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Abstract 

A comprehensive theory of photoinjectors involves a wide range of accelerator physics topics ranging from 

the material science of cathodes to the dynamics of electrons in magnetic, RF and DC fields as well as the 

strong effects the electrons have upon each other in their mutually repulsive fields, i.e. space charge fields. 

Whereas other chapters are concerned with subjects such as the physics of electron emission, this chapter 

concentrates upon electron beam dynamics from the cathode to the high energy accelerator after the gun. It 

briefly describes the history and components of the photoinjector as well as the basic beam parameters of 

emittance and brightness. The chapter then discusses beam dynamics without space charge (i.e. forces due 

to RF fields only), beam dynamics with space charge, the focusing and aberrations due to the magnetic 

solenoid lens and controlling beam quality with transverse shaping of the beam to eliminate non-linear 

space charge forces. The last section lists and describes the simulation codes available to the designers of 

photoinjectors. Two appendices giving tables of the chapter’s formulae and mathematical symbols are 

included as a quick reference. 

1.1 INTRODUCTION 

Advances in the technology of high density, relativistic electron beams have made exciting new applications 

practical realities. A sampling of these new applications include Compton scattering sources, electron 

cooling of protons and heavy ions stored in a ring, energy recovery linac (ERL) light sources, free-electron 

lasers (FELs), inverse FELs and ultrafast electron diffraction. The first demonstration of a high average 

power FEL [1.1] and the operation of the first hard X-ray FEL as a 4
th

 generation light source [1.2] represent 

two challenging fronts on the frontier of high brightness beam applications. Both of these achievements 

have benefited from the invention and continued development of the photoinjector. 

 

This book’s goal is to describe the technological components of these new photoinjectors from an 

engineering perspective. These technologies involve fields as diverse as RF power, high voltage (HV) DC, 

lasers, chemistry, ultra-high vacuum (UHV), beam optics, and others which are ably discussed by the 

authors of the other chapters and detailed by their references. It is the goal of this chapter to collect the 

various aspects of the theory of photoinjectors.  

 

The photoinjector consists of a laser generated electron source followed by an electron beam optical system 

which preserves and matches the beam into a high-energy accelerator, as shown in Figure 1.1. Matching the 

electron bunch to the first high-energy accelerator is one of the photoinjector functions, since the proper 
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phase space sizing of the beam into the first accelerator section is an essential element of emittance 

compensation. In the low-energy regime of the photoinjector, the beam is considered to be “space charge 

dominated.” In other words, its optical properties are strongly determined by the defocusing of space charge 

forces. Since the space charge forces are diminished as (beam energy)
-3

, at relativistic energies, the electrons 

begin to follow ray optics and the beam is referred to as “emittance dominated.” 

 

The generic configuration of the photoinjector is shown in Figure 1.1. The photoinjector consists of a 

cathode fabrication and/or transport system and electron gun, powered by RF (Chapter 10) or biased at a 

high voltage, beam optics for transporting and matching the beam to the high-energy accelerator, and 

assorted diagnostics (Chapter 11) and controls. The photocathode can be either a metal (Chapter 6) or one of 

several semiconductor materials (Chapters 7 and Chapter 8). The gun can be a high voltage DC gun 

(Chapter 4), a normal conducting RF (NCRF) gun (Chapter 2) or a superconducting RF (SCRF) gun 

(Chapter 3). In addition, it is necessary to suit the drive laser to the type of cathode and the desired pulse 

format (Chapter 9). Although there is a wide range of options for the cathode, laser and gun, the underlying 

beam physics is quite similar, as shown in the following sections of this chapter.  

 

 
Figure 1.1.  The parts of a photoinjector. 

Electron beam quality is often specified in terms of three quantities: Emittance, peak current and brightness. 

The emittance is the area or volume of phase space the electrons occupy. In general, the phase space is the 

six dimensional space formed by an electron’s three positions and angles. In 6-dimensional (6-D) space, the 

phase space coordinates are x, x', y, y', z and z'. Here, x, y and z are the electron position coordinates in the 

right-handed Cartesian coordinate system: the beam center is moving in the z-direction, the y-axis is 

vertical, and the x-axis pointing horizontal and to the left. The angles x', y' and z' are given by the 

momentum along that axis divided by the total momentum. For example, x' = px/ptotal, where 

ptotal

2
 = px

2
 + py

2
 + pz

2
. Strictly speaking, the 6-D emittance should be computed from the electron distribution 

in the 6-D phase space. While this may be possible theoretically, in experiments the complete distribution 

details are not known and one can only measure projections of the distribution to find the emittance and 

other beam qualities. Projections of the 6-D phase space onto the 2-D sub-spaces of xx', yy' and zz' are called 

trace spaces. 
 

The energy normalized trace space emittance is defined as 
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 εn = βγ 〈 〉x
2 〈 〉x'

2
 – 〈 〉xx'

2
 (1.1) 

 

where β = v c
-1

 is the electron velocity in units of the speed of light, c, and γ = Etotal/mc
2
 as the total beam 

energy, Etotal, normalized to the electron mass, mc
2
. Multiplying Equ. 1.1 by π gives the area of trace space 

occupied by the beam distribution, so it’s often stated that the π is an “implied” factor in emittance unit. One 

can show that if there are no correlations between x, or x', and the other four coordinates that the trace space 

emittance in xx' trace space is conserved, that is 〈 〉xy  = 0, 〈 〉xy'  = 0 …, and similarly for the other trace 

spaces of yy' and zz'. However, correlations between the separate trace spaces lead to an increase in the trace 

space emittance. An example of a 〈 〉xyx'y'  correlation is given in Section 1.5.4. Since it includes the effects 

of the correlations mixing of the trace spaces, the 6-D phase space emittance, often called the canonical 

emittance, remains unchanged. For the rest of this chapter, the trace space emittance will be referred to as 

the normalized transverse emittance, or simply the emittance. 

 

The peak current, Ipeak, is the bunch charge divided by the bunch length qbunch and is usually calculated using 

the full-width at half-maximum (FWHM) bunch length. However, some authors compute it using the root 

mean squared (rms) or some other variant of the full width, or even reduce the charge to include only those 

electrons in the core of the bunch. In this book, we will use the total bunch charge and the FWHM bunch 

length. The peak current out of the gun should be as high as possible to avoid having to bunch the beam 

before acceleration in the high energy linac. The bunch length, and hence the peak current from the injector 

depends upon the RF frequency of the main accelerator since the bunch length should be a small fraction of 

an RF period. A sensible guideline is less than 10˚ RF
1
 for the full bunch length. Hence, for a 3 GHz, linac 

the beam at the end of the injector should approximately have a maximum bunch length of 10˚ S or 10 ps. 

This then establishes a lower limit for the peak current at a given charge, ignoring bunch elongation. For 

example, at 1 nC the peak current from a 3 GHz gun would be 100 A. Most applications require Ipeak to be 

10-100 A from the injector. 

 

The beam brightness combines the emittance and the peak current into a single parameter measuring the 

electron volume density. There are various definitions for beam brightness, each having its own merits. The 

common practice is to define the transverse, normalized beam brightness, Bn, as given by Equ. 4.2 in 

Chapter 4 

 

 
ynxn

n
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2


  (1.2) 

 

Here εn,x is the normalized xx' trace space emittance and εn,y is the yy' trace space emittance. The peak current 

is the bunch charge divided by the bunch FWHM. 

 

While Equ. 1.2 is commonly used to define the beam brightness, a more accurate representation of beam 

brightness would include the bunch length and energy spread. Similar to the transverse emittance, these 

                                                 
1
 In this book, we will denote the RF phase in degrees as “˚ RF” and the temperature in degrees Celsius as “˚C” to avoid the 

confusion of using “˚” for both.  When discussing a specific RF frequency band, such as the S-band, the RF phase in degrees at 

the S-band frequency is given as “˚ S” and similarly for the other frequency bands. 
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longitudinal characteristics can be represented by the longitudinal emittance, which in its simplest form 

(ignoring any correlations) is the product of the bunch length, Δt, and energy spread, ΔE 

 

 εz = σz σΔE/E (1.3) 

 

Here, σz is the rms bunch length and σΔE/E is the rms fractional energy spread. An alternative definition of 

the peak brightness would then be 
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The factor of ‘2’ results from the integration over the 4-D trace space enclosed by a hyperellipsoid. [1.3] 

1.1.1 The First Photocathode RF Gun 

In 1985, it was demonstrated that a photocathode could survive while delivering high current densities of 

over 200 A cm
-2

. [1.4][1.3] This was rapidly followed by the first operation of a photocathode gun at Los 

Alamos National Laboratory as the electron source for an FEL experiment [1.5]–[1.7]. The gun was a single 

RF cell connected to a cross in which Cs3Sb cathodes were fabricated on the end of a long stick which could 

be inserted into the gun. The laser beam was reflected from an in-vacuum mirror through the solenoids and 

gun and onto the cathode. Downstream of the gun, the beam emittance was measured using the pepper-pot 

technique and a magnetic spectrometer measured the energy and energy spread. While this demonstration 

showed the many advantages of improved beams from photocathodes, it also illustrated the difficulties of 

working with a cathode material which is often hard to fabricate and always sensitive to its environment.  

1.1.2 Summary of Advances 

The invention of the photoinjector motivated a large increase in the number of laboratories studying electron 

guns. In 1983, there were only 1 or 2 gun projects, but by 1990 there were more than 25 laboratories along 

with a few companies actively building and testing guns [1.8]. The immediate improvement in electron 

beam quality with the advent of the photocathode gun was then followed by a methodical pace of small but 

steady steps toward the current state-of-the-art. Figure 1.2 illustrates the history of the 1 nC bunched beam 

emittance over the past 50 years. 

 

 
Figure 1.2.  The demonstrated normalized emittance over the last 50 years for bunches compressed to 50 A to 100 A peak current. 
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The emittance is for a beam bunched from 50-100 A, since this is what’s required for injection into a high 

energy linac. The projected emittance for 1 nC bunches is shown for thermionic and photocathode gun 

injector technologies in the figure. Thermionic guns were combined with sub-harmonic RF bunchers to 

achieve the 1 nC charge but could not achieve less than approximately 20 µm for the normalized emittance. 

In contrast even the first photocathode RF gun demonstrated better than 10 μm. This quick success was then 

followed by ~20 years of research to reach the goal of 1 micron at 1 nC. 

 

In this book, we classify photoinjectors into three types: Normal Conducting RF (NCRF), Superconducting 

RF (SCRF) and high voltage DC (HV DC). There are one or more chapters devoted to each type. The 

proliferation and wide use of all three types of photoinjectors is illustrative of its success.  Today there are 

more than a dozen facilities with NCRF guns, six operating or proposed SCRF guns and at least four using 

high brightness HV DC guns. A comparison of the beam emittance, charge, longitudinal phase space, 

repetition rate and other beam parameters for these three photoinjector types can be found in [1.9]. 

 

In addition, there are innovative injector designs which combine two or more of these three basic types of 

photoinjectors. A good example is the DC SCRF photoinjector at Peking University in Beijing. This system 

has a 90 kV HV DC gun placed close to the entrance of a 3½-cell SCRF accelerator and tries to combine the 

best features of the HV DC gun and the SCRF linac. [1.10] 

 

The optimal RF frequency for the photocathode gun is often discussed, and it is often concluded that 

because higher frequencies produce higher electric fields that high frequencies should produce the best 

beam quality. There is no doubt that high electric field is important/essential for outrunning the space charge 

forces. However, there are other phenomena whose emittances scale upward with increasing RF field and 

frequency. For example, RF emittance is an unavoidable consequence of a gun with strong fields at a high 

RF frequency. As shown in Section 1.3, this emittance scales linearly with the peak electric field.  Similarly, 

the emittance caused by the field enhancement due to rough cathode surfaces scales as the square root of the 

cathode field. Furthermore, for high average current injectors, the thermal management associated with high 

electric fields may even preclude operation in such a regime. Thus, high fields are not always advantageous. 

 

Even with these advances, there remain opportunities for further improvements. Historically, the laser and 

the cathode have been the most problematic. However, recent developments in laser technology have 

resolved many of these issues. Diode-pumped solid state lasers now provide stable and reliable photons for 

photocathode guns. It is now possible to deliver the peak current required with a suitable choice of the 

cathode and the laser. Instead, further progress should concentrate on near the cathode. Improving the 

electron emission and mitigating the image and space charge effects will require a more complete 

understanding of the physical and chemical properties and reactions of the cathode material, both during 

fabrication and use in the gun. The goal is to develop cathodes with reliable and improved performance. The 

current cathode technology is discussed in Chapters 5 and Chapter 7. 

 

Once the electrons are liberated from the cathode, they experience strong self-fields (space charge limited 

emission and emittance), fields in the accelerating cavities (RF emittance), and fields of the transport optics, 

all of which degrade the beam quality (chromatic and geometric aberrations). Space charge emittance is 

produced by the self-mutual repulsion of the electrons in the bunch, which is aggravated by the backward 

attraction of the image charge. The space charge limit occurs when the image charge electric field equals 

and cancels the applied electric field. Space charge emittance takes on various forms, but is always driven 

by non-uniformities in the charge density. The variation in the longitudinal charge density deforms the 
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bunch with a variation in divergence, and hence emittance along its length. Emittance compensation in an 

RF gun refers to balancing the space charge divergence by focusing these divergence variations into 

alignment and compensate for the linear space charge force. This is possible if the space charge force is 

linear and the space charge force can be made linear if one uses special bunch shapes, for example the 

“beer-can.” Non-linear space charge forces increase the emittance due to a non-uniform charge distribution. 

The non-linear emittance usually cannot be corrected and instead is avoided by making the emission 

uniform. 

 

The RF emittance results from the time-dependent focusing by the RF fields. The emittance of a thin time-

slice of the bunch is unchanged and the slice merely obtains a change in divergence or an instantaneous kick 

in angle, as it would in a thin lens. However, the varying RF field gives a different divergence to each time-

slice, which increases the projected emittance of the entire bunch. The RF emittance has a first- and second-

order dependence upon the bunch length. This emittance is usually minimized by operating with short bunch 

lengths and optimal timing of when the laser produces the bunch with respect to the RF fields. 

 

Since the gun itself acts as a strong defocusing lens, an equally strong focusing lens is needed to refocus the 

beam. This lens is usually a solenoid whose axial field focuses the electrons. Like all strong lenses this 

solenoid can produce a chromatic emittance due to the bunch energy spread and geometric emittance due to 

the transverse size.  

 

This chapter attempts to discuss these effects with simple mathematical models. These models attempt to 

capture the underlying physics of the effects while providing useful formulas for estimating their 

contribution to the emittance. However, they are not meant to replace the need for numerical simulations 

using advanced multi-particle and mesh codes. The codes allow inclusion of the field shape and electron 

distribution minutia. 

1.1.3 Organization of this Chapter 

This chapter discusses the analytic theory of photocathode RF guns. It does this through the use of analytic 

models which accurately describe the physical phenomena for each portion of the photocathode gun system. 

The chapter begins with the definition of a photoinjector in Section 1.2. It is important to realize that 

producing a good beam from the cathode and gun is only the first part of emittance preservation of a larger 

system. There is also the matching of the beam into the first accelerator section and the damping of the 

emittance. 

 

A discussion of beam dynamics without space charge forces is given in Section 1.3. The first- and second-

order transverse RF emittances are derived and their relative sizes compared. The longitudinal emittance 

due to the RF is also computed.  

 

Section 1.4 gives the space charge emittance for cylindrical (beer can) and Gaussian charge distributions. 

Analytic formulae are derived for both uniform and spatially varying transverse charge distributions. Space 

charge limited emission for a photocathode gun is shown to be different from the Child-Langmuir law. And 

a simple space charge model is given for non-uniform transverse emission. Emittance compensation is 

expressed in Section 1.4.4 in terms of a plasma oscillation being matched to the first linac section for 

minimum projected emittance. In a sense, this could be referred to as slice dynamics, given that it involves 

manipulating the slice parameters to make them the same.  
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Section 1.5 begins describing a linear optical model for the gun and solenoid. It then continues into an 

analysis of the solenoid’s aberrations. The aberrations considered are chromatic, geometric and anomalous-

quadrupole field. The anomalous-quadrupole field aberration results from a low strength quadrupole field 

which strongly couples the x- and y-emittances because of the large rotation angle in the solenoid. A means 

for “recovering” this emittance using normal and skew corrector quadrupoles is given. 

 

The interesting and important topic of space charge shaping is presented in Section 1.6. Here, fundamental 

electromagnetic theory is used to compute ideal shapes with minimal non-linear space charge force. Often 

referred to as the “blow-out” regime, the linearization phenomenon is actually achieved by shaping the 

radial charge distribution so as to make the higher order space force terms zero.  

 

The last section, Section 1.7, describes the capabilities of beam simulation codes. Sophisticated simulations 

allow high resolution computation of nearly all the details of the gun, solenoid and beamline components. 

And while the theory and models presented in the proceeding sections are important for understanding 

concepts and trends, all realistic gun designs require simulations with all the fine details. 

1.2 THE RF PHOTOINJECTOR 

1.2.1 The Photocathode RF Gun, Drive Laser and First Accelerator Section 

A typical photocathode RF system shown in Figure 1.3 depicts a 1½-cell gun with a cathode in the ½ cavity 

being illuminated by a laser pulse train. At the exit of the gun is a solenoid which focuses the divergent 

beam from the gun and compensates for space charge emittance. The drive laser is mode-locked to the RF 

master oscillator which also provides the RF drive to the klystron. Other types of RF sources used to power 

RF guns are inductive output tube (IOT) and solid state RF amplifiers. (Not shown is the high voltage power 

supply powering the klystron.) How the RF power is coupled into the gun is an important technical aspect of 

the gun design. At high RF frequency, the coupling can be through the side-wall of one of the cavities with 

the cell-to-cell RF coupled through the irises between the cavities. Alternatively, the power can be coupled 

using coaxial coupler either at the beam exit or around the cathode [1.11]–[1.13]. At low frequencies, the 

RF can be launched using a coaxial cable [1.14]. These and other coupling schemes for NCRF guns are 

described in Chapters 2 and Chapter 10. 

 

 
Figure 1.3.  Basic components of the photocathode RF gun injector. 

Equally important as the high field RF gun, cathode and laser is the optical matching of the beam size and 

divergence into the first linac section. The distance between the end of the gun and the entrance to the linac 
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is determined by the bunch’s plasma oscillation period. As discussed in Section 1.4.4, the bunch is matched 

when all the slices are aligned in transverse phase space, i.e., have equal phase space parameters.  

1.2.2 The ERL Injector System 

Beam matching to the main linac is straightforward for a single pass accelerator. However, it becomes more 

problematic for circular machines, such as ERLs. In these accelerators, the spent, high-energy beam is 

decelerated in the same linac sections which accelerated them. Since ERLs are designed to operate at high 

average current, it is best to merge and un-merge the beam at beam energies which are below the neutron 

threshold of commonly used beam dump materials. Since neutron thresholds of most materials are from 10-

15 MeV, 10 MeV is taken as the upper beam energy for the merger.  

 

Due to the low beam energy and the relatively high peak current, there are significant space charge forces 

and other non-linear effects which can increase the emittance in the beam transport of the merger. Similar to 

emittance compensation technique, any emittance growth due to a correlation along the length of the bunch 

can be compensated for. The theory for the generalized dispersion produced by space charge dominated 

beams in bends has been developed in some detail for a merger with bi-lateral symmetry called the “zigzag” 

[1.15]. Here, this important topic is only briefly discussed for ERL mergers and the interested reader is 

directed to the references [1.16].  

1.3 BEAM DYNAMICS WITHOUT SPACE CHARGE 

1.3.1. RF Fields and Gun Geometries 

The photocathode RF gun consists of a cathode in a half length cavity only, or the cathode ½-cell followed 

by one or more full length cavities. These cavities operate typically in a TM011 transverse magnetic mode. 

Figure 1.4 shows the cell structure for a 2½-cavity gun. Full cells are added to raise the beam energy out of 

the gun. 
 

 
Figure 1.4.  Field lines in a 2½-cell photocathode gun. 

Figure 1.5 shows two commonly used geometries for the cell shape: Pillbox and re-entrant. The drawing on 

the left shows a pillbox cell, λ/4 long, creating the single cell pillbox RF gun. The re-entrant cavity shown 

on the right has higher shunt impedance than the pillbox and therefore has higher accelerating fields for the 

same RF power. However as a disadvantage, the reentrance shape has larger off-axis radial fields which can 

degrade the beam quality, but this effect is usually small. It is also more difficult to fabricate. On the other 

hand, the pillbox shape allows more freedom on the cathode design. This is advantageous in high voltage, 
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high frequency guns where the cell wall itself is used as for the cathode. In one common design, the 

BNL/SLAC/UCLA gun, the entire cavity wall with the cathode is replaceable. This is a useful feature since 

it allows placing the RF joint at the outer circumference of the cavity where the magnetic field or surface 

current is high, but the electric field is low.  This reduces the likelihood of high voltage arcing, although it 

does require good electrical contact to avoid resistive heating. In the reentrant cavity, the cathode is usually 

a plug inserted into the nose cone as shown in the figure. This adds to the complication of the reentrant 

design. A more extensive discussion comparing these two cavity shapes is given in Chapter 2.   

 

 
Figure 1.5.  The two common geometries for the RF gun half cavity: Pillbox (left) and re-entrant (right). 

Since we wish to accelerate electrons, the relevant modes are those with large longitudinal electric fields as 

shown in Figure 1.4.  These are the transverse magnetic (TM) modes. Writing out the electric and magnetic 

field components of the transverse magnetic modes, TMmnp, of a pillbox cavity gives 

 

 Ez = E0Jm(kmnr) cos(mθ) cos(pkzz) exp[i(ωt + 0)] (1.5) 

 

 Er = -p 
kz

kmn
E0Jm' (kmnr) cos(mθ) sin(pkzz) exp[i(ωt + 0)] (1.6) 

 

 Eθ = -mp 
kz

kmn
2

 r
E0Jm(kmnr) cos(mθ) sin(pkz – z) exp[i(ωt + 0)] (1.7) 

 

 Bz = 0 (1.8) 

 

 Br = 
-iωm

kmn
2

 c
2
r
E0Jm(kmnr) sin(mθ) cos(pkzz) exp[i(ωt + 0)] (1.9) 

 

 Bθ = 
-iω

kmnc
2 E0Jm' (kmnr) cos(mθ) cos(pkzz) exp[i(ωt + 0)] (1.10) 

  

These expressions assume the longitudinal origin at z = 0 is the cathode position. Here, E0 is the field 

normalization, Jm is the m
th

-order Bessel function, kmn is the n
th

 zero of the m
th

-order Bessel function, Rcavity 

is the internal radius of the cavity and ω is the RF angular frequency. kz is the longitudinal wave number, 
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where kz = pπ l
-1

, and l is the cavity length. The dispersion relation relates the frequency to the radial and 

longitudinal wave numbers 

 

 
ω

2

c
2  = kmn

2
 + kz

2
 (1.11) 

The TMmnp designation denotes the mode is transverse magnetic since Bz = 0. The m mode number refers to 

the azimuth angle, θ-dependence or rotational symmetry of the fields. Notice that the m mode number also 

affects the radial dependence of the fields through the Bessel functions Jm and their derivatives. Since we 

desire to produce a beam with rotational symmetry, m = 0 for all RF guns. The n mode number has been 

given above, and with the cavity radius gives the position of the radial nodes. The mode shape along the 

z-axis of the cavity is given by p. For reasons of timing and efficient acceleration, the full cell length for 

most RF guns is λ/2 and p = 1. The above mode equations then give a π phase shift between cells. Since the 

cathode is at a high field position, its cavity length is half that of a full cell, or λ/4. Numerical studies show 

that more optimal performance is obtained if the cathode cavity is 0.6X the full cell length, rather than 0.5. 

And finally these spatial functions of the mode oscillate with the RF frequency, ω, with a 0 phase or time 

shift between the beam and the fields. 

 

Thus most RF guns use the TM011 mode whose non-zero field components are 

 

 Ez = E0J0(k01r) cos(kzz) exp[i(ωt + 0)] (1.12) 

 

 Er = 
-kz

k01
E0J0' (k01r) sin(kzz) exp[i(ωt + 0)] (1.13) 

 

 Bθ = 
-ikz

k01c
 E0J0' (k01r) cos(kzz) exp[i(ωt + 0)] (1.14) 

 

This mode is also called the π-mode, because the argument of the cosine function changes by π over a cell 

length. The fields for the π-mode oscillate at the same frequency, but with opposite sign. This cavity mode 

is often used for accelerators since the opposite field allows the electron bunch to catch the accelerating 

polarity of the field and remain synchronous with the accelerating field. Another mode is called the 0-mode 

has no phase change between the cells. For this mode, the fields oscillate in unison. Equ. 1.5 to Equ. 1.10 

show there is no z-dependence with p = 0 for the TM010 mode. 

 

The π-mode electric field for a 1.6-cell S-band RF gun is given in Figure 1.6. The top of the figure shows 

the field lines computed by the SUPERFISH code [1.17] which includes the details of the cavity shape 

shown. The lower portion of the figure compares the longitudinal and transverse fields computed with 

SUPERFISH and with those given by Equ. 1.12 and Equ. 1.13. The differences in the field shapes are due to 

the presence of the beam ports and details of the cavity shape. All these effects are ignored in the analytic 

expressions. However, the pillbox formulae do capture the main features of the fields, and later in the 

chapter they are used to compute the beam’s dynamics. 



An Engineering Guide to Photoinjectors, T. Rao and D. H. Dowell, Eds. 

Chapter 1: Photoinjector Theory, D. H. Dowell and J. W. Lewellen 11 

 
Figure 1.6.  RF fields for an S-band gun operating at a peak field of 100 MV m-1 on the cathode. The upper portion of the figure is a 

cross section taken through the r-Z plane of a 1.6-cell, S-band gun showing the interior surface and the electric field lines. The field lines 

were computed by SUPERFISH [1.17] using the shown interior shape. The lower graph is a plot of the longitudinal and transverse 

electric fields at a radius of 5 mm as computed by SUPERFISH and given by Equ. 1.12 and Equ. 1.13. 

1.3.2. Transverse Beam Dynamics in the RF Field 

The radial force is 

 

 Fr = e(Er – βcBθ) (1.15) 

 

and inserting Equ. 1.9 and Equ. 1.10 for the fields gives 

 

 Fr = e 
kz

k01
E0[ ]β cos(kzz) sin(ωt + 0) – sin(kzz) cos(ωt + 0)  J0' (k01r) (1.16) 

 

We consider the RF transverse force at the two locations where it is the largest: The center iris and the gun 

exit iris. There is little transverse force near the cathode since the low electron velocity makes the first term 

small and the second term as well since it is proportional to sin(kzz) and z ≈ 0 near the cathode. We argue 

that the transverse force at the center iris is also negligible since for the π-mode the field Ez(z) is  

anti-symmetric about the iris. However, the transverse force at the exit iris is significant since Ez(z) doesn’t 

change sign across the exit iris. Thus, the total transverse force is an impulse given at the exit iris, z = zf. In 

addition, for most RF guns β ≈ 1 at the gun exit, and assuming a small beam size allows us to write the force 

in the region of the gun exit as 

  

 Fr = -eE0

kzr

2
 sin(ωt + 0 – kzz) (1.17) 
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Next, we compute the change in radial momentum, pr, using the equation of motion 
dpr

dt
 = 

Fr

mc
, where we’re 

using Kim’s definition of the dimensionless radial momentum pr = 
γ

c
 
dr

dt
 [1.18]. The change in radial 

momentum is computed by integrating the force impulse over the position of the exit iris, 

 

 Δpr = 
1

mc
2  dzFr

= 
1

mc
2       dzzzkzF fzr   (1.18) 

 

which gives 

  

 Δpr = 
-eE0

mc
2  rsin(e) (1.19) 

 

where e = ωt + 0 – kzzf. This is identical to Kim’s expression although we began with the fields for the 

cylindrical pillbox cavity. 

 

Following Kim, we convert from cylindrical to Cartesian coordinates to obtain the change in transverse 

momentum at the exit iris 

 

 Δpx ≡ βγx' = 
-eE0

2mc
2 xsin(e) (1.20) 

 

Define the RF focal length in terms of the angular kick the beam gets at the exit of a cell,  

 

 x' =  
x

fRF
 (1.21) 

 

which gives the focal length of the gun’s RF lens as 

 

 fRF = 
-2βγmc

2

eE0 sin(e)
 (1.22) 

 

The RF focal strength can be quite strong for high field guns and for guns operating with high cathode field, 

but low exit energy. For example, for a gun operating at a peak field of 100 MV m
-1

 and exiting the gun on 

crest with an energy of 6 MeV results in a defocusing focal length of 12 cm. Thus, the beam out of a RF gun 

requires a focusing lens which is usually a solenoid lens. Details of the solenoid are discussed later in this 

chapter; however, since the length of the solenoid is ~20 cm, it’s nearly the same as its focusing focal length 

the solenoid adds an aberration to the beam. 

 

The emittance is increased by the gun’s RF defocusing due to different longitudinal sections or slices of the 

electron bunch arriving at the exit iris at different RF phases. If we consider thin slices longitudinally along 

the bunch, we can see that they will have received different angular kicks by the RF, and thereby increase 

the overall emittance of the bunch. The projected emittance is the term used to describe this overall 

emittance and the term slice emittance refers to the emittance of a short longitudinal sliver of the beam. The 

electron bunch is typically divided into 10-15 slices whose emittance can be determined experimentally 



An Engineering Guide to Photoinjectors, T. Rao and D. H. Dowell, Eds. 

Chapter 1: Photoinjector Theory, D. H. Dowell and J. W. Lewellen 13 

using a transverse RF cavity or other techniques, such as chirping the beam energy and using a spectrometer 

to disperse the slices. 

 

The increase in the transverse phase space area is shown in Figure 1.7. The xx' phase space is plotted for an 

exit phase of 0˚ are plotted as lines for the head (blue dash), tail (green dash) and the center (red solid) 

slices. The center slice (red solid) lies along the x' = 0˚ axis. Similar lines plotted along the diagonal line all 

lay on top of each other.  The light shaded area illustrates the projected emittance for 0˚ which is much 

larger than the emittance for the 90˚ exit phase. This plot assumes the head-to-tail distance is 10˚. 

 

 
Figure 1.7.  The transverse phase spaces of head, center and tail slices for exit phases of 0˚ and 90˚. The three slice phase spaces for 0˚ 

exit phase are plotted for the center slice (red-solid), head slice (blue dash) and the tail slice (green dash). The same color scheme is used 

for the 90˚ phase spaces which all lie on the same diagonal line. The linear (first-order) emittance for an exit phase of 90˚ is zero, as 

shown by the diagonal line. 

The emittance can be computed beginning with the definition, εn = βγ 〈 〉x
2 〈 〉x'

2
 – 〈 〉xx'

2
, which is 

normalized to the beam energy. For exit phases far from 90˚, the correlation term can be ignored 

 

 εn = βγσxσx' (1.23) 

 

where σx is the rms beam size at the exit of the gun and σx' is the rms divergence. We can estimate the 

angular dispersion from the variation of the divergence with the exit phase 

 

 Δx' = - 
d

de
 

1

fRF
 ΔxΔe (1.24) 

 

Taking the derivative of the focal strength and converting to rms beam size and bunch length at the exit iris 

gives the rms divergence 

 

 σx' = 
eE0 cos(e)

2γmc
2  σxσ (1.25) 

 

and the first-order RF emittance is 

 

 ε
RF

(1)
 = 

eE0 cos(e)

2mc
2  σx

2
σ (1.26) 
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Near 90˚, the phase space becomes highly correlated, as shown in Figure 1.7, and the first-order emittance 

goes exactly to zero at 90˚. However, there remains a quadratic emittance due to the RF curvature which is a 

maximum on crest. For a Gaussian longitudinal bunch then the emittance due to the RF curvature is [1.18]  

 

 ε
RF

(2)
 = 

eE0 | |sin(e)

2 2mc
2  σx

2
σ

2
 (1.27) 

 

We can combine these expressions and write the total emittance for all values of e as the quadratic sum of 

the first-order and second-order emittances 

 

 ε
RF

total
 = 

eE0

2mc
2 σx

2
σ cos

2
(e) + 

σ
2

2
 sin

2
(e) (1.28) 

 

Figure 1.8 graphs each of these emittances. The first-order RF emittance as a function of the exit phase 

becomes 0 on crest, or 90˚, where the second-order emittance is instead a maximum. The emittances shown 

have been calculated using a 4˚ rms (~10˚ FWHM) bunch length, a peak field of 100 MV m
-1

 and rms beam 

size of 1 mm. The second-order emittance can be cancelled using a higher RF harmonic [1.19]. This is 

similar to the linearization of the longitudinal phase space is done for bunch compressors using a harmonic 

cavity [1.20].  

 

 
Figure 1.8.  The RF emittance as a function of the exit phase for a 100 MV m-1 gun with a 1 mm rms size beam and a Gaussian 

longitudinal distribution of 4˚ rms at the exit iris. The total emittance (green solid) is the quadratic sum of the first-order (blue solid) 

and the second-order (red dash) emittances. 

1.3.3. Longitudinal Beam Dynamics in the RF Field 

Beginning with the force equations written in cylindrical coordinates, one can write the longitudinal force 

on an electron in a rotationally symmetric π-mode as 

 

 
d

dt
(γmz·) = -eE0








J0(k01r) cos(kzz) sin(ωt + 0) – 
ωr

·

k01c
2 J0' (k01r) cos(kzz) sin(ωt + 0)  (1.29) 

 

Expanding the Bessel functions and keeping the linear terms gives 

 

 
d

dt
(γmz ·) = -eE0








cos(kzz) sin(ωt + 0) + 
kzrr

·

2c
 cos(kzz) cos(ωt + 0)  (1.30) 
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In most cases, r/c is small and the second term can be ignored and we arrive at  

 

 
d

dt
(γmz·) = -eE0 cos(kzz) sin(ωt + 0) (1.31) 

 

Kim emphasizes the importance of the backward-propagating wave in short linear accelerators such as RF 

guns. Since the field mode we’re using is a standing wave mode, it naturally includes both forward and 

backward waves. It is easy to show that our equation for the longitudinal force agrees with Kim [1.18]. This 

is done by using a trigonometric identity to write Equ. 1.31 as  

 

 
dγ

dz
 = -αkz [sin()+sin( + 2kzz)]; where α ≡ 

eE0

2mc
2
kz

 (1.32) 

 

Here,  = ωt – kzz + 0 is the phase of the electrons with respect to the synchronous RF phase and we’ve 

defined the electric field parameter as α. This expression is identical to Equation 4 in Kim’s paper [1.18].  

 

The phase slip is computed from the following integral 

 

 

  – 0 = ωt – kzz = kz dz

z

 









0

1
1


 = kz 0

0
2

1
1

dz

z

 

















 (1.33) 

 

Since the beam is rapidly accelerated, the bunch quickly becomes relativistic and becomes synchronous 

with the RF fields and the phase slip becomes constant. Thus, the integrand is significant only near the 

cathode and the phase slip,  rapidly approaches the asymptotic phase, ∞, given by [1.18] 

 

 ∞ = 
1

2α sin(0)
 + 0 (1.34) 

 

Bunch compression can be found by taking the derivative of the asymptotic phase with respect to the initial 

phase 

 

 Δ∞ = 








1 – 
cos(0)

2α sin
2
(0)

 Δ0 (1.35) 

 

Equ. 1.34 and Equ. 1.35 should be used with some caution. When Equ. 1.35 is negative, the bunch head and 

tail are reversed however simulations show this does not happen. Thus these expressions appear to be valid 

only for initial phases giving a positive result for the bunch compression. However, experiments and 

simulations do show that there is significant bunch compression for initial phases near the phase 

corresponding to zero field at the cathode. For example, in an S-band gun operating at 115 MV m
-1

, a bunch 

with an initial phase of 30˚ S with respect to the zero field phase has the same length as the laser pulse. 

Initial phases less than 30˚ S can compress the bunch a factor of five or more at high cathode fields with an 

asymmetric bunch shape [1.21]. 
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The electric field parameter and the initial phase establish the RF gun’s operating range with respect to the 

RF emittance. Curves of constant electric field parameter, α, can be plotted in the plane formed by the 

asymptotic and initial phases as shown in Figure 1.9. The figure shows the curves for electric field 

parameters, α = 0.5, 1.0.75, 1.0, 2.0 and 4.0. The asymptotic phase of 90˚ RF, where the RF emittance is a 

minimum, is shown by the horizontal dashed line. It can be seen that to reach the phase for minimum RF 

emittance requires α ≈ 0.8 or larger. In order for α > 1 the product of the peak field and the RF wavelength 

needs to be greater than 6.4 MeV 

 

 eE0λRF > 4πmc
2 

(1.36) 

 

The peak field corresponding to α > 1 is easily achieved for S-band (3 GHz, λRF = 10 cm) guns where the 

requirement is 64 MV m
-1

. Typical S-band guns commonly operate at 100 MV m
-1

 and higher to give 

α > 1.5. As the RF frequency increases, the field required for α = 1 becomes more difficult. For example, the 

peak field needed at X-band (12 GHz) is 250 MV m
-1

. This is possible, but on the high end of reliably 

achieved fields at this frequency. An X-band gun with a field of 200 MV m
-1

 has an electric field parameter 

of 0.8, which is too low to minimize the RF emittance as shown in Figure 1.9 for a 250 pC bunch charge 

and a cathode radius of 1 mm. 

 

Of course, this restriction only applies to guns consisting of a string of iris coupled cavities and not to single 

cell guns. In addition, if the cavities are independently powered, they can be timed to give the desired exit 

phase at the expense of producing a mismatch of the focusing strength at the irises between the cells. 

 

For initial phase near the RF zero crossing the RF field becomes equal to the bunch electric field and the 

space charge limit is reach. As will be discussed in the next section, the space charge field is related to the 

surface charge density, σSCL, and can be written as 

 

 σSCL = 
qbunch

πRc
2  = ε0E0 sin(0,SCL) (1.37) 

 

0,SCL is the initial phase at which the RF field equals the space charge field produced by a bunch charge 

with qbunch and radius, Rc. Since α = 
eE0

2mc
2
kz

 , one can write 

 

 α sin(0,SCL) = 
eqbunch

2πε0kzRc
2
 mc

2 (1.38) 

 

Thus bunches launched with an initial phase of 0,SCL and smaller are space charge limited and are not 

emitted. The space charge limited region is indicated by the shaded region in Figure 1.9 for a 250 pC bunch 

charge and a cathode radius of 1 mm. 

 

The longitudinal emittance, εz, is defined in terms of the dimensionless longitudinal momentum, pz = βzγ, 

and the bunch length Δz 

 

 εz = 〈 〉(Δpz)
2 〈 〉(Δz)

2
 – 〈 〉Δpz

2〈 〉Δz
2
 = 〈 〉[ ]Δ(βzγ)

2 〈 〉(Δz)
2

 – 〈 〉Δ(βzγ)
2〈 〉Δz

2
 (1.39) 
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Figure 1.9.  The asymptotic phase for an S-band gun plotted as a function of the initial phase for α = 0.5, 0.75, 1, 2 and 4. The region for 

which the cathode field is below the space charge limit is indicated in the upper left region of the graph. The space charge limit is shown 

for a 250 pC bunch with a 1 mm cathode radius. 

The RF longitudinal emittance is derived from the beam energy for a small deviation Δ from the mean 

phase, 〈 〉 . For a Gaussian distribution and an on crest exit phase the longitudinal RF emittance is [1.18] 

 

 εz
RF

 = 3(γf – 1)kz
2
 σz

3
; where 〈 〉  = 90˚ RF (1.40) 

 

where γf is the final normalized energy of the beam. The longitudinal RF emittance is seen to have a cubic 

dependence upon the bunch length at an exit phase of 90˚ where the 1
st
-order transverse emittance is zero. 

1.4 BEAM DYNAMICS WITH SPACE CHARGE 

The beam charge from a cathode is limited in two operating regimes. For thermionic cathodes, there are two 

limits: Temperature limited emission and space charge limited emission. In temperature limited emission, 

the current density is given by the Richardson equation; the space charge limit of the current density is given 

by the Child-Langmuir law. In the case of photoemission, the bunch charge can be photon limited or space 

charge limited. The photon limited emission is given by the quantum efficiency (QE) times the number of 

incident photons, and space charge limited emission is given by a sheet beam model. 

1.4.1 Space Charge Limited Emission 

Electron emission is strongly affected by the electric field produced by the electron bunch itself. 

Immediately at the cathode surface, the electrons experience their own image charge, which for metal 

cathodes, produces a field opposing the applied electric field. The magnitude of this field is easily estimated 

by considering the electron bunch as a very thin charge sheet very close to the cathode surface, as shown in 

Figure 1.10. In this case, the space charge field is similar to that between the plates of a capacitor, Es. 

 

In this case, the space charge field, ESCL, is similar to that between the plates of a capacitor 

 

 ESCL = 
q

Aε0
 = 

σ

ε0
 (1.41) 
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where A is the cross-sectional area of the sheet beam, q is the residual charge, and ε0 is the permeability of 

free space. Electron emission saturates when ESCL = Eapplied, whether Eapplied is an RF or DC electric field 

 

 ESCL = 
q

Aε0
 = 

σ

ε0
 = Eapplied (1.42) 

 

Thus, for a RF photocathode gun, the bunch surface charge density is limited when 

 

 σSCL = ε0E0 sin(0) (1.43) 

 

Here, E0 is the peak RF field on the cathode and 0 is the laser launch phase. 

 

At the space charge limit (SCL), the emitted charge saturates and the emission becomes constant. If the 

transverse distribution is non-uniform when the cathode is driven to the SCL, then different locations will 

saturate and other areas will not. In the RF gun, the signature observation of the SCL is the sub-linear 

dependence of the charge on the laser energy as shown in Figure 1.11. 

 

  
Figure 1.10.  Sheet beam model for short pulse photoemission. [Courtesy of A. Vetter] 

The space charge limit of the surface charge density in an RF gun is linear with the applied field. This 

differs from the 3/2-power for the voltage given by the Child-Langmuir law for surface current density, JCL, 

thermionic emission [1.22] 

 

 JCL = 1.67×10
-3

 
e

mc
2 

V 
3/2

d 
2  (1.44) 

 

JCL is the space charge limited current surface density of beam filling a cathode-anode gap as shown in 

Figure 1.12. The voltage across the gap is V and the gap length is d. 
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Figure 1.11.  The measured bunch charge vs. laser energy fit with an analysis for the QE and the SCL.  

Equ. 1.43 and Equ. 1.44 show the space charge limits are different for short and long electron bunches. Equ. 

1.43 is derived assuming planar cathode and anode electrodes with a potential difference V and a gap 

separation d with a continuous stream of electrons between the electrodes. Thus, the SCL is linear with the 

electric field for a sheet-like beam, while the surface current density has a 3/2-power voltage dependence for 

a continuous beam in a planar diode. 

 

 
Figure 1.12.  Electron current in the diode region of a thermionic or long pulse gun. 

One computes the emitted charge as a function of the laser pulse energy by applying the simple assumption 

that emission saturates at the SCL. The emitted bunch charge as a function of the incident laser pulse energy 

is separated into two regions. For low laser energies below the SCL, the curve is linear with a slope related 

to the quantum efficiency, QE, 

 

 qbunch = 
eElaser

ħω
 QE (1.45) 

 

where qbunch is the emitted bunch charge, Elaser is the laser pulse energy and ħω is the laser photon energy. 

Let us assume a Gaussian for the transverse distribution of the laser with σr for the rms width of the 
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Gaussian. Then when the laser pulse energy is high enough for the peak of the Gaussian to produce a 

surface charge density equal to the applied field and the SCL is reached. At the SCL, the bunch charge 

saturates or no longer increases with increasing laser pulse energy. 

 

The situation is shown in Figure 1.13, where the full Gaussian distribution (red line) is truncated to the SCL 

in its core (green dark). The total charge then, qemitted, consists of the core, qcore, charge plus the charge 

emitted in the unsaturated tails, qtail [1.23] 

  

 qemitted = qcore + qtail (1.46) 

 

Radial integration of the core and tail regions of the transverse distribution gives the space charge limited 

bunch charge as 

  

 qemitted = πrm
2
ε0E0 sin(0) + QE 

eElaser

ħω
 exp







-rm

2

2σr
2  (1.47) 

 

with the radius of the saturated core, rm, given by 

 

 rm = σr 2 ln






eElaserQE

2πε0σr
2
ħωE0 sin(0)

 (1.48) 

 

These expressions can be used to fit the charge vs. laser energy data such as shown in Figure 1.13, to obtain 

the QE from the linear portion, as well as the rms radius of the equivalent Gaussian distribution. It also can 

crudely verify the strength of the electric field on the cathode when a direct measurement of the beam 

energy isn’t possible. 

 

 
Figure 1.13.  The radial Gaussian distribution (red solid) showing the space charge limited core (green dark) and emission from the tails 

(green light). 

1.4.2 Space Charge Emittance due to the Bunch Shape 

Using two models, we discuss the emittance growth due to the transverse space charge forces which can be 

separated into two spatial scales. The first, on the scale of the beam size, is due to the overall radial 

expansion of the bunch shape. It is dependent upon the transverse- to longitudinal-aspect ratio and the 

functional form of the charge distribution, for example, whether the bunch distribution is Gaussian or 
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cylindrical. The second space charge emittance source occurs on a much shorter length scale during the 

homogenizing or smoothing of the transverse charge density during initial acceleration near the cathode. 

 

In Kim’s theory, both the transverse and longitudinal the space charge emittance is given as [1.18]  

  

 εi
SC

 = 
π

4
 

1

αkz sin(0)
 
I

I0
 μi(A); where i = x or z (1.49) 

 

where I is the peak current at the bunch center and I0 is the characteristic current of 17 kA. (Note: The 

critical current or Alfven current is energy dependent, IA = βγI0.) The transverse- and longitudinal-space 

charge factors, μi(A), are the square root of the variance of the normalized transverse and longitudinal fields, 

respectively, in terms of the bunch aspect ratio, A. 

 

For a rotationally symmetric, transverse and longitudinal Gaussian distribution with respective rms sizes of 

σx 
and σz, the aspect ratio is 

  

 Agaussian = 
σx

σz
 (1.50) 

 

To an excellent approximation, the space charge factors can be parameterized as 

  

 μx
gaussian

(A) = 
1

3A + 5
 (1.51) 

 

and
 

 
 

 μz
gaussian

(A) = 
1.1

1 + 4.5A + 2.9A
2 (1.52)

 
 

In the case of a uniformly charged cylindrical volume of radius a and length L, the aspect ratio is 

  

 Acylinder = 
a

L
 (1.53) 

 

A cylinder’s transverse factor is accurately described by 

  

 μx
cylinder

(A) = 
1

35 A
 (1.54) 

 

Returning to Equ. 1.49, the emittance equation, it can be seen that for a constant peak current, the bunch 

shape’s effect on the space charge emittance is entirely contained in the space charge factor. In Figure 1.14, 

we plot the Gaussian and cylindrical transverse space charge factors as a function of the aspect ratio and 

observe that the space charge factor of a uniformly charged cylinder is four or more times lower than for a 

Gaussian. The longitudinal space charge factor for a cylinder is approximately an order-of-magnitude 

smaller than the Gaussian longitudinal factor. This is the theoretical motivation behind needing a uniform 

laser pulse to produce low emittance beams. 
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The decline of transverse factors with increasing aspect ratio is shown for both bunch shapes, showing that 

the “pancake-like,” A > 1, bunch has much lower space charge emittance than do “cigar-like” shapes, A < 1. 

Thus, the conclusions are the shorter the bunch the better and the shape should be a uniformly charged 

cylinder. 

 

 
Figure 1.14.  The space charge factors for Gaussian and cylindrical bunch shapes. 

1.4.3 Space Charge Emittance due to Non-uniform Transverse Emission 

A high spatial frequency intensity modulation across the emission area is a second general type of non-

uniformity which is another important source of space charge emittance. 

 

Experimental and theoretical studies have quantified the effect of non-uniform emission upon beam quality 

for space charge dominated beams [1.24], [1.25]. This work was done to establish the uniformity required to 

achieve low emittance beams for short wavelength FELs. Recent experiments performed at the SLAC LCLS 

FEL measured the effect emission uniformity has upon emittance and lasing at X-ray wavelengths. In this 

work, a space charge model has been developed which agrees well with emittance measurements for various 

mesh patterns of the drive laser projected onto the cathode [1.26]. Here, the model is formulated in terms of 

the spatial frequency of the non-uniform emission. 

 

The beamlet space charge model is for a beam with overall radius R composed of a large number of smaller 

beamlets arranged in a rectangular transverse pattern. Assume each beamlet has an initial radius r0 and 

center to center spacing of 4r0 in a rectangular grid, as shown to the left in Figure 1.15. Internal transverse 

space charge forces make each beamlet expand and merge with its neighboring beamlets, as illustrated in 

Figure 1.15 (right). This radial acceleration gives the beamlets transverse momentum leading to larger 

emittance for the total beam.  

 

 The radial expansion ends when the beamlets merge and form an approximately uniform distribution. At 

this point, the non-uniformity space charge emittance becomes constant. Simulations and analytic modeling 

of this geometry show the beamlets overlap within tens of picoseconds, therefore the non-uniformity 

emittance is generated very close to the cathode before the beam can become relativistic for even the very 

highest cathode RF fields. It is interesting to note that the electrons are still non-relativistic and the beamlets 

are merging at the head of each bunch, even while the tail electrons are just leaving the cathode. 
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Figure 1.15.  Modulation patterns used to compute the space charge emittance. Left: The initial pattern on the cathode consisting of a 

rectangular array of circles with radius r0 and a spacing of 4r0 within a full beam radius R. Right: Schematic view of the beamlet 

pattern after expansion due to transverse space charge forces. The integration of the transverse force ends when the beamlets with 

radius ar0 begin to overlap and form a quasi-uniform distribution. 

The space charge emittance for the pattern shown in Figure 1.15 with a 100% depth of modulation in terms 

of the beam radius, R, the radius of a beamlet, r0, and bunch peak current, I, is 

 

 εn,sc = σx 
4r0

πR
 

I

I0
 (1.55) 

 

The characteristic current is I0 = ec re
-1

 ≈ 17 kA, where re is the classical radius of the electron. The I 

dependence is similar to that found previously by Wangler [1.27]. In his theory, the space charge emittance 

grows linearly with beam position z until the beam has travelled a quarter of a plasma period. At this point, 

the emittance “saturates” to an approximately constant value. In the beamlet model, the emittance saturates 

when the beamlets overlap and there’s no charge gradient driving the transverse acceleration of the 

electrons. 

 

It is useful to write the emittance in terms of the beamlet spatial number, or the number of beamlets, ns, 

across the beam diameter, 2R. Since the beamlet spacing is 4r0, ns is 

 

 ns = 
R

2r0
 (1.56) 

 

Therefore, the space charge emittance due to this transverse expansion immediately after emission can then 

be written as 

  

 εn,s(ns,I) = σx 
2

πns

 
I

I0
 (1.57) 

 

Thus, the emittance decreases as the distance between the beamlets decreases or their spatial number 

increases. This clearly is because the shorter the expansion distance over which the beamlets can expand 

and undergo transverse acceleration, the smaller the final transverse velocity, and hence the smaller the 

emittance. Figure 1.16 shows the normalized divergence as a function of the spatial number for peak 
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currents of 100 A, 40 A and 10 A which for LCLS parameters approximately corresponds to 1 nC, 250 pC 

and 20 pC bunch charge. This model is in reasonably good agreement with experimental results [1.26]. 

 

 
Figure 1.16.  The normalized divergence due to transverse space charge forces of a patterned emission distribution as a function of the 

number of modulations or beamlets across the beam diameter. Curves are shown for peak currents of 10 A (red), 40 A (blue) and 100 A 

(green). The red points are measured projected emittances, from which the uniform beam emittance has been subtracted in quadrature 

and then divided by the rms size of the laser spot to give the experimental normalized divergence. The right images are the laser 

patterns used to produce the experimental emittance shown by the respective points on left graph, modulation numbers 9 and 32. 

[[1.26]; Adapted under Creative Common Attribution 3.0 License (www.creativecommons.org/licenses/by/3.0/us/) at www.JACoW.org.] 

The thoughtful reader may notice that there is no energy dependence or cathode field strength in Equ. 1.57; 

this may seem wrong since it is generally assumed that the space charge force is mitigated by the rapid 

acceleration of the beam, and so any formulation of the space charge emittance should include the 

accelerating electric field or beam energy. However, this model assumes the emittance growth occurs before 

the beam can reach a relativistic energy. Therefore, there is no dependence upon the cathode field and this 

emittance is only reduced by making the emission uniform. 

1.4.4 Emittance Compensation Theory 

Emittance compensation in an RF gun was first explained by Carlsten [1.28] who used the concepts of slice 

and projected emittances to show how the projected emittance could be reduced by aligning the short 

longitudinal slices in transverse phase space. Emittance compensation theory divides the electron bunch into 

thin temporal slices and assumes they are not mutually interacting. Each slice’s emittance is assumed to be 

the same, small (except in the presence of geometric aberrations), and nearly equal to the thermal emittance. 

Their relative orientation in transverse phase space differs from slice to slice, i.e., the slices all have 

different Courant-Snyder parameters and betatron functions. Most analyses, such as the one presented here, 

assume the slice emittance and phase space parameters vary slowly along the bunch and that a constant peak 

current can be used for all bunches. An example of a configuration of slices with their phase spaces rotated 

along the bunch is shown in Figure 1.17.  While the emittance of each slice is quite small, the projected 

emittance of an ellipse enclosing all the slices is much larger.  Aligning the slices in transverse phase space 

gives projected emittance which approaches the emittance of a single slice. However, it is typically larger 

depending upon the relative orientation of the slices in phase space.   

http://creativecommons.org/licenses/by/3.0/us/
http://www.jacow.org/
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The concept of emittance compensation is shown graphically in Figure 1.18. At the cathode all the slices 

from the bunch head (green) to the bunch tail (red) are born with very low divergence over the size of the 

emission area (Figure 1.18(a)). The projected emittance is nearly the same as the intrinsic emittance. As the 

beam expands from the cathode, the space charge forces give the head and tail different kicks in transverse 

angle depending upon the peak current of the bunch as shown in more detail below.  This increases the 

projected emittance shown as the area enclosed by the ellipse as shown in Figure 1.18(b). Uncorrected, this 

emittance would persist and grow as the beam propagates down the beam line. However, a solenoid can 

recover the low emittance. Figure 1.18(c) shows the angle kick given to the beam by the solenoid lens which 

gives the bunch head, middle and tail the same sign for the divergence. The beam now drifts a distance with 

the slices all converging at a beam waist (Figure 1.18(d)). 

 

 
Figure 1.17.  Dividing the bunch longitudinally to form thin slices each with its own phase space distribution. The slice phase spaces are 

assumed to be independent and do not interact between themselves. The projected emittance is the phase space ellipse which encloses all 

the slice phase spaces. 

The beam waist is located at the entrance to the high-energy linac which rapidly accelerates the beam to 

relativistic energy from the space charge dominated to emittance dominated regimes. This beam optics is 

essentially producing a parallel-to-point image of the beam from the cathode to the linac. As long as the 

space charge force is linear, its kicks can occur anywhere along the beam line and still be corrected with a 

linear solenoid lens.   The linearity of the space charge forces is a key ingredient in the emittance 

compensation technique along with proper matching of the bunch slices into the high energy accelerator to 

freeze the aligned slices. 

 

Emittance compensation was first described by Carlsten [1.28] to explain simulations showing the projected 

emittance oscillating along the beamline. This theory was later expanded upon by Serafini and Rosenzweig 

who showed the oscillation period is related to the bunch plasma frequency, and that there is a preferred 

matching of the beam size and divergence to the beam line optics (called the invariant envelope) which 

minimizes the emittance [1.29]. Later work by Ferrario et al. showed there is an optimum beam size and 

divergence at the entrance to the first linac which minimizes the space charge emittance [1.30] and 

measured the emittance oscillations, thereby verifying the theory [1.31]. 

 

The Serafini and Rosenzweig formalism is based on balancing the space charge defocusing of the beam with 

an applied focusing force. The result is a beam whose radius and emittance oscillates with the bunch plasma 

frequency. In their analysis, the space charge kick shown in Figure 1.18(b) is applied continuously along a 

channel of radial focusing fields. The outward radial space charge force is balanced by the focusing fields. If 

the space charge and focusing fields are linear, then the beam is transported without emittance growth. 

However, for most beam distributions, the space charge force is not linear leaving some emittance 

uncompensated for given the linear focusing fields. 
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Figure 1.18.  Transverse phase space dynamics during emittance compensation. The transverse phase space is shown for different slices 

along the bunch. The bunch head slice is shown as a green line, the tail slice is red and the center slice is blue. An ellipse has been drawn 

around the three slices to indicate the projected phase space of the three slices. 

Compensation of the space charge force is best computed by beginning with the beam envelope equation for 

a slice with current I(ζ) in a uniform focusing channel 

 

 σr''(ζ) + Krσr(ζ) = 
I(ζ)

2I0(βγ)
3
σr(ζ)

 + 
εn i̧ntrinsic

2
(ζ)

(βγ)
2
σr

3
(ζ)

 (1.58) 

 

where σr(ζ) is the rms radial beam size for a slice at position ζ, Kr is the channel focusing strength, εn,intrinsic 

is normalized intrinsic emittance of the cathode, and I0 is the characteristic current given by I0 = 4πε0mc
3
 e

-1
, 

which again is 17 kA for electrons. The intrinsic (a.k.a. thermal) emittance is also allowed to be different for 

different slices. The slice each is δζ long at position ζ along the bunch as shown in the Figure 1.19(a). β is 

the electron velocity in units of c and γ is the total energy normalized to the electron rest mass, mc
2
. 

 

The envelope equation given in Equ. 1.58 implies there is no transverse offset of the slice centroids with 

respect to each other. Including this in the calculation requires using the ray equation to take into account 

the relative displacement of position and angle between each slice. Although this aspect of the topic is not 

pursued any further in this chapter, it can be a significant effect in systems with unbalanced RF feeds, etc. 

[1.32]. 

 

Each slice can be characterized by its divergence and beam size in transverse phase space and current, as 

shown in Figure 1.19. The slice current and slice radius determine the defocusing strength of the space 

charge field. The slices can have different sizes, divergences as well as different correlations between the 

size and divergence, as shown in Figure 1.19(b). 

 

For a space charge dominated beam, the emittance term is small compared to the current term and the 

emittance dependence can be ignored. In balanced flow the space charge defocusing is exactly counteracted 

by the external focusing field with focusing strength Kr. In this case the beam drifts with laminar flow in 

which the electron trajectories do not cross. This balance between the radial space charge defocusing and 

external focusing is called Brillouin flow. [1.33] A beam in Brillouin flow has a static envelope equation for 

a given equilibrium beam size of a slice, σeq 

 

 σ'' = -Krσeq + 
I

2I0(βγ)
3
σeq

 = 0 (1.59) 
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Figure 1.19.  a) The bunch is modeled by dividing it into thin sections or slices along the bunch ζ-axis. Each slice is δζ long. Simulations 

show that dividing the bunch into 10 or more slices accurately represents the beam dynamics. b) The areas and orientations of the slices 

in transverse phase space. 

Here, Kr is the external radial focusing strength which balances the space charge force for an equilibrium 

rms beam size for each slice 

 

 σeq(ζ) = 
I(ζ)

2I0(βγ)
3
Kr

 (1.60) 

 

Since Kr is the same for all slices, the only thing causing the equilibrium size to vary between slices is the 

slice current. Variations in the slice current correspond to different equilibrium sizes. This deviation of the 

actual size from the equilibrium size increases the projected emittance due to their different orientations of 

the slice in phase space as shown in Figure 1.19(b). 

 

To derive the projected emittance consider a small change or perturbation in the slice radius away from the 

equilibrium radius 

 

 σ(ζ) = σeq(ζ) + δσ(ζ) (1.61) 

 

Inserting this small deviation into the envelope equation for balanced flow and keeping the lowest order 

term in δσ(ζ) gives  

 

 δσ''(ζ) + 2Krδσ(ζ) = 0 (1.62) 

 

The solution for this equation is the sum of sine and cosine functions times the initial (i.e., at z = 0) slice 

deviation of size and divergence, respectively. The size oscillation of each slice as a function of distance 

along the channel is then 

 

 δσ(z,ζ) = 
δσ

0
'(ζ)

2Kr

 sin( )2Kr z  + δσ0(ζ) cos( )2Kr z  (1.63) 

 

As a reminder, Kr is the external radial focusing strength and z is the distance the bunch has traveled along 

the beamline.  
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To compute the emittance we assume that all the slices are identical except for their current. Specifically, all 

the slices initially have the same size, σ0, and zero divergence variation at z = 0. Then, each slice’s initial 

deviation from the equilibrium size is related to the slice current 

 

 δσ0(ζ) = σ0 – σeq(ζ) = σ0 – 
I(ζ)

2I0(βγ)
3
Kr

 (1.64) 

 

With these initial conditions, each slice undergoes a small size oscillation about the equilibrium beam size, 

σeq, as it propagates along the focusing channel 

 

 σ(z,ζ) = σeq(ζ) + [σ0 – σeq(ζ)] cos( )2Kr z  (1.65) 

 

The projected emittance is proportional to the rms of the slice currents normalized to the bunch peak 

current, Ip, and is given as  

 

 εn,comp(z) = 
1

2
Krσ0σeq(Ip)

δIrms

Ip
| |sin( )2Kr z  (1.66) 

 

Where δIrms is the rms current computed from the distribution of the slice currents. The projected emittance 

thus oscillates with the same wave number as does the beam size, but is shifted π/2 in phase [1.29]. 

 

It is useful to make some further simplifying assumptions to the compensation emittance.  For instance, 

since the size deviation is small, the initial slice size is approximately equal to the equilibrium size. 

Therefore, Equ. 1.66 reduces to  

 

 εn,comp(z) = 
δIrms

2Kr I0 (βγ)
3| |sin( )2Kr z  (1.67) 

 

It is interesting to consider the emittance as ( )2Krz  becomes small and goes to zero. This is useful for 

estimating this projected emittance close to the cathode or in very weak focusing channels. As  

( )2Krz   0, the emittance further simplifies to  

 

 εn,comp(z) ∝ 
δIrms

2KrI0(βγ)
3 z; where ( )2Krz  ∝ 1 (1.68) 

 

Therefore, solutions of the balanced envelope equation show an oscillating projected emittance as a function 

of z. The slice radii oscillate for small deviations from the balanced beam envelope. The solutions show all 

the slice envelopes oscillate about the balanced envelope with the same z-coordinate wave number, 2Kr¸eq, 

and the amplitude results from the initial deviation in the beam size from equilibrium size. If the slices are 

aligned in transverse phase space at one z-position, then there are periodic locations where the slices re-align 

and the projected emittance is a local minimum. This occurs irrespective of the initial slice amplitude. 

Optimal compensation of the linear space charge emittance due to different slice currents occurs at these 

local minima. 
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Thus, in addition to compensating for the projected emittance due to misaligned slices, it is also necessary to 

match the beam into a high gradient booster accelerator and damp the envelope oscillations to a low 

emittance. The required matching condition is referred to as the Ferrario working point [1.30], formulated 

for the LCLS injector. In this scheme, the RF focusing of the linac is matched to the invariant envelope to 

damp the emittance to its final value at a relativistic energy. The working point matching condition requires 

the emittance to be a local maximum and the envelope to be at a waist at the entrance to the booster. The 

waist size is determined by the strength of the RF fields. RF focusing provides a weak focusing channel and 

acceleration damps the emittance oscillations. 

  

Matching the beam to the first accelerator needs to be included as part of emittance compensation and 

should obey the following basic conditions at the entrance to the linac: the beam is at a waist: σ' = 0 and the 

waist size at injection is determined by a balancing of the RF transverse force with the space charge force. 

The second requirement establishes balanced flow similar to that used in emittance compensation. 

  

As an example, assume the RF lens at the entrance to the booster is similar to the RF kick given at the gun 

exit (see Section 1.2). Assume the beam is injected into the linac on the crest of the RF waveform for 

maximum acceleration. In this case, the RF lens deflection is 

 

 σ
linac
'  = σlinac 

eElinac

2γmc
2 (1.69) 

 

where σlinac is the rms transverse beam size at the entrance of the linac, Elinac is the linac peak accelerating 

field, and γmc
2
 is the total beam energy. Taking the derivative gives the RF force 

 

 σ'' = -σlinac 

eElinac

2γ
2
mc

2 γ' = -σlinac

γ'
2

2γ
2 (1.70) 

 

since γ' = 
eElinac

mc
2 . The envelope equation for the matched beam is then 

 

 σ'' = -σmatch

γ'
2

γ
2  + 

I

2IAγ
3
σmatch

 = 0 (1.71) 

  

and solving for the matched beam size gives 

 

 σmatched = 
1

γ'

I

2IAγ
 (1.72) 

 

as the waist size at injection into the linac. Once matched the beam emittance decreases along the 

accelerator due the initial focus at the entrance and Landau damping. This behavior has been verified using 

HOMDYN, an envelope code using slices, and the particle-pusher code, PARMELA. These codes are 

described in Section 1.7. 

 

It is relevant to note that this technique of emittance compensation makes no assumption about the nature of 

the focusing channel. Therefore, this analysis applies equally well to both RF and DC guns. In fact, the same 
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fundamental concept has been applied to the merger optics of a space charge dominated beams into energy 

recover linacs, as well as other beam transport systems. 

1.5 GUN-SOLENOID OPTICS AND OPTICAL ABERRATIONS 

The strong defocusing at the gun exit requires compensation by an equally strong focusing lens. The 

focusing is usually provided by a solenoid with a longitudinal magnetic field. It is relevant to comment on 

the dual role of the solenoid; it not only cancels the strong negative RF lens, but it also plays a crucial 

function of emittance compensation by aligning the slices transversely along the bunch to minimize the 

projected emittance. 

 

This section begins with the description of a first-order model of the gun and solenoid system. This model is 

used to illustrate how the cathode uniformity of emission can be imaged when the solenoid is adjusted to 

image electrons from the cathode on a view screen. Section 1.5.2 presents a derivation of the first-order 

chromatic aberration of the solenoid. Section 1.5.3 shows simulation results for the geometric aberrations of 

the solenoid and the Section 1.5.4 discusses quadrupole field errors of the solenoid. It is shown that the 

emittance due to quadrupole field errors can be fully recovered with correction quadrupoles.  

1.5.1 First-order Optics Model of the Gun 

The RF gun can be assumed to be a series of thin lenses positioned at the entrance and exit of each cavity 

for an electron-RF phase which accelerates the beam. If the fields in each cavity are balanced, then the 

defocus at the exit of one cavity is cancelled by the focus of the next cavity. This is approximately true for 

all the internal cavities of the gun or any acceleration section. However, there is no cancellation of the 

defocus at the exit of the last cavity, which as shown in Section 1.3.2 results in linear and non-linear RF 

projected emittance. For a beam exit phase of 90˚ then the linear RF emittance is zero leaving only the 

second-order emittance (see Figure 1.8). However, Figure 1.7 shows that while the emittance is minimal at 

90˚, the RF strongly defocuses the beam, requiring an equally strong focusing provided by the gun solenoid. 

As noted in the discussion after Equ. 1.22, the focal length of the RF gun is 12 cm for an exit energy of 

6 MeV and a peak field of 100 MV m
-1

. 

 

 fRF = 
-2γmc

2

eE0 sin(0)
 (1.73) 

 

Equ. 1.73 is the same as Equ. 1.22, however, β is considered to be unity at these energies. Due to the strong 

defocusing of the RF gun it is necessary to use a comparably strong focusing lens to collimate and match the 

beam into the high energy booster linac. If this focusing is done with a solenoid, then its focal strength, K, in 

the rotating frame of the electrons, fsol, is [1.34]  

  

 
1

fsol
 = K sin(KLsol); where K ≡ 

B(0)

2(Bρ)0
 = 

eB(0)

2p
 (1.74) 

 

where B(0) is the field of the solenoid, Lsol is the solenoid effective length, (Bρ)0 is the magnetic rigidity, 

and p is the beam momentum with units of [GeV c
-1

]. The rigidity can be expressed in the following useful 

units as 

 

 (Bρ)0 = 
p

e
 = 33.356p [kG m] (1.75) 
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With the assumption that the focusing effects of adjacent cavities cancel, the first-order optics of the gun 

and solenoid can be modeled with a single thin defocusing lens for the RF and a thick solenoid. Besides 

using the solenoid to cancel the RF defocusing and for space charge emittance compensation, it is also 

useful for imaging the electron emission from the cathode with the configuration shown in Figure 1.20. 

 

The transformation of beam rays from the cathode to the view screen can be computed using linear matrix 

algebra of ray optics. With simple matrix multiplication, electrons emanating from the cathode with position 

and angle displacements relative to a central ray can be computed to the view screen. 

 

 
Figure 1.20.  Configuration of a first-order optical model showing principal optical elements of the gun, solenoid and drift distance to a 

view screen, which can be used to compute the cathode emission onto a view screen. For the LCLS S-band gun-to-linac region: 

Lsol = 19.35 cm, L1 = 12.3 cm and L2 = 106.6 cm, which gives a magnification of approximately -3.6 for a point-to-point image. 

The calculation for the optical system when the solenoid is adjusted to form an image (point-to-point 

imaging) of the cathode emission on the view screen gives the magnification, M, as 

 

 M = cos(KLsol) – L2K sin(KLsol) – 
1

fRF





sin(KLsol)

K
 + L2 cos(KLsol)  (1.76) 

 

The magnification depends upon the solenoid and gun field parameters and not upon the distance to the 

cathode. The magnification is easily measured by inserting a target of known size into the laser beam optics 

at the object plane, which is then imaged onto the cathode. The size of this target is then measured on the 

view screen when an image is formed using the solenoid. A magnification of 3-4 is typical in S-band guns. 

 

Electron beam images on a YAG view screen of a 6 MeV beam from an S-band gun with a peak cathode 

field of 115 MV m
-1

 is shown in Figure 1.21. The view screen images where taken using the second YAG 

screen shown in Figure 2.21. The solenoid has been adjusted to produce an image of the emission pattern at 

the YAG’s position. The electron magnification for the imaging from the cathode to the YAG screen is -3.6 

in agreement with Equ. 1.76. The emission is the 2-D product of the QE and laser distributions. In these 

measurements, the laser distribution is known to have good uniformity and vary slowly over its diameter 

(low spatial frequencies); therefore, the observed images are good representations of the true QE map.  

 

The two images in Figure 1.21 show very different emission patterns for the same cathode at different times 

in its two years of operation in the S-band gun. The image in Figure 1.21(a) shows the QE map consists of 

small hot spots. These hot spots were observed for low QE, in the range of 10
-6

. The emission image in 

Figure 1.21(b) was measured after the same cathode was cleaned with the UV drive laser and low power RF 

and then continuous operated at high RF power for approximately 1½ years. The area illuminated by the 

2 mm diameter laser beam is easily seen in the emission image. Its size gives the magnification of the 

electron optics between the cathode and the view screen. The dark, irregular regions approximately a few 
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100 μm in size are likely due to the different work functions of the grains of the poly crystalline composition 

of the copper cathode. The bright, red-yellow regions appear clustered around the edge of these dark grains 

and are likely due to enhanced photoemission by adsorbed molecules from the vacuum. 

 

 
Figure 1.21.  Examples of electron beam images on a view screen with the solenoid adjusted to obtain an image of the electron image 

from the cathode when illuminated by a large laser spot. The bunch charge is 9 pC. The observed magnification was -3.6, the integrated 

field strength was 0.5165 kG m, L2 = 1.066 m and the solenoid effective length is 0.1935 m. These parameters give a solenoid wave 

number of 6.75 per meter with the beam rotating 74.8˚ in the solenoid. The solenoid focal length is 15.3 cm.  

1.5.2 Chromatic Aberration of the Solenoid 

The beam’s energy spread can introduce additional emittance in the solenoid due to different electrons 

having different focal lengths. This emittance can be computed by starting with the symmetric transverse 

beam matrix, σbeam, and the transformation for a thin lens. The beam matrix is defined as 

 

 11 12

12 22

 


 

 
  
 

  (1.77) 

  

The transformation of the beam matrix though the thin lens is given by 
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  (1.78) 

 

Performing the matrix multiplications gives 
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  (1.79) 

The change due to a variation in the beam momentum, Δp, can be obtained from the derivative of the beam 

matrix, Δσbeam(1), as 
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There is no need to compute the σ22(1) matrix element because it gets multiplied by zero when the emittance 

is computed 

 

 εn,chromatic = βγ det(Δσbeam(1)) = βγσx
2







d

dp




1

f
σp (1.81) 

 

where σ11 = σx
2
 has been used and β is the beam velocity divided by the speed of light, γ is the beam’s 

Lorentz factor, σx,sol is the transverse rms beam size at the entrance to the solenoid, and σp is the rms 

momentum spread of the beam. This is a general expression for the chromatic emittance of a thin lens. For a 

solenoid lens in the rotating frame of the beam, the focal strength is given by 

 

 
1

fsol
 = K sin(KLsol) (1.82) 

 

Using this and other quantities for the solenoid in Equ. 1.81 results in the following expression for the 

normalized chromatic emittance of a solenoid 

 

 εn,chromatic = βγσx,sol 
2

K | sin(KL) + KL cos(KL) | 
σp

p
 (1.83) 

 

Figure 1.22 is a plot the chromatic emittance as a function of the energy spread as given by Equ. 1.83 and by 

simulation [1.35]. There is excellent agreement between the analytic and numerical approaches. The 

simulation used an initial beam with zero emittance with zero divergence entering the solenoid. The plot 

assumes an rms beam size of 1 mm. The typical measured full bunch (projected) and time-sliced (slice) 

electron energy spreads are indicated showing the chromatic emittance to be ~0.3 μm for the projected 

emittance and 0.02-0.03 μm for the slice chromatic emittance. This should be compared with the measured 

LCLS projected emittance of 0.4-0.5 μm for 250 pC. 

 

 
Figure 1.22.  Comparison of the chromatic emittance given by Equ. 1.83 (dashed red) and the emittance computed using the GPT 

particle pusher code (dashed blue) vs. rms energy spread. Both calculations assume the beam size at the solenoid is 1 mm-rms. The 

typical measured full bunch (projected) and time-slice (slice) electron energy spreads are indicated by the blue and green regions. 

While the solenoid’s chromatic aberration can be a significant part of the projected emittance, its 

contribution is much less for the slice emittance. This is because the rms slice energy spread is small and 
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thought to be 1 keV or less at 250 pC. Thus, the chromatic emittance for a slice is only 

~0.02 μm (mm rms)
-1

. It is important to note that because the beam size at the solenoid lens enters to the 

second power in Equ. 1.83, the chromaticity can introduce considerable emittance if the beam is large. 

Therefore, the beam size at the solenoid should be reduced in future gun designs. 

1.5.3 Geometric Aberrations 

It is known that all magnetic solenoids exhibit a 3
rd

-order aberration, also known as the spherical aberration. 

This aberration is mostly located at the ends of the solenoid since it depends upon the second derivative of 

the axial field with respect to the beam direction [1.36]. In theory, the spherical aberration could be 

computed from the solenoid’s magnetic field; in practice, this is difficult and doesn’t take into account all 

the important details of the beam dynamics. Therefore, in order to numerically isolate the geometrical 

aberration from other effects, a simulation was performed with only the solenoid followed by a simple drift. 

Maxwell’s equations were used to extrapolate the measured axial magnetic field, Bz(z), and obtain the radial 

fields [1.35]. Following traditional optical analysis, an initial beam distribution of a square, 2 mm  2 mm, 

was used assuming perfect collimation (zero divergence = zero emittance), zero energy spread and an 

energy of 6 MeV. The simulated transverse beam profiles given in Figure 1.23 show how an otherwise 

“perfect” solenoid has the characteristic “pincushion” distortion [1.37]. A 4 mm  4 mm (edge-to-edge) 

object gives 0.01 μm emittance, while 2 mm  2 mm square results in only 0.0025 μm.  

 

 
Figure 1.23.  Ray-tracing simulation of the transverse beam distribution due to the geometric aberration of a solenoid. Left: The initial 

transverse particle distribution before the solenoid with zero emittance and energy spread. Center: The transverse beam distribution 

occurring slightly before the beam focus after the solenoid illustrating the third-order distortion. Right: The beam distribution 

immediately after the beam focus showing the characteristic “pincushion” shape of the rotated geometric aberration. 

Figure 1.24 shows the simulation for a uniformly round beam with initially zero emittance as a function of 

rms beam size at the entrance of the solenoid. In addition to the simulation, the green curve gives a 4
th

-order 

polynomial fit to the simulated emittance. It is still necessary to understand why the simulation indicates a 

4
th

-order dependence with beam size, rather than the expected 3
rd

-order, spherical. 

1.5.4 Aberrations due to Anomalous Quadrupole Fields and Emittance Recovery 

Beam studies can show an astigmatic (unequal x- and y-plane focusing) beam from an RF gun due either to 

the single-side RF feed or to the magnetic field asymmetries of the gun solenoid. In order to understand and 

distinguish between these effects, the solenoid’s multipole magnetic field was measured using a rotating 

coil. The magnetic measurements showed small quadrupole fields at the ends of the solenoid with 

equivalent focal lengths at 6 MeV of 20-30 m for the GTF solenoid. However, even though these fields were 

weak, it was decided to install normal and skew quadrupole correctors inside the bore of the solenoid to 

correct them. The details of how the correctors were incorporated into the gun are given in [1.38] and their 

use during operation is described in [1.39].  
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Figure 1.24.  The geometric aberration for the gun solenoid: emittance vs. the x-rms beam size at the lens. The emittance computed with 

GPT (points red) compared with a fourth order fit (solid green). The simulation used the axial magnetic field obtained from magnetic 

field measurements of a solenoid (Figure 1.25). The initial beam had zero emittance. 

Figure 1.25 shows the axial magnetic field and the quadrupole magnetic field and its rotation or phase angle 

along the beam axis of the LCLS solenoid. The quadrupole field was measured using a rotating coil with a 

2.8 cm radius, which is the radius for which the quadrupole field is given. The quadrupole phase angle is the 

angular rotation of the poles relative to an aligned quadrupole. The phase angle is the angle of the north pole 

relative to the y-axis (left when travelling in the beam direction) for a beam-centric, right-handed coordinate 

system. In this coordinate system a normal quadrupole has a phase angle of 45˚. The difference in phase 

angle between the entrance (z = -9.6 cm) quadrupole field and the exit (z = +9.6 cm) field angle is close to 

90˚ and both fields change sign when the solenoid’s polarity is reversed. These are similar effects as 

measured previously for the GTF solenoid, although, the LCLS solenoid had weaker quadrupole fields with 

equivalent focal lengths of 50-70 m, instead of 20-30 m, as noted above for GTF. 

 

 
Figure 1.25.  Magnetic measurements of the LCLS gun solenoid. Top: Hall probe measurements of the solenoid axial field. The 

transverse location of the measurement axis (the z-axis) was determined by minimizing the dipole field. Bottom: Rotating coil 

measurements of the quadrupole field. The rotating coil dimensions were 2.5 cm long with a 2.8 cm radius. The measured quadrupole 

field is thus the average over these dimensions.  
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As described earlier, the correction of these field errors was done by installing normal and skew 

quadrupoles inside the bore of the solenoid. The effect these correction quadrupoles have upon the 

emittance is quite profound, as can be seen in Figure 1.26 where the emittance for 1 nC and 250 pC are 

plotted vs. the normal corrector quadrupole strength.  

 

 
Figure 1.26.  a) Measured x-plane (blue) and y-plane (red) emittances vs. the normal corrector quadrupole strength for a 1 nC bunch 

charge. b) Behavior observed for 250 pC. 

The beam emittance due to these anomalous quadrupole fields can be computed both in simulation and 

analytically. The analysis begins by assuming a simple thin quadrupole lens followed by a solenoid with the 

44 x-y beam coordinate transformation [1.34] given by  
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 (1.84) 

 

As in the derivation of the chromatic emittance: L is the effective length of the solenoid and  

 

 K = 
Bz(0)

2(Bρ)0
 (1.85) 

 

where Bz(0) is the interior axial magnetic field of the solenoid, (Bρ)0 is the magnetic beam rigidity, and fq is 

the focal length of the anomalous quadrupole field. The beam rotates through the angle KL in the solenoid. 

 

The 44 beam matrix after the combined quadrupole and solenoid, is then 

 

 σbeam(1) = (RsolRquad) σbeam(0) (RsolRquad)
T 

(1.86)
 

 

and the x-plane emittance after the quadrupole and solenoid is given by the determinate of the 22 sub-

matrix, 
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(1.87) 

Finally, the normalize emittance is found to be 

 

 εx,qs = βγσx,solσy,sol





sin(2KL)

fq
 (1.88) 

 

The x- and y-transverse rms beam sizes are the entrance to the solenoid are σx,sol and σy,sol. 

 

Figure 1.27 compares this simple formula (Equ. 1.88) with a particle tracking code [1.35] for the case of an 

initial beam with zero emittance, zero energy spread and assuming a round beam. The normalized emittance 

is plotted. For the comparison, assume the quadrupole focal length is 50 m, which is approximately the same 

as given by the magnetic measurements for the LCLS solenoid at 6 MeV. Both the analytic theory and the 

simulation assume a quadrupole field only at the solenoid’s entrance. And of course, the simulation includes 

both this quadrupole effect and the geometric aberration described above. The good agreement verifies the 

model’s basic assumptions and illustrates how a very weak quadrupole field can strongly affect the 

emittance when combined with the rotation in a solenoid field. 

 

 
Figure 1.27.  Comparison of the emittance due to the quadrupole-solenoid coupling given by Equ. 1.88 with a particle tracking 

simulation for the case of the LCLS solenoid. For a beam energy of 6 MeV the quadrupole focal length was 50 m and the solenoid had 

an integrated field of 0.46 KG-m. 

The above expression is for the case of a quadrupole plus solenoid system where the quadrupole itself isn’t 

rotated. When the quadrupole is rotated about the beam axis by angle α with respect to the normal 

quadrupole orientation, then total rotation angle becomes the sum of the quadrupole rotation plus the beam 

rotation in the solenoid. Then, the emittance becomes 

 

 εx,qs = βγσx,solσy,sol





sin(2(KL + α))

fq
 (1.89) 

 

Figure 1.28 compares Equ. 1.89 with a simulation for a 50 m focal length quadrupole followed by a strong 

solenoid (focal length of ~15 cm). Both show the emittance becoming zero whenever KL + α = nπ. The first 
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zero of the emittance occurring at negative quadrupole angle (not shown) is the beam rotation in the 

solenoid. The slight shift in angle between the theory and simulation results because the solenoid in the 

simulation has fringe fields which are ignored in the theory.  

The final emittance is due to three effects: The skew angle and focal length of the entrance quadrupole 

(α1,f1), the rotation in the solenoid (KL) and the skew angle and focal length of the exit quadrupole (α2,f2). 

Combining the entrance quadrupole skew angle with the solenoid rotation, one obtains the emittance for a 

solenoid with quadrupole end fields, 

 

 εx,total = βγσx,solσy,sol





sin(2(KL + α1))

f1
 + 

sin(2α2)

f2
 (1.90) 

 

It is relevant to point out some of the features of Equ. 1.90. First, consider the situation when both 

quadrupoles are perfectly aligned without any skew, i.e., α1 = α2 = 0, then while there’s no emittance 

contribution from the exit quadrupole, the entrance quadrupole still appears skewed by the beam’s rotation 

in the solenoid and the emittance increases unless there is no entrance quadrupole field. For this case, the 

emittance does not depend upon the polarity of the solenoid field. However, this is not true for α1, α2 ≠ 0. 

Equ. 1.90 also shows the emittance changes if the polarity of the solenoid field is reversed when there is a 

skewed quadrupole field: further details of this effect are discussed in the next section. Finally, the formula 

indicates that adding independently powered skew and normal quadrupoles after the solenoid can cancel this 

effect and recover the initial emittance or long wire skew and normal quadrupole correctors installed inside 

the solenoid can also be used for this cancellation, as was done in the LCLS solenoid [1.38]. 

 

 
Figure 1.28.  The emittance for a quadrupole-solenoid system plotted as a function of the quadrupole rotation angle. The theory 

emittance (solid blue) is computed using Equ. 1.89 and the simulation (solid red) is done with the GPT code. The beam size at the 

solenoid is 1 mm rms for both the x- and y-planes. 

The emittance growth due to the solenoid’s anomalous quadrupole fields can be compensated with the 

addition of skew and normal corrector quadrupoles, as shown by Equ. 1.90. Two quadrupoles, one normal 

and one skewed, are needed to produce the proper field strength and rotation angle. In the LCLS solenoid, 

these correctors consist of eight long wires inside the solenoid field, four in a normal quadrupole 

configuration and four arranged with a skewed quadrupole angle of 45˚. Thus, since corrector quadrupoles 

overlap the solenoid field, one would expect their skew angles should be added to KL, similar to the first 

term of Equ. 1.90. The emittance due to the composite system of a rotated quadrupole in front of the 

solenoid, the two corrector quadrupoles inside the solenoid, and the exit rotated quadrupole can be 

computed as the following sum 
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 εx,total = βγσx,solσy,sol





sin(2(KL + α1))

f1
 + 

sin(2KL)

fnormal
 + 

sin(2(KL + π/4))

fskew
 + 

sin(2α2) 

f2
 (1.91) 

The first and fourth terms inside the absolute value brackets are due to the entrance and exit quadrupoles 

with focal lengths f1 and f2 and skew angles of α1 and α2, respectively. The second and third terms are 

approximations for the normal and skew corrector quadrupoles with focal lengths fnormal and fskew, 

respectively, and of course the skew angles of the normal and skew corrector quadrupoles are 0 and π/4. 

 

Figure 1.29 illustrates the emittance due to these effects as a function of the normal and skew corrector 

quadrupole focal lengths using Equ. 1.91. The entrance and exit anomalous quadrupole focal lengths are 

50 m and their rotation angles as indicated by Figure 1.29 are -60˚ and 25˚, respectively. The red curves are 

for the normal corrector quadrupole only with the skew corrector quadrupole off, while the blue curves are 

given for the skew quadrupole only with the normal quadrupole off. The zero of emittance is shifted for the 

two correctors since the overall rotation necessary to correct the error fields is neither normal nor skewed, 

but something in between. Both solid curves asymptotically converge to the uncorrected emittance as the 

correctors are turned off (infinite focal length). The figure also shows the effect of reversing the polarity of 

the solenoid with corresponding emittances plot as dashed lines. In this case, the uncorrected emittance 

clearly approaches a much smaller emittance. As mentioned earlier, the skewed anomalous quadrupole 

fields make the resulting emittance growth and focusing of the solenoid dependent upon its polarity and 

provide an experimental signature that the fields are skewed. Therefore, if the anomalous fields are skewed, 

even with no quadrupole correction, one polarity of the solenoid results in a lower emittance than the other. 

 

 
Figure 1.29.  The emittance as a function of the normal and skew quadrupole corrector focal lengths for positive and negative polarities 

of the solenoid. Anomalous quadrupole field errors with 50 m focal lengths are included at the ends of the solenoid with rotations of -60˚ 

and 25˚, respectively, as given in Figure 1.25. The x- and y-rms beam sizes at the solenoid entrance are assumed to be 1 mm. 

1.6 SPACE CHARGE SHAPING 

The space charge force can defocus the beam, behaving similar to a negative focal length lens. While most 

emittance compensation techniques use external fields to cancel the linear space charge effects, it is the non-

linear space charge forces which produce additional emittance. In this section, the radial and longitudinal 

electric fields inside a rotationally symmetric bunch are given in terms of a power series expansion about 

the bunch longitudinal axial. This derivation is for the steady-state case, without currents or time dependent 

fields. It gives the fields in the rest frame of the bunch, which for the example considered here, is thin and 

disk-like. 
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Here, we derive the radial force on an electron confined to a thin disk of charge. The surface charge density 

is assumed to be rotational symmetric with a radial quadratic dependence upon the surface charge density. 

The result is that the quadratic radial distribution can be adjusted to cancel the 3
rd

-order space charge 

defocus of the disk’s distribution, Figure 1.30. The technique is to first compute the electrical potential 

energy along the axis of rotation of the disk. Expanding this potential into a power series, we multiply each 

term by the appropriate order of Legendre polynomial to obtain the potential at any point on space. Finally, 

the divergence of the potential gives the radial electric field on an electron. 

 

 
Figure 1.30.  The geometry for computing the on-axis electric field produced by a disk of charge. 

The electric potential along the disk’s axis can be computed using the following integral 
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where surface charge density as a function of r is σ(r) = σ0(1 + σ2r
2
), then the integrand has two parts. One 

linear and the other third-order in r, as given by 
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Performing the integration gives 
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The first two terms inside the outer brackets give the on-axis potential for a uniform disk. The σ2 term is the 

potential coming from the parabolic radial part of the surface charge density. For a beam that is off-axis, we 

implement the following coordinate as seen in Figure 1.31. 

 

Consider the uniform part of the charge distribution first. Expanding the potential as a power series, 

grouping into terms with the same power and then multiplying each term with the Legendre polynomial of 

that power, gives the potential everywhere. The electric potential to 4
th

-order is then 
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Figure 1.31.  Coordinates used to compute the off-axis electric field of a charged disk. 

Following the same procedure for the parabolic part of the charge density gives the electric potential due to 

the quadratic σ2 in the plane for the disk as 
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where the total potential is the sum, V(ρ) = V0(ρ) + V2(ρ). The radial electric field is given by Eρ(ρ) = 
∂V

∂ρ
, or 

to third-order 
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Notice, that if σ2 = 
-1

3R
2, then the third order term is zero when the radial charge density is parabolic 
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In this case and the radial space charge force becomes linear 

  

 Eρ(ρ) = 
-σ0

3ε0
 
ρ

R
 (1.100) 

and the beam expands linearly with little increase in the emittance. The parabolic radial distribution is 

plotted in Figure 1.32. 

 

The above description follows the seminal work of Serafini [1.40] who first proposed shaping in RF guns to 

reduce the non-linear space charge emittance. More recently, Luiten [1.41] has applied classical stellar 

dynamics to the problem and performed simulations showing that a hemispherical-shaped surface charge 

density at the cathode rapidly expands into a uniform 3-D ellipsoid distribution having linear space charge 
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forces and no space charge emittance. Therefore, the precise radial shaping of the electron bunch using the 

drive laser should reduce the non-linear space charge emittance.  

 
Figure 1.32.  Plot of the radial charge distribution having no 3rd-order space charge force. 

1.7 SIMULATION CODES 

Simulation codes are critical components of the photoinjector design process and are an area of continual 

development. This section describes some of the more common codes used for photoinjector development, 

with an emphasis on codes that can be used effectively on a typical desktop computer. 

 1.7.1 General Comments on Simulation Fidelity 

In the most general terms, operation of a photoinjector can be described by the following process: 

1) A laser beam strikes the cathode. 

2) Electrons are emitted from the cathode. 

3) The emitted electrons interact, via electromagnetic fields, with 

a) the photoinjector, 

b) other components such as solenoids,  

c) each other, and 

d) the electron emission process. 

 

Ideally, the process results in the production of a high quality electron beam. The simulation codes used in 

injector design to handle each of these steps with varying fidelity to the real world.  

 

The typical goal of a beam dynamics simulation code is, broadly speaking, to provide the 6-D coordinates of 

particles within the beam at the end of the simulation. Every beam property of interest – emittance, energy 

spread, bunch duration, etc. – can be calculated from this distribution. 

 

Most photoinjector simulations that work with distributions of particles are based upon stepping forward in 

time. At each time step, the motion of all particles and the forces acting upon them are calculated and 

updated. Depending on the simulation code used, time steps may be fixed or variable; typical time steps are 

on the order of 0.1-10 ps, with finer steps taken when the beam is being emitted from the cathode and larger 

steps when the beam is in regions of slowly varying external fields. 

A “typical” bunch charge might be -1 nC, comprised of approximately 6.4×10
9
 electrons. ~0.15 TB would 

be required to store every electron’s position in 6-D phase space with quadruple-precision (32-bit) floating 

point numbers. Modern desktop computers do not typically have that much memory and only recently have 

cluster computers progressed to the point where each electron in a bunch could be independently tracked. 

Further, the time to execute the simulation generally scales at least as fast as the number of particles within 
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the simulation. Thus, often the first reduction in fidelity that occurs is to use a “macroparticle” to represent a 

larger number of electrons in the bunch. In a desktop simulation, typically done as part of an initial design 

study, perhaps 10
4
-10

5
 macroparticles might be used to provide a tractable number of particles from both 

computer memory and CPU time perspectives. 

 

In most photoinjector simulations, all macroparticles are assigned the same charge, but with different charge 

density within the electron beam (say, from a non-uniform drive laser) reflected by different spatial density 

of macroparticles. This simplifies the macroparticle bookkeeping and various other computational tasks, but 

can yield “noisy” results and errors when the number density in the simulated beam is too low. An alternate 

approach is to keep the initial number density of macroparticles constant, but varying the charge per 

macroparticle to reflect density variations within the electron beam. The former approach is generally the 

one used in injector simulations, and the typical method of reducing noise is to increase the number of 

macroparticles or, via “quiet start,” non-random distributions. The latter may be more suitable to the 

introduction of cathode physics into the beam dynamics codes. 

 

Electron emission, encompassed by cathode theory and modeling, is a rich area of current development and 

is treated more fully in Chapter 5. Historically, most beam dynamics codes have not incorporated physics-

based emission modeling, and so will not be discussed in great detail here. Rather, most beam dynamics 

codes allow the user to specify, for instance, the emission of macroparticles vs. time over a given area of the 

cathode; this may be done via supplying an external distribution or by specifying various parameters of the 

distribution. 

 

Another commonly used approximation is the assumption of radial symmetry of RF and magnetic fields 

within the accelerating structures and beamlines, and of the beam’s self-fields. For initial studies and for 

some photoinjector designs (such as RF photoinjectors with on-axis power couplers), this is not a bad 

approximation; however, it does represent an additional loss of fidelity with respect to the physical reality of 

the system being modeled, and of necessity excludes the impact of both TE modes and magnetic field 

aberrations such as those described in Section 1.5, as well as asymmetries arising in the accelerating fields 

from the presence of RF power couplers, field probes, viewports, etc. Radial symmetry of the beam’s self-

fields is clearly broken as soon as the beam passes through a quadrupole, or indeed any multipole beamline 

element. 

 

The interaction of the beam with itself, a.k.a. “space charge effects,” is central to the emittance 

compensation process. While in principle space charge forces can be calculated from every particle to every 

other particle, the time required to perform such a calculation scales as N
2
, where N is the number of 

macroparticles in the simulation. Most beam dynamics codes therefore use a variation of a particle-in-cell, 

or PIC, method to calculate space charge effects. The codes are grouped into one of two general categories. 

If the code ignores the interaction of the beam with the photoinjector structure, it is known as a particle-

pusher (or sometimes pseudo-PIC) code. If such interactions are accounted for in a self-consistent fashion, 

the code is referred to as a particle-in-cell, or PIC, code.  

 

Finally, electromagnetic (EM) design codes are used to simulate the physical structures, such as RF cavities, 

DC gaps, solenoids, etc., used in the photoinjector design process. As with beam dynamics codes, EM 

design codes differ widely in their capabilities, fidelity and ease of use. An important consideration is how 

readily information (primarily as field maps) can be transferred from EM design codes to beam dynamics 

codes. 
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Table 1.1 is a partial listing of simulation codes useful for photoinjector design. It is by no means a 

complete list and reflects the authors’ experiences and predilections. 

 

Name Type Notes 

POISSON / 

SUPERFISH 

2-D electro-, 

Magnetostatic and 

RF Code 

Integrates well with PARMELA and GPT; TM RF Modes 

Only; Extensive Documentation. 

CST Microwave 

Studio 

2-D and 3-D EM 

Modeling Code 

General-purpose Very Powerful electromagnetic Modeling 

Code; Excellent Documentation; Some Beam Transport; 

Commercial Code 

MAFIA 2-D and 3-D EM 

Modeling Code 

General-purpose Very Powerful Electromagnetic Modeling 

Code; Excellent Documentation; Some Beam Transport; 

Commercial Code 

TRANSPORT Envelope Code The “Grandfather” Code; Manual is an Excellent Reference 

for 1
st
-order Transport Matrices of Accelerator Components. 

TRACE-3D Envelope Code 

with Space Charge 

Fast; Good Graphical Tools Available 

HOMDYN Envelope Code  

PARMELA Particle Pusher Includes many “Built-in” Accelerator Elements; Well-

benchmarked; Good Documentation; Source Code not 

Available 

T-Step Particle Pusher Upgraded Version of PARMELA; Commercial Code 

ASTRA Particle Pusher Many Variations; Often the Code of Choice for 

Implementing Genetic Algorithm-based Optimization 

GPT Particle Pusher Includes many “Built-in” Elements; New Elements can be 

Added by the User; Extensive Options for Importing Field 

Maps; Unusual, but Useful Coordinate Scheme; Commercial 

Code 

IMPACT-T Particle Pusher Under Wide Development; Several Variants 

SPIFFE 2-D PIC Code Basic Code; Fast; Good Learning Tool 

VORPAL 3-D PIC Code Includes Updated Cathode Modeling; Commercial Code 

MICHELLE 3-D PIC Code Focuses on Electron Gun Design; Commercial Code 

MAD High-energy  

ELEGANT High-energy Includes CSR and Longitudinal Space Charge Models; Used 

in LCLS Design 
Table 1.1.  List of simulation codes with some description. 

1.7.2 Particle Pushers 

Particle pusher codes are beam dynamics codes which do not consider the interaction of the electron beam 

with the structure of the photoinjector. Injector beam dynamics codes must include space charge effects 

however, and this is often done via a PIC-like methodology. 

 

In a typical pseudo-PIC calculation, a grid (2-D or 3-D) is overlaid upon the particle distribution. Each 

macroparticle’s charge is assigned either to its nearest grid point, or split over the grid points of its 

encompassing cell according to its position within the cell. Maxwell’s equations are then solved on the grid; 

the resulting fields are applied to the macroparticles and the next simulation time step is taken. Computation 
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time scales approximately as M * N, where M is the number of grid points and N is, again, the number of 

macroparticles. A 2-D PIC implementation in essence treats every particle as a ring of charge; this 

approximation breaks down, to a greater or lesser degree, as soon as radially asymmetric charge 

distributions (from the cathode, passing through a quadrupole field, etc.) are encountered. In either a 2-D or 

a 3-D PIC code, there must be enough cells to sufficiently model local charge density variation of interest, 

but not so many that the statistics of assigning charge to the grid become poor. As importantly, there must 

be sufficient numbers of macroparticles to maintain good statistics for the space charge calculation. 

 

Typical particle pusher codes, including PARMELA [1.42], T-Step [1.43], IMPACT-T [1.44], [1.45], GPT 

[1.35] and Astra [1.46] usually offer one or several PIC-like algorithm to calculate space charge effects. 

(PARMELA, for instance, can perform either a 2-D or a 3-D space charge calculation.) The “external” 

fields, such as those from DC gaps, RF cavities, solenoids and the like, are just that – typically provided by 

a field map generated by an external code, the fields from these elements are applied to the macroparticles, 

but the macroparticles cannot modify those fields. An example of such a calculated external field can be 

seen in the top of Figure 1.6. The simulation neither knows nor cares where the physical boundaries of the 

photoinjector are, save perhaps specified radii beyond which macroparticles are assumed to have struck a 

wall and consequently be removed from the simulation. Likewise, there is no guarantee that the applied 

fields are consistent with the cavity geometry. 

 

This pseudo-PIC approach has several advantages. Since the PIC mesh need to extend only over the electron 

beam, a high density of mesh cells can be used for modest memory expense; and if the mesh expands and 

contracts with the beam, the approximate macroparticle density within the mesh can be held steady, helping 

to preserve the statistics of the calculation. 

 

To further save time, some pseudo-PIC codes perform a relativistic transformation to the average rest frame 

of the beam before applying the grid. The general assumption made is that in this frame the particles have 

negligible velocity, so only Poisson’s equation need be solved and the fields are then transformed back to 

the laboratory frame. The main disadvantage of this approach is that it breaks down when beams have large 

velocity spreads, or large fractional spreads (Δγ/γ). 

 

A general disadvantage of the particle pusher codes is they cannot self-consistently calculate the interaction 

of the beam with the structure of the injector. This can become very important when, for instance, 

attempting to simulate beam loading or wakefield effects. Also, as the electromagnetic fields are generally 

not self-consistent, incorporation of advanced electron emission models into these codes, particularly in the 

case of multi-bunch emission, can be problematic.  

1.7.3 Particle-in-Cell Codes 

Rather than applying a mesh over only the macroparticles, a true PIC code applies the mesh to the entire 

geometry, within which the beam can propagate, incorporating all boundary surfaces the beam can “see.” 

The mesh is generally fixed in space rather than moving with the beam. 

 

Depending on the PIC code, the fields used to accelerate and guide the beam can either be imported as with 

the particle pusher codes, calculated by the PIC code itself, or by some combination of the two methods. 

 

PIC codes have several significant advantages. They are generally fully electromagnetically self-consistent, 

so beams with large energy or velocity spreads are handled properly. Boundary conditions are automatically 

incorporated as the injector geometry, so the PIC grids are properly terminated at their edges and impedance 
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effects can be included, as well as particle beam wakefields. This also allows incorporation of cathode 

emission models that require accurate values for the electromagnetic fields at the cathode surface to 

calculate emission current density … whether or not the beam is within the vicinity of the cathode. 

 

Finally, advanced 3-D PIC codes, such as VORPAL [1.47], can be used to perform most of the calculations 

required to model an injector, including RF power couplers, the buildup of accelerating fields, multipacting 

and the extraction of beam-induced higher order modes. This is perhaps the most self-consistent method of 

modeling an injector available. An interesting side-effect is that obtaining the actual cavity modes excited 

by wakefields can be challenging; a PIC code does not “know” about cavity modes, it simply knows the net 

charge and the electric and magnetic fields at each point of a grid at a given point in time: it will update 

those fields and particle positions and velocities self-consistently at each time step. 

 

There are several significant disadvantages to PIC codes: first, they tend to be much more computationally 

intensive to operate, both from a memory and CPU time standpoint, than particle pusher codes of similar 

dimensionality (i.e., 2-D or 3-D) because Maxwell’s equations are being solved on every grid point in the 

model, whether or not there are macroparticles present.  

 

Mesh generation is still in the realm of an art, and although much progress has been made with automatic 

mesh generation, it can still be challenging to generate suitable meshes. The difficulty lies in part with the 

ratio of the size of the beam to the size of the photoinjector, typically on the order of 100:1 in radius and 

1000:1 or greater longitudinally. At the outer boundaries of the injector cavities, where no beam particles 

are liable to be present, the mesh can be relatively coarse; but, to resolve fine structures within the beam, the 

mesh density in the region of the beam must be relatively high. Thus, a uniform mesh will generally either 

be too coarse to properly resolve the electron beam, or too fine to allow the simulation to run in a reasonable 

amount of time and memory. Good progress is being made in non-uniform mesh generation; and concepts 

involving overlaid meshes are very interesting, but this is also an area of active development. 

1.7.4 Other Types of Beam Dynamics Codes 

Several other types of injector design codes should be mentioned. First, envelope codes, such as TRACE-3D 

[1.48] and HOMDYN [1.49], use externally generated, or analytic, fields and a simplified representation of 

the beam (an M * N grid of charged rings for HOMDYN, or a uniformly filled ellipse for TRACE-3D) to 

model the injector. Historically these codes have been very valuable as “first step” modeling, however, with 

the increasing power of desktop computers, particle pusher codes running with small particle counts are 

nearly as fast in a practical sense and provide an easy method of model refinement by simply increasing the 

particle count. 

 

Field mode codes represent a compromise between particle pusher and PIC codes. This type of code relies, 

as does particle pusher codes, upon local PIC grids and externally defined fields. However, the field code 

“knows” about cavity modes and can calculate the beam’s contribution to, and influence from, multiple 

cavity modes at once. These codes are not currently in widespread use, however. 

 

While many particle pusher codes theoretically incorporate enough accelerator component models to be 

useful for designing an entire accelerator, often they are used only for the photoinjector region, after which 

the beam is “handed off” to a high-energy accelerator design code. 

 

High-energy accelerator design codes, such as TRANSPORT [1.34], MAD [1.50], [1.51] and ELEGANT 

[1.52], originated from the need to design complete accelerators comprising potentially thousands of 
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elements. They typically propagate beam particles or rms envelopes using a 1
st
-, 2

nd
- or 3

rd
-order matrix 

approach and often incorporate goal-seeking or parameter matching functionality. With certain limited 

exceptions, they generally do not perform space charge calculations and are therefore not suitable for 

injector design; however, they often include features critical for high performance accelerator design, such 

as coherent space charge radiation (CSR) modeling, which are missing from or have limited support in 

pseudo-PIC codes. Since these codes are often provided input from photoinjector design simulations, it is 

helpful to be at least somewhat familiar with their requirements and limitations. 

1.7.5 Electromagnetic Design Codes and Accelerator Component Modeling 

The electromagnetic fields used in particle beam simulations have to come from somewhere. In PIC codes, 

the fields in an RF cavity (for instance) can often be generated by the PIC code itself. In pseudo-PIC codes, 

the fields are generally either represented via analytic formulas, or are imported as external field maps. 

 

In most photoinjector simulations, the RF fields used to accelerate the beam are provided via importing a 

field map generated by an external code. Critical magnetic elements near the photocathode, such as those 

generated by emittance compensation solenoid magnets, are also often generated externally and imported as 

maps. Other magnetic elements, such as dipoles and quadrupoles, often may (or must, depending on the 

code) be approximated by analytic expressions for “hard-edge” fields. 

 

There are many EM codes available with varying degrees of fidelity, and the topic is well outside the scope 

of this book. When considering an EM design code, the photoinjector designer should consider both the 

fidelity with which an EM code will model elements of the injector, and also the ease with which the results 

of the calculations can be imported into the beam dynamics code. For instance, the POISSON/SUPERFISH 

codes [1.17] typically only calculate 2-D field maps (e.g., z-r maps for RF cavities or solenoids). They are, 

however, tightly integrated with the POISSON beam dynamics code, and GPT has a number of useful tools 

to ease importation of field maps from POISSON/SUPERFISH. On the other hand, a “world’s most 

accurate” electromagnetic design code is of limited utility to the photoinjector designer if it cannot be used 

to generate the required field maps. 

 

The line between EM codes and PIC codes for beam dynamics is not always well defined. As mentioned 

above, some beam dynamics codes, such as VORPAL, are capable of generating RF cavity fields. Some EM 

design codes, such as MAFIA [1.53], [1.1] and CST [1.55], can include electron emission modeling and 

transport with varying degrees of physical fidelity.  

1.7.6 General Approach to Injector Modeling 

Injector modeling can be approached in three phases: Conceptual development, tuning and final refinement. 

 

Conceptual development can be performed with any type of injector design code, but the practice in 

common use as of this writing is to employ a code such as SUPERFISH, to generate radially symmetric 

acceleration and solenoid fields from simplified models of the injector geometry and use a particle pusher 

code to perform beam dynamics simulations. This can be used to quickly narrow down on a reasonable 

parameter space for more detailed exploration. 

 

In tuning, or optimization, many simulations are run to identify optimal working points. Depending upon the 

sophistication of the optimization techniques used, this step can also adjust injector “physical” parameters, 

such as cavity length or cathode/anode geometry that are fixed once the injector is built, as well as 

parameters, such as accelerating gradients and solenoid field strengths, that can be altered without changing 
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the injector’s physical construction. Here again, the advantage to particle pusher codes is speed. The 

combination of fast particle pusher codes with concurrent computing and advanced optimization methods is 

extremely powerful, as demonstrated by the design of the Cornell ERL injector. 

 

The final refinement of the design incorporates as many physical effects as reasonable, given the available 

resources and performance requirements. In the case of the LCLS injector, for instance, this stage included 

using 3-D electromagnetic field maps for both the TM010 and TM011 (accelerating) modes in the RF gun, 

quadrupole corrections to the emittance compensation solenoid, etc. This can be the most time consuming 

stage of the simulation process, but as the LCLS injector has demonstrated, the results are definitely 

worthwhile. 

 

As a final note, it is well worth remembering that no simulation is a complete representation of physical 

reality. This is because neither the codes nor the researchers are perfect. That is to say, some things aren’t in 

the model because the code doesn’t support it; an example would be semiconductor cathodes in PARMELA. 

We know this and attempt to allow for it when interpreting our simulation results. Other things aren’t in the 

codes because we do not implement them, although the code can support them. An example of this from the 

NCRF photoinjector design community is the influence of the TM010 mode in the SLAC/BNL/UCLA-style 

RF guns. In practice, the TM010 mode can have a noticeable impact on beam quality, but most early design 

studies did not include its effects in the simulations. As a result, obtaining 1 μm emittance beams at 

nanocoulomb bunch charges was considerably more challenging than was anticipated from the simulations. 

 

Therefore, we close the section on simulation with two questions to keep in mind: 

 “What does the simulation not include?” and 

 “What am I not including that might matter?” 
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Appendix 1.1: Useful Formulae 

 

Emittance type Emittance formula 

Intrinsic (a.k.a. 

thermal) ,intrinsic 23

eff

n
mc

 
 


  

Surface Roughness 

(High Field 

Enhancement) 

1/2
2 2 2

, 22

x n a
n field x x

n

v a eE

c mc


  


   

Space Charge 

Emittance for 

Gaussian 

Distributions 

,

0 0

1 1

4 sin 3 5

       A =

n sc

z gaus

x
gaus

z

I

k I A




 








 

Space Charge 

Emittance for 

Uniform 

Cylindrical 

Distribution 

,

0 0

1 1

4 sin 35

       A =

n sc

z cyl

cyl

I

k I A

a

l




 


 

Non-uniform 

Emission Space 

Charge Emittance 

,

0

2 2
( ) bunch

n sc bunch x

s

I
I

n I
 




   

1
st
-order RF 

emittance 
20

,1 ,2
cos

2
n rf e x e

eE

mc
     

2
nd

-order RF 

emittance 
2 20

,2 ,2
sin

2 2
n rf e x e

eE

mc
     

Geometric 

Emittance 
 4 4

, ,0.0046 /n geo x solm mm    

Chromatic 

Emittance 
2

, , ,( ) sin cos
p

n chromatic x sol x sol K KL KL KL
p


     

Anomalous 

Quadrupole Field 

Emittance 

2

, , ,

sin 2
( )n quad sol x sol x sol

q

KL

f
   
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Appendix 1.2: Mathematical Symbols 

 

Symbol Definition Value 

α
Electric Field Parameter, 

zkmc

eE
2

0

2
  

- 

β
Velocity divided by Speed of Light, 

v

c
   

- 

c 
Speed of Light in Vacuum, 

0 0

1
c

 
  

2.99×10
8
 m/s 

δskin 
Skin Depth of the Transverse RF Field, δskin = 

2

σwall μ0 ωRF
 

- 

ε0 Electric Permittivity of Vacuum 8.85×10
-12 

C/V-m, 

5.526×10
7
 e/V-m 

μ0 Magnetic Permeability of Vacuum - 

γ Total Energy Normalized to the Electron Rest Mass - 

m Rest Mass of the Electron 0.511 MeV/c
2 

eff Effective Work Function for Photoemission, 
eff W schottky      

W Material Work Function for Photoemission ~4.6 eV for Cu 

Schottky Schottky Work Function due to Image Charge and Field, 

eV  )/(107947.3 5 mVEschottky

  
 

- 

εn Normalized Emittance - 

σx Transverse rms Beam Size - 

σwall Conductivity of Cavity Walls - 

υx Velocity along the x-coordinate - 

σz Longitudinal rms Beam Size - 

σx,e Transverse rms Beam Size at Exit of RF Gun - 

σx,sol Transverse rms Beam Size in the Solenoid - 

σp Bunch rms Momentum Spread - 

σ rms Phase Length of Bunch - 

0 Initial Launch Phase of the Electron relative to the RF Waveform - 

e Beam RF Phase when Bunch is at Exit of Gun - 

ω, ωrf, 

ωRF 

RF Angular Frequency, 2 f   - 

p Bunch Average Momentum - 

an Amplitude of n
th

 Spatial Frequency of the Surface Roughness - 

e Electron Charge 1.6×10
-19

 C 

Ea Applied or External Electric Field, usually RF or HV DC. - 

E0 Peak Field at Cathode - 

λn Spatial Wavelength of Surface Modulation with Wave Number kn - 
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Symbol Definition Value 

kz 
Longitudinal RF Wave Number, kz = 

pπ

l
, where l is the Cavity length; 

also, 
2

;z rf rf

rf

k c f





  for Standing Wave Cavity 

- 

EK Kilpatrick Criterion Peak Field - 

I Beam Current, usually the Peak Current - 

I0 Characteristic Current for Electrons, I0 = ec r e
-1

 ≈ 17 kA - 

Agaus Aspect Ratio for Gaussian Bunch Shape, A = x
gaus

z




 

- 

Acyl 
Aspect Ratio for a Uniform Cylinder Bunch, A =cyl

a

l
 

- 

a Radius of Cylindrical Bunch - 

l Length of Cylindrical Bunch - 

ΔIbunch difference of max and min local current of transverse spatial 

modulation 

- 

ns Number of Spatial Modulations across the Beam Diameter - 

K 
Focal Strength of Solenoid, 

 
0

2 2

sol soleB B
K

p B
   

- 

L, Lsol Solenoid Magnetic Length - 

fq Quadrupole Focal Length, usually for Solenoid Quadrupoles - 

fRF, frf Radiofrequency (RF) in Hertz - 

Q 
Quality Factor of Resonant System, Q = 

(Stored Energy)

(Dissipated Energy)
 

- 

rshunt 
Shunt Impedance for RF Power and Cavity Voltage, 

2

0
shunt

V
r

P
  

- 

V0 Cavity Voltage - 


