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At the present time a number of accelerating struc­
tures of proton and electron linear accelerators exist 
which, in a certain range of energy of the particles to be 
accelerated, and of intensities of accelerating high-fre­
quency fields and wave-lengths, are quite effective. 
A waveguide loaded with metallic discs, at a wave phase 

velocity VΦ > 0.5 C, and at an intensity of the accelerating 
field up to 100-200 kV/cm. and wave-lengths of the order 
of 10 cm., is an effective accelerating system for linear 
electron accelerators. 
A cavity resonator with drift tubes can be used to accel­

erate protons to an energy of 50-100 Mev. 
"Pill-box" cavity resonators with drift tubes operating 

on the π wave can also, apparently, be used in a region of 
higher energies up to 600 Mev. 
It is convenient to use helical waveguides to accelerate 

protons from low energies of the order of 300-1000 Kev 
to energies of the order of 30-60 Mev. 
All the above-listed accelerating systems, however, are 

not free from serious drawbacks, some of which are com­
mon to all these systems. 
1. First of all it is necessary to note the inconvenient 

distribution of electromagnetic fields in accelerating sys­
tems. The electromagnetic fields are concentrated in 
volumes considerably exceeding the volume in which the 
beam of particles being accelerated moves. Moreover, 
in proton accelerators the fields outside the beam are, as 
a rule, considerably greater than the fields which accel­
erate the beam. Hence, it is necessary to develop systems 
in which the electromagnetic energy would be concentrated 
exclusively in the region where the particles are accelerated. 
In the case of travelling-wave accelerators a reduction of the 
area of the electromagnetic energy flux would result in a 
considerable rise of the field intensity for the given flux. 
In the case of standing-wave accelerators such a redistri­
bution would increase the shunt impedance of the accel­
erating system. In both cases this would cause a reduc­

tion of the transverse dimensions of the accelerating 
systems. 
2. Characteristic of the above systems, especially the 

disc-loaded waveguide and the divided cavity resonators, 
are big losses; due to large metallic surfaces in which the 
electromagnetic energy is dissipated. Metallic surfaces 
are also a cause of possible breakdown and thus limit the 
maximum intensity of the accelerating field to values of 
100-150 kV/cm., and in cavity resonators with drift tubes, 
to much smaller values, viz., 30-50 kV/cm. This prompts 
the need to design systems in which the metallic surfaces 
are at a considerable distance from the regions of high 
field intensity, or are absent altogether. 
3. Accelerating systems, with the exception of hslical 

waveguides, have a cut-off frequency. This results in a 
rigid dependence of the transverse dimensions of the wave­
guide upon wave-length. Hence we see the necessity of 
developing systems without a cut-off frequency or systems 
with a wide pass band. 
4. An important task in the development of linear 

accelerators is the simultaneous achievement of radial and 
phase stability. It is therefore necessary to develop such 
accelerating structures in which this would be achieved 
without special systems of focusing. In those cases where 
this is impossible, the accelerating system must offer a 
choice of effective parameters of the focusing system. 
Thus, the absence of a cut-off frequency substantially 
facilitates focusing. 
5. The accelerating system must have low dispersion 

and not severe tolerances in construction. 
The development of an accelerating system which would 

satisfy all the requirements enumerated above is a task 
involving great difficulties. The present paper discusses 
one possible accelerating system in which a number of the 
above-mentioned shortcomings are absent. Naturally, 
the application of this system meets with a number of 
difficulties. 

* Besides the author, L. M. Pyatigorski and N. A. Khizhniak participated in the work of investigating plasma waveguides and inter­
actions of charged particles with them. Part of the calculations have been done by Pakhomov, Gorbatenko, Stepanov, Tkalich 
and Suprunenko. 
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For an unbounded plasma at rest the equivalent di­
electric constant is ε = 1 - Ω02/ω2. Hence, ε < 1 and 
the phase velocity of wave propagation VΦ > C. For 
frequencies ω < Ω0, ε is negative and the propagation 
of such waves in the plasma is impossible. If the plasma 
moves at a uniform velocity V0, space-charge waves with 
a phase velocity VΦ V0 can be propagated in it, the 
electromagnetic field-waves in this case still being propa­
gated with a velocity VΦ < C. The dispersion proper­
ties of bounded plasma are entirely different. As was 
first established by Schuman, electromagnetic field-waves 
can be propagated in a bounded plasma at rest with a 
phase velocity VΦ < C. In this connection we proposed 
to use the plasma waveguides as accelerating systems in 
linear accelerators and as a retarding system in micro­
wave amplifiers and generators*. To investigate the 
problems connected with this possibility a number of 
theoretical investigations have been carried out at the 
Physico-Technical Institute of the Ukrainian Academy 
of Sciences since 1952. 
The results of these investigations and of Schuman's 

research work are given in the paper. 
From an analysis of the dispersion equation of a wave­

guide of the plasma rod type 

- 1 I0 (mpa) K1 (ma) = εp K 0 (ma) I1 (mpa), (1) - m I0 (mpa) K1 (ma) = m p 
K 0 (ma) I1 (mpa), (1) 

where a is the rod radius, εp = 1 - Ω02/ω2, 
m = ω √1/βΦ2-1 -1 m = c √1/βΦ2-1 -1 , m p = ω √1/βΦ2 - ΕP . and , m p = c √1/βΦ2 - ΕP . and 
I0, K0, I1, and K1 are Bessel functions, it follows that : 
1. The pass band for slow waves lies within the limits 

0 ≤ ω ≤ Ω0/√2 , 
where Ω0 is Langmuir's plasma frequency. 
2. The phase velocity of the propagation of electro­

magnetic waves VΦ changes from C (the speed of light 

Fig. 1, Dependence of βΦ upon (ω/ω0)2 in a system of coordi­nates at rest. 

Fig. 2. Dependence of β'Φ upon (ω'/ω0')2 in a moving system 
of coordinates. 

in a vacum) to 0 when ω changes in the interval 

0 ≤ ω ≤ Ω0/√2 

βΦ is plotted as a function of (ω/Ω0)2 on fig. 1. 
To determine the dispersion dependence in the case 

of a plasma rod moving at a uniform velocity V, it is 
sufficient now merely to make use of the transformations 
of frequency and phase velocity 

ω' = 
ω (1 + β/βΦ) 

ω' = 

√1-β2 

βΦ'= βΦ + β (2) βΦ'= 1 + ββΦ 
(2) 

ω' and βΦ' = VΦ'/c are respectively the frequency and 
phase velocity of the wave in the laboratory reference 
frame; ω and βΦ are the same quantities in a reference 
frame where the rod is at rest. The relationship between 
co and βΦ is defined by the dispersion eq. (1). Drawing 
upon (1) and (2), we obtain the dispersion dependence for 
a moving plasma rod 

βΦ' = F[(ω'/Ω')2] 

This is plotted in fig. 2. 
The case of gyrotropic plasma waveguides was exam­

ined in detail only for high magnetic fields by L.M. 
Pyatigorski and the general case lately by Glagolev. 
An examination of fig. 2 reveals that waves with a fre­

quency greater than Ω0/√2 can also be propagated in a 
moving plasma rod. The phase velocity of wave propa­
gation can be either smaller or greater than the phase 
velocity in a plasma rod at rest. This depends on whether 
the wave is propagated in or against the direction of the 
plasma-rod movement. As in the case of the plasma-rod 
at rest the pass band is not limited below. 

* As wave-guide systems electronic beams or Gabor lenses may also be used. 
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Fig. 3. I - (ω/ω0)2 = f1(ma) for (ωoa)/c = 0,05 
II - (ω/ω0)2 = f(ma) for (ωoa)/c = 0,55 

III - (ω/ω0)2 = f2(mpa) for ( 0a)/c = 0,55 

3. For definite parameters of the system Ω0a/c 
a considerable part of electromagnetic energy may be 
confined within the plasma rod. The dependence of 
ma, mpa inside and outside the plasma upon (ω/Ω0)2 
is plotted in fig. 3. 
From fig. 3 it follows that even at ma ≈ 2, the flux within 

the plasma rod is of the same order as outside the rod. It 
should be noted that at very high values of ma, we have a 
pure surface wave. In this case it is expedient to accel­
erate the particles moving close to the boundary of plasma. 
At very low values of the parameter ma, a great energy 
flux is concentrated outside the plasma rod. 
Plasma waveguides thus have a number of distinctive 

features which make it convenient to use them as accel­
erating systems : 
1. The possibility of phase-velocity variation within 

a wide range, starting from very low phase velocities. 
2. The absence of a limiting frequency below. The 

upper limiting frequency is determined only by the density 
of the plasma and the radius of the rod Ω0a/c. 
3. Insofar as the electromagnetic energy is practically 

concentrated within the plasma waveguide, whose trans­
verse dimensions may be small, the field intensity for a 
given energy flux can be materially increased. 

4. There are no metallic surfaces in plasma waveguides, 
a fact which substantially reduces losses and the possi­
bility of breakdown. If design considerations dictate 
the need to place the beam in a metallic waveguide, this 
can be placed in a region where the field is very low, since 
the dispersion properties of the system are determined 
by the plasma itself. 
5. The foregoing results are based on a linear approxi­

mation of the theory of wave propagation in a bounded 
plasma. They are valid only if 

e E λ/2πmc2β « 1 

This means that the particle-velocity change in the wave 
field must not exceed the phase velocity of the wave. 
6. If a plasma rod is placed between two metallic plates 

or in a cylindrical cavity resonator, the cavity resonator 
thus obtained will possess a number of important charac­
teristics. Its resonant frequency at frequencies ω <Ω0 
and ma > 1 will be determined only by the parameters 
of the plasma rod. The limiting frequency can therefore 
be substantially lowered. Thanks to a high quality of the 
system, a resonator of this type makes it possible to con­
centrate the energy of a high-frequency field in the plasma 
rod. The dispersion dependence for a plasma cavity-
resonator is of the same type as (1). 
As distinct from (1), the arguments of Bessel functions 

I0 (x), I1 (x), K 0 (y), K1 (y) are : 

x = r0 √ Kn 2 ω2 + Ω0
2 

x = r0 √ Kn 2 c2 + c2 

y = r 0√K n
2-ω2 y = r 0√K n
2-

c2 Kn = nπ Kn = l and ωn = KnC, 

where l is the length of the resonator. In the case of 
y « 1 and Ω0 » ω1ωn , the dispersion equation takes the 
form 

ξlnξ-∆ξ = -η; ξ = ½(γy)2; ∆ = zI0(v) ; ∆ = 
νI1(ν) ; 

η = 2I0 (ν) ( 
γΩ0r0 )2 ; γ = 1,78; ν = r0.Ω0. η = 

νI1(ν) ( 2C )
2 ; γ = 1,78; ν = c 

The quality Q of such a system was calculated in order 
to determine the efficiency of the plasma cavity-resonator. 
In calculating Q the dielectric constant ε and the conduc­

tivity σ are taken equal 

ε = 1 - Ω02 
σ = 

1-ε 
νeff ε = 1 -

ω2 + ν2eff 
σ = 

4π νeff 

The Q-values for several plasma cavity-resonators 
are listed in Table I. Table II gives the energy losses 
in the waveguide**. It follows from this that plasma 
cavity-resonators have a sufficiently high quality. This 
is also an indication that plasma waveguides can become 
a highly effective accelerating system. 
7. Space-charge waves can also be utilized to accelerate 

charged particles. As distinct from the linear approxi­
mation, the phase velocity of space-charge wave propa­
gation in a plasma at rest is not equal to C. It can assume 
values less than C. The maximum intensity of the accel­
erating field in this case is 

Emax = P√2 √4n + eV 

* The relationship also follows from the requirement that the electron displacement in the wave field be considerably less than 
the wave length in the medium. Non-linear theory must therefore be applied to analyse the efficiency of plasma waveguides 
the data given in table II, I are not optimum ones and are of only an illustrative and preliminary nature 
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TABLE I 
Efficiency of plasma cavity-resonator 

r0 1 cm. 1 cm. 1 cm. 
η0 108 109 1010 
ω0 5,64.108 1,78.109 5,64.109 
ωH 9,42 .108 9,42.108 9,42.108 
ω 2,37 .107 7,49.107 2,37.108 
ε -566 -566 -566 
σ 2,1.105 1,9 106 1,71.107 
Q 5100 1700 560 

T = 104 l = 100 cm. 

ε' = x I0(x)K1(y) ; 
x =X1r0 =r0 √Kn2-ω

2 + ω
2 

ε' = -ε 
ε' = x I0(x)K1(y) ; 

x =X1r0 =r0 √Kn2-C2 + C 2 ' 
ε' = -ε 

ε' = y I1(x)K0(y) ; y = x2 r0 = r0 √Kn2-ω
2 

, K n = 
nπ 

ε' = y I1(x)K0(y) ; y = x2 r0 = r0 √Kn2-C2 , K n = 
l 

Q = 
ω ε

0 [l02(x) - l12(x)] + Є0(Kn2 + ЄK2) [l12(x)-I0(x)I2(x)] + 10
2(x) 
[K12(y)-K02(y) + 

Kn2 + K 2 
(K0(y)K2(y)-K12(y))] 

Q = 
ω ε

0 [l02(x) - l12(x)] + x12 [l12(x)-I0(x)I2(x)] + 
K02(y) 

[K12(y)-K02(y) + x2 (K0(y)K2(y)-K12(y))] 
Q = 8nσ I02(x) - I12(x) + kn

2, [l12(x) - I0(x)I2(x)] 
Q = 8nσ I02(x) - I12(x) + x12 [l1

2(x) - I0(x)I2(x)] 

ε0 = 2 - ε , ω0 = √ 4π n0 e
2 

, ε = 1-
ω02 

ε0 = 2 - ε , ω0 = √ m , ε = 1- ω2 + ν2 ef 

ν
ef = νefm + ν

efi 

ν
efi = 

5,5 Ni ln (220 T 
) 

ν
efi = T 3/2 ln (220 N l / 3 ) 

νefm = 1 , 7 . 1011 N m √ T νefm = 1 , 7 . 1011 
2,7 • 1019 √ 300 

TABLE II 
Energy losses in plasma wave-guide 

X = y 1 2 3 4 

ω0 1,5.109 1,5.109 1,5.109 1,5-109 
no 7.108 7.108 7.108 7.108 
Kz 1 2 3 4 
ω 0,74 .109 0,9-109 0,96.109 0,99.109 
σ 104 0,66.104 0,58.104 0,55 .104 
D(ω/m) 320 530 1700 6700 

D = σE0
2r02 l02(x)-I12(x) + Kz

2 [l12(x)-I0(x)I2(x)]} D = 2 l02(x)-I12(x) + x12 
[l12(x)-I0(x)I2(x)]} 
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Fig. 4. 

The parameter p varies within the limits 0 ≤ p < 1. 
eV = mVΦ2/2; VΦ is the wave phase velocity. 
The shape of the field and the mode of its variation in 

the direction of wave propagation may vary within a 
wide range (fig. 4). In particular, the derivative ∂Ez/∂z~ν 
which determines the frequencies of phase oscillations may, 
unlike the usual linear approximation, be made large. 
Density distribution is sharply different from that in 

the linear case. In place of the relatively smooth sinu­
soidal law, we may obtain (considering the space charge) 
very high values of alternating density components (fig. 5). 
This factor does not increase the field intensity, since the 
field is Ez = ∫ ρdz, but it can be utilized when it is necessary 
to obtain a high charge density. 
Non-relativistic non-linear one-dimensional plasma is 

considered in the papers of Bohm and Gross1); Akhiezer 
and Liubarski; Akhiezer, Liubarski and Fainberg2). A 
number of two-dimensional cases have been dealt with 
by the author. 
8. In linear accelerators with a constant or slowly 

changing synchronous phase, the simultaneous attainment 
of radial and phase stability without special focusing 
devices is known to be impossible.* This, however, has 
been proved only for the case of axially symmetric fields, 
for which the relation div E = 0 holds true. In the case 
of anisotropic or gyrotropic media div E ≠ 0. Therefore 
we may expect that in definite conditions simultaneous 
radial and phase stability is possible in this case. This 
possibility will become all the more apparent if it is noted 
that in the case of an anisotropic medium the electric field 
components are Ez = E0I0 (k1r) 

Er = i εz/εr · E0 K3/K1 · I1 (Kr) 
K1 = K2εz - εz/εr · K32 

As pointed out by the author of the present paper, in the 
case of εz/εr < 1, the radial defocusing forces can be sub­
stantially reduced, while in the case of εz/εr < 0 radial 
defocusing will be replaced by radial focusing simul­
taneously with phase focusing. Laminar plasma, plasma 
placed in a magnetic field, and a waveguide with a lamin­
ated dielectric for frequencies ω < ω0 (the critical wave­
guide frequency without a dielectric of the same radius) 
can be used as an anisotropic medium with negative values 
of εz or εr. A more detailed examination of the focusing 
effect was carried out for laminar plasma waveguide**. 
In the case of an arbitrary field distribution it may be 

demonstrated that to achieve radial stability, the quantity 
determining the frequency of radial oscillations must 
satisfy the condition 

εeEz 
| 

L 
- 1 

(1-εβ2) 
∂∆w > 0. VT | 0 

- V2T (1-εβ
2) ∂t0 

> 0. 

Since the necessary condition is 

∂ ∆ w/∂ t0 > 0, 
radial focusing will be achieved if 1 - εβ2 < 0. In wave­
guides containing a dielectric this condition can be ob­
served. In the case of an anisotropic medium, div E ≠ 0; 
therefore the condition of radial stability assumes the 
form 

εz e Ez 
L 
- 1 

(1-εrβ2) 
εz ∂∆w > 0. εr VT Ez 

0 
- V2T (1-εrβ

2) εr ∂t0 > 0. 

Consequently, simultaneous radial and phase stability 
can be achieved if εz and εr have different signs, or if 

εr β2 > 1 
For a vacuum similar relations were obtained by McMil­
lan3). In the case of an arbitrary axially symmetric 
anisotropic medium the frequencies of radial and phase 

Fig. 5. 

* In the general case of an arbitrarily shaped field this assumption was proved by A. I. Akhiezer and G. la. Liubarski (1948) and 
E. M. McMillan3). 
** This case was examined by the author together with N. A. Khizhniak. The case of a waveguide loaded with a dielectric was 
considered by N. A. Khizhniak. 
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oscillations are respectively 

Ω2r = -πeE0 εz sin ψs (1-β2)½ (1-β2εr) Ω2r = -mβλ εr 
sin ψs (1-β2)½ (1-β2εr) 

Ω2q = 2πeE0 sin ψs (1-β2)3/2 Ω2q = mβλ sin ψs (1-β2)3/2 

Therefore if εz and εr have different signs, the requirement 
Ω2r > 0 and Ω2q > 0 may be satisfied simultaneously and 
simultaneous radial and phase stability ensured in this 
way. In the specific case of a laminar plasma waveguide 
the effective values of the dielectric constants εz and εr - provided 
the repetition length L » βΦλ - are equal to 

εz = 

1 - CC 
εz = 

1 -
ω2 

εz = 
1 -a Ω

2
0 

εz = 
1 -L ω2 

; εr = 1 -
b Ω20 , ; εr = 1 -L ω2 , 

where L = a + b; a is the distance between plasma 
laminae, and b is the thickness of the plasma laminae, 

Fig. 6. Dependence of ε2/ε2 upon ω2/Ω2 for b/L = 0,6. The shaded region corresponds to simultaneous radial and phase 
Stability, 

while Ω20 = 4πe2n/m is plasma frequency. Fig. 6 gives 
graphs for the regions of simultaneous radial and phase 
stability. The regions of simultaneous radial and phase 
stability are shaded. The dispersion equation for a 
laminar plasma wave guide in the case of a plasma rod is 

√εzεr √ 1-β2 J1 ( 
KR √ εz √εrβ2-1 ) √εzεr √ 1-β2 J1 ( β √ εr √εrβ2-1 ) √εzεr √ εrβ2-1 

Jo ( 
KR √ εz √εrβ2-1 ) 

√εzεr √ εrβ2-1 
Jo ( β √ £ r √εrβ2-1 ) 

= K1[ 
K R √1-β2] 

= K1[ β √1-β
2] 

= 
K0[ K R √1-β2 = 
K0[ 0 √1-β2 

For a metallic waveguide completely filled with laminar 
plasma, 

K2 ( εz - εz 1 
) = ( 

αi 
)2 K2 ( εz -

εr β2 ) = ( R )2 

These numerical calculations show that in regions of 
simultaneous radial and phase stability, the phase velocity 
may be smaller than the phase velocity of light in vacuum 
VΦ < C. This points to the possibility of simultaneously 
attaining radial and phase stability and the convenience 
of focusing plasma waveguides and cavity resonators as 
accelerating systems in linear accelerators. 
In connection with the possibility of using plasma wave­

guides as accelerating systems in linear accelerators and as 
retarding systems in microwave amplifiers and generators, 
the problem of determining the energy losses of charged 
particles travelling in such waveguides arises. 
In the case of the uniform motion of a charged particle 

through the plasma rod there are two types of losses : 
polarization losses and losses due to Vavilov-Čerenkov 
radiation : 

( 
dε 

) čer 
= -

2q2ω3 
(1-β2)1/2 

[1-β2ε(ω)]3/2 I0-1(k1a)I1-1(ka) ( dx ) čer = - avΩ20 (1-β
2)1/2 2-β2ε I0-1(k1a)I1-1(ka) 

k1 I0 (k1 a) = - εk2 K0 (k2a) 
I1 (K1 a) 

= - K1 (k2a) 

k1 = 
|ω| √1-β2 ε(ω); k2 = |ω| √1-β2 ; k1 = V √1-β2 ε(ω); k2 = V √1-β2 ; 

ε = 1-
Ω20 ε = 1-
ω2 

When a charged particle moves in a laminar plasma wave­
guide and the repetition length is L« βλ, there are not 
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only polarization losses, but also a Čerenkov radiation of 
the type observed in anisotropic media. The polarization 
losses in this case are equal to 

( 
dε 

) polar 

4πne4 b In Kmb ( dz ) polar mv2 L In 7,4 

The losses due to Čerenkov radiation are 

( 
dε 
) čer = 

2πne4 b In ( 
L k2V2 

) ( dz. ) čer = mv2 L In ( b Ω20 ) 
If the repetition length L is comparable with βλ 

there is a parametric Čerenkov effect*. 
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