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Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic
spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase
transition where the electronic structure changes from normal to inverted. We show that the intrinsic
spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted
side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall
effect from the extrinsic one.

Spin-polarized transport in nonmagnetic semiconduc-
tors is a crucial ingredient for realizing spintronic
devices.[1] The spin Hall effect (SHE) opens up the
promising prospect of generating spin currents in conven-
tional semiconductors without applying external mag-
netic field or introducing ferromagnetic elements. Re-
cently the previously predicted extrinsic SHE (ESHE)[2]
and the newly discovered intrinsic SHE (ISHE)[3] have
become one of the most intensively studied subjects.
The experimental observations of SHE have been re-
ported by two groups[4, 5] in n-type epilayers and
two-dimensional electron and hole gases, although their
theoretical interpretation as extrinsic or intrinsic are
still ambiguous.[6, 7, 8] The ISHE in the 2D hole gas
has no vertex correction,[6], and its existence has been
widely accepted,[9] the existence of electron ISHE in two-
dimensional systems is under substantial debate.[10, 11,
12, 13, 14, 15] The current understanding is that the elec-
tron ISHE in the ideal model (single-band Hamiltonian
with parabolic dispersion and linear Rashba and/or Dres-
selhaus spin splitting) is exactly cancelled by the impu-
rity induced vertex corrections in the clean limit,[10, 11]
even for momentum dependent scattering.[12, 13, 14]

Very recently quantum spin Hall effect was predicted
theoretically and observed experimentally in a narrow-
gap HgTe quantum well with the unique inverted band
structure[20]. The HgTe quantum well has a quantum
phase transition when the quantum well thickness d is
tuned across a critical thickness dc ≈ 6nm. For d < dc,
the electronic structure is normal, similar to the GaAs
quantum wells, where the conduction band has Γ6 char-
acter, and the valence band Γ8 character. In this regime,
we show that the ISHE vanishes in the conduction band
due to vertex corrections, consistent with previous re-
sults. For d > dc, the electronic structure is inverted,
where the conduction and the valence bands interchange
their Γ6 − Γ8 characters. In this regime, we show that
the ISHE is finite in the conduction band. Since the im-
purity configuration is not expected to change drastically

across dc, the difference of the SHE across the dc tran-
sition therefore singles out the ISHE contribution. This
mechanism solves a long standing challenge of how to
distinguish the ISHE from the ESHE.

First we develop a unified description of Γ6-electron
and Γ8-hole SHE based on a general N -band effective-
mass theory, which remains valid over the whole range
of Γ6-Γ8 coupling strengths and bandgaps. Then we
take the N=8 model (the Kane model) to make a realis-
tic calculation of the ISHE in CdTe/CdxHg1−xTe quan-
tum wells, taking into account the non-ideal factors in a
self-consistent way and the impurity scattering induced
vertex corrections through standard diagrammatic tech-
niques. The calculated ISHE agrees with previous theo-
ries in the limit of weak Γ6-Γ8 coupling, while it shows
nontrivial behaviors in the strong coupling regime. It
exhibits a large [3 ∼ 4 times larger than the intrinsic
value σ0 = e/(8π)] abrupt increase accompanying the
Γ6-Γ8 phase transition in the lowest conduction band.
This large ISHE is robust against impurity scattering in-
duced vertex corrections. By varying the well width or
the electric bias across the quantum well, we can switch
the electron ISHE on/off or even tune it into resonance.
These operations can be realized in experimentally acces-
sible conditions and they may be utilized to distinguish
the electron ISHE from the ESHE.

Following the new envelope function approach,[21] the
band-edge Bloch basis {Φµ} is classified into N rel-
evant bands {Φj} and infinite irrelevant bands {Φl}.
In the N -dimensional {Φj} subspace, the image of the
Hamiltonian H for a general microstructure is Hjj′ =
Hjj′ +

∑

l Hjl(E − El)
−1Hlj′ .[21] The image of an arbi-

trary operator O (6= H) can also be obtained as

Ojj′ = Ojj′+
∑

l

(Ojl
1

E − El
Hlj′+Hjl

1

E − El
Olj′ ), (1)

where H and O are, respectively, the image of H and O
in the {Φµ} space. Then the images of velocity v, spin
s, and spin current jβ

α ≡ (vαsβ + sβvα)/2 (α, β = x, y, z)
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operators are given by ~Vjj′ = [r, Hjj′ ] /(i~), ~Sjj′ =
〈Φj |s|Φj′〉, and Jβ

α = (VαSβ + SβVα)/2.[22] With the
Γ6-Γ8 coupling taken into account, they generalize the
previous theories (which neglect this coupling) to the N -
band case, e.g., the widely used single-band (four-band
Luttinger-Kohn) model corresponds to N=2 (N=4). We
emphasize that explicit consideration of the Γ6-Γ8 cou-
pling is important in determining electron ISHE, espe-
cially for strong Γ6-Γ8 coupled systems. Further, the
different non-ideal band structure factors arise from the
same origin (Γ6-Γ8 coupling), so they are not indepen-
dent and should be incorporated self-consistently through
explicit consideration of the Γ6-Γ8 coupling. We no-
tice that the equation-of-motion argument[13] (valid for
N=2) for the nonexistence of electron ISHE is not appli-
cable to other values of N (e.g., N=4, 6, or 8).

The above theory can be applied to study both ISHE
and ESHE in a general microstructure. In the present
work we consider ISHE only, due to its much larger mag-
nitude compared to ESHE,[7, 8] especially for small elec-
tron density. The linear response spin Hall conductiv-
ity σSH = e/(~A) limω→0

[

Gz
xy(ω) − Gz

xy(0)
]

/(iω), with
A the sample area and Gz

xy(ω) the impurity-averaged re-
tarded correlation function of Jz

y and Vx. Using standard
diagrammatic perturbation theory, Gz

xy(ω) is evaluated
taking into account the impurity induced self-energy cor-
rections in the self-consistent Born approximation and
vertex corrections in the ladder approximation (inset of
Fig. 1), yielding

σSH =
e

π

∫ ∞

−∞

dω f(ω) lim
η→0+

Re

[

∂P (ω′ + iη, ω + iη)

∂ω′
−

∂P (ω′ + iη, ω − iη)

∂ω′

]

ω′=ω

,

where f(ω) = 1/[e(~ω−µ)/(kBT ) + 1], P (z, z′) =
(1/A)Tr Jz

yG(z)Γ(z, z′)G(z′), z = iωm, z′ = iωn, Gij(z)
and Γij(z, z′) are, respectively, matrix elements of
the impurity-averaged Matsubara Green’s function and
dressed velocity vertex in the eigenstate basis of H. They
can be calculated from the Dyson equation and the ver-
tex equation

Γ(z, z′) = Vx + nI

∫

dR
U(R)

~
G(z)Γ(z, z′)G(z′)

U(R)

~
,

where nI is the impurity concentration, and Uij(R) =
〈i |VC(r − R)| j〉 is the matrix element of the single-
impurity potential VC(r).

Now we consider the lattice-matched symmetric
CdTe/CdxHg1−xTe quantum well under electric bias.
Its bandgap can be tuned in a large range by varying
the Cd content x, the well width W , or the bias elec-
tric field F , serving as an ideal workbench for study-
ing ISHE under various Γ6-Γ8 coupling strengths. For
such narrowgap systems, the N=8 Kane model is a good
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FIG. 1: (color online) (a) σSH for W=25 nm and F=40 kV/cm
with (solid lines) or without (dashed lines) vertex corrections.
Inset: (1) Dyson equation in the self-consistent Born approx-
imation and (2) vertex equation in the ladder approximation.
(b) Corresponding energy spectrum.

starting point. It incorporates the aforementioned non-
ideal factors non-perurbatively and self-consistently. The
Dresselhaus spin-orbit coupling is neglected because it
is much smaller than the Rashba effect in a narrow-
gap quantum well,[23] as verified by the quantitative
agreement between theory and experiment in recent in-
vestigations on the transport properties of CdTe/HgTe
quantum wells.[24] We also adopt the widely employed
axial approximation (good for electrons and reasonable
for holes in narrowgap systems) and short-range impu-
rity potential VC(r) = V0δ(r). All band parameters
used in our numerical calculation are experimentally de-
termined values.[24, 25] We take the temperature T=0
K and, unless specified, the effective disorder strength
ξ(≡ nIV

2
0 ) = 6.2 eV2 Å3, corresponding to typical elec-

tron (hole) self-energy broadening 0.1 meV (1 meV) and
collisional lifetime 6 ps (0.6 ps).

First we consider the weak Γ6-Γ8 coupling case x=0.37
with Eg(Hg0.63Cd0.37Te)≈0.4 eV (Fig. 1). Without ver-
tex corrections, the electron ISHE exhibits step-like in-
creases (by approximately one universal value σ0) at the
edges of the first (E1) and second (E2) conduction bands.
Such behavior is greatly suppressed by the inclusion of
vertex corrections, in sharp contrast to the hole ISHE,
which has an opposite sign and remains largely unaffected
by vertex corrections. Therefore in the weak coupling
regime, the results of the previous theories are recovered.

To explore electron ISHE in the strong coupling
regime, we consider the CdTe/HgTe quantum well cor-
responding to x=0. Due to the abnormal positions and
effective masses of the Γ6 electron and Γ7 light-hole bands
in the HgTe layer, the bandgap EΓ

g of the quantum well
at k‖=0 can be tuned by varying the well width or the
electric bias. Fig. 2(a) shows that the derivative of EΓ

g

is discontinuous at W ≈ 7, 9, 24, and 28.5 nm, indicating
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FIG. 2: (color online) (a) EΓ
g for F=50 kV/cm. (b) Band-

edge (k‖=0) phase diagram of the lowest conduction band
and highest valence band. (c) σSH for F=50 kV/cm, W=6
and 8 nm, respectively [indicated by filled circles in (a) and
(b)]. Solid (Dashed) lines correspond to ξ = 6.2 (62) eV2 Å3.
Inset: electron density vs. Fermi energy.

certain phase transitions. Actually, the first critical point
at W ≈ 7 nm corresponds to the normal-inverted phase
transition E1-HH1 → HH1-E1.[26] Namely, the lowest
conduction (highest valence) band changes from E1 to
HH1 (HH1 to E1), where E (HH) denote Γ6 electron (Γ8

heavy-hole) states. Other critical points corresponds to
similar transitions [Fig. 2(b)]. They manifest the red
(blue) shift of electron states E2, E3, · · · (heavy-hole
states HH1, HH2, · · · ) with increasing well width/electric
bias due to weakening of the confinement/quantum con-
fined Stark effect. From Fig. 2(c), we see that in the E1-
HH1 phase, σSH arising from the lowest conduction band
(E1) is largely cancelled by vertex corrections, especially
for small Fermi energy. In contrast, in the HH1-E1 phase,
the lowest conduction band (HH1) takes on pure Γ8 sym-
metry at small wave vectors and its contribution to σSH

is largely unaffected,[27] leading to the abrupt increase
of σSH accompanying the phase transition from E1-HH1
to HH1-E1. This phase transition induced ISHE is ro-
bust against impurity induced vertex corrections since it
varies only slightly when ξ is increased by an order of
magnitude, i.e., when typical electron lifetime [mobility]
decreases from 6 to 0.6 ps [3 × 105 to 3 × 104 cm2/(V
s)]. By changing the well width, large electron ISHE can
be switched on/off, especially for small Fermi energy or
electron density [inset of Fig. 2(c)].

In the above, the phase transition occurs at small crit-
ical well width and the electric bias plays a minor role.
When the critical well width increases, the bias electric
field induced quantum-confined Stark effect would be-
come strong enough to induce the phase transition E1-
HH1 → HH1-E1 and control the appearance of large elec-
tron ISHE. To demonstrate this, we consider the case
x=0.16 with Eg(Hg0.84Cd0.16Te)≈0. For W=25 nm, the
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FIG. 3: (color online) (a) EΓ
g for W=25 nm. (b) Band-edge

(k‖=0) phase diagram of the lowest conduction band and
highest valence band. (c) σSH for W=25 nm, F=60 and 90
kV/cm, respectively [indicated by filled circles in (a) and (b)].
Solid (Dashed) lines correspond to ξ=6.2 (62) eV2 Å3. Inset:
electron density vs. Fermi energy.

bandgap EΓ
g ≈ 60 meV at F=0 and decreases to zero

at F ≈ 75 kV/cm [Fig. 3(a)]. The discontinuities of
its derivative at F ≈ 75, 125, and 162 kV/cm clearly
manifest the phase transitions plotted in Fig. 3(b). As
a result, σSH in Fig. 3(c) shows a large increase when
the bias electric field is tuned across the critical point.
Again, the slight dependence on the disorder strength
ξ manifests the robustness of the ISHE against impu-
rity induced vertex corrections. The field-induced phase
transition provides a dynamic way to switch on/off the
electron ISHE, especially for small Fermi energy or elec-
tron density [inset of Fig. 3(c)].

Turning back to CdTe/HgTe quantum wells, Fig. 2(a)
shows that the electric bias can induce the transition HH1
→ E2 in the lowest conduction band or, equivalently, the
transition E2 → HH1 in the second conduction band [Fig.
4(a)]. In the E2 phase, the Rashba spin splitting between
the two branches of the second conduction band reverses
its sign at a critical wave vector k0 [Fig. 4(b)]. Anal-
ysis shows that this behavior comes from the coupling
between the two branches and the interface states,[28]
thus it does not exist in the HH1 phase. By varying the
well width or electric bias, such behavior can be switched
on/off [Fig. 4(a)] and the critical wave vector [gray scale
map in Fig. 4(a)] or critical electron density [inset of Fig.
4(c)] can be tuned, offering us the possibility to manipu-
late the ISHE arising from the second conduction band.
Indeed, σSH in Fig. 4(c) exhibits a resonance when the
Fermi energy coincides with the spin degeneracy point.

We notice that although such level-crossing induced
resonance has been predicted for the widely accepted hole
ISHE in p-type GaAs quantum wells (based on calcula-
tions that neglect vertex corrections),[29] similar predic-
tion for the much debated n-type systems still remains
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FIG. 4: (color online) (a) Band-edge (k‖=0) phase diagram
(the gray scale map in E2 phase indicates k0) and (b) Rashba
spin splitting (at W=25 nm, F=30 kV/cm) of the second
conduction band. (c) σSH for W=25 nm, F=30 kV/cm [indi-
cated by the filled circle in (a)] and different disorder strength
ξ. Inset: critical electron density for W=25 (solid line), 20
(dashed line), and 15 (dotted line) nm.

absent. For hole ISHE, a challenging hole lifetime & 10
ps or hole mobility µp & 104 cm2/(V s) is required to ob-
serve the resonance.[29] For electron ISHE, the require-
ment is significantly relaxed to electron lifetime & 3 ps
[corresponding to ξ . 20 eV2 Å3, cf. Fig. 4(c)] or elec-
tron mobility µn & 2×105 cm2/(V s). These have already
been realized in previous experiments, e.g., µn=3.2×105

cm2/(V s) for W=7.8 nm[30] and µn=3.5 × 105 cm2/(V
s) for W=21 nm[24] (close to the well width used in our
calculation).

In summary, we have investigated the electron ISHE
in narrowgap HgCdTe quantum wells based on a unified
description for electron and hole ISHE. While the ISHE
of the conduction band vanishes on the normal side of the
Γ6-Γ8 phase transition, a ISHE in the conduction band
can be generated on the inverted side. It is robust against
impurity induced vertex corrections. By changing the Cd
content, the well width, or the bias electric field, we can
switch the ISHE on/off or tune it into resonance under
experimentally accessible conditions. Ref. [31] shows
that the spin Hall effect can be experimentally observed
by the non-local transport measurements in mesoscopic
systems. We propose to carry out such measurement for
both the normal and inverted quantum wells, both close
to the transition. The difference uniquely singles out the
ISHE contribution.
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