these symmetries significantly extend the lifetime of

the proton.

13. Extra U(1)’s and higher dimension operators

In section 12 we have shown that the dimension five operators responsible for proton decay

are naturally suppressed when the Higgs up and Higgs down fields localize on different

matter curves. In this section we explain from a different perspective why this suppression

occurs and also discuss on more general grounds when we expect other higher dimensional

operators to suffer a similar fate.

Imposing additional global symmetries provides one common way to suppress unde-

sirable interaction terms in field theory. Indeed, so long as the global symmetry remains

unbroken, all of the higher order terms of the effective superpotential will also respect

this symmetry. In F-theory, these U(1) factors occur automatically because the breaking

direction in the Cartan subalgebra of a given singularity determines the location of the

matter curves in the geometry. Matter localizes on the curve precisely when it is charged

under the appropriate subgroup. While this generically allows local triple intersections

of matter curves to take place, all of the fields of the MSSM will therefore be charged

under additional U(1) factors. These extra U(1)’s can therefore naturally suppress higher

dimension operators. When two curves do not intersect inside of S, fields localized on each

curve will be charged under distinct U(1) groups. This can forbid cubic interaction terms

as well as many higher order contributions to the effective superpotential. It would be very

interesting to determine the precise mapping between topological properties of intersecting

curves and the associated U(1) fields.

From a bottom up perspective, the fields of the MSSM contain various accidental sym-

metries. Assuming generic values of the Yukawa couplings and that the µ term originates

from the vev of a gauge singlet, the classical action is invariant under four U(1) symmetries.

These can be identified with U(1)Y hypercharge, U(1)B baryon number, U(1)B−L baryon

minus lepton number and a U(1)PQ Peccei-Quinn symmetry. Of these four possibilities,

only U(1)Y and U(1)B−L are potentially non-anomalous.

In a quantum theory of gravity, any global symmetry must be promoted to a gauge

symmetry. One potential worry is that because the fields of the MSSM are naturally

charged under these U(1)’s, the presence of these gauge bosons could lead to conflict with

experiment. While these U(1)’s will typically be anomalous and therefore lift from the low

energy spectrum, it is interesting to ask whether a massless U(1) of this type is already

ruled out by experiment. This is not very promising because current constraints from fifth

force experiments have set a strong limit on the gauge coupling of extra massless U(1)

gauge bosons:

gextra .
mn

Mpl
∼ 10−19 (13.1)
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where mn denotes the mass of the neutron. In the absence of a natural explanation for why

the gauge coupling would be so weak for such couplings, this appears quite fine-tuned. In

fact, such a small value is already in conflict with the conjecture that gravity is the weakest

force [70]. See [71, 72] for further discussion on extra massless U(1) gauge bosons.

The analogue of equation (4.8) for αextra = g2
extra/4π is of the form:

α−1
extra = M4

∗V ol(Sextra) ∼M4
∗R

2
⊥R

2
S (13.2)

where as before, R⊥ denotes the length scale associated with the direction normal to the

surface S. In tandem with equation (4.8) this implies:

αextra ∼ αGUT
R2

S

R2
⊥

= αGUT × εγ ∼ 7 × 10−3±0.5. (13.3)

Based on the above estimate, we conclude that all additional U(1) gauge bosons must

develop a sufficiently large mass in order to lift from the low energy spectrum. In fact, our

expectation is that this only imposes a mild constraint on the compactification. When the

U(1) symmetry is anomalous, the Green-Schwarz mechanism will generate a string scale

mass for the gauge boson. Even when the U(1) symmetry is non-anomalous, the gauge

boson can still develop a large mass. Indeed, although the analysis of section 9 shows that

four-dimensional U(1) gauge bosons can remain massless in the presence of internal fluxes,

it also establishes sufficient conditions for such bosons to develop a large mass on the order

of R−1
⊥ . In either case, we therefore expect that it is always possible for all extraneous

U(1) gauge bosons to develop a suitably large mass. In the low energy effective theory,

some imprint of the gauge symmetry will remain as an approximate global symmetry in the

low energy effective theory. These global symmetries can be violated by non-perturbative

contributions to the superpotential from Euclidean branes wrapping the various Kähler

surfaces of the compactification. Such contributions are naturally suppressed by an expo-

nential factor of the form exp(−c/αextra) where c is an order one positive number. Similar

instanton effects have been proposed as a possible solution to the cosmological constant

problem [73]. Such exponentials could also provide a novel method of generating contribu-

tions to the flavor sector of the theory. We present one brief speculation along these lines

in section 14. As a brief aside, recall that in section 6 we presented an example of a four-

dimensional GUT model where an appropriate operator generated by non-perturbative

contributions could produce an effective µ term. Indeed, when a strict decoupling limit

does not exist, it is likely that non-perturbative contributions to the superpotential could

play a more prominent role in the effective theory.

14. Towards realistic Yukawa couplings

Finding vacua with the correct matter spectrum of the MSSM is only the first step in

constructing a semi-realistic model. In models where all chiral matter localizes on matter

curves, the leading order contribution to the four-dimensional effective superpotential orig-

inates from the triple intersection of matter curves. After presenting a general analysis of

how matter curves can form triple intersections in S, we show that in order to achieve one
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generation with mass which is hierarchically larger than the two lighter generations, some

of the matter curves must self-intersect or “pinch” inside of S. See figure 6 for a depiction

of a pinched curve. While a complete theory of flavor is beyond the scope of this paper, we

can nevertheless provide a qualitative explanation for why the heaviest generation obeys

an approximate GUT mass relation which is violated by the lighter generations. In fact,

the effect we discover is generically realized in vacua with non-zero internal hypercharge

flux because the Aharanov-Bohm effect distorts the wave functions of individual compo-

nents of a GUT multiplet by different amounts. Moreover, this distortion becomes more

pronounced as the mass of the generation decreases. We conclude by presenting some

speculations on how more detailed properties of flavor physics could originate from a local

del Pezzo model.

14.1 Criteria for triple intersections

As reviewed in section 3, cubic contributions to the superpotential of an exceptional seven-

brane can originate from three sources. These correspond to interactions amongst three

bulk zero modes, interactions between a single bulk zero mode and two zero modes localized

on a matter curve, and interaction terms between three zero modes on matter curves. As

explained in subsection 10.3, in a minimal SU(5) GUT all of the field content of the MSSM

localizes on curves. Thus, the leading order contribution to the effective superpotential

comes from the triple intersection of matter curves.

Locally, the triple intersection of matter curves in S occurs when the bulk singularity

type GS undergoes an at least twofold enhancement to a singularity of type Gp ⊃ GS ×
U(1)1×U(1)2. Following the general philosophy of [44], we note that matter localized along

curves in S is charged under the corresponding U(1)1 ×U(1)2 subgroup. Indeed, letting t1
and t2 denote the local deformation parameters associated with the two U(1) factors, this

curve is locally described by an equation of the form:

at1 + bt2 = 0. (14.1)

In the above, the constants a and b are determined by the decomposition of the adjoint

representation ofGp to GS×U(1)1×U(1)2 so that the appropriate irreducible representation

of GS has U(1)1×U(1)2 charge (a, b). This is simply the statement that because the Cartan

subgroup is visible to the geometry, this local enhancement in singularity type has been

Higgsed in the bulk to GS .

The triple intersection of three curves Σ1, Σ2 and Σ3 requires that the intersection

product of the corresponding homology classes satisfies [Σi] · [Σj] > 0 for i 6= j. Even so,

generic curves representing each class which all intersect pairwise will not form a triple

intersection in S. However, in certain cases there exist representative holomorphic curves

of each homology class which can form a triple intersection inside of S. For this to occur, it

must be possible to deform the point of intersection of one pair of curves to coincide with

the point of intersection of another pair. In other words, the normal bundle NΣ/S of one of

the curves must possess at least one global section. Although from the perspective of the

surface S this may appear to be a somewhat non-generic situation, we note that in F-theory
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such points of triple intersection occur automatically. Indeed, as explained in [15], this

follows from the fact that in F-theory, rank two enhancements in the singularity type will

generically occur at points in S. The claim now follows from group theoretic considerations.

At a pragmatic level, given curves Σi = (fi = 0), it is possible to engineer a triple

intersection by requiring that one of the fi is a linear combination of the other two fi’s in

the ring of sections on S. Assuming without loss of generality that f3 is given by a linear

combination of f1 and f2, this can be written as:

f3 = α1f1 + α2f2 (14.2)

where the αi correspond to holomorphic sections of some line bundles on S. For example,

this condition is satisfied when both [Σ3] − [Σ1] and [Σ3] − [Σ2] are “effective” divisors,

namely divisors which correspond to holomorphic curves.

This geometric condition can be used to narrow the search for vacua which are phe-

nomenologically viable. For example, to forbid cubic matter parity violating contributions

to the superpotential, it is enough to require that the curves supporting the chiral matter

of the MSSM must not form a triple intersection. On the other hand, in order to have

at non-trivial interaction terms, some of the matter content of the MSSM must localize

on a curve which is not exceptional. Indeed, three exceptional curves cannot triple inter-

sect in S. This follows from the fact that the normal bundle of a curve in S has degree

[Σ] · [Σ] which equals −1 for an exceptional curve. Because H0
∂
(P1,O(−1)) = 0, none of

the pairwise intersection points in such a configuration can be deformed to a point of triple

intersection.

14.2 Textures

At zeroth order, it is most important to obtain a naturally heavy third generation in the

quark sector. Indeed, the mass of the top quark is roughly 170 GeV, which is significantly

higher than the next heaviest up type quark. This requires that the corresponding Yukawa

coupling must be sufficiently large. In a suitable basis, we therefore require that the up-type

Yukawa couplings are of the form:

λu ∼



ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 1


 (14.3)

where the ε’s are all parametrically smaller than 1.

When all of the cubic terms of the superpotential originate from the triple intersection

of matter curves in S, there is additional structure in the form of the Yukawa couplings.

First consider the Yukawa couplings for fields charged in the 10 of SU(5). In this case, the

interaction terms:

W ⊃ λu
ij5H × 10

(i)
M × 10

(j)
M (14.4)
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are non-zero whenever the curves defined by ΣH , Σi and Σj form a triple intersection.

When none of the Σi self-intersect, or “pinch”, it follows that the general form of λu
ij is:

λu
ij =




0 A B

A 0 C

B C 0


 (14.5)

where A, B and C are constants given by evaluating wave function overlaps. We now argue

that this matrix cannot yield one generation which is hierarchically heavier than the first

two generations. In order for such a hierarchy to exist, we require that there exists a limit

in the parameters A, B and C where two of the masses determined by λu
ij tend to zero

while the third mass remains large.

In the limit in which one of the generations has zero mass, the determinant of the

matrix λu
ij vanishes:

2ABC = 0 (14.6)

so that without loss of generality, we may assume that the strictly massless limit corre-

sponds to A = 0. Since the trace of λu is zero, we conclude that when A = 0, two of the

eigenvalues of λu are equal in magnitude and have opposite sign. This implies that there

does not exist a limit in which two of the generations are parametrically lighter than the

third. On the contrary, this would suggest that two of the generations are significantly

heavier than the lightest generation. We emphasize that this result holds independent of

how the kinetic terms are normalized. This is because it is always possible to switch to a

basis of fields where the kinetic terms are canonically normalized. This alters the form of λu

by a similarity transformation and an overall rescaling. In this new basis, the determinant

and trace will still vanish so that the above argument proceeds as before.

14.2.1 Self-intersecting or pinched curves

Rather than appeal to non-perturbative effects, we note that such a hierarchy can easily

be achieved provided the Yukawa matrix possesses at least one non-zero diagonal element.

Geometrically, this requires that one of the matter curves must pinch off so that globally,

the curve intersects itself inside of S. We caution that this notion of self-intersection is

somewhat stronger than what is usual meant by self-intersection at the level of homology.

At the level of homology, a class is typically said to self intersect when two distinct repre-

sentatives of a given homology class intersect inside of S. See figure 6 for a depiction of

how a curve can self-intersect by pinching off inside of S.

We now extend the analysis of [15] for smooth matter curves to the present case of

interest where the curve may pinch off, or self-intersect. Before describing the case of self

intersection, let us recall what happens when two distinct curves intersect. In this case

near the generic intersection point the two curves can be modeled by the equation:

z1z2 = 0 (14.7)

where z1 = 0 describes one curve and z2 = 0 denotes the other so that the intersection

point is located at z1 = z2 = 0. By group theory considerations explained in [15], it is clear
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? ?

Figure 6: Depiction of how a local enhancement in the singularity type can enhance to the

intersection of two distinct curves (left), or a single curve which self-intersects (right).

that a third matter curve will also pass through this point, with a local defining equation

z3 = z1 + z2 = 0. This gives rise to a Yukawa interaction of the form:

W ⊃ φ1φ2φ3 (14.8)

where φi denotes a field associated with the local vanishing locus zi = 0.

From a global perspective, this description does not specify whether φ1 and φ2 localize

on distinct matter curves or whether they localize on the same curve. In the case where

these fields localize on the same curve, the locus z1 = 0 curve must connect to the z2 = 0

curve in a more global description inside of S. In other words, these two loci must form

a single Riemann surface. Hence, a self-intersecting curve corresponds to a genus g + 1

curve which pinches to a genus g curve in such a way that this pinching process does not

lead to two disconnected surfaces. Conversely, when this pinching process produces two

disconnected curves, this describes the case where the matter curves are distinct.

To analyze the matter content localized on a self-intersecting curve, we note that the

overlap of wave functions at the pinching point determines a single linear relation amongst

the various zero modes of the form:

αiφ
(i) = 0 (14.9)

where the φ(i) label the zero modes of the genus g curve obtained by pinching the associated

genus g + 1 curve. This identification reduces the value of the associated index by one.

The number of self-intersection points as well as their proximity will clearly have an

impact on the properties of the Yukawa couplings in the low energy theory. To illustrate

this point, it is enough to consider the up type Yukawa couplings of the minimal GUT

model which descend from the cubic interaction term:

W ⊃ λu
ij5H × 10i

M × 10j
M . (14.10)

Suppose that three generations in the 10 of SU(5) all localize on the same self-intersecting

matter curve. If there is only one point of self-intersection which we denote by 0, the Yukawa

matrix is given by the outer product of the wave function for the three generations:

λu
ij = ψH(0)ψi(0)ψj(0) (14.11)
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so that it automatically has rank one. By a suitable change of basis, the leading order

behavior of the up-type Yukawa couplings is given by equation (14.3) as required in a

semi-realistic model. Additional points of self-intersection will increase the rank of the

up-type Yukawa coupling matrix. In this case, the relative proximity between these points

of intersection as well the analogous expressions for the down-type Yukawa couplings will

control the masses and mixing angles in the quark sector. It would be interesting to

determine whether a hierarchical pattern of masses and mixing angles could emerge from

such a treatment.

14.3 GUT mass relations

In this subsection we show that the usual GUT mass relations present in the simplest

four-dimensional GUT models can be significantly distorted in the presence of an internal

hypercharge flux. In the simplest four-dimensional GUT models, the masses of the up and

down type quarks are determined by the superpotential terms:

W ⊃ λu
ij5H × 10i

M × 10j
M + λd

ij5H × 5
i
M × 10j

M . (14.12)

Assuming that the individual components of a GUT multiplet have the same wave function

normalization, this would imply that mq = ml for the quarks and leptons which unify in a

5M of SU(5). Evolving the values of the masses observed at low energies up to the GUT

scale, it is well-known that only the third generation obeys a relation of the form mb ∼ mτ .

At the level of precision we can perform here, the original analysis of mass relations in the

non-supersymmetric SU(5) GUT analyzed in [74] is certainly sufficient. In this case, the

actual mass relations at the GUT scale are:

mb ∼ mτ , ms ∼ mµ/3, md ∼ 3me. (14.13)

See [75] for an updated analysis of the various mass relations obtained by extrapolating the

observed values of the masses to the GUT scale. This problem is even more pronounced for

the simplest SO(10) GUTs where all interaction terms descend from the coupling 16M ×
16M × 10H . Letting i = 1, 2, 3, we can parameterize the violation of the expected mass

relation for each generation:

δi =
m

(i)
q −m

(i)
l

m
(i)
q +m

(i)
l

. (14.14)

Returning to equation (14.13), the violation of the simplest mass relation for each genera-

tion is:

δ3 = 0, δ2 ∼ 50%, δ1 ∼ −50%. (14.15)

In purely four-dimensional GUT models, one popular way to rectify the above problems

requires introducing higher-dimensional representations which couple differently to the in-

dividual components of a full GUT multiplet. It is also common to introduce adjoint-valued

chiral superfields which can couple to the chiral matter of the MSSM through higher di-

mension operators. In both approaches, the field content necessary to avoid some of the

problematic mass relations of the simplest GUT models is unavailable in a del Pezzo model!
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In higher dimensional theories, additional mechanisms are potentially available. In

compactifications of the heterotic string on Calabi-Yau manifolds, the particle content can

organize into GUT multiplets while the wave functions corresponding to a given generation

may not admit such a simple interpretation. For example, in the presence of a discrete

Wilson line which breaks the GUT group to the Standard Model gauge group, individual

components of a GUT multiplet may be projected out. In this way, some of the usual

mass relations could become ambiguous [76]. Further, additional mixing terms between

vector-like pairs of massive Kaluza-Klein modes can also obscure the meaning of simple

GUT mass relations. An example of this type is discussed in [40]. Similar ideas are also

quite common in orbifold GUT models. In a minimal SU(5) GUT model of the type treated

here, one extreme solution would be to invoke the mechanism of doublet triplet splitting

via fluxes described in section 12 so that individual components of a full GUT multiplet

could localize on distinct matter curves.

While this provides one possible way to avoid incorrect mass relations amongst mem-

bers of the lighter generations, we find it somewhat anti-thetical to the whole idea of grand

unification that the matter content of the Standard Model neatly fits into GUT multiplets.

Indeed, it would seem unfortunate to sacrifice such an aesthetic motivation for grand uni-

fication. Moreover, the usual GUT mass relation does work relatively well for the third

generation. We now argue that even when a complete GUT multiplet localizes on a matter

curve, the relative normalization of the kinetic terms between different components of the

GUT multiplet will in general be different. Moreover, we give a qualitative explanation for

why the mass relations become increasingly distorted for the lighter generations.

Recall that in the minimal SU(5) GUT, the net hypercharge flux vanishes on curves

supporting complete GUT multiplets. Indeed, the converse of this condition for the Higgs

curves provides a qualitative explanation for why these fields do not fill out full GUT

multiplets. Although the average hypercharge flux vanishes on chiral matter curves, the

field strength will in general not vanish pointwise. Because the individual components of

a GUT multiplet have different hypercharge, the corresponding wave functions will couple

differently to this background flux leading to distinct zero mode wave functions. The

fact that the zero mode wave functions are not the same, and may in particular have

different magnitudes, can be interpreted as Aharanov-Bohm interferences in a varying B-

field background.

In a minimal SU(5) GUT, all of the interaction terms originate from evaluating the

wave functions at points of triple intersection and now there is no reason why the magni-

tude of different matter fields within a GUT multiplet are the same. This leads to different

Yukawa couplings and thus to different mass relations. In particular, assuming for simplic-

ity no mixing between generations, we have modified mass relations of the form:

mq = ml

∣∣∣∣
ψq(0)

ψl(0)

∣∣∣∣ . (14.16)

It would be interesting to examine whether modified GUT mass relations for the lighter

generations of the general type proposed in [74] admit a geometric interpretation.
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We now estimate the expected distortion in the usual GUT mass relations due to the

Aharanov-Bohm effect with a varying B-field. To this end, let FΣ denote the internal U(1)

hypercharge field strength on the matter curve Σ. The overall scaling dependence of the

mass relation violation δ can be determined by rescaling the overall volume of Σ by ε.

Because the reduction of the instanton to Σ scales as |FΣ|2/ε, it follows that FΣ rescales

by a factor of
√
ε. This reduction is explained in further detail in [77]. It now follows that

the violation of the mass relation will be proportional to:

δ ∼ √
ε. (14.17)

Note that as the volume of Σ tends to zero, the amount of violation in the mass relation

also vanishes. Equation (4.25) implies that the masses of fields localized on Σ scale as:

M ∼ 1/V ol(Σ) ∼ 1/ε, (14.18)

because in a canonical normalization of all fields, each wave function contributes a factor

of ψ(0)/
√
M2

∗V ol(Σ) to the Yukawa couplings. Hence, the violation of the mass relation

obeys the scaling law:

δ ∼ 1/
√
M . (14.19)

While a mass relation will still hold for each generation, the particular numerical coefficient

relating the masses will depend on the generation in question.

To conclude this section, we note that a common theme running throughout much of

this paper is the central role of the internal hypercharge flux. Indeed, an intra-generational

distortion in the usual GUT mass relations requires the presence of an internal hypercharge

flux. In a sense, we can view the violation of the GUT mass relation as the first experimental

evidence for the existence of extra dimensions!

14.4 Generating semi-realistic hierarchies and mixing angles

In this subsection we speculate on one possible way to achieve semi-realistic mass hierarchies

and mixing angles in the context of our compactification. To frame the discussion to follow,

we first review the field theory Froggatt-Nielsen Mechanism for generating a hierarchical

structure in both the masses and mixing angles of the quark sector. As observed in [78],

this naturally occurs when the up and down Yukawa couplings assume the form:

λu
ij = gu

ijε
ai+bj , λd

ij = gd
ijε

ai+cj , (14.20)

where the g’s are order one 3×3 matrices and ε is a small parameter which is related to the

Cabbibo angle θc ∼ 0.2. With this ansatz, the quark sector exhibits hierarchical masses

and mixing angles determined by appropriate powers of ε [78].

From a field theory perspective, this type of power law suppression naturally occurs

in theories with additional global U(1) symmetries. For example, if the superfields Qi, U i

and Di have charges ai, bi and ci under a global U(1) symmetry, then the corresponding

fields interact by coupling to an appropriate power of a gauge singlet charged under this
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global U(1). For example, letting φ denote a gauge singlet superfield with charge +1 under

this global symmetry, the lowest order coupling in the superpotential is given by:

W ⊃ gu
ij

(
φ

Mpl

)−ai−bj

QiU jHu + gd
ij

(
φ

Mpl

)−ai−cj

QiDjHd (14.21)

where for the purposes of this discussion we assume that Hu and Hd are neutral under

the global U(1) symmetry. When φ develops a vev less than Mpl, we obtain the expected

hierarchy in the Yukawa couplings of equation (14.20).

We now speculate as to how such a hierarchy could potentially occur in compactifica-

tions of F-theory. Given a sufficiently generic configuration of matter curves which form

triple intersections, in a holomorphic basis of wave functions the resulting holomorphic

Yukawa couplings introduced in section 4 will be given by order one complex numbers.

To extract the values of the physical up and down type Yukawa couplings, all of these

fields must be rescaled to a canonical normalization of all kinetic terms. In the large vol-

ume limit, this simply rescales each wave function by an appropriate power of the overall

volume factor so that the up and down type Yukawa couplings are:

λu
ij = gu

ijZ
(10)
i Z

(10)
j ZHu , λd

ij = gd
ijZ

(10)
i Z

(5)
j ZHd

(14.22)

where we have introduced the notation Z =
(
M2

∗V ol(Σ)
)−1/2

. In the above, the superscript

on each Z denotes the representation and as usual, the indices i and j label the generations.

In the extreme case where the volumes of the matter curves are hierarchical, this would

provide a crude analogue of the Froggatt-Nielsen mechanism. It is not clear to us, however,

that such a hierarchy is always available for self-intersecting curves. Indeed, it is likely that

the Z’s differ by order one factors. While this is typically enough to sufficiently distort the

usual GUT mass relations, it may prove insufficient to produce the large hierarchy in mass

scales between the top quark and the charm quark, for example.

Implicit in the above discussion is the assumption that the Z’s of equation (14.22) only

depend on the classical volumes of the matter curves. Indeed, as explained in section 4,

the overall normalization of each wave function will receive quantum corrections away

from the large volume limit. While we do not have a systematic method for computing

these corrections, experience in perturbative string theory strongly suggests that these

corrections are exponentially suppressed as functions of the Kähler moduli. Moreover,

these corrections may induce small off-diagonal terms in the Kähler metric for the fields of

the required type to generate a hierarchical structure in the physical Yukawa couplings.

In a similar vein, it is also tempting to speculate that non-perturbative contributions

to the superpotential from Euclidean 3-branes wrapping divisors in the Calabi-Yau four-

fold base could also contribute to a viable model of flavor physics. Indeed, because such

corrections will typically violate global U(1) symmetries present in the low energy effective

theory, the corresponding exponential factor can in principle have a form compatible with

the Froggatt-Nielsen mechanism. While these remarks are admittedly speculative, it would

be interesting to see whether there exist calculable examples of the desired type.
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14.5 Textures from discrete symmetries and large diffeomorphisms

Discrete symmetries provide another possible way to achieve semi-realistic Yukawa cou-

plings and interaction terms because such models can mimic the primary features of the

Froggatt-Nielsen mechanism, but with the global continuous symmetry replaced by a dis-

crete symmetry. In this approach, it is common to search for finite groups which admit

two- and three-dimensional irreducible representations. For example, the two lightest gen-

erations could transform in a two-dimensional representation while the heaviest generation

could transform as a singlet. As one application, these symmetries are typically enough to

alleviate potential problems with FCNCs in gravity mediation scenarios.19 A list of candi-

date discrete flavor groups with order at most thirty one which are of phenomenological in-

terest has been tabulated in [79]. Some common choices in the model building literature are

the symmetric group on three or four letters denoted by S3 and S4 as well as A4, the alter-

nating subgroup of S4. See [80, 81] for a recent review of some possibilities along these lines.

In the present context, the group of large diffeomorphisms of a del Pezzo surface provide a

potentially attractive starting point for a theory of flavor based on discrete symmetries. We

note that some version of this gauged symmetry will survive even away from the large vol-

ume regime. It is therefore possible that such symmetries could undergird a theory of flavor.

The group of large diffeomorphisms for the del Pezzo surfaces has a natural action on

the matter curves of the del Pezzo which automatically lifts to a group action on the matter

fields of the MSSM. For example, the del Pezzo 3 surface corresponds to the exceptional

group E3 = SU(3)× SU(2) which has Weyl group S3 ×S2. The S3 factor could potentially

play the role of the desired flavor group.

One potential caveat to the above proposal is that the action of the Weyl group on the

matter curves corresponds to an integral representation. In other words, the corresponding

characters take values in the integers. This follows from the fact that the Weyl group nat-

urally permutes the exceptional curves of the del Pezzo surface. In particular, because the

entries in the character tables for the phenomenologically most interesting representations

of A4 and S4 are given by various powers of a third root of unity, this direct application of

discrete symmetries may be too trivial.

We note that no similar obstruction is present in the case of the discrete group S3.

Indeed, consider as a toy model the case where the three generations have localized on the

exceptional curves E1, E2 and E3 of the del Pezzo 3 surface. In this case, the S3 Weyl

group permutes the exceptional curves. The three dimensional representation spanned

by the three curves also determines how S3 acts on the three generations. This three

dimensional representation decomposes to the sum of a two dimensional representation

and singlet which are respectively spanned by:

〈E1, E2, E3〉 ≃ 〈E1 − E2, E2 −E3〉doublet ⊕ 〈E1 + E2 + E3〉singlet . (14.23)

This suggests that the wave function for the heavy generation transforms as the singlet,

while the two light generations transform as the doublet. It would be interesting to develop

such a theory of flavor in more detail.

19We thank K.S. Babu for emphasizing this point to us.
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15. Suppression factors from singlet wave functions

So far we have only considered contributions to the superpotential from matter fields

which all transform as non-trivial representations of Gstd. A fully realistic model will most

likely contain contributions to the effective superpotential from chiral superfields which

transform as gauge singlets under Gstd. For example, the µ term could originate from a

cubic interaction term between the Higgs fields and a gauge singlet. The vev of this singlet

would then set the size of µ. As another example, we note that because neutrino oscillations

are now well-established, the superpotential must contain terms of the form LNRHu where

NR denotes the right-handed neutrino superfields which transform as gauge singlets.

Generating appropriately small neutrino masses as well as a value for the µ term near

the scale of electroweak symmetry breaking has historically been a challenge in string-based

models. Some discussion on neutrino masses in string theory may be found for example

in [82]. In type II D-brane constructions, contributions to the superpotential from wrapped

Euclidean branes can produce an appropriately large Majorana mass term for right-handed

neutrinos [54, 83]. Similar effects may also generate exponentially suppressed µ terms [54].

More recently, it has also been shown that D-brane instantons can also potentially generate

suppressed Dirac neutrino masses [84]. In this section, we show that the Yukawa couplings

which involve a singlet of GS can in suitable circumstances be exponentially suppressed

relative to the Yukawa couplings which only involve fields charged under GS .

The rest of this section is organized as follows. In subsection 15.1, we study the

behavior of gauge singlet wave functions which contribute to the low energy superpotential.

After performing this analysis, in subsection 15.2, we estimate the overall normalization of

the Yukawa couplings for such gauge singlet wave functions. For interaction terms involving

three singlets, there is a natural volume suppression effect. For gauge singlets which are

attracted to the GUT model seven-brane, the wave function behaves as if it had localized on

a matter curve inside of S. For gauge singlets which are repelled away from the GUT model

seven-brane, we find that the Yukawa couplings are naturally suppressed. In the remaining

subsections we show that these effects can naturally generate both hierarchically small µ

terms and neutrino masses. In both cases, we find that order one parameters in the high

energy theory naturally can yield values which are in rough agreement with observation.

15.1 Wave function attraction and repulsion

To setup notation, we consider three seven-branes which wrap surfaces S, S′, and S′′ inside

the compactification threefold B3 and which carry respective gauge groups GS , GS′ , and

GS′′ . By assumption, S, S′, and S′′ intersect transversely along smooth curves

ΣX = S ∩ S′ , ΣY = S ∩ S′′ , Σ⊥ = S′ ∩ S′′ , (15.1)

which give rise to corresponding chiral superfields X, Y , and Φ in four dimensions. Each

superfield transforms as a bifundamental20 under the respective productsGS ×GS′ , GS ×GS′′ ,

20See §4.2 of [15] for a description of the generalized notion of “bifundamental” relevant for intersecting

seven-branes in F-theory.
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and GS′ ×GS′′ . Finally, if the curves ΣX , ΣY , and Σ⊥ themselves intersect transversely at

a single point, the low-energy effective superpotential contains a cubic coupling of the form

W⊥ = λΦXY , (15.2)

invariant under GS ×GS′ ×GS′′ .

By assumption, the kinetic terms for X, Y , and Φ have the canonical normalization in

four dimensions, so the dimensionless coupling λ in W⊥ depends upon the L2-norms of the

associated zero-mode wavefunctions on the curves in (15.1). Since both ΣX and ΣY are

compact curves inside S, the norms of wavefunctions for X and Y merely scale with the

volumes of the curves in S. However, unlike ΣX and ΣY , the curve Σ⊥ is not embedded

in S but rather intersects S transversely at a point in B3. From the perspective of the

four-dimensional effective theory, this distinction in geometry is reflected by the fact that

Φ transforms as a singlet under GS , whereas X and Y form a vector-like pair. We are

interested in the limit that S contracts inside B3, or equivalently, in the limit that the

volume of Σ⊥ goes to infinity. In the limit that Σ⊥ becomes non-compact, we clearly need

to be careful in our estimate for the norm of the wavefunction ψ associated to the singlet Φ.

We are ultimately interested in the behavior of ψ near the point where Σ⊥ intersects

S, so let us introduce local holomorphic and anti-holomorphic coordinates (z, z) on Σ⊥

such that z = 0 is the location of the intersection with S. As we reviewed in section 3, ψ

generally transforms on Σ⊥ as a holomorphic section of the bundle K
1/2
Σ⊥

⊗ L,

ψ ∈ H0
∂

(
Σ⊥,K

1/2
Σ⊥

⊗ L
)
, L = L′

∣∣
Σ⊥

⊗ L′′
∣∣
Σ⊥

, (15.3)

where L′ and L′′ are line bundles on S′ and S′′. Because ψ is holomorphic, ψ satisfies

∂
†
∂ψ = 0 , (15.4)

where ∂ is the Dolbeault operator acting on K
1/2
Σ⊥

⊗ L, and ∂
†

is the adjoint operator

defined with respect to the induced metric on Σ⊥ and the hermitian metric on L inherited

from L′ and L′′.

Besides the Dolbeault operator ∂, the bundle K
1/2
Σ⊥

⊗ L also carries a unitary connec-

tion which defines a covariant derivative ∇ and an associated Laplacian △ = ∇†∇. By a

standard Hodge identity reviewed in appendix E of [15], the Laplacian △ is related to the

operator ∂
†
∂ via

△ = 2 ∂
†
∂ − 1

2
R + F . (15.5)

Here R is the scalar curvature of the metric on Σ⊥, and F is the scalar curvature of the

unitary connection on L.

The positive constants in (15.5) will not be important for the following analysis, but the

signs will be essential. First, the relative sign between R and F in (15.5) arises because R is

the scalar curvature of the induced metric on Σ⊥ and hence is the curvature of a connection

on the holomorphic tangent bundle TΣ⊥
∼= K−1

Σ⊥
, as opposed to a connection on the spin21

21The factor ‘1/2’ multiplying R in (15.5) arises from the square-root in the spin bundle K
1/2
Σ⊥

.
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bundle K
1/2
Σ⊥

. To fix the overall sign multiplying R, we note that the Laplacian △ is a

positive-definite hermitian operator. On the other hand, because ψ is holomorphic,

△ψ =

(
−1

2
R + F

)
ψ . (15.6)

According to (15.6), if F = 0 and R > 0 is strictly positive, then ψ must vanish. Such a

vanishing is consistent with the fact that K
1/2
Σ⊥

= O(−1) admits no holomorphic sections

on Σ⊥ = P
1, and this observation fixes the sign of R in the Hodge identity (15.5).

In a local unitary frame, the Laplacian △ takes the standard Euclidean form △ = −4 ∂2/∂z ∂z,

and (15.6) reduces to the wave equation

4
∂2ψ

∂z∂z
+

(
F − 1

2
R
)
ψ = 0 . (15.7)

Thus if ψ is normalized so that ψ(0) = 1, then ψ behaves near z = 0 as

ψ(z, z) = exp

(
−1

4
m2

0 |z|2
)

+ · · · ,

m2
0 =

[
F − 1

2
R
]

z=0

, (15.8)

where the ‘· · · ’ indicate terms in ψ that vanish at z = 0, and the curvatures which define

m2
0 are evaluated at that point. In general, m2

0 can be either22 negative or positive, and

the sign of m2
0 determines whether ψ exponentially grows or decays away from the origin.

At first glance, one might be perplexed as to how such exponential behavior in ψ can

arise, since nothing so far really distinguishes the point z = 0. In fact, given that ψ is

written in a unitary frame, the behavior in (15.8) merely reflects the behavior of the metric

on K
1/2
Σ⊥

⊗ L.

As a very concrete example, let us take Σ⊥ to be P
1, with a metric which we parame-

terize in Liouville form as

ds2 = e2 φ(z,z) dz dz . (15.9)

For instance, if the metric on P
1 is round with constant curvature Λ2, then

φ(z, z) = − ln

(
1 +

1

4
Λ2|z|2

)
. (15.10)

The role of the particular line bundle K
1/2
Σ⊥

⊗ L is inessential, so for simplicity we just take

ψ to transform in the holomorphic tangent bundle TP
1. As is well-known, holomorphic

tangent vectors on P
1 take the global form

u(z)
∂

∂z
, u(z) = a0 + a1z + a2z

2 , (15.11)

22Holomorphy of ψ implies that the total curvature satisfies
R

Σ⊥

⋆(F − 1
2
R) ≥ 0, but the sign of F − 1

2
R

may vary from point to point on Σ⊥.
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where (a0, a1, a2) are complex parameters. However, if φ(z, z) in (15.9) varies non-trivially

over P
1, the holomorphic vector ∂/∂z does not have constant length. To describe ψ in a

unitary frame, we instead introduce a new basis vector ê for TP
1,

ê =
1

2
e−φ(z,z) ∂

∂z
. (15.12)

Though ê is not holomorphic, ê does have constant, unit length in the metric (15.9). In

the frame described by ê, a holomorphic tangent vector ψ therefore takes the form

ψ = eφ(z,z) u(z) ê. (15.13)

Because the scalar curvature of the metric in (15.9) is given in terms of φ as

R = −4 e−2 φ ∂2φ

∂z ∂z
, (15.14)

the behavior near z = 0 of ψ in (15.13) is controlled by the local curvature.23

To make use of (15.8), we must still estimate m2
0 at the point where Σ⊥ intersects

the surface S. Since m2
0 receives contributions from both R and F , we consider each

contribution in turn.

To estimate R, we recall that S is a del Pezzo surface shrinking to zero size inside the

elliptic Calabi-Yau fourfold X . As a result, the scalar curvature on S is large and positive,

of order M2
GUT. On the other hand, since X is Calabi-Yau, the total scalar curvature on

X vanishes. Because the elliptic fiber of X is generically non-degenerate, with negligible

curvature, the large positive curvature of S near its point of intersection with Σ⊥ must be

locally cancelled by a corresponding negative curvature on Σ⊥ itself. The scalar curvature

R on Σ⊥ near z = 0 is thus negative and of order

R ∼ −M2
GUT . (15.15)

We note that if Σ⊥ has genus zero or one, then R must become positive elsewhere on Σ⊥

as dictated by the Euler characteristic.

We apply a similar argument to estimate the curvature F on L near z = 0. By defi-

nition, the line bundle L is a tensor product L′
∣∣
Σ⊥

⊗ L′′
∣∣
Σ⊥

of line bundles L′ and L′′ on

respective surfaces S′ and S′′, and both L′ and L′′ carry anti-self-dual connections. The

following observations are symmetric between L′ and L′′, but for concreteness let us focus

on the bundle L′ over S′.

The surface S′ contains two curves ΣX = S ∩ S′ and Σ⊥ = S′′ ∩ S′ which intersect

transversely at the point z = 0 on Σ⊥. Since S is shrinking inside X , the curve ΣX is

similarly shrinking inside the surface S′. In this situation, an anti-self-dual connection on

L′ over S′ must restrict to a solution of the two-dimensional Yang-Mills equations on the

shrinking curve ΣX . Hence the curvature of L′ on ΣX must be constant and uniform, of

order dVol(ΣX)−1 ∼ dM2
GUT, where d is the degree of L′ on ΣX .

23Because of the conventions adopted, R in (15.14) plays the role of F in (15.8).
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Without loss, we assume that the metric on S′ at the intersection of ΣX and Σ⊥ takes

the diagonal form ds2 = dzdz + dwdw, where w is a local holomorphic coordinate on ΣX

and z is a local holomorphic coordinate on Σ⊥. Because the curvature of the connection

on L′ is anti-self-dual, the curvature at z = 0 along Σ⊥ must be opposite to the curvature

along ΣX . Hence the curvature of L′ on Σ⊥ is of order −dM2
GUT.

Including a similar contribution from L′′, we find

F ∼ −
[

deg(L′
∣∣
ΣX

)

Vol(ΣX)
+

deg(L′′
∣∣
ΣY

)

Vol(ΣY )

]
∼ ±M2

GUT . (15.16)

Both R and F are of roughly the same magnitude, but whereas the sign of R is fixed, the

sign of F generally depends upon the degrees of L′ and L′′ as well as the relative volumes

of the matter curves ΣX and ΣY in S. We see no particular reason why the contributions

to F from ΣX and ΣY should be correlated in either sign or absolute value. So depending

upon the choices for L′ and L′′, the parameter m2
0 = F − 1

2R can be either positive or

negative, of order M2
GUT.

We are left to estimate the norm of the singlet wavefunction ψ. Now, the great virtue

of writing ψ in a unitary frame is that the L2-norm of ψ is given directly by

||ψ||2 = M2
∗

∫

Σ⊥

ω |ψ|2 , ω =
i

2
e2φ(z,z) dz ∧ dz , |ψ|2 ≡ ψψ . (15.17)

Here ω is the Kähler form for the induced metric on Σ⊥, which for concreteness we pa-

rameterize in the Liouville form (15.9). According to (15.8) and (15.14), the integrand

of (15.17) then behaves to leading order near z = 0 as

e2φ(z,z) |ψ|2 ≈ exp

[
−1

2
(m0 + R) |z|2

]
,

= exp

[
−1

2

(
F +

1

2
R
)
|z|2
]
. (15.18)

If the combination F + 1
2R is positive at z = 0, the integral over Σ⊥ in (15.17) has

rapid Gaussian decay at the scale MGUT, so immediately

||ψ||2 ∼ M2
∗

M2
GUT

,

[
F +

1

2
R
]

z=0

> 0 . (15.19)

In this case the normal wave function is attracted to our brane.

Conversely, if F + 1
2R is negative at z = 0, the expression in (15.18) rapidly blows up

away from the origin. In this case the normal wave function is repelled from our brane. To

make sense of ||ψ||2, we impose a cutoff in the integral over Σ⊥ at a scale |z| ∼ R⊥. As we

discuss briefly below, we expect the Gaussian approximation in (15.18) to be valid up to

the cutoff, so we estimate ||ψ||2 as

〈ψ|ψ〉 = ||ψ||2 ∼ M2
∗

M2
GUT

exp
(
cM2

GUTR
2
⊥

)
,

[
F +

1

2
R
]

z=0

< 0 . (15.20)
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In this estimate, c > 0 is an order one constant which our analysis does not fix, though the

expression in (15.20) depends sensitively upon its value. Similarly, the estimate depends

upon our choice of R⊥, which roughly encodes the behavior of the metric on B3 away from

S. We recall that R⊥ is parameterized as

R⊥ = M−1
GUT ε

−γ , ε =
MGUT

αGUTMpl
, (15.21)

where γ typically lies in the range 1/3 < γ < 1.

In making the estimate (15.20) for ||ψ||2, we assume that the curvature of the Calabi-

Yau metric on X (and similarly the connection on L) is slowly varying and of order M2
GUT

in a region of size R⊥ away from S. This behavior of the Calabi-Yau metric on X is

suggested by similar behavior of the local Calabi-Yau metric on the cotangent bundle

T ∗
CP

1, as exhibited for instance in §3 of [85]. In the case of T ∗
CP

1, the scalar curvature

R along the cotangent fiber experiences only a slow, power-law decay away from CP1, and

we roughly expect the same behavior normal to S in X . However, a more precise estimate

of ||ψ||2 clearly demands a more detailed analysis of the local Calabi-Yau metric on X .

15.2 Estimating Yukawa couplings

Having estimated the local behavior of gauge singlet wave functions near the del Pezzo

surface, we now determine the corresponding values of the Yukawa couplings in the low

energy theory. With notation as above, to estimate the size of the Yukawa coupling in

equation (15.2), we introduce the wave function x (resp. y) for the chiral superfield X

(resp. Y ) which localizes on the matter curve ΣX (resp. ΣY ) in S. The superpotential

term of equation (15.2) due to a triple overlap between ΣX , ΣX , Σ⊥ at a point p is:

W⊥ = λΦXY (15.22)

=
x(p)√

M2
∗V ol(ΣX)

y(p)√
M2

∗V ol(ΣY )

ψ(p)√
〈ψ|ψ〉

ΦXY (15.23)

where in the above, we have adopted the physical normalization of Yukawa couplings

detailed in section 4. The value of the Yukawa coupling strongly depends on whether

the del Pezzo surface attracts or repels the gauge singlet wave function from the point of

intersection. By contrast, we note that because X and Y localize on matter curves inside

of S, the values of x(p) and y(p) are order one numbers. Making the rough approximation

M2
∗V ol(Σ) ∼ α

−1/2
GUT, the resulting Yukawa coupling is:

λ = α
1/2
GUT

ψ(p)√
〈ψ|ψ〉

. (15.24)

We now estimate the value of the Yukawa coupling depending on whether the GUT

model seven-brane attracts or repels the gauge singlet wave function. To this end, we shall

frequently refer back to the estimates of the various length scales obtained in section 4. In

the repulsive case, equation (15.20) now implies:

λrepel ∼ α
1/2
GUT ×

(
α

1/4
GUT

RS

R⊥
exp

(
− c

ε2γ

))
(15.25)
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= α
3/4
GUT × εγ exp

(
− c

ε2γ

)
(15.26)

where the second equality follows from equation (4.17) and as in the previous subsection,

c is a positive order one number.

By contrast, in the undamped case described by equation (15.19), the associated

Yukawa coupling is:

λattract ∼ α
1/2
GUT

MGUT

M∗
∼ α

3/4
GUT. (15.27)

Physically, the value of λattract agrees with the intuition that in the attractive case, all

details of the compactification decouple because the gauge singlet behaves as though it

localizes on a curve in S. In general, we see that:

|λattract| ≫ |λrepel| . (15.28)

In addition to interaction terms between matter fields inside of S and a single gauge

singlet, it is also possible for three gauge singlet wave functions to interact outside of S.

When one such gauge singlet develops a non-zero vev, the resulting interaction term will

determine the mass of the remaining gauge singlets. Letting ψi denote gauge singlet wave

functions for i = 1, 2, 3, the value of the physical Yukawa coupling from wave function

overlap at a point b outside of S is now given by:

λsinglet ∼
ψ1(b)√

M2
∗V ol(Σ1)

ψ2(b)√
M2

∗V ol(Σ2)

ψ3(b)√
M2

∗V ol(Σ3)
∼ 1

(M∗R⊥)3
(15.29)

∼ α
3/4
GUT

(
RS

R⊥

)3

= α
3/4
GUT × ε3γ . (15.30)

We note that in comparison to Yukawa couplings on S which are on the order of α
3/4
GUT,

this naturally yields an overall suppression factor by a non-trivial power of ε.

15.3 µ term

We now discuss a natural mechanism for obtaining small supersymmetric µ terms. For

concreteness, suppose that the bulk gauge group GS = SU(5) and that the Hu and Hd

fields localize on distinct matter curves where the singularity type enhances to SU(6). In

the case where these curves do not intersect, the µ term is automatically zero. In the case

where they do intersect, the matter fields will interact with a gauge singlet which localizes

on a curve normal to S. Letting Φ denote the chiral superfield for this gauge singlet, the

superpotential now contains the interaction term:

Wµ ⊃ λΦHuHd ∼ α
1/2
GUT

ψ(p)√
〈ψ|ψ〉

ΦHuHd (15.31)

with notation as in equation (15.24). When Φ develops a vev, the superpotential will

contain a µ term for the Higgs up and Higgs down fields. The value of this vev is controlled

by the dynamics orthogonal to S and therefore scales as:

〈Φ〉 ∼ 1

R⊥
∼MGUT × εγ . (15.32)
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Returning to equations (15.25) and (15.27), it thus follows that in the attractive case, the

resulting value of µ is far above the electroweak scale, and would lift the Higgs doublets

from the low energy spectrum. On the other hand, in the exponentially damped case, the

value of the µ term is:

µ = λrepel 〈Φ〉 ∼ α
3/4
GUT × ε2γ exp

(
− c

ε2γ

)
. (15.33)

This leads to a large hierarchy between the µ term and the GUT scale. For example, with

γ = 1 and c = 1/7 we find µ ∼ 140 GeV. In section 19 we present some additional estimates

of µ.

15.4 Neutrino masses

At a conceptual level, the µ term and Dirac mass terms for the neutrinos both originate

from interactions between two fields on curves in S and a third field which localizes on a

curve normal to S. Indeed, in the previous subsection we found that when the gauge singlet

wave function is exponentially suppressed near S, the µ term is hierarchically suppressed

below the GUT scale. We now estimate the values of the light neutrino masses of the MSSM

depending on the profile of the right-handed neutrino wave function near the surface S.

When the gauge singlet is attracted to S, a variant on the usual seesaw mechanism yields

neutrino masses which are approximately correct. On the other hand, when the gauge

singlet is repelled away from S, the value of the Dirac masses is already quite low, and the

seesaw mechanism would yield unviable neutrino masses. In fact, the Dirac mass terms are

already in a viable range so that in this case the neutrinos are purely of Dirac type.

For simplicity, we perform our estimates for a single neutrino species, because as ex-

plained in section 14, a detailed model of flavor is currently beyond our reach. In this case,

the neutrino sector of the superpotential is:

Wν = λDLNRHu + λsingletΘNRNR (15.34)

where NR denotes the right-handed neutrino chiral superfield, and Θ is another gauge

singlet. In certain cases, the second interaction term may not be present. In the following

we analyze the interplay between the behavior of the right-handed neutrino wave functions

near S and this second interaction term.

15.4.1 Majorana masses and a seesaw

We now consider the case where the second interaction term ΘNRNR does not vanish and

show that a phenomenologically viable scenario requires that the right-handed neutrino

wave function is attracted to S. When Θ develops a vev, it induces a Majorana mass term

for the right-handed neutrinos. Using the value of λsinglet given by equation (15.30), this

yields the Majorana mass:

mM ≡ λsinglet 〈Θ〉 =
λsinglet

R⊥
= α

3/4
GUTMGUT × ε4γ ∼ 3 × 1012±1.5 GeV. (15.35)
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The value of the Dirac masses strongly depends on the profile of the gauge singlet wave

function near S. By inspection of equations (15.25) and (15.27), the value of λattract will in-

duce a Dirac mass term for neutrinos which is around the electroweak scale, while the value

of λrepel will induce a far smaller Dirac mass term. The mass matrix for the neutrinos is:

Mν =

[
0 1

2mD
1
2mD mM

]
∼ α

3/4
GUT

[
0 〈Hu〉

〈Hu〉 MGUT × ε4γ

]
. (15.36)

Because the Majorana mass term is non-zero, it is much larger than the Dirac mass

terms so that the smaller eigenvalue of Mν is given by the usual seesaw mechanism:

mlight ∼
m2

D

mM
. (15.37)

Due to the fact that the Majorana mass term is in the usual range expected for a seesaw

mechanism, mD must be on the order of the electroweak scale in order to yield a viable

light neutrino mass. Restricting to this case, mlight is now given by:

mlight ∼
(
α

3/4
GUT × ε−4γ

)
× 〈Hu〉2
MGUT

∼ 2 × 10−1±1.5 eV. (15.38)

We note that in this case, we automatically find an enhancement over the naive seesaw

value 〈Hu〉2 /MGUT! Indeed, in the GUT literature it is often necessary to lower the

Majorana mass term below MGUT to obtain more realistic neutrino masses.

15.4.2 Suppressed Dirac masses

Next consider the possibility that the interaction term between Θ andNR in equation (15.34)

does not exist so that the neutrinos are purely of Dirac type. In the previous subsection we

found that a variant of the standard seesaw mechanism requires that the right-handed neu-

trino wave function is attracted towards S. Indeed, the Dirac mass terms for the undamped

wave functions were automatically on the order of the electroweak scale. In the absence of

a seesaw mechanism, this profile for the wave functions would yield an unacceptably large

value for the neutrino masses. On the other hand, the wave functions which are repelled

away from S will naturally generate much smaller Dirac neutrino mass terms.

Restricting to the repulsive case, the Dirac mass term is:

mDirac = λrepel 〈Hu〉 ∼ 〈Hu〉 ×
[
α

3/4
GUT × εγ exp

(
− c

ε2γ

)]
. (15.39)

The essential point of the above formula is that the Dirac mass can be quite light, and

for an appropriate order one value of c, yields a phenomenologically viable mass for the

light neutrinos. For example, setting c = 5 and γ = 1/3 yields mDirac ∼ 6 × 10−3 eV.

Before closing this subsection, we note that while large Majorana mass terms which violate

lepton number are typically invoked as a primary cause of leptogenesis in early universe

cosmology, there do exist viable alternative scenarios which only require Dirac neutrino

masses. See [86] and references therein for a recent account of Dirac leptogenesis.
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15.5 Relating µ and ν

In the previous subsection we presented a general formula which naturally generates an

exponentially suppressed value for the masses of purely Dirac type neutrinos. Indeed, the

exponential damping terms for both the µ term of equation (15.33) and the Dirac mass

term of equation (15.39) are both sensitive to an order one parameter which we denote by

c. We now present a relation between µ and mDirac in which the overall dependence on

this exponential factor cancels out. This expression is model independent in the sense that

it does not depend as strongly on the details of the exponential suppression factor.

The exponential suppression factors of the µ term and the purely Dirac mass term

both originate from a gauge singlet wave function which is repelled away from the surface

S so that:

mDirac = λrepel(c) 〈Hu〉 (15.40)

µ = λrepel(c
′) 〈Φ〉 (15.41)

where 〈Φ〉 denotes the vev of a gauge singlet which localizes on a matter curve normal to

S. In the above, we have allowed two potentially different suppression factors such that c

and c′ may differ by some small amount.

Making the simplifying assumption c = c′, all exponential effects cancel, and we obtain

the rough estimate:

mDirac = µ
〈Hu〉
〈Φ〉 =

µε−γ

〈Hu〉
× 〈Hu〉2
MGUT

∼ 5 × 10−3±0.5 eV (15.42)

for µ ∼ 100 GeV. Of course, for small mismatches between the parameters c and c′, slightly

higher (or lower) values are also in principle possible.

16. Supersymmetry breaking

Up to now, our analysis has assumed that the four-dimensional effective theory preserves

N = 1 supersymmetry. See [87, 88] for recent discussions of supersymmetry breaking in F-

theory and [89] for an explicit realization of gauge mediated supersymmetry breaking in an

intersecting D-brane model. In this section we briefly sketch how supersymmetry breaking

can be communicated to the MSSM in a gauge mediation scenario. Further details will

appear in [90]. A more general framework which interpolates between gauge mediation and

gravity mediation is given in [52]. In that context, supersymmetry breaking takes place

on a seven-brane distinct from a GUT model seven-brane. When these branes intersect,

supersymmetry breaking is communicated via gauge mediation. As the separation between

the seven-branes increases, this interpolates to a gravity mediation scenario. In the present

case, most of our seven-branes form non-trivial topological intersections which cannot dis-

appear. While we shall present some brief speculations on generating hierarchically small

values for the scale of supersymmetry breaking, a complete analysis would entail a broader

discussion which is beyond the scope of this paper.

To frame the discussion to follow, we now briefly sketch the basic features of gauge

mediated supersymmetry breaking. See [91] for a review of gauge mediation. In general,
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most mediation mechanisms consist of three sectors. These are given by the sector of the

theory which breaks supersymmetry, the sector of communication, and the MSSM itself.

Although we do not specify how supersymmetry can be broken, we can still parameterize

this breaking in terms of at least one chiral superfield X which develops a supersymmetry

breaking vev:

〈X〉 = x+ θ2F . (16.1)

To specify the messenger sector, we introduce vector-like pairs of GUT multiplets

which will communicate supersymmetry breaking to the MSSM. As an explicit example,

we take Y to transform in the fundamental of SU(5) and Y ′ in the anti-fundamental. These

fields can then localize on matter curves inside of S. The messengers couple to X via an

interaction term of the form:

W4d ⊃Wmess = λXY Y
′

. (16.2)

Once X develops a vev of the type given by equation (16.1), the messengers will get a

mass:

Mmess = λx. (16.3)

Supersymmetry breaking then communicates to the MSSM because the messenger fields

interact with the gauge bosons of the MSSM. In this setup, the soft masses for the gauginos

are generated at one loop order while the soft scalar masses are generated at two loop order.

One attractive feature of the gauge mediation scenario is that FCNCs are automatically

suppressed.

Although precise numerical estimates are beyond the scope of the present paper, to

simply get a sense of the mass scales involved, recall that in gauge mediation, the masses

of the gauginos are:

mi ∼
αi(Mweak)

4π

F

x
. (16.4)

We note that this estimate does not require any knowledge of the overall normalization

factors appearing in equation (16.2). The lightest gaugino in this case is the Bino which in

viable models has a mass of ∼ 100 GeV. Plugging in the properly normalized value of the

hypercharge coupling at the weak scale given by α1(Mweak) ∼ (5/3) × (1/128) ∼ 10−2, we

see that the scale of supersymmetry breaking
√
F and the messenger scale x are related via:

√
F ∼ 300 GeV1/2√x. (16.5)

Depending on the origin of the X field in the F-theory GUT model, the resulting

messenger mass scales can potentially be quite different. In the following subsections we

discuss three natural candidates for X in the present class of compactifications. The field

X can correspond to a bulk gauge boson on a transversely intersecting seven-brane, or a

field which localizes on a matter curve orthogonal to S. In the latter case, there are two

further refinements depending on whether the GUT model seven-brane attracts or repels

the corresponding gauge singlet wave function.
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16.1 Bulk gauge boson breaking

When the matter fields Y and Y
′

localize on the same curve, these fields will automatically

couple to the bulk gauge fields of a seven-brane which transversely intersects the GUT

model seven-brane. In this case, we can interpret x as the supersymmetric vev of the

bulk gauge field. The value of x depends on the volume of the matter curve containing

the messenger fields as well as the remaining bulk worldvolume of the other seven-brane.

Using the basic scaling relations obtained in section 4, we estimate 〈X〉 ∼ 1/R⊥ so that

the resulting messenger mass is:

Mmess = αGUTMGUTε
2γ (16.6)

∼ 1 × 1015±0.5 GeV. (16.7)

16.2 Gauge singlet breaking

It is also possible that X could correspond to a gauge singlet which localizes on a matter

curve which intersects S at a point. In this case, much of the analysis performed in

section 15 carries over. For example when the gauge singlet wave function forX is attracted

towards the seven-brane, it couples to the messenger fields with the same strength as a

field inside of S. In this case, the messenger mass is on the order of:

Mmess =
λattract

R⊥
= α

3/4
GUTMGUT × εγ ∼ 5 × 1014±0.5 GeV. (16.8)

On the other hand, the seven-brane can also repel the gauge singlet wave function.

In this case, the messenger mass scale can be hierarchically much lighter than the GUT

scale due to the exponential suppression factor present at the point of intersection with the

seven-brane. In this case, the resulting messenger mass is given by a similar expression to

that derived for the µ term in equation (15.33):

Mmess =
λrepel

R⊥
∼MGUT × α

3/4
GUTε

2γ exp
(
− c

ε2γ

)
. (16.9)

In this case, the messenger mass scale can potentially range over many candidate values.

For example, we obtain a value of ∼ 1012 GeV when c = 1 and γ = 1/3, and a value of

∼ 300 TeV when c = 1/10 and γ = 1.

16.3 Soft breaking boundary conditions

A well-known difficulty with the gauge mediation scenario is that it is typically difficult to

simultaneously generate the correct values for the µ and Bµ terms. In the present context,

we note that the µ term is naturally light and on the order of the electroweak scale.

Indeed, this setup decouples the issue of supersymmetry breaking from the µ problem. In

fact, at the GUT scale, the Bµ term is zero at high energies, and is instead radiatively

generated. Phenomenological fits to this range of parameter space favor larger values for

tan β = 〈Hu〉/〈Hd〉 [92].

We also expect that higher order terms in the superpotential of the form:

Wquart =
cijk
MKK

XΛiΛjΛk (16.10)
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where Λi denotes a generic field of the MSSM cannot be generated by integrating out

Kaluza-Klein modes. As explained in section 13, this is due to the fact that such terms will

typically violate a global U(1) symmetry in the low energy theory. Indeed, matter fields in

F-theory are always charged under additional U(1) factors of precisely this type. Letting

σi denote the bosonic component of the chiral superfield Λi, this suggests that the values

of the soft breaking A-terms in the effective potential:

Veff = Aijkσiσjσk (16.11)

will automatically vanish at the scale set by x. Because both the Bµ and A terms vanish,

there is a common rephasing symmetry of the fields which naturally avoids additional CP

violating phases.

16.4 Speculations on supersymmetry breaking

To conclude this section, we now briefly speculate on ways in which supersymmetry break-

ing can take place in the various scenarios outlined above. First consider the case where X

is identified with a bulk gauge field on a seven-brane which intersects the GUT seven-brane.

Returning to the equations of motion for fields on the transversely intersecting seven-brane

S′ derived in [15], the value of F is:

F ∗ = ∂
′
φ′ + δΣ 〈〈Y c, Y 〉〉ad(P ) + . . . (16.12)

where φ′ denotes the holomorphic (2, 0) form for this brane and the . . . denotes contribu-

tions to the F-term localized on other matter curves in the surface S′. When the righthand

side of the above equation is non-zero, this will break supersymmetry. This can easily

occur when the background value of the G-flux in the Calabi-Yau fourfold is incompatible

with the complex structure on S′. Because this difference can be quite small in principle,

we can obtain small values for F in this case.

Next consider scenarios where the X field corresponds to a gauge singlet localized on a

matter curve intersecting S at a point. While we have primarily focussed on the behavior

of this wave function in supersymmetric backgrounds, presumably a similar analysis will

also carry through in a non-supersymmetric background. In this vein, it may be possible to

extend the discussion of section 15 to this more general case. It would be interesting to see

whether a suitable hierarchy in the scale of supersymmetry could be arranged in this way.

17. SU(5) model

Having presented a number of potential model building ingredients in the previous sections,

we now proceed to some semi-realistic examples of models based on a del Pezzo 8 surface

which incorporates at least some of these ideas. Our expectation is that significant refine-

ments are possible in the actual examples we present. As explained in previous sections,

the GUT group directly breaks to Gstd via an internal hypercharge flux. Moreover, to avoid

exotic matter representations, the available internal fluxes are in one to one correspondence

with the roots of an exceptional Lie algebra. In this case, all of the matter content of the
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MSSM must localize on curves in S. The fields in the 5 or 5 localize on curves where the

bulk SU(5) singularity enhances to SU(6), while fields in the 10 and 10 localize on curves

where SU(5) enhances to SO(10).

As explained in [15], the interaction terms 5H ×5M ×10M originate from points where

the bulk singularity GS = SU(5) undergoes a twofold enhancement in rank to an SO(12)

singularity. Similarly, the interaction terms 5M × 10M × 10M originate from a twofold

enhancement in rank to an E6 singularity. As in [15], we deduce the local behavior of the

matter curves near such points by decomposing the adjoint representations of SO(12) and

E6 to the product SU(5) × U(1) × U(1):

SO(12) ⊃ SU(5) × U(1)1 × U(1)2 (17.1)

66 → 10,0 + 10,0 + 240,0 (17.2)

+ 52,2 + 5−2,2 + 5−2,2 + 5−2,−2 + 104,0 + 10−4,0 (17.3)

E6 ⊃ SU(5) × U(1)a × U(1)b (17.4)

78 → 10,0 + 10,0 + 1−5,−3 + 15,3 + 240,0 (17.5)

+ 5−3,3 + 53,−3 + 10−1,−3 + 101,3 + 104,0 + 10−4,0. (17.6)

Consider first the fields associated with the Cartan of SO(12). Labeling the local Cartan

generators as t1, t2, we conclude that a six-dimensional field in the 5 localizes on the matter

curve (t1+t2 = 0) and another field in the 5 localizes along (t1−t2 = 0), while a 10 localizes

on the matter curve (t1 = 0). Similar considerations apply for E6, from which we conclude

that a six-dimensional field in the 5 localizes on the matter curve (−ta + tb = 0), while

distinct six-dimensional 10’s localize on the matter curves (ta + 3tb = 0) and (ta = 0). The

gauge singlets of SU(5) localize on curves which only intersect S at a discrete set of points.

To generate naturally suppressed µ terms and light Dirac masses for the neutrinos, we also

consider local enhancements to SU(7).

For illustrative purposes, we first present an example which we shall refer to as “Model

I” which exhibits the correct matter spectrum of the MSSM at low energies, but which

also contains unrealistic interaction terms. Indeed, in this model the third generation is

not hierarchically heavier than the two lighter generations. Moreover, the neutrinos of the

Standard Model are exactly massless. Finally, the model contains superpotential terms

which lead to rapid proton decay. After explaining the primary features of this model, we

next present a more refined example of admissible matter curves which rectifies all of the

above issues.

As a first example, consider a model with fractional line bundle L = OS(E3 − E4)
1/5

and matter content localized on the following choice of matter curves:

Model I Curve Class gΣ LΣ L′n
Σ

1 ×
(
5H + 5H

)
ΣH −KS 1 OΣH

(p1 − p2)
1/5 OΣH

(p1 − p2)
−3/5

3 × 5M Σ
(1)
M E1 0 O

Σ
(1)
M

O
Σ

(1)
M

(−3)

2 × 10M Σ
(2)
M H − E1 − E2 0 O

Σ
(2)
M

O
Σ

(2)
M

(2)

1 × 10M Σ
(3)
M E2 0 O

Σ
(3)
M

O
Σ

(3)
M

(1)

(17.7)
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where p1 and p2 denote two divisors on ΣH which are not linearly equivalent and we have

indicated how L restricts on each matter curve as well as the gauge bundle content of each

GUT multiplet due to the restriction of the line bundle L′ on S′ to the various matter

curves. By construction, we find that a vector-like pair of Higgs doublets localizes on ΣH .

The degree of the line bundles on each of the chiral matter curves has been chosen to

reproduce the correct multiplicity in the MSSM.

In terms of SU(5) GUT multiplets, the schematic form of the superpotential is:

WSU(5) = λd
ij · 5H × 5

(i)
M × 10

(j)
M + λu

j · 5H × 10M × 10
(j)
M (17.8)

where i = 1, 2, 3 labels the three generations of 5M all localized on a single matter curve

and j = 1, 2 labels the two generations of 10M localized on the matter curve Σ
(2)
M . More

generally, the superpotential may also contain interactions which involve gauge singlets

which take the schematic form 1 × 5 × 5. Such interactions can then lead to a µ term for

the Higgs and a Dirac mass term for the neutrinos.

As the above example demonstrates, there are potentially many admissible local models

of this type which can all yield the matter content of the MSSM. Although this model

possesses non-trivial interaction terms, it is unclear whether these terms are consistent

with constraints from low energy physics. As argued in subsection 14.2, when no curves

self-intersect or pinch inside of S, the corresponding Yukawa couplings do not produce the

correct hierarchy in quark masses. Moreover, as explained in section 12, because Hu and

Hd localize on the same matter curve, lifting the Higgs triplets via fluxes can still induce

quartic terms in the superpotential of the form QQQL/MKK with order one coefficients.

Finally, in addition to an incorrect hierarchy for the quarks, the neutrinos are exactly

massless in this model.

We now present a different configuration of matter curves which resolves all of the

problems mentioned above. To this end, we require that at least one generation localize

on a self-intersecting curve. For simplicity, we place all three generations of 10M ’s on a

self-intersecting P
1 and all three generations of 5M ’s on a smooth P

1 which does not self-

intersect. With the same choice of L = OS(E3 − E4)
1/5 as in the previous example, the

matter content, line bundle assignments and effective class of each matter curve are:

Model II Curve Class gΣ LΣ L′n
Σ

1 × 5H Σ
(u)
H H − E1 − E3 0 O

Σ
(u)
H

(1)1/5 O
Σ

(u)
H

(1)2/5

1 × 5H Σ
(d)
H H − E2 − E4 0 O

Σ
(d)
H

(−1)1/5 O
Σ

(d)
H

(−1)2/5

3 × 10M Σ
(1)
M (pinched) 2H − E1 − E5 0 O

Σ
(1)
M

O
Σ

(1)
M

(3)

3 × 5M Σ
(2)
M H 0 O

Σ
(2)
M

O
Σ

(2)
M

(3)

. (17.9)

See figure 7 for a depiction of the various matter curves in this model. In computing the

multiplicities on the self-intersecting curve we have neglected all subtleties which could

occur based on viewing this curve as a pinched genus one curve because the flux data from

the non-compact brane is a free discrete parameter which we can always tune to give the

correct number of generations. The superpotential now takes the form:

– 76 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

SU(5)

HdHuM3    10

5  5  N
H M R

5  5  10
H M M

H  H
du

µ

5  10  10
M MH

3    5M

Figure 7: Depiction of the various matter curves in the SU(5) model referred to as “Model II”. In

this case, all three generations in the 10 of SU(5) localize on one curve and three generations in the

5 localize on another curve. The Higgs up and down curves localize on distinct matter curves and

intersect at a point in S. The contributions to the superpotential from the intersection of various

matter curves is also indicated.

WSU(5) =λd
ij · 5H × 5

(i)
M × 10

(j)
M + λu

ij · 5H × 10
(i)
M × 10

(j)
M (17.10)

+ ρia
repel · 5H × 5

(i)
M ×N

(a)
R + λrepel · Φ × 5H × 5H (17.11)

where in the above, the intersection between Σ
(u)
H and Σ

(2)
M leads to a two-fold enhancement

in rank to an SU(7) singularity so that the singlet N
(a)
R may be identified with the right-

handed neutrinos and the vev of Φ determines the supersymmetric µ term. In this model,

the neutrino masses are purely of Dirac type. As explained in section 15, these gauge singlet

wave functions can generate an exponential suppression of the expected type. Finally, as

explained in greater detail in section 12, because the Hu and Hd fields localize on distinct

matter curves, the operator QQQL is automatically suppressed by a phenomenologically

acceptable amount.

18. Evading the no go theorem and flipped models

In the previous sections we have presented many potential ingredients for building models

based on GS = SU(5). This is partially due to the analysis of subsection 10.2 which

shows that for GS = SO(10), direct breaking to Gstd via internal fluxes will always as a

byproduct generate exotic matter fields. For surfaces of general type, a partial breaking

to SU(5) × U(1) would not present a serious obstruction because after breaking to a four-

dimensional GUT group, the remaining breaking can proceed when an adjoint-valued field
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develops a suitable vev. For del Pezzo models, a similar mechanism exists for flipped GUT

models.

We now recall the primary features of four-dimensional flipped SU(5) GUT models [67,

93, 30]. The gauge group of flipped SU(5) is SU(5) × U(1), which naturally embeds in

SO(10). Indeed, the chiral matter content of the Standard Model is given by the flipped

SU(5) multiplets:

Matter : 3 × (1−5 + 53 + 10−1) (18.1)

MSSM Higgs : 1 × (52 + 5−2) (18.2)

GUT Higgs : 1 × (10−1 + 101) (18.3)

where U(1)Y of the MSSM corresponds to a linear combination of the U(1) generator in

SU(5) and the overall U(1) factor. Due to the fact that the U(1) hypercharge is given by

a flipped embedding, the 52 contains the Higgs down of the MSSM, while the 5−2 contains

the Higgs up. In addition to interaction terms which descend from the 16M ×16M ×10H in

an SO(10) GUT, a flipped SU(5) model includes the interaction terms 52×10−1×10−1 and

5−2×101×101 between the MSSM and GUT Higgs fields. These interaction terms descend

from 16h ×16h ×10H and 16h ×16h ×10H in an SO(10) GUT. As explained in [30] there is

a unique F- and D-flat direction along which the GUT Higgs 10−1 and 101 develop a vev.

This vev simultaneously breaks SU(5) ×U(1) to SU(3) × SU(2) ×U(1) while also giving a

large mass to the Higgs triplets of the 52 and 5−2. In order to emphasize the embedding in

SO(10), we shall organize all of the matter content in terms of representations of SO(10).

Explicitly, we have:

SO(10) ⊃ SU(5) × U(1) (18.4)

16M = 1−5 + 53 + 10−1 (18.5)

10H = 52 + 5−2 (18.6)

Because the GUT Higgs fields 10−1 and 101 do not fill out a complete SO(10) multiplet,

we shall refer to these fields as Π and Π, respectively.

We now explain how in F-theory a higher dimensional SO(10) GUT can naturally

break to a four-dimensional flipped SU(5) GUT. For concreteness, we consider models

based on the del Pezzo 8 surface. The adjoint representation of SO(10) decomposes into

representations of SU(5) × U(1) as:

SO(10) ⊃ SU(5) × U(1) (18.7)

45 → 10 + 240 + 104 + 10−4. (18.8)

By inspection, the U(1) charge assignment of the 104 does not correspond to the repre-

sentation content of any field in a flipped SU(5) model. We therefore require that the

zero mode content of the theory must not contain any 104’s or 10−4’s. In this case, the

only gauge bundle configurations which do not contain any such exotics are all of the form

OS(α)1/4 where α corresponds to a simple root of H2(S,Z).
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So long as the instanton configuration breaks GS to a four-dimensional flipped GUT

group with all matter fields in well-defined flipped GUT multiplets, we can avoid additional

exotica in the low energy spectrum. For example, in breaking E6 to SO(10) × U(1), the

adjoint decomposes as:

E6 ⊃ SO(10) × U(1) (18.9)

78 → 10 + 450 + 16−3 + 163. (18.10)

Further breaking SO(10) to SU(5) ×U(1), if we again require that no zero modes descend

from the 450 of SO(10)×U(1), we will generically produce zero modes which descend from

the 16−3 and 163. We note that in this case, the zero modes can still organize into complete

flipped multiplets.

18.1 Flipped SU(5) model

We now present a hybrid model which partially unifies to a flipped SU(5) GUT as a

four-dimensional model and then further unifies to a higher dimensional SO(10) GUT

model. Because none of the matter fields of the flipped model descend from the adjoint

representation of SO(10), all of the chiral matter content of the flipped SU(5) model must

localize on matter curves. Hence, the SO(10) interaction term 16M × 16M × 10H must

originate from the triple intersection of matter curves. To this end, we consider a geometry

where the generic SO(10) singularity undergoes a twofold enhancement in rank to E7 and

SO(14) singularities.

Decomposing the adjoint representation of E7 with respect to the subgroup SO(10) ×
U(1) × U(1) yields:

E7 ⊃ SO(10) × U(1)1 × U(1)2 (18.11)

133 → 10,0 + 10,2 + 10,−2 + 10,0 + 450,0 (18.12)

+ 102,0 + 10−2,0 + 16−1,1 + 16−1,−1 + 161,1 + 161,−1 (18.13)

so that six-dimensional hypermultiplets in the 16 localize on the two matter curves (−t1 +

t2 = 0) and (−t1 − t2 = 0) and a six-dimensional hypermultiplet in the 10 localizes on

the matter curve (t1 = 0). By inspection, we see that a local enhancement to E7 can

accommodate interaction terms of the form 16 × 16 × 10 and 16 × 16 × 10. A similar

analysis establishes that a local enhancement to SO(14) can accommodate an interaction

term of the form 1 × 10 × 10.24

We now present a toy hybrid scenario which we refer to as the “Hybrid I” model. Some

deficiencies with this example will be rectified in the “Hybrid II” model. The SO(10) GUT

group breaks to SU(5) × U(1) with no bulk exotics when the gauge bundle configuration

corresponds to the fractional line bundle L = OS(E1 −E2)
1/4. In the Hybrid I model, the

24In fact, in a previous version of this paper, these local U(1) charge assignments for the explicit flipped

models considered were not properly taken into account. We thank J. Marsano, N. Saulina and S. Schäfer-

Nameki for bringing this error to our attention.
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matter curves and gauge bundle assignments for each curve are:

Hybrid I Curve Class gΣ LΣ L′n
Σ

1 × 16M Σ
(1)
M E3 0 O

Σ
(1)
M

O
Σ

(1)
M

(1)

2 × 16M Σ
(2)
M H − E3 − E4 0 O

Σ
(2)
M

O
Σ

(2)
M

(2)

1 × 10
(d)
H Σ

(d)
H 2H − E1 − E3 0 O

Σ
(d)
H

(1)1/4 O
Σ

(d)
H

(1)1/2

1 × 10
(u)
H Σ

(u)
H 2H − E2 − E3 0 O

Σ
(u)
H

(−1)1/4 O
Σ

(u)
H

(−1)1/2

1 × (Π + Π) Σh (pinched) 3H − E1 − E2 1 OΣh
(p1 − p2)

1/4 OΣh
(p1 − p2)

1/4

(18.14)

with notation as in (17.7).

By construction, we find one chiral generation of the MSSM localized on Σ
(1)
M with two

generations localized on Σ
(2)
M . The matter curve Σ

(d)
H supports a zero mode transforming in

the representation 5
(d)
2 which contains the Higgs down of a flipped GUT model, and Σ

(u)
H

supports a single zero mode in the 5
(u)
−2 . Finally, in addition to the matter content of the

MSSM, we have also included a single vector-like pair of GUT Higgs fields Π and Π.

Including terms up to quartic order, the resulting superpotential of the four-dimensional

flipped SU(5) model is therefore:

WSU(5)×U(1) = WMatter +WHiggs +WQuartic (18.15)

where the interaction terms for the chiral matter are:

WMatter =λu
i (5

(u)
−2 × 5

(i)
3 × 10

(3)
−1 + 5

(u)
−2 × 10

(i)
−1 × 5

(i)
3 ) (18.16)

+ λd
i (5

(d)
2 × 1

(i)
−5 × 5

(3)
3 + 5

(d)
2 × 10

(i)
−1 × 10

(3)
−1) (18.17)

and i = 1, 2 runs over two of the generations of the MSSM. The interaction terms in the

Higgs sector are:

WHiggs = λrepel · Φ × 5
(d)
2 × 5

(u)
−2 + λΠ · 5(d)

2 × Π × Π + λΠ · 5(u)
−2 × Π × Π. (18.18)

The final term WQuartic originates from integrating out the heavy Kaluza-Klein modes

associated with the Higgs fields:

WQuartic =
ci

MKK
10

(i)
−1 × Π × 10

(3)
−1 × Π. (18.19)

In the above, the mass scale MKK is the overall Kaluza-Klein mass scale. In general, this

can be slightly higher than the vev of the GUT Higgs fields. We note that when Π develops

a vev which also lifts the Higgs triplets from the low energy spectrum, it also generates a

large Majorana mass term for the right-handed neutrinos.

Because the matter curves Σ
(1)
M and Σ

(2)
M do not self-intersect, the resulting model has

two heavy generations. In contrast to the minimal SU(5) models considered previously,

the field-theoretic missing partner mechanism already lifts the Higgs triplets and prevents

the higher dimension QQQL operator from being generated. Moreover, the model already

incorporates a natural seesaw mechanism.
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Before proceeding to a slightly more realistic model, we note that although it would

at first appear to be more economical to place the Higgs up and Higgs down on the same

matter curve, this leads to certain undesirable consequences in the low energy theory. The

reason is that the Higgs up and down fields would then be equally or oppositely charged

under a common U(1) symmetry. This would either forbid the coupling 16 × 16 × 10 or

16 × 16 × 10 in the low energy theory. The former interaction is necessary for generating

semi-realistic Yukawa couplings, while the latter is necessary for implementing doublet-

triplet splitting using the missing partner mechanism. In order to achieve both couplings,

it appears necessary to localize these fields on different matter curves.

A more realistic hierarchy in quark masses can be achieved when the chiral matter

curves self-intersect. As a small refinement on the above model, we take L = OS(E1−E2)
1/4

as before, while the matter curves and gauge bundle assignments for each curve are now:

Hybrid II Curve Class gΣ LΣ L′n
Σ

1 × 10
(d)
H Σ

(d)
H 2H − E1 − E3 0 O

Σ
(d)
H

(1)1/4 O
Σ

(d)
H

(1)1/2

1 × 10
(u)
H Σ

(u)
H 2H − E2 − E3 0 O

Σ
(u)
H

(−1)1/4 O
Σ

(u)
H

(−1)1/2

3 × 16M ΣM (pinched) 3H 1 OΣM
OΣM

(3p′)

1 ×
(
Π + Π

)
Σh (pinched) 3H − E1 − E2 1 OΣh

(p1 − p2)
1/4 OΣh

(p1 − p2)
1/4

(18.20)

so that all three generations localize on the matter curve ΣM . See figure 8 for a depiction

of the Hybrid II model. While the zero mode content of this case is the same as the

Hybrid I model, the self-intersection of the matter curves allows the model to have one

generation which is hierarchically heavier than the lighter two generations, much as in the

second minimal SU(5) example of section 17. Aside from this difference, the structure of

the superpotential is quite similar to that given by equation (18.15). Indeed, just as in the

Hybrid I model, there exist higher dimension operators which can generate large Majorana

mass terms for the right-handed neutrinos.

19. Numerology

Throughout this paper we have given numerical estimates of various quantities which ap-

pear to be in rough agreement with observation. In this section we demonstrate that for an

appropriate choice of order one constants, many of the relations obtained throughout are in

agreement with experimental observation. Our point here is not so much to show that we

can match to the precise numerical values, but rather that the numbers we have obtained

are not wildly different from the expected ranges. Indeed, although we shall typically eval-

uate all quantities at the GUT scale, in a more accurate analysis these quantities would

of course have to be evolved under renormalization group flow to low energies. In this

regard, our order of magnitude estimates will be somewhat naive, although we believe it

still gives a reliable guide for the ranges of energy scales involved in our models. Moreover,

for concreteness, in this section we focus on the case of the minimal SU(5) model.

At the level of precision with which we can reliably estimate parameters, all of our

estimates depend on order one coefficients, the Planck mass Mpl, the GUT scale MGUT,
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SO(10)

M3    16

Π + Π

H  H
du

µ

M M H

(u)
16  16  10 16  16  10

MM H

(d)

10
H

(d)
Π ΠΠ Π10

H

(u)

H
10

(u)

H
10

(d)

Figure 8: Depiction of the various matter curves in the flipped SU(5) model referred to as “Hybrid

II” in the text. The background instanton configuration breaks the bulk gauge group SO(10) to

SU(5) × U(1). In this case, all three generations transform in the 16 of SO(10) and localize on

a single self-intersecting matter curve. The MSSM Higgs fields descend from two different 10’s of

SO(10). The model also contains a single vector-like pair transforming in the 10−1 and 10+1 of

SU(5)×U(1) which facilitates GUT group breaking and doublet-triplet splitting. These GUT Higgs

fields descend from a six-dimensional hypermultiplet transforming in the 16 of SO(10).

the Higgs up vev, and the value of the gauge coupling constants at the GUT scale, αGUT.

Throughout, we use the following approximate values:

Mpl ∼ 1 × 1019 GeV (19.1)

MGUT ∼ 3 × 1016 GeV (19.2)

〈Hu〉 ∼ 246 GeV (19.3)

αGUT =
g2
YM(MGUT)

4π
∼ 1

25
. (19.4)

In general, factors of 2 and π are typically beyond the level of precision which we can

reliably estimate.

The above parameters appear geometrically as the length scale RS associated with the

size of the del Pezzo, RB which is associated with the size of the threefold base, and R⊥

which may be viewed as a local cutoff on the behavior of wave functions in the model.

These length scales are related by appropriate powers of the small parameter:

ε =
MGUT

αGUTMpl
∼ 7.5 × 10−2. (19.5)

– 82 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

The various length scales are then given by:

1

RS
= MGUT ∼ 3 × 1016 GeV (19.6)

1

RB
= MGUT × ε1/3 ∼ 1 × 1016 GeV (19.7)

1

R⊥
= MGUT × εγ ∼ 5 × 1015±0.5 GeV (19.8)

where the parameter 1/3 . γ . 1 ranges from 1/3 when B3 is homogeneous, to 1 when B3

is given by a tubular geometry.

We now collect and slightly expand on the estimates obtained throughout this paper.

We begin by discussing the mass scales associated with quarks. In this case, the masses of

the quarks at the GUT scale are very roughly given by:

mq ∼ α
3/4
GUT 〈Hu〉 ∼ 20 GeV. (19.9)

Note that the top quark mass is about a factor of 3 higher than this (taking into account

the RG flow), which suggests that perhaps the corresponding curves are smaller by that

factor to give the correct wave function normalization.

We have also seen that matter fields which localize on curves normal to S in the

threefold base B3 can provide a natural mechanism for generating light neutrino masses

as well an exponentially suppressed µ term. As an intermediate case, we have shown that

right-handed neutrino wave functions which are attracted to the seven-brane can potentially

realize a viable seesaw mechanism. Reproducing equation (15.38) for the convenience of

the reader, the light neutrino mass in the seesaw scenario is:

mlight ∼ α
3/4
GUT

〈Hu〉2
MGUT

ε−4γ ∼ 2 × 10−1±1.5 eV. (19.10)

Gauge singlet wave functions can also exhibit more extreme behavior. Indeed, when

the Higgs up and down fields localized on different matter curves which intersect, they

interact with a gauge singlet wave function outside of S. When this wave function is

exponentially suppressed, the induced µ term is given by equation (15.33):

µ(c, γ) ∼MGUT × α
3/4
GUTε

2γ exp
(
− c

ε2γ

)
. (19.11)

We find that when c and γ are order one numbers, this value can naturally fall near the

electroweak scale. For example, we have:

µ(c = 1/7, γ = 1) ∼ 140 GeV (19.12)

µ(c = 1, γ = 0.64) ∼ 107 GeV. (19.13)

In a scenario where the neutrinos are purely of Dirac type, an exponentially small

value can also be achieved when the gauge singlet wave function is exponentially damped

near S. The Dirac mass is given by equation (15.39):

mDirac(c, γ) ∼ 〈Hu〉 × α
3/4
GUTε

γ exp
(
− c

ε2γ

)
. (19.14)
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As for the µ term, order one values of c and γ yield reasonable values for the masses. Indeed,

as explained in subsection 15.5, when the exponential suppression factors are identical for

the Dirac neutrino mass and µ term, we obtain the estimate:

mDirac(c, γ) ∼ µ(c, γ)
〈Hu〉
MGUT

× ε−γ ∼ 0.5 × 10−2±0.5 eV (19.15)

when µ(c, γ) ∼ 100 GeV. We have also observed that a similar analysis of Yukawa couplings

also applies in estimates of the messenger mass scales for gauge mediated supersymmetry

breaking scenarios.

20. Conclusions

F-theory provides a natural setup for studying GUT models in string theory. In this

paper we have adopted a bottom up approach to string phenomenology and have found

that it provides a surprisingly powerful constraint on low energy physics. One’s natural

expectation is that there should be a great deal of flexibility in local models where issues

pertaining to a globally consistent compactification can always be deferred to a later stage

of analysis. This is indeed the case in models where a sufficiently loose definition of “local

data” is adopted so that gravity need not decouple, and we have given some examples along

these lines. Strictly speaking, though, a local model is well-defined by local data when the

model admits a limit where it is in principle possible to decouple the GUT scale from the

Planck scale. Perhaps surprisingly, this qualitative condition endows these GUT models

with considerable predictive power.

The main lesson we have learned is that the mere existence of a decoupling limit

constrains both the local geometry of the compactification as well as the type of seven-

brane which can wrap a compact surface in the local model. To realize a GUT model with

no low energy exotics, the bulk gauge group of the seven-brane can only have rank four,

five or six, and in order for a decoupling limit to even exist in principle, the seven-brane

must wrap a del Pezzo surface. Moreover, all of the vacua which descend at low energies

to the MSSM in four dimensions all possess an internal U(1) hypercharge flux on the del

Pezzo which at least partially breaks the GUT group. For concreteness, in this paper we

have primarily focused on the cases where the bulk gauge group in eight dimensions is

SU(5) or SO(10).

In the minimal SU(5) model, all of the matter content at low energies derives from the

intersection of the GUT model seven-brane with additional non-compact seven-branes. We

have explained how the fields which localize at such intersections can only transform in the

5, 10 or complex conjugate representations. Moreover, the interaction terms are all cubic in

the matter fields because the superpotential derives from the triple intersection of matter

curves. Matter fields which are neutral under the GUT group localize on matter curves

which are orthogonal to the brane. When the gauge singlet is attracted to the seven-brane,

the corresponding Yukawa couplings behave as though the gauge singlet had localized inside

of S. On the other hand, when the gauge singlet wave function is repelled away from the

seven-brane, this can yield a significant exponential suppression in the value of the Yukawa
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couplings on the order of exp(−c/ε2γ) where c and γ are order one positive numbers and ε ∼
α−1

GUTMGUT/Mpl. In particular, vector-like pairs in such compactifications do not always

develop masses on the order of MGUT. This runs counter to a coarse effective field theory

analysis which would otherwise suggest that such pairs should always develop large masses.

In fact, we have seen that this is consistent with a more refined effective field theory analysis

because there are typically additional global symmetries present in the low energy theory.

The exponential suppression of such Yukawa couplings naturally solves the µ problem

and also provides a natural mechanism for generating acceptably light neutrino masses.

The wave function for the right-handed neutrino is either attracted or repelled away from

the del Pezzo surface. In the repulsive case, the neutrino mass term is purely of Dirac

type and is on the order of 0.5 × 10−2±0.5 eV. In the attractive case, we find a natural

implementation of a modified seesaw mechanism so that the light neutrinos masses are

2 × 10−1±1.5 eV and the Majorana mass is ∼ 3 × 1012±1.5 GeV, which is naturally smaller

than the simplest GUT seesaw models.

The combination of non-trivial hypercharge flux in the internal dimensions and the

existence of additional fluxes derived from the transversally intersecting seven-branes alle-

viates a number of problems which plague four-dimensional supersymmetric GUT models.

The doublet-triplet splitting problem reduces to the condition that the hypercharge flux

and flux from the other seven-branes both pierce the Higgs matter curves, while the net

hypercharge flux vanishes on curves which support full GUT multiplets.

The internal U(1) hypercharge flux also provides a qualitative explanation for why the

b − τ GUT mass relation approximately matches with observation while the lighter two

generations at best obey distorted versions of this relation. This is in a sense the remnant

of the mechanism that solves the doublet-triplet splitting problem. Even though the net

hypercharge flux vanishes on a matter curve which supports a complete GUT multiplet,

the field strength is not identically zero. In this way, the GUT multiplet wave functions

experience an Aharanov-Bohm effect which increasingly distorts the GUT mass relations

as the mass of the GUT multiplet decreases. In fact, this mechanism requires that the

internal hypercharge gauge field be non-trivial.

This flux will also typically generate a threshold correction to the unification of the

gauge couplings. While there are potentially many other such threshold corrections due to

Kaluza-Klein modes, it would clearly be of interest to see whether at least some of these

corrections can be reliably estimated in our setup.

The geometry of the compactification can also prevent the proton from decaying too

rapidly. Cubic terms in the superpotential are typically excluded in a bottom up approach

by requiring that the theory is invariant under R-parity. We have found two ways that the

geometry can forbid the same interaction terms which R-parity removes. In one case, R-

parity corresponds to a suitable Z2 symmetry in the geometry of the Calabi-Yau fourfold.

At a topological level, the absence of R-parity violating cubic interaction terms corresponds

to a technically natural restriction on which matter curves intersect. In the scenario where

R-parity descends from a Z2 group action on the Calabi-Yau, the hypercharge flux and the

Higgs matter curves are invariant under this group action while the matter curves are odd.

Due to the Z2 symmetry, the net hypercharge flux must vanish on matter curves which
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are odd under this group action. Hence, this automatically forces the localized matter

to organize in complete GUT multiplets. Note that this symmetry also permits a non-

vanishing hypercharge flux on the Higgs curves, which is consistent with our solution to

the doublet-triplet splitting problem. At higher order in the effective superpotential, the

topological condition determining which curves intersect also forbids potentially dangerous

baryon number violating quartic operators in the superpotential. Indeed, placing the Higgs

up and down fields on distinct matter curves equips the matter fields with additional global

symmetries which can forbid such operators.

We have also shown how the geometry of the matter curves translates in the low energy

effective theory into non-trivial structure in the Yukawa couplings. The coarsest features of

textures follow from the discrete data determining how matter curves intersect inside the

seven-brane so that texture zeroes are generically present. We have also presented some

speculations on potential ways that additional structure in the Yukawa couplings could arise

from a geometrical realization of the Froggatt-Nielsen mechanism, or through an interpreta-

tion of the discrete automorphism group of a del Pezzo surface as a flavor group symmetry.

Communicating supersymmetry breaking is also straightforward in this setup. Indeed,

we have shown that the geometry of del Pezzo surfaces can easily accommodate vector-like

pairs of GUT multiplets localized on isolated matter curves. These vector-like pairs can

then serve as the messenger fields in gauge mediated supersymmetry breaking. We have

presented different scenarios showing the flexibility of this approach. Depending on the

case at hand, the messenger masses can range from near the GUT scale, to energy scales

which are significantly lower. Moreover, because we have an independent mechanism for

naturally suppressing the µ term, this class of models preserves the best features of gauge

mediation models while avoiding the notoriously difficult issue of generating µ and Bµ at

around the electroweak scale.

It is perhaps surprising that a few key ideas seem to resolve many problems simulta-

neously. Indeed, the overall economy in these ingredients lends substantial credence to the

basic framework. On the other hand, it is also clear that we have by no means exhausted the

potential avenues of investigation. A more systematic study of textures and choices of mat-

ter curves, as well as the geometric underpinning of the corresponding Calabi-Yau fourfold

are all issues which deserve further attention. In addition, the communication of supersym-

metry breaking is simple enough in our setup that it could potentially lead to observable

predictions at the LHC. It would clearly be of interest to study such a scenario further.
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A. Gauge theory anomalies and seven-branes

In this appendix we further elaborate on the geometric condition for the low energy spec-

trum to be free of gauge theory anomalies. First recall the well-studied case of perturba-

tively realized gauge theories obtained as the low energy limit of D-brane probes of non-

compact Calabi-Yau singularities. The condition that all gauge theory anomalies must

cancel is equivalent to the requirement that in a consistent bound state of D3-, D5- and

D7-branes, the total RR flux measured over a compact cycle must vanish [94]. Even in a

non-compact Calabi-Yau threefold given by the total space O(KS) → S with S a Kähler

surface, the theory of a stack of D7-branes wrapping S is inconsistent because the self-

intersection of the divisor S in the Calabi-Yau threefold is a compact Riemann surface. In

a globally consistent model, additional O7-planes must be introduced to cancel the corre-

sponding RR tadpole. Indeed, a consistent compactification of F-theory on an elliptically

fibered Calabi-Yau fourfold will automatically contain similar contributions so that the net

monodromy around all seven-branes is trivial.

Next consider the potential contribution from D5-branes to a candidate bound state.

Letting [ΣD5] denote the total homology class of D5-branes wrapping compact two-cycles

in H2(S,Z), the resulting theory is consistent provided:

[ΣD5] ·KS = 0. (A.1)

There is no analogous condition for D3-branes in a non-compact model because the flux

lines can escape to infinity in the non-compact model.

In this appendix we consider more general intersecting seven-brane configurations with

chiral matter induced from a non-trivial field strength. Using the fact that a low energy

theory must be free of non-abelian gauge anomalies, we determine the geometric analogue

of equation (A.1) for intersecting A×A and D×A brane configurations in a broader class

of F-theory compactifications. We also present an example of anomaly cancelation for an

E7 exceptional brane theory.

A.1 A×A anomalies

We now consider seven-branes wrapping two Kähler surfaces S and S′ such that the

gauge group of the respective seven-branes is GS = SU(N) and GS′ = SU(N ′) with a

six-dimensional bifundamental localized along a matter curve Σ = S ∩ S′. Because only

instanton configurations with an overall U(1) factor can induce chirality in the bulk and on

matter curves, it is enough to consider instanton configurations in S and S′ taking values

in U(1)n and U(1)n
′

for some n ≤ N − 1 and n′ ≤ N ′ − 1.

We consider a breaking pattern such that SU(N) decomposes into non-abelian sub-

group factors SU(N1), . . . ,SU(Nn). Similar conventions will also hold for the decomposition

of the gauge group SU(N ′). Letting −→q denote the charge of a representation under the

U(1)n−1 subgroup, the fundamental and adjoint representation decompose as:

SU(N1 + . . .+Nn) ⊃ SU(N1) × . . .× SU(Nn) × U(1)n−1 (A.2)

N → (N1)−→q 1
⊕ . . . .⊕ (Nn)−→q n

(A.3)
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AN → (AN1)2−→q 1
⊕ . . . .⊕ (ANn)2−→q n

(A.4)

⊕
[
⊕
i<j

(Ni ×Nj)−→q i+
−→q j

]
(A.5)

ad(SU(N)) →
n
⊕
i=1
ad(SU(Ni))0 ⊕

[
⊕
i6=j

(Ni ×N j)−→q i−
−→q j

]
(A.6)

where for future use we have also indicated how the two index anti-symmetric represen-

tation AN decomposes. In the above, the charge assignments −→q i satisfy the tracelessness

condition:
n∑

i=1

Ni
−→q i = 0 (A.7)

Letting L1, . . . , Ln−1 denote the line bundles which determine the U(1)n−1 gauge field

configuration with similar conventions for L′
i, the chiral matter content transforming in

the fundamental representation Ni of SU(Ni) in S and Σ are given by the indices derived

in [15]:

#(Ni ×N j)−→q i−
−→q j

= − c1(S) · c1
(
L

π1(
−→q i−

−→q j)
1

)
+ . . . (A.8)

+ −c1(S) · c1
(
L

πn−1(−→q i−
−→q j)

n−1

)
(A.9)

#(Ni)−→q i
× (N ′

i′)−→q ′

i′
= degL

π1(
−→q i)

1|Σ + . . . + degL
πn(−→q i)
n|Σ (A.10)

+ degL
′π′

1(
−→q ′

i′
)

1|Σ + . . .+ degL
′π′

n(−→q ′

i′
)

n′|Σ (A.11)

where πi denotes the projection onto the ith component of a given charge vector, and a neg-

ative number indicates the net chiral matter content transforms in the complex conjugate

representation.

The net anomaly coefficient ai of the SU(Ni) factor is given by summing over all

contributions to the fundamental representation of SU(Ni). Letting di = c1(S) · c1(Li) and

di|Σ = degLi|Σ, we find:

ai = −
n∑

j=1

Nj

n−1∑

k=1

πk(
−→q i −−→q j)dk (A.12)

+
n′∑

i′=1

N ′
i′

(
n−1∑

k=1

πk(
−→q i)dk|Σ +

n′−1∑

k′=1

π′k′(−→q ′
i′)d

′
k′|Σ

)
. (A.13)

Simplifying this expression using the tracelessness condition of equation (A.7) and the

analogous condition for the Ni′ now implies:

ai = −N
n−1∑

k=1

πk(
−→q i)dk +N ′

n−1∑

k=1

πk(
−→q i)dk|Σ (A.14)

=

∫

S

c1(L
π1(−→q i)
1 ⊗ . . .⊗ L

πn−1(
−→q i)

n−1 )c1

(
OS(KS)N ⊗OS(Σ)N

′
)

. (A.15)

The condition for ai to vanish is the direct analogue of the perturbatively realized condition

in equation (A.1).
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A.2 A×D anomalies

We now consider seven-branes wrapping two Kähler surfaces S and S′ such that the gauge

group of the respective seven-branes is GS = SU(N) and GS′ = SO(2R + 2M) with six-

dimensional matter fields localized along the curve Σ = S ∩ S′. Decomposing SO(2N +

2R+ 2M) ⊃ SU(N)× SO(2R+ 2M)×U(1), the six-dimensional fields localized on Σ now

transform in the representation (AN , 1)⊕ (N, 2R) of SU(N)× SO(2R+ 2M). As before, it

is enough to treat instanton configurations taking values in the subgroups U(1)n ⊂ SU(N)

and U(1)t ⊂ SO(2R). In order to simplify the combinatorics associated with breaking

patterns of the SO gauge group factor, we confine our analysis to the breaking pattern

SO(2R + 2M) ⊃ SO(2R) × SU(M) × U(1). The fundamental and adjoint representations

of SO(2R + 2M) decompose into the commutant subgroup of U(1) as:

SO(2R + 2M) ⊃ SO(2R) × SU(M) × U(1) (A.16)

2R → (2R)0 ⊕
(
(M)p ⊕ (M i)−p

)
(A.17)

ad(SO(2R)) → 10 ⊕ ad(SO(2Ri))0 ⊕ ad(SU(Mi))0 (A.18)

⊕ (AM )2p ⊕ (AM )−2p ⊕ (2R,M)p ⊕ (2R,M )−p. (A.19)

Consider first non-abelian anomalies associated to the gauge group factor SU(Ni). In

this case, we recall that in a normalization of group generators where the fundamental

has anomaly coefficient +1, the two index anti-symmetric representation has anomaly

coefficient Ni − 4. Repeating a similar analysis to that given in the previous section, the

total anomaly coefficient for the non-abelian group SU(Ni) is:

ai = −N
n−1∑

k=1

πk(
−→q i)dk + (2R+ 2M)

n−1∑

k=1

πk(
−→q i)dk|Σ (A.20)

+ (Ni − 4)
n−1∑

k=1

πk(2
−→q i)dk|Σ +

∑

j 6=i

Nj

(
n−1∑

k=1

πk(
−→q i + −→q j)dk|Σ

)
(A.21)

= − 2N
n−1∑

k=1

πk(
−→q i)dk + (2R + 2M)

n−1∑

k=1

πk(
−→q i)dk|Σ − 8

n−1∑

k=1

πk(
−→q i)dk|Σ (A.22)

= 2

∫

S

c1(L
π1(−→q i)
1 ⊗ . . .⊗ L

πn−1(
−→q i)

n−1 )c1
(
OS(KS)N ⊗OS(Σ)R+M−4

)
. (A.23)

Comparing equations (A.15) and (A.23), the shift R + M → R + M − 4 indicates the

presence of an O7-plane.

Next consider the anomaly coefficient of the SU(M) factor. In this case, the total

anomaly coefficient for the non-abelian group SU(M) is:

bi = −2p(M − 4)d′ − 2Rpd′ + 2pNd′Σ (A.24)

= 2

∫

S′

c1(L
′p)c1

(
OS′(Σ)N ⊗OS′(KS′)R+M−4

)
. (A.25)

Proceeding by induction, it now follows that a similar result also holds for the more general

breaking pattern where each SU(M) and SO(2R) factor decomposes further.
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A.3 E7 anomalies

The analysis of the previous subsections demonstrates that for A- and D- type seven-

branes, the geometric condition for anomaly cancelation in the four-dimensional effective

theory relates the total matter content in the bulk with that localized on matter curves.

We now determine the analogous condition for a seven-brane with gauge group GS = E7

and M copies of the 56 localized on a curve Σ. We consider a U(1) gauge field configuration

which breaks E7 to SU(7) × U(1). The representation content of E7 decomposes as:

E7 ⊃ SU(8) ⊃ SU(7) × U(1) (A.26)

56 → 7−6 + 76 + 212 + 21−2 (A.27)

133 → 10 + 78 + 7−8 + 480 + 354 + 35−4 (A.28)

where the 21, 35 and 35 denote the two, three and four index anti-symmetric representations

of SU(7). It now follows that the chiral matter content derived from S and Σ is:

#78 = −c1(S) · c1(L8) (A.29)

#35 = −c1(S) · c1(L−4) (A.30)

#7−6 = M degL−6
|Σ

(A.31)

#21 = M degL2
|Σ. (A.32)

To compute the anomaly of the SU(7) theory, we first recall that the anomaly coefficient

for the i-index anti-symmetric representation A
(i)
k of SU(n) in 2(k − 1) dimensions is [95]:

A
(2)
k = n− 2k−1 (A.33)

A
(3)
k =

1

2
n2 − 1

2
n(2k + 1) + 3k−1 (A.34)

A
(4)
k =

1

12
(2n3 − 3n2(2k + 2) + n(4 × 3k + 3 × 2k + 4) − 3 × 4k) (A.35)

so that in four dimensions, the anomaly coefficients of the SU(7) theory are A
(2)
k = 3,

A
(3)
k = 2, A

(4)
k = −2. Returning to equations (A.29)–(A.32), we note that the contribution

to the total anomaly from S and Σ separately cancel in this particular case so that we do

not deduce an analogue of equation (A.1).

B. Hypersurfaces in P
3

In this section we review some properties of degree n hypersurfaces Hn in P
3. Further

details can be found for example in [96]. Letting H denote the hyperplane class of P
3, the

total Chern class of Hn is given by the adjunction formula:

c(Hn) =
c(P3)

c(NHn/P3)
= 1 + (4 − n)H + (6 − 4n+ n2)H2. (B.1)
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It thus follows that the Euler character e(Hn), holomorphic Euler characteristic χ(OHn)

and signature τ (Hn) are:

e(Hn) =

∫

Hn

c2(Hn) =

∫

P3

n(6 − 4n+ n2)H3 = n3 − 4n2 + 6n (B.2)

χ(OHn) =

∫

Hn

c1(Hn)2 + c2(Hn)

12
=

1

6
(n3 − 6n2 + 11n) (B.3)

τ(Hn) =

∫

Hn

c1(Hn)2 − 2c2(Hn)

3
= −1

3
(n3 − 4n). (B.4)

We next determine the Hodge numbers of Hn. Using the Lefschetz hyperplane theorem,

h1,0(P3) = 0 implies h1,0(Hn) = 0. Moreover, because e(Hn) = 2 + 2h2,0 + h1,1 and

χ(OHn) = 1 − h0,1 + h0,2 = 1 + h0,2, equations (B.2)–(B.4) imply:

h1,1(Hn) =
1

3
(2n3 − 6n2 + 7n) (B.5)

h2,0(Hn) =
1

6
(n3 − 6n2 + 11n) − 1 (B.6)

b2(Hn) = n3 − 4n2 + 6n− 2. (B.7)

The last expression determines the dimension of H2(Hn,Z) as a lattice over the integers.

It follows from Poincaré duality that when equipped with the intersection pairing of the

geometry, this lattice is self-dual. Moreover, returning to equation (B.1), reduction of

c1(Hn) mod 2 implies that Hn is spin when n is even.25 This in turn implies that the

lattice H2(Hn,Z) is even (resp. odd) for n even (resp. odd). Because the signature and

dimension uniquely determine a lattice with indefinite signature, we conclude that the

lattice is of the general form:

H2(Hn,Z) ≃ (+1)⊕(b2+τ)/2 ⊕ (−1)⊕(b2−τ)/2 (n odd) (B.8)

H2(Hn,Z) ≃ (−E8)
τ/8 ⊕ U⊕(b2−τ)/2 (n even) (B.9)

where −E8 is minus the Cartan matrix for E8 and U is the “hyperbolic element” with

entries specified by the Pauli matrix σx. The canonical class has self intersection number:

KHn ·KHn =

∫

Hn

c1(Hn)2 = n(n− 4)2. (B.10)

For many purposes, it is of practical use to have a large number of contractible rational

curves inside of a given surface which can serve as matter curves for a given model. We

note, however, that general results from the mathematics literature [97, 98] demonstrate

that for a generic hypersurface of degree at least five, the minimal genus of a curve is at

least two. Indeed, typically a given homology class only corresponds to a holomorphic

curve for a specific choice of complex structure. To avoid such subtleties, we consider the

25This follows from Wu’s theorem and the fact that Hn is simply connected.
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blowup of a degree n hypersurface at k points, BkHn. While the value of h2,0 remains

invariant under this process, the canonical class of the resulting space is now given by:

KBkHn = KHn + E1 + . . .+ Ek. (B.11)

where the Ei denote the effective classes associated with blown up rational curves.

C. Classification of breaking patterns

In this appendix we classify all possible breaking patterns via instantons for a theory defined

by a seven-brane filling R
3,1×S with bulk gauge group GS such that the resulting spectrum

can in principle contain the matter content of the Standard Model. While breaking patterns

for GUT groups is certainly a well-studied topic in the phenomenology literature, as far as

we are aware, this question has not been studied from the perspective of F-theory. Indeed,

although much of our analysis in this paper has focussed on the cases where the bulk gauge

group is SU(5) or SO(10), it seems of use for future potential efforts in this direction to

catalogue a broader class of candidate breaking patterns which could in principle arise

from compactifications of F-theory. We note that by appealing to gauge invariance and

certain basic phenomenological requirements, a partial classification of candidate breaking

patterns which can appear in string theory has been given in [99].

Throughout our analysis, we shall assume that our model is generic in the sense that

along complex codimension one and two subspaces, the rank of the singularity type can

enhance by one or two. While in this paper we have focussed on a minimal class of models

where the bulk gauge group is GS = SU(5) or SO(10), there are additional possibilities

at higher rank. For example, in higher rank cases it may be possible to allow some of

the matter fields of the MSSM to originate from bulk zero modes. We now proceed to

an analysis of all possible breaking patterns via instantons which can accommodate the

matter content of the MSSM. The relevant group theory material on the decomposition of

various irreducible representations may be found in [100, 101].

In keeping with our general philosophy, we shall also assume that the group corre-

sponding to the rank two enhancement in singularity type is a subgroup of E8. For this

reason, the rank of the singularity type can be at most six. Moreover, because the Stan-

dard Model gauge group has rank four, it is enough to classify breaking patterns associated

with singularities of rank four, five and six. The relevant ADE-type of the singularities

are therefore:

Rank 4: A4, D4 (C.1)

Rank 5: A5, D5 (C.2)

Rank 6: A6, D6, E6. (C.3)

The singularity type does not fully determine the gauge group GS . When the collapsed

cycles of the singularity type are permuted under a monodromy in the fiber direction, the

resulting gauge group is given by the quotient of the original simply laced group by an

outer automorphism. In this way, we can also obtain all non-simply laced groups such
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as SO(2n + 1), USp(2n), F4 and G2. In what follows we adopt the convention USp(2) ≃
SU(2). It therefore follows that we must analyze the breaking patterns for the following

possibilities:

Rank 4: SU(5), SO(8), SO(9), F4 (C.4)

Rank 5: SU(6), SO(10), SO(11) (C.5)

Rank 6: SU(7), SO(12), E6. (C.6)

Note in particular that the bulk gauge group is never of USp type. There are in general

many possible ways in which the Standard Model gauge group can embed in the above gauge

groups. To classify admissible breaking patterns to the Standard Model gauge group, we

shall require that all of the matter content of the Standard Model must be present. While

much of our analysis will hold for non-supersymmetric theories as well, we shall typically

focus on the field content and interactions of the MSSM. In terms of the gauge group

SU(3) × SU(2) × U(1), the representation content of the fields of the MSSM are:

Q U D Hd, L E Hu

(3, 2)1 (3, 1)−4 (3, 1)2 (1, 2)−3 (1, 1)6 (1, 2)3
. (C.7)

In addition, any realistic model must allow the three superpotential terms:

W ⊃ QUHu +QDHd + ELHd. (C.8)

Starting from representations which descend from the decomposition of the adjoint

representation of E8, our strategy will be to rule out as many possible breaking patterns as

possible because the representation content is incorrect, or because gauge invariance in the

parent theory forbids a required superpotential term. For SO gauge groups, we assume the

matter organizes into the fundamental, spinor or adjoint representations. For SU gauge

groups, we assume that in addition to the adjoint representation, the matter organizes into

one, two or three index anti-symmetric representations.

To classify the possible breaking patterns of a given bulk gauge group GS , we first list

all maximal subgroups. Next, we determine all maximal subgroups of each such subgroup

and proceed iteratively until we arrive at the Standard Model gauge group. We note that

even for a unique nested sequence of subgroups, there may be several distinct subgroups

whose commutant contains the Standard Model gauge group. The classification of these

possible subgroups is aided by the fact that the gauge group of the Standard Model has

rank four so that the corresponding instanton configuration can only take values in a rank

one or two subgroup of a given bulk gauge group GS .

Although they cannot serve as a bulk gauge group, it is also convenient to list all

maximal subgroups of some common lower rank groups which appear frequently. The

maximal subgroups of SO(7), SU(4), USp(6), USp(4) and G2 are:

SO(7) ⊃ SU(4) (C.9)

SO(7) ⊃ SU(2) × SU(2) × SU(2) (C.10)
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SO(7) ⊃ USp(4) × U(1) (C.11)

SO(7) ⊃ G2 (C.12)

SU(4) ⊃ SU(3) × U(1) (C.13)

SU(4) ⊃ SU(2) × SU(2) × U(1) (C.14)

SU(4) ⊃ USp(4) (C.15)

SU(4) ⊃ SU(2) × SU(2) (C.16)

USp(6) ⊃ SU(3) × U(1) (C.17)

USp(6) ⊃ SU(2) × USp(4) (C.18)

USp(6) ⊃ SU(2) (C.19)

USp(6) ⊃ SU(2) × SU(2) (C.20)

USp(4) ⊃ SU(2) × SU(2) (C.21)

USp(4) ⊃ SU(2) × U(1) (C.22)

USp(4) ⊃ SU(2) (C.23)

G2 ⊃ SU(3) (C.24)

G2 ⊃ SU(2) × SU(2) (C.25)

G2 ⊃ SU(2). (C.26)

In the remainder of this appendix, we classify possible breaking patterns via instantons

of the bulk gauge group. To further specify the order of breaking in a nested sequence of

subgroups, we shall sometimes enclose separate subgroup factors in square brackets.

C.1 Rank four

We now classify all breaking patterns of rank four groups. Although SU(5) is the only

group of line (C.4) which contains complex representations, for our higher dimensional

theories, it is a priori possible that a suitable U(1) field strength in either the compact or

non-compact directions of an intersecting seven-brane theory can induce a net chirality in

the resulting gauge group. In the rank four case we list all maximal subgroups even if they

do not contain the Standard Model gauge group. This is done because for the higher rank

cases, such breaking patterns may become available. In the rank four case, we find that

only GS = SU(5) is a viable possibility.

C.1.1 SU(5)

There is a single maximal subgroup of SU(5) which contains the Standard Model gauge

group. Indeed, the representation content is given by the Georgi-Glashow model:

SU(5) ⊃ SU(3)C × SU(2)L × U(1)Y ≡ Gstd (C.27)

5 → (1, 2)3 + (3, 1)−2 (C.28)

10 → (1, 1)6 + (3, 1)−4 + (3, 2)1 (C.29)

24 → (1, 1)0 + (1, 3)0 + (3, 2)−5 + (3, 2)5 + (8, 1)0. (C.30)

By turning on an instanton in U(1)Y , we break to the desired gauge group.
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C.1.2 SO(8)

We now proceed to the case of SO(8). The maximal subgroups of SO(8) are [100]:

SO(8) ⊃ SU(2) × SU(2) × SU(2) × SU(2) (C.31)

SO(8) ⊃ SU(4) × U(1) (C.32)

SO(8) ⊃ SU(3) (C.33)

SO(8) ⊃ SO(7) (C.34)

SO(8) ⊃ SU(2) × USp(4). (C.35)

Returning to lines (C.9)–(C.26), it follows that there does not exist a breaking pattern

which yields Gstd.

C.1.3 SO(9)

The maximal subgroups of SO(9) are:

SO(9) ⊃ SO(8) (C.36)

SO(9) ⊃ SU(2) × SU(2) × USp(4) (C.37)

SO(9) ⊃ SU(2) × SU(4) (C.38)

SO(9) ⊃ SU(2) (C.39)

SO(9) ⊃ SU(2) × SU(2). (C.40)

Of the above possibilities, only line (C.38) contains Gstd. Breaking to Gstd via a U(1)

instanton yields:

SO(9) ⊃ SU(2) × SU(4) ⊃ SU(2) × [SU(3) × [U(1)]] (C.41)

9 → (3, 1)0 + (1, 3)2 + (1, 3)−2 (C.42)

16 → (2, 1)3 + (2, 3)−1 + (2, 1)−3 + (2, 3)+1 (C.43)

36 → (3, 1)0 + (1, 1)0 + (1, 3)−4 + (1, 3)4 + (1, 8)0 + (3, 3)2 + (3, 3)−2. (C.44)

By inspection, all singlets of SU(2)× SU(3) are also neutral under the U(1) factor. It thus

follows that SO(9) is ruled out as a candidate.

C.1.4 F4

The maximal subgroups of F4 are:

F4 ⊃ SO(9) (C.45)

F4 ⊃ SU(3) × SU(3) (C.46)

F4 ⊃ SU(2) × USp(6) (C.47)

F4 ⊃ SU(2) (C.48)

F4 ⊃ SU(2) ×G2 (C.49)

the first case is excluded by the previous analysis of SO(9), leaving only lines (C.46)

and (C.47).
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First consider the breaking pattern of (C.46):

F4 ⊃ SU(3)1 × SU(3)2 (C.50)

26 → (8, 1) + (3, 3) + (3, 3) (C.51)

52 → (8, 1) + (1, 8) + (6, 3) + (6, 3). (C.52)

Breaking either factor of SU(3) ⊃ SU(2) × U(1) via a U(1) instanton, we note that all

resulting SU(3) × SU(2) singlets are also neutral under U(1). We therefore conclude that

the breaking pattern of line (C.46) is also excluded.

Next consider the remaining breaking pattern of (C.47) which can descend to the

Standard Model gauge group:

F4 ⊃ SU(2) × USp(6) ⊃ SU(2) × [SU(3) × U(1)] (C.53)

26 → (2, 3)1 + (2, 3)−1 + (2, 3)−2 + (2, 3)2 + (2, 8)0 (C.54)

52 → (3, 1)0 + (1, 1)0 + (1, 6)2 + (1, 6)−2 + (1, 8)0 (C.55)

+ (2, 1)3 + (2, 1)−3 + (2, 6)−1 + (2, 6)1. (C.56)

As before, the resulting singlets of the non-abelian factor are also neutral under the U(1)

factor. Summarizing, we find that the only available rank four bulk gauge group which can

contain the Standard Model is SU(5).

C.2 Rank five

We now proceed to rank five bulk gauge groups. While it is in principle possible that an

SU(2) instanton configuration could produce a consistent breaking pattern to the particle

content of the Standard Model, we find that in all cases, the relevant breaking pattern is

again always an instanton configuration with structure group U(1) or U(1) × U(1).

C.2.1 SU(6)

We assume that the matter content organizes into the representations 6, 15, 20 and 35 of

SU(6), as well as their dual representations. The maximal subgroups of SU(6) are:

SU(6) ⊃ SU(5) × U(1) (C.57)

SU(6) ⊃ SU(2) × SU(4) × U(1) (C.58)

SU(6) ⊃ SU(3) × SU(3) × U(1) (C.59)

SU(6) ⊃ SU(3) (C.60)

SU(6) ⊃ SU(4) (C.61)

SU(6) ⊃ USp(6) (C.62)

SU(6) ⊃ SU(2) × SU(3) (C.63)

of which only the first three contain Gstd. By inspection, it now follows that for n ≥ 2,

an SU(n) instanton will break too much of the gauge group to preserve Gstd. Moreover, it

follows from lines (C.57)–(C.59) that up to linear combinations of the U(1) charge for the
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other breaking patterns, it is enough to analyze the U(1)2 instanton configuration which

breaks SU(6) via the nested sequence SU(6) ⊃ SU(5)×U(1) ⊃ Gstd ×U(1). Restricting to

U(1)2 valued instanton configurations, the decomposition of the one two and three index

anti-symmetric and adjoint representations of SU(6) are:

SU(6) ⊃ SU(5) × [U(1)] ⊃ [SU(3) × SU(2) × [U(1)]] × [U(1)] (C.64)

6 → (1, 1)0,5 + (3, 1)−2,−1 + (1, 2)3,−1 (C.65)

15 → (1, 2)3,−4 + (3, 1)−2,−4 + (1, 1)6,2 (C.66)

+ (3, 1)−4,−3 + (3, 2)1,2 (C.67)

20 → (1, 1)6,−3 + (3, 1)−4,−3 + (3, 2)1,−3 (C.68)

+ (1, 1)−6,3 + (3, 1)4,3 + (3, 2)−1,3 (C.69)

35 → (1, 1)0 + (1, 2)3,6 + (3, 1)−2,6 (C.70)

+ (1, 2)−3,−6 + (3, 1)2,−6 + (1, 1)0,0 + (1, 3)0,0 (C.71)

+ (3, 2)−5,0 + (3, 2)5,0 + (8, 1)0,0. (C.72)

The above decomposition illustrates the fact that there are a priori different ways in which

the representation content of the MSSM can be packaged into higher dimensional repre-

sentations.

We now determine all possible choices consistent with obtaining the correct spectrum

and interaction terms. We first require that at least one linear combination of the U(1)

charges may be identified with U(1)Y of the Standard Model. Labeling the U(1) charges

as a and b, this implies that the charges of the MSSM fields must satisfy the relations:

E : 5b = ±6 or 6a+ 2b = ±6 or 6a− 3b = ±6 (C.73)

Q : a+ 2b = ±1 or a− 3b = ±1 or − 5a = ±1 (C.74)

U : 2a+ b = −4 or 2a+ 4b = −4 or − 4a− 3b = −4 or 2a− 6b = −4 (C.75)

D : 2a+ b = 2 or 2a+ 4b = 2 or − 4a− 3b = 2 or 2a− 6b = 2 (C.76)

Hd, L : 3a− b = ±3 or 3a+ 6b = ±3 (C.77)

Hu : 3a− b = ±3 or 3a+ 6b = ±3 . (C.78)

First suppose that the E-relation 5b = ±6 holds. In this case, the remaining candidate

solutions for a are:

Q =⇒ ±a =
17

5
or

7

5
or

23

5
or

13

5
or

1

5
(C.79)

L =⇒ ±a =
7

5
or

3

5
or

17

5
(C.80)

D =⇒ a =
8

5
or

2

5
or − 7

5
or

17

5
or − 7

5
or

4

5
or

23

5
or − 13

5
(C.81)

U =⇒ a = −13

5
or − 7

5
or − 22

5
or

2

5
or

1

10
or

19

10
or

8

5
or − 28

5
(C.82)

so that the only common solution to all of the above conditions requires a = −7/5. Note,

however, that this is an inconsistent assignment because whereas the U condition requires

a = −7/5 and b = −6/5, the Q condition requires a = −7/5 and b = +6/5.
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Next suppose that the E-relation 6a+2b = ±6 holds. In this case, b is now determined

by the relations:

Q =⇒ b = ±6

5
or ± 3

5
or ± 18

5
or ± 12

5
or 0 (C.83)

U =⇒ b = −18 or − 6 or − 9

5
or − 3

5
or

24

5
or

9

10
or

3

10
or 0. (C.84)

It thus follows that in this case that the only consistent choice of U(1)Y requires b = 0.

Note that in this case the U(1) charge assignments match to those of the SU(5) GUT.

Finally, suppose that the E-relation 6a − 3b = ±6 holds. In this case, b is now

determined by the possible Q-relations to be:

Q =⇒ b = ±4

5
or ± 12

5
or ± 8

5
or 0 (C.85)

U =⇒ b = −3 or − 1 or ± 6

5
or ± 2

5
or

8

5
or 0 (C.86)

D =⇒ b = 2 or ± 4

5
or − 6

5
or 0 (C.87)

so that the only consistent solution requires b = 0, as before.

C.2.2 SO(10)

We assume that the matter content organizes into the representations 10, 16, 16 and 45 of

SO(10). The maximal subgroups of SO(10) which contain Gstd are:

SO(10) ⊃ SU(5) × U(1) (C.88)

SO(10) ⊃ SU(2) × SU(2) × SU(4) (C.89)

SO(10) ⊃ SO(9) (C.90)

SO(10) ⊃ SU(2) × SO(7) (C.91)

SO(10) ⊃ SO(8) × U(1) (C.92)

SO(10) ⊃ USp(4) (C.93)

SO(10) ⊃ USp(4) × USp(4). (C.94)

Of the above maximal subgroups, only the first four contain SU(3)× SU(2) as a subgroup.

Whereas lines (C.88) and (C.89) lead to well-known GUTs, the maximal subgroups of

lines (C.90) and (C.91) are typically not treated in the GUT literature.

We now demonstrate that no breaking pattern of the latter two cases can yield the

MSSM spectrum. In the case SO(10) ⊃ SO(9), the 10, 16, 16 and 45 of SO(10) descend

to the 9, 16, and 36 of SO(9). It now follows from the analysis of subsection C.1.3 that no

breaking pattern will yield the matter content of the Standard Model.

Next consider the maximal subgroup SU(2) × SO(7). Because there is only one max-

imal subgroup of SO(7) which contains SU(3), the unique candidate breaking pattern in
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this case is:

SO(10) ⊃ SU(2) × SO(7) ⊃ SU(2) × SU(4) ⊃ SU(2) × [SU(3) × [U(1)]] (C.95)

10 → (3, 1)0 + (1, 1)0 + (1, 3)2 + (1, 3)−2 (C.96)

16 → (2, 1)3 + (2, 3)−1 + (2, 1)−3 + (2, 3)1 (C.97)

45 → (3, 1)0 + (1, 3)2 + (1, 3)−2 + (1, 1)0 + (1, 3)−4 + (1, 3)4 . (C.98)

By inspection, we note that all singlets of SU(3) × SU(2) are also neutral under the U(1)

factor. We therefore conclude that such a breaking pattern cannot include E-fields.

We now analyze breaking patterns of the two remaining cases of lines (C.88) and (C.89)

which are both well-known in the GUT literature. In the present context, we wish to

determine whether a non-standard embedding of the fields in an SO(10) representation

could also be consistent with the field content of the MSSM.

SO(10) ⊃ SU(5) × U(1). Consider first the maximal subgroup SU(5) × U(1). In this

case, the unique nested sequence of maximal subgroups which contains the gauge group

Gstd is:

SO(10) ⊃ SU(5) × [U(1)] ⊃ SU(3) × SU(2) × [U(1)a] × [U(1)b] (C.99)

10 → (1, 2)3,2 + (3, 1)−2,2 + (1, 2)−3,−2 + (3, 1)2,−2 (C.100)

16 → (1, 1)0,−5 + (1, 2)−3,3 + (3, 1)2,3 + (1, 1)6,−1 (C.101)

+ (3, 1)−4,−1 + (3, 2)1,−1 (C.102)

45 → (1, 1)0 + (1, 1)6,4 + (3, 1)−4,4 + (3, 2)1,4 (C.103)

+ (1, 1)−6,−4 + (3, 1)4,−4 + (3, 2)−1,−4 + (1, 1)0,0 (C.104)

+ (1, 3)0,0 + (8, 1)0,0 + (3, 2)−5,0 + (3, 2)5,0. (C.105)

As usual, we require that at least one linear combination of the U(1) charges may be

identified with U(1)Y of the Standard Model and that all of the necessary interaction

terms of the MSSM are present. We begin by classifying all possible combinations of Q-,

U - and D-fields which can yield the gauge invariant combination QUHu:

Q U Hu (a, b)

1 (3, 2)1,−1 (3, 1)2,−2 (2, 1)−3,3 OUT

2 (3, 2)1,−1 (3, 1)2,3 (2, 1)−3,−2 (−1/5,−6/5)

3 (3, 2)1,−1 (3, 1)−4,−1 (2, 1)3,2 (1, 0)

4 (3, 2)1,−1 (3, 1)−4,4 (2, 1)3,−3 (1, 0)

5 (3, 2)1,4 (3, 1)2,−2 (2, 1)−3,−2 (−7/5, 3/5)

6 (3, 2)1,4 (3, 1)2,3 OUT OUT

7 (3, 2)1,4 (3, 1)−4,−1 (2, 1)3,−3 (1, 0)

8 (3, 2)1,4 (3, 1)−4,4 OUT OUT

9 (3, 2)−5,0 (3, 1)2,−2 (2, 1)3,2 (−1/5, 9/5)

10 (3, 2)−5,0 (3, 1)2,3 (2, 1)3,−3 (−1/5,−6/5)

11 (3, 2)−5,0 (3, 1)−4,−1 OUT OUT

12 (3, 2)−5,0 (3, 1)−4,4 OUT OUT

(C.106)
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In the above list, entries in the Hu column listed by “OUT” indicate that of the available

representations, no choice yields a gauge invariant quantity in the parent theory. Similarly,

an “OUT” entry in the (a, b) column indicates that no consistent solution of U(1)Y exists

in this case. We next require that a consistent choice of representation for D and Hd to

admit the interaction QDHd also exists amongst the remaining possibilities:

Q D Hd (a, b)

2 (3, 2)1,−1 (3, 1)−4,−1 (2, 1)3,2 (−1/5,−6/5)

3 (3, 2)1,−1 (3, 1)2,3 (2, 1)−3,−2 (1, 0)

4 (3, 2)1,−1 (3, 1)2,−2 (2, 1)−3,3 (1, 0)

5 (3, 2)1,4 OUT (2, 1)3,2 (−7/5, 3/5)

7 (3, 2)1,4 OUT (2, 1)−3,3 (1, 0)

9 (3, 2)−5,0 OUT (2, 1)−3,−2 (−1/5, 9/5)

10 (3, 2)−5,0 OUT (2, 1)−3,3 (−1/5,−6/5)

. (C.107)

Of the three remaining possibilities, we next require that the interaction term ELHd be

present:

E L Hd (a, b)

2a (1, 1)0,−5 (1, 2)−3,3 (2, 1)3,2 (−1/5,−6/5)

2b (1, 1)−6,−4 (1, 2)3,2 (2, 1)3,2 (−1/5,−6/5)

3a (1, 1)6,−1 (1, 2)−3,−2 (2, 1)−3,−2 (1, 0)

3b (1, 1)6,4 (1, 2)−3,3 (2, 1)−3,−2 (1, 0)

4a (1, 1)6,−1 (1, 2)−3,−2 (2, 1)−3,3 (1, 0)

4b (1, 1)6,4 OUT (2, 1)−3,3 (1, 0)

. (C.108)

We therefore conclude that there are in fact five distinct ways in which the field content

of the MSSM can be packaged in representations of SO(10). We note in particular that

in some cases, the chiral matter of the MSSM does not descend from either of the spinor

representations of SO(10). The above classification can also be obtained without imposing

the condition that non-trivial interaction terms be present in the superpotential. Indeed,

by listing all possible consistent choices of U(1) charge assignments, we arrive at the same

list of admissible configurations. Finally, we note that the choice b = 0 corresponds to the

breaking pattern where U(1)Y embeds in SU(5) and the other consistent choice corresponds

to the flipped embedding of hypercharge [67].

SO(10) ⊃ SU(2) × SU(2) × SU(4). We next analyze the other nested sequence of

maximal subgroups given by decomposing SO(10) as:

SO(10) ⊃ SU(2) × SU(2) × SU(4) ⊃ SU(2) × SU(2) × [SU(3) × U(1)] (C.109)

10 → (2, 2, 1)0 + (1, 1, 3)2 + (1, 1, 3)−2 (C.110)

16 → (2, 1, 1)3 + (2, 1, 3)−1 + (2, 1, 1)−3 + (2, 1, 3)1 (C.111)

45 → (3, 1, 1)0 + (1, 3, 1)0 + (1, 1, 1)0 + (1, 1, 3)−4 (C.112)

+ (1, 1, 3)4 + (1, 1, 8)0 + (2, 2, 3)2 + (2, 2, 3)−2. (C.113)
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While an SU(2) instanton configuration can indeed yield the gauge group Gstd, we note

that the putative U(1)Y would then be incorrect. It thus follows that it is enough to

consider U(1) × U(1) instanton configurations. Because the representation content of this

decomposition is identical to that of the previous case, we conclude that there are again

two possible ways to package the MSSM fields into SO(10) representations.

C.2.3 SO(11)

We assume that the matter content organizes into the representations 11, 32 and 55 of

SO(11). The maximal subgroups of SO(11) are:

SO(11) ⊃ SO(10) (C.114)

SO(11) ⊃ SU(2) × SO(8) (C.115)

SO(11) ⊃ USp(4) × SU(4) (C.116)

SO(11) ⊃ SU(2) × SU(2) × SO(7) (C.117)

SO(11) ⊃ SO(9) × U(1) (C.118)

SO(11) ⊃ SU(2) (C.119)

so that only the first five maximal subgroups contain Gstd.

SO(11) ⊃ SO(10). In the case SO(11) ⊃ SO(10), the representations of SO(11) decom-

pose as:

SO(11) ⊃ SO(10) (C.120)

11 → 1 + 10 (C.121)

32 → 16 + 16 (C.122)

55 → 10 + 45 (C.123)

so that all of the analysis of breaking patterns performed for SO(10) carries over to this

case as well. In this case, it less clear whether the resulting matter spectrum can be chiral,

but all matter fields of the MSSM can indeed be present.

SO(11) ⊃ SU(2) × SO(8). In the case SO(11) ⊃ SU(2) × SO(8), the representation

content of SO(11) decomposes as:

SO(11) ⊃ SU(2) × SO(8) (C.124)

11 → (3, 1) + (1, 8v) (C.125)

32 → (2, 8s) + (2, 8c) (C.126)

55 → (3, 1) + (1, 28) + (3, 8v). (C.127)

The two maximal subgroups of SO(8) which contain an SU(3) factor are SU(4)×U(1) and

SO(7) ⊃ SU(4).
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SO(11) ⊃ SU(2) × SO(8) ⊃ SU(2) × [SU(4) × [U(1)]] The decomposition to SU(2) ×
[SU(4) × [U(1)]] is:

SO(11) ⊃ SU(2) × SO(8) ⊃ SU(2) × [SU(4) × [U(1)]] (C.128)

11 → (3, 1)0 + (1, 1)2 + (1, 1)−2 + (1, 6)0 (C.129)

32 → (2, 8s) + (2, 8c) → (2, 4)1 + (2, 4)−1 + (2, 4)−1 (C.130)

+ (2, 4)1 (C.131)

55 → (3, 1)0 + (1, 1)0 + (1, 6)2 + (1, 6)−2 + (1, 15)0 (C.132)

+ (3, 1)2 + (3, 1)−2 + (3, 6)0 (C.133)

so that the decomposition to Gstd × U(1) along this path is:

SO(11) ⊃ SU(2) × [SU(3) × [U(1)]a × [U(1)]b] (C.134)

11 → (3, 1)0,0 + (1, 1)0,2 + (1, 1)0,−2 + (1, 3)2,0 + (1, 3)−2,0 (C.135)

32 → (2, 1)3,1 + (2, 3)−1,1 + (2, 1)−3,−1 + (2, 3)1,−1 (C.136)

+ (2, 1)3,−1 + (2, 3)−1,−1 + (2, 1)−3,1 + (2, 3)1,1 (C.137)

55 → (3, 1)0,0 + (1, 1)0,0 + (1, 3)2,2 + (1, 3)−2,2 (C.138)

+ (1, 3)2,−2 + (1, 3)−2,−2 + (1, 1)0,0 + (1, 3)−4,0 (C.139)

+ (1, 3)4,0 + (1, 8)0,0 + (3, 1)0,2 + (3, 1)0,−2 (C.140)

+ (3, 3)2,0 + (3, 3)−2,0. (C.141)

In order to achieve the correct U(1)Y charge assignment for the E-fields and Q-fields, we

require:

2b = ±6 (C.142)

−a± b = 1 (C.143)

so that:

b = ±3 (C.144)

a = −4 or 2. (C.145)

In order to achieve the correct U(1)Y charge assignment for the L-fields, we must also

require:

±3a± b = ±3 (C.146)

so that a = 2 and without loss of generality, we may choose a sign convention for b so that

b = 3. In this case, the candidate representations for Q, D and Hd are:

Q D Hd

(2, 3)−1,1 (1, 3)−2,2 (2, 1)−3,−1
(C.147)

so that the product QDHd is not neutral under U(1)a. We therefore conclude that this

breaking pattern cannot yield the spectrum of the Standard Model.
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SO(11) ⊃ SU(2) × SO(7) ⊃ SU(2) × SU(4) ⊃ SU(2) × SU(3) × U(1) In this case,

breaking to Gstd proceeds via the nested sequence:

SO(11) ⊃ SU(2) × SO(8) ⊃ SU(2) × SO(7) (C.148)

⊃ SU(2) × SU(4) ⊃ SU(2) × SU(3) × U(1) (C.149)

11 → (3, 1)0 + (1, 1)0 + (1, 1)0 + (1, 3)2 + (1, 3)−2 (C.150)

32 → (2, 1)3 + (2, 3)−1 + (2, 1)−3 + (2, 3)1 + (2, 1)3 (C.151)

+ (2, 3)−1 + (2, 1)−3 + (2, 3)1 (C.152)

55 → (3, 1)0 + (1, 1)0 + (1, 3)2 + (1, 3)−2 + (1, 3)2 (C.153)

+ (1, 3)−2 + (1, 1)0 + (1, 3)−4 + (1, 3)4 + (1, 8)0 (C.154)

+ (3, 1)0 + (3, 1)0 + (3, 3)2 + (3, 3)−2 (C.155)

By inspection, the above decomposition does not contain any E-fields. We therefore con-

clude that in all cases, breaking patterns of SO(11) with maximal subgroup SU(2)×SO(8)

cannot contain Gstd.

SO(11) ⊃ USp(4) × SU(4). Because USp(4) does not contain SU(3) as a subgroup,

it follows that in this case, SU(4) must decompose to SU(3) × U(1). The decomposition

must therefore proceed via the path:

SO(11) ⊃ USp(4) × SU(4) ⊃ USp(4) × SU(3) × U(1) (C.156)

11 → (5, 1) + (1, 6) → (5, 1)0 + (1, 3)2 + (1, 3)−2 (C.157)

32 → (4, 4) + (4, 4) → (4, 1)3 + (4, 3)−1 + (4, 1)−3 (C.158)

55 → (10, 1) + (1, 15) + (5, 6) → (10, 1)0 + (1, 1)0 (C.159)

+ (1, 3)−4 + (1, 3)4 + (1, 8)0. (C.160)

To proceed further, we specify a maximal subgroup of USp(4) among the ones listed in

lines (C.21)–(C.23). Because a given instanton configuration must preserve the non-abelian

factor SU(3) × SU(2) of the Gstd, we conclude that only the first two are viable breaking

patterns.

SO(11) ⊃ USp(4)×SU(4) ⊃ USp(4)×SU(3)×U(1) ⊃ [SU(2)×SU(2)]× [SU(3)×U(1)]

In this case, the decomposition of the matter content contains the representation content

of the breaking pattern SO(10) ⊃ SU(2) × SU(2) × SU(4). Explicitly:

SO(11) ⊃ USp(4) × SU(4) ⊃ [SU(2) × SU(2)] × [SU(3) × [U(1)]] (C.161)

11 → (1, 1, 1)0 + (2, 2, 1)0 + (1, 1, 3)2 + (1, 1, 3)−2 (C.162)

32 → (2, 1, 1)3 + (2, 1, 3)−1 + (1, 2, 1)3 + (2, 1, 3)−1 (C.163)

+ (2, 1, 1)−3 + (2, 1, 3)1 + (1, 2, 1)−3 + (2, 1, 3)1 (C.164)

55 → (3, 1, 1)0 + (1, 1, 1)0 + (1, 1, 3)−4 + (1, 1, 3)4 (C.165)

+ (1, 1, 8)0 + (1, 1, 3)2 + (1, 1, 3)−2 + (2, 2, 3)2 (C.166)

+ (2, 2, 3)−2 + (1, 3, 1)0 + (2, 2, 1)0. (C.167)
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It follows that the analysis of breaking patterns for SO(10) directly carries over to this case

as well.

SO(11) ⊃ USp(4) × SU(3) × U(1) ⊃ [SU(2) × U(1)] × [SU(3) × U(1)]

While this is seemingly quite similar to the breaking pattern described previously, we

now show that the embedding of the U(1) factor in USp(4) does not admit an embedding

of the matter content of the Standard Model. To this end, we first decompose SO(11) via:

SO(11) ⊃ USp(4) × SU(4) ⊃ [SU(2) × [U(1)]a] × [SU(3) × [U(1)]b] (C.168)

11 → (1, 1)2,0 + (1, 1)−2,0 + (3, 1)0,0 + (1, 3)0,2 + (1, 3)0,−2 (C.169)

32 → (2, 1)1,3 + (2, 3)1,−1 + (2, 1)−1,3 + (2, 3)−1,−1 + (2, 1)−1,−3 (C.170)

+ (2, 3)−1,1 + (2, 1)1,−3 + (2, 3)1,1 (C.171)

55 → (1, 1)0,0 + (3, 1)0,0 + (3, 1)2,0 + (3, 1)−2,0 + (1, 1)0,0 (C.172)

+ (1, 3)0,−4 + (1, 3)0,4 + (1, 8)0,0 + (1, 3)2,2 + (1, 3)2,−2 (C.173)

+ (1, 3)−2,−2 + (1, 3)−2,2 + (3, 3)0,2 + (3, 3)0,−2. (C.174)

It follows from the above decomposition that the E-fields correspond to the representation

(1, 1)±2,0 of the above decomposition. It thus follows that a = ±3. Because the Q-fields

correspond to the representation (2, 3)±1,−1 and the L fields correspond to the represen-

tation (2, 1)±1,±3, we conclude that without loss of generality, fixing the sign of a to be

positive so that a = +3, there is a unique linear combination of U(1) charges so that a = 3

and b = 2. The field content of the MSSM thus descends from the above representations as:

E Q U D L Hu Hd

(1, 1)2,0 (2, 3)1,−1 (1, 3)0,−2 (1, 3)2,−2 (2, 1)1,−3 (2, 1)−1,3 (2, 1)1,−3
. (C.175)

By inspection, we note that whereas the product QUHu is indeed invariant under all gauge

group factors, QDHd violates U(1)b. We therefore conclude that the above breaking pat-

tern cannot yield the MSSM.

SO(11) ⊃ SU(2) × SU(2) × SO(7). Because there is a single maximal subgroup of

SO(7) which contains SU(3), we find that the unique breaking pattern which can reproduce

Gstd proceeds as:

SO(11) ⊃ SU(2) × SU(2) × SO(7) ⊃ SU(2) × SU(2) × SU(4) (C.176)

11 → (2, 2, 1) + (1, 1, 1) + (1, 1, 6) (C.177)

32 → (1, 2, 4) + (1, 2, 4) + (2, 1, 4) + (2, 1, 4) (C.178)

55 → (3, 1, 1) + (1, 3, 1) + (2, 2, 1) + (2, 2, 6) + (1, 1, 6) + (1, 1, 15) . (C.179)

By inspection, this decomposition again contains all of the matter content of the SO(10)

breaking pattern which proceeds via SO(10) ⊃ SU(2) × SU(2) × SU(4). We therefore

conclude that the analysis of the breaking patterns via instantons is identical to this case.
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SO(11) ⊃ SO(9) × U(1). The final maximal subgroup which contains Gstd is given by

SO(9) × U(1). In this case, SU(2) × SU(4) is the only maximal subgroup of SO(9) which

contains the product SU(3) × SU(2). Decomposing with respect to this path yields:

SO(11) ⊃ SO(9) × [U(1)]b ⊃ [SU(2) × SU(4)] × [U(1)]b (C.180)

⊃ [SU(2) × SU(3) × [U(1)]a] × [U(1)]b (C.181)

11 → (1, 1)0,−2 + (1, 1)0,2 + (3, 1)0,0 + (1, 3)2,0 + (1, 3)−2,0 (C.182)

32 → (2, 1)3,1 + (2, 3)−1,1 + (2, 1)−3,1 + (2, 3)1,1 (C.183)

+ (2, 1)−3,−1 + (2, 3)1,−1 + (2, 1)3,−1 + (2, 3)−1,−1 (C.184)

55 → (1, 1)0,0 + (3, 1)0,2 + (1, 3)2,2 + (1, 3)−2,2 + (3, 1)0,−2 (C.185)

+ (1, 3)2,−2 + (1, 3)−2,−2 + (3, 1)0,0 + (3, 3)2,0 + (3, 3)−2,0 (C.186)

+ (1, 1)0,0 + (1, 3)−4,0 + (1, 3)4,0 + (1, 8)0,0. (C.187)

In this case, the E-fields must correspond to the representation (1, 1)0,±2. This implies

the relation b = ±3. Moreover, because the Q and L-fields respectively correspond to the

representations (2, 3)−1,±1 and (2, 1)±3,±1, it follows that without loss of generality a = 2

and b = +3 is the unique choice of U(1) charges which can yield the correct value of U(1)Y
for all fields. In this case, the representation content of the Q, D and Hd fields is uniquely

determined to be:
Q D Hd

(2, 3)−1,1 (1, 3)−2,2 (2, 1)−3,−1
. (C.188)

Because the product QDHd violates U(1)b, we conclude that the corresponding breaking

pattern cannot lead to the MSSM.

C.3 Rank six

We now proceed to the classification of all breaking patterns of rank six groups. Because

it is the case of primary phenomenological interest in many cases, we begin our analysis

with breaking patterns of E6. We next determine all possible breaking patterns of SU(7)

and conclude with an analysis of breaking patterns of SO(12).

C.3.1 E6

The non-trivial representations of E6 which can descend from the adjoint representation

of E8 are the 27, 27 and 78 of E6. The maximal subgroups of E6 are:

E6 ⊃ SO(10) × U(1) (C.189)

E6 ⊃ SU(2) × SU(6) (C.190)

E6 ⊃ SU(3) × SU(3) × SU(3) (C.191)

E6 ⊃ USp(8) (C.192)

E6 ⊃ F4 (C.193)

E6 ⊃ SU(3) ×G2 (C.194)

E6 ⊃ G2 (C.195)

E6 ⊃ SU(3). (C.196)
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Of the above configurations, only the maximal subgroups of lines (C.189)–(C.194) contain

Gstd. In particular, the first three breaking patterns can descend to more conventional GUT

theories. We begin our analysis by demonstrating that none of the remaining possibilities

can produce a consistent embedding of the MSSM.

E6 ⊃ USp(8). The maximal subgroups of USp(8) are:

USp(8) ⊃ SU(4) × U(1) (C.197)

USp(8) ⊃ SU(2) × USp(6) (C.198)

USp(8) ⊃ USp(4) × USp(4) (C.199)

USp(8) ⊃ SU(2) (C.200)

USp(8) ⊃ SU(2) × SU(2) × SU(2). (C.201)

Of these possibilities, only line (C.198) contains SU(3) × SU(2). Further, by inspection of

lines (C.17)–(C.20 ), the only maximal subgroup of USp(6) which contains SU(3) is:

USp(6) ⊃ SU(3) × U(1). (C.202)

In this case, the unique candidate breaking pattern is:

E6 ⊃ USp(8) ⊃ SU(2) × USp(6) ⊃ SU(2) × [SU(3) × [U(1)]] (C.203)

which is obtained by a non-trivial U(1) instanton in the USp(6) factor. In this case, the

representations of E6 decompose as:

E6 ⊃ USp(8) ⊃ SU(2) × USp(6) ⊃ SU(2) × [SU(3) × [U(1)]] (C.204)

27 → (2, 3)1 + (2, 3)−1 + (1, 3)−2 + (1, 3)2 + (1, 8)0 + (1, 1)0 (C.205)

78 → (3, 1)0 + (1, 1)0 + (1, 6)2 + (1, 6)−2 + (1, 8)0 + (2, 3)1 (C.206)

+ (2, 3)−1 + (1, 3)−2 + (1, 3)2 + (1, 8)0 + (2, 1)3 + (2, 1)−3 (C.207)

+ (2, 6)−1 + (2, 6)1. (C.208)

By inspection, all singlets of SU(3)× SU(2) are neutral under the only U(1) factor so that

the resulting model cannot contain any E-fields.

E6 ⊃ F4. The representation content of E6 decomposes under F4 as:

E6 ⊃ F4 (C.209)

27 → 26 + 1 (C.210)

78 → 26 + 52. (C.211)

Returning to our previous analysis of breaking patterns for F4, we therefore conclude that

this breaking pattern cannot produce the correct matter content of the MSSM.
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E6 ⊃ SU(3) × G2. Although G2 contains SU(3) as a maximal subgroup, it is not

possible to arrange for an instanton configuration to break G2 to SU(3). For this reason,

we conclude that the SU(3) factor of Gstd must be identified with the SU(3) factor of

the maximal subgroup SU(3) × G2 of E6. In this case, it now follows that the factor

SU(2) ×U(1) must descend from G2. Returning to lines (C.24)–(C.26), it follows that the

maximal subgroups SU(3) and SU(2) × SU(2) contain SU(2) × U(1).

First consider the decomposition of representations of E6 via the nested sequence of

maximal subgroups:

E6 ⊃ SU(3) ×G2 ⊃ SU(3) × [SU(3)] ⊃ SU(3) × [SU(2) × [U(1)]] (C.212)

27 → (6, 1)0 + (3, 1)0 + (3, 2)1 + (3, 1)−2 + (3, 2)−1 + (3, 1)2 (C.213)

78 → (8, 1)0 + (1, 1)−2 + (1, 2)1 + (1, 1)2 + (1, 2)−1 (C.214)

+ (1, 1)0 + (1, 2)3 + (1, 2)−3 + (1, 3)0. (C.215)

Because the ratio of the U(1) charge for the candidate E- and Q-fields does not equal six,

we conclude that this is not a viable breaking pattern.

Next consider the decomposition associated with the nested sequence of maximal sub-

groups:

E6 ⊃ SU(3) ×G2 ⊃ SU(3) × [SU(2) × SU(2)] (C.216)

27 → (6, 1, 1) + (3, 1, 3) + (3, 2, 2) (C.217)

78 → (8, 1, 1) + (1, 1, 3) + (1, 3, 1) + (1, 2, 4) + (8, 1, 3) + (8, 2, 2). (C.218)

Decomposing the above representations with respect to a U(1) subgroup of either SU(2)

factor, we find that the ratio of U(1) charges for the candidate E- and Q-fields again does

not equal six. Hence, neither nested sequence of maximal subgroups yields the correct

spectrum of the MSSM.

E6 ⊃ SU(3) × SU(3) × SU(3). In order to make the Z3 outer automorphism of

E6 more manifest, we assume that the decomposition of E6 to the maximal subgroup

SU(3) × SU(3) × SU(3) is given by:

E6 ⊃ SU(3)1 × SU(3)2 × SU(3)3 (C.219)

27 → (3, 3, 1) + (3, 1, 3) + (1, 3, 3) (C.220)

27 → (3, 3, 1) + (3, 1, 3) + (1, 3, 3) (C.221)

78 → (8, 1, 1) + (1, 8, 1) + (1, 1, 8) + (3, 3, 3) + (3, 3, 3). (C.222)

While it is also common to conjugate the representation content of the third SU(3) factor,

this is a choice of convention. Indeed, because of the Z3 outer automorphism, without loss

of generality we require that the first SU(3) factor is common to Gstd as well. First note

that while an SU(3)×U(1) instanton can break E6 to Gstd, we note that the resulting U(1)

factor of Gstd must descend from one of the remaining SU(3) factors. By inspection of the

above decomposition of line (C.219), the purported U(1)Y is incorrect.

– 107 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

To proceed further, we next consider the maximal subgroups of the last two SU(3)

factors. The maximal subgroups of SU(3) are:

a) : SU(3) ⊃ SU(2) × U(1) (C.223)

b) : SU(3) ⊃ SU(2). (C.224)

We therefore conclude that there are four distinct maximal subgroups of SU(3) × SU(3)×
SU(3) which can potentially yield Gstd. Moreover, in order to achieve the subgroup SU(2)×
U(1) ofGstd, we must assume that at least one SU(3) factor descends to a maximal subgroup

via line (C.223).

E6 ⊃ SU(3) × SU(3) × SU(3) ⊃ SU(3) × [SU(2)] × [SU(2) × U(1)]

We first treat the nested sequence of maximal subgroups where the second SU(3)

factor descends to SU(2) as in line (C.224) while the third descends to SU(2) ×U(1) as in

line (C.223). Because interchanging the last two SU(3) factors of E6 ⊃ SU(3) × SU(3) ×
SU(3) complex conjugates all representations, a similar analysis will hold in that case as

well. The representation content of E6 decomposes as:

E6 ⊃ SU(3)1 × SU(3)2 × SU(3)3 ⊃ SU(3)1 × [SU(2)]2 × [SU(2) × U(1)]3 (C.225)

27 → (3, 3, 1) + (3, 1, 12) + (3, 1, 2−1) + (1, 3, 1−2) + (1, 3, 21) (C.226)

78 → (8, 1, 1) + (1, 3, 1) + (1, 5, 1) + (1, 1, 10) + (1, 1, 23) + (1, 1, 2−3) (C.227)

+ (1, 1, 30) + (3, 3, 12) + (3, 3, 2−1) + (3, 3, 1−2) + (3, 3, 21). (C.228)

There are several ways in which an instanton configuration can yield the gauge group

Gstd. First consider configurations obtained via a non-trivial SU(2) instanton configuration.

Because the SU(2) factor of SU(3)2 either breaks completely or to a U(1) subgroup of SU(2),

we conclude that only SU(2) instantons with values in the factor SU(3)2 of line (C.219)

can preserve the gauge group Gstd. In this case, the U(1) charge assignments for the Q-

and E-fields are incompatible with the U(1)Y assignments of the Standard Model.

Next consider abelian instanton configurations which break one of the SU(2) factors.

Decomposing the factor SU(2)2 with respect to a U(1) subgroup, the resulting representa-

tion content is:

E6 ⊃ SU(3)1 × SU(3)2 × SU(3)3 ⊃ SU(3)1 × [SU(2)]2 × [SU(2) × U(1)]3 (C.229)

⊃ SU(3)1 × [U(1)a]2 × [SU(2) × U(1)b]3 (C.230)

27 → (3, 12, 10) + (3, 1−2, 10) + (3, 10, 10) + (3, 10, 12) + (3, 10, 2−1) (C.231)

+ (1, 12, 1−2) + (1, 1−2, 1−2) + (1, 10, 1−2) + (1, 12, 21) + (1, 1−2, 21) (C.232)

+ (1, 10, 21) (C.233)

78 → (8, 10, 10) + (1, 12, 10) + (1, 1−2, 10) + (1, 10, 10) + (1, 14, 10) (C.234)

+ (1, 12, 10) + (1, 10, 10) + (1, 1−2, 10) + (1, 1−4, 10) + (1, 10, 10) (C.235)

+ (1, 10, 23) + (1, 10, 2−3) + (1, 10, 30) + (3, 12, 12) + (3, 1−2, 12) (C.236)

+ (3, 10, 12) + (3, 12, 2−1) + (3, 1−2, 2−1) + (3, 10, 2−1) + (3, 1−2, 1−2) (C.237)

+ (3, 12, 1−2) + (3, 10, 1−2) + (3, 1−2, 21) + (3, 12, 21) + (3, 10, 21). (C.238)
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The representation content of each MSSM field therefore descends from the following rep-

resentations:

E : (1, 1±2, 1±2) (C.239)

Q : (3, 10, 2−1) or (3, 1±2, 2−1) (C.240)

Hd, L : (1, 1±2, 2±1) or (1, 10, 2±3) (C.241)

U : (3, 1±2, 10) or (3, 10, 1−2) or (3, 1±2, 1−2) (C.242)

D : (3, 1±2, 10) or (3, 10, 1−2) or (3, 1±2, 1−2) (C.243)

Hu : (1, 1±2, 2±1) or (1, 10, 2±3). (C.244)

There are four possible assignments for the Q,U,Hu fields which can yield a non-trivial

QUHu term:

Q U Hu

(3, 10, 2−1) (3, 1±2, 10) (1, 1∓2, 2+1)

(3, 10, 2−1) (3, 10, 1−2) (1, 10, 2+3)

(3, 1±2, 2−1) (3, 1∓2, 1−2) (1, 10, 2+3)

(C.245)

so that in the first three cases, the U(1)Y charge of Q requires b = −1 while in the final

case the U(1)Y charge of Hu requires b = +1. In particular, this implies that the second

choice of charge assignments in line (C.245) is inconsistent. Next consider the first choice of

charge assignments. In order to obtain the correct U(1)Y charge assignment for the U -field,

we must therefore require a = ∓2. Finally, the fourth choice of charge assignments requires

a = ±1. Of these possible charge assignments, only the first yields a choice consistent with

the U(1)Y charge of the E-field in line (C.239). We therefore find that a = −2 and b = −1

where without loss of generality we have chosen a sign for a. It now follows that the only

candidate charge assignments for the fields are:

E27 Q27,78 U27 D27,78 L27 Hu27 Hd78

(1, 1−2, 1−2) (3, 10, 2−1) (3, 12, 10) (3, 10, 1−2) (1, 12, 2−1) (1, 1−2, 2+1) (1, 10, 23)

(C.246)

where we have also indicated the E6 representation content. The interaction term QUHu

therefore descends from a 273 term so that in particular, Q descends from the 27 of E6. In

order to obtain a non-trivial QDHd term, this in turn requires D to descend from the 78

of E6 so that we finally obtain the representation content:

E27 Q27 U27 D27 L27 Hu27 Hd78

(1, 1−2, 1−2) (3, 10, 2−1) (3, 12, 10) (3, 10, 1−2) (1, 12, 2−1) (1, 1−2, 2+1) (1, 10, 23)

(C.247)

we therefore conclude that a U(1)2 ×U(1)3 of the above type can indeed yield a spectrum

consistent with the MSSM.

E6 ⊃ SU(3) × SU(3) × SU(3) ⊃ SU(3) × [SU(2) × U(1)] × [SU(2) × U(1)]

We next treat the nested sequence of maximal subgroups where the second and third

SU(3) factors of the decomposition E6 ⊃ SU(3) × SU(3) × SU(3) descend to SU(2) × U(1)
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as in line (C.223). Under this decomposition, the resulting representation content is:

E6 = SU(3)1 × SU(3)2 × SU(3)3 (C.248)

⊃ SU(3)1 × [SU(2) × U(1)a]2 × [SU(2) × U(1)b]3 (C.249)

27 → (3, 1−2, 10) + (3, 21, 10) + (3, 10, 12) + (3, 10, 2−1) + (1, 12, 1−2) (C.250)

+ (1, 2−1, 1−2) + (1, 12, 21) + (1, 2−1, 21) (C.251)

78 → (8, 10, 10) + (1, 10, 10) + (1, 23, 10) + (1, 2−3, 10) + (1, 30, 10) (C.252)

+ (1, 10, 10) + (1, 10, 23) + (1, 10, 2−3) + (1, 10, 30) + (3, 1−2, 1−2) (C.253)

+ (3, 1−2, 21) + (3, 21, 1−2) + (3, 21, 21) + (3, 12, 12) + (3, 12, 2−1) (C.254)

+ (3, 2−1, 12) + (3, 2−1, 2−1). (C.255)

As opposed to previous examples, we now show that a non-abelian instanton can indeed

yield the spectrum of the MSSM. To this end, we first show that the representation content

under the subgroup SU(3)1 × [U(1)a]2 × [SU(2) × U(1)b]3 can yield the desired spectrum.

We note that this will then establish the same result for a U(1) instanton which breaks

this SU(2) factor to U(1).

The representation content of the candidate fields is given by ignoring the first SU(2)

factor:

E : (1, 12ε, 1−2ε) or (1, 2ε, 12ε) or (1, 23ε, 10) (C.256)

Q : (3, 10, 2−1) or (3, 1−2, 21) or (3, 21, 21) (C.257)

U : (3, 1−2, 10) or (3, 21, 10) or (3, 10, 1−2) (C.258)

or (3, 12, 12) or (3, 2−1, 12) (C.259)

D : (3, 1−2, 10) or (3, 21, 10) or (3, 10, 1−2) (C.260)

or (3, 12, 12) or (3, 2−1, 12) (C.261)

Hd,Hu, L : (1, 12ε, 2ε) or (1, 2−ε, 2ε) or (1, 10, 23ε) (C.262)

where ε = ±1. We begin by listing all possible distinct combinations of fields which can

potentially descend to the MSSM interaction term QUHu:

– 110 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

Q U Hu (a, b)

1 (3, 10, 2−1) (3, 1−2, 10) (1, 12, 21) (2,−1)

2 (3, 10, 2−1) (3, 21, 10) (1, 2−1, 21) (−4,−1)

3 (3, 10, 2−1) (3, 10, 1−2) (1, 10, 23) OUT

4 (3, 10, 2−1) (3, 12, 12) (1, 1−2, 2−1) (−1,−1)

5 (3, 10, 2−1) (3, 2−1, 12) (1, 21, 2−1) (2,−1)

6 (3, 1−2, 21) (3, 1−2, 10) OUT OUT

7 (3, 1−2, 21) (3, 21, 10) (1, 21, 2−1) (−4,−7)

8 (3, 1−2, 21) (3, 10, 1−2) (1, 12, 21) OUT

9 (3, 1−2, 21) (3, 12, 12) (1, 10, 2−3) (−1,−1)

10 (3, 1−2, 21) (3, 2−1, 12) OUT OUT

11 (3, 21, 21) (3, 1−2, 10) (1, 21, 2−1) (2,−1)

12 (3, 21, 21) (3, 21, 10) (1, 1−2, 2−1) (−4, 5)

13 (3, 21, 21) (3, 10, 1−2) (1, 2−1, 21) (−1, 2)

14 (3, 21, 21) (3, 12, 12) OUT OUT

15 (3, 21, 21) (3, 2−1, 12) (1, 10, 2−3) (2,−1)

(C.263)

where we have also solved for the linear combination of U(1)a and U(1)b consistent with

U(1)Y charge assignments in the MSSM. Next, we list all possible combinations of fields

consistent with the above classification which also allow the interaction term QDHd.

Q U D

1 (3, 10, 2−1) (3, 1−2, 10) (3, 21, 10) or (3, 10, 1−2) or (3, 12, 12)

2 (3, 10, 2−1) (3, 21, 10) (3, 10, 1−2) or (3, 2−1, 12)

4 (3, 10, 2−1) (3, 12, 12) (3, 1−2, 10) or (3, 10, 1−2)

5 (3, 10, 2−1) (3, 2−1, 12) (3, 21, 10) or (3, 10, 1−2) or (3, 12, 12)

7 (3, 1−2, 21) (3, 21, 10) OUT

9 (3, 1−2, 21) (3, 12, 12) (3, 10, 1−2)

11 (3, 21, 21) (3, 1−2, 10) (3, 21, 10) or (3, 10, 1−2)

12 (3, 21, 21) (3, 21, 10) (3, 12, 12)

13 (3, 21, 21) (3, 10, 1−2) (3, 1−2, 10)

15 (3, 21, 21) (3, 2−1, 12) (3, 21, 10) or (3, 10, 1−2)

(C.264)
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Hu Hd (a, b)

1 (1, 12, 21) (1, 2−1, 21) or (1, 10, 23) or (1, 1−2, 2−1) (2,−1)

2 (1, 2−1, 21) (1, 10, 23) or (1, 21, 2−1) (−4,−1)

4 (1, 1−2, 2−1) (1, 12, 21) or (1, 10, 23) (−1,−1)

5 (1, 21, 2−1) (1, 2−1, 21) or (1, 10, 23) or (1, 1−2, 2−1) (2,−1)

7 (1, 21, 2−1) OUT (−4,−7)

9 (1, 10, 2−3) (1, 12, 21) (−1,−1)

11 (1, 21, 2−1) (1, 1−2, 2−1) or (1, 2−1, 21) (2,−1)

12 (1, 1−2, 2−1) OUT (−4, 5)

13 (1, 2−1, 21) (1, 21, 2−1) (−1, 2)

15 (1, 10, 2−3) (1, 1−2, 2−1) or (1, 2−1, 21) (2,−1)

. (C.265)

To further narrow the possible combinations of fields, we next require that the interactions
in question properly descend from E6 invariant terms of the full theory. We find that there
many ways to package the field content of the MSSM into representations of E6. The
complete list of possibilities is:

Q U D L

1a (3, 10, 2−1) ∈ 27 (3, 1−2, 10) ∈ 27 (3, 21, 10) ∈ 27 (1, 2−1, 21) ∈ 27

1b (3, 10, 2−1) ∈ 27 (3, 1−2, 10) ∈ 27 (3, 10, 1−2) ∈ 27 (1, 1−2, 2−1) ∈ 27

1c (3, 10, 2−1) ∈ 27 (3, 1−2, 10) ∈ 27 (3, 10, 1−2) ∈ 27 OUT

1.5 (3, 10, 2−1) ∈ 27 (3, 1−2, 10) ∈ 27 (3, 12, 12) ∈ 78 (1, 2−1, 21) ∈ 27

2a (3, 10, 2−1) ∈ 27 (3, 21, 10) ∈ 27 (3, 10, 1−2) ∈ 27 OUT

2b (3, 10, 2−1) ∈ 27 (3, 21, 10) ∈ 27 (3, 10, 1−2) ∈ 27 (1, 21, 2−1) ∈ 27

2.5a (3, 10, 2−1) ∈ 27 (3, 21, 10) ∈ 27 (3, 2−1, 12) ∈ 78 (1, 21, 2−1) ∈ 27

2.5b (3, 10, 2−1) ∈ 27 (3, 21, 10) ∈ 27 (3, 2−1, 12) ∈ 78 (1, 10, 23) ∈ 78

4 (3, 10, 2−1) ∈ 27 (3, 12, 12) ∈ 78 (3, 1−2, 10) ∈ 27 OUT

4.5 (3, 10, 2−1) ∈ 27 (3, 12, 12) ∈ 78 (3, 10, 1−2) ∈ 27 OUT

5a (3, 10, 2−1) ∈ 27 (3, 2−1, 12) ∈ 78 (3, 21, 10) ∈ 27 OUT

5b (3, 10, 2−1) ∈ 27 (3, 2−1, 12) ∈ 78 (3, 21, 10) ∈ 27 (1, 1−2, 2−1) ∈ 27

5.3a (3, 10, 2−1) ∈ 27 (3, 2−1, 12) ∈ 78 (3, 10, 1−2) ∈ 27 OUT

5.3b (3, 10, 2−1) ∈ 27 (3, 2−1, 12) ∈ 78 (3, 10, 1−2) ∈ 27 OUT

5.6a (3, 10, 2−1) ∈ 27 (3, 2−1, 12) ∈ 78 (3, 12, 12) ∈ 78 OUT

5.6b (3, 10, 2−1) ∈ 27 (3, 2−1, 12) ∈ 78 (3, 12, 12) ∈ 78 (1, 2−1, 21) ∈ 27

9 (3, 1−2, 21) ∈ 78 (3, 12, 12) ∈ 78 (3, 10, 1−2) ∈ 27 OUT

11a (3, 21, 21) ∈ 78 (3, 1−2, 10) ∈ 27 (3, 21, 10) ∈ 27 OUT

11b (3, 21, 21) ∈ 78 (3, 1−2, 10) ∈ 27 (3, 21, 10) ∈ 27 (1, 2−1, 21) ∈ 27

11.5a (3, 21, 21) ∈ 78 (3, 1−2, 10) ∈ 27 (3, 10, 1−2) ∈ 27 OUT

11.5b (3, 21, 21) ∈ 78 (3, 1−2, 10) ∈ 27 (3, 10, 1−2) ∈ 27 (1, 1−2, 21) ∈ 27

13 (3, 21, 21) ∈ 78 (3, 10, 1−2) ∈ 27 (3, 1−2, 10) ∈ 27 (1, 21, 2−1) ∈ 27

15a (3, 21, 21) ∈ 78 (3, 2−1, 12) ∈ 78 (3, 21, 10) ∈ 27 (1, 10, 23) ∈ 78

15b (3, 21, 21) ∈ 78 (3, 2−1, 12) ∈ 78 (3, 21, 10) ∈ 27 (1, 2−1, 21) ∈ 27

15.5a (3, 21, 21) ∈ 78 (3, 2−1, 12) ∈ 78 (3, 10, 1−2) ∈ 27 (1, 2−1, 21) ∈ 27

15.5b (3, 21, 21) ∈ 78 (3, 2−1, 12) ∈ 78 (3, 10, 1−2) ∈ 27 (1, 1−2, 2−1) ∈ 27

. (C.266)
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E Hu Hd (a, b)

1a (1, 12, 1−2) ∈ 27 (1, 12, 21) ∈ 27 (1, 2−1, 21) ∈ 27 (2,−1)

1b (1, 12, 1−2) ∈ 27 (1, 12, 21) ∈ 27 (1, 10, 23) ∈ 78 (2,−1)

1c (1, 23, 10) ∈ 78 (1, 12, 21) ∈ 27 (1, 10, 23) ∈ 78 (2,−1)

1.5 (1, 23, 10) ∈ 78 (1, 12, 21) ∈ 27 (1, 1−2, 2−1) ∈ 27 (2,−1)

2a (1, 1−2, 12) ∈ 27 (1, 2−1, 21) ∈ 27 (1, 10, 23) ∈ 78 (−4,−1)

2b (1, 2−1, 1−2) ∈ 27 (1, 2−1, 21) ∈ 27 (1, 10, 23) ∈ 78 (−4,−1)

2.5a (1, 1−2, 12) ∈ 27 (1, 2−1, 21) ∈ 27 (1, 21, 2−1) ∈ 27 (−4,−1)

2.5b (1, 2−1, 1−2) ∈ 27 (1, 2−1, 21) ∈ 27 (1, 21, 2−1) ∈ 27 (−4,−1)

4 OUT (1, 1−2, 2−1) ∈ 27 (1, 12, 21) ∈ 27 (−1,−1)

4.5 OUT (1, 1−2, 2−1) ∈ 27 (1, 10, 23) ∈ 78 (−1,−1)

5a (1, 12, 1−2) ∈ 27 (1, 21, 2−1) ∈ 27 (1, 2−1, 21) ∈ 27 (2,−1)

5b (1, 23, 10) ∈ 78 (1, 21, 2−1) ∈ 27 (1, 2−1, 21) ∈ 27 (2,−1)

5.3a (1, 12, 1−2) ∈ 27 (1, 21, 2−1) ∈ 27 (1, 10, 23) ∈ 78 (2,−1)

5.3b (1, 23, 10) ∈ 78 (1, 21, 2−1) ∈ 27 (1, 10, 23) ∈ 78 (2,−1)

5.6a (1, 12, 1−2) ∈ 27 (1, 21, 2−1) ∈ 27 (1, 1−2, 2−1) ∈ 27 (2,−1)

5.6b (1, 23, 10) ∈ 78 (1, 21, 2−1) ∈ 27 (1, 1−2, 2−1) ∈ 27 (2,−1)

9 OUT (1, 10, 2−3) ∈ 78 (1, 12, 21) ∈ 27 (−1,−1)

11a (1, 12, 1−2) ∈ 27 (1, 21, 2−1) ∈ 27 (1, 1−2, 2−1) ∈ 27 (2,−1)

11b (1, 23, 10) ∈ 78 (1, 21, 2−1) ∈ 27 (1, 1−2, 2−1) ∈ 27 (2,−1)

11.5a (1, 12, 1−2) ∈ 27 (1, 21, 2−1) ∈ 27 (1, 2−1, 21) ∈ 27 (2,−1)

11.5b (1, 23, 10) ∈ 78 (1, 21, 2−1) ∈ 27 (1, 2−1, 21) ∈ 27 (2,−1)

13 (1, 1−2, 12) ∈ 27 (1, 2−1, 21) ∈ 27 (1, 21, 2−1) ∈ 27 (−1, 2)

15a (1, 12, 1−2) ∈ 27 (1, 10, 2−3) ∈ 78 (1, 1−2, 2−1) ∈ 27 (2,−1)

15b (1, 23, 10) ∈ 78 (1, 10, 2−3) ∈ 78 (1, 1−2, 2−1) ∈ 27 (2,−1)

15.5a (1, 12, 1−2) ∈ 27 (1, 10, 2−3) ∈ 78 (1, 2−1, 21) ∈ 27 (2,−1)

15.5b (1, 23, 10) ∈ 78 (1, 10, 2−3) ∈ 78 (1, 2−1, 21) ∈ 27 (2,−1)

(C.267)

where the numbering convention has been chosen in order to trace the origin of each

possible permutation, and as before, OUT denotes an entry which has been ruled out

because it cannot yield the correct U(1)Y charge assignment or interaction term.

E6 ⊃ SU(10)×U(1). We now analyze breaking patterns of E6 which descend from the

maximal subgroup SO(10) × U(1) such that:

E6 ⊃ SO(10) × [U(1)] (C.268)

27 → 14 + 10−2 + 161 (C.269)

78 → 10 + 16−3 + 163 + 450. (C.270)

Of the maximal subgroups of SO (10) listed in lines (C.88)–(C.94), only the first four

contain the non-abelian group SU(3)×SU(2) so that the unique nested sequence of maximal

subgroups of E6 is uniquely determined by the paths:

E6 ⊃ SO(10) × [U(1)] ⊃ [SU(5) × U(1)] × U(1) (C.271)

⊃ [SU(3) × SU(2) × U(1)] × U(1)] × U(1) (C.272)
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E6 ⊃ SO(10) × [U(1)] ⊃ SU(2) × SU(2) × SU(4) × [U(1)] (C.273)

⊃ SU(2) × SU(2) × [SU(3) × U(1)] × U(1) (C.274)

E6 ⊃ SO(10) × [U(1)] ⊃ SO(9) × [U(1)] ⊃ [SU(2) × SU(4)] × [U(1)] (C.275)

⊃ [SU(2) × [SU(3) × U(1)]] × [U(1)] (C.276)

E6 ⊃ SO(10) × [U(1)] ⊃ SU(2) × SO(7) ⊃ [SU(2) × SU(4)] × [U(1)] (C.277)

⊃ [SU(2) × [SU(3) × U(1)]] × [U(1)]. (C.278)

Because the previous analysis of abelian instanton configurations of SO(10) which can

yield the MSSM spectrum carry over to this case as well, we focus on breaking patterns

which do not embed purely in SO(10). While it is in principle possible to package the

field content of the MSSM fields into representations of E6 in more exotic ways using

the additional U(1) charge, all of these configurations still correspond to generic abelian

instanton configurations.

E6 ⊃ SO(10) × [U(1)] ⊃ SU(2) × SO(7) × [U(1)] ⊃ SU(2) × SU(4) × [U(1)] ⊃ SU(2) ×
[SU(3) × [U(1)]] × [U(1)]

Decomposing the 27 and 78 with respect to this nested sequence of maximal subgroups,

we find:

E6 ⊃ . . . ⊃ SU(2) × [SU(3) × [U(1)a]] × [U(1)b] (C.279)

27 → (1, 1)0,4 + (3, 1)0,−2 + (1, 1)0,−2 + (1, 3)2,−2 (C.280)

+ (1, 3)−2,−2 + (2, 1)3,1 + (2, 3)−1,1 + (2, 1)−3,1 + (2, 3)1,1 (C.281)

78 → (1, 1)0,0 + (2, 1)3,−3 + (2, 3)−1,−3 + (2, 1)−3,−3 (C.282)

+ (2, 3)1,−3 + (2, 1)−3,3 + (2, 3)1,3 + (2, 1)3,3 + (2, 3)−1,3 (C.283)

+ (3, 1)0,0 + (1, 3)2,0 + (1, 3)−2,0 + (3, 3)2,0 + (3, 3)−2,0 (C.284)

+ (3, 1)0,0 + (1, 1)0,0 + (1, 3)−4,0 + (1, 3)4,0 + (1, 8)0,0. (C.285)

We begin by classifying all combinations of representations which can yield the non-trivial

interaction term QUHu:

Q U D L

1 (2, 3)−1,1 ∈ 27 (1, 3)−2,−2 ∈ 27 (1, 3)−2,2 ∈ 27 (2, 1)−3,−1 ∈ 27

2 (2, 3)−1,1 ∈ 27 (1, 3)−2,−2 ∈ 27 (1, 3)4,0 ∈ 78 (2, 1)3,−3 ∈ 78

3 (2, 3)−1,−1 ∈ 27 (1, 3)−2,2 ∈ 27 (1, 3)−2,−2 ∈ 27 (2, 1)−3,1 ∈ 27

4 (2, 3)−1,−1 ∈ 27 (1, 3)−2,2 ∈ 27 (1, 3)4,0 ∈ 78 (2, 1)3,3 ∈ 78

(C.286)

E Hu Hd (a, b)

1 (1, 1)0,4 ∈ 27 (2, 1)3,1 ∈ 27 (2, 1)3,−3 ∈ 78 (1/2, 3/2)

2 (1, 1)0,4 ∈ 27 (2, 1)3,1 ∈ 27 (2, 1)−3,−1 ∈ 27 (1/2, 3/2)

3 (1, 1)0,−4 ∈ 27 (2, 1)3,−1 ∈ 27 (2, 1)3,3 ∈ 78 (1/2,−3/2)

4 (1, 1)0,−4 ∈ 27 (2, 1)3,−1 ∈ 27 (2, 1)−3,1 ∈ 27 (1/2,−3/2)

(C.287)

so that in this case a non-standard embedding of a U(1)×U(1) instanton can indeed yield

the spectrum of the MSSM.
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E6 ⊃ SO(10)× [U(1)] ⊃ SO(9)× [U(1)] ⊃ SU(2)× SU(4)× [U(1)] ⊃ SU(2)× [SU(3)×
[U(1)]] × [U(1)]

Decomposing the 27 and 78 with respect to this nested sequence of maximal subgroups,

we find:

E6 ⊃ . . . ⊃ SU(2) × [SU(3) × [U(1)a]] × [U(1)b] (C.288)

27 → (1, 1)0,4 + (1, 1)0,−2 + (3, 1)0,−2 + (1, 3)2,−2 + (1, 3)−2,−2 (C.289)

+ (2, 1)3,1 + (2, 3)−1,1 + (2, 1)−3,1 + (2, 3)1,1 (C.290)

78 → (1, 1)0,0 + (2, 1)3,−3 + (2, 3)−1,−3 + (2, 1)−3,−3 + (2, 3)1,−3 (C.291)

+ (2, 1)3,3 + (2, 3)−1,3 + (2, 1)−3,3 + (2, 3)1,3 (C.292)

+ (3, 1)0,0 + (1, 1)0,0 + (1, 3)−4,0 + (1, 3)4,0 + (1, 8)0,0 + (3, 3)2,0 (C.293)

+ (3, 3)−2,0 + (3, 1)0,0 + (1, 3)2,0 + (1, 3)−2,0. (C.294)

By inspection, this is precisely the same matter content as in the previous example. We

therefore conclude that the abelian instanton configurations analyzed previously produce

an identical MSSM spectrum.

E6 ⊃ SO(10) × [U(1)] ⊃ SU(2) × SU(2) × SU(4) × [U(1)] ⊃ SU(2) × SU(2) × [SU(3) ×
U(1)] × U(1)

The decomposition of the 27 and 78 of E6 in this case yields:

E6 ⊃ SO(10) × [U(1)] ⊃ SU(2) × SU(2) × SU(4) × [U(1)] (C.295)

⊃ SU(2)1 × SU(2)2 × [SU(3) × U(1)a] × U(1)b (C.296)

27 → (1, 1, 1)0,4 + (2, 2, 1)0,−2 + (1, 1, 3)2,−2 + (1, 1, 3)−2,−2 (C.297)

+ (2, 1, 1)3,1 + (2, 1, 3)−1,1 + (1, 2, 1)−3,1 + (1, 2, 3)1,1 (C.298)

78 → (1, 1, 1)0,0 + (2, 1, 1)3,−3 + (2, 1, 3)−1,−3 + (1, 2, 1)−3,−3 (C.299)

+ (1, 2, 3)1,−3 + (2, 1, 1)−3,3 + (2, 1, 3)1,3 + (1, 2, 1)3,3 (C.300)

+ (1, 2, 3)−1,3 + (3, 1, 1)0,0 + (1, 3, 1)0,0 + (1, 1, 1)0,0 (C.301)

+ (1, 1, 3)−4,0 + (1, 1, 3)4,0 + (1, 1, 8)0,0 + (2, 2, 3)2,0 (C.302)

+ (2, 2, 3)−2,0. (C.303)

In fact, the representation content of this decomposition is identical to that obtained via the

previously treated nested sequence of maximal subgroups given by lines (C.248)–(C.255):

E6 ⊃ SU(3) × SU(3) × SU(3) ⊃ SU(3) × [SU(2) × U(1)c] × [SU(2) × U(1)d] (C.304)

under the linear change in U(1) charges:

U(1)a =
1

2
U(1)c +

1

2
U(1)d (C.305)

U(1)b =
1

2
U(1)c −

1

2
U(1)d. (C.306)
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E6 ⊃ SU(2)×SU(6). Decomposing the 27 and 78 of E6 with respect to SU(2)×SU(6)

yields:

E6 ⊃ SU(2) × SU(6) (C.307)

27 → (2, 6) + (1, 15) (C.308)

78 → (3, 1) + (1, 35) + (2, 20). (C.309)

Returning to the maximal subgroups of SU(6) presented in lines (C.57)–(C.63), the list of

all possible nested sequences of maximal subgroups of E6 descend to Gstd as:

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × [SU(5) × U(1)] (C.310)

⊃ SU(2) × [SU(3) × SU(2) × [U(1)] × U(1)] (C.311)

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × [SU(2) × SU(4) × U(1)] (C.312)

⊃ SU(2) × [SU(2) × [SU(3) × U(1)] × U(1)] (C.313)

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × [SU(3) × SU(3) × U(1)] (C.314)

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × SU(4) ⊃ SU(2) × [SU(3) × U(1)] (C.315)

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × USp(6) ⊃ SU(2) × [SU(3) × U(1)] (C.316)

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × [SU(2) × SU(3)] . (C.317)

In the first two nested sequences the resulting breaking pattern descends to the same

representation content as breaking patterns analyzed previously. For this reason, we confine

our analysis to breaking patterns reached via lines (C.314)–(C.317).

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × [SU(2) × SU(3)]

In this case, the representations of E6 decompose as:

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × [SU(2) × SU(3)] (C.318)

27 → (2, 2, 3) + (1, 1, 6) + (1, 3, 3) (C.319)

78 → (3, 1, 1) + (3, 3, 1) + (3, 3, 8) + (2, 4, 1) + (2, 2, 8). (C.320)

Decomposing one of the SU(2) factors with respect to a U(1) subgroup, it follows that

the ratio of U(1) charge for the Q- and E-fields is incorrect so that the MSSM cannot be

obtained via this path.

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × USp(6) ⊃ SU(2) × [SU(3) × U(1)]

The representations of E6 descend as:

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × USp(6) ⊃ SU(2) × [SU(3) × U(1)] (C.321)

27 → (2, 3)1 + (2, 3)−1 + (1, 1)0 + (1, 3)−2 + (1, 3)2 + (1, 8)0 (C.322)

78 → (3, 1)0 + (1, 3)−2 + (1, 3)2 + (1, 8)0 + (1, 1)0 + (1, 6)2 (C.323)

+ (1, 6)−2 + (1, 8)0 + (2, 3)1 + (2, 3)−1 + (2, 1)3 + (2, 1)−3 (C.324)

+ (2, 6)−1 + (2, 6)1 (C.325)

Because the U(1) charge assignment is incorrect, we cannot reach the MSSM via this nested

sequence either.
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E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × SU(4) ⊃ SU(2) × [SU(3) × U(1)]

Here, the representations of E6 descend as:

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × SU(4) ⊃ SU(2) × [SU(3) × U(1)] (C.326)

27 → (2, 3)2 + (2, 3)−2 + (1, 1)0 + (1, 3)−4 + (1, 3)4 + (1, 8)0 (C.327)

78 → (3, 1)0 + (1, 1)0 + (1, 3)−4 + (1, 3)4 + (1, 8)0 + (1, 6)−4 (C.328)

+ (1, 6)4 + (1, 8)0 + (2, 3)2 + (2, 6)−2 + (2, 1)6 + (2, 3)−2 (C.329)

+ (2, 6)2 + (2, 1)−6 (C.330)

which does not contain any candidate E-fields.

E6 ⊃ SU(2) × SU(6) ⊃ SU(2) × [SU(3) × SU(3) × U(1)]

All of the breaking patterns in this case have already been classified in our discussion of

breaking patterns for the maximal subgroup SU(3)×SU(3)×SU(3). Indeed, this essentially

follows from the fact that SU(3) contains the maximal subgroup SU(2)×U(1). We therefore

proceed to the other rank six bulk gauge groups and their breaking patterns.

C.3.2 SU(7)

We assume that the matter content of SU(7) descends from the adjoint representation of E8.

For this reason, we only treat the adjoint, 7, 21, 35 and complex conjugate representations

of SU(7). The maximal subgroups of SU(7) are:

SU(7) ⊃ SU(6) × U(1) (C.331)

SU(7) ⊃ SU(2) × SU(5) × U(1) (C.332)

SU(7) ⊃ SU(3) × SU(4) × U(1) (C.333)

SU(7) ⊃ SO(7) (C.334)

of which only the first three contain Gstd.

SU(7) ⊃ SU(6)×U(1). There are three maximal subgroups of SU(6) which can contain

the non-abelian factor of Gstd and can be reached via an instanton:

SU(7) ⊃ SU(6) × U(1) ⊃ SU(5) × U(1) × U(1) (C.335)

SU(7) ⊃ SU(6) × U(1) ⊃ SU(2) × SU(4) × U(1) × U(1) (C.336)

SU(7) ⊃ SU(6) × U(1) ⊃ SU(3) × SU(3) × U(1) × U(1). (C.337)

In this case, in order to preserve an SU(3) × SU(2) factor, the only available instanton

configuration must generically take values in U(1)3 so that all nested sequences of maximal

subgroups which can be reached by an instanton configuration all descend to the group

SU(3)×SU(2)×U(1)×U(1)×U(1). It is therefore enough to consider the breaking pattern:

SU(7) ⊃ SU(6) × U(1) ⊃ SU(5) × U(1) × U(1) (C.338)

⊃ SU(3) × SU(2) × U(1) × U(1) × U(1) (C.339)

7 → 10,0,6 + 10,−5,−1 + (1, 2)3,1,−1 + (3, 1)−2,1,−1 (C.340)
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21 → (1, 1)6,2,−2 + (3, 1)−4,2,−2 + (3, 2)1,2,−2 + (3, 1)−2,2,−2 (C.341)

+ (1, 2)3,2,−2 + (1, 1)0,−5,5 + (3, 1)−2,1,5 + (1, 2)3,1,5 (C.342)

35 → (1, 1)6,−3,−3 + (3, 1)−4,−3,−3 + (3, 2)1,−3,−3 + (1, 1)−6,3,−3 (C.343)

+ (3, 1)4,3,−3 + (3, 2)−1,3,−3 + (1, 1)6,2,4 + (3, 1)−4,2,4 (C.344)

+ (3, 2)1,2,4 + (3, 1)−2,−4,4 + (1, 2)3,−4,4 (C.345)

48 → 10,0,0 + 10,0,0 + (3, 1)−2,6,0 + (1, 2)3,6,0 + (3, 1)2,−6,0 (C.346)

+ (1, 2)−3,−6,0 + (1, 1)0,0,0 + (1, 3)0,0,0 + (8, 1)0,0,0 (C.347)

+ (3, 2)−5,0,0 + (3, 2)5,0,0 + (1, 1)0,−5,−7 + (1, 1)0,5,7 (C.348)

+ (3, 1)−2,1,−7 + (1, 2)3,1,−7 + (3, 1)2,−1,7 + (1, 2)−3,−1,7. (C.349)

By inspection, all of the representations of the MSSM are present in the above decompo-

sitions.

SU(7) ⊃ SU(2) × SU(5) × U(1). The representations of SU(7) now decompose as:

SU(7) ⊃ SU(2) × SU(5) × U(1) (C.350)

7 → (2, 1)5 + (1, 5)−2 (C.351)

21 → (1, 1)10 + (1, 10)−4 + (2, 5)3 (C.352)

35 → (1, 5)8 + (2, 10)1 + (1, 10)−6 (C.353)

48 → (3, 1)0 + (1, 24)0 + (2, 5)−7 + (2, 5)7. (C.354)

In order to retain an SU(3) subgroup, an instanton must take values in an appropriate U(1)

or SU(2) subgroup of SU(5). As before, a generic U(1)3 instanton will yield the expected

MSSM spectrum. If we instead consider an SU(2) × U(1) instanton, it is also immediate

that we can again obtain the desired spectrum of the MSSM. This alternative breaking

pattern has the added benefit that it contains one less extraneous U(1) factor.

SU(7) ⊃ SU(3) × SU(4) × U(1). The representations of SU(7) decompose as:

SU(7) ⊃ SU(3) × SU(4) × U(1) (C.355)

7 → (3, 1)4 + (1, 4)−3 (C.356)

21 → (3, 1)8 + (3, 4)1 + (1, 6)−6 (C.357)

35 → (1, 1)12 + (3, 4)5 + (3, 6)−2 + (1, 4)−9 (C.358)

48 → (1, 1)0 + (8, 1)0 + (1, 15)0 + (3, 4)7 + (3, 4)−7. (C.359)

First suppose that the instanton configuration preserves the SU(3) subgroup of SU(4) ⊃
SU(3) × U(1). Such an instanton must then also preserve an SU(2) subgroup of the first

SU(3) factor so that the resulting U(1)3 instanton reduces to the generic situation treated

previously.

Alternatively, an instanton can preserve all of the first SU(3) factor and break SU(4)

to a smaller subgroup. To this end, recall that the maximal subgroups of SU(4) which can

– 118 –



J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

contain an SU(2) subgroup are:

SU(4) ⊃ SU(3) × U(1) (C.360)

SU(4) ⊃ SU(2) × SU(2) × U(1) (C.361)

SU(4) ⊃ USp(4) (C.362)

SU(4) ⊃ SU(2) × SU(2). (C.363)

In order to preserve an SU(2) subgroup, the first case necessarily descends to the previously

treated case of a U(1)3 instanton. We therefore focus on the remaining cases.

SU(7) ⊃ SU(3) × SU(4) × U(1) ⊃ SU(3) × [SU(2) × SU(2) × U(1)] × U(1)

In this case, we note that the resulting nested sequence of maximal subgroups descends

to the same subgroup as:

SU(7) ⊃ SU(2) × SU(5) × U(1) ⊃ SU(2) × [SU(3) × SU(2) × U(1)] × U(1) (C.364)

whose breaking patterns have already been analyzed.

SU(7) ⊃ SU(3) × SU(4) × U(1) ⊃ SU(3) × USp(4) × U(1)

Under this subgroup, the representations of SU(7) decompose as:

SU(7) ⊃ SU(3) × SU(4) × U(1) ⊃ SU(3) × USp(4) × U(1) (C.365)

7 → (3, 1)4 + (1, 4)−3 (C.366)

21 → (3, 1)8 + (3, 4)1 + (1, 1)−6 + (1, 5)−6 (C.367)

35 → (1, 1)12 + (3, 4)5 + (3, 1)−2 + (3, 5)−2 + (1, 4)−9 (C.368)

48 → (1, 1)0 + (8, 1)0 + (1, 5)0 + (1, 10)0 + (3, 4)7 + (3, 4)−7 (C.369)

there are two possible maximal subgroups of USp(4) which can be reached by a general

breaking pattern:

a) : USp(4) ⊃ SU(2) × SU(2) (C.370)

b) : USp(4) ⊃ SU(2) × U(1). (C.371)

We first consider the decomposition with respect to case a):

SU(7) ⊃ SU(3) × USp(4) × U(1) ⊃ SU(3) × [SU(2) × SU(2)] × U(1) (C.372)

7 → (3, 1, 1)4 + (1, 2, 1)−3 + (1, 1, 2)−3 (C.373)

21 → (3, 1, 1)8 + (3, 2, 1)1 + (3, 1, 2)1 + (1, 1, 1)−6 (C.374)

+ (1, 1, 1)−6 + (1, 2, 2)−6 (C.375)

35 → (1, 1, 1)12 + (3, 2, 1)5 + (3, 1, 2)5 + (3, 1, 1)−2 (C.376)

+ (3, 1, 1)−2 + (3, 2, 2)−2 + (1, 1, 2)−9 + (1, 2, 1)−9 (C.377)

48 → (1, 1, 1)0 + (8, 1, 1)0 + (1, 1, 1)0 + (1, 2, 2)0 (C.378)

+ (1, 3, 1)0 + (1, 1, 3)0 + (1, 2, 2)0 + (3, 1, 2)7 (C.379)

+ (3, 2, 1)7 + (3, 1, 2)−7 + (3, 2, 1)−7. (C.380)
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Without loss of generality, we may consider an instanton which breaks the first SU(2)

factor to either the trivial group, or a U(1) subgroup. Indeed, we find that even when the

instanton configuration contains a non-abelian factor, it is possible to reach the MSSM

spectrum:

Q21 U7 D35 L7 E21 Hu7 Hd7

(3, 2, 1)1 (3, 1, 1)−4 (3, 1, 1)2 (1, 2, 1)−3 (1, 1, 1)6 (1, 2, 1)3 (1, 2, 1)−3
.

(C.381)

Note that in this case, an SU(2) × U(1) instanton will break SU(7) directly to Gstd with

no extraneous U(1) factors.

Next consider the decomposition with respect to case b):

SU(7) ⊃ SU(3) × USp(4) × U(1) ⊃ SU(3) × [SU(2) × U(1)] × U(1) (C.382)

7 → (3, 1)0,4 + (1, 2)1,−3 + (1, 2)−1,−3 (C.383)

21 → (3, 1)0,8 + (3, 2)1,1 + (3, 2)−1,1 + (1, 1)0,−6 (C.384)

+ (1, 1)2,−6 + (1, 1)−2,−6 + (1, 3)0,−6 (C.385)

35 → (1, 1)0,12 + (3, 2)1,5 + (3, 2)−1,5 + (3, 1)0,−2 (C.386)

+ (3, 1)2,−2 + (3, 1)−2,−2 + (3, 3)0,−2 + (1, 2)1,−9 + (1, 2)−1,−9 (C.387)

48 → (1, 1)0,0 + (8, 1)0,0 + (1, 1)2,0 + (1, 1)2,0 + (1, 1)−2,0 (C.388)

+ (1, 3)0,0 + (1, 3)2,0 + (1, 3)−2,0 + (3, 2)1,7 (C.389)

+ (3, 2)−1,7 + (3, 2)1,−7 + (3, 2)−1,−7. (C.390)

In fact, with respect to the corresponding U(1) × U(1) instanton, we find that the mat-

ter content again organizes into the precise analogue of line (C.381) in this case as well.

We therefore conclude that these candidate breaking patterns can in principle be used to

eliminate additional U(1) factors.

SU(7) ⊃ SU(3) × SU(4) × U(1) ⊃ SU(3) × SU(2) × SU(2) × U(1)

The final case of interest proceeds via a different embedding of SU(2)×SU(2) in SU(4)

such that:

SU(7) ⊃ SU(3) × SU(4) × U(1) ⊃ SU(3) × [SU(2) × SU(2)] × U(1) (C.391)

7 → (3, 1, 1)4 + (1, 2, 2)−3 (C.392)

21 → (3, 1, 1)8 + (3, 2, 2)1 + (1, 1, 3)−6 + (1, 3, 1)−6 (C.393)

35 → (1, 1, 1)12 + (3, 2, 2)5 + (3, 1, 3)−2 + (3, 3, 1)−2 + (1, 2, 2)−9 (C.394)

48 → (1, 1, 1)0 + (8, 1, 1)0 + (1, 1, 3)0 + (1, 3, 1)0 + (1, 3, 3)0 (C.395)

+ (3, 2, 2)7 + (3, 2, 2)−7. (C.396)

Although this decomposition is indeed different from that presented below line (C.372), we

note that an SU(2) instanton can generate a very similar breaking pattern. Indeed, under

the forgetful homomorphism which trivializes all representations of the first SU(2) factor,

we find that the two decompositions are in fact identical. In particular, this implies that a

similar packaging of the field content of the MSSM as in line (C.381) will hold in this case

as well.
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C.3.3 SO(12)

We now proceed to the final rank six bulk gauge group which can occur in a candidate

F-theory GUT model. Starting from the adjoint representation of E8, the matter content

of the bulk SO(12) theory descends from the vector 12, the spinors 32, 32′ and adjoint 66.

The maximal subgroups of SO(12) are:

SO(12) ⊃ SU(6) × U(1) (C.397)

SO(12) ⊃ SU(2) × SU(2) × SO(8) (C.398)

SO(12) ⊃ SU(4) × SU(4) (C.399)

SO(12) ⊃ SO(10) × U(1) (C.400)

SO(12) ⊃ SO(11) (C.401)

SO(12) ⊃ SU(2) × SO(9) (C.402)

SO(12) ⊃ SU(2) × USp(6) (C.403)

SO(12) ⊃ USp(4) × SO(7). (C.404)

SO(12) ⊃ SU(2) × SU(2) × SU(2) (C.405)

of which all but the last entry contain Gstd. As in previous examples, our expectation

is that many distinct nested sequences of maximal subgroups can describe the breaking

pattern of the same instanton configuration.

SO(12) ⊃ USp(4) × SO(7). The decomposition of representations of SO(12) is:

SO(12) ⊃ USp(4) × SO(7) (C.406)

12 → (5, 1) + (1, 7) (C.407)

32, 32′ → (4, 8) (C.408)

66 → (10, 1) + (1, 21) + (5, 7) (C.409)

Of the two simple group factors, only SO(7) contains an SU(3) subgroup. Further, while

G2 and SU(4) are the two maximal subgroups of SO(7) which contain an SU(3) subgroup,

an instanton can only break SO(7) to SU(3) via the SU(4) path. Further decomposing

with respect to the nested sequence SO(7) ⊃ SU(4) ⊃ SU(3) × U(1) therefore yields:

SO(12) ⊃ USp(4) × SO(7) ⊃ USp(4) × SU(4) ⊃ USp(4) × SU(3) × U(1) (C.410)

12 → (5, 1)0 + (1, 1)0 + (1, 3)2 + (1, 3)−2 (C.411)

32, 32′ → (4, 3)1 + (4, 1)−3 + (4, 3)−1 + (4, 1)3 (C.412)

66 → (10, 1)0 + (1, 1)0 + (1, 3)2 + (1, 3)−2 + (1, 3)2 (C.413)

+ (1, 3)−2 + (1, 1)0 + (1, 3)−4 + (1, 3)4 + (1, 8)0 (C.414)

+ (5, 1)0 + (5, 3)2 + (5, 3)−2. (C.415)

With conventions as in lines (C.370) and (C.371), we now decompose USp(4) with respect

to the two maximal subgroups which can break to an SU(2) factor in the presence of an

SU(2) factor.
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SO(12) ⊃ USp(4) × SO(7) ⊃ [SU(2) × SU(2)] × [SU(3) × U(1)b]

First consider the maximal subgroup USp(4) ⊃ SU(2) × SU(2):

SO(12) ⊃ USp(4) × SO(7) ⊃ [SU(2) × SU(2)] × [SU(3) × U(1)b] (C.416)

12 → (1, 1, 1)0 + (2, 2, 1)0 + (1, 1, 1)0 + (1, 1, 3)2 + (1, 1, 3)−2 (C.417)

32, 32′ → (2, 1, 3)1 + (1, 2, 3)1 + (2, 1, 1)−3 + (1, 2, 1)−3 + (2, 1, 3)−1 (C.418)

+ (1, 2, 3)−1 + (2, 1, 1)3 + (1, 2, 1)3 (C.419)

66 → (3, 1, 1)0 + (1, 3, 1)0 + (2, 2, 1)0 + (1, 1, 1)0 + (1, 1, 3)2 (C.420)

+ (1, 1, 3)−2 + (1, 1, 3)2 + (1, 1, 3)−2 + (1, 1, 1)0 + (1, 1, 3)−4 (C.421)

+ (1, 1, 3)4 + (1, 1, 8)0 + (1, 1, 1)0 + (2, 2, 1)0 + (1, 1, 3)2 (C.422)

+ (1, 1, 3)−2 + (2, 2, 3)−2. (C.423)

In this case it follows that an SU(2) instanton cannot yield the correct U(1)Y assignments

for the fields of the MSSM. If we instead consider a U(1) instanton which breaks one

of the SU(2) factors to U(1)a, the following combinations of representations satisfy the

requirements that all U(1)Y charge assignments are correct and further, that all interaction

terms are consistent with gauge invariance of the parent theory:

Q U D L

1 (10, 2, 3)1 (1−1, 1, 3)−1 (11, 1, 3)−1 (10, 2, 1)−3

2 (10, 2, 3)1 (11, 1, 3)−1 (1−1, 1, 3)−1 (10, 2, 1)−3

(C.424)

E Hu Hd (a, b)

1 (11, 1, 1)3 (11, 2, 1)0 (1−1, 2, 1)0 (3, 1)

2 (1−1, 1, 1)3 (1−1, 2, 1)0 (11, 2, 1)0 (−3, 1)

. (C.425)

SO(12) ⊃ USp(4) × SO(7) ⊃ [SU(2) × U(1)] × [SU(3) × U(1)b]

Next consider the maximal subgroup USp(4) ⊃ SU(2) × U(1):

SO(12) ⊃ USp(4) × SO(7) ⊃ [SU(2) × U(1)a] × [SU(3) × U(1)b] (C.426)

12 → (12, 10) + (1−2, 10) + (30, 10) + (10, 10) + (10, 32) + (10, 3−2) (C.427)

32, 32′ → (21, 31) + (2−1, 31) + (21, 1−3) + (2−1, 1−3) + (21, 3−1) (C.428)

+ (2−1, 3−1) + (21, 13) + (2−1, 13) (C.429)

66 → (10, 10) + (30, 10) + (32, 10) + (3−2, 10) + (10, 10) + (10, 32) (C.430)

+ (10, 3−2) + (10, 32) + (10, 3−2) + (10, 10) + (10, 3−4) + (10, 34) (C.431)

+ (10, 80) + (12, 10) + (1−2, 10) + (30, 10) + (12, 32) + (1−2, 32) (C.432)

+ (30, 32) + (12, 3−2) + (1−2, 3−2) + (30, 3−2) (C.433)

Listing all possible Q-, U - and Hu-fields we find:

Q U Hu

(2±1, 31) (10, 3−2) or (10, 34) or (1±2, 3−2) (2±1, 1±3)
. (C.434)

Note in particular that in this case, it is not possible to form a gauge invariant QUHu, so

this path is excluded.
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SO(12) ⊃ SU(2) × USp(6). Because there is a unique maximal subgroup of USp(6)

which contains an SU(3) factor, we may perform the unique decomposition:

SO(12) ⊃ SU(2) × USp(6) ⊃ SU(2) × [SU(3) × U(1)] (C.435)

12 → (2, 3)1 + (2, 3)−1 (C.436)

32 → (4, 1)0 + (2, 3)−2 + (2, 3)2 + (2, 8)0 (C.437)

32′ → (3, 3)1 + (3, 3)−1 + (1, 1)3 + (1, 1)−3 + (1, 6)−1 + (1, 6)1 (C.438)

66 → (3, 1)0 + (1, 1)0 + (1, 6)2 + (1, 6)−2 + (1, 8)0 + (3, 3)−2 (C.439)

+ (3, 3)2 + (3, 8)0. (C.440)

By inspection, the relative U(1)Y charge assignments for the E- and Q-fields are incorrect.

We therefore conclude that this breaking pattern is not viable.

SO(12) ⊃ SU(2) × SO(9). The decomposition of SO(12) representations in this case

yields:

SO(12) ⊃ SU(2) × SO(9) (C.441)

12 → (3, 1) + (1, 9) (C.442)

32, 32′ → (2, 16) (C.443)

66 → (3, 1) + (1, 36) + (3, 9). (C.444)

There are three maximal subgroups of SO(9) which contain an SU(3) factor via a nested

sequence of maximal subgroups:

SO(9) ⊃ SU(2) × SU(4) ⊃ SU(2) × SU(3) × U(1) (C.445)

SO(9) ⊃ SO(8) ⊃ SO(7) ⊃ SU(4) ⊃ SU(3) × U(1) (C.446)

SO(9) ⊃ SO(8) ⊃ SU(4) × U(1) ⊃ SU(3) × U(1) × U(1) (C.447)

SO(9) ⊃ SO(7) × U(1) ⊃ SU(4) × U(1) ⊃ SU(3) × U(1) × U(1). (C.448)

By inspection, the U(1) × U(1) valued instanton associated with the last two nested se-

quences yield identical breaking patterns.

SO(12) ⊃ SU(2) × SO(9) ⊃ SU(2) × SU(2) × SU(4)

Decomposing the representations of SO(12) with respect to this breaking pattern yields:

SO(12) ⊃ SU(2) × SO(9) ⊃ SU(2) × SU(2) × SU(4) (C.449)

12 → (3, 1, 1) + (1, 3, 1) + (1, 1, 6) (C.450)

32, 32′ → (2, 2, 4) + (2, 2, 4) (C.451)

66 → (3, 1, 1) + (1, 3, 1) + (1, 1, 15) + (1, 3, 16) + (3, 3, 1) + (3, 1, 6) (C.452)

In this case, the analysis of breaking patterns is similar to that of the maximal subgroup

SO(10) ⊃ SU(2)×SU(2)×SU(4). We therefore conclude that the appropriate U(1)×U(1)

instanton configuration can produce the spectrum of the MSSM.
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SO(12) ⊃ SU(2) × SO(9) ⊃ SU(2) × SO(8) ⊃ SU(2) × SO(7)

⊃ SU(2) × SU(4) ⊃ SU(2) × [SU(3) × U(1)]

In this case, the decomposition to the appropriate subgroup does not yield a viable

candidate for the E-field:

SO(12) ⊃ . . . ⊃ SU(2) × SU(4) ⊃ SU(2) × [SU(3) × U(1)] (C.453)

12 → (3, 1)0 + (1, 1)0 + (1, 1)0 + (1, 1)0 + (1, 3)2 + (1, 3)−2 (C.454)

32, 32′ → (2, 1)3 + (2, 3)−1 + (2, 1)−3 + (2, 3)1 + (2, 1)3 + (2, 3)−1 (C.455)

+ (2, 1)−3 + (2, 3)1 (C.456)

66 → (3, 1)0 + (1, 1)0 + (1, 1)0 + (1, 1)0 + (1, 3)2 + (1, 3)−2 (C.457)

+ (1, 3)2 + (1, 3)−2 + (1, 1)0 + (1, 3)−4 + (1, 3)4 + (1, 8)0 (C.458)

+ (1, 3)2 + (1, 3)−2 + (3, 1)0 + (3, 1)0 + (3, 1)0 + (3, 3)2 (C.459)

+ (3, 3)−2 (C.460)

SO(12) ⊃ SU(2) × SO(9) ⊃ SU(2) × SO(8)

⊃ SU(2) × SU(4) × U(1) ⊃ SU(2) × SU(3) × U(1) × U(1)

The decomposition to Gstd now yields:

SO(12) ⊃ . . . ⊃ SU(2) × SU(4) × U(1) (C.461)

⊃ SU(2) × SU(3) × U(1)a × U(1)b (C.462)

12 → (3, 1)0,0 + (1, 1)0,2 + (1, 1)0,−2 + (1, 1)0,0 (C.463)

+ (1, 3)2,0 + (1, 3)−2,0 (C.464)

32, 32′ → (2, 1)3,1 + (2, 3)−1,1 + (2, 1)−3,1 + (2, 3)1,1 (C.465)

+ (2, 1)−3,−1 + (2, 3)1,−1 + (2, 1)3,−1 + (2, 3)−1,−1 (C.466)

66 → (3, 1)0,0 + (1, 1)0,0 + (1, 1)0,2 + (1, 3)2,2 (C.467)

+ (1, 3)−2,2 + (1, 1)0,−2 + (1, 3)2,−2 + (1, 3)−2,−2 (C.468)

+ (1, 3)2,0 + (1, 3)−2,0 + (1, 1)0,0 + (1, 3)−4,0 (C.469)

+ (1, 3)4,0 + (1, 8)0,0 + (3, 1)0,2 + (3, 1)0,−2 (C.470)

+ (3, 1)0,0 + (3, 3)2,0 + (3, 3)−2,0. (C.471)

In this case, the candidate E- and Q-fields yield the relations:

E : ±2b = 6 (C.472)

Q : −a± b = 1 (C.473)

so that b = ±3 and a = 2 or −4. Because the candidate L-fields all descend from (2, 1)±3,±1,

we further deduce that a = 2. Without loss of generality, we fix the sign of b = +3. This

in turn implies that the representation content of the remaining fields is now fixed to be:

Q U D L E Hu Hd

(2, 3)−1,−1 (1, 3)−2,0 (1, 3)−2,2 (2, 1)−3,1 (1, 1)0,2 (2, 1)3,−1 (2, 1)−3,1
.

(C.474)
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Because some of the necessary interaction terms of the MSSM are now forbidden by gauge

invariance of the parent theory, we conclude that this does not yield a viable breaking

pattern.

SO(12) ⊃ SO(11). In this case, the breaking patterns of SO(12) directly descend to

the analysis of SO(11) breaking patterns previously analyzed. Indeed, the representations

of SO(12) descend as:

SO(12) ⊃ SO(11) (C.475)

12 → 1 + 11 (C.476)

32, 32′ → 32 (C.477)

66 → 11 + 55. (C.478)

SO(12) ⊃ SU(6) × U(1). First recall that the maximal subgroups of SU(6) which

contain SU(3) × SU(2) are:

SU(6) ⊃ SU(5) × U(1) (C.479)

SU(6) ⊃ SU(2) × SU(4) × U(1) (C.480)

SU(6) ⊃ SU(3) × SU(3) × U(1) (C.481)

SU(6) ⊃ SU(2) × SU(3). (C.482)

In the first three cases we find that the resulting breaking pattern must descend to the

usual breaking pattern via a U(1)3 instanton. Finally, by inspection of the decomposition

of SO(12) ⊃ SU(6)×U(1), we note that the resulting integral U(1) charges of each decom-

position are bounded in magnitude by two. Hence, only the first three maximal subgroups

can yield a consistent breaking pattern. While it would be of interest to classify all possible

ways of packaging the field content of the MSSM in representations of SO(12) in this case,

this analysis is not necessary for the purposes of classifying breaking patterns.

SO(12) ⊃ SU(2)×SU(2)×SO(8). Decomposing all relevant representations of SO(12)

with respect to this maximal subgroup yields:

SO(12) ⊃ SU(2) × SU(2) × SO(8) (C.483)

12 → (2, 2, 1) + (1, 1, 8v) (C.484)

32 → (1, 2, 8s) + (2, 1, 8c) (C.485)

32′ → (1, 2, 8c) + (2, 1, 8s) (C.486)

66 → (3, 1, 1) + (1, 3, 1) + (1, 1, 28) + (2, 2, 8v). (C.487)

There are two maximal subgroups of SO(8) which are consistent with a breaking pattern

generated by an instanton configuration:

SO(8) ⊃ SU(4) × U(1) (C.488)

SO(8) ⊃ SO(7) ⊃ SU(4). (C.489)
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We now consider breaking patterns which can descend from both maximal subgroups.

SO(12) ⊃ SU(2) × SU(2) × SO(8) ⊃ SU(2) × SU(2) × [SU(4) × U(1)]

Because the only simple group factor which contains an SU(3) subgroup is SU(4), we

may further decompose SU(4) ⊃ SU(3) × U(1). This yields:

SO(12) ⊃ SU(2) × SU(2) × SO(8) ⊃ SU(2) × SU(2) × [SU(4) × U(1)] (C.490)

⊃ SU(2) × SU(2) × [SU(3) × U(1) × U(1)] (C.491)

12 → (2, 2, 1)0,0 + (1, 1, 1)0,2 + (1, 1, 1)0,−2 (C.492)

+ (1, 1, 3)2,0 + (1, 1, 3)−2,0 (C.493)

32 → (1, 2, 1)3,1 + (1, 2, 3)−1,1 + (1, 2, 1)−3,−1 (C.494)

+ (1, 2, 3)1,−1 + (2, 1, 1)3,−1 + (2, 1, 3)−1,−1 (C.495)

+ (2, 1, 1)−3,1 + (2, 1, 3)1,1 (C.496)

32′ → (2, 1, 1)3,1 + (2, 1, 3)−1,1 + (2, 1, 1)−3,−1 (C.497)

+ (2, 1, 3)1,−1 + (1, 2, 1)3,−1 + (1, 2, 3)−1,−1 (C.498)

+ (1, 2, 1)−3,1 + (1, 2, 3)1,1 (C.499)

66 → (3, 1, 1)0,0 + (1, 3, 1)0,0 + (1, 1, 1)0,0 (C.500)

+ (1, 1, 3)2,2 + (1, 1, 3)−2,2 + (1, 1, 3)2,−2 (C.501)

+ (1, 1, 3)−2,−2 + (1, 1, 1)0,0 + (1, 1, 3)−4,0 (C.502)

+ (1, 1, 3)4,0 + (1, 1, 8)0,0 + (2, 2, 1)0,2 (C.503)

+ (2, 2, 1)0,−2 + (2, 2, 3)2,0 + (2, 2, 3)−2,0 . (C.504)

If we now consider a U(1) instanton which breaks one of the SU(2) factor, we again

obtain a U(1)3 instanton configuration. Indeed, this case is quite similar to breaking via

the maximal subgroup SU(2) × SU(2) × SU(4) ⊂ SO(10) considered previously.

Next suppose without loss of generality that an instanton configuration takes values

in the first SU(2) factor such that it breaks either to U(1) or trivial group. Because the

abelian case is quite similar, we assume that the non-abelian instanton breaks all of SU(2).

In this case, the list of candidate Q-, U - and Hu-fields which can yield a gauge invariant

QUHu interaction are:

Q U Hu (a, b)

1 (1, 2, 3)−1,1 (1, 1, 3)−2,0 (1, 2, 1)3,−1 (2, 3)

2 (1, 2, 3)−1,1 (2, 1, 3)1,1 (2, 2, 1)0,−2 (−5/2,−3/2)

3 (1, 2, 3)−1,1 (2, 1, 3)1,−1 OUT OUT

4 (1, 2, 3)−1,−1 (1, 1, 3)−2,0 (1, 2, 1)3,1 (2,−3)

5 (1, 2, 3)−1,−1 (2, 1, 3)1,1 OUT OUT

6 (1, 2, 3)−1,−1 (2, 1, 3)1,−1 (2, 2, 1)0,2 (−5/2, 3/2)

7 (2, 2, 3)2,0 (1, 1, 3)−2,0 OUT OUT

8 (2, 2, 3)2,0 (2, 1, 3)1,1 (1, 2, 1)−3,−1 (1/2,−9/2)

9 (2, 2, 3)2,0 (2, 1, 3)1,−1 (1, 2, 1)−3,1 (1/2, 9/2)

. (C.505)
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Restricting to the six viable remaining possibilities, we now find that no candidate D-field

reproduces the correct U(1)Y charge assignment. We therefore conclude that only abelian

instanton configurations can yield the spectrum of the MSSM in this case.

SO(12) ⊃ SU(2) × SU(2) × SO(8) ⊃ SU(2) × SU(2) × SO(7)

⊃ SU(2) × SU(2) × SU(4) ⊃ SU(2) × SU(2) × [SU(3) × U(1)]

Along this nested sequence of maximal subgroups, the decomposition of the represen-

tations of SO(12) is:

SO(12) ⊃ SU(2) × SU(2) × SO(8) ⊃ SU(2) × SU(2) × SO(7) (C.506)

⊃ SU(2) × SU(2) × SU(4) ⊃ SU(2) × SU(2) × [SU(3) × U(1)b] (C.507)

12 → (2, 2, 1)0 + (1, 1, 1)0 + (1, 1, 1)0 + (1, 1, 3)2 + (1, 1, 3)−2 (C.508)

32, 32′ → (1, 2, 1)3 + (1, 2, 3)−1 + (1, 2, 1)−3 + (1, 2, 3)1 + (2, 1, 1)3 (C.509)

+ (2, 1, 3)−1 + (2, 1, 1)−3 + (2, 1, 3)1 (C.510)

66 → (3, 1, 1)0 + (1, 3, 1)0 + (1, 1, 1)0 + (1, 1, 3)2 + (1, 1, 3)−2 (C.511)

+ (1, 1, 3)2 + (1, 1, 3)−2 + (1, 1, 1)0 + (1, 1, 3)−4 + (1, 1, 3)4 (C.512)

+ (1, 1, 8)0 + (2, 2, 1)0 + (2, 2, 1)0 + (2, 2, 3)2 + (2, 2, 3)−2. (C.513)

By inspection, the above U(1)b charge assignments do not agree with those of the

MSSM. It thus follows that we must further break one of the SU(2) factors to U(1). Without

loss of generality, we assume that the first SU(2) factor decomposes further to a maximal

U(1)a subgroup. The list of candidate Q-, U - and Hu-fields which can yield a gauge

invariant QUHu interaction are therefore:

Q U Hu (a, b)

1 (10, 2, 3)−1 (10, 1, 3)−2 (10, 2, 1)3 OUT

2 (10, 2, 3)−1 (11, 1, 3)1 (1−1, 2, 1)0 (−3,−1)

3 (10, 2, 3)−1 (1−1, 1, 3)1 (11, 2, 1)0 (3,−1)

4 (10, 2, 3)−1 (10, 1, 3)4 (10, 2, 1)−3 (a,−1)

5 (11, 2, 3)2 (10, 1, 3)−2 (1−1, 2, 1)0 (−3, 2)

6 (11, 2, 3)2 (11, 1, 3)1 OUT OUT

7 (11, 2, 3)2 (1−1, 1, 3)1 (10, 2, 1)−3 (3,−1)

8 (11, 2, 3)2 (10, 1, 3)4 OUT OUT

9 (1−1, 2, 3)2 (10, 1, 3)−2 (11, 2, 1)0 (3, 2)

10 (1−1, 2, 3)2 (11, 1, 3)1 (10, 2, 1)−3 (−3,−1)

11 (1−1, 2, 3)2 (1−1, 1, 3)1 OUT OUT

12 (1−1, 2, 3)2 (10, 1, 3)4 OUT OUT

. (C.514)

Next, we list all candidate D- and Hd-fields which can yield a gauge invariant QDHd
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interaction term:

Q D Hd (a, b)

2a (10, 2, 3)−1 (10, 1, 3)−2 (10, 2, 1)3 (−3,−1)

2b (10, 2, 3)−1 (1−1, 1, 3)1 (11, 2, 1)0 (−3,−1)

3a (10, 2, 3)−1 (10, 1, 3)−2 (10, 2, 1)3 (3,−1)

3b (10, 2, 3)−1 (11, 1, 3)1 (1−1, 2, 1)0 (3,−1)

4a (10, 2, 3)−1 (10, 1, 3)−2 (10, 2, 1)3 (a,−1)

4b (10, 2, 3)−1 (11, 1, 3)1 (1−1, 2, 1)0 (3,−1)

4c (10, 2, 3)−1 (1−1, 1, 3)1 (11, 2, 1)0 (−3,−1)

5 (11, 2, 3)2 OUT OUT (−3, 2)

7a (11, 2, 3)2 (10, 1, 3)−2 (1−1, 2, 1)0 (3,−1)

7b (11, 2, 3)2 (11, 1, 3)1 OUT (3,−1)

9 (1−1, 2, 3)2 (11, 1, 3)1 OUT (3, 2)

10a (1−1, 2, 3)2 (10, 1, 3)−2 (11, 2, 1)0 (−3,−1)

10b (1−1, 2, 3)2 (1−1, 1, 3)1 OUT (−3,−1)

. (C.515)

Of these remaining possibilities, we now determine all possible candidate L- and E-fields

which can yield the gauge invariant interaction term LEHd:

L E Hd (a, b)

2a (11, 2, 1)0 (1−1, 1, 1)−3 (10, 2, 1)3 (−3,−1)

2b (10, 2, 1)3 (1−1, 1, 1)−3 (11, 2, 1)0 (−3,−1)

2b′ (11, 2, 1)0 (1−2, 1, 1)0 (11, 2, 1)0 (−3,−1)

3a (1−1, 2, 1)0 (11, 1, 1)−3 (10, 2, 1)3 (3,−1)

3b (1−1, 2, 1)0 (12, 1, 1)0 (1−1, 2, 1)0 (3,−1)

3b′ (10, 2, 1)3 (11, 1, 1)−3 (1−1, 2, 1)0 (3,−1)

4a (1±1, 2, 1)0 (1∓1, 1, 1)−3 (10, 2, 1)3 (∓3,−1)

4b (1−1, 2, 1)0 (12, 1, 1)0 (1−1, 2, 1)0 (3,−1)

4b′ (10, 2, 1)3 (11, 1, 1)−3 (1−1, 2, 1)0 (3,−1)

4c (11, 2, 1)0 (1−2, 1, 1)0 (11, 2, 1)0 (−3,−1)

4c′ (10, 2, 1)3 (1−1, 1, 1)−3 (11, 2, 1)0 (−3,−1)

7a (1−1, 2, 1)0 (12, 1, 1)0 (1−1, 2, 1)0 (3,−1)

7a′ (10, 2, 1)3 (11, 1, 1)−3 (1−1, 2, 1)0 (3,−1)

10a (11, 2, 1)0 (1−2, 1, 1)0 (11, 2, 1)0 (−3,−1)

10a′ (10, 2, 1)3 (1−1, 1, 1)−3 (11, 2, 1)0 (−3,−1)

. (C.516)

Note that in this case, there are many distinct ways to package the field content of the

MSSM such that SO(12) breaks to SU(3) × SU(2) × U(1) × U(1) via a U(1)2 instanton

configuration.

SO(12) ⊃ SU(4)×SU(4). Decomposing representations of SO(12) with respect to the
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maximal subgroup SU(4) × SU(4) yields:

SO(12) ⊃ SU(4) × SU(4) (C.517)

12 → (6, 1) + (1, 6) (C.518)

12 → (6, 1) + (1, 6) (C.519)

32′ → (4, 4) + (4, 4) (C.520)

66 → (15, 1) + (1, 15) + (6, 6). (C.521)

Without loss of generality, we assume that the first SU(4) factor further breaks to SU(3)×
U(1). The remaining nested sequences of maximal subgroups which can yield the Standard

Model gauge group are:

SU(4) ⊃ SU(2) × SU(2) × U(1) (C.522)

SU(4) ⊃ USp(4) ⊃ SU(2) × SU(2) (C.523)

SU(4) ⊃ USp(4) ⊃ SU(2) × U(1) (C.524)

SU(4) ⊃ SU(2) × SU(2). (C.525)

SO(12) ⊃ SU(4) × SU(4) ⊃ [SU(3) × U(1)a] × SU(2) × SU(2) × U(1)

In this case, it follows at once from the local isomorphisms SU(4) ≃ SO(6) and SU(2)×
SU(2) ≃ SO(4) that the endpoint of this breaking pattern is identical to the endpoint of

the nested sequence of maximal subgroups:

SO(12) ⊃ SU(2) × SU(2) × SO(8) ⊃ SU(2) × SU(2) × SU(4) × U(1) (C.526)

⊃ SU(2) × SU(2) × [SU(3) × U(1)] × U(1). (C.527)

We therefore conclude that all breaking patterns via instantons have in this case been

catalogued.

SO(12) ⊃ SU(4)×SU(4) ⊃ [SU(3)×U(1)a]×USp(4) ⊃ [SU(3)×U(1)a]×[SU(2)×SU(2)]

The decomposition of the representations of SO(12) with respected to this sequence of

maximal subgroups is:

SO(12) ⊃ SU(4) × SU(4) ⊃ [SU(3) × U(1)a] × USp(4) (C.528)

⊃ [SU(3) × U(1)a] × [SU(2) × SU(2)] (C.529)

12 → (3, 1, 1)2 + (3, 1, 1)−2 + (1, 1, 1)0 + (1, 1, 1)0 + (1, 2, 2)0 (C.530)

32, 32′ → (1, 2, 1)3 + (1, 1, 2)3 + (3, 2, 1)−1 + (3, 1, 2)−1 + (1, 2, 1)−3 (C.531)

+ (1, 1, 2)−3 + (3, 2, 1)1 + (3, 1, 2)1 (C.532)

66 → (1, 1, 1)0 + (3, 1, 1)−4 + (3, 1, 1)4 + (8, 1, 1)0 + (1, 1, 1)0 (C.533)

+ (1, 2, 2)0 + (1, 3, 1)0 + (1, 1, 3)0 + (1, 2, 2)0 + (3, 1, 1)2 (C.534)

+ (3, 1, 1)−2 + (3, 1, 1)2 + (3, 2, 2)2 + (3, 1, 1)−2 + (3, 2, 2)−2. (C.535)

By inspection of the above representation content, we note that while an SU(2) in-

stanton which breaks either of the SU(2) factors could yield the correct gauge group, the
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resulting U(1)Y charge assignments of the fields would be incorrect. It is therefore enough

to consider abelian instanton configurations which break one of the SU(2) factors to U(1)b.

Due to the symmetry between the two SU(2) factors, we assume without loss of generality

that the instanton preserves the first SU(2) factor. We begin by listing the candidate rep-

resentations for the Q-, U - and Hu- fields which can yield the interaction term QUHu as

well as the correct U(1)Y charge assignments:

Q U Hu (a, b)

1 (3, 2, 10)−1 (3, 1, 1±1)1 (1, 2, 1∓1)0 (∓3,−1)

2 (3, 2, 10)−1 (3, 1, 10)4 (1, 2, 10)−3 (a,−1)

3 (3, 2, 1±1)2 (3, 1, 10)−2 (1, 2, 1∓1)0 (∓3, 2)

4 (3, 2, 1±1)2 (3, 1, 1∓1)1 (1, 2, 10)−3 (±3,−1)

(C.536)

where in the above, all ±’s of a given row are correlated. Of these four possibilities, we now

list all candidate representations for the D- and Hd-fields which can yield the interaction

term QDHd:

Q D Hd (a, b)

1a (3, 2, 10)−1 (3, 1, 1∓1)1 (1, 2, 1±1)0 (∓3,−1)

1b (3, 2, 10)−1 (3, 1, 10)−2 (1, 2, 10)3 (∓3,−1)

2a (3, 2, 10)−1 (3, 1, 1∓1)1 (1, 2, 1±1)0 (∓3,−1)

2b (3, 2, 10)−1 (3, 1, 10)−2 (1, 2, 10)3 (a,−1)

4 (3, 2, 1±1)2 (3, 1, 10)−2 (1, 2, 1∓1)0 (±3,−1)

. (C.537)

Finally, we list all candidate E- and L- fields which can yield the term ELHd:

E L Hd (a, b)

1a (1, 1, 1∓1)−3 (1, 2, 10)3 (1, 2, 1±1)0 (∓3,−1)

1a′ (1, 1, 1∓2)0 (1, 2, 1±1)0 (1, 2, 1±1)0 (∓3,−1)

1b (1, 1, 1∓1)−3 (1, 2, 1±1)0 (1, 2, 10)3 (∓3,−1)

2a (1, 1, 1∓1)−3 (1, 2, 10)3 (1, 2, 1±1)0 (∓3,−1)

2a′ (1, 1, 1∓2)0 (1, 2, 1±1)0 (1, 2, 1±1)0 (∓3,−1)

2b (1, 1, 1∓1)−3 (1, 2, 1±1)0 (1, 2, 10)3 (∓3,−1)

4 (1, 1, 1±1)−3 (1, 2, 10)3 (1, 2, 1∓1)0 (±3,−1)

4′ (1, 1, 1±2)0 (1, 2, 1∓1)0 (1, 2, 1∓1)0 (±3,−1)

. (C.538)

We note that in this case, while there are only two linear combinations of the two U(1)

factors which can yield U(1)Y , there are different ways to package the fields of the MSSM

in representations of SO(12).

SO(12) ⊃ SU(4)×SU(4) ⊃ [SU(3)×U(1)a]×USp(4) ⊃ [SU(3)×U(1)a]×[SU(2)×U(1)b]

In this case, the decomposition of representations of SO(12) yields:

SO(12) ⊃ SU(4) × SU(4) ⊃ [SU(3) × U(1)a] × USp(4) (C.539)

⊃ [SU(3) × U(1)a] × [SU(2) × U(1)b] (C.540)

12 → (32, 10) + (3−2, 10) + (10, 10) + (10, 12) + (10, 1−2) + (10, 30) (C.541)
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32, 32′ → (13, 21) + (13, 2−1) + (3−1, 21) + (3−1, 2−1) (C.542)

+ (1−3, 21) + (1−3, 2−1) + (31, 21) + (31, 2−1) (C.543)

66 → (10, 10) + (3−4, 10) + (34, 10) + (80, 10) + (10, 12) + (10, 1−2) (C.544)

+ (10, 30) + (10, 10) + (10, 30) + (10, 32) + (10, 3−2) (C.545)

+ (32, 10) + (3−2, 10) + (32, 12) + (32, 1−2) + (32, 30) (C.546)

+ (3−2, 12) + (3−2, 1−2) + (3−2, 30). (C.547)

We note in passing that this indeed yields a distinct decomposition from the previous

breaking pattern. By inspection, the only candidate E-fields are (10, 1±2) so that b = ±3.

Listing all Q-, U - and Hu-fields which can yield a gauge invariant interaction term QUHu

such that b = ±3 is indeed a solution, we find:

Q U Hu (a, b)

(3−1, 2±1) (3−2, 10) (13, 2∓1) (2,±3)
(C.548)

where all ±’s in a given row are correlated. Listing all Q-, D- and Hd- fields which can

yield the term QDHd, we find:

Q D Hd (a, b)

(3−1, 2±1) (3−2, 1∓2) (1−3, 2±1) (2,±3)
. (C.549)

Now, we find that in this case, the only candidate L- and Hd-fields are (1−3, 2±1). In

particular, it follows that the purported ELHd interaction will violate U(1)a because the

only candidate E-field is neutral under U(1)a so that this breaking pattern cannot yield

the spectrum of the MSSM.

SO(12) ⊃ SU(4) × SU(4) ⊃ [SU(3) × U(1)a] × [SU(2) × SU(2)]

In this case, the decomposition of the representations of SO(12) is given by:

SO(12) ⊃ SU(4) × SU(4) ⊃ [SU(3) × U(1)a] × [SU(2) × SU(2)] (C.550)

12 → (32, 1, 1) + (3−2, 1, 1) + (10, 3, 1) + (10, 1, 3) (C.551)

32, 32′ → (13, 2, 2) + (3−1, 2, 2) + (1−3, 2, 2) + (31, 2, 2) (C.552)

66 → (10, 1, 1) + (3−4, 1, 1) + (34, 1, 1) + (80, 1, 1) + (10, 1, 3) (C.553)

+ (10, 3, 1) + (10, 3, 3) + (32, 1, 3) + (32, 3, 1) + (3−2, 1, 3) (C.554)

+ (3−2, 3, 1). (C.555)

By inspection, we must consider an abelian instanton configuration which breaks one of

the SU(2) factors to a U(1)b subgroup. Without loss of generality, we assume that the

instanton preserves the first SU(2) factor. In this case, the resulting candidate E-fields are

all of the form (10, 1, 1±2) so that b = ±3. Listing all candidate Q-, U - and Hu-fields which

can yield a gauge invariant term of the form QUHu, we find:

Q U Hu (a, b)

(3−1, 2, 1±1) (3−2, 1, 10) (13, 2∓1) (2,±3)
(C.556)
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where all ±’s are correlated in the above. This in turn implies that there is a unique

candidate Hd-field given by (1−3, 2±1). This in turn requires that in order to obtain a

non-zero QDHd interaction term, a candidate D-field must have representation content

(34, 1, 1∓2) which is not present in the given decomposition described above. We therefore

conclude that this breaking pattern cannot yield the spectrum of the MSSM.

SO(12) ⊃ SO(10) × U(1). This is the final maximal subgroup of SO(12) which can

in principle contain Gstd. The representation content of SO(12) decomposes under this

maximal subgroup as:

SO(12) ⊃ SO(10) × U(1) (C.557)

12 → 12 + 1−2 + 100 (C.558)

32 → 161 + 16−1 (C.559)

32′ → 161 + 16−1 (C.560)

66 → 10 + 102 + 10−2 + 450. (C.561)

Recall that the maximal subgroups of SO(10) are listed in lines (C.88)–(C.94), of which

only lines (C.88 )-(C.91) contain an SU(3) × SU(2) subgroup. In the present context, we

wish to determine whether the presence of the additional U(1) factor can yield a new

breaking pattern distinct from those already treated for GS = SO(10). Moreover, while

it is in principle of interest to classify all ways of packaging the fields of the MSSM into

SO(12) representations, our primary interest is in the classification of all possible breaking

patterns. For this reason, we again confine our classification to this more narrow question.

SO(12) ⊃ SO(10) × U(1) ⊃ SU(5) × U(1) × U(1)

In this case, there is a unique way in which the SU(5) factor can further break to Gstd.

Indeed, this is the natural extension of the analogous breaking pattern of SO(10) analyzed

previously. We thus conclude that in this case the abelian U(1)3 instanton breaks SO(12)

to Gstd × U(1) × U(1).

SO(12) ⊃ SO(10) × U(1) ⊃ [SU(2) × SU(2) × SU(4)] × U(1)

Under this nested sequence of maximal subgroups, SU(4) is the only factor which

contains an SU(3) subgroup. The representation content of SO(12) therefore must decom-

pose as:

SO(12) ⊃ SO(10) × U(1) ⊃ [SU(2) × SU(2) × SU(4)] × U(1)b (C.562)

⊃ [SU(2) × SU(2) × [SU(3) × U(1)a]] × U(1)b (C.563)

12 → (1, 1, 1)0,2 + (1, 1, 1)0,−2 + (2, 2, 1)0,0 + (1, 1, 3)2,0 + (1, 1, 3)−2,0 (C.564)

32 → (2, 1, 1)3,1 + (2, 1, 3)−1,1 + (1, 2, 1)−3,1 + (1, 2, 3)1,1 (C.565)

+ (2, 1, 1)−3,−1 + (2, 1, 3)1,−1 + (1, 2, 1)3,−1 + (1, 2, 3)−1,−1 (C.566)

32′ → (1, 2, 1)3,1 + (1, 2, 3)−1,1 + (2, 1, 1)−3,1 + (2, 1, 3)1,1 (C.567)

+ (1, 2, 1)−3,−1 + (1, 2, 3)1,−1 + (2, 1, 1)3,−1 + (2, 1, 3)−1,−1 (C.568)

66 → (1, 1, 1)0,0 + (2, 2, 1)0,2 + (1, 1, 3)2,2 + (1, 1, 3)−2,2 (C.569)

+ (2, 2, 1)0,−2 + (1, 1, 3)2,−2 + (1, 1, 3)−2,−2 + (3, 1, 1)0,0 (C.570)

+ (1, 3, 1)0,0 + (1, 1, 1)0,0 + (1, 1, 3)−4,0 + (1, 1, 3)4,0 (C.571)

+ (1, 1, 8)0,0 + (2, 2, 3)2,0 + (2, 2, 3)−2,0. (C.572)
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In the present context, breaking one of the SU(2) factors to a U(1) subgroup yields a

breaking pattern identical to that already studied in the context of the sequence of maximal

subgroups SO(12) ⊃ SO(10)×U(1) ⊃ SU(5)×U(1)×U(1) ⊃ SU(3)×SU(2)×U(1)×U(1)×
U(1). In order to classify all candidate breaking patterns, it is therefore enough to restrict

to cases where one of the SU(2) factors is completely broken. Without loss of generality,

we assume that the candidate non-abelian instanton preserves the second SU(2) factor.

Listing all candidate Q-, U - and Hu-fields which can yield the gauge invariant interaction

term QUHu, we find:

Q U Hu (a, b)

1 (1, 2, 3)−1,±1 (1, 1, 3)−2,0 (1, 2, 1)3,∓1 (2,±3)

2 (1, 2, 3)−1,±1 (1, 1, 3)4,0 (1, 2, 1)−3,∓1 (−1, 0)

3 (1, 2, 3)−1,±1 (1, 1, 3)−2,∓2 (1, 2, 1)3,±1 (1/2,±3/2)

4 (1, 2, 3)−1,±1 (2, 1, 3)1,±1 (2, 2, 1)0,∓2 (−5/2,∓3/2)

5 (2, 2, 3)2,0 (2, 1, 3)1,±1 (1, 2, 1)−3,∓1 (1/2,∓9/2)

6 (2, 2, 3)2,0 (1, 1, 3)−2,∓2 (2, 2, 1)0,±2 (1/2,±3/2)

. (C.573)

Listing all choices of representations for candidate D- and Hd-fields which also admit the

gauge invariant interaction term QDHd, we find:

Q D Hd (a, b)

2a (1, 2, 3)−1,±1 (1, 1, 3)−2,0 (1, 2, 1)3,∓1 (−1, 0)

2b (1, 2, 3)−1,±1 (1, 1, 3)−2,∓2 (1, 2, 1)3,±1 (−1, 0)

3a (1, 2, 3)−1,±1 (1, 1, 3)4,0 (1, 2, 1)−3,∓1 (1/2,±3/2)

3b (1, 2, 3)−1,±1 (2, 1, 3)1,±1 (2, 2, 1)0,∓2 (1/2,±3/2)

6a (2, 2, 3)2,0 (1, 1, 3)−2,±2 (2, 2, 1)0,∓2 (1/2,±3/2)

6b (2, 2, 3)2,0 (2, 1, 3)1,±1 (1, 2, 1)−3,∓1 (1/2,±3/2)

. (C.574)

Because the only candidate E-fields are given by (1, 1, 1)0,±2 or (1, 2, 1)±3,±1, we now

observe that all consistent choices of U(1)Y given previously cannot yield the correct value

for the E-fields. Hence, an instanton configuration must break one of the SU(2) factors to

a U(1) subgroup in order to reproduce the spectrum of the MSSM.

SO(12) ⊃ SO(10) × U(1) ⊃ SO(9) × U(1)

In order to obtain an SU(3) × SU(2) subgroup along this nested sequence of maximal

subgroups, the SO(9) factor must also contain such a subgroup. Returning to lines (C.36)–

(C.40), we again conclude that the only maximal subgroup of SO(9) satisfying this criterion

is SU(2)×SU(4). Further decomposing the SU(4) factor to the maximal subgroup SU(3)×
U(1), the decomposition of representations of SO(12) now descends to:

SO(12) ⊃ SO(10) × U(1)b ⊃ SO(9) × U(1)b (C.575)

⊃ [SU(2) × SU(4)] × U(1)b (C.576)

⊃ [SU(2) × [SU(3) × U(1)a]] × U(1)b (C.577)

12 → (1, 1)0,2 + (1, 1)0,−2 + (1, 1)0,0 + (3, 1)0,0 (C.578)

+ (1, 3)2,0 + (1, 3)−2,0 (C.579)
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32, 32′ → (2, 1)3,1 + (2, 3)−1,1 + (2, 1)−3,1 + (2, 3)1,1 (C.580)

+ (2, 1)−3,−1 + (2, 3)1,−1 + (2, 1)3,−1 + (2, 3)−1,−1 (C.581)

66 → (1, 1)0,0 + (1, 1)0,2 + (1, 1)0,−2 + (3, 1)0,2 (C.582)

+ (3, 1)0,−2 + (3, 1)0,0 + (1, 3)2,2 + (1, 3)−2,2 (C.583)

+ (1, 3)2,−2 + (1, 3)−2,−2 + (3, 1)0,0 + (1, 1)0,0 (C.584)

+ (1, 3)2,0 + (1, 3)−2,0 + (1, 3)−4,0 + (1, 3)4,0 (C.585)

+ (1, 8)0,0 + (3, 3)2,0 + (3, 3)−2,0. (C.586)

Listing all Q-, U - and Hu- fields which can yield the term QUHu, we find:

Q U Hu (a, b)

1 (2, 3)−1,±1 (1, 3)−2,0 (2, 1)3,∓1 (2,±3)

2 (2, 3)−1,±1 (1, 3)−2,∓2 (2, 1)3,±1 (1/2,±3/2)

3 (2, 3)−1,±1 (1, 3)4,0 (2, 1)−3,∓1 (−1, 0)

. (C.587)

Because the candidate E-fields all descend from the representation (1, 1)0,±2, it follows

that b = ±3 so that the second and third cases are ruled out. Restricting to this case,

the candidate D-fields are therefore (1, 3)−2,±2, where the ± sign is correlated with that

given in the first case. In order to obtain a gauge invariant QDHd interaction term, the

resulting Hd-field must transform in the representation (2, 1)3,∓3, which does not descend

from a representation of SO(12). We therefore conclude that this breaking pattern cannot

yield the spectrum of the MSSM.

SO(12) ⊃ SO(10) × U(1) ⊃ [SU(2) × SO(7)] × U(1)

In this final case, SU(4) and G2 or the only maximal subgroups of SO(7) which contains

an SU(3) subgroup. Of these two possibilities, an instanton can only break the former case

to SU(3). Decomposing the representations of SO(12) under the corresponding nested

sequence of maximal subgroups yields:

SO(12) ⊃ SO(10) × U(1)v ⊃ [SU(2) × SO(7)] × U(1)b ⊃ [SU(2) × SU(4)] × U(1)b
(C.588)

⊃ [SU(2) × [SU(3) × U(1)a]] × U(1)b (C.589)

12 → (1, 1)0,2 + (1, 1)0,−2 + (1, 1)0,0 + (3, 1)0,0 (C.590)

+ (1, 3)2,0 + (1, 3)−2,0 (C.591)

32, 32′ → (2, 1)3,1 + (2, 3)−1,1 + (2, 1)−3,1 + (2, 3)1,1 (C.592)

+ (2, 1)−3,−1 + (2, 3)1,−1 + (2, 1)3,−1 + (2, 3)−1,−1 (C.593)

66 → (1, 1)0,0 + (1, 1)0,2 + (1, 1)0,−2 + (3, 1)0,2 (C.594)

+ (3, 1)0,−2 + (3, 1)0,0 + (1, 3)2,2 + (1, 3)−2,2 (C.595)

+ (1, 3)2,−2 + (1, 3)−2,−2 + (3, 1)0,0 + (1, 1)0,0 (C.596)

+ (1, 3)2,0 + (1, 3)−2,0 + (1, 3)−4,0 + (1, 3)4,0 (C.597)

+ (1, 8)0,0 + (3, 3)2,0 + (3, 3)−2,0. (C.598)
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In fact, this decomposition is identical to that given for the previously considered nested

sequence of maximal subgroups described by lines (C.575)–(C.586). We therefore conclude

that just as in that case, this breaking pattern cannot yield the spectrum of the MSSM.
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[54] R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string

vacua — The seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113

[hep-th/0609191].

[55] S. Dimopoulos and F. Wilczek, Incomplete multiplets in supersymmetric unified models,

unpublished, Print-81-0600 (SANTA BARBARA), NSF-ITP-82-07.

[56] K.S. Babu and S.M. Barr, Natural suppression of Higgsino mediated proton decay in

supersymmetric SO(10), Phys. Rev. D 48 (1993) 5354 [hep-ph/9306242].

[57] W.P. Barth, K. Hulek, C.A.M. Peters and A. Van De Ven, Compact Complex Surfaces, 2nd

Enlarged Edition, Springer, New York U.S.A. (2004).

[58] I. Hambleton and M. Kreck, On the classification of topological 4-manifolds with finite

fundamental group, Math. Ann. 280 (1988) 85.

[59] I. Hambleton and M. Kreck, Smooth structures on algebraic surfaces with finite fundamental

group, Invent. Math. 102 (1990) 109.

[60] S. Bauer and C. Okonek, The algebraic geometry of representation spaces associated to

Seifert fibered homology 3-spheres, Math. Ann. 286 (1990) 45.

– 137 –

http://arxiv.org/abs/hep-ph/0201018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C9%2C861
http://arxiv.org/abs/hep-th/0503124
http://arxiv.org/abs/0803.1194
http://arxiv.org/abs/alg-geom/9202002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB497%2C146
http://arxiv.org/abs/hep-th/9606086
http://jhep.sissa.it/stdsearch?paper=06%282005%29070
http://arxiv.org/abs/hep-th/0411156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PMTMA%2C133%2C637
http://arxiv.org/abs/hep-th/9207094
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C248%2C85
http://arxiv.org/abs/hep-th/0203173
http://arxiv.org/abs/hep-th/0302011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C264%2C227
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C264%2C227
http://arxiv.org/abs/hep-th/0412209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB429%2C263
http://arxiv.org/abs/hep-ph/9803315
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4690
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4690
http://arxiv.org/abs/hep-th/9906064
http://jhep.sissa.it/stdsearch?paper=02%282006%29020
http://arxiv.org/abs/hep-th/0512170
http://arxiv.org/abs/hep-th/0509212
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB771%2C113
http://arxiv.org/abs/hep-th/0609191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C5354
http://arxiv.org/abs/hep-ph/9306242


J
H
E
P
0
1
(
2
0
0
9
)
0
5
9

[61] Y.I. Manin, Cubic forms: Algebra, geometry, arithmetic, 2nd ed., North-Holland Publishing

Co., Amsterdam (1986).

[62] A. Iqbal, A. Neitzke and C. Vafa, A mysterious duality, Adv. Theor. Math. Phys. 5 (2002)

769 [hep-th/0111068].

[63] C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3

[hep-th/9408074].

[64] M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at

singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007].

[65] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022].

[66] G. ’t Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl.

Phys. B 153 (1979) 141.

[67] S.M. Barr, A new symmetry breaking pattern for SO(10) and proton decay, Phys. Lett. B

112 (1982) 219.

[68] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons Inc., New

York U.S.A. (1978).

[69] A.N. Parshin and I.R. Shafarevich, Algebraic Geometry V: Fano Varieties, Springer, New

York U.S.A. (1999).

[70] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and

gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001].

[71] P. Fayet, Equivalence principle tests, equivalence theorems and new long-range forces,

hep-ph/0111282.

[72] B.A. Dobrescu, Massless gauge bosons other than the photon, Phys. Rev. Lett. 94 (2005)

151802 [hep-ph/0411004].
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