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Quadratic relations between Feynman integrals David Broadhurst

1. Four-loop sunrise: the electron’s magnetic moment

As reported in [9], the magnetic moment of the electron in Bohr magnetons has QED contri-
butions ∑L≥0 aL(α/π)L given up to L = 4 loops by

a0 = 1 (1.1)

a1 = 0.5 (1.2)

a2 = −0.32847896557919378458217281696489239241111929867962 . . . (1.3)

a3 = 1.18124145658720000627475398221287785336878939093213 . . . (1.4)

a4 = −1.91224576492644557415264716743983005406087339065872 . . . (1.5)

with a trilogarithm in

a2 =
197
144

+
ζ (2)

2
+

3ζ (3)−2π2 log2
4

(1.6)

and a weight 4 depth 2 polylogarithm U3,1 := ∑m>n>0(−1)m+n/(m3n) in

a3 =
28259
5184

+
17101ζ (2)

135
+

139ζ (3)−596π2 log2
18

(1.7)

− 39ζ (4)+400U3,1

24
− 215ζ (5)−166ζ (3)ζ (2)

24
. (1.8)

1.1 The first non-polylogarithm

At 4 loops, a Bessel moment

B = −
∫

∞

0

27550138x+35725423x3

48600
I0(x)K5

0 (x)dx (1.9)

= −1483.68505914882529459059985184510836700500152630607810 . . . (1.10)

occurs at weight 4 in the breathtaking evaluation by Stefano Laporta [9] of 4800 digits of

a4 = P+B+E +U ≈ 2650.565−1483.685−1036.765−132.027≈−1.912 (1.11)

where P comprises polylogs and E comprises integrals, with weights 5, 6 and 7, whose integrands
contain logs and products of elliptic integrals. U comes from 6 light-by-light master integrals, still
under investigation.

The weight-4 non-polylog term B has N = 6 Bessel functions, with 5 instances of K0(x), from
5-fermion intermediate states. The sibling of K0(x) is I0(x) = ∑k≥0((x/2)k/k!)2, from Fourier
transformation. Both master integrals in B occur in D = 2 spacetime dimensions.

1.2 A simple determinant of Bessel moments

Consider Bessel moments of the form [1]

M(a,b,c) :=
∫

∞

0
Ia
0 (x)K

b
0 (x)x

cdx. (1.12)
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The moment 2LM(1,L+1,1) is the L-loop sunrise integral at D = 2, on shell:

SL(t) :=
∫

∞

0

dx1

x1
. . .
∫

∞

0

dxL

xL

1
(1+∑

L
j=1 x j)(1+∑

L
k=1 1/xk)− t

(1.13)

S4(1) = 24M(1,5,1) := 24
∫

∞

0
I0(x)K5

0 (x)xdx. (1.14)

Laporta encountered M(1,5,1) as a master integral at D= 4. He also encountered M(1,5,3), which
is obtained by differentiation of S4(t) before setting t = 1. Now look at the determinant [4, 12]

D4 := det

[
M(1,5,1) M(1,5,3)
M(2,4,1) M(2,4,3)

]
=

π4

242 (1.15)

where M(2,4,1) comes from cutting an internal line. It occurred at stages of Laporta’s ε-expansions.
M(2,4,3) comes from a cut and differentiation.

2. Simple determinants up to L = 6 loops

At L loops, with N = L+ 2 Bessel functions, there is a simple result for a k× k determinant
with k = b(L+1)/2c. The first non-trivial case is at L = 3 loops, where it was discovered [3] and
is now proven [14] that

M3 :=

[
M(1,4,1) M(1,4,3)
M(2,3,1) M(2,3,3)

]
=

[
π2C π2

( 2
15

)2 (13C− 1
10C

)
√

15π

2 C
√

15π

2

( 2
15

)2 (13C+ 1
10C

) ] (2.1)

is determined by

C =
Γ
( 1

15

)
Γ
( 2

15

)
Γ
( 4

15

)
Γ
( 8

15

)
240
√

5π2
,

1
C

=
75Γ

( 7
15

)
Γ
(11

15

)
Γ
(13

15

)
Γ
(14

15

)
√

5π2
(2.2)

which ensure a simple determinant at 3 loops [4, 12]

D3 := detM3 = 2π
3/
√

3355. (2.3)

2.1 Hypergeometric identity at 4 loops

For the Laporta problem, the Feynman integrals are combinations of [13]

Fa = 4F3(1/2,2/3,2/3,5/6; 7/6,7/6,4/3; 1)
Fb = 4F3(−1/2,1/6,1/3,4/3; −1/6,5/6,5/3; 1)
Fc = 4F3(1/6,1/3,1/3,1/2; 2/3,5/6,5/6; 1)
Fd = 4F3(−7/6,−1/2,−1/3,2/3; −5/6,1/6,1/3; 1)

(2.4)

with a quadratic relation 7FaFb +10FcFd = 40 giving D4 = π4/242 in (1.15).

2.2 Hidden quadratic relations at 5 loops

The corresponding determinant [4, 12] D5 = 16π6/
√

335577 involves products of three Feyn-
man integrals. We shall show that this results from a substructure of several quadratic relations.
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2.3 Quadratic relation at 6 loops

The correspondng 3×3 determinant [4, 12] D6 = 5π8/(2193) comes from a quadratic relation

det

[
M(1,7,1) 32M(1,7,3)−64M(1,7,5)
M(2,6,1) 32M(2,6,3)−64M(2,6,5)

]
=

5π6

192
. (2.5)

3. Feynman integrals from modular forms

Until recently, relations between Feynman integrals and Eichler integrals of modular forms
were conjectural [2, 3, 6, 4], tested to many thousands of digits. For an account of how they were
proved [10, 11, 12, 13], see the lucid review by Yajun Zhou [14].

With q := exp(2πiz) and ℑz > 0, the Dedekind eta function satisfies

η(z) := q1/24
∞

∏
n=1

(1−qn) =
∞

∑
n=−∞

(−1)nq(6n+1)2/24 =
η(−1/z)√
−iz

. (3.1)

With ηn := η(nz), we define the weight-3 level-15 cuspform

f3,15(z) := (η3η5)
3 +(η1η15)

3 = ∑
n>0

A5(n)qn =−
f3,15(−1/(15z))
(−15)3/2z3 . (3.2)

If the Kronecker symbol
( p

15

)
=
( p

3

)( p
5

)
is negative, for prime p, then A5(p) = 0. For ℜs > 2,

there is a convergent L-series

L5(s) = ∑
n>0

A5(n)
ns = ∏

p

1
1−A5(p)p−s +

( p
15

)
p2−2s

. (3.3)

Its analytic continuation is provided by the Eichler integral

L5(s) =
(2π)s

Γ(s)

∫
∞

0
f3,15(iy)ys−1dy (3.4)

with critical values

L5(1) =
5

π2

∫
∞

0
I0(x)K4

0 (x)xdx, L5(2) =
4
3

∫
∞

0
I2
0 (x)K

3
0 (x)xdx. (3.5)

3.1 A modular L-series at 4 loops

Consider the Fourier expansion of the weight-4 level-6 cuspform

f4,6(z) := (η1η2η3η6)
2 = ∑

n>0
A6(n)qn =

f4,6(−1/(6z))
62z4 . (3.6)

For ℜs > 5/2, there is a convergent L-series

L6(s) = ∑
n>0

A6(n)
ns =

1
1+21−s

1
1+31−s ∏

p>3

1
1−A6(p)p−s + p3−2s . (3.7)
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Its analytic continuation is provided by the Eichler integral

L6(s) =
(2π)s

Γ(s)

∫
∞

0
f4,6(iy)ys−1dy (3.8)

with critical values related to Bessel moments as follows

L6(2) =
2

π2 M(1,5,1) =
2
3

M(3,3,1), (3.9)

L6(1) =
2

π2 M(2,4,1) =
3

π2 L6(3). (3.10)

3.2 A non-modular L-series at 5 loops

With 7 Bessel functions and ℜs > 3, the local factors at the primes in

L7(s) = ∏
p

1
Z7(p, p−s)

(3.11)

are given, for p coprime to 105, by the cubic

Z7(p,T ) =
(

1−
( p

105

)
p2T

)(
1+
( p

105

)
(2p2−|λp|2)T + p4T 2

)
(3.12)

where λp is a complex Hecke eigenvalue of a weight-3 newform with level 525. For p|105, one
obtains, from Kloosterman moments [3] in finite fields,

Z7(3,T ) = 1−10T +34T 2, Z7(5,T ) = 1−54T 2, Z7(7,T ) = 1+70T +74T 2, (3.13)

which enable discovery of the functional equation [4]

Λ7(s) :=
(

105
π3

)s/2

Γ

(
s−1

2

)
Γ

( s
2

)
Γ

(
s+1

2

)
L7(s) = Λ7(5− s). (3.14)

Then Tim Dokchitser’s package COMPUTEL [8] gives the empirical result

L7(2) =
24

5π2

∫
∞

0
I2
0 (x)K

5
0 (x)xdx. (3.15)

3.3 A modular L-series at 6 loops

Consider the Fourier expansion of the weight-6 level-6 cuspform

f6,6(z) :=
η9

2 η9
3

η3
1 η3

6
+

η9
1 η9

6

η3
2 η3

3
= ∑

n>0
A8(n)qn =−

f6,6(−1/(6z))
63z6 . (3.16)

For ℜs > 7/2, there is a convergent L-series

L8(s) = ∑
n>0

A8(n)
ns =

1
1−22−s

1
1+32−s ∏

p>3

1
1−A8(p)p−s + p5−2s . (3.17)

Its analytic continuation is provided by the Eichler integral

L8(s) =
(2π)s

Γ(s)

∫
∞

0
f6,6(iy)ys−1dy (3.18)

with critical values related to Bessel moments as follows

L8(4) =
4

9π2 M(1,7,1) =
4
9

M(3,5,1) =
π2

9
L8(2), (3.19)

L8(5) =
4
27

M(2,6,1) =
2π2

21
M(4,4,1) =

2π2

21
L8(3) =

π4

54
L8(1). (3.20)
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4. Quasi-periods associated to modular forms

In [7] Francis Brown associated a pair of periods and a pair of quasi-periods to the weight
12 level 1 modular form ∆(z) = η24

1 . The periods are a pair of Eichler integrals that determine
critical values of the L-series at odd and even integers. No concrete integrals were given for the
quasi-periods. Rather it was asserted that numerical values may be obtained by an undeclared
regularization of integrals of a weakly holomorphic modular form ∆′(z) = 1/q+O(q2).

4.1 Quasi-periods from 4-loop sunrise

In terms of Eichler integrals,

D2

2
=

M(1,5,1)
π4 =

4M(1,5,3)
π4 +

5E2

18
, (4.1)

3D1

5
=

M(2,4,1)
π3 =

4M(2,4,3)
π3 +

E1

3
, (4.2)[

Ds

Es

]
:= −

∫
∞

1/
√

3

 f4,6

(
1+iy

2

)
g4,6

(
1+iy

2

)ys−1dy, (4.3)

g4,6(z) :=
(w2−3)2(w4 +9)

8w4 f4,6(z) = 5q+102q2 +945q3 +O(q4), (4.4)

w := 3
η2

2 η4
3

η4
1 η2

6
, (4.5)

D1E2−D2E1 =
1

24π3 , (4.6)

with a simple determinant relating a pair of periods and a pair of quasi-periods.

4.2 Quasi-periods from six-loop sunrise

We found empirical relations to Eichler integrals for the second column of

det

[
M(1,7,1) 32M(1,7,3)−64M(1,7,5)
M(2,6,1) 32M(2,6,3)−64M(2,6,5)

]
=

5π6

192
, (4.7)

F2

4
=

M(1,7,1)
π6 =

32M(1,7,3)−64M(1,7,5)
π6 +

35G2

108
, (4.8)

9F1

28
=

M(2,6,1)
π5 =

32M(2,6,3)−64M(2,6,5)
π5 +

5G1

12
, (4.9)[

Fs

Gs

]
:= −

∫
∞

1/
√

3

 f6,6

(
1+iy

2

)
g6,6

(
1+iy

2

)(3y2−1)ys−1dy, (4.10)

g6,6(z) :=
(w2−3)4

16w4 f6,6(z) = q+36q2 +567q3 +5264q4 +O(q5), (4.11)

F1G2−F2G1 =
1

4π5 , (4.12)

with (3y2− 1) inferred from the dispersion relation for a sub-diagram. Note that the integrand of
Gs is of order (3y2−1)6 near its threshold. A link to Francis Brown’s concept of quasi-periods is
forming, yet is not complete, since g6,6 lacks a period polynomial enjoyed by f6,6.

5
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4.3 Quasi-periods from even Bessel moments

At weight 4 and level 8, we obtained the empirical relations[
2M(0,4,0) 4M(0,4,0)−16M(0,4,2)
2M(1,3,0) 4M(1,3,0)−16M(1,3,2)

]
=

[
π4P1 3π4Q1

π3P2 3π3Q2

]
(4.13)

[
Ps

Qs

]
:= −i

∫
∞

1

 f4,8

(
1+iy

4

)
g4,8

(
1+iy

4

) ys + y4−s

y
dy, (4.14)

f4,8(z) := (η2η4)
4 = q−4q3−2q5 +O(q7), (4.15)

g4,8(z) :=
(

1+64
η24

4

η24
2

)
f4,8(z) = q+60q3 +1278q5 +O(q7), (4.16)

P1Q2−P2Q1 = − 1
2π3 , (4.17)

with g4,8(z0) = 0 at z0 = (1+ i)/4, where −i f4,8(z0) = Γ8(1/4)/(128π6).

4.4 Periods at level 24

The unique weight-6 Hecke eigenform that is both a newform of level 24 and also has a
negative sign in the functional equation for its L-series is

f6,24(z) :=
η4

3 η2
4 η6

6 η2
8

η2
24

+
η4

1 η6
2 η2

12η2
24

3η2
8

−
16η2

1 η2
2 η6

12η4
24

η2
3

−
16η2

3 η6
4 η2

6 η4
8

3η2
1

+
64η2

1 η2
3 η4η4

8 η12η4
24

η2η6
−

4η4
1 η2η4

3 η6η2
8 η2

24
η4η12

=− f6,24(z+1/2) (4.18)

=
f6,24(−1/(24z))

243z6 =−
f6,24((3z−1)/(12z−3))

33(4z−1)6 (4.19)

= q−9q3−34q5−240q7 +81q9−124q11 +46q13 +O(q15). (4.20)

We empirically related its critical L-series to Bessel moments:

L̃6(4) =
M(0,6,0)

108π2 , L̃6(5) =
M(1,5,0)

144
, L̃6(s) :=

(2π)s

Γ(s)

∫
∞

0
f6,24(iy)ys−1dy. (4.21)

4.5 Striving for quasi-periods at level 24

After intensive experiment at high precision, we conjecture that

det

[
M(0,6,0) 3M(0,6,2)−8M(0,6,4)
M(1,5,0) 3M(1,5,2)−8M(1,5,4)

]
=

5π6

16
, (4.22)

M(0,6,0)
π6 =

R1

28
=

3R3

4
,

M(1,5,0)
π5 =

R2

8
, (4.23)

Rs :=−i
∫

∞

0
f6,24

(
1+ iy

4

)
ys−1dy = 33−sR6−s. (4.24)

So far we have not succeeded in relating the second column of the determinant to Eichler integrals
of a weakly holomorphic modular form.

6
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5. Quadratic relations between integrals for all loops

Conjecture: With the Feynman, de Rham and Betti matrices below, we conjecture that

FNDNFtr
N = BN . (5.1)

The elements of FN are given as Bessel moments by

F2k+1(u,a) :=
(−1)a−1

πu M(k+1−u,k+u,2a−1) (5.2)

F2k+2(u,a) :=
(−1)a−1

πu+1/2 M(k+1−u,k+1+u,2a−1) (5.3)

with u and a, as well as later indices v and b, running from 1 to k. In (5.1), Ftr
N is the transpose of

the Feynman matrix FN . The Betti matrices BN have rational elements given by

B2k+1(u,v) := (−1)u+k2−2k−2(k+u)!(k+ v)!Z(u+ v) (5.4)

B2k+2(u,v) := (−1)u+k2−2k−3(k+u+1)!(k+ v+1)!Z(u+ v+1) (5.5)

Z(m) =
|Bm|
m!

, (5.6)

with the absolute value of the m-th Bernoulli number appearing in (5.6). Our original construction
of the rational de Rham matrices DN at the Matrix Institute [5] was very intricate. We have more
recently substantially simplified it as follows. Let vk and wk be the rational numbers generated by

J2
0 (t)

C(t)
= ∑

k≥0

vk

k!

( t
2

)2k
= 1− 17t2

54
+

3781t4

186624
+ . . . (5.7)

2J0(t)J1(t)
tC(t)

= ∑
k≥0

wk

k!

( t
2

)2k
= 1− 41t2

216
+

325t4

186624
+ . . . (5.8)

where J0(t) = I0(it), J1(t) =−J′0(t) and

C(t) :=
32(1− J2

0 (t)− tJ0(t)J1(t))
3t4 = 1− 5t2

27
+

35t4

2304
− 7t6

9600
+ . . . (5.9)

Construct rational bivariate polynomials Hs = Hs(y,z) by the recursion

Hs = zHs−1− (s−1)yHs−2−
s−1

∑
k=1

(
s−1

k

)
(vkHs−k−wkzHs−k−1) (5.10)

for s > 0, with H0 = 1 and H−1 = 0. Use these to define

ds(N,c) :=
Hs(3c/2,N +2−2c)

4ss!
. (5.11)

Finally, construct rational de Rham matrices, with elements

DN(a,b) :=
a

∑
c=−b

da−c(N,−c)db+c(N,c)cN+1. (5.12)

7
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6. Summary

We have shown that Laporta’s four-loop result [9] contains a modular quasi-period in (4.1,4.6).
Simple determinants occur for all loops L > 2, though the corresponding L-series are modular only
for L = 3, 4 and 6 loops. At 6 loops we encountered quasi-periods in (4.10,4.12). For all loops
L > 2, with N = L+ 2 Bessel functions, there are quadratic relations of the form FNDNF tr

N = BN

with Feynman, de Rham and Betti matrices that have been specified.
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